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Abstract: The role of organo-fluorine compounds in modern health, food and energy related 
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industries is widely-appreciated. The unique properties that fluorine imparts to organic molecules, 

stemming from its high electronegativity and stability when bound to carbon, finds it increasing 

being used in the development of new bioactivities. Around 25% of the current blockbuster drugs 

contain fluorine and this number is increasing to well above 30% for recent FDA approvals. In this 

Review we highlight a selection of the most successful organo-fluorine drugs, that have achieved 

blockbuster status, namely, sitagliptin (diabetes), sofosbuvir (hepatitis C), emtricitabine (HIV), 

glecaprevir/pibrentasvir (hepatitis C), elvitegravir (HIV), dolutegravir (HIV), bictegravir (HIV), 

efavirenz (HIV), enzalutamide (prostate cancer), aubagio (immunomodulatory) and paliperidone 

palmitate (schizophrenia). For each compound we discuss their discovery, their relevant disease 

state and how they are made, emphasizing the source of fluorine-containing moieties, and where 

known, their mode of action. 

 

1. Introduction 

Since the seminal development and introduction to the clinic of fludrocortisone (1) (Figure 1) [1] in 

1953, the synthesis of organo-fluorine compounds for medicinal chemistry has grown from a rare 

and highly specialized activity to a status now where selective fluorinations of lead compounds are 

explored de rigueur in all front line drug development programmes. The high electronegativity of 

fluorine, its ability to form stable bonds to carbon and its compact size, offer a greater range of 

isosteric replacements (eg F for H) or electronic tunability than any other element, and this has 

elevated the role of fluorine in all areas of bioactives discovery [2]. It is quite remarkable that 

fluorine-containing compounds now constitute around 25% of small molecule drugs in the clinic. 

Fluorine-scans and fluorine-editing are now fully embedded activities in medicinal chemistry 
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explorations and this is having a major influence in contemporary organic chemistry. The 

international methodology development community, largely based in academia, are increasingly 

turning their focus towards innovative approaches to incorporating fluorine and fluorine containing 

motifs into organic chemistry scaffolds. This is driven by the requirement of big pharma to generate 

more and more diverse chemical libraries, with a higher frequency of fluorinated entities, to 

accelerate innovation. This is a golden age and there is no sense that the fluorine boom has peaked 

and when and where it may level out in drug discovery.  

Although developments of organo-fluorine compounds in healthcare are relatively regularly 

reviewed [3] we are stimulated after a decade to provide an update to the 2010 article in the Journal 

of Fluorine Chemistry entitled “Fluorine in health care: Organofluorine containing blockbuster 

drugs” [4]. This article uniquely focused on the most successful fluorine containing drugs ‘by sales’ 

at that time. This particular focus appears to have been appreciated by those researchers and students 

reviewing the topic and complements other approaches which classify by structure, the frequency 

of organofluorine motifs, pharmacokinetic strategies, fluorine chemistry/methodology, disease 

states etc., and this overtly commercial criteria offers another angle for emphasising the impact and 

importance of organofluorine chemistry more generally.  

Those drugs, that during their product lifetime, attained the status of sales of $1.0 billion dollars 

or greater per annum are often referred to as “blockbuster drugs”, and in this Review we highlight 

the more recent entries of organofluorine drugs in this category. This should not of course be the 

only definition of the success of a medication. The Pfizer statin, Lipitor (2) which is used to prevent 

cardiovascular disease [4], was highlighted in the 2010 review [4] and is considered the most 

profitable drug of all time, with sales exceeding $120 billion during its patentable life time. It came 
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off patent in 2011, and at that time generic manufacturers began production and dramatically 

reduced its market value. Although Lipitor lost its position as a leading revenue generator, it remains 

amongst the most prescribed drug in the world (in 2019) and still an outstanding success in 

prophylactic healthcare. However the anticipation of sales through patent lifetimes is what drives 

innovation in the pharmaceutical industry and therefore we feel that this approach merits some 

attention and is of general interest.  

 

 

 

Figure 1. Structures of fludrocortisone (1) and Lipitor (2).  

 

For the present review article, we have selected the current top twelve fluorine containing 

compounds, based on their sales rankings in 2018 or 2019. These include (Figure 2), teriflunomide 

(3) (immunomodulatory), sitagliptin (4) (diabetes), sofosbuvir (5) (hepatitis C), paliperidone 

palmitate (6) (schizophrenia), glecaprevir/pibrentasvir (7 and 8) (hepatitis C), elvitegravir (9) (HIV), 

enzalutamide (10) (prostate cancer), dolutegravir (11) (HIV), bictegravir (12) (HIV), emtricitabine 

(13) (HIV) and efavirenz (14) (HIV). Each compound is considered individually where their modes 

of action and then their synthetic routes are described, and with an emphasis on the source of the 

fluorine-containing moieties.  
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Figure 2. Top fluorine containing drugs by world sales in 2019.  

 

2.  Teriflunomide (AubagioTM)  

During the 1980s, an anti-inflammatory drug discovery program at Hoechst [5] led to the 



6 
 

development of leflunomide (15, other names: HWA 486 [6], HR486 [5], SU101 [7]). Further 

studies showed that leflunomide (15) is quickly converted to teriflunomide 3, (also known as A77 

1726 [5], SU0020 [7] or HMR1726 [8]) in vivo (in the intestinal mucosa and plasma) mainly by a 

nonenzymatic transformation as illustrated in Scheme 1. It is this metabolite that is responsible for 

the drugs bioactivity [5]. As a result, teriflunomide (3) was widely explored in place of leflunomide 

(15) in in vitro studies [6,9] and differences between the activities of 15 and 3 were rarely observed 

[10]. The main effect of teriflunomide (3) seems to be inhibition of dihydroorotate dehydrogenase 

[11] with an IC50 of 0.26 μM [12]. According to QSAR, the CF3 group serves as an electron-

withdrawing, hydrophobic group with low molar refractivity [13]. An X-ray crystal structure of the 

complex of teriflunomide with human dihydroorotate dehydrogenase demonstrated that the CF3 

group occupies a small hydrophobic cavity of the enzyme [14]. 

 

Scheme 1. The conversion of leflunomide (15) to teriflunomide (3). 

 

Dihydroorotate dehydrogenase is an enzyme necessary for de novo pyrimidine synthesis 

[5,11,15]. As its name suggests, it transforms dihydroorotate into orotate, which is transformed 

further into uridine monophosphate [5,15,16]. Through the use of salvage pathways, most cells 

access sufficient amounts of pyrimidine nucleotides to function and divide. However, activated 

lymphocytes require much higher levels of pyrimidine nucleotides to progress from cell cycle stage 

G1 through the S phase, requiring de novo pyrimidine synthesis too. As a result, inhibition of 

dihydroorotate dehydrogenase arrests activated lymphocytes in the G1 phase, inhibiting antibody 
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production in the case of B-cells and proliferation in the case of T-cells [5,16]. Other actions of 

teriflunomide have been reported too [9], but they are considered less important [5,16]. 

The selective immunosuppressing effect of 15 and 3 made them highly suited for the treatment 

of autoimmune diseases. Clinical trials demonstrated that leflunomide (15) was safe except for an 

indication of teratogenic and embryotoxic effects in animal studies, efficacious, and tolerable, and 

it was approved by the FDA in 1998 for the treatment of rheumatoid arthritis [5,16]. Notably, 

immunomodulation was achieved without increasing the risk of opportunistic infections, a 

complication of many deoxynucleotide synthesis inhibitors [5]. It was also found that thanks to 

strong serum protein binding (99.5%) and enterohepatic recirculation, metabolite 3 has a long half-

life (15 days), but it can be quickly removed with cholestyramine [5,16]. Later, teriflunomide 3 was 

developed independently as a drug. Clinical trials showed that teriflunomide 3 is efficient in the 

treatment of relapsing remitting multiple sclerosis, where tolerability and safety were similar to 

those of leflunomide, and it was approved by the FDA in 2012 [17]. In Europe, the Committee for 

Medicinal Products for Human Use initially concluded that teriflunomide, as a metabolite of 

leflunomide, could not be considered a new active substance, but this opinion was later revised. It 

is noteworthy that with time, the teratogenic and embryotoxic effects of 15 and 3 appear less serious 

than originally thought [18]. 

Future therapeutic areas under investigation for leflunomide and teriflunomide involve 

treatment of cytomegalovirus and BK virus infections [19], multiple myeloma [19], breast cancer 

[20], and lupus nephritis [21]. 

Synthetic routes to access teriflunomide can be classified into two main groups. The first starts 

with cyanoacetylation of 4-trifluoromethylaniline, and the resulting product 16 is then acetylated at 
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its active methylene group. Scheme 2 shows an example with DCC-mediated coupling followed by 

treatment with acetyl chloride and NaH [22]. Notably, the latter reagent combination was utilized 

in the first reported example of this synthetic pathway too [23]. Scheme 3 shows another example, 

where cyanoacetyl chloride is used, and isopropenyl acetate/NaOH performs the second step [24]. 

Scheme 4 demonstrates that acetic anhydride and NaOH is also efficient in acetylating 16 [25]. 

 

 

Scheme 2. Synthesis of teriflunomide 3 via a DCC-mediated coupling. 

 

 

Scheme 3. Synthesis of teriflunomide 3 with cyanoacetyl chloride. 
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Scheme 4. Synthesis of teriflunomide 3 via acetylation of 16. 

 

A related synthetic approach, shown in Scheme 5. reverses the order of these steps. That is, 

acetylation of ethyl cyanoacetate is accomplished initially, and then aniline is subjected to acylation 

by ethyl 2-cyanoacetoacetate 17 [26]. 

 

 

Scheme 5. Synthesis of teriflunomide 3 via 2-cyanoacetoacetylation. 

 

The first reported synthesis of teriflunomide used an alternative strategy involving 

isomerization of leflunomide [27]. The necessary leflunomide is obtained through the reaction of 4-

(trifluoromethyl)aniline with an appropriate derivative of isoxazole carboxylic acid 18 [28,29], 

although other approaches are known [23]. Scheme 6 shows two examples. The first involves a 

traditional synthesis (acylation with acid chloride 19 and then isomerization of 15 with base) [28] 

and the second is an interesting mechanochemical synthesis (activation of 18 with 1,1’-
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carbonyldiimidazole, isomerization of 15 under acidic conditions) [29]. Note that the traditional 

synthesis used 4-(trifluoromethyl)aniline both as the nucleophile and the base, making the process 

less economic. 

The sales for Teriflunomide (AubagioTM) in 2018, which is marketed by Sanofi-Aventis for the 

treatment of multiple sclerosis, were $1.67 billion dollars. 

 

 

Scheme 6. Syntheses of teriflunomide through isomerization of leflunomide. 

 

3. Sitagliptin (Januvia™, GlactivTM, TesavelTM) 

Sitagliptin (4) was developed by Merck as a dipeptidyl peptidase-4 (DPP4) inhibitor for the 

treatment of diabetes. Sitagliptin (4) (Figure 3) is a β-amino amide derivative containing a key 

trifluoromethylated triazolopyrazine moiety and 2,4,5-trifluorophenyl group, and notably it contains 

a stereogenic centre [30]. Structure-activity relationships (SAR) studies, varying substituents on the 
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phenyl ring and the fused heterocycle found an obviously increased DPP4 inhibitory ability with 

the introduction of fluorine atoms at the settled positions, where an IC50 value of 18 nM was 

observed for sitagliptin (4) [30]. Sitagliptin phosphate (Januvia™, GlactivTM, TesavelTM) received 

approval by FDA in October 2006 for the treatment of Type II diabetes [31]. Sitagliptin phosphate 

(Januvia™) earned receipts of $3.48 billion which ranked in the 29 best-selling drug in 2019. 

Sitagliptin/metformin is also available as a single pill under the brand name JanumetTM in USA since 

2007. 

 

Figure 3. Structure of sitagliptin (4) used to treat Type II diabetes. 

 

Merck reported a process for the preparation of sitagliptin (4) with triazolopyrazine 23 and β-

amino acid 28 as the key intermediates (Scheme 7) [32]. This method was suitable for production 

on a multi-kilogram scale. The synthesis started with the arylation of hydrazine with 2-

chloropyrazine. The resultant 2-hydrazinylpyrazine (20) was treated by trifluoroacetic anhydride 

(TFAA) to generate bis-trifluorohydrazide 21, which underwent an intramolecular cyclization 

reaction in the presence of super phosphoric acid, affording the trifluoromethyl triazolopyrazine 22. 

Finally, Pd-catalyzed hydrogenation of triazolopyrazine 22 resulted in key intermediate 23 (Scheme 

7). 
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Scheme 7. Synthesis of intermediate 23 for the preparation of sitagliptin (4). 

 

The synthesis of β-amino acid 28 was shown in Scheme 8. An asymmetric Ru-catalyzed 

reduction of the carbonyl group on β-ketoester 24 is another illustration of the contribution of 

Noyori’s asymmetric methodology to the development of pharmaceutical processes. This 

asymmetric reduction is followed by ester hydrolysis to generate intermediate 25. A coupling 

reaction between carboxylic acid 25 and BnONH2 in the presence of EDC-HCl afforded 

hydroxamate 26, which was subjected to an intramolecular cyclization reaction to generate lactam 

27. The treatment of lactam 27 with HCl and then a hydrolysis under basic conditions, provided the 

key intermediate 28. Triazole 23 was then coupled to amino acid 28 in the presence of EDC-HCl 

and N-methylmorpholine (NMM) to afforded intermediate 29, which was finally converted into 

sitagliptin (4) via a Pd-catalyzed hydrogenation. It should be noted that Soloshonok and co-workers 

applied their chiral Ni-complex approach to the synthesis of sitagliptin (4) [33]. 
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Scheme 8. Synthesis of sitagliptin (4). 

 

As a final note, we would like to point out that for the catalytic enantioselective reduction of 

ketone 24 to alcohol 25, enantiomer self-disproportionation (SDE) tests [34] were not conducted 

despite an increasing awareness that fluorinated substrates usually perform well in such processes 

[35].  

 

4. Sofosbuvir 

Sofosbuvir (5), previously named GS-7977, was developed by Gilead Sciences as an antiviral agent, 

and approved by the FDA as Sovaldi™ [36] for the treatment of hepatitis C virus (HCV) infection 

in 2013. It fast become one of the best-selling drug on the market with sales exceeding $10 billion 
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in 2014. Sofosbuvir (5), is a pyrimidine-based nucleotide analogue featuring four contiguous 

stereogenic centers. It contains an L-alanine moiety, a chiral phosphoramidate unit, a 2’-fluorinated 

ribose ring and a uracil base (Figure 4) [37]. Sofosbuvir is also the active component in antiviral 

drug combinations. HarvoniTM contains ledipasvir and sofosbuvir as ingredients, a combination also 

developed by Gilead Sciences and approved by the FDA in 2014 for treating hepatitis C [38]. 

HarvoniTM was the second best-selling drug on the market for the years 2015 and 2016 and 

collectively Sovaldi™ and HarvoniTM were grossing close to £20 billion per annum at this time. 

These drugs have become a victim of their own success in substantially suppressing the disease, and 

also as other products have entered the market, their impressive revenues have declined in the most 

recent years. EpclusaTM, another combination drug, this time with sofosbuvir and velpatasvir was 

approved in June 2016, for the treatment of HCV regardless of HCV genotype or liver disease 

severity [39]. EpclusaTM rapidly reached blockbuster status, earning $1.9 billion in 2019.  

 

Figure 4. Sofosbuvir (5) used to treat hepatitis C often also in combination therapies.  

 

The original synthesis of sofosbuvir (5) started from (R)-4-isopropyloxazolidin-2-one (30) with 

(3R,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)-3-methyldihydrofuran-2(3H)-one (34) as the 

key intermediate (Schemes 9 and 10). Acylation of (R)-4-isopropyloxazolidin-2-one (30) with 2-
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fluoropropanoyl chloride afforded amide 31, which was subjected to a Ti-promoted aldol reaction 

with acrolein. An intriguing intramolecular cyclization of the aldol product 32 with NBS gave 

lactone 33, which was converted to alcohol 34 after treatment with KOH [40].   

Scheme 9. Synthesis of the key intermediate 34 in sofosbuvir synthesis.  

 

With the central ribose moiety substantially assembled, the remaining peripheral aspects of 

sofosbuvir 5 were introduced as illustrated in Scheme 10. Silyl ether protection of hydroxymethyl 

group of lactone 34 was followed by the 3’-O-benzyl-protection to generate intermediate 35. This 

lactone was then reduced and acetylated at the anomeric position in a stereospecific manner, 

affording lactol 36 now with four contiguous stereogenic centers. The introduction of the nucleotide 

base was initiated with a SnCl4-promoted reaction between lactol 36 and N-(2-

((trimethylsilyl)oxy)pyrimidin-4-yl)benzamide to give 37 and the hydrolysis completed the 

introduction of the uridine moiety. The pro-drug arm at the 5’-O ribose oxygen was introduced after 

TBS ether removal and followed by reaction with (2S)-isopropyl 2-

((chloro(phenoxy)phosphoryl)amino)propanoate (39) to generate phosphoramidate 40, a process 
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that occurs with high diastereoselectivity (92:8 dr). Finally, Pd-catalyzed deprotection released the 

desired sofosbuvir (5) [41].      

 

Scheme 10. Synthesis of sofosbuvir (5).  

 

5. Paliperidone palmitate (InvegaTM Sustenna TM) 

The history of paliperidone palmitate has its origins with risperidone (41), an atypical antipsychotic, 

a drug which was launched commercially in 1994 [42]. Risperidone (41) is highly potent but its 

therapeutic range is not so wide. Together with the extrapyramidal side effects associated with 
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risperidone overdose, this generated interest in a sustained or delayed release formulation for 

risperidone and related compounds [43]. In theory, such formulations decrease the risk of adverse 

side effects through reducing fluctuations in plasma concentrations [44]. 9-Hydroxyrisperidone or 

paliperidone (±)-42, the main metabolite of risperidone (41), emerged as more promising for such 

purposes, because it has a similar potency and pharmacological profile to its parent, however its 

elimination half-life is longer (20 h vs. 2–4 h) than risperidone [42,43]. The use of paliperidone 42 

also negates the effects of genetic polymorphism on risperidone metabolism [43]. The hepatic 

metabolism of paliperidone is not significant as it is excreted mostly unchanged through the kidney, 

making clinically relevant metabolic drug–drug interactions unlikely [44]. Interestingly, the pure R 

and S enantiomers of paliperidone 42 have qualitatively and quantitatively similar in vitro 

pharmacological activity [44]. The above efforts first led to FDA approval of racemic paliperidone 

(±)-42 in 2006 as an extended-release formulation using an osmotically controlled release oral 

delivery system. This enabled once-daily administration without initial dose titration [42,44]. 

Meanwhile, paliperidone palmitate (±)-6 was identified as a promising candidate for intramuscular 

depot formation [43]. Paliperidone (±)-42 becomes available in the body only after intramuscular 

hydrolysis of dissolved paliperidone palmitate (±)-6, but (±)-6 dissolves only slowly at the injection 

site thanks to its extremely low water solubility, a property that facilitates once-monthly dosing only 

[45]. Surprisingly, aqueous suspensions of (±)-6 performed better than more traditional oil 

suspensions [43]. After successful clinical trials, the FDA approved Invega® Sustenna® (an aqueous 

suspension of paliperidone palmitate for intramuscular injection) for the acute and maintenance 

treatment of schizophrenia in adults in 2009 [45]. Subsequent formulations have been licensed as 

Trinza (2015) and Trevicta (2016). All of the above molecules (Scheme 11) were developed by 
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Janssen Pharmaceutica, a subsidiary of Johnson & Johnson and collectively these drugs are grossing 

over $2 billion in sales in 2019.  

Both 41 and (±)-42 exert their antipsychotic activity via antagonism of serotonin 5-HT2A and 

dopamine D2 receptors [44]. 

 

 

 

Scheme 11. Structures of the antipsychotic drugs risperidone (41), paliperidone (±)-42, and 

paliperidone palmitate (±)-6. 

 

Paliperidone palmitate is obtained mostly via palmitoylation of paliperidone. The initial 

synthesis of paliperidone used 3-benzyloxy-2-aminopyridine which, in reaction with lactone 43 in 

the presence of POCl3, afforded heterocycle 44. Catalytic hydrogenation of 44 led to (±) alcohol 45 

which is then treated without purification with piperidine derivative 46 to generate (±)-42 as the 

final product as illustrated in Scheme 12 [43,46]. 
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Scheme 12. Early paliperidone (±)-42 synthesis. 

 

This synthesis suffered from various problems. The final step required chromatographic 

separation and the purities of products were not reported. This resulted in considerable interest in 

achieving improved syntheses [47-60] and led to the identification of typical impurities (risperidone 

41, ketone 47, phenol (±)-48, N-oxide (±)-49) as well as competing side reactions (e.g. formation of 

dechlorinated (±)-50 during hydrogenation). Scheme 13 shows these impurities (except compound 

41) and byproducts. It was found that performing the hydrogenation of 42 under acidic conditions 

suppressed dechlorination [51,56]. Formation of the ketonic impurity 47 from (±)-42 is enhanced in 

the presence of metal ions (especially iron and zinc). Therefore, active charcoal used in the 

crystallization steps must contain less than 200 ppm of individual metal cations and a neutral or 

alkaline pH value when dispersed in water [57]. After formation, impurity 47 can be reduced to 

paliperidone [53,55,58] or removed via basic treatment [60]. The latter process also eliminated 

phenol byproduct 48 [60]. N-Oxide (±)-49 is formed from paliperidone under oxidative conditions 

and even THF with >0.015% peroxide content is sufficient to induce its formation [60]. After 

heterocycle 44 formation and then hydrogenation, byproduct (±)-50 and impurity 51 formed, whose 
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removal during purification of (±)-45 reduces the content in the final product (±)-42 [60]. 

 

Scheme 13. Structures of impurities during paliperidone synthesis. Hydrogenation byproduct (±)-

50 and impurity 51 are present in intermediate (±)-45. 

 

The best yields and purities for the different steps are found in different publications. Following 

the original synthetic approach, the formation of 44 was the most effectively achieved as described 

by Dolitzky [47]. A high-yielding (98%) hydrogenation protocol of 44 was reported by Kankan et 

al., [51], but the purity of the resulting (±)-45 was only 90%. A one-pot transformation of 3-

(benzyloxy)pyridin-2-amine into (±)-45, as reported by Solanki et al., [60], was less productive but 

yielded a product of 99.5% purity. Changing the synthetic pathway such as the transformation of 52 

into (±)-45, without benzylation/debenzylation proved even more advantageous [58] as summarized 

in Scheme 14. 



21 
 

 

Scheme 14. Improved synthetic approaches towards intermediate (±)-45 required for paliperidone 

synthesis. 

 

Scheme 15 shows three methods which were optimized for the efficient preparation of 

paliperidone (±)-42 from (±)-45 and the hydrochloric salt of 46, generating the product in good 

yields and high purity. The earliest method used the relatively expensive iPr2NEt as a base, and with 

two additives (NaI and nBu4NBr), and the work up required the precipitation of paliperidone tartrate 

to achieve the desired yield and purity [58]. By contrast, the second method had a more 

straightforward work up using K2HPO4 as the base and KI [59]. Finally the most suitable approach 

for reliability on a multikilogram scale used iPr2NH as the base and DBU as an additive, and this 

could be accomplished with a relatively straightforward work up protocol [60]. 
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Scheme 15. Various methods for the final step in paliperidone 42 synthesis. 

 

Riva et al. reported a fundamentally different paliperidone 42 synthesis. This involved selective 

deprotonation of risperidone 41, followed by reaction with molecular oxygen (O2), followed by 

reduction of the formed hydroperoxide (Scheme 16) [61]. 

 

Scheme 16. Synthesis of paliperidone 42 via selective hydroxylation of risperidone. 

 

Paliperidone palmitate (±)-6 can be prepared easily from paliperidone (±)-42 through 
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palmitoylation. Palmitic acid and DCC [43,46] or palmitoyl anhydride [62] provide good results 

(Scheme 17), while direct acylation with palmitoyl chloride proved inferior [63]. The 9-O-

acetylated derivative of paliperidone can be purified more easily than its parent compound [64] 

suggesting that  a final purification of paliperidone palmitate may offer an approach but utilizing 

more readily available albeit less pure (±)-42, as illustrated in Scheme 17. 

 

Scheme 17. Palmitoylation of paliperidone to generate (±)-6. 

 

Alternatively, there is patent where intermediate (±)-45 was subjected directly to 

palmitoylation, and where substitution with amine 46 (HCl salt) constitutes the final step to 

paliperidone palmitate (±)-6, however the purities and yields of products are not given in any detail 

[65]. 

 

6. Glecaprevir/pibrentasvir (MavyretTM) 
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Glecaprevir (7), previously named ABT-493, was developed by AbbVie as a next-generation, orally 

administered drug for the treatment of hepatitis C virus (HCV) infection. It is a HCV NS3/4A 

protease inhibitor (PI). The compound is extremely active with in vitro IC50 values in the low 

nanomolar range across various HCV genotypes 1-6 [66]. Glecaprevir (7) is a stereochemically 

complex macrocyclic compound featuring several amino acid moieties, including tert-leucine, 

proline and 1-aminocyclopropanecarboxylic acid. In 2017, glecaprevir 7 and the HCV NS5A 

inhibitor pibrentasvir (ABT-530) 8 were approved under the trade name MaviretTM in USA and EU 

as a single tablet fixed-dose combination treatment of chronic HCV genotypes 1, 2, 3, 4, 5 or 6 [66]. 

MavyretTM (Glecaprevir/pibrentasvir) earned a total $2.89 billion sales in 2019. Both glecaprevir (7) 

and pibrentasvir (8) have a high degree of fluorination with four and five fluorine atoms respectively 

(Figure 5) [67,68].  

 

Figure 5. Structures of the HVC drugs glecaprevir (7) and pibrentasvir (8). 

 

Cink and co-authors from AbbVie Inc. successfully developed a process for the preparation of 
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glecaprevir (7) via ring-closing metathesis reaction, which was reported to produce a batch of 41 kg 

of glecaprevir [69]. Mono-Boc-protected amino ester 53 was progressed to the di-Boc intermediate 

54, and then the alkene moiety was oxidized to afford aldehyde 55 as a means to access the 

difluoromethyl group. The fluorination used DAST and the resultant difluoromethyl ester 56 was 

hydrolysed to the corresponding carboxylic acid 57 and was coupled with 1-methylcyclopropane-

1-sulfonamide to give sulfonamide 59 as a key intermediate (Scheme 18).  

 

 

Scheme 18. Synthesis of sulfonamide 59 used in the synthesis of glecaprevir 7.  

 

The terminal difluoroallyl olefin 65 is a precursor for the key metathesis reaction and was 

prepared as illustrated in Scheme 19. Accordingly α-hydroxyl ester 60 was oxidised to α-keto ester 

61 and was condensed with diaminobenzene to afford the quinoxaline 62, which was then 

progressed to chloro quinoxaline 63. An SNAr substitution reaction with Boc-protected 

hydroxyproline, as a free carboxylic acid, then afforded ether 64, and finally esterification with 
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concomitant deprotection gave ester 65 as an amine hydrochloride. 

 

Scheme 19.  Synthesis of intermediate 65 used in the synthesis of glecaprevir 7 .  

 

Another key building block 68 for the metathesis reaction was required as a single enantiomer 

and this was achieved by an enzymatic resolution of racemic acetate 66. This involved the selective 

hydrolysis of acetate 66 with Novozym 435 to generate an intermediate alcohol (not shown) by 

kinetic resolution. Workup involved treatment with triphosgene to afford chloroformate 67 as a 

single diastereoisomer, and this intermediate was then coupled with tert-leucine and treated isolated 

as its dicyclohexylamine salt 68. The free carboxylic acid moiety of 68 was now coupled with amine 

65 to produce 69 containing two remote terminal olefins and primed for a RCM reaction. This was 

achieved using Zhan 1B as a catalyst to generate macrocyclic ester 70. The ester moiety was 

hydrolysed to generate carboxylic acid 71, and which was coupled with sulfonamide 59 to furnish 

glecaprevir (7) (Scheme 20).  
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Scheme 20. The final steps for the synthesis of glecaprevir (7).  

 

Alternative approaches for the preparation of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic 

acid 57 by alkylation/cyclization of chiral nucleophilic glycine equivalents have also been 

developed [70].  
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The synthesis of glecaprevir 7 illustrates how the assembly of complex structures with high 

degrees of stereochemistry and peppered with fluorines, are no longer the daunting tasks that they 

used to be as synthesis methodology has developed.  

 

7. Elvitegravir 

Elvitegravir (9) is an anti-retroviral used in the treatment of HIV.  It was developed by Japan 

Tobacco, and licensed for worldwide production by Gilead Sciences (Figure 6) [71]. Elvitegravir 

was branded as Vitekta for single medication, and received clinical approval from the FDA in 2014 

[72]. The drug was recommended to be taken in combination with other anti-retrovirals including 

an HIV protease inhibitor and a pharmacokinetic booster, usually cobicistat or ritonavir. Such 

boosters inhibit metabolizing cytochrome P450 enzymes, and this combination offset elvitegravir 

metabolism improving bioavailability and half-life [73]. With a booster, elvitegravir can be taken 

once daily [74], however, the drug was voluntarily withdrawn as a single medication in 2017 and 

became available in Genvoya, a combination treatment. Genvoya is a four-drug combination that 

contains elvitegravir, cobicistat (a pharmacokinetic booster), emtricitabine and tenofovir disoproxil 

fumarate (nucleoside/nucleotide reverse transcriptase inhibitors). It was the 12th most successful 

drug commercially in the United States in 2018, clearing sales of $3.63 billion. 

 

Figure 6. Structure of elvitegravir 9.  
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Elvitegravir is an integrase strand transfer inhibitor (INSTI), which acts on HIV-1 integrase 

(IN) [75] and accordingly it suppresses integration of HIV-2 coded DNA into the host’s genome 

[76]. Integration takes place in three sequential steps, terminal 3’-DNA processing, DNA strand 

transfer and gap repair [77]. The IN enzyme catalyzes the first two of these steps [78]. The 3’-DNA 

processing step involves the hydrolysis of the two terminal 3’-nucleotides of the reverse transcribed 

HIV complementary DNA. The modified HIV coded DNA is then integrated into the host 

chromosome in the strand transfer step. Gap repair then completes the process, annealing the guest 

DNA in the hosts chromosome. The HIV-1 IN enzyme contains three carboxylic acid residues (D64, 

D116 and E152) in its active site, which are involved in catalyzing the strand transfer reaction. These 

residues secure two Mg2+ ions via the carboxylate groups, which are then directly involved in 

electrostatic interactions with the triphosphate esters of the nucleotide substrates [79]. INSTIs such 

as elvitegravir bind to the Mg2+ ions, and interrupt substrate binding [80,81].  

Elvitegravir (9) has a bicyclic carbamoyl 4-pyridone structure [80]. The aromatic ring with 

both chlorine and fluorine substituents give the molecule a hydrophobic tail, with a flexible linker 

connecting to the second ring system. The free carboxylate binds to Mg2+ ions in the active site of 

the HIV-1 IN [82]. Notably the 2-fluoro group was found to significantly improve inhibition of DNA 

stand transfer (IC50 = 43.5 nM) relative to the non-fluorinated analogue (IC50 = 1.6 M) indicating 

an impressive enhancement with fluorine [71].  

Elvitegravir (9) is administered as a single enantiomer. The basic patent procedure (Scheme 

21) for its synthesis starts from 2,4-difluorobenzoic acid (72) [83,84]. This is first aryl-iodinated 

with N-iodosuccinimide, and then converted to an acid chloride and then progressed with ethyl 3-
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(dimethylamino)acrylate to give acrylate 73. The dimethylamino group is replaced with (S)-valinol, 

and introduces a stereogenic centre. The enamine is then cyclized using potassium carbonate, 

following by silyl ether protection of the alcohol to form 74. A palladium-catalyzed Negishi 

coupling reaction through the aryl iodide with 2-fluoro-3-chlorobenzylzinc bromide gave 75. The 

ester was then hydrolyzed to form a carboxylic acid and the fluoroquinolone underwent a SNAr 

reaction with methoxide to generate elvitegravir 9 [71]. 

 

Scheme 21. Initial patent procedure for the synthesis of elvitegravir 9.  

 

8. Enzalutamide (XtandiTM) 

Enzalutamide 10 (Figure 7, previous names: RD162’, MDV3100) was discovered at the University 

of California [85] and developed by Medivation and Astellas Pharma [86]. It was approved by the 
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FDA for the treatment of metastatic castration-resistant prostate cancer after docetaxel therapy in 

2012 and before docetaxel therapy in 2014 [87]. The indication was further extended to non-

metastatic castration-resistant prostate cancer in 2018 [88] and to metastatic castration-sensitive 

prostate cancer in 2019. Enzalutamide 10 is effective, safe, and generally well-tolerated. The most 

common adverse effects are fatigue, nausea, and anorexia, however, seizures are rarely reported 

[88].  Enzalutamide (XtandiTM) achieved sales of $3.62 billion in 2018, marketed by Astellas 

Pharma and Pfizer. 

Enzalutamide 10 is an androgen receptor (AR) antagonist. The AR is located in the cell 

cytoplasm, but after binding its ligand (testosterone, dihydrotestosterone or other androgenic 

steroids) the receptor is translocated into the nucleus and forms a homodimer, which stimulates 

expression of various genes. Physiological responses mediated by this AR signaling include prostate 

growth and differentiation, and almost all prostate cancers depend on AR signaling. This discovery 

led to androgen deprivation therapy, which is especially important in the treatment of advanced or 

metastatic prostate cancers. Androgen deprivation can be achieved by surgical or medical castration 

(decreasing testosterone production of the testicles), by blocking androgen biosynthesis (decreasing 

testosterone production in body as a whole) or by androgen receptor antagonists like enzalutamide 

(interfering with binding of androgens to AR) [87,89]. 

It is common that patients’ response to androgen deprivation therapy declines after 18–36 

months, a progression to a castration-resistant form [87]. In most cases, castration-resistant prostate 

cancer still requires AR signaling to survive and resistance to androgen deprivation therapy is 

achieved via overexpressing AR [87-89] or production of mutant ARs which are not inhibited, but 

activated by the prescribed anti-androgen [90]. In order to avoid these problems, development of 
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enzalutamide 10 started from RU59063 (76) whose affinity to AR is only 3 times lower than 

testosterone and has high selectivity for AR over other nuclear hormone receptors. Since the 4-

cyano-3-trifluoromethylphenyl moiety present in 76 and the related 4-nitro-3-trifluoromethylphenyl 

moiety are common structural elements amongst nonsteroidal AR inhibitors, development focused 

on other parts of the molecule. It was found that the hydroxyalkyl motif of RU59063 can be replaced 

with a wide variety of 4-substituted phenyl groups without losing activity. Compound 77 with a 4-

tolyl group was chosen for further development. Changing the alkyl groups of the thiohydantoin 

ring led to compound 78, which was slightly more potent than 77 in vivo. However, 78 also has a 

short half-life with very quick clearance, which is attributed to its relatively high clogP value, and 

the fast metabolic oxidation of the Ar-CH3 group. Replacement of the methyl group with more polar 

motifs led to compound 79, which still suffered from poor pharmacokinetics. The suspected cause 

was metabolic oxidation of the electron-rich aromatic ring. To avoid this, the electron-withdrawing 

CONHMe group was attached directly to the ring and an electron-withdrawing fluorine atom was 

also introduced. The resulting compound 80 was quite potent and had a very good pharmacokinetic 

profile. Further development resulted in enzalutamide (10), which was slightly more active. Scheme 

22 summarizes the development process described above [85,91]. 
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Figure 7. Development of enzalutamide 10 showing previous lead candidates 76-80. In vitro IC50 

values are given in brackets.  

 

The first published synthesis of enzalutamide 10 had a number of drawbacks. Many toxic 

and/or corrosive reagents (CrO3, SOCl2, thiophosgene, acetone cyanohydrin) were used and the 

yield of the final step (creation of the thiohydantoin ring by the reaction of isothiocyanate 82 with 

an α-aminonitrile) was poor (25% was later improved to 51%) [85,91]. Medivation patented a better 

route in 2011, which solved many of the above problems. Aminonitrile 81 was converted to 

isothiocyanate 82 with thiophosgene as a key intermediate. 4-Bromo-2-fluorobenzoic acid 83 was 

transformed to N-methylamide 84 and which was converted to the N-arylated 2-aminoisobutyric 

acid. The resulting amino acid 85 was methylated to give ester 86 which, upon reaction with 

isothiocyanate 82, gave enzalutamide 10 in 82% yield and high purity (Scheme 22) [92]. 
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Scheme 22 Medivation’s route to enzalutamide (10). 

 

In 2015, Zentiva patented a slightly different and shorter synthesis. Amino acid 85 was 

obtained from the fluoro-nitrobenzoic acid 87 via amidation, reduction of the nitro group, and N-

alkylation with 2-bromoisobutyric acid. Reaction of isothiocyanate 82 with carboxylic acid 85 gave 

enzalutamide (10) together with its hydantoin analogue. Their highly similar physical-chemical 

properties makes the removal of the hydantoin impurity difficult, but formation of the byproduct 

can be suppressed with a phenol additive (Scheme 23), and the level of hydantoin in the final product 

can be lowered to 0.08% [93]. 
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Scheme 23. Zentiva’s route to enzalutamide (10). 

 

The reaction of compounds 82 and 85 can also be facilitated by BSA [N,O-

bis(trimethylsilyl)acetamide] (Scheme 24) [94]. 

 

Scheme 24.  Last step in the synthesis of enzalutamide 10. 

 

All of the above methods use thiophosgene, which is a highly toxic liquid. Alternatively, amine 

81 can be transformed into isothiocyanate 82 in a multistep procedure using NH4SCN, PhCOCl, 

and NaOH [95]. Isothiocyanate 82 can also be replaced with the related reagent methyl 

dithiocarbamate, which can be obtained from amine 81 in 2 steps (reaction with CS2 and DBU, 
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followed by treatment with MeI) [96]. 

 

9. Dolutegravir 

Dolutegravir (11) is also an HIV-integrase inhibitor and acts on the strand transfer step during HIV-

1 genome integration into the hosts chromosome (Figure 8) [97]. Dolutegravir was co-developed by 

GlaxoSmithKline and Shionogi and was approved for the clinic by the FDA in 2013 [98]. 

Dolutegravir 11 is highly potent, having an IC50 of 2.7 nM and an EC50 of 0.51 nM, and exhibits 

greater potency than elvitegravir [99]. Additionally, it has a terminal half-life of 14 hours [100]. 

Dolutegravir dissociates more slowly than elvitegravir from the integrase-DNA complexes [101]. 

All of this means that dolutegravir presents a higher barrier to resistance development in-vitro [102], 

and unlike Elvitegravir it does not need to be taken with a pharmacokinetic booster [103]. It is 

administered on its own by single, daily dose. As a result of these benefits, dolutegravir is currently 

on the World Health Organization’s list of essential medicines. 

 

 

Figure 8. Structure of dolutegravir.  

 

Dolutegravir 11 has also been developed as a component of the combination drug Triumeq 

[104]. Triumeq also contains the reverse transcriptase inhibitors, abacavir and lamivudine. Triumeq 

was developed by ViiV Healthcare and was approved by the FDA for use in the United States in 
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2014.  Triumeq is administered as a single tablet taken once daily and the treatment exhibits a high 

barrier to resistance. In 2018 it grossed sales of $4.4 billion. 

Dolutegravir 11 is primarily metabolized by uridine diphosphate glucuronosyltransferase 

(UGT1A1) and to a lesser extent by cytochrome P450 (CYP450) activity [105]. It does not inhibit 

or induce UGT1A1 or CYP450 enzymes at clinically relevant concentrations [106]. Dolutegravir 

has a tricyclic carbamole pyridine structure [80]. Like elvitegravir, dolutegravir contains a 

hydrophobic tail, in this case as a 2,4-difluorobenzyl moiety and it coordinates active site Mg2+ 

associated with  HIV-1 IN, through its enolisable oxygens [80].  

Dolutegravir 11 is prepared as a single diastereoisomer in an enantiomerically pure form. The 

original Shionogi synthesis (Scheme 25 and 26) described a 16 step protocol with an overall yield 

of 2%. In summary, etherification of maltol (90) gave 91 which was treated with ammonia to 

generate 4-pyridone 92. Selective bromination with N-bromosuccinimide gave 93 as a substrate for 

palladium-catalyzed carbonylation. The resultant ester 94 was protected and then oxidized to give 

pyridine N-oxide 96, in order to mediate an ortho-methyl oxidation by N-oxide acetylation and [3.3] 

sigmatropic rearrangement. Product tri-ester 97 was then hydrolyzed to give advanced intermediate 

98.  
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Scheme 25. Synthesis of intermediate 98 in the base patent synthesis of dolutegravir 11.  

 

Intermediate 98 was progressed to amide 100 and the primary alcohol of 100 was sequentially 

oxidized to carboxylic acid 102. Esterification gave methyl ester 103, and then N-allylation afforded 

4-pyridone 104. Selective oxidative olefin cleavage, generated aldehyde hydrate 105. This hydrate 

was treated with (R)-3-aminobutan-1-ol, forming two acetal diastereoisomers. Diastereoselective 

aminal ring closure generated the (S,R)-diastereomer with high selectivity and this progressed an 

intramolecular attack of the amine onto the ester moiety, to form lactam 106. Debenzylation gave 

dolutegravir (11), which is administered as its sodium salt (110), after neutralization. 
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Scheme 26. Base patent synthesis of dolutegravir.  

 

An alternative route was developed by Micro Labs as illustrated in Scheme 27 [107]. Pyran 

107, previously prepared in a three-step protocol, was treated with 2,2-dimethoxyethanamine to give 

4-pyridone 108, which was progressed to amide 109. Acetal deprotection followed by treatment 

with (3R)-aminobutan-1-ol resulted in heterocyclisation and generated both stereogenic centers with 

the formation of intermediate 106. Unlike the route in Scheme 25, benzyl deprotection was achieved 

with TFA in DCM and the product, as a free carboxylic acid, was recovered by crystallization from 
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toluene. Treatment with sodium hydroxide in methanol gave sodium dolutegravir (110) as the active 

pharmaceutical ingredient [108].  

 

Scheme 27. Alternative synthesis to sodium dolutegravir 110 developed by Micro Labs.  

 

10. Bictegravir 

Bictegravir (12) is another HIV-1 integrase inhibitor (Figure 9). Like elvitegravir and dolutegravir, 

bictegravir inhibits the strand transfer step of integration of virally coded DNA into the hosts 

genome. The drug was developed by Gilead Sciences and is administered as a component of the 

combination drug Biktarvy, also developed by Gilead Sciences. Biktarvy contains the nucleoside 

reverse transcriptase inhibitors emtricitabine and tenofovir alafenamide in addition to bictegravir 

[109]. Bictegravir exhibits a high in-vitro barrier to resistance and also has a terminal half-life of 

around 18 hours, and as a consequence is not prescribed with a pharmacokinetic booster [110]. It is 

metabolized primarily by CY3PA and UGT1A1 [111]. Biktarvy was first approved for use in the 
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USA by the FDA in February 2018 and soon after for the EU in June 2018. Biktarvy grossed sales 

in its first year of $1.18 billion and then $4.7 billion in 2019, and appears to be on a steep trajectory 

in commercial terms.  

 

Figure 9. Structure of the HIV integrase inhibitor bictegravir 12.  

 

Bictegravir (12) is an INSTI, and like dolutegravir also contains a tricyclic carbamoyl 4-

pyridone structure. However, it is unique in that it has a peripheral bridged oxazepane ring with a 

methylene bridge [112]. This flexible ring is thought to contribute to the efficacy of bictegravir, as 

it allows the drug to readily adapt conformation, to changes in the geometry of the IN active site 

[113]. Bictegravir contains three stereogenic centres, and it also has a peripheral hydrophobic 

aromatic moiety common to this class of drugs. 

The patent synthesis for bictegravir developed by Gilead begins with 4-pyridone 111 as a 

precursor to aldehyde 112. Treatment with (1R,3S)-3-aminocyclopentanol (113) generates tricycle 

114. With three stereogenic centres in place, carboxylic acid 114 is progressed to amide 116 after 

coupling with 2,4,6-trifluorobenzylamine (115). Methyl ether cleavage with MgBr2 generated the 

active product, bictegravir (12) (Scheme 28).  
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Scheme 28. Original patent synthesis of HIV integrase inhibitor bictegravir 12.  

 

Gilead developed an improved seven-step route to bictegravir (Scheme 29) [108]. In this route 

Meldrum’s acid was reacted with activated methoxyacetic acid to generate acylated intermediate 

118 and then treatment with trifluorobenzylamine (115) resulted in β-ketoamide 119. Enamine 120 

was formed after reaction with 2,2-dimethoxyethan-1-amine, which then cyclized in a reaction with 

dimethyl oxalate to form 4-pyridone 121. The required bicyclic ring system was installed when 121 

was treated with the oxalate or benzoate salt of (1R,3S)-3-aminocyclopentanol, and this generated 

116 as the penultimate intermediate. Methyl ether cleavage again gave bictegravir (12). 



43 
 

 

Scheme 29. Improved synthesis of HIV integrase inhibitor bictegravir 12 by Gilead Sciences.  

 

11. Emtricitabine  

Emtricitabine (13) is an L-oxathiolanyl nucleoside derivatives (Figure 10), which was developed as 

a nucleoside reverse-transcriptase inhibitor. Structure-activity relationships (SAR) disclosed that 

fluorine substitution at C5- of the cytosine moiety is essential for the anti-HIV activity (13, anti-

HIV-1 in PBM cells, EC50 = 1.3 nM). More than 2 x 103 fold lower activity was found when the 

fluorine atom was replaced by chlorine at C5 (13A, EC50 = 31.8 μM) [114].        
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Figure 10. Structure of emtricitabine (13) and related anti-HIV compounds.  

Emtricitabine (13) has been successfully used as an active ingredient in several blockbuster 

drugs. BiktarvyTM is a combination drug containing emtricitabine and two other active ingredients, 

bictegravir and tenofovir alafenamide, which was approved in 2018 as a complete regimen for the 

treatment of HIV-1 infection in adults [109]. In 2019, BiktarvyTM grossed $4.7 billion in sales 

(ranked 16). Emtricitabine 13 is also used as a component of other anti-HIV combination drugs, 

including Truvada (emtricitabine/tenofovir disoproxil fumarate, Gilead Sciences), Atripla 

(efavirenz/emtricitabine/tenofovir disoproxil fumarate, Gilead Sciences és and Bristol-Myers 

Squibb) and Genvoya (elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide, Gilead Sciences). 

The process for the preparation of emtricitabine (13) is presented in Scheme 30 [115], and 

involves the key quaternary ammonium salt intermediate 124. Treatment of 5-hydroxy-

[1,3]oxathiolane-2-carboxylic acid menthol ester 122 and thionyl chloride in the presence of 

methanesulfonic acid and DMF, followed by substitution with 2-mercaptopyridine gave 

intermediate 123, which was N-alkylated with ethyl iodide to generate pyridinium 124. Introduction 

of the pyrimidine base in protected form gave 125, and then deacetylation gave free amine 126. The 

ester moiety was reductively cleaved with NaBH4 to afford the core structure which was formulated 

through various salts exchanges to afford emtricitabine (13). 
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Scheme 30. Synthesis of the HIV reverse transcriptase inhibitor emtricitabine (13). 

An enzymatic kinetic resolution process has also been developed for the preparation of 

emtricitabine (13). The hydrolytic ester resolution of racemic (+/-)-2’3’-dideoxy-5-fluoro-3’-

thiacytidine butyrate (128) was successfully demonstrated using an immobilized cholesterol 

esterase (accurel PP). In this manner emtricitabine (13) was obtained in high enantioselectivity (98% 

ee) and good with a good recovery (31%, 2.17 kg) [116]. 
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Scheme 31. Enzymatic kinetic resolution of butyrate 128 as a last step in the preparation of 

emtricitabine 13. 

 

Such biocatalytic resolutions can be complicated by the SDE phenomenon [117] necessitating 

controlled SDE assays for the reliable determination of reported enantioselectivity values [118].  

 

12. Efavirenz 

Efavirenz (S)-14 (former names: L-743726, DMP-266) was discovered and developed by Merck as 

an anti-HIV medication (Figure 11) [119,120]. Clinical trials demonstrated good efficiency and 

tolerability and efavirenz was approved by the FDA in 1998 for the treatment of HIV-1 infections 

as a single drug (Sustiva®) [121]. In order to utilize synergistic effects and to reduce the development 

of drug resistance, it became more and more common to use combinations of anti-HIV drugs, 

preferably as fixed-dose drug combinations [122]. Examples of efavirenz-containing fixed-dose 

drug combinations are Atripla® (2006, efavirenz/emtricitabine/tenofovir disoproxil fumarate) [121] 

and Symfi® (2018, efavirenz/lamivudine/tenofovir disoproxil fumarate) [123]. 
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Figure 11. Structure of the anti-HIV therapy efavirenz 14. 

 

As a retrovirus, HIV-1 transfects its host with RNA that encodes all of the structural proteins 

and enzymes required for replication. During infection, the reverse transcriptase enzyme creates a 

double-strand DNA copy of the viral RNA. This DNA is then integrated into the host genome by 

the action of a virally encoded integrase enzyme which insert this foreign DNA with associated 

promoters and regulatory elements. The host cell can now efficiently express viral genes, with the 

capacity to synthesize more viral particles. Inhibition of HIV-1 reverse transcriptase is a viable 

strategy to suppress virus replication and the progress of HIV-1 infection [124]. Efavirenz is a non-

nucleoside reverse transcriptase inhibitor (NNRTI). Such compounds bind to an allosteric site (a 

hydrophobic pocket) of the enzyme, inducing a conformational change, which interferes with 

protein function [121,122]. The role of the fluorine atoms in efavirenz 14 is to increase the acidity 

of the carbamate moiety, which forms an important hydrogen bonding interaction with the protein 

[125]. 

The first published synthesis of efavirenz 14 started from 4-chloroaniline. After pivaloylation, 

a directed ortho-lithiation reaction with ethyl trifluoroacetate and hydrolysis gave amino-ketone 130. 

Scheme 32 illustrates an improved version of this process. Amino-ketone 130 is then treated with 

2-cyclopropylethynylmagnesium bromide or 1-lithio-2-cyclopropylacetylene, and ring closing of 
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the resultan adduct with 1,1’-carbonyldiimidazole, generates racemic efavirenz [119,126]. Later, N-

Boc-protected 4-chloroaniline (obtained via reaction of 4-chlorophenylisocyanate with tBuOH) was 

subjected to ortho-lithiation, followed by treatment with ethyl trifluoroacetate, nucleophilic addition 

of 1-lithio-2-cyclopropylacetylene, and nBuLi-promoted cyclization to obtain racemic efavirenz 14 

[127]. In both cases, efavirenz 14 was resolved into its enantiomers via its (–)-camphanoylated 

derivative [119,126,127]. 

In order to investigate more cost-effective syntheses, asymmetric approaches have been 

explored. Merck researchers discovered that nucleophilic addition of 1-lithio-2-

cyclopropylacetylene to generate 130 in the presence of chiral amino-alcohols offers some level of 

enantioselectivity [120], but better enantiomeric excesses were achieved with para-methoxybenzyl-

protected amino-ketone 131. The complete conversion of 131 required 2 equivalents of acetylide 

and 2 equivalents of the amino-alcohol. Using amino-alcohol 132, an outcome of 98% ee was 

achieved if the acetylide–amino-alkoxide solution was warmed to ca. 0 °C before cooling to –55 °C 

[128]. Without this cooling the ee dropped to 82% [120]. This was explained by the temperature-

dependent nature of lithium aggregates where equilibration near 0 °C generated the dimeric species 

133, which remained intact upon freezing and promoted the required enantioselective addition 

[120,128]. After alkynylation, amino-alcohol 132 was recovered in 98% yield from the aqueous 

phase and product 134 was transformed into efavirenz (S)-14 by cyclization mediated by the 

equivalent of phosgene and oxidative N-deprotection. After some further development [129], this 

route (Scheme 32) was used to obtain the necessary quantity of the drug for clinical trials, launch, 

and early sales of efavirenz [120]. 
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Scheme 32. Asymmetric synthesis of efavirenz 14 using lithium amino-alkoxides. 

 

Merck also explored the use of organozinc compounds but their basicity was low. It was found 

that mixing dialkylzinc with 1 equivalent ephedrine-derived amino-alcohol 132 and 1 equivalent of 

achiral auxiliary alcohol in any order produced an organozinc species, which upon treatment with a 

lithium or magnesium acetylide generated a zincate, which participated in the required reaction, 
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with good efficiently and enantioselectivity. Optimized conditions gave 95% of analytically pure 

(S)-135 with an 99.3% ee after recrystallization. Amine-alcohol 132 can be recovered from the 

aqueous phase at workup, (Scheme 33). Interestingly, this new method requires the free aromatic 

amino group to achieve high ee values, as product 134 was formed only with 45% ee from 131 

[120,130]. 

 

Scheme 33. Key steps of the second asymmetric synthesis of efavirenz 14. 

 

Later, it was found that (S)-135 behaves as a catalyst in the alkynylation step, which supersedes 

the use of CF3CH2OH and enables reducing the amounts of ZnEt2 and 132. These autocatalytic 

conditions generated (S)-135 in a 79% yield and with 99.6% ee. After correction for the initially 

added (S)-135, the product was isolated in a yield of 67% and with an ee of 99.5% (Scheme 34) 

[131]. 
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Scheme 34. Autocatalytic enantioselective alkynylation of ketone 130 in the synthesis of efavirenz 

14. 

 

Lonza patented an alternative synthetic pathway to efavirenez 14 in 2012, which does not 

require the N-protection and deprotection steps or the use of phosgene. In the first step 1,4-

dichlorobenzene was transformed into ketone 139 (ortho-lithiation then quenching the carbanion 

with methyl trifluoroacetate). In the asymmetric version of the Lonza pathway (Scheme 35), 

addition of an organozinc reagent derived from 2-cyclopropylacetylene, to ketone 139 in the 

presence of chiral aminoalcohol derivative 140, proceeded with moderate enantioselectivity (46%ee 

of (S)-141). In the racemic version of the pathway (not shown), 1-lithio-2-cyclopropylacetylene 

reacted with 139 to give (±)-141 in 84% yield. Both routes continued by creation of a carbamate 

motif using chlorosulfonyl isocyanate, followed by heterocyclic ring closure via an Ullmann 

reaction. Naturally, the racemic pathway requires a resolution, while the asymmetric route gave 

efavirenz (S)-14, but only at 45% ee [132]. 
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Scheme 35. The asymmetric version of the Lonza route to efavirenz 14. 

 

In 2015, Correia et al. published a concise synthesis of racemic efavirenz 14 using flow 

technology. The first two steps followed the Lonza pathway but by replacing methyl trifluoroacetate 

with N-trifluoroacetyl morpholine. The morpholine byproduct can be removed in-line with an acidic 

scavenger column, whereas the alcohol byproduct cannot. Note that both classes of by-products 

interfere in the next step. The final step (Scheme 36) is remarkable since (±)-141 was transformed 

into racemic efavirenz 14 in a single step (Cu-catalyzed N-aryl carbamate formation and cyclization). 

Since this step can also be performed under batch conditions, it may be possible to integrate it into 

other efavirenz syntheses [133]. 
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Scheme 36. The last step in the flow synthesis of efavirenz 14 by Correia et al.. 

 

A more recent synthesis was published in 2016. In this case instead of enantioselective alkynide 

addition, cinchona-catalyzed enantioselective trifluoromethylation was used to prepare tertiary 

alcohol (S)-145 and Lonza intermediate (S)-141. The nitroaryl group of (S)-145 was readily reduced 

to aniline (S)-135 and it was then transformed further into efavirenz (S)-14. The conditions described 

by Correia et al. [134] to transform intermediate (S)-141 into efavirenz, were applied but without 

an argon atmosphere and sealed tube (Scheme 37). As a result only a 28% isolated yield was 

obtained (instead of a 62% NMR yield) [134]. 
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Scheme 37. Organocatalytic asymmetric synthesis of efavirenz 14. 

 

The tertiary stereogenic center in efavirenz 14 is of the kind that is known to display a 

significant self-disproportionation of enantiomers (SDE) phenomenon via achiral chromatography 

[135] and sublimation [136]. One of the complications of the SDE is an erroneous determination of 

the stereochemical outcome of enantioselective catalytic reactions. However, this property was not 

discussed in above reactions.  
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13. Conclusions.  

Fluorine is embedded in medicinal chemistry culture as a tool for refining structure activity 

relationships of lead compound scaffolds and for modulating pharmacokinetic properties. As a 

consequence of such activity, which takes place with intensity during drug development 

programmes, an increasing number of new chemical entities are emerging each year and receiving 

approval that containing fluorine. It has gone from a rather rare modification in the 1950s to an 

unexceptional one in contemporary pharmaceuticals development.  

It follows that there has been a notable broadening of interest in the development of new 

methods for the introduction of fluorine and fluorine containing motifs. Incorporating fluorine atoms 

can be costly particularly if scale up is required and thus a focus on process development and 

achieving efficient and environmentally satisfactory fluorination methods is currently among the 

most active fields in international organic chemistry at the moment. From the fluorine chemistry 

perspective innovation and focus has moved largely from materials and polymers to pharmaceuticals 

and bioactives over the last few decades.  

This review has taken a rather narrow snapshot [137], focusing on the current top selling 

fluorine containing drugs in the last 2 or 3 years, but it aims to illustrate the extraordinarily high 

commercial returns that can be gained from successful drugs particularly during their patent lifetime. 

This is what drives the pharmaceuticals industry and the increasing relevance of fluorine in this 

enterprise is driving innovation in fluorine chemistry.  
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