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THE DENSITY OF SETS CONTAINING LARGE SIMILAR COPIES

OF FINITE SETS

KENNETH FALCONER, VJEKOSLAV KOVAČ, AND ALEXIA YAVICOLI

Abstract. We prove that if E ⊆ R
d (d ≥ 2) is a Lebesgue-measurable set with

density larger than n−2

n−1
, then E contains similar copies of every n-point set P at all

sufficiently large scales. Moreover, ‘sufficiently large’ can be taken to be uniform over
all P with prescribed size, minimum separation and diameter. On the other hand, we
construct an example to show that the density required to guarantee all large similar
copies of n-point sets tends to 1 at a rate 1 −O(n−1/5 logn).

1. Introduction

In this paper a finite subset P of R
d with at least two distinct points will be called a

pattern. There are many ways of viewing the question of finding necessary or sufficient
conditions on a set E ⊆ R

d to contain some, or many, similar (or alternatively homo-
thetic or congruent) copies of a given pattern P . Here we will be concerned with finding
conditions that guarantee that E contains scaled similar copies of P for all sufficiently
large scalings. We will assume throughout that d ≥ 2 and that E is Ld-measurable,
where Ld denotes the Lebesgue measure on R

d. The Euclidean norm of x ∈ R
d will

simply be written as ‖x‖.
The most basic result of this kind is for 2-point patterns: for every Lebesgue-

measurable set E ⊆ R
2 with positive upper density (or positive upper Banach density,

see (2.1) and (2.2)) there exists R > 0 such that all distances greater than R are realised
between the points of E. This problem was posed by Székely [29] and several proofs
were given in the 1980s, by Falconer and Marstrand [10] with a geometric proof, by
Bourgain [2] for R

d with d ≥ 2 using harmonic analysis and by Furstenberg, Katznelson
and Weiss [11] using ergodic theory. More recently Quas [27] gave a more combinatorial
proof.

Rice [28] showed that the positive density requirement cannot be weakened. For all
d ≥ 1 and any function f : (0,∞) → [0, 1] with limr→∞ f(r) = 0 he constructed a
measurable set E ⊆ R

d and a sequence rn → ∞ such that ‖x− y‖ 6= rn for all x, y ∈ E,
with Ld(E∩Brn(0))/Ld(Brn(0)) ≥ f(rn) for all n ∈ N, where Br(x) is the ball of radius
r centered at x.
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It is natural to consider analogous questions for patterns with more than two points.
Indeed, Bourgain’s paper also showed that a set of positive upper density E ⊆ R

d

contains all sufficiently large similar copies of every d-point pattern provided that the
points span a (d−1)-dimensional hyperplane, see [16,23,24] for various other proofs. On
the other hand, he showed by the following example, which relies on the parallelogram
identity, that this spanning condition is necessary.

Example 1.1. [2]. Let 0 < s < 1
4
and let E := {x ∈ R

d : ‖x‖2 ∈ [0, s] + (N∪ {0})}, so
that E is a union of annuli and has density s. Then there are arbitrarily large values

of r such that E contains no congruent copy of {0, r, 2r}.
Subsequently, Graham showed that a similar conclusion holds for any non-spherical

set.

Example 1.2. [12]. Let P ⊆ R
d be a finite set of points that do not all lie on the

surface of any (d − 1)-sphere. Then there is a set E of positive upper density and

arbitrarily large values of r such that E does not contain a congruent copy of rP .

It is an open question whether every plane set of positive upper density contains all
large copies of every non-degenerate triangle. However, Furstenberg, Katznelson and
Weiss [11, Theorem B] showed that if E ⊆ R

2 has positive upper density, then every
δ-neighbourhood of E contains all sufficiently large similar copies of every triangle, and
Ziegler [32] extended this to larger patterns (i.e., simplices, possibly degenerate) in R

d

for d ≥ 2.
As far as other configurations go, Morris [26] showed that in any set of positive

density one can find triangles with all sufficiently large (compatible) perimeters and
areas. Lyall and Magyar [23] considered products of k- and k′-simplices in R

d where
k + k′ + 6 ≤ d and in particular showed that, given the vertices of a rectangle P ,
any subset of R

d (d ≥ 4) with positive upper Banach density contains all sufficiently
large similar copies of P . Generalizations to multiple products were discussed in [8]
and [25]; the latter paper successfully handled arbitrary products of non-degenerate
simplices. Moreover, Lyall and Magyar [24] showed that sets of positive upper Banach
density in R

d contain all large enough copies of ‘proper k-degenerate distance graphs’ if
d ≥ k + 1; for example when k = 1 these include finite trees and chains with prescribed
edge lengths. Here the position of the vertices of the graphs in the large copies is
immaterial provided that the scaled distances between vertices are realised. It is also
possible to study analogous questions for anisotropic patterns, that is, for families of
point configurations with power-type dependence on a real parameter which might be
thought of as their size, see [20]. Finally, several authors have got around Example 1.1
by investigating these questions when R

d is endowed with the ℓp-norm for 1 ≤ p ≤ ∞,
p 6= 2, see [5, 7–9, 19].

Given such conclusions it is natural to seek general sufficient conditions that ensure
that a set contains all sufficiently large similar copies of a given pattern. For homothetic
copies (i.e., when we do not allow rotations), a measure-theoretic pigeonholing argument
easily establishes the following statement.
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Proposition 1.3. Let E ⊆ R
d have upper density ρ > n−1

n
and let P be an n-point

pattern in R
d. Then there exists R > 0 such that if r > R, then E contains a homothetic

copy of P scaled by a factor r.

An aim of this paper is to obtain a quantitatively stronger result, that sets of density
greater than n−2

n−1
contain all sufficiently large similar copies of n-point patterns in a sense

that is uniform over certain patterns of a fixed size. For a pattern P = {x0, . . . , xn−1} ⊆
R
d we write sepP = mini 6=j ‖xi − xj‖ for the minimum separation of P and diamP =

maxi 6=j ‖xi − xj‖ for the diameter of P . By allowing rotations, the density of E that
guarantees similar copies of P does not have to be as large as for homothetic copies.

Theorem 1.4. Let E ⊆ R
d have upper Banach density ρ > n−2

n−1
. Then there exists a

number R := R(E, S,D, n) > 0 such that, for every n-point pattern P ⊆ R
d satisfying

S ≤ sepP ≤ diamP ≤ D, if r ≥ R, then there exist zr ∈ R
d and a rotation Qr ∈ SO(d)

such that rQr(P ) + zr ⊆ E, i.e., E contains a similar copy of P at all scales at least R.

To prove Theorem 1.4 we develop a quantitative version of the argument by Falconer
and Marstrand [10], which we extend to R

d for d ≥ 2. Note that, because in the proofs
of Corollary 2.9 and Lemma 3.1 we choose x and Q to be any points in certain sets
of positive Ld-measure and σ-measure respectively, there will be a set of isometries
of positive (σ × Ld)-measure under which copies of P at a (large) given scale will be
contained in E.

It is natural to ask for the minimum upper density required in Theorem 1.4: to what
extent can the value n−2

n−1
= 1 − 1

n−1
be reduced, and how does the density required to

guarantee the presence of all sufficiently large copies of all n-point patterns behave as
n → ∞? Using arithmetic sequences we show that this density must approach 1 as n
gets large, indeed at a rate 1 − O(n−1/5 logn). The logarithm function is understood
to have the number e as its base.

Theorem 1.5. For all n ∈ N (n ≥ 2) and d ∈ N there exists a measurable set E =
E(d, n) ⊆ R

d of density at least

(1.1) 1 − 10 logn

n1/5

such that there are arbitrarily large values of r for which E contains no congruent copy

of {0, r, 2r, . . . , (n− 1)r}.
Theorems 1.4 and 1.5 leave open the following question.

Question 1.6. What is the smallest 0 ≤ ρmin(d, n) < 1 such that every measurable set

E ∈ R
d of upper density ρ > ρmin(d, n) contains all sufficiently large scale similar copies

of all n-point patterns? Theorems 1.4 and 1.5 give

1 − 10 logn

n1/5
≤ ρmin(d, n) ≤ 1 − 1

n− 1
.

Is it possible to improve either one of the two asymptotic bounds 1−O(n−1/5 log n) and

1 −O(n−1) as n → ∞?
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We remark in passing that problems of a similar nature are widely studied in the
context of null Lebesgue measure, where one seeks conditions on the Hausdorff dimen-
sion or thickness of a set to guarantee that it contains a similar copy of a pattern.
In particular,  Laba and Pramanik [22] gave conditions on fractal sets in the real line
that ensure the existence of an arithmetic progression of length 3. Then Henriot,  Laba
and Pramanik [15] and Chan,  Laba and Pramanik [4] improved the hypotheses and
obtained results for more general patterns in R

d. Iosevich and Liu [17] made a further
improvement in R

4 for copies of triangles. See also [13,14,18], where patterns are guar-
anteed in sets of sufficiently large Hausdorff dimension, and [31] for sets of large enough
thickness.

The proof of Theorem 1.4 will span over Sections 2 and 3, while the proof of Theorem
1.5 will be given in Section 4.

2. Key estimates

We denote by Br(x) ⊆ R
d the closed ball of centre x and radius r; we will abbreviate

this to Br for any ball of radius r when the centre is not relevant. The upper Banach

density of a Lebesgue-measurable E ⊆ R
d is defined by

(2.1) ρ := ρ(E) := lim sup
r→+∞

sup
x∈Rd

Ld(E ∩ Br(x))

Ld(Br(x))

and the usual upper density by

(2.2) d(E) := lim sup
r→+∞

Ld(E ∩ Br(0))

Ld(Br)

Note that the last definition is invariant under changing the centre of the ball, that is
replacing Br(0) by Br(x) for any other x ∈ R

d. Then ρ(E) ≥ d(E) and inequality can
be strict; in fact, there exists a set E ⊆ R

d with ρ(E) = 1 and d(E) = 0.
The following lemma shows that E has mean density not much more than ρ in all

sufficiently large balls but also there exist balls of all large radii where E has mean
density close to ρ.

Lemma 2.1. Let E ⊆ R
d be Lebesgue-measurable with upper Banach density ρ > 0 and

let α > 0. Then we may find s1 := s1(α,E) such that

(2.3)
Ld(E ∩B)

Ld(B)
< ρ(1 + α),

for all closed balls B of radii grater than s1. Furthermore, for all s > 0, there exists a

closed ball Bs such that

(2.4)
Ld(E ∩ Bs)

Ld(Bs)
> ρ(1 − α).
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Proof. Inequality (2.3) is clear from the definition of ρ.
For (2.4), given s > 0, we may find r > s such that 1 − (1 − s

r
)d < 1

2
ρα and x ∈ R

d

satisfying

Ld(E ∩ Br(x))

Ld(Br)
> ρ
(

1 − α

2

)

.

Then,
∫

Br(x)

Ld(Bs(y) ∩ E) dy ≥ Ld(E ∩Br−s(x))Ld(Bs)

and

Ld(E ∩Br−s(x)) ≥ Ld(E ∩ Br(x)) −
(

1 −
(

1 − s

r

)d)

Ld(Br).

Hence,

1

Ld(Br)

∫

Br(x)

Ld(E ∩ Bs(y))

Ld(Bs)
dy ≥ Ld(E ∩ Br−s(x))

Ld(Br)

≥ Ld(E ∩ Br(x))

Ld(Br)
−
(

1 −
(

1 − s

r

)d)

> ρ
(

1 − α

2

)

− ρ
α

2
= ρ(1 − α).

So, there exists y ∈ Br(x) such that Ld(E∩Bs(y))
Ld(Bs)

> ρ(1 − α). �

We will need to estimate the (d−1)-dimensional measure of the intersection of (d−1)-
spheres with the set E. To facilitate this we approximate such spheres by annuli. Let
Ar1,r2(x) := Br2(x) \ Br1(x) be the d-dimensional annulus of centre s, inner radius r1
and outer radius r2. The intersection of pairs of such annuli is key to our calculations,
and for v ∈ R

d and δ > 0 we define

(2.5) φ
(d)
δ (v) := δ−2Ld(Ar,r+δ(0) ∩ Ar,r+δ(v)).

We will check that the limit as δ → 0 of φ
(d)
δ (v) exists pointwise and in L1 and equals

the following function K
(d)
r which may be thought of as a potential kernel on R

d.

Definition 2.2. For r > 0 define K
(d)
r : R

d → R by

K(d)
r (v) :=



























2r2π(d−1)/2(r2 − ‖v‖2

4
)(d−3)/2

Γ
(

d−1
2

)

‖v‖ if ‖v‖ < 2r and v 6= 0

0 if ‖v‖ > 2r

+∞ if ‖v‖ = 2r or v = 0

,

where Γ is the gamma function.
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Throughout we will write Ad
r for the (d−1)-dimensional surface area of a ball Br ⊆ R

d,
given by

(2.6) Ad
r :=

d rd−1πd/2

Γ(d
2

+ 1)
.

Lemma 2.3. For all r > 0, φ
(d)
δ → K

(d)
r pointwise and in L1(Rd). Furthermore,

(2.7)

∫

K(d)
r (v) dv = (Ad

r)
2.

Proof. Pointwise convergence is trivial if v = 0 or ‖v‖ ≥ 2r.
For 0 < ‖v‖ < 2r first consider the case when d = 2. The circles Cr(0) and Cr(v)

intersect at angle θ where sin θ
2

= ‖v‖/2r. Then for small δ > 0, Ar,r+δ(0) ∩ Ar,r+δ(v)
is a pair of regions, each close to a rhombus of side δ/ sin θ and height δ, so of area
δ2/ sin θ. Hence,

L2{Ar,r+δ(0) ∩ Ar,r+δ(v)} = 2
δ2

sin θ
+ O(δ3) =

2δ2

2 sin θ
2

cos θ
2

+ O(δ3)

=
δ2

‖v‖
2r

(

1 − ‖v‖2

(2r)2

)1/2
+ O(δ3) =

2δ2r2

‖v‖
(

r2 − ‖v‖2

4

)1/2
+ O(δ3)

= δ2K(2)
r (v) + O(δ3),

noting that Γ(1
2
) = π

1

2 , so pointwise convergence at v when d = 2 follows noting (2.5).
For d ≥ 3, we use the half of the estimate when d = 2, rotating one of the two

approximate rhombii. Let Gr := rSd−1 ∩ (rSd−1 + v) where Sd−1 is the unit (d − 1)-

sphere centred at 0, so Gr is the (d− 2)-sphere r̃Sd−2 + 1
2
v of radius r̃ :=

(

r2 − ‖v‖2

4

)1/2

which is contained in the hyperplane 〈v〉⊥ + 1
2
v. Then

Ld−2(Gr) = Ld−2(r̃Sd−2) =
2π(d−1)/2 r̃d−2

Γ
(

d−1
2

) .

For 0 < ‖v‖ < 2r,

Ld{Ar,r+δ(0) ∩Ar,r+δ(v)} =

(

δ2
K

(2)
r (v)

2
+ O(δ3)

)

Ld−2(Gr)

= δ2
K

(2)
r (v)

2

2π(d−1)/2 r̃d−2

Γ
(

d−1
2

) + O(δ3)

= δ2
K

(2)
r (v)

2

2π(d−1)/2
(

r2 − ‖v‖2

4

)(d−2)/2

Γ
(

d−1
2

) + O(δ3)

= δ2K(d)
r (v) + O(δ3)

again giving convergence at v.
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Pointwise convergence of φ
(d)
δ (v) is not uniform, but to establish L1 convergence it is

enough to check that ‖φ(d)
δ ‖1 → ‖K(d)

r ‖1. Noting that
∫

Ld(A∩(B+v))dv = Ld(A)Ld(B)
for measurable A,B ⊆ R

d, from (2.5)
∫

φ
(d)
δ (v) dv = δ−2Ld(Ar,r+δ(0))2

= δ−2(δAd
r + O(δ2))2

= (Ad
r)

2 + O(δ).(2.8)

Using spherical coordinates,
∫

K(d)
r (v) dv =

2r2π(d−1)/2

Γ
(

d−1
2

)

(
∫ 2r

0

(

r2 − ρ2

4

)(d−3)/2

ρd−2 dρ

)

Ad
1

=
2r2π(d−1)/2

Γ
(

d−1
2

) 2d−2r2d−4

(
∫ 1

0

(1 − t)(d−3)/2 t(d−3)/2 dt

)

Ad
1(2.9)

=
2r2π(d−1)/2

Γ
(

d−1
2

) 2d−2r2d−4

(

Γ(d−1
2

)2

(d− 2)!

)

Ad
1

=
dπd−1/22d−1r2d−2

Γ(d
2

+ 1)

Γ(d−1
2

)

(d− 2)!
(2.10)

=
d2r2d−2πd

(

Γ(d
2

+ 1)
)2 = (Ad

r)
2,(2.11)

where we have used the substitution ρ = 2rt1/2 to get the integral form of the beta
function β(d−1

2
, d−1

2
) at (2.9), followed by (2.6) at (2.10), and the factorial form of the

gamma function at multiples of 1
2

to get (2.11). From (2.8), ‖φ(d)
δ ‖1 → ‖K(d)

r ‖1 which,

together with pointwise convergence, implies that φ
(d)
δ → K

(d)
r in L1. �

For r > 0 write

gr(x) := Ld−1(E ∩ Sr(x)) (x ∈ R
d)

for the measure of intersection of the set E ⊆ R
d with the sphere Sr(x). The next

lemma enables us to find the mean and mean square of gr.

Lemma 2.4. Let E be a bounded Lebesgue-measurable subset of R
d and let r > 0. Then

(2.12)

∫

gr(x) dx = Ad
r Ld(E).

and

(2.13)

∫

gr(x)2 dx =

∫

E

∫

E

Kr(y − z) dy dz.
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Proof. Let g ∈ L1(Rd) be continuous and of compact support. Then,
∫
(
∫

Ar,r+δ(x)

g(v) dv

)

dx =

∫ ∫

χAr,r+δ(0)(v − x)g(v) dv dx

=

∫ ∫

χAr,r+δ(0)(u)g(x + u) du dx

=

∫

χAr,r+δ(0)(u) du

∫

g(y) dy

=
(

δAd
r + O(δ2)

)

∫

g(y) dy.

Dividing by δ and letting δ → 0,
∫
(
∫

Sr(x)

g(v) dLd−1(v)

)

dx = Ad
r

∫

g(y) dy,

where the left-hand side inner integral is with respect to (d− 1)-dimensional Lebesgue
measure on the sphere. Identity (2.12) follows on approximating χE by continuous
functions g.

Now let g, h ∈ L1(Rd) be bounded and of compact support with g continuous. Then,

∫
[
∫

g(y)h(y − x) dy

]2

dx =

∫ ∫ ∫

g(y)h(y − x)g(z)h(z − x) dx dy dz

=

∫ ∫

g(y)g(z)

(
∫

h(u)h(u− y + z) du

)

dy dz

Taking h(u) := δ−1χAr,r+δ(0)(u),

∫
[

δ−1

∫

Ar,r+δ(x)

g(y) dy

]2

dx =

∫ ∫

g(y)g(z) δ−2Ld{Ar,r+δ(0) ∩ Ar,r+δ(y − z)} dy dz

=

∫ ∫

g(y)g(z)φδ(y − z) dy dz.

Letting δ ց 0 then, as g is continuous, 1
δ

∫

Ar,r+δ(x)
g →

∫

Sr(x)
g and φδ → K

(d)
r in L1(Rd)

by Lemma 2.3,

∫
(
∫

Sr(x)

g(y) dy

)2

dx =

∫ ∫

g(y)g(z)K(d)
r (y − z) dy dz.

Again, approximating χE by continuous g gives (2.13). �

The next lemma provides a good upper bound for the right-hand integral of (2.13)
when E is reasonably uniformly distributed across a region.
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Lemma 2.5. Let δ > 0, 0 < ε0 < 1 and 0 < ξ ≤ 1 be given. Then there exists

λ := λ(ε0, ξ, δ) ∈ (0, ε0) such that if Bs ⊆ R
d is any ball of radius s > 0 and E ⊆ Bs is

any measurable set such that

(2.14)
Ld(E ∩ B)

Ld(B)
< ρ(1 + α)

for all balls B ⊆ Bs of radius at least λs, then for all ε ∈ [ξε0, ε0],
∫

E

∫

E

K(d)
εs (x− y) dx dy < (Ad

εs)
2(1 + ε)d

(

(1 + α)2ρ2 + δ
)

Ld(Bs).

Proof. By applying a similarity transformation it is enough to prove the lemma in the
special case s = 1 and Bs = B1(0). For each 0 < λ < 1 and u ∈ R

d we define
hλ(u) := 1

Ld(Bλ)
χBλ(0)(u).

Let η := δ(Ad
ξε0

)2(1 + ξε0)
dLd(B1(0)). Choose λ := λ(ε0, ξ, δ) ∈ (0, ε0) sufficiently

small so that for all ε ∈ [ξε0, ε0],

(2.15)

∫

B1(0)

∫

B1(0)

∣

∣

∣

∣

K(d)
ε (x−y)−

∫ ∫

K(d)
ε (z−w)hλ(x−z)hλ(y−w) dz dw

∣

∣

∣

∣

dx dy < η.

To achieve this, note that the double integral is continuous in ε, for example using that

K
(d)
ε′ converges to K

(d)
ε as ε′ → ε pointwise almost everywhere and in L1(B1(0)×B1(0)).

We can find a value of λ such that (2.15) is satisfied for each ε ∈ [ξε0, ε0] so compactness
enables a choice of λ valid for all such ε.

Let E ⊆ B1(0) be a measurable set such that (2.14) holds for all balls B ⊆ B1(0)
of radius at least λ. Then, for all ε ∈ [ξε0, ε0], restricting the domain of integration in
(2.15) to E × E ⊆ B1(0) ×B1(0), we get
∫

E

∫

E

K(d)
ε (x− y) dx dy < η +

∫

E

∫

E

∫ ∫

K(d)
ε (z − w)hλ(x− z)hλ(y − w) dz dw dx dy

< η + ρ2(1 + α)2
∫

B(0,1+λ)

∫

B(0,1+λ)

K(d)
ε (z − w) dz dw

≤ η + ρ2(1 + α)2
∫

B(0,1+ε)

(Ad
ε)

2 dw

≤ (Ad
ε)

2(1 + ε)d((1 + α)2ρ2 + δ)Ld(B1(0)),

where we used (2.14) with the definition of hλ, that λ ≤ ε, the integral (2.7), and the
definition of η. �

The next lemma shows that we can find a ball Bs in which E has mean density close
to ρ but also with good estimates for proportions of the surfaces of smaller spheres
that intersect E. We will then use (2.17) and (2.18) to show that gεs is nearly constant
across Bs. Recall that

gr(x) := Ld−1(E ∩ Sr(x)) (x ∈ R
d).
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Lemma 2.6. Let E ⊆ R
d be a Lebesgue-measurable set of upper Banach density ρ > 0,

and let 0 < ξ ≤ 1. Then, given η ∈ (0, 1), we can find ε0 > 0 and s0 > 0 such that for

each s > s0 there is a ball Bs ⊆ R
d of radius s satisfying

(2.16)
Ld(E ∩Bs)

Ld(Bs)
> ρ(1 − η),

(2.17)

∫

Bs
gεs(x) dx

Ld(Bs)
> Ad

εs ρ(1 − η)

and

(2.18)

∫

Bs
gεs(x)2 dx

Ld(Bs)
< (Ad

εs)
2ρ2(1 + η),

for all ε ∈ [ξε0, ε0].

Proof. Given η ∈ (0, 1), we choose positive numbers α, δ, ε0 ∈ (0, 1) small enough to
ensure that

(2.19) (1 + ε0)
d((1 + α)2ρ2 + δ) + (1 − (1 − ε0)

d) < ρ2(1 + η),

and

(2.20) ρα + (1 − (1 − ε0)
d) < ρη.

Let λ be given by Lemma 2.5 for these δ, ε0 and ξ. Let s1 := s1(α,E) from Lemma 2.1
and let s0 := s1/λ. If s > s0 then s > s1 as λ < 1, and there is a ball Bs of radius s
such that

(2.21)
Ld(E ∩ Bs)

Ld(Bs)
> ρ(1 − α).

By (2.20) α < η giving (2.16).
We now establish (2.18). Let fεs(x) := Ld−1((E ∩ Bs) ∩ Sεs(x)). By Lemma 2.4

applied to E ∩Bs,

(2.22)

∫

fεs(x)2 dx =

∫

E∩Bs

∫

E∩Bs

Kεs(y − z) dy dz.

By Lemma 2.5 (which hypotheses are satisfied by definition of s1 and that s > s1/λ =
s0), we get that for all ε ∈ [ξε0, ε0],

(2.23)

∫

E∩Bs

∫

E∩Bs

Kεs(x− y) dx dy < (Ad
εs)

2(1 + ε)d((1 + α)2ρ2 + δ)Ld(Bs).

Writing Bs−εs for the ball concentric with Bs and of radius s−εs, then fεs(x) = gεs(x)
for x ∈ Bs−εs and Ld(Bs \Bs−εs) = (1 − (1 − ε)d)Ld(Bs). By (2.22) and (2.23),

∫

Bs

gεs(x)2 dx =

∫

Bs−εs

gεs(x)2 dx +

∫

Bs\Bs−εs

gεs(x)2 dx
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≤
∫

Bs

fεs(x)2 dx + (Ad
εs)

2(1 − (1 − ε)d)Ld(Bs)

≤ (Ad
εs)

2
[

(1 + ε)d((1 + α)2ρ2 + δ) + (1 − (1 − ε)d)
]

Ld(Bs)

< (Ad
εs)

2ρ2(1 + η)Ld(Bs),

using (2.19) since ε ≤ ε0.
Finally we apply (2.12) to E ∩Bs−εs to get (2.17).

∫

Bs

gεs(x) dx =

∫

Bs

Ld−1(E ∩ Sεs(x)) dx

≥
∫

Rd

Ld−1((E ∩ Bs−εs) ∩ Sεs(x)) dx

= Ad
εsLd(E ∩ Bs−εs)

≥ Ad
εs

[

Ld(E ∩Bs) − Ld(Bs \Bs−εs)
]

≥ Ad
εs

[

ρ(1 − α0) −
(

1 − (1 − εs)d
)]

Ld(Bs)

> Ad
εs ρ(1 − η)Ld(Bs),

using (2.21) and (2.20). �

The following general lemma bounds the deviation of a function from its mean in
terms of its second moment.

Lemma 2.7. Let D ⊆ R
d be measurable with 0 < Ld(D) < ∞, let g : D → R≥0 be

measurable and not identically 0, and let θ > 0. Then

Ld

{

x ∈ D :

∣

∣

∣

∣

g(x) − 1

Ld(D)

∫

D

g(y)dy

∣

∣

∣

∣

≥ θ
1

Ld(D)

∫

D

g(y)dy

}

≤ 1

θ2
Ld(D)

[Ld(D)
∫

D
g2

(
∫

D
g)2

− 1

]

.

Proof. Identically
∫

D

(

g(x) − 1

Ld(D)

∫

D

g(y) dy

)2

dx =

∫

D

g(x)2 dx− (
∫

D
g)2

Ld(D)
,

so by Chebyshev’s inequality

Ld

{

x ∈ D :

∣

∣

∣

∣

g(x) − 1

Ld(D)

∫

D

g(y)dy

∣

∣

∣

∣

≥ θ
1

Ld(D)

∫

D

g(y)dy

}

≤ 1

θ2
Ld(D)2

(
∫

D
g)2

[
∫

D

g2 − (
∫

D
g)2

Ld(D)

]

=
1

θ2
Ld(D)

[Ld(D)
∫

D
g2

(
∫

D
g)2

− 1

]

.
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�

Using Lemma 2.7 with the estimates of Lemma 2.6 we now show that there is a
ball Bs such that ‘most’ (d− 1)-spheres of radius εs centred inside Bs intersect E in a
proportion of the sphere ‘close to’ ρ, the Banach density of E, for a suitable range of ε.

Proposition 2.8. Let E ⊆ R
d be a Lebesgue-measurable set of upper Banach density

ρ > 0 and let 0 < ρ′ < ρ. Let 0 < ξ ≤ 1 and δ > 0. Then there exist s0 > 0 and ε0 > 0
such that for all s ≥ s0 there is a ball Bs ⊆ R

d such that

(2.24) Ld(E ∩Bs) > ρ′Ld(Bs)

and

(2.25) Ld
{

x ∈ Bs : gεs(x) ≤ ρ′Ad
εs

}

< δLd(Bs)

for all ε ∈ [ξε0, ε0].

Proof. Let ρ′ = (1 − θ)ρ where 0 < θ < 1. Choose η > 0 small enough so that

(2.26)
4

θ2

[

1 + η

(1 − η)2
− 1

]

< δ and η < 1
2
θ

By Lemma 2.6, given these ρ, ξ and η, there exist ε0 and s0 such that for all s > s0
there is a ball Bs satisfying (2.24) by (2.16) and (2.26), and also for all ε ∈ [ξε0, ε0],

Ld
{

x ∈ Bs : gεs(x) ≤ρ(1 − θ)Ad
εs

}

≤ Ld
{

x ∈ Bs : gεs(x) ≤ ρ(1 − 1
2
θ)(1 − η)Ad

εs

}

≤ Ld

{

x ∈ Bs : gεs(x) ≤ (1 − 1
2
θ)

∫

Bs
gεs(x) dx

Ld(Bs)

}

= Ld

{

x ∈ Bs :

∫

Bs
gεs(x) dx

Ld(Bs)
− gεs(x) ≥ 1

2
θ

∫

Bs
gεs(x) dx

Ld(Bs)

}

≤ 4

θ2
Ld(Bs)

[Ld(Bs)
∫

Bs
gεs(x)2

(
∫

Bs
gεs(x))2

− 1

]

≤ 4

θ2
Ld(Bs)

[

1 + η

(1 − η)2
− 1

]

< δLd(Bs),

where we have used (2.26), (2.17), Lemma 2.7, (2.17) and (2.18), and (2.26). �

The following corollary shows that if E has upper Banach density ρ and ρ′ < ρ then
any given family of a finite number of concentric spheres can be scaled and translated
so that a proportion at least ρ′ of each spherical surface is in E, for all sufficiently large
scalings.
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Corollary 2.9. Let E ⊆ R
d be measurable and let 0 < ρ′ < ρ(E) and 0 < S ≤ D.

Then there is an s0 := s0(E, S,D,m) > 0 such that, for every set of numbers {ri}mi=1

with ri ∈ [S,D] for all i, for all s ≥ s0 there exists x ∈ E such that

(2.27) Ld−1(E ∩ Sris(x)) > ρ′Ad
ris

for all 1 ≤ i ≤ m.

Proof. Given E, choose 0 < δ < ρ′/m and set ξ = S/D. Let s0 and ε0 be given by
Proposition 2.8 for these values. Thus for all s ≥ s0 there is a ball Bs such that (2.24)
and (2.25) hold for all ε ∈ [ε0S/D, ε0]. By scaling by a factor ε0/D it is enough to
assume that ri ∈ [ε0S/D, ε0] for all i. Then

Ld
{

x ∈ E ∩ Bs : gris(x) ≥ ρ′Ad
ris

for all 1 ≤ i ≤ m
}

≥ Ld(E ∩Bs) −
m
∑

i=1

Ld
{

x ∈ E ∩Bs : gris(x) ≤ ρ′Ad
ris

}

≥ ρ′Ld(Bs) −mδLd(Bs) > 0.

Thus for all s ≥ s0 we may choose x ∈ E ∩Bs such that (2.27) is satisfied for all i. �

3. Finite patterns in R
d

In this section we will apply Corollary 2.9 to prove Theorem 1.4, that is to show that
a set E contains similar copies of a pattern P at all sufficiently large scalings provided
that the Banach density of E is sufficiently large. We will also see that ‘sufficiently
large’ can be taken to be uniform over the patterns P satisfying cardP = n and
S ≤ sepP ≤ diamP ≤ D.

For a pattern P = {x0, . . . , xn−1} ⊆ R
d write ri := ‖xi − x0‖ > 0 for 1 ≤ i ≤ n − 1.

Let SO(d) be the special orthogonal group of rotations of R
d about the origin and let

σ be normalised Haar measure on SO(d).

Lemma 3.1. Let E ⊆ R
d be measurable and let P := {x0, . . . , xn−1} ⊆ R

d be a pattern.

Suppose that x0 ∈ E and

(3.1) Ld−1(E ∩ Sri(x0)) >
(n− 2

n− 1

)

Ad
ri

(1 ≤ i ≤ n−1).

Then there exists Q ∈ SO(d) such that Q(P − x0) + x0 ⊆ E, i.e., P may be rotated

about x0 so that xi ∈ E for all 0 ≤ i ≤ n− 1.

Proof. Without loss of generality take x0 = 0 so that xi ∈ Sri(0) for 1 ≤ i ≤ n − 1.
From (3.1),

σ
{

Q ∈ SO(d) : Q(xi) ∈ E ∩ Sri(0)
}

=
Ld−1(E ∩ Sri(0))

Ld−1(Sri(0))
>

n− 2

n− 1
.

Hence

σ
{

Q ∈ SO(d) : Q(xi) ∈ E ∩ Sri(0) for all 1 ≤ i ≤ n−1
}
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≥ σ(SO(d)) −
n−1
∑

i=1

σ
{

Q ∈ SO(d) : Q(xi) /∈ E ∩ Sri(0)
}

> 1 − (n− 1)
(

1 − n− 2

n− 1

)

= 0.

Hence there is a set of rotations Q of positive σ-measure such that Q(xi) ∈ E for all
1 ≤ i ≤ n− 1, as required. (Note that this argument remains valid if the ri are not all
distinct.) �

Our main theorem, stating that sets of density greater than n−2
n−1

contain all sufficiently
large copies of n point patterns, now follows easily.

Proof of Theorem 1.4. Taking ρ′ = n−2
n−1

and m = n − 1 in Corollary 2.9 there is a
number s0(E, S,D,m) such that for all s ≥ s0 there exists x0 ∈ E such that

Ld−1(E ∩ Sris(x0)) >
(n− 2

n− 1

)

Ad
ris
.

for all 1 ≤ i ≤ n−1, noting that S ≤ ri ≤ D. Thus for all s ≥ s0, by Lemma 3.1 there
is a Q ∈ SO(d) such that sQ(P ) + x0 − sQ(x0) = Q

(

s(P − x0)
)

+ x0 ⊆ E. �

4. Lower bound

In this section we will prove a lower bound claimed in Theorem 1.5, that is, construct
a set of density at least that stated in (1.1) that does not contain all sufficiently large
n-term arithmetic progressions.

Proof of Theorem 1.5. Note that the claim is void unless 10 logn/n1/5 < 1. Thus, we
assume that n is large enough so that this holds and denote

ε :=
10 logn

n1/5
∈ (0, 1).

In particular, we will have n > 105 throughout the proof.
The set E will come from Bourgain’s construction in [2], that is, it will be a ‘thin’

version of the set from Example 1.1. We define

E :=
∞
⋃

m=0

{

x ∈ R
d : m− 1 − ε

2
< ‖x‖2 < m +

1 − ε

2

}

=
{

x ∈ R
d : dist(‖x‖2,Z) <

1 − ε

2

}

.

It is easy to see that E has (the most usual type of) density equal to 1 − ε.
Take some r > 0 and suppose that there exists an isometry R → E ⊆ R

d mapping
kr 7→ xk for k = 0, 1, . . . , n − 1, where x0, x1, . . . , xn−1 are some points in the set E.
Let ak := ‖xk‖2. The parallelogram law gives

2
(

‖xk‖2 + ‖xk+2‖2
)

= ‖2xk+1‖2 + ‖xk+2 − xk‖2,
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i.e.,

ak+2 − 2ak+1 + ak = 2r2.

Solving this recurrence relation easily gives

(4.1) ak = r2k2 + Ak + B; k = 0, 1, 2, . . .

for some constants A and B. Note that we are constrained to indices k ≤ n − 1 only,
but the above formula extends and defines an infinite sequence (ak)

∞
k=0. For now we

only assume that r2 is an irrational number; later we will refine this choice.
We will consider the sequence

(4.2) a =
(

ak mod 1
)∞

k=0

on the one-dimensional torus T = R/Z ≡ [0, 1), so that we can apply quantitative results
on uniform distribution of sequences. These results belong to the realm of discrepancy
theory [1,6,21], also known as single-scale equidistribution theory [30, §1.1.2]. The main
idea is the following:

• On the one hand, by the construction of E, the first n terms of the sequence a

completely avoid the interval [(1 − ε)/2, (1 + ε)/2] ⊆ T of length ε.
• On the other hand, for sufficiently large n the first n terms of the sequence a

should be ‘sufficiently uniformly distributed’ over T.

These two claims will lead to a contradiction. For the second claim we could use some
result on quantitative equidistribution of polynomial sequences on T, such as Exercise
1.1.21 from Tao’s book [30]. However, since our sequence (4.1) is very special (i.e., it
is only quadratic), and since we want to be entirely quantitative (i.e., with a precise
exponent 1/5 and an explicit constant, such as 10), we prefer to redo some of the theory
from scratch.

The discrepancy of the first n terms of the sequence (4.2) is the number

Dn(a) := sup
[α,β)⊆[0,1)

∣

∣

∣

card
{

k ∈ {0, 1, . . . , n− 1} : ak mod 1 ∈ [α, β)
}

n
− (β − α)

∣

∣

∣
,

which quantifies how uniformly the ak are distributed over T. Once we can guarantee

(4.3) Dn(a) < ε,

we will arrive at a contradiction by taking [α, β] = [(1 − ε)/2, (1 + ε)/2]. The famous
Erdős–Turán inequality (see [21, Chapter 2, Theorem 2.5]) gives an explicit upper bound
for the discrepancy in terms of exponential sums:

(4.4) Dn(a) ≤ 6

M + 1
+

4

π

M
∑

m=1

1

m

∣

∣

∣

1

n

n−1
∑

k=0

e2πimak

∣

∣

∣

for any positive integer M (to be chosen later).
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Next, we use an explicit version of van der Corput’s trick for exponential sums (see [30,
Lemma 1.1.6]) to get for yet another positive integer H (to be chosen later):

(4.5)
∣

∣

∣

1

n

n−1
∑

k=0

e2πimak − 1

n

n−1
∑

k=0

1

H

H
∑

h=1

e2πimak+h

∣

∣

∣
≤ 2H

n
.

We now estimate the above double sum. We use the Cauchy-Schwarz inequality for the
sum in k, expand out the square, take into account the explicit formula (4.1), and sum
up a few finite geometric sequences:

∣

∣

∣

1

n

n−1
∑

k=0

1

H

H
∑

h=1

e2πimak+h

∣

∣

∣

2

≤ 1

n

n−1
∑

k=0

∣

∣

∣

1

H

H
∑

h=1

e2πimak+h

∣

∣

∣

2

=
1

H
+

2

H2n
Re

∑

0≤k≤n−1
1≤h<h′≤H

e2πim(ak+h′−ak+h)

[ substitute j = k + h, l = h′ − h ]

=
1

H
+

2

H2n
Re

H−1
∑

l=1

e2πilm(lr2+A)

H−l
∑

h=1

n+h−1
∑

j=h

e4πijlmr2

≤ 1

H
+

4

Hn

H−1
∑

l=1

1

|1 − e4πilmr2 | .(4.6)

The final ingredient comes from the theory of Diophantine approximations [3]. Let
us choose a badly approximable z ∈ [0, 1), which means that

(4.7)
∣

∣

∣
z − p

q

∣

∣

∣
≥ c

q2

for some c = c(z) > 0 and all p, q ∈ Z, q 6= 0. One such choice is the golden ratio

(4.8) z =
−1 +

√
5

2
,

in which case we can take

(4.9) c =
1

3
.

This can be seen in an entirely elementary way, by using Viète’s formulae and writing

1

q2
≤ |p2 + pq − q2|

q2
=
∣

∣

∣

p

q
− −1 +

√
5

2

∣

∣

∣

∣

∣

∣

p

q
− −1 −

√
5

2

∣

∣

∣

≤
∣

∣

∣

p

q
− z
∣

∣

∣

(

∣

∣

∣

p

q
− z
∣

∣

∣
+
√

5

)

.



SETS CONTAINING LARGE COPIES OF FINITE SETS 17

A consequence of (4.7)–(4.9) is

(4.10) dist(qz,Z) ≥ 1

3q

for every positive integer q. It is interesting to remark that uncountably many choices
of z would work out here, provided that we were willing to lower the constant (4.9) to
2−15, see [3, Theorem 7.8].

Now let r > 0 be any number such that r2 − z ∈ Z, where z was given in (4.8). The
set of such numbers is unbounded. From (4.10) we get

|1 − e4πilmr2 | = |1 − e4πilmz| ≥ 4 dist(2lmz,Z) ≥ 2

3lm
for positive integers l and m, so

(4.11)
4

Hn

H−1
∑

l=1

1

|1 − e4πilmr2 | ≤
3Hm

n
.

Combining (4.4), (4.5), (4.6), and (4.11) we end up with

Dn(a) ≤ 6

M + 1
+

4

π
(1 + logM)

(2H

n
+

1

H1/2

)

+
8
√

3

π

(HM

n

)1/2

,

so choosing
H = ⌊(1/25)n2/5⌋, M = ⌊4n1/5⌋

we obtain

Dn(a) <
10 logn

n1/5
.

This is precisely (4.3) and it leads to the desired contradiction. �
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