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displacement, force, voltage, current, etc.), 
across regions up to tens to  hundreds of 
microns wide, with nanometer resolu-
tion, enabling mesoscale materials char-
acterization.[1] Voltage-modulated SPM 
techniques, such as piezoresponse force 
microscopy (PFM), electrochemical strain 
microscopy (ESM), and contact Kelvin 
Probe Microscopy (c-KPFM) have received 
particular attention due to their ability to 
offer functional as well as topographical 
characterization of materials at mul-
tiple length scales. Among these, PFM 
has become the premier technique for 
characterization of nanoscale electrome-
chanical response, polarization switching, 
and domain dynamics for ferroelectric 
materials. Ferroelectrics are characterized 
by spontaneous polarization, switchable 
under sufficiently strong external elec-
tric fields. A clear understanding of the 
polarization switching process, including 
nucleation and growth of domains, span-
ning from nano- to micro-meter length 

scales, is crucial for assessing application of these materials in 
nanoscale devices.[2]

In PFM an ac electric field is applied to the sample, through 
the conducting probe tip contact to the sample surface, 
resulting in electromechanical deformation of the material.[3] 

Scanning Probe Microscopy (SPM) based techniques probe material properties 
over microscale regions with nanoscale resolution, ultimately resulting 
in investigation of mesoscale functionalities. Among SPM techniques, 
piezoresponse force microscopy (PFM) is a highly effective tool in exploring 
polarization switching in ferroelectric materials. However, its signal is also 
sensitive to sample-dependent electrostatic and chemo-electromechanical 
changes. Literature reports have often concentrated on the evaluation of the Off-
field piezoresponse, compared to On-field piezoresponse, based on the latter’s 
increased sensitivity to non-ferroelectric contributions. Using machine learning 
approaches incorporating both Off- and On-field piezoresponse response 
as well as Off-field resonance frequency to maximize information, switching 
piezoresponse in a defect-rich Pb(Zr,Ti)O3 thin film is investigated. As expected, 
one major contributor to the piezoresponse is mostly ferroelectric, coupled with 
electrostatic phenomena during On-field measurements. A second component 
is electrostatic in nature, while a third component is likely due to a superposition 
of multiple non-ferroelectric processes. The proposed approach will enable 
deeper understanding of switching phenomena in weakly ferroelectric samples 
and materials with large chemo-electromechanical response.
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1. Introduction

Scanning Probe Microscopy (SPM) based techniques employ 
a cantilever to locally probe a materials surface and allow 
for the acquisition of multiple observable quantities (e.g., 
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The efficacy of PFM is greatly enhanced by resonant modes, 
which exploit the contact resonant frequency (ω) to increase 
signal-to-noise ratio and reduce topographic  crosstalk.[4,5] 
 Polarization dynamics can be explored with the application 
of an additional dc field via relaxation or switching experi-
ments.[6,7] Measurements are made both during (On-field, 
On-F) and immediately after (Off-field, Off-F) the applica-
tion of the dc bias. The resultant data is subsequently fit to a 
simple harmonic oscillator model (SHO) to extract information 
about electromechanical response (amplitude, A), polarization  
orientation (phase, θ), viscoelastic properties (ω), and energy 
dissipation (Q).

In prototypical ferroelectrics such as many perovskite oxides, 
electromechanical deformation is expected to be dominated by 
true piezoelectric signal. However, as described by Balke, Vas-
udevan and others, electromechanical deformations can also be 
induced by non-piezoelectric phenomena such as electrostatic 
displacement, electrochemical deformation, electrostrictive 
effects and Joule heating: in fact, non-piezoelectric (i.e., elec-
trostatic or electrochemical) contributions usually dominate the 
On-F piezoresponse (PR).[8–12] As a result, On-F measurements 
are typically ignored in the analysis of PFM data, due to the ina-
bility to separate or remove the non-piezoelectric contributions. 
Additionally, instrument-based artifacts can also influence both 
On-F and Off-F measurements.[13] Multiple different PFM or 
SPM-based approaches have been reported to separate the pie-
zoelectric and non-piezoelectric contributions to the measured 
signal.[14–19] Some of these involve repeated data collection across 
multiple specialized experimental techniques (e.g., c-KPFM) or 
re-scan of the sample with cantilever tips of different stiffness), 
leveraging differential changes in piezoelectric and non-piezo-
electric contributions to distinguish between contributors. An 
approach for such differentiation without the need for repeated 
data collection would benefit the analysis of all voltage-modu-
lated SPM variants, including PFM, c-KPFM, ESM, etc.

Machine learning (ML) techniques have recently emerged as 
a viable method for analysis of PFM and other voltage modu-
lated SPM measurements, addressing some of the above chal-
lenges in data interpretation.[1,20] Among others, clustering 
techniques such as K-means have been used to identify the 
ergodic and non-ergodic behaviors in ceramic composites, as 
well as the onset of phase transitions in relaxor-ferroelectric 
solid solutions.[21,22] A Bayesian optimized support vector ML 
approach was used to classify switching and stable domains 
under weak ac electric fields.[23] Neural networks have been lev-
eraged to study polarization dynamics in PZT thin films and 
competing contributors to the functional response in conduct-
ance AFM-based investigation of (Er0.99,Zr0.01)MnO3.[24,25] Yet, 
a major limitation of ML techniques is their inherent lack of 
physical constraints, often leading to debatable physical con-
clusions.[26] Encoding of physical constraints can be achieved 
through stacking (concatenation) of data along specific dimen-
sions prior to analysis by ML techniques.[27] In relaxor-ferroe-
lectric solid solutions, composition- and voltage-concatenated 
piezoresponse relaxation prior to a Non-Negative Matrix Fac-
torization analysis revealed a strong relaxor-like behavior per-
sisting deep into the ferroelectric phase, providing a finger-
print of the relaxor’s electromechanical coupling.[27] Similarly, 
piezoresponse and contact resonance concatenation allowed 

a simple Dictionary Learning (DL) algorithm to separate fer-
roelectric and non-ferroelectric contributions to switching in 
PbZr0.2Ti0.8O3 thin films.[28] However, ML-based analysis of 
PFM data has been often limited to materials with exceptional 
electromechanical coupling, usually bulk or thin film single 
crystals. Given the weaker electromechanical properties of 
emerging ferroelectric materials, it is of paramount importance 
to establish analysis methods that can be used ubiquitously, 
across all materials and SPM-based approaches.

As a case study, we investigate and classify the local band 
excitation piezoelectric spectroscopy (BEPS) switching response 
in a defect-rich Pb(Zr0.53,Ti0.47)O3 thin film, fabricated via chem-
ical solution deposition and a novel pulsed thermal processing 
(PTP) crystallization technique on a glass substrate.[29] PTP ena-
bles direct processing of ferroelectric films on substrates with 
limited thermal tolerance, through plasma arc heating delivered 
in microsecond pulses, and leads to a wide variety of defects 
(i.e., nanoscale grain sizes, porosity and secondary phases).[29] 
Such microstructural variations result in non-piezoelectric 
phenomena coupling with piezoelectricity and dominating 
the electromechanical response. The resultant decrease in the 
signal-to-noise ratio of the PFM data results in challenging to 
impossible extraction of reliable information about the local 
ferroelectric behavior. However, by carefully removing out-
liers, incorporating the On-F measurements via dimensional 
stacking, and by applying clustering and dimensional reduc-
tion techniques to our stacked data, we identify different con-
tributors (e.g., ferroelectric switching, electrostatic coupling) 
to the local switching piezoresponse. We further correlate the 
contributors to the defect landscape within the sample (as iden-
tified by transmission electron microcopy, TEM, and atomic 
force microscopy, AFM). The correlative approach reveals a 
superposition of ferroelectric, electrostatic and other complex 
non-ferroelectric contributors and their probable nanoscale 
origins in these defect-rich films. Further, the results highlight 
that analysis algorithms can be substantially strengthened by 
appropriate data preprocessing, physical constraints imposed 
through dimensional stacking, and correlative analysis with 
other characterization methods. This work provides a blueprint 
for enhanced and robust identification of piezoresponse and 
hysteretic behavior in defect-rich ferroelectrics and/or materials 
with weak piezoelectric contributions (i.e., many organic-inor-
ganic perovskites, fluorite and 2D ferroelectrics).

2. Results and Discussion

2.1. Structural Characterization and Switching

A dark field TEM image (Figure 1a) illustrates the polycrystal-
line nature of the film. In most cases, the observable bright 
and dark grains penetrate across the entire 210 nm thickness. 
The high-angle annular dark-field (HAADF) image (Figure 1b) 
reveals a mixture of columnar and triangular/pyramidal shaped 
grains, as well as several large (≤200 nm) defects (dark pores) 
in the film, close to the bottom electrode. Such pores could be a 
result of energy transfer concentration (and localized tempera-
ture increase) in proximity of the Pt bottom electrode during 
crystallization, and hence fast organic removal.[29–31] Looking 
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closer at the surface region (highlighted by the red square, 
Figure  1b), an atomic resolution image (Figure  1c) shows 
clear atomic ordering and crystallinity, along with a smaller 
(≈10 nm) defect within the grain, (highlighted by a red circle). 
The selected area diffraction pattern (SADP) in Figure 1d shows 
strong texturing along the <100> zone axis, although the slight 
streaking of spots implies some disorder with other orientations 
also present. The determined d-spacing (Table S1, Supporting 
Information) from the SADP confirms unit cell parameters to 
be close to the target composition values and the ratio of out-
of-plane to in-plane d-spacings implies a small tensile strain in-
plane to the substrate (Figure S1, Supporting Information).[32] 
Energy Dispersive X-Ray Spectroscopy mapping (Figure S2, 
Supporting Information) also suggests a composition close to 
target values, with a slight Pb over-stoichiometry. An electron 
energy loss spectrum (EELS) analysis (Figure S3, Supporting 
Information) of the Ti oxidation peak is similarly consistent 
with Pb excess and/or O vacancies. In general, the film appears 
to be well-crystallized and ordered, although local defects and 
regions of disorder are present, as expected due to the large 
thermal gradients during crystallization.[29]

AFM topography (Figure  1e) confirms the polycrystalline 
structure, with grain sizes varying from tens to hundreds of 
nano meters, similar to the TEM observations. The specific loca-
tion studied via AFM techniques has a significantly rougher 

surface compared to that studied by TEM (Figure  1b), with  
37 versus 10  nm max peak-to-peak variation, respectively. The 
corresponding PFM amplitude and phase images (Figure  1f,g; 
Figure S5, Supporting Information) further confirm the heteroge-
neous nature of the film. All PFM images are out of plane images 
unless otherwise specified. The as-deposited films exhibit a rela-
tively uniform upward polarization, and localized enhancement 
in the PFM amplitude. After the BEPS experiment, the resultant 
domain structure varies by location: some locations show an 
apparent uniform switched polarization, some locations have no 
indication of switched polarization, and some locations show ring-
shaped domains (Figure 1i,j; Figure S5, Supporting Information). 
Such spatial variation in the material’s response to the same input 
signal suggests substantial variability within the sample. However, 
an analysis of the average Off-F and On-F amplitude or Off-F PR 
curves does not allow any further insight, given the nature of the 
averaging process (Figure 1k–n). Similarly, a one-by-one evaluation 
of the local measured response provides at best circumstantial 
evidence of any type of behavior. Indeed, only the Off-F ω shows 
behavior consistent with polarization switching, indicated by 
the changes in ω in proximity of coercive bias (Figure 1o).[15,33,34] 
Therefore, in order to gain insight into the origins of the observed 
variations, we leverage ML approaches enabling correlation of 
BEPS response with the post-switching domain formation and/or 
local topographical and microstructural variations.

Figure 1. Microstructural and functional characterization. a) Dark field TEM, b) HAADF cross section of the sample, and c) an atomic resolution 
image along the <111> of the region outlined in red in (b). The white arrows in (b) indicate large pores at film-substrate interface. The red circle in 
(c) highlights a small intra-granular defect. d) Diffraction pattern from the red square region in (b). e) Topography and out-of-plane PFM amplitude 
and phase over a 5 × 5 µm area f,g) before and h,i) after BEPS. j) Higher magnification PFM scan from the region highlighted in (i), showing ring 
shaped domains. The average k) off- and l) on-field amplitude (A), m) off- and n) on-field piezoresponse (PR), and o) off-field contact resonance 
frequency (ω) from BEPS.
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2.2. Data Preprocessing and Machine Learning Analysis

Two different ML approaches were employed. Due to the defec-
tive nature of the sample, a large number of outliers were 
expected. Hence, the removal of outliers while preserving the 
critical information was the first challenge for both method-
ologies. As an initial step, both methods identified poor fits to 
the SHO model. After this step, the two approaches diverged 
in terms of outlier and noise detection, removal, and replace-
ment for subsequent analysis. After preprocessing, Method 1 
utilized Principal Component Analysis (PCA) to reduce noise, 
before dimensionally stacking the On-F PR and Off-F PR from 
the second and third switching cycles.[35] K-means clustering 
was used to identify the possible number of components and 
classify distinct behaviors within the PFM response. Method 
2 dimensionally stacked the On-F PR, Off-F PR, and Off-F ω 
from all three switching cycles, after initial data preprocessing. 
K-means clustering and DL were then used to identify localized 
outliers, and DL was used to identify three principal behaviors 
within the PFM response.[28]

2.2.1. Method 1: K-Means on PCA-Cleaned Averaged Cycles

Data Cleaning and Preparation: Poor fits to the SHO model 
accounting for 2.7% of the overall dataset, were identified by 
unreasonable Q values and removed (see Supplementary Infor-
mation 2.1 for further details). For these points, the 2nd and 
3rd cycle PR were averaged (for each the On-F and Off-F state) 
before use, while the 1st cycle PR was left out of the analysis. 
Omission of the first cycle in PFM data analysis is routinely 
done, based on the fact that by default the switching and non-
switching domains perform differently during the first full 
period of signal application. Additional noise was removed 
from the data via PCA analysis (Figure S7, Supporting Informa-
tion), with the intention of preserving only the essential infor-
mation within the data.[35] To encode physical constraints, the  
On-F and Off-F PR data were dimensionally stacked to provide 
correlated information about the ferroelectric and non-ferroe-
lectric behaviors.
Behavior Classification by K-means Clustering: K-means clustering 
groups n observations (data points) into k clusters, predeter-
mined by the user. Here, n  =  900, corresponding to the spa-
tial locations (i.e., 30  ×  30) over which BEPS was conducted. 
A scree plot (Figure 2a) for the stacked On-F PR and Off-F PR 
data with inertia (sum-of-squared-distances within a single 
cluster) as a function of number of clusters was used to deter-
mine an appropriate value of k. The sharpest change occured 
between 3 and 5: hence, k  =  4 was selected. We note that an 
initial manual inspection of the BEPS data also suggested  
4 distinct switching behaviors, while k = 5 based analysis exhib-
ited a fifth cluster incompatible with ferroelectric switching 
(Figure S8, Supporting Information). The K-means output for 
k  =  4 is presented, including distribution of the various clus-
ters overlaid onto the post-BEPS PFM phase image (Figure 2c; 
further details in Figure S9, Supporting Information). The cor-
responding On-F PR (grey) and Off-F PR (black) behaviors for 
each cluster are shown in the yellow, green, red, and purple 
boxes (Figure 2d), and are discussed in detail below.

The k1 cluster (green) exhibits large On-F PR with small 
hysteresis, small Off-F PR but with larger hysteresis, and 
no evidence of polarization switching post BEPS (Figure  2c; 
Figure S9, Supporting Information). The On-F PR exhibits 
the smallest coercive bias of all identified contributors, while 
the Off-F PR curves showed relatively shallow slope near 
coercive values, implying a wide distribution of “switching” 
energies (voltages) rather than sharp transitions associated 
with ferroelectric switching. We describe this cluster as non-
switching, due to the absence of a stable, switched domain in 
the post BEPS phase image. We note that it is possible that the 
domains are created but fully back-switch after the removal of 
the dc bias. The k2 cluster (yellow) has somewhat similar On-F 
and Off-F PR in absolute value, and a well-saturated Off-F PR 
response with a counter-clockwise rotation direction. The K2 
cluster has larger coercive biases for both the On-F and Off-F 
PR compared to k1. After BEPS, this cluster often correlates 
with solid switched domains: hence, it is considered to cor-
respond to ferroelectric switching. The k3 cluster (red) has 
a complex On-F PR hysteresis loop and is found to predomi-
nantly coincide with ring-shaped domains after BEPS. This 
domain structure has been previously attributed to partial back-
switching of the polarization after the removal of the dc voltage 
or anomalous switching.[36–38] Thus, k3 is considered to include 
a “back-switching” component. The k4 cluster (purple) exhibits 
“noses” in the Off-F PR, an irregular shaped On-F PR hysteresis 
loop, and like k2, often corresponds with locations exhibiting 
solid switched domains. Hence, we refer to this component as  
“irregular switching.”

While the above observations are generalized, the classified 
behaviors do not strictly correlate with a single domain type. 
For example, points classified as “back-switching” could exhibit 
a small solid switched domain post BEPS (Figure S9, Sup-
porting Information). The loose correlation to post switching 
domain type could point to underlying phenomena mediating 
and leading to irregular local switching behavior, as would 
be the case for strong pinning sites (defects) interacting with 
domain walls.[39,40] In general, assigning data that possess fea-
tures of different behaviors to a single cluster is a major limi-
tation of a K-means approach.[28] The lack of clear separation 
between clusters (Figure  2b) indicates a mixture of behaviors, 
and indeed supports the possible “information reduction” 
through clustering algorithms.[35] The identification of convo-
luted contributors is better addressed by dimensional reduction 
techniques, which allow for the mixing of separate behaviors 
within a single probed location.[28]

2.2.2. Method 2: Dictionary Learning on Full Cycle Information

Data Cleaning and Preparation: Although often ignored, the first 
cycle response is inherently most affected by the underlying 
nanoscale structural or chemical heterogeneities (compared to 
subsequent cycles). Furthermore, this cycle is the least affected 
by eventual accumulation of injected charges due to applied 
external voltages. Thus, all switching cycles were used in the 
analysis. As mentioned previously, 2.7% of the overall dataset 
are outliers caused by poor fitting of the raw signal to the SHO 
model. The percentage of outliers increased to 5.5% after con-
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sidering packets outside 3 standard deviations of the mean Q 
values to be out of range. Here, a linear interpolation using 
the 2 nearest neighbor valid values was performed to fill the 
missing data values, enabling preservation of the three separate 
cycles (for each of On-F PR, Off-F PR, and Off-F ω). To incor-
porate additional physical information, the DL algorithm was 
applied to the stacked On-F PR, Off-F PR, and Off-F ω data. 
Polarization switching is accompanied by changes in the viscoe-
lastic properties of the material and hence changes in the tip-
sample contact resonance frequency, ω.[15,28,33,34] However, the 
On-F ω data collected was noisy, as is often the case in BEPS 
measurements (Figure S10, Supporting Information). Hence, 
despite containing valuable information, the On-F ω data was 
not included in the concatenated dataset, in order to maximize 
the signal-to-noise ratio. The On-F PR, Off-F PR, and Off-F ω 
data were normalized prior to data stacking. After stacking, fur-
ther local outliers were removed from the final stacked data set 
via K-means clustering and DL methods (Figures S11 and S12, 
Supporting Information).
Dimensional Reduction by Dictionary Learning: In the final DL 
analysis, the model parameters (i.e., number of behaviors, N, 
and sparsity factor, α) were selected based on minimization of 

error, as illustrated in Figure 3a,b.[28] The α parameter controls 
the tolerance for mixing of separate contributors at each probed 
location and higher values will linearly increase model error. In 
this analysis, we use the root-mean square (RMS) error plots 
to enforce the greatest amount of separation without severely 
comprising model error. Within the range of considered N 
and α values, the scree plot and error maps show a significant 
reduction in RMS error between N = 2 and N = 3, and a sub-
stantial increase for α values higher than 20. A DL analysis with 
four components and α = 20, leads to the detection of local out-
lier responses (Figure S13, Supporting Information). Therefore, 
we opt for a choice of three components (N  =  3) and α  =  20 
(Figure  3c). Each map represents the relative spatial intensity 
of the single component (N1, N2, or N3) corresponding to the 
concatenated  On-F PR, Off-F PR, and Off-F ω responses. Points 
in green represent locations where outliers were removed from 
the dataset.

N1 and N2 appeared to be somewhat consistently observed 
across the probed region. Considering first N1, the On-F PR 
response exhibited the weakest hysteresis across all contribu-
tions, with substantially smaller coercive voltages compared to 
the Off-F PR within the same component. Significant softening 

Figure 2. Principal component analysis followed by K-means cluster identification and mapping four switching behaviors. a) Scree plot of the Inertia 
(sum-of-squared-distances within a single cluster) for the stacked (2nd and 3rd cycle averaged) off- and on-field piezoresponse as a function of the 
number of clusters, k. b) Visualization of intended clusters where the x and y axes correspond to the 1st principal component (PC1) of the off- and 
on-field piezoresponse, respectively. Each datapoint (spatial location) has been classified as one cluster (K1 -green, K2 -yellow, K3 -red, and K4 -purple) 
in the subsequent c) k = 4 K-means analysis. A map of identified behaviors is overlaid a post-switching phase image. d) Corresponding On-F PR (grey) 
and Off-F PR (black) behaviors for each cluster represent non- (green), ferroelectric (yellow), back- (red), and irregular switching (purple).
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in ω was observed near the coercive bias, within the first cycle. 
However, the softening is dampened in the second cycle, transi-
tioning to strong hardening in the third cycle. Such viscoelastic 
hardening suggests this behavior is related to non-ferroelectric 
phenomena (accumulated charge injection/electrostatic cou-
pling). Indeed, examination of an individual point with only 
N1 behavior (Figure S14a, Supporting Information) clearly indi-
cates a “double V” On-F A (strong linear voltage-dependence of 
the amplitude beyond the coercive voltage, with no saturation), 
typical of electrostatic contributions.[8,41]

In N2, both the Off-F PR and On-F PR showed saturation 
signs, although the On-F curve had a substantial rotation. The 
Off-F ω showed softening in proximity of the coercive voltages, 
enhanced with increasing number of cycles. Such behavior is 
consistent with a ferroelectric material, with continued unpin-
ning of domain walls through cycling of the applied wave-
form.[42] The examination of a point dominant in N2 behavior 
revealed saturated butterfly loops for the Off-F A, and coercive 
voltages smaller in the Off-F than On-F (Figure S14b, Supporting 
Information), also consistent with ferroelectric switching.[8,11,16] 
However, the On-F PR showed also characteristics differing 
from ferroelectric behavior (Figure S14b, Supporting Informa-
tion). Specifically, local maxima superimposed on the ferroelec-
tric-like butterfly loops at a low bias, with increasing intensity 
at increasing number of cycles, suggest the presence of a non-
ferroelectric component during the On-F measurements.

For N3, the On-F PR curves showed continuous PR increase 
with increasing number of cycles at both positive and negative 

biases. The Off-F PR loops showed a clockwise rotation, not 
compatible with simple ferroelectric response. Addition-
ally, while the second half of each cycle showed an increase 
in (absolute) PR values, the first half of each cycle remained 
relatively constant after the first cycle. Lastly, ω increased but 
with smaller increments over time, until it became almost 
invariant during the last cycle. Looking more closely at a single 
point with a predominant N3 behavior (Figure S14c, Supporting 
Information), the On-F amplitude and phase (A and θ, respec-
tively) hint at a switching event at low coercive fields, followed 
by a rise in A at moderate fields and a decrease in the response 
at higher fields within the first quarter cycle. During the second 
quarter cycle, there is another strong rise in the On-F A prior to 
reaching the apparent coercive field. The shape of the On-F PR 
response might appear to be similar to those associated with 
ferroelastic switching events or with field-induced phase tran-
sitions.[33,34] However, the progression of the N3 On-F PR 
response (Figure S15, Supporting Information) showed the 
response approaching saturation in the first quarter cycle and 
then developing the “nose” in the second quarter, unlike the 
piezoresponse for ferroelastic switching events or field-induced 
phase transitions. Furthermore, ferroelastic switching or field-
induced phase transition are also associated with substantial 
changes in ω near coercive voltages.[33,34] Such changes were 
clearly absent from N3 Off-F ω behaviors.

Further insights into the DL identified behaviors were found 
by the linear addition of a ferroelectric and a non-ferroelectric 
component (such as electrostatic coupling), shown in Figure S16 

Figure 3. Dictionary Learning (DL) applied to the stacked On-F and Off-F PR and Off-F ω. a) Average root-mean-squares (RMS) error as a function of 
number of components (N) and sparsity (α). b) Maps showing the change in RMS error values for N = 2, 3, 4, 5 and α = 1, 10, 20, 30 across the probed 
area. c) DL output for N = 3 and α = 20. Each map corresponds to the relative spatial intensity of the single component (N1, N2, or N3) representing 
the stacked On-F PR, Off-F PR, and Off-F ω. Points in green represent locations where outliers were removed prior to the DL analysis.
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(Supporting Information) (representative point responses are 
shown in Figure S14a,b, Supporting Information). When these 
two contributors have opposite overall phases (due to a com-
bination of θ and ϕ, phase offset due to instrumentation), the 
resulting behavior displays “humps” that seem to rotate and 
expand/contract the overall loop based on the relative amount 
of non-ferroelectric to ferroelectric contributions (Figure S16a, 
Supporting Information). In fact, linear combinations with 
mostly non-ferroelectric components resulted in very similar 
shaped curves to those observed in On-F PR for N2 (Figure S14b, 
Supporting Information), illustrating the unavoidable presence 
of substantial contributions from non-ferroelectric (non-pie-
zoelectric) phenomena during the On-F measurements. How-
ever, if the two contributors have the same overall phase, the 
resultant behavior is closer to a more typical hysteresis loop, 
with “noses” at saturation (Figure S16b, Supporting Informa-
tion). We note that the fifth cluster in the K  =  5 analysis in 
Method 1 (Figure S8, Supporting Information) also possesses 
severe “noses.” These observations suggest that the contributors 
identified by DL are all combinations of non-ferroelectric and 
ferroelectric behaviors. The On-F and Off-F component of N1 
point to strong non-ferroelectric phenomena, possibly electro-
static contributions. However, neither of the non-ferroelectric or 
the ferroelectric components used here are necessarily charac-
teristic of all possible responses within this sample: changes in 
coercive voltages, saturation values, and overall hysteresis shape 
resulting from differing relative contributions from electrostatic, 

electrochemical, and ferroelectric behaviors are possible. Thus, 
N3 (and k3) behavior is presumed to be the superposition of two 
or more non-ferroelectric pheno mena that cannot be resolved 
by either of the ML approaches within the current sample.

2.3. Variations in Response

To investigate the origins of the local piezoresponse variability 
within the sample, we examine the relationship between the 
microstructure of the film and the contributions identified 
by both analysis methods (Figure 4). For reference, Figure S9 
(Supporting Information) (k1, k2, k3, and k4) and 17 (N1, N2, N3, 
and N4) show each of the identified contributor maps overlaid 
on top of the post BEPS topography, amplitude, and phase 
images. The spatial distribution of k1 (Figure  4a) is mostly 
along the deepest trenches on the surface, while N1 (Figure 4e) 
is most intense in the trenches but also contributes to the 
observed PFM response in the immediate surrounding loca-
tions. The non-switching behavior could be due to increased 
lateral contact of the tip to the film’s surface when located in 
a trench. Specifically, in the PFM-probed area (Figure  4), we 
observe a maximum trench depth and width of 15 and 250 nm, 
respectively (Figure S18, Supporting Information), possibly 
suggesting that close to the trench edge, the AFM tip may be 
in lateral as well as normal contact with the sample, driving 
in-plane switching. The post-BEPS lateral PFM (Figure S19, 

Figure 4. Determining possible origins of variations in switching behavior. Topography images overlaid with maps of different switching behaviors 
identified by K-means over a 1 µm x 1 µm area outlined by the dashed box in Figure 2c: a) k1 (green), b) k2 (yellow), c) k3 (red), d) k4 (purple), e) N1, 
f) N2, and g) N3. Reconstructed and input responses for points circled in red in (d) are shown in Figure S11, Supporting Information. h) Topography 
surface from a 3.5 × 3.5 µm area overlaid with N3 behavior. The color scale is offset to show topographic surface clearly. Points removed from the DL 
analysis are shown in green (e–h).
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Supporting Information) offers little to no evidence for stable 
domain switching. Regardless, lack of normal contact to the 
sample surface severely limits the intensity of the applied elec-
tric field, leading to no or very weak electromechanical contri-
butions from the sample.[43] At the same time, while the apex 
of the tip is in a surface depression, the cantilever body is more 
susceptible to non-local electrostatic coupling with the pore 
side walls.[44] Hence, we ascribe the non-switching behavior to 
non-ferroelectric contributions from electrostatic coupling of 
the cantilever body and the sample surface.

The ferroelectric switching is identified by both K-means and 
DL algorithms (k2 and N2, respectively), however, it occurs in 
slightly different regions of the sample. In general, these cor-
respond to locations where clear contact to the surface was 
made by the SPM tip, but that did not show extreme protu-
berance from the sample. More locations have N2 identified 
contributions (Figure  4f), compared to k2 (Figure  4b). This 
apparent discrepancy is directly explained by the differences  
in the clustering algorithms with respect to dimensional reduc-
tion approaches such as DL, where the latter allow for partial 
overlap of different contributions.

Similarly, points with N3 contributions (Figure  4g) are 
assigned to k3 (Figure  4c) or k4 (Figures  4d) by the K-means 
analysis. Indeed, the separation between the K3 and K4 clusters 
is not well defined (Figure  2b). Figure S20 (Supporting Infor-
mation) compares the measured responses for a few locations 
assigned by K-means to k4 locations (red circles Figure  4d), 
with reconstructed responses based on strong N2, and different 
mixing ratios of N1 and N3 behaviors. The mixing ratios were 
determined from relative intensity of each contributor (N1, N2, 
and N3) at each location. Specifically, both the nose-like fea-
tures in the Off-F PR hysteresis loops and the double-loop-like 
On-F hysteresis curves of k4 can be reproduced with a mixture 
of strong N2, and weak N3 contributions. Most notably, a point 
mostly attributed to N2 behavior (Figure S14b, Supporting Infor-
mation) is classified as k4, despite little to no nose-like character 
in the Off-F PR. The shape of the On-F PR seems to be used as 
the dominant classification basis.

In general, the N3 behavior is most intense at locations 
associated with high PFM amplitude (Figure S14c, Supporting 
Information) and local surface perturbances (Figure  4h). The 
material at these locations is less laterally constrained com-
pared to other locations and hence, can deform in all directions. 
Additionally, a higher concentration of defects can be expected 
in these locations due the increased Pb loss at peaks during pro-
cessing.[45] Indeed, TEM (Figure S4, Supporting Information) 
shows regions of enhanced disorder at the surface of the films, 
possibly resulting in more electrochemically active regions.

Overall, there is a clear correlation between the film’s topog-
raphy and the dominance of the ferroelectric or the non-ferro-
electric behavior. Partial contact in pores emphasizes the con-
tribution from electrostatic-like phenomena, while the prob-
able increase in defect concentration at surface protuberances 
results in contributions from multiple non-ferroelectric, hys-
teretic behaviors. In between peaks and valleys, ferroelectric-
like switching, albeit with an unavoidable On-F non-ferroelec-
tric contribution, dominates the electromechanical response. 
This ferroelectric-like contributor is also weakly present in 
close proximity to peaks and valleys. The ability to resolve and 

differentiate the subtle ferroelectric-like switching behaviors 
in these microstructural features illustrates how incorporation 
of On-F PR, as well as Off-F ω measurements via dimensional 
stacking, can facilitate the differentiation between piezoelectric 
(ferroelectric) and non-piezoelectric contributions.

Ultimately, the two different approaches yield slightly different 
results and only Method 2 allows a true mesoscale correlation 
between topography and obtained behaviors. This correlation is 
enabled by 1) the preservation and utilization of the maximum 
amount of information available in the acquired dataset and 2) 
the use of a dimensional reduction algorithm, which allows for 
separation of complex (i.e., multiple contributors to) electrome-
chanical response at each location. We recall that in Method 1, 
similar to many literature reports on machine learning for PFM 
analysis, the initial data cleaning removes substantial informa-
tion via exclusion of first cycle information, averaging of the 
2nd and 3rd cycles to fill missing data (poor SHO fits) and 
finally, PCA removal of global noise from the dataset. In an 
ideal material, the averaging steps may enhance further analysis 
by removing spurious features unrelated to the piezoelectric 
response. In a defective material, with substantial variation in 
microstructure and underlying heterogeneities, such removal of 
information is instead deleterious to the analysis, ultimately lim-
iting the correlation of classified behaviors with local topography. 
Method 1 incorporated both On-F and Off-F PR via dimensional 
stacking, and utilized K-means clustering. K-means clustering 
forcefully assigned each location to only one behavior, which led 
to substantial errors in classification and data interpretation chal-
lenges, particularly when correlating the classified behaviors with 
local microstructural features.

Method 2 adopted a different paradigm to noise and outlier 
removal. In a defective material, outlier responses could still 
be due to the material’s behavior. In the initial data cleaning, 
Method 2 used linear interpolation to replace poorly fit data-
points, significantly improving information density by pre-
serving all switching cycles. With respect to dimensional 
stacking, Method 2 correlated On-F PR, Off-F PR and Off-F 
ω behavior from all cycles. Additionally, this method lever-
aged K-means clustering and DL for local outlier identifica-
tion (Figures S8 and S9, Supporting Information) only after 
dimensionally stacking. As a result, the identified outliers cor-
responded to locations with correlated On-F PR, On-F PR and 
Off-F ω behavior significantly different from the majority, and 
hence only locations that fully differed from the majority of 
the sample (e.g., local surface contamination) were removed. 
Through linear interpolation and local/correlated outlier 
removal, the final analysis object retained a higher information 
density compared to averaging and/or global denoising.

For the separation of contributors, Method 2 utilized Dic-
tionary Learning, with multiple possible contributions at each 
probed location. The relative contributions from different 
behaviors were user-defined via the sparsity parameter. Maps 
of relative intensity for each DL-identified contribution were 
then correlated with local microstructural features. The inclu-
sion of both On-F PR and Off-F ω combined with the correla-
tion to microstructure allowed two of the major contributors 
to be attributed to known electromechanical phenomena, i.e., 
electrostatic response and ferroelectricity. Method 2 proved to 
be successful in differentiating piezoelectric (ferroelectric) and 
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non-piezoelectric contributions through information density 
maximization (within the dataset): the approach to poor SHO 
fits, the inclusion of On-F PR, Off-f PR and ω via dimensional 
stacking and ultimately the analysis were all geared towards 
preservation of the highest amount of information. In this 
way, Method 2 built an information bridge between nanoscale 
materials functionality and microstructural features of the film 
without the need for pristine materials or repeated data collec-
tion. Hence, Method 2 or similar high information density-pre-
serving methods should substantially increase the investigative 
power of any voltage-modulated SPM technique, where mul-
tiple electromechanical contributions are expected.

Here, Method 2 has provided a baseline analysis of a PZT 
film processed by CSD and PTP. We specifically recommend 
applying Method 2 to films with precise defect engineering to 
enable identification of physical and/or chemical electromechan-
ical contributors associated with specific defects and/or micro-
structures and hence, processing conditions. Furthermore, the 
proposed stacked On-F PR, Off-F PR and ω can aide in the anal-
ysis of voltage-modulated strain response not only in defect-rich 
materials, but in any material with weak electromechanical con-
tributions such as the novel fluorite-based ferroelectrics, organic-
inorganic perovskites, and 2D ferroelectric and piezoelectric 
materials. Finally, a generalized step by step approach consisting 
of 1) data preprocessing to preserve information, 2) physical con-
straints imposed via dimensional stacking, 3) localized and cor-
related outlier removal and 4) behavior identification by ML algo-
rithm most suited to the materials system is by no means limited 
to SPM techniques, but rather can be applied to any complex, 
multiparameter dataset.

3. Conclusion

We employed a combination of electron microscopy, atomic 
force microscopy as well as band excitation piezoelectric spec-
troscopy with ML analysis, to characterize the microstructural 
and functional properties of a defect-rich PZT sample pro-
cessed by pulsed-thermal-processing. Appropriate data pre-
processing, with high information density and dimensional 
stacking of on- and off-field piezoresponse and off-field con-
tact resonance frequency prior to ML analysis enabled differ-
entiation between ferroelectric switching and non-ferroelectric 
hysteretic contributions to the nanoscale electromechanical 
response. K-means clustering identified four apparent con-
tributions to the observed response, while DL identified three 
contributions. The fourth component identified by K-means 
was found to be a mix of other contributions (identified by both 
K-means and DL methods), demonstrating the importance of 1) 
considerate outlier removal, 2) maximizing information density 
and 3) ML approaches that can accommodate multiple contri-
butions within a single probed point. Of the three main con-
tributors to the electromechanical response, two were assigned 
to ferroelectric and non-ferroelectric (electrostatic) phenomena, 
respectively, while a third behavior was attributed to the local 
overlap of two or more non-ferroelectric phenomena. The iden-
tified contributors showed significant correlation with the sur-
face topography, strongly supporting the electrostatic nature of 
the primary non-ferroelectric contributor to the response.

4. Experimental Section
Materials: The 210  nm-thick PZT film examined in this study was 

prepared via chemical solution deposition and pulsed thermal processing 
(PTP) on a platinized glass substrate, as described by Yao  et  al.[29] 
PTP enables direct processing of ferroelectric films on substrates with 
limited thermal tolerance, through Xe plasma arc heating delivered 
in microsecond pulses. The in-house prepared Pb(Zr0.53Ti0.47)O3  
precursor solution was 2-methoxyethanol-based with 30%  Pb excess. 
The solution was spun coated onto a Pt/Ti coated glass substrate at 
3000  rpm for 30  s. Each layer was pyrolyzed at 400  °C for 1  min on a 
hot plate for partial organic and solvent removal. After deposition and 
pyrolysis of three subsequent layers under the same conditions, the 
sample was crystalized in PTP (Novacentrix, PulseForge 3300) through 
application of 50 pulses at 450 V for 500 µs each.

TEM: Cross-sections for TEM analysis were prepared using an 
FEI Scios DualBeam instrument. The sample was initially coated with 
thin layers of evaporated carbon and magnetron-sputtered Au before 
focused ion beam preparation with milling at 30, 16, and 8 kV, and final 
polishing at 5 and 2  kV. (S)TEM analyses were performed on a probe-
corrected FEI Titan Themis operated at 200 kV. Energy dispersive X-ray 
spectroscopy (EDX) was performed with an FEI SuperX EDX detector 
and electron energy loss spectroscopy (EELS) with a Gatan Enfinium 
EEL spectrometer with a fixed 5  mm entrance aperture. For STEM, 
a convergence angle of 21.2  mrad was used along with high angle 
annular dark field (HAADF) inner and outer collection angles of 88.4 
and 200  mrad. EEL spectra were obtained with a collection angle of 
10.3 mrad.

AFM and PFM: AFM-based experiments were carried out using 
an Asylum Research AFM (Cypher). Conductive tips (Nanosensors, 
PPP-EFM) with a nominal resonance frequency of 75 kHz and nominal 
force constant of 2.8  N  m−1 were used for all PFM and BE mode 
measurements. PFM scans were performed at ≈290 kHz, off the contact 
resonance peak (≈320 kHz), at an excitation voltage of 2 V using a Zurich 
Instruments lock-in amplifier (HF2LI). A National Instruments module 
(PXIe-6124) in combination with a chassis (PXIe-1073) and connector 
block (BNC-2110), controlled via a LabView interface, was used to apply 
dc bias waveforms and record the resulting piezoresponse in BEPS 
mode. A train of dc pulses following a symmetric triangular waveform 
varying between 0 and ±10  V (positive voltages first) was applied in a 
grid across the film with a setpoint force of ≈60 nN. Three total voltage 
cycles were applied at each probed point within each waveform. Each 
cycle consisted of 64 steps lasting 10 ms, with a dc bias applied during 
the first half (On-field, On-F) and no voltage applied during the second 
half of the step (Off-field, Off-F). The response was excited at each step 
with an ac amplitude voltage of 1 V, and a frequency band, 150 kHz in 
width, centered around the first harmonic contact resonance (≈280 kHz 
for the PPP-EFM tip used). After fitting to a Simple Harmonic Oscillator 
(SHO) model, the output data contained A, θ, ω, and Q from each of 
the On-F and Off-F sets. Additionally, piezoresponse (PR) was also 
calculated, given by Equation (1), where ϕ represents a phase offset 
mostly due to instrumentation.

PR Acos θ ϕ( )= +  (1)
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