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The Simrad EK60 echosounder 
dataset from the Malaspina 
circumnavigation
Xabier Irigoien1,2 ✉, Thor Klevjer3, Udane Martinez1, Guillermo Boyra1, Anders Røstad  4, 
Astrid C. Wittmann  5, Carlos M. Duarte  4, Stein Kaartvedt6, Andrew S. Brierley  7 & 
Roland Proud7

We provide the raw acoustic data collected from the R/V Hesperides during the global Malaspina 2010 
Spanish Circumnavigation Expedition (14th December 2010, Cádiz-14th July 2011, Cartagena) using a 
Simrad EK60 scientific echosounder operating at 38 and 120 kHz. The cruise was divided into seven legs: 
leg 1 (14th December 2010, Cádiz-13th January 2011, Rio de Janeiro), leg 2 (17th January 2011, Rio de 
Janeiro-6th February 2011, Cape Town), leg 3 (11th February 2011, Cape Town-13th March 2011, Perth), 
leg 4 (17th March 2011, Perth-30th March 2011, Sydney), leg 5 (16th April 2011, Auckland-8th May 
2011, Honolulu), leg 6 (13th May 2011, Honolulu-10th June 2011, Cartagena de Indias) and leg 7 (19th 
June 2011, Cartagena de Indias-14th July 2011, Cartagena). The echosounder was calibrated at the start 
of the expedition and calibration parameters were updated in the data acquisition software (ER60) i.e., 
the logged raw data are calibrated. We also provide a data summary of the acoustic data in the form of 
post-processed products.

Background & Summary
In the frame of fisheries assessment, echosounder data are routinely collected around the world1,2, and acoustic 
data are being used increasingly to study several different features of aquatic ecosystems3–6. However, there is 
still a disconnect between biological oceanography and fisheries research, and often cruises that sample the deep 
ocean (i.e., the mesopelagic zone from 200 to 1,000 m and beyond) do not collect echosounder data even if the 
instruments are available onboard.

The 2010 Malaspina circumnavigation expedition aimed at studying the biodiversity and the impact of global 
change on the deep ocean. The interdisciplinary project collected samples and data across multiple disciplines 
- from physics and chemistry to genomics and biodiversity7 - producing a number of new insights about the 
ocean8–13. Echosounder data collected during the Malaspina expedition have resulted in numerous publications 
related to mesopelagic fish biomass and behavior8,14–16. However, the data still contain a huge amount of informa-
tion across a range of spatial (meters to oceans basin) and temporal (seconds to seasonal trends) scales that could 
be exploited in different ways: the objective of this paper is to provide adequate access to those data.

Methods
Figure 1 presents the track of the eight-month cruise, and Table 1 provides the detail of the legs and dates. On a 
routine basis R/V Hesperides sailed at an average speed of 11 knots from around 3 pm to 4 am (local time). The 
vessel arrived on station at around 4 am daily to carry out sampling operations at a fixed point for about 11 hours.

Acoustic measurements were carried out continuously using a Simrad EK60 echosounder), operating at 38 
and 120 kHz (7° beamwidth transducers) with a ping rate of 0.5 Hz. Unfortunately, the 120 kHz failed during the 
first leg of the cruise and only 38 kHz data were collected. Echosounder observations were recorded down to 

1AZTI - BRTA, Herrera Kaia, Portualdea z/g – 20110, Pasaia, Gipuzkoa, Spain. 2IKERBASQUE, Basque Foundation for 
Science, Bilbao, Spain. 3Institute of Marine Research, PO Box 1870 Nordnes, 5817, Bergen, Norway. 4King Abdullah 
University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia. 
5MARUM - Center for Marine Environmental Sciences University of Bremen FVG-Ost Leobener Strasse 2, 28359, 
Bremen, Germany. 6Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316, Oslo, Norway. 
7School of Biology, Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St 
Andrews, Fife, KY16 8LB, Scotland, UK. ✉e-mail: xirigoien@azti.es

DATA DESCRIPToR

oPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/479011886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/s41597-021-01038-y
http://orcid.org/0000-0002-2512-9033
http://orcid.org/0000-0002-4839-5633
http://orcid.org/0000-0002-1213-1361
http://orcid.org/0000-0002-6438-6892
mailto:xirigoien@azti.es
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-01038-y&domain=pdf


2Scientific Data |           (2021) 8:259  | https://doi.org/10.1038/s41597-021-01038-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

1000 m depth. The echosounder files are in the proprietary Simrad raw format and can be read by various soft-
wares (e.g., LSSS, Echoview, Sonar5, MATECHO, ESP3, echopype, pyEcholab). GPS locations and calibration 
constants are imbedded in each file.

Additionally, daytime data integrated over 2 m vertical bins from 200 to 1000 m depth are provided as Nautical 
Area Scattering Coefficient (NASC). Each “voxel” is the average of all cleaned and validated data recorded over 
that depth range, in a time period starting 8 hours before the start of the station (defined as start of the CTD cast) 
and ending 8 hours after the start of the station, with only data recorded in the period between 1 hour after local 
sunrise and 1 hour prior to local sunset accepted (i.e., during local daytime hours, but removing crepuscular peri-
ods when vertical migration of biota is strong). The relatively long interval over which data were accepted around 
each station was chosen since the station sampling resulted in noisy acoustic data,, a long interval was therefore 
chosen to ensure valid data on all stations.

Finally, summaries of per station daytime and nighttime acoustic data (omitting data recorded within 1 hour 
of sunrise and sunset) are provided. The data fields in this file are station date, latitude and longitude, and per 
day and night average NASC 200–1000 m, average NASC 0–1000, weighted mean depth (WMD) of NASC 200–
1000 m, migration amplitude, NASC day-to-night ratio and migration ratio.

Data Records
The raw data are available at PANGAEA (https://doi.org/10.1594/PANGAEA.92176017). The daytime data inte-
grated over 2 m vertical bins are available at (https://doi.org/10.1594/PANGAEA.92308718) and the summary file 
is available at (https://doi.org/10.1594/PANGAEA.92661919).

Technical Validation
The echosounder was calibrated before departure (30th of November 2010, close to Mazarron port, water temper-
ature ca. 17 °C) and values of the peak transducer gain (G0) and Simrad correction factor (Sa) for both frequencies 
were updated in the ER60 software following the standard target method20. Briefly, a 38.1 mm diameter tungsten 
carbide sphere was positioned under the vessel at a range of 12 m using nylon cable, and moved systematically 
through the acoustic beams of both transducers (38 and 120 kHz). The ER60 software compares measured values 

Fig. 1 Cruise track and integrated backscatter at different stations (NASC, daytime 200 to 1000 m).

Start date and location End date and location

Leg1 14th December 2010, Cádiz 13th January 2011, Rio de Janeiro

Leg2 17th January 2011, Rio de Janeiro 6th February 2011, Cape Town

Leg3 11th February 2011, Cape Town 13th March 2011, Perth

Leg4 17th March 2011, Perth 30th March 2011, Sydney

Leg5 16th April 2011, Auckland 8th May 2011, Honolulu

Leg6 13th May 2011, Honolulu 10th June 2011, Cartagena de Indias

Leg7 19th June 2011, Cartagena de Indias 14th July 2011, Cartagena

Table 1. Dates and starting points of the 7 legs of the Malaspina cruise.

Frequency (kHz) Pulse length (ms) Power (W) G0 (dB re 1) Sa (dB re 1 m−1) EBA (dB re 1 Steradian)

38 1.024 1600 24.05 −0.62 −20.6

120 1.024 250 25.45 −0.37 −21

Table 2. Calibration settings and results. Values of peak transducer gain (G0) and the Simrad correction factor 
(Sa) were applied prior to the expedition.
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Fig. 2 Example of echogram affected by noise (vertical spikes) for average vessel speed over 11 kn in Leg 2 
(18/01/2011 22:06–22:46 h).

Fig. 3 Example of echogram affected by interference from other acoustic equipment near the coast, in shallow 
waters, during Leg 4 (11/04/2011 21:26–22:04 h).
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of the sphere’s target strength at each position in the beam with model predicted values, and estimates the trans-
ducers’ calibration parameters (G0, Sa and beam widths) for the given operational settings (see Table 2). Data are 
stored in raw proprietary Simrad format (.raw,.idx,.bot files).

Usage Notes
The main objective of this paper is to allow researchers full access to the data so they can analyze them with 
objectives that might be completely different from the ones they were collected for. Therefore, the raw data are 
provided so that each researcher may analyze them using the appropriate methodologies that will differ from 
those used in previous studies. However, we recommend paying attention to some of the specificities of the cruise 
that are important when filtering the data. In particular and depending on the objectives data should be filtered 
for noise following available techniques21–23. During the Malaspina expedition, on-station sampling took place 
from early morning to the beginning of the afternoon, whereas underway navigation occurred from the afternoon 
and through the night. Therefore, most of the daytime echo sounder data correspond to a stationary situation, 
and the level of noise is different from day to night (see materials and methods in Irigoien et al., 2014). The data 
were subjected to different types of noise along the survey. The most common noise was caused by the propeller 
and/or wave-hull collisions occurring at vessel speeds over 11 knots and were seen as long spikes on the echo-
gram (example in Figs. 2 and 3, see also supplementary figure 7 in Irigoien et al.8 for filtering results). It is rec-
ommended to treat these data, especially for depths deeper than 100–200 m, using appropriate filters24. On some 
occasions, data collected near the coast, in shallow waters, presented interference from other acoustic equipment 
onboard. This was seen as typical short “flecks” present in pings separated by constant intervals, gradually increas-
ing its range of appearance on the echogram. This type of noise can also be removed by means of impulsive noise 
filters24. Some parts of the data were also affected by bad weather conditions, this typically seen on the echogram 
as backscattering losses in some consecutive pings. This can also be treated with well-established filters as the 
attenuated signal removal. Another issue to be highlighted is that, due to technical problems in some small parts 
of the tracks, the 38 kHz frequency was in passive mode. Our previous work being focused in the mesopelagic, 
the 120 kHz data were not used. A preliminary analysis of the 120 kHz data showed to have a high noise to signal 
ratio. We have included them here as it is not possible to evaluate if useful for specific objectives or using different 
filtering approaches, however caution is recommended if using the 120 kHz data. Finally, 120 kHz data were not 
recorded during the first leg due to malfunctions of the transponder.
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