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Preface to the Revised Edition

Lie Algebras in Particle Physics has been a very successful book. I have
long resisted the temptation to produce a revised edition. I do so finally,
because I find that there is so much new material that should be included,
and so many things that I would like to say slightly differently. On the other
hand, one of the good things about the first edition was that it did not do too
much. The material could be dealt with in a one semester course by students
with good preparation in quantum mechanics. In an attempt to preserve this
advantage while including new material, I have flagged some sections that
can be left out in a first reading. The titles of these sections begin with an
asterisk, as do the problems that refer to them.

I may be prejudiced, but I think that this material is wonderful fun to
teach, and to learn. I use this as a text for what is formally a graduate class,
but it is taken successfully by many advanced undergrads at Harvard. The
important prerequisite is a good background in quantum mechanics and linear
algebra.

It has been over five years since I first began to revise this material and
typeset it in IZTEX. Between then and now, many many students have used the
evolving manuscript as a text. I am grateful to many of them for suggestions
of many kinds, from typos to grammar to pedagogy.

As always, I am enormously grateful to my family for putting up with
me for all this time. I am also grateful for their help with my inspirational
epilogue.

Howard Georgi

Cambridge, MA
May, 1999
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Why Group Theory?

Group theory is the study of symmetry. It is an incredible labor saving device.
It allows us to say interesting, sometimes very detailed things about physical
systems even when we don’t understand exactly what the systems are! When
I was a teenager, I read an essay by Sir Arthur Stanley Eddington on the
Theory of Groups and a quotation from it has stuck with me for over 30
years:!

We need a super-mathematics in which the operations are as un-
known as the quantities they operate on, and a super-mathematician
who does not know what he is doing when he performs these op-
erations. Such a super-mathematics is the Theory of Groups.

In this book, I will try to convince you that Eddington had things a little
bit wrong, as least as far as physics is concerned. A lot of what physicists
use to extract information from symmetry is not the groups themselves, but
group representations. You will see exactly what this means in more detail as
you read on. What I hope you will take away from this book is enough about
the theory of groups and Lie algebras and their representations to use group
representations as labor-saving tools, particularly in the study of quantum
mechanics.

The basic approach will be to alternate between mathematics and physics,
and to approach each problem from several different angles. I hope that you
will learn that by using several techniques at once, you can work problems
more efficiently, and also understand each of the techniques more deeply.

'in The World of Mathematics, Ed. by James R. Newman, Simon & Schuster, New York,
1956.



Chapter 1

Finite Groups

We will begin with an introduction to finite group theory. This is not intended
to be a self-contained treatment of this enormous and beautiful subject. We
will concentrate on a few simple facts that are useful in understanding the
compact Lie algebras. We will introduce a lot of definitions, sometimes prov-

ing things, but often relying on the reader to prove them.

1.1 Groups and representations

A Group, G, is a set with a rule for assigning to every (ordered) pair of
elements, a third element, satisfying:

(1.ADIf f,ge Gthenh = fg € G.

(1.A.2) For f,g,h € G, f(gh) = (fg)h.

(1.A.3) There is an identity element, e, such that for all f € G, ef =

fe=1f.

(1.A.4) Every element f € G has an inverse, f !, such that ff~! =

fTlif=e

Thus a group is a multiplication table specifying g1g2 Vg1,92 € G. If
the group elements are discrete, we can write the multiplication table in the

form
\ el g | g2 |-
el€e| g g2 |-
9119119191 | 9192

9291

9292

g2

g2

(1.1)



1.2. EXAMPLE - Z3 3

A Representation of G is a mapping, D of the elements of G onto a set of
linear operators with the following properties:

1.B.1 D(e) = 1, where 1 is the identity operator in the space on which
the linear operators act.

1.B.2 D(g1)D(g2) = D(9192), in other words the group multiplica-
tion law is mapped onto the natural multiplication in the linear
space on which the linear operators act.

1.2 Example - Z3

A group is finite if it has a finite number of elements. Otherwise it is infinite.
The number of elements in a finite group G is called the order of G. Here is
a finite group of order 3.

(1.2)

(=l ST I | e )
[CRESAESR(ES)
(3

SR ||—

This is Z3, the cyclic group of order 3. Notice that every row and column
of the multiplication table contains each element of the group exactly once.
This must be the case because the inverse exists.

An Abelian group in one in which the multiplication law is commutative

9192 = 9291 - (1.3)

Evidently, Z3 is Abelian.
The following is a representation of Z3

D(e) =1, D(a)=e€>/3, D(b) =e'm/3 (1.4)

The dimension of a representation is the dimension of the space on which
it acts — the representation (1.4) is 1 dimensional.
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1.3 The regular representation

Here’s another representation of Z3

1 00 0 01
D(e) = (0 1 O) , Df(a) = (l 0 0)
0 01 010 (1.5)

010
D(b):(o 0 1)
100

This representation was constructed directly from the multiplication ta-
ble by the following trick. Take the group elements themselves to form an
orthonormal basis for a vector space, |e), |a), and |b). Now define

D(g1)|g2) = |9192) (1.6)

The reader should show that this is a representation. It is called the regular
representation. Evidently, the dimension of the regular representation is the
order of the group. The matrices of (1.5) are then constructed as follows.

le1) = le), le2) =la), [es) = |b) (1.7

[D(9)i; = (eil D(g)le;) (1.8)
The matrices are the matrix elements of the linear operators. (1.8) is a
simple, but very general and very important way of going back and forth from
operators to matrices. This works for any representation, not just the regular
representation. We will use it constantly. The basic idea here is just the
insertion of a complete set of intermediate states. The matrix corresponding
to a product of operators is the matrix product of the matrices corresponding
to the operators —

[D(g192)]i5 = [D(91)D(92)li;
= (e;|D(g1)D(g2)le;)
= (eilD(g1)lex) (ex| D(g2)le;) (1.9)

P
=Y [D(91)ik[D(g2)]k;
P

Note that the construction of the regular representation is completely gen-
eral for any finite group. For any finite group, we can define a vector space in
which the basis vectors are labeled by the group elements. Then (1.6) defines
the regular representation. We will see the regular representation of various
groups in this chapter.
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1.4 Irreducible representations

What makes the idea of group representations so powerful is the fact that they
live in linear spaces. And the wonderful thing about linear spaces is we are
free to choose to represent the states in a more convenient way by making
a linear transformation. As long as the transformation is invertible, the new
states are just as good as the old. Such a transformation on the states produces
a similarity transformation on the linear operators, so that we can always
make a new representation of the form

D(g) = D'(9) = S™'D(9)S (1.10)

Because of the form of the similarity transformation, the new set of operators
has the same multiplication rules as the old one, so D' is a representation if
D is. D' and D are said to be equivalent representations because they differ
just by a trivial choice of basis.

Unitary operators (O such that Ot = O~!) are particularly important. A
representation is unitary if all the D(g)s are unitary. Both the representations
we have discussed so far are unitary. It will turn out that all representations of
finite groups are equivalent to unitary representations (we’ll prove this later -
it is easy and neat).

A representation is reducible if it has an invariant subspace, which
means that the action of any D(g) on any vector in the subspace is still in
the subspace. In terms of a projection operator P onto the subspace this con-
dition can be written as

PD(g)P =D(g)PVge G (1.11)

For example, the regular representation of Z3 (1.5) has an invariant sub-

space projected on by
1 111
P= 3 111 (1.12)

1 11

because D(g)P = P Vg. The restriction of the representation to the invariant
subspace is itself a representation. In this case, it is the trivial representa-
tion for which D(g) = 1 (the trivial representation, D(g) = 1, is always a
representation — every group has one).

A representation is irreducible if it is not reducible.

A representation is completely reducible if it is equivalent to a represen-
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tation whose matrix elements have the following form:

D1 (g) o -
0 D9 - (1.13)

where D;(g) is irreducible Vj. This is called block diagonal form.
A representation in block diagonal form is said to be the direct sum of
the subrepresentations, D;(g),

Di®Dy®--- (1.19)

In transforming a representation to block diagonal form, we are decom-
posing the original representation into a direct sum of its irreducible com-
ponents. Thus another way of defining complete reducibility is to say that
a completely reducible representation can be decomposed into a direct
sum of irreducible representations. This is an important idea. We will use
it often.

We will show later that any representation of a finite group is completely
reducible. For example, for (1.5), take

/1 11
S:§ 1 w? w (1.15)
1 w w?
where .
w = e2mi/3 (1.16)
then

1.5 Transformation groups

There is a natural multiplication law for transformations of a physical system.
If g; and g, are two transformations, g; g, means first do g, and then do ¢;.
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Note that it is purely convention whether we define our composition law to
be right to left, as we have done, or left to right. Either gives a perfectly
consistent definition of a transformation group.

If this transformation is a symmetry of a quantum mechanical system,
then the transformation takes the Hilbert space into an equivalent one. Then
for each group element g, there is a unitary operator D(g) that maps the
Hilbert space into an equivalent one. These unitary operators form a repre-
sentation of the transformation group because the transformed quantum states
represent the transformed physical system. Thus for any set of symmetries,
there is a representation of the symmetry group on the Hilbert space — we
say that the Hilbert space transforms according to some representation of the
group. Furthermore, because the transformed states have the same energy as
the originals, D(g) commutes with the Hamiltonian, [D(g), H] = 0. As we
will see in more detail later, this means that we can always choose the energy
eigenstates to transform like irreducible representations of the group. It is
useful to think about this in a simple example.

1.6 Application: parity in quantum mechanics

Parity is the operation of reflection in a mirror. Reflecting twice gets you
back to where you started. If p is a group element representing the parity
reflection, this means that p? = e. Thus this is a transformation that together
with the identity transformation (that is, doing nothing) forms a very simple
group, with the following multiplication law:

\lelp]|
elle|p (1.18)
p|p|e

This group is called Z;. For this group there are only two irreducible rep-
resentations, the trivial one in which D(p) = 1 and one in which D(e) = 1
and D(p) = —1. Any representation is completely reducible. In particular,
that means that the Hilbert space of any parity invariant system can be de-
composed into states that behave like irreducible representations, that is on
which D(p) is either 1 or —1. Furthermore, because D(p) commutes with
the Hamiltonian, D(p) and H can be simultaneously diagonalized. That is
we can assign each energy eigenstate a definite value of D(p). The energy
eigenstates on which D(p) = 1 are said to transform according to the trivial
representation. Those on which D(p) = —1 transform according to the other
representation. This should be familiar from nonrelativistic quantum me-
chanics in one dimension. There you know that a particle in a potential that is
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symmetric about x = 0 has energy eigenfunctions that are either symmetric
under £ — —z (corresponding to the trivial representation), or antisymmetric
(the representation with D(p) = —1).

1.7 Example: S3

The permutation group (or symmetric group) on 3 objects, called S3 where

ay = (17 2, 3) a2 = (3, 2, 1)
a3 = (1,2) as = (2,3) as = (3,1)

(1.19)

The notation means that a; is a cyclic permutation of the things in positions 1,
2 and 3; ay is the inverse, anticyclic permutation; a3 interchanges the objects
in positions 1 and 2; and so on. The multiplication law is then determined by
the transformation rule that g; go means first do g, and then do g;. It is

\ || e |ai1|az2]|as]|as]as|
e e (ayj|azx | a3 | a4 | as
ayj|lay (a2 | € |as | as | aq
az ||az | e |a1|aq|as|as (1.20)
az jlasz |a4 a5 | € | Q1 | G2
a4 [faq (a5 | Q3 Q2 | € | a1
as |[as | a3 | a4 | Q1 | G2 | €

We could equally well define it to mean first do g; and then do g3. These
two rules define different multiplication tables, but they are related to one
another by simple relabeling of the elements, so they give the same group.
There is another possibility of confusion here between whether we are per-
muting the objects in positions 1, 2 and 3, or simply treating 1, 2 and 3 as
names for the three objects. Again these two give different multiplication ta-
bles, but only up to trivial renamings. The first is a little more physical, so we
will use that. The permutation group is an another example of a transforma-
tion group on a physical system.

S3 is non-Abelian because the group multiplication law is not commuta-
tive. We will see that it is the lack of commutativity that makes group theory
so interesting.
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Here is a unitary irreducible representation of S3

2
D — _% @ -1 0
(a'2) = _ﬁ 1 ) D(a3) = ( 0 1) ) (121)
1 2v3\° 1 _\3
per=(5 %) oe-( s V)
7 T2 -3 T3

The interesting thing is that the irreducible unitary representation is more
than 1 dimensional. It is necessary that at least some of the representations
of a non-Abelian group must be matrices rather than numbers. Only matri-
ces can reproduce the non-Abelian multiplication law. Not all the operators
in the representation can be diagonalized simultaneously. It is this that is
responsible for a lot of the power of the theory of group representations.

1.8 Example: addition of integers
The integers form an infinite group under addition.
Ty=z+Yy (1.22)

This is rather unimaginatively called the additive group of the integers. Since
this group is infinite, we can’t write down the multiplication table, but the
rule above specifies it completely.

Here is a representation:

D(z) = ((1) f) (1.23)

This representation is reducible, but you can show that it is not completely
reducible and it is not equivalent to a unitary representation. It is reducible
because

D(z)P=P (1.24)
where L 0
p= (0 0) (1.25)
However,
D(z)(I - P) # (I - P) (1.26)

so it is not completely reducible.
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The additive group of the integers is infinite, because, obviously, there are
an infinite number of integers. For a finite group, all reducible representations
are completely reducible, because all representations are equivalent to unitary
representations.

1.9 Useful theorems

Theorem 1.1 Every representation of a finite group is equivalent to a unitary
representation.

Proof: Suppose D(g) is a representation of a finite group G. Construct the
operator

S=_D(9)'D(y) (1.27)
9€G

S is hermitian and positive semidefinite. Thus it can be diagonalized and its
eigenvalues are non-negative:

S=U"tdU (1.28)
where d is diagonal
d 0 ---
d=|0 do .- (1.29)

where d; > 0 Vj. Because of the group property, all of the d;s are actually
positive. Proof — suppose one of the d;s is zero. Then there is a vector A
such that SA = 0. But then

ASA=0=>"|ID(g)AlI*. (1.30)
g9eqG

Thus D(g)\ must vanish for all g, which is impossible, since D(e) = 1.
Therefore, we can construct a square-root of S that is hermitian and invertible

vdi 0
Xx=82=py-'| 0 Vd - | U (1.31)

X is invertible, because none of the d;s are zero. We can now define

D'(9) =X D(g) X! (1.32)
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Now, somewhat amazingly, this representation is unitary!
D'(9)!D'(9) = X' D(9)'SD(9)X (1.33)
but

D(9)'SD(g) = D(9)" ( > D(h)fD<h)) D(g)
heG
= Y D(hg)'D(hg) (1.34)
heG
=Y D)D) =5 =X>
heG

where the last line follows because hg runs over all elements of G when h
does. QED.

We saw in the representation (1.23) of the additive group of the integers
an example of a reducible but not completely reducible representation. The
way it works is that there is a P that projects onto an invariant subspace, but
(1 — P) does not. This is impossible for a unitary representation, and thus
representations of finite groups are always completely reducible. Let’s prove
1t.

Theorem 1.2 Every representation of a finite group is completely reducible.

Proof: By the previous theorem, it is sufficient to consider unitary repre-
sentations. If the representation is irreducible, we are finished because it is
already in block diagonal form. If it is reducible, then 3 a projector P such
that PD(g)P = D(g)P Vg € G. This is the condition that P be an invariant
subspace. Taking the adjoint gives PD(g)'P = PD(g)! Vg € G. But be-
cause D(g) is unitary, D(g)T = D(g)~! = D(g~!) and thus since g~! runs
over all G when g does, PD(g)P = PD(g) Vg € G. But this implies that
(1-P)D(g)(1 — P)=D(9)(1 — P) Vg € G and thus 1 — P projects onto
an invariant subspace. Thus we can keep going by induction and eventually
completely reduce the representation.

1.10 Subgroups

A group H whose elements are all elements of a group G is called a subgroup
of G. The identity, and the group G are trivial subgroups of G. But many
groups have nontrivial subgroups (which just means some subgroup other
than G or e) as well. For example, the permutation group, S3, has a Z3
subgroup formed by the elements {e, a1, a2}



12 CHAPTER 1. FINITE GROUPS

We can use a subgroup to divide up the elements of the group into subsets
called cosets. A right-coset of the subgroup H in the group G is a set of
elements formed by the action of the elements of H on the left on a given
element of G, that is all elements of the form H g for some fixed g. You can
define left-cosets as well.

For example, {a3, a4, a5} is a coset of Z3 in S3 in (1.20) above. The
number of elements in each coset is the order of H. Every element of G
must belong to one and only one coset. Thus for finite groups, the order of
a subgroup H must be a factor of order of G. It is also sometimes useful to
think about the coset-space, G/ H defined by regarding each coset as a single
element of the space.

A subgroup H of G is called an invariant or normal subgroup if for
every g € G

gH = Hg (1.35)

which is (we hope) an obvious short-hand for the following: for every g € G
and h; € H there exists an hy € H such that h1g = ghg, or ghog™! = h;.
The trivial subgroups e and G are invariant for any group. It is less ob-
vious but also true of the subgroup Z3 of S3 in (1.20) (you can see this
by direct computation or notice that the elements of Z3 are those permuta-
tions that involve an even number of interchanges). However, the set {e, a4}
is a subgroup of G which is not invariant. as{e,as} = {as,a;} while
{e,as}as = {as, a2}

If H is invariant, then we can regard the coset space as a group. The
multiplication law in G gives the natural multiplication law on the cosets,
Hg:

(Hg1)(Hgo) = (Hg1Hgi *)(9192) (1.36)

But if H is invariant Hgy Hg;' = H, so the product of elements in two
cosets is in the coset represented by the product of the elements. In this case,
the coset space, G/H, is called the factor group of G by H.

What is the factor group S3/Z3? The answer is Z».

The center of a group G is the set of all elements of G that commute
with all elements of G. The center is always an Abelian, invariant subgroup
of G. However, it may be trivial, consisting only of the identity, or of the
whole group.

There is one other concept, related to the idea of an invariant subgroup,
that will be useful. Notice that the condition for a subgroup to be invariant
can be rewritten as

gHg '=HVgeG (1.37)
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This suggests that we consider sets rather than subgroups satisfying same
condition.
g 1Sg=8SVgeqG (1.38)

Such sets are called conjugacy classes. We will see later that there is a one-
to-one correspondence between them and irreducible representations. A sub-
group that is a union of conjugacy classes is invariant.
Example —
The conjugacy classes of S3 are {e}, {a1,a2} and {a3,a4,as}.
The mapping
G — gGg! (1.39)

for a fixed g is also interesting. It is called an inner automorphism. An
isomorphism is a one-to-one mapping of one group onto another that pre-
serves the multiplication law. An automorphism is a one-to-one mapping
of a group onto itself that preserves the multiplication law. It is easy to see
that (1.39) is an automorphism. Because g ~1919 9929 = 91929, it pre-
serves the multiplication law. Since g~ 1g1g = g~ 'gog = g1 = g, it is one
to one. An automorphism of the form (1.39) where g is a group element is
called an inner automorphism). An outer automorphism is one that cannot
be written as g~ Gg for any group element g.

1.11 Schur’s lemma

Theorem 1.3 If D1(g)A = ADy(g) Vg € G where Dy and D, are inequiv-
alent, irreducible representations, then A = 0.

Proof: This is part of Schur’s lemma. First suppose that there is a vector |u)
such that A|u) = 0. Then there is a non-zero projector, P, onto the subspace
that annihilates A on the right. But this subspace is invariant with respect to
the representation D5, because

AD, (g)P =D (g)AP =0Vg e G (1.40)

But because D, is irreducible, P must project onto the whole space, and
A must vanish. If A annihilates one state, it must annihilate them all. A
similar argument shows that A vanishes if there is a (v| which annihilates
A. If no vector annihilates A on either side, then it must be an invertible
square matrix. It must be square, because, for example, if the number of
rows were larger than the number of columns, then the rows could not be a
complete set of states, and there would be a vector that annihilates A on the
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right. A square matrix is invertible unless its determinant vanishes. But if the
determinant vanishes, then the set of homogeneous linear equations

Alp) =0 (1.41)

has a nontrivial solution, which again means that there is a vector that anni-
hilates A. But if A is square and invertible, then

A7'Di(g)A = Dy(g) Vg € G (1.42)

so D; and D, are equivalent, contrary to assumption. QED.

The more important half of Schur’s lemma applies to the situation where
D, and D, above are equivalent representations. In this case, we might as
well take D; = Dy = D, because we can do so by a simple change of basis.
The other half of Schur’s lemma is the following.

Theorem 1.4 If D(g)A = AD(g) Vg € G where D is a finite dimensional
irreducible representation, then A o I.

In words, if a matrix commutes with all the elements of a finite dimensional
irreducible representation, it is proportional to the identity.
Proof: Note that here the restriction to a finite dimensional representation
is important. We use the fact that any finite dimensional matrix has at least
one eigenvalue, because the characteristic equation det(A — AI) = 0 has at
least one root, and then we can solve the homogeneous linear equations for
the components of the eigenvector |u). But then D(g)(A — AI) = (A —
M) D(g) Vg € G and (A — AI)|p) = 0. Thus the same argument we used in
the proof of the previous theorem implies (A — AI) = 0. QED.

A consequence of Schur’s lemma is that the form of the basis states of an
irreducible representation are essentially unique. We can rewrite theorem 1.4
as the statement

A'D(g)A=D(g)VgeEG=>Ax I (1.43)

for any irreducible representation D. This means once the form of D is fixed,
there is no further freedom to make nontrivial similarity transformations on
the states. The only unitary transformation you can make is to multiply all
the states by the same phase factor.

In quantum mechanics, Schur’s lemma has very strong consequences for
the matrix elements of any operator, O, corresponding to an observable that
is invariant under the symmetry transformations. This is because the matrix
elements (a, j,z|O|b, k, y) behave like the A operator in (1.40). To see this,
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let’s consider the complete reduction of the Hilbert space in more detail. The
symmetry group gets mapped into a unitary representation

g—>D(g)Vge G (1.44)

where D is the (in general very reducible) unitary representation of G that
acts on the entire Hilbert space of the quantum mechanical system. But if the
representation is completely reducible, we know that we can choose a basis
in which D has block diagonal form with each block corresponding to some
unitary irreducible representation of G. We can write the orthonormal basis

states as
|a, 7, z) (1.45)

satisfying
(a,j,z | b,k,y) = 0ap Ojk Oy (1.46)

where a labels the irreducible representation, ;7 = 1 to n, labels the state
within the representation, and z represents whatever other physical parame-
ters there are.

Implicit in this treatment is an important assumption that we will almost
always make without talking about it. We assume that have chosen a basis in
which all occurences of each irreducible representation a, is described by the
same set of unitary representation matrices, D, (g). In other words, for each
irreducible representation, we choose a canonical form, and use it exclusively

In this special basis, the matrix elements of D(g) are

(a,j,(L’I D(g) |b7 k, y) = Oab ‘sxy [Da(g)]jk (1.47)

This is just a rewriting of (1.13) with explicit indices rather than as a matrix.
We can now check that our treatment makes sense by writing the representa-
tion D in this basis by inserting a complete set of intermediate states on both

sides:
I=Y"la,jz)(a,j,z| (1.48)

a,3,T

Then we can write

D(g) = ) la,j,z)(a,5,z| D(g) Y_ |b,k,y)(b,k,yl

a!j’z b’k7y
= a;z la'aja IL') 6ab 59:3/ [Da(g)]]k (b,kay| (149)
b,k,y

= " la,j,2) [Da(9)l; (a, k3l

a,j.k,z
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This is another way of writing a representation that is in block diagonal form.
Note that if a particular irreducible representation appears only once in D,
then we don’t actually need the x variable to label its states. But typically,
in the full quantum mechanical Hilbert space, each irreducible representation
will appear many times, and then the physical z variable distinguish states
that have the same symmetry properties, but different physics. The important
fact, however, is that the dependence on the physics in (1.47) is rather trivial
— only that the states are orthonormal — all the group theory is independent
of z and y.
Under the symmetry transformation, since the states transform like

lv) = D(g) ) {pl = (ul D(g)" (1.50)
operators transform like
O — D(g) O D(g)f (1.51)

in order that all matrix element remain unchanged. Thus an invariant observ-
able satisfies

O — D(9)0D(g)t =0 (1.52)
which implies that O commutes with D(g)
[0,D(g9)] =0Vg€@G. (1.53)

Then we can constrain the matrix element
(a,,z|O|b, k,y) (1.54)
by arguing as follows:
0 = (a, 4,2|[0, D(9)]|d, k, y)
= (a,5,2|0Ib, K, y)(b,K',y| D(9)|b, k, )

= (1.55)
-3 (a,j,2|D(g)la, 5, z)(a, 5, £|Ob, k, y)
]'I

Now we use (1.47), which exhibits the fact that the matrix elements of D(g)
have only trivial dependence on the physics, to write

0= (a’j,ml[O,D(g)]lb, k’y>
=Y (a,5,2|0|b, k', y)[Ds(9) Ik

k (1.56)
— 5" [Da(9)ljj(a, 4", z|Olb, k, y)
jl
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Thus the matrix element (1.54) satisfies the hypotheses of Schur’s lemma. It
must vanish if a # b. It must be proportional to the identity (in indices, that
is d;) for a = b. However, the symmetry doesn’t tell us anything about the
dependence on the physical parameters, z and y. Thus we can write

(a,j,z]Olb,k,y) = fa($7y) 5ab 5jk (157)

The importance of this is that the physics is all contained in the function
fo(z,y) — all the dependence on the group theory labels is completely fixed
by the symmetry. As we will see, this can be very powerful. This is a simple
example of the Wigner-Eckart theorem, which we will discuss in much more
generality later.

1.12 * Orthogonality relations

The same kind of summation over the group elements that we used in the
proof of theorem 1.1, can be used together with Schur’s lemma to show some
more remarkable properties of the irreducible representations. Consider the
following linear operator (written as a “dyadic”)

A% =3 Da(g7")la,5)(b,£|Ds(g) (1.58)
geG

where D, and D, are finite dimensional irreducible representations of G.
Now look at

a(91)A% = 3" Du(91)Da(97")la,5)(6, £l Db(g) (159
geG
=Y Da(9197")la,5)(b, £1Ds(g) (1.60)
geG
=Y Da((997")")la, 5)(b, £ Dy(g) (1.61)
geG

Now let g’ = ggi!

=" Da(g'™)la,5)(b, £ Ds(g'91) (1.62)
g'eG
= 3" Dalg'™")la,5){b,£1Ds(9') Do(g1) = A3 Ds(g1) (1.63)

9'eG
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Now Schur’s lemma (theorems 1.3 and 1.4) implies A;’g = 0 if D, and
Dy, are different, and further that if they are the same (remember that we have
chosen a canonical form for each representation so equivalent representations
are written in exactly the same way) A;lg o I. Thus we can write

AR =" Da(g7")la,5)(b, £1Ds(g) = Sap A I (1.64)
9eG

To compute A7,, compute the trace of A 7 (in the Hilbert space, not the in-
dices) in two different ways. We can wrlte

Tr A%} = bap Tr (A1) = dap Xy Tr I = 60 Mg (1.65)

where n, is the dimension of D,. But we can also use the cyclic property of
the trace and the fact that A;L,’; o Ggp to write

Tr A% = 0a _(a,€Da(9)Da(g™")la,j) = N bap 3¢ (1.66)
g9€G

where N is the order of the group. Thus Aj, = N dj¢/nq and we have shown

N
>_ Da(97")la, 5)(b, £1Ds(g) = — dap 85l (1.67)
9eG a

Taking the matrix elements of these relations yields orthogonality relations
for the matrix elements of irreducible representations.

>, %[Da(g'l)]kj[Db(g)]em = dab0je0km (1.68)
g€G

For unitary irreducible representations, we can write
Ng "
> N[Da(g)]jk[Db(g)]ém = 0460500km (1.69)
g9eG

so that with proper normalization, the matrix elements of the inequivalent
unitary irreducible representations

2 Du(o)l (1.70)

are orthonormal functions of the group elements, g. Because the matrix ele-
ments are orthonormal, they must be linearly independent. We can also show



1.12. * ORTHOGONALITY RELATIONS 19

that they are a complete set of functions of g, in the sense that an arbitrary
function of g can be expanded in them. An arbitrary function of g can be writ-
ten in terms of a bra vector in the space on which the regular representation
acts:

F(g) = (F|g) = (F|Dr(g)le) (1.71)
where
(Fl= ) F(g')dl (1.72)
g'eG

and Dp, is the regular representation. Thus an arbitrary F'(g) can be written
as a linear combination of the matrix elements of the regular representation.

F(g) =Y F(¢')g'|Dr(g)le) = > F(¢")[Dr(9)]ge (1.73)

g'eG g9'eG

But since Dp, is completely reducible, this can be rewritten as a linear com-
bination of the matrix elements of the irreducible representations. Note that
while this shows that the matrix elements of the inequivalent irreducible rep-
resentations are complete, it doesn’t tell us how to actually find what they are.
The orthogonality relations are the same. They are useful only once we ac-
tually know explicitly what the representation look like. Putting these results
together, we have proved

Theorem 1.5 The matrix elements of the unitary, irreducible representations
of G are a complete orthonormal set for the vector space of the regular rep-
resentation, or alternatively, for functions of g € G.

An immediate corollary is a result that is rather amazing:

N=> n? (1.74)

— the order of the group N is the sum of the squares of the dimensions of the
irreducible representations n; just because this is the number of components
of the matrix elements of the irreducible representations. You can check that
this works for all the examples we have seen.

Example: Fourier series — cyclic group Zy with elements a; for j =
0to N — 1 (withag =€)

Qjak = Q(j+k) mod N (1.75)
The irreducible representations of Zy are

Dy (aj) = e¥™mi/N (1.76)
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all 1-dimensional.! Thus (1.69) gives
1 =
-2 N2 N _
_N Z min'j/ wing/ =i 1.77)
which is the fundamental relation for Fourier series.

1.13 Characters

The characters x p(g) of a group representation D are the traces of the linear
operators of the representation or their matrix elements:

xp(g) = TrD(g) = Y _[D(g)ls (1.78)

i

The advantage of the characters is that because of the cyclic property of the
trace Tr(AB) = Tr(BA), they are unchanged by similarity transformations,
thus all equivalent representations have the same characters. The characters
are also different for each inequivalent irreducible representation, D, — in
fact, they are orthonormal up to an overall factor of N — to see this just sum
(1.69) overj =kand £ =m

1 1
> ’N[Da(g)];‘k[pb(g)]ém =3 —0ab0j¢0km = dab
=k o
{=m
or
—ZXD,, *XDy(9) = 0ab (1.79)

gGG

Since the characters of different irreducible representations are orthogonal,
they are different.
The characters are constant on conjugacy classes because

TrD(g 'g19) = Tr(D(97") D(g1) D(g)) = Tr D(g1) (1.80)

It is less obvious, but also true that the characters are a complete basis for
functions that are constant on the conjugacy classes and we can see this by
explicit calculation. Suppose that F'(g;) is such a function. We already know

'We will prove below that Abelian finite groups have only 1-dimensional irreducible rep-
resentations.
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that F'(g1) can be expanded in terms of the matrix elements of the irreducible
representations —

F(g1) = > c¢4[Da(91)]jx (1.81)
a,j,k

but since F' is constant on conjugacy classes, we can write it as

1 1
Flg) =+ Y F(g7'q19) = N > % [Da(9™ 919)]jk (1.82)
gEG a,j)k
and thus
1
Flg) =« Y c[Dalg™")je[Da(91)]em[Da(9)]mk (1.83)
abm

But now we can do the sum over g explicitly using the orthogonality relation,
(1.68). .
F(g1) =) —C5k[Da (91)]em9;k0em (1.84)

a,j,k a

or
1 1
Flgi) =) —=c§ilDalglee = > —ixalgr) ~ (1.89)

aj ? a,j

This was straightforward to get from the orthogonality relation, but it has an
important consequence. The characters, x,(g), of the independent irreducible
representations form a complete, orthonormal basis set for the functions that
are constant on conjugacy classes. Thus the number of irreducible representa-
tions is equal to the number of conjugacy classes. We will use this frequently.

This also implies that there is an orthogonality condition for a sum over
representations. To see this, label the conjugacy classes by an integer c, and
let k., be the number of elements in the conjugacy class. Then define the
matrix V' with matrix elements

[ Ko
Vaa = N XDa (9a) (1.86)

where g, is the conjugacy class a. Then the orthogonality relation (1.79) can
be written as VIV = 1. But V is a square matrix, so it is unitary, and thus we
also have VV1 =1, or

N
> XDa(90)" XD, (98) = 1—0ap (1.87)
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Consequences: Let D be any representation (not necessarily irreducible). In
its completely reduced form, it will contain each of the irreducible represen-
tations some integer number of times, m,. We can compute m, simply by
using the orthogonality relation for the characters (1.79)

1
5 2 X0a(9)*xn(9) =mg (1.88)
9€G

The point is that D is a direct sum

mD times
> D,® @D, (1.89)
a
For example, consider the regular representation. It’s characters are
xr(e) =N xr(g) =0forg#e (1.90)
Thus
mE = xa(e) = na (1.91)

Each irreducible representation appears in the regular representation a num-
ber of times equal to its dimension. Note that this is consistent with (1.74).
Note also that m,, is uniquely determined, independent of the basis.
Example: Back to S3 once more. Let’s determine the characters without
thinking about the 2-dimensional representation explicitly, but knowing the
conjugacy classes, {e}, {a1,a2} and {a3,a4,as}. It is easiest to start with
the one representation we know every group has — the trivial representa-
tion, Dy for which Dy(g) = 1 for all g. This representation has characters
xo0(g) = 1. Note that this is properly normalized. It follows from the con-
dition 3" n2 = N that the other two representations have dimensions 1 and
2. It is almost equally easy to write down the characters for the other 1-
dimensional representation. In general, when there is an invariant subgroup
H of G, there are representations of G that are constant on H, forming a
representation of the factor group, G/H. In this case, the factor group is Za,
with nontrivial representation 1 for H = {e, a1, a2} and —1 for {a3, a4, as}.
We know that for the 2 dimensional representation, x3(e) = ng = 2, thus so
far the character table looks like

ay | 63
e|a} a‘é
offryj141 (1.92)
1171 ]-1
2102177
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But then we can fill in the last two entries using orthogonality. We could
actually have just used orthogonality without even knowing about the second
representation, but using the Z makes the algebra trivial.

a | 33

el ak | as
oprjtrj1 (1.93)

111 [ =1

oll21-1] o

We can use the characters not just to find out how many irreducible rep-
resentations appear in a particular reducible one, but actually to explicitly
decompose the reducible representation into its irreducible components. It is
easy to see that if D is an arbitrary representation, the sum

Ng
Py = xp.(9)*D(9) (1.94)
9€G

is a projection operator onto the subspace that transforms under the represen-
tation a. To see this, note that if we set j = k and sum in the orthogonality
relation (1.69), we find

Ng

N XD, (9)*[Db(g)]€m = ablem (1.95)
geG

Thus when D is written in block diagonal form, the sum in (1.95) gives 1
on the subspaces that transform like D, and O on all the rest — thus it is the
projection operator as promised. The point, however, is that (1.94) gives us
the projection operator in the original basis. We did not have to know how to
transform to block diagonal form. An example may help to clarify this.
Example — S5 again

Here’s a three dimensional representation of S3

1 00 0 01
D3(6) = 010 y D3(a1) = 1 0 0
0 01 010

0 10 010
Ds(ag) = (0 0 1) , Ds(a3) = (1 0 0) (1.96)
1 00 0 01
1 00 0 01
D3(a4) = (0 0 1) 5 D3((15) = (0 1 0)
010 1 00
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More precisely, as usual when we write down a set of matrices to represent
linear operators, these are matrices which have the same matrix elements —
that is

[D3(9)x = (71Ds|k) (1.97)
One could use a different symbol to represent the operators and the matrices,
but its always easy to figure out which is which from the context. The impor-
tant point is that the way this acts on the states, |j) is by matrix multiplication
on the right because we can insert a complete set of intermediate states

Zlk (k|Ds(g Zlk )[D3(9)lk;j (1.98)

This particular representation is an important one because it is the defin-
ing representation for the group — it actually implements the permutations
on the states. For example

D3 ai |1 Zlk [D3 a ]Icl |2
3(a1)[2) = Zlk )[Ds(a1)lk2 = I3) (1.99)
D3(a1)[3) = Zlk [D3(a1)]ks = [1)
k

thus this implements the cyclic transformation (1,2,3),0or1 —+ 2 — 3 — 1.
Now if we construct the projection operators, we find

5 1 11
Py = % <D3(e) +ZD3(aj)> = % (1 1 1) (1.100)
j=1

1 11

1 2 5
P = (Dz(e) + Y Ds(a;) —ZDg(a,-)> =0 (1.101)
A:]_ J=3
2 L[ 2 -1 -1
Py =75 | 2Dsle ZD3O‘J =z|-1 2 -1 (1.102)

-1 -1 2
This makes good sense. Po projects onto the invariant combination (|1) +
|2) + |3))/+/3, which transforms trivially, while P, projects onto the two
dimensional subspace spanned by the differences of pairs of components,
|1) — |2), etc, which transforms according to Ds3.
This constructions shows that the representation D3 decomposes into a
direct sum of the irreducible representations,

D3 = Dy & D, (1.103)
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1.14 Eigenstates

In quantum mechanics, we are often interested in the eigenstates of an invari-
ant hermitian operator, in particular the Hamiltonian, H. We can always take
these eigenstates to transform according to irreducible representations of the
symmetry group. To prove this, note that we can divide up the Hilbert space
into subspaces with different eigenvalues of H. Each subspace furnishes a
representation of the symmetry group because D(g), the group represen-
tation on the full Hilbert space, cannot change the H eigenvalue (because
[D(g), H] = 0). But then we can completely reduce the representation in
each subspace.

A related fact is that if some irreducible representation appears only once
in the Hilbert space, then the states in that representation must be eigenstates
of H (and any other invariant operator). This is true because H |a, j, z) must
be in the same irreducible representation, thus

Hla,j,z) =Y ¢cyla,5,9) (1.104)
Yy

and if = and y take only one value, then |a, 7, z) is an eigenstate.
This is sufficiently important to say again in the form of a theorem:

Theorem 1.6 If a hermitian operator, H, commutes with all the elements,
D(g), of a representation of the group G, then you can choose the eigen-
states of H to transform according to irreducible representations of G. If
an irreducible representation appears only once in the Hilbert space, every
state in the irreducible representation is an eigenstate of H with the same
eigenvalue.

Notice that for Abelian groups, this procedure of choosing the H eigen-
states to transform under irreducible representations is analogous to simulta-
neously diagonalizing H and D(g). For example, for the group Z, associated
with parity, it is the statement that we can always choose the H eigenstates to
be either symmetric or antisymmetric.

In the case of parity, the linear operator representing parity is hermitian,
so we know that it can be diagonalized. But in general, while we have shown
that operators representing finite group elements can be chosen to be unitary,
they will not be hermitian. Nevertheless, we can show that for an Abelian
group that commutes with the H, the group elements can simultaneously
diagonalized along with H. The reason is the following theorem:

Theorem 1.7 All of the irreducible representations of a finite Abelian group
are 1-dimensional.
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One proof of this follows from our discussion of conjugacy classes and from
(1.74). For an Abelian group, conjugation does nothing, because gg' g~ ! =
g’ forall g and ¢’. Therefore, each element is in a conjugacy class all by itself.
Because there is one irreducible representation for each conjugacy class, the
number of irreducible representations is equal to the order of the group. Then
the only way to satisfy (1.74) is to have all of the n;s equal to one. This proves
the theorem, and it means that decomposing a representation of an Abelian
group into its irreducible representations amounts to just diagonalizing all the
representation matrices for all the group elements.

For a non-Abelian group, we cannot simultaneously diagonalize all of
the D(g)s, but the procedure of completely reducing the representation on
each subspace of constant H is the next best thing.

A classical problem which is quite analogous to the problem of diago-
nalizing the Hamiltonian in quantum mechanics is the problem of finding the
normal modes of small oscillations of a mechanical system about a point of
stable equilibrium. Here, the square of the angular frequency is the eigen-

,value of the MK matrix and the normal modes are the eigenvectors of
M~1K. In the next three sections, we will work out an example.

1.15 Tensor products

We have seen that we can take reducible representations apart into direct
sums of smaller representations. We can also put representations together
into larger representations. Suppose that D, is an m dimensional representa-
tion acting on a space with basis vectors |j) for j = 1 to m and Dy is an n
dimensional representation acting on a space with basis vectors |z) forz = 1
to n. We can make an m x n dimensional space called the tensor product
space by taking basis vectors labeled by both 5 and z in an ordered pair —
|7,z). Then when j goes from 1 to m and z goes from 1 to n, the ordered
pair (4, z) runs over m x n different combinations. On this large space, we
can define a new representation called the tensor product representation
D; ® Dy by multiplying the two smaller representations. More precisely, the
matrix elements of Dp, gp,(g) are products of those of D;(g) and Ds(g):

(4,z| Dp,@D,(9) |k, y) = (] D1(g) [k) (x| D2(g) ly) (1.105)

It is easy to see that this defines a representation of G. In general, however,
it will not be an irreducible representation. One of our favorite pastimes in
what follows will be to decompose reducible tensor product representations
into irreducible representations.
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1.16 Example of tensor products

Consider the following physics problem. Three blocks are connected by
springs in a triangle as shown

(1.106)

Suppose that these are free to slide on a frictionless surface. What can we
say about the normal modes of this system. The point is that there is an S3
symmetry of the system, and we can learn a lot about the system by using the
symmetry and applying theorem 1.6. The system has 6 degrees of freedom,
described by the z and y coordinates of the three blocks:

(z1 w1 22 y2 T3 y3) (1.107)

This has the structure of a tensor product — the 6 dimensional space is a
product of a 3 dimensional space of the blocks, and the 2 dimensional space
of the = and y coordinates. We can think of these coordinates as having two
indices. It is three two dimensional vectors, 7;, each of the vector indices has
two components. So we can write the components as r;, where j labels the
mass and runs from 1 to 3 and p labels the = or y component and runs from
1 to 2, with the connection

xr T x =
(z1 w1 22 v2 z3 ¥3) (1.108)

(7‘11 Ti2 T21 T22 T31 7‘32)

The 3 dimensional space transforms under S3 by the representation Ds. The
2 dimensional space transforms by the representation D, below:

-1 B -1 0
Dyfa) = | 7% _2;> , Dy(ag) = ( 5 1) , (1.109)
Ly 1 _B
Ds(a4) = (fg 21) » Da(as) = ( s 3 )
2 T2 -7 2
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This is the same as (1.21). Then, using (1.105), the 6 dimensional represen-
tation of the coordinates is simply the product of these two representations:

[D6(9)]jukv = [D3(9)]jk[D2(9)luw (1.110)
Thus, for example,
o 0 o0 o0 -1 -
o o o o ¥ -1
-1 -8 0 0o 0 o0
Dgla)=| 2 2 (1.111)
0 o0 -1 ¥ o o
0o o ¥ -1 0o o

This has the structure of 3 copies of Dy (a;) in place of the 1’s in D3(aq).
The other generators are similar in structure.

Because the system has the S3 symmetry, the normal modes of the sys-
tem must transform under definite irreducible representations of the symme-
try. Thus if we construct the projectors onto these representations, we will
have gone some way towards finding the normal modes. In particular, if an
irreducible representation appears only once, it must be a normal mode by
theorem 1.6. If a representation appears more than once, then we need some
additional information to determine the modes.

We can easily determine how many times each irreducible representation
appears in Dg by finding the characters of Dg and using the orthogonality
relations. To find the characters of Dg, we use an important general result.
The character of the tensor product of two representations is the product of
the characters of the factors. This follows immediately from the definition of
the tensor product and the trace.

XDy xDy = XDy XD2 (1.112)

So in this case,

x6(9) = Y_[D6(9)]jujn
in (1.113)

= [D3(9)];3[D2(9)]un = x3(9)x2(9)
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so that the product is as shown in the table below:

ar | a3
e| ay | as

Ds 3101 (1.114)
Dy|[2]-1]0
Dgl|[6] 0|0

This is the same as the characters of the regular representation, thus this rep-
resentation is equivalent to the regular representation, and contains Do and
D1 once and D, twice.

Note that (1.113) is an example of a simple but important general relation,
which we might as well dignify by calling it a theorem —

Theorem 1.8 The characters of a tensor product representation are the prod-
ucts of the characters of the factors.

With these tools, we can use group theory to find the normal modes of
the system.

1.17 * Finding the normal modes

The projectors onto Dy and D; will be 1 dimensional.

Po is
1
Py=z > x0(9)* Ds(9)
9eG
1 A | V3 g V3
\;1_ 12 j_ 12 &
3 1 3 1 3
3B oL v Ll 0 - (1.115)
1L _y3 1 _¥3 o ¥
= 4 12 4 12 6
v3i 1L V3 1 g _\3
12 12 12 12 6
0 0 0 0 0 0
_¥3 _1 ¥ _1 g 1
6 6 6 6 3
1
2
V3
61
~| 72 1 ¥3 _1 V3 1
= £ |1G £ 5 £ o0 -F) (1.116)
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corresponding to the motion

(1.117)

the so-called “breathing mode” in which the triangle grows and shrinks while
retaining its shape.

P1 is

geG
1l ¥ 1 B3 1
1‘2/§ 112 1\2/5 121 3@?
-3 1 _¥5 L 30 (1.118)
1L _¥3 1 3 _1 g
= 12 12 12 12 6
¥v3  _1 V3 1 _Vv3
12 4 12 4 6
_1 3 1 _¥3 1
6 6 6 6 3
0 0 0 0 0 0
_Vv3
6
1
Vi
_| % V3 1
_ (“73 R 0) (1.119)
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corresponding to the motion

(1.120)

the mode in which the triangle rotates — this is a normal mode with zero
frequency because there is no restoring force.

Notice, again, that we found these two normal modes without putting in
any physics at all except the symmetry!

Finally, P; is

P, = -2— > x2(9)* Ds(9)

9€eG
2 0 1 _¥3 1 V3
3 )ﬁc 6 Gﬁ 6
2 3 1 1
0 3 5 § ~% % (1.121)
1 V3 2 0 1 _\3
- 6 6 3 [ 6
-3 1 0 2 V3 1
6 6 3 6 6
1 _v3 1 V3 2 0
6 6 6 6 3
V3 1 _v3 1 0 2
6 6 6 6 3

As expected, this is a rank 4 projection operator (Tr P, = 4). We need some
dynamical information. Fortunately, two modes are easy to get — translations
of the whole triangle.

Translations in the z direction, for example, are projected by

1
3 053030
00000 0
1 1 1
1 g Lo lo

— | 3 3 3

=10 0000 0 (1.122)
1
Lo+ o0 30
00000 O
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and those in the y direction by

0 00 0 O0O0
o+ 0% o0 1
0 0 00 00
=10 10101 (1.123)
0 000 0O
030303
So the nontrivial modes are projected by
P-T,-T,=
1 0 _1 v 1
3 6 6 6 6
U e B
1 31 0o -l _\ (1.124)
6 6 3 6 6
_v3  _1 0 1 v3 o _1
6 6 3 6 6
1 3 1 B 1 0
6 6 6 6 3
v3 1 _v3 1 0 1
6 6 6 6 3

To see what the corresponding modes look like, act with this on the vector
(OO0 OO 0O 1)toget

-8 1 g L) (1.125)

(1.126)

Then rotating by 27 /3 gives a linearly independent mode.
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1.18 * Symmetries of 2n+1-gons
This is a nice simple example of a transformation group for which we can
work out the characters (and actually the whole set of irreducible representa-

tions) easily. Consider a regular polygon with 2n + 1 vertices, like the 7-gon
shown below.

(1.127)
The groug of symmetries of the 2n+1-gon consists of the identity, the 2n

rotations by =4 sarr forj=1ton,

forj=1ton (1.128)

. +27y
rotations by 1

and the 2n+1 reflections about lines through the center and a vertex, as show
below:

reflections about lines through center and vertex (1.129)

(1.130)

Thus the order of the group of symmetries is N = 2 x (2n + 1).
There are n + 2 conjugacy classes:

1 — the identity, e;

2 — the 2n+1 reflections;

3 to n+2 — the rotations by 3:2_:_'1 for j = 1 to n — each value of j is a

separate conjugacy class.

The way this works is that the reflections are all in the same conjugacy
class because by conjugating with rotations, you can get from any one reflec-
tion to any other. The rotations are unchanged by conjugation by rotations,
but a conjugation by a reflection changes the sign of the rotation, so there is
a = pair in each conjugacy class.
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Furthermore, the n conjugacy classes of rotations are equivalent under
cyclic permutations and relabeling of the vertices, as shown below:

(1.131)
(1.132)
The characters look like
el r 1=1 j=2 j=n
111
(1.133)
1(-1 1 1 1
210 2(:0822;’_2"1 QCOS%TT QCOSZ;ZZT

In the last line, the different values of m give the characters of the n different
2-dimensional representations.

1.19 Permutation group on n objects

Any element of the permutation group on n objects, called Sy, can be written
in term of cycles, where a cycle is a cyclic permutation of a subset. We
will use a notation that makes use of this, where each cycle is written as a
set of numbers in parentheses, indicating the set of things that are cyclicly
permuted. For example:

(1) means z; — T

(1372) means z1 — 3 — T7 — T3 — T

Each element of S, involves each integer from 1 to n in exactly one
cycle.

Examples:

The identity element looks like e =(1)(2)- - -(n) — n 1-cycles — there is
only one of these.
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An interchange of two elements looks like (12)(3)- - -(m) — a 2-cycle and
n — 2 1-cycles — there are n(n — 1)/2 of these — (j172)(43) - - - (Jin)-
An arbitrary element has k; j-cycles, where

n
> jkj=n (1.134)
j=1

For example, the permutation (123)(456)(78)(9) has two 3-cycles, 1 2-cycle
and a 1-cycle, so k; = k3 = 1 and k3 = 2.

There is an simple (but reducible) n dimensional representation of Sy
called the defining representation where the “objects” being permuted are
just the basis vectors of an n dimensional vector space,

1), 12),---In) (1.135)

If the permutation takes x; to z, the corresponding representation operator
D takes |j) to |k), so that

Dj) = [k) (1.136)

and thus
(€| Dj) = ke (1.137)

Each matrix in the representation has a single 1 in each row and column.

1.20 Conjugacy classes

The conjugacy classes are just the cycle structure, that is they can be labeled
by the integers k;. For example, all interchanges are in the same conjugacy
class — it is enough to check that the inner automorphism gg;g~! doesn’t
change the cycle structure of g; when g is an interchange, because we can
build up any permutation from interchanges. Let us see how this works
in some examples. In particular, we will see that conjugating an arbitrary
permutation by the interchange (12)(3)- - - just interchanges 1 and 2 without
changing the cycle structure

Examples — (12)(3)(4)-(1)(23)(4)-(12)(3)(4) (note that an interchange
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is its own inverse)
1234

(12)(3)(4)
1M23)4)
(12)(3)(4) | (1.138)

1
2134
1
2314
1
3214
1234

L @0134)
3214

(12)(3)(4)-(1)(234)-(12)(3)(4)

1234
(12)(3)(4)

(1)(234)
(12)(3)(4) (1.139)

{
2134
!
2341
1
3241
1234
{
3241

(2134

If 1 and 2 are in different cycles, they just get interchanged by conjuga-
tion by (12), as promised.
The same thing happens when 1 and 2 are in the same cycle. For example

1234
12)(3)(4
2i§4 (12)(3)(4)
{ (123)4)
1324
L (12)(3)@) (1.140)
3124
1234 B
{ (213)(4)
3124

Again, in the same cycle this time, 1 and 2 just get interchanged.

Another way of seeing this is to notice that the conjugation is analo-
gous to a similarity transformation. In fact, in the defining, » dimensional
representation of (1.135) the conjugation by the interchange (12) is just a
change of basis that switches |1) «> |2). Then it is clear that conjugation
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does not change the cycle structure, but simply interchanges what the permu-
tation does to 1 and 2. Since we can put interchanges together to form an
arbitrary permutation, and since by repeated conjugations by interchanges,
we can get from any ordering of the integers in the given cycle structure to
any other, the conjugacy classes must consist of all possible permutations
with a particular cycle structure.

Now let us count the number of group elements in each conjugacy class.
Suppose a conjugacy class consists of permutations of the form of k; 1-
cycles, ko 2-cycles, etc, satisfying (1.134). The number of different permuta-
tions in the conjugacy class is

n!
I1, 7kik;!

because each permutation of number 1 to n gives a permutation in the class,
but cyclic order doesn’t matter within a cycle

(1.141)

(123) is the same as (231) (1.142)
and order doesn’t matter at all between cycles of the same length

(12)(34) is the same as (34)(12) (1.143)

1.21 Young tableaux

It is useful to represent each j-cycle by a column of boxes of length 7, top-
justified and arranged in order of decreasing j as you go to the right. The
total number of boxes is n. Here is an example:

(T (1144

is four 1-cycles in Sy — that is the identity element — always a conjugacy
class all by itself. Here’s another:

(1.145)

L

is a 4-cycle, a 3-cycle and a 1-cycle in Sg. These collections of boxes are
called Young tableaux. Each different tableaux represents a different conju-
gacy class, and therefore the tableaux are in one-to-one correspondence with
the irreducible representations.
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1.22 Example — our old friend 53

The conjugacy classes are

N @ (1.146)
with numbers of elements
3! 3! 3!
30 5 3 3 (1.147)

1.23 Another example — S

l [ | — (1.148)
with numbers of elements
4! 4! 4! 4! 4!
= = = = = = = = 1.149
4! 1 4 6 8 3 4 6 ( )

The characters of Sy look like this (with the conjugacy classes which
label the columns in the same order as in (1.148)):

conjugacy classes

1111 ]1}1
3| 1 |-1]0 |-1
5T 0 T2 =1 (1.150)
3|-1|-1]0 |1
1|-1(1(1}|-1

The first row represents the trivial representation.

1.24 * Young tableaux and representations of S,

We have seen that a Young tableau with n boxes is associated with an irre-
ducible representation of S,. We can actually use the tableau to explicitly
construct the irreducible representation by identifying an appropriate sub-
space of the regular representation of Sp,.
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To see what the irreducible representation is, we begin by putting the
integers from 1 to n in the boxes of the tableau in all possible ways. There
are n! ways to do this. We then identify each assignment of integers 1 to
n to the boxes with a state in the regular representation of S, by defining
a standard ordering, say from left to right and then top down (like reading
words on a page) to translate from integers in the boxes to a state associated
with a particular permutation. So for example

51312] (1.151)
71— (6532174)

NEE

where |6532174) is the state corresponding to the permutation
1234567 — 6532174 (1.152)

Now each of the n! assignment of boxes to the tableau describes one of the
n! states of the regular representation.

Next, for a particular tableau, symmetrize the corresponding state in the
numbers in each row, and antisymmetrize in the numbers in each column. For
example

- [12) + |21) (1.153)

and

(1.154)

2], |123) +|213) — |321) — [231)

]LA)H

Now the set of states constructed in this ways spans some subspace of
the regular representation. We can construct the states explicitly, and we
know how permutations act on these states. That the subspace constructed
in this way is a representation of Sy, because a permutation just corresponds
to starting with a different assignment of numbers to the tableau, so acting
with the permutation on any state in the subspace gives another state in the
subspace. In fact, this representation is irreducible, and is the irreducible
representation we say is associated with the Young tableau.

Consider the example of S3. The tableau

(TT] (1.155)

gives completely symmetrized states, and so is associated with a one dimen-
sional subspace that transforms under the trivial representation. The tableau

@ (1.156)
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gives completely antisymmetrized states, and so, again is associated with a
one dimensional subspace, this time transforming under the representation in
which interchanges are represented by —1. Finally

| (1.157)
gives the following states: -

é_ZJ — [123) + |213) — [321) — |231) (1.158)
izl — [321) + |231) — |123) — |213) (1.159)
i3l — |231) + [321) — |132) — [312) (1.160)
5 3) 5 132) + [312) — |231) — [321) (1.161)
ill — [312) + |132) — |213) — |123) (1.162)
-%_ 1N |213) + |123) — |312) — [|132) (1.163)

Note that interchanging two numbers in the same column of a tableau just
changes the sign of the state. This is generally true. Furthermore, you can
see explicitly that the sum of three states related by cyclic permutations van-
ishes. Thus the subspace is two dimensional and transforms under the two
dimensional irreducible representation of Ss.

It turns out that the dimension of the representation constructed in this
way is

n!

& (1.164)

where the quantity H is the “hooks” factor for the Young tableau, computed
as follows. A hook is a line passing vertically up through the bottom of
some column of boxes, making a right hand turn in some box and passing out
through the row of boxes. There is one hook for each box. Call the number
of boxes the hook passes through h. Then H is the product of the hs for
all hooks. We will come back to hooks when we discuss the application of
Young tableaux to the representations of SU(NN) in chapter X II1.

This procedure for constructing the irreducible representations of .Sy, is
entirely mechanical (if somewhat tedious) and can be used to construct all the
representations of S, from the Young tableaux with n boxes.
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We could say much more about finite groups and their representations,
but our primary subject is continuous groups, so we will leave finite groups
for now. We will see, however, that the representations of the permutation
groups play an important role in the representations of continuous groups. So
we will come back to S, now and again.

Problems

1.A. Find the multiplication table for a group with three elements and
prove that it is unique.

1.B. Find all essentially different possible multiplication tables for groups
with four elements (which cannot be related by renaming elements).

1.C. Show that the representation (1.135) of the permutation group is
reducible.
1.D. Suppose that D, and D5 are equivalent, irreducible representations

of a finite group G, such that
Dy(9) =SDi(9) S~ Vge@
What can you say about an operator A that satisfies

AD:(g) =Dy(g) A VYgeG?

1.E. Find the group of all the discrete rotations that leave a regular tetra-
hedron invariant by labeling the four vertices and considering the rotations
as permutations on the four vertices. This defines a four dimensional repre-
sentation of a group. Find the conjugacy classes and the characters of the
irreducible representations of this group.

*1.F. Analyze the normal modes of the system of four blocks sliding on
a frictionless plane, connected by springs as shown below:
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just as we did for the triangle, but using the 8-element symmetry group of
the square. Assume that the springs are rigidly attached to the masses (rather
than pivoted, for example), so that the square has some rigidity.



Chapter 2

Lie Groups

Suppose our group elements g € G depend smoothly on a set of continuous
parameters —

9(a) 2.1

What we mean by smooth is that there is some notion of closeness on the
group such that if two elements are “close together” in the space of the group
elements, the parameters that describe them are also close together.

2.1 Generators

Since the identity is an important element in the group, it is useful to param-
eterize the elements (at least those close to the identity element) in such a
way that @ = 0 corresponds to the identity element. Thus we assume that in
some neighborhood of the identity, the group elements can be described by a
function of N real parameters, o, for a = 1 to N, such that

9(0)]qmp = 22)

Then if we find a representation of the group, the linear operators of the rep-
resentation will be parameterized the same way, and

D(a)|yeg =1 (2.3)

Then in some neighborhood of the identity element, we can Taylor expand
D(a), and if we are close enough, just keep the first term:

D(da) =1+ idag X, + - 2.4

43
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where we have called the parameter do to remind you that it is infinitesimal.
In (2.4), a sum over repeated indices is understood (the “Einstein summation
convention”) and

_ .0
Xo = =i 5. -D(0) . @2.5)

The X, for a = 1 to N are called the generators of the group. If the
parameterization is parsimonious (that is — all the parameters are actually
needed to distinguish different group elements), the X, will be independent.
The 7 is included in the definition (2.5) so that if the representation is unitary,
the X, will be hermitian operators.

Sophus Lie showed how the generators can actually be defined in the
abstract group without mentioning representations at all. As a result of his
work, groups of this kind are called Lie groups. I am not going to talk about
them this way because I am more interested in representations than in groups,
but it is a beautiful theoretical construction that you may want to look up if
you haven’t seen it.

As we go away from the identity, there is enormous freedom to param-
eterize the group elements in different ways, but we may as well choose our
parameterization so that the group multiplication law and thus the multipli-
cation law for the representation operators in the Hilbert space looks nice.
In particular, we can go away from the identity in some fixed direction by
simply raising an infinitesimal group element

D(da) = 1 + idog X, (2.6)

to some large power. Because of the group property, this always gives an-
other group element. This suggests defining the representation of the group
elements for finite o as

D(a) = lim (1 +i0g X, /k)F = eloaXa 2.7
k—o00

In the limit, this must go to the representation of a group element because
1 + 14X, /k becomes the representation of a group element in (2.4) as &k
becomes large. This defines a particular parameterization of the representa-
tions (sometimes called the exponential parameterization), and thus of the
group multiplication law itself. In particular, this means that we can write the
group elements (at least in some neighborhood of e) in terms of the genera-
tors. That’s nice, because unlike the group elements, the generators form a
vector space. They can be added together and multiplied by real numbers. In
fact, we will often use the term generator to refer to any element in the real
linear space spanned by the X,s.
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2.2 Lie algebras

Now in any particular direction, the group multiplication law is uncompli-
cated. There is a one parameter family of group elements of the form

U(N) = eir¥aXe (2.8)
and the group multiplication law is simply
UA)UA2) =U(M + A2) (2.9

However, if we multiply group elements generated by two different linear
combinations of generators, things are not so easy. In general,

et Xa giBs Xo # gi(ca+Pa)Xa (2.10)

On the other hand, because the exponentials form a representation of the
group (at least if we are close to the identity), it must be true that the product
is some exponential of a generator,

eiaaxa eiﬂbxb — eitsaXa (211)
for some J. And because everything is smooth, we can find §, by expanding
both sides and equating appropriate powers of o and 3. When we do this,
something interesting happens. We find that it only works if the generators

form an algebra under commutation (or a commutator algebra). To see this,
let’s actually do it to leading nontrivial order. We can write

i6,X, = In (1 + ¢i®%Xa giBp Xy _ 1) (2.12)

I will now expand this, keeping terms up to second order in the parameters «
and 3, using the Taylor expansion of In(1 + K') where

K = i@ XagibpXp _

= (1+iasX, — %(ozaXa)2 +---)
(1 + 36X — 5 (B2 +-) ~ 1 e13)

= 10qXq + 1BuXe — e XaBpXp

1 , 1
—i(aaXa) - E(ﬂaXa)z +-
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This gives
6 X, =K — %K2+~--

=10, Xq + 10 Xa — @ XoBp Xp

1

1 (2.14)
_—(aaXa)2 - §(ﬂaxa)2

+§(aaXa + ﬁaXa)2 + -

Now here is the point. The higher order terms in (2.14) are trying to cancel.
If the X's were numbers, they would cancel, because the product of the ex-
ponentials is the exponential of the sum of the exponents. They fail to cancel
only because the X's are linear operators, and don’t commute with one an-
other. Thus the extra terms beyond i, X, + 6, X, in (2.14) are proportional
to the commutator. Sure enough, explicit calculation in (2.14) gives

iéaXa=K—%K2+---

=i Xy + 1BuXa (2.15)
1
3 [0 Xa, o]+

We obtained (2.15) using only the group property and smoothness, which
allowed us to use the Taylor expansion. From (2.15) we can calculate d,,
again in an expansion in « and 3. We conclude that

[0 Xa, BpXp) = —2i(0c — ac — Be) X + -+ - = 17e X (2.16)

where the i is put in to make vy real and the - - - represent terms that have more
than two factors of « or 3. Since (2.16) must be true for all & and 3, we must
have

Ye = @afBpfabe (2.17)
for some constants f,p., thus
[Xa, Xb] = i fabe X - (2.18)
where
fabe = = foac (2.19)
because [A, B] = —[B, A]. Note that we can now write
1

ba=0utfa— 5%+ (2.20)
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so that if v and the higher terms vanish, we would restore the equality in
(2.10).

(2.18) is what is meant by the statement that the generators form an alge-
bra under commutation. We have just shown that this follows from the group
properties for Lie groups, because the Lie group elements depend smoothly
on the parameters. The commutator in the algebra plays a role similar to the
multiplication law for the group.

Now you might worry that if we keep expanding (2.12) beyond second
order, we would need additional conditions to make sure that the group mul-
tiplication law is maintained. The remarkable thing is that we don’t. The
commutator relation (2.18) is enough. In fact, if you know the constants,
fabe» you can reconstruct ¢ as accurately as you like for any  and 3 in some
finite neighborhood of the origin! Thus the f,. are tremendously important
— they summarize virtually the entire group multiplication law. The f,;. are
called the structure constants of the group. They can be computed in any
nontrivial representation, that is unless the X, vanish.

The commutator relation (2.18) is called the Lie algebra of the group.
The Lie algebra is completely determined by the structure constants. Each
group representation gives a representation of the algebra in an obvious way,
and the structure constants are the same for all representations because they
are fixed just by the group multiplication law and smoothness. Equivalence,
reducibility and irreducibility can be transferred from the group to the algebra
with no change.

Note that if there is any unitary representation of the algebra, then the
fabes are real, because if we take the adjoint of the commutator relation for
hermitian X's, we get

[Xa, X3) = =i £ X,

. . 2.21
= [XbaXa] =1 fpgcXc = —1 fachc ¢ )

Since we are interested in groups which have unitary representations, we will
just assume that the f,. are real.

2.3 The Jacobi identity
The matrix generators also satisfy the following identity:

[Xa, [Xs, X]] + cyclic permutations = 0. (2.22)
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called the Jacobi identity, which you can check by just expanding out the
commutators. !

The Jacobi identity can be written in a different way that is sometimes
easier to use and is also instructive:

[Xaa [Xba Xc]] = [[Xm Xb] »Xc] + [Xba [Xa.a Xc]] . (2-23)
This is a generalization of the product rule for commutation:
[Xa, Xch] = [Xa, Xb]Xc + .Xb[Xa, .Xc] . (2-24)

The Jacobi identity is rather trivial for the Lie algebras with only finite dimen-
sional representations that we will study in this book. But it is worth noting
that in Lie’s more general treatment, it makes sense in situations in which the
product of generators is not even well defined.

2.4 The adjoint representation

The structure constants themselves generate a representation of the algebra
called the adjoint representation. If we use the algebra(2.18), we can com-
pute

[ Q) [Xb7 C]]
= 1 focd [Xa) Xd] (2.25)
= —fbcdfadeXe
so (because the X, are independent), 2.22) implies
fbcdfade + fabdfcde + fcadfbde =0. (2.26)
Defining a set of matrices Ty,
[Ta]bc = _ifabc (227)
then (2.26) can be rewritten as
[Ta, Ts] = i fabeTe (2.28)

Thus the structure constants themselves furnish a representation of the alge-
bra. This is called the adjoint representation. The dimension of a repre-
sentation is the dimension of the linear space on which it acts (just as for a

!The Jacobi identity is really more subtle than this. We could have proved it directly in
the abstract group, where the generators are not linear operators on a Hilbert space. Then
the algebra involves a “Lie product” which is not necessarily a commutator, but nevertheless
satisfies the Jacobi identity.
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finite group). The dimension of the adjoint representation is just the number
of independent generators, which is the number of real parameters required
to describe a group element. Note that since the f,.s are real, the generators
of the adjoint representation are pure imaginary.

We would like to have a convenient scalar product on the linear space
of the generators in the adjoint representation, (2.27), to turn it into a vector
space. A good one is the trace in the adjoint representation

Tr(T,T}) (2.29)

This is a real symmetric matrix. We will next show that we can put it into
a very simple canonical form. We can change its form by making a linear
transformation on the X,, which in turn, induces a linear transformation on
the structure constants. Suppose

Xo = X! = Loy Xo (2.30)
then
[X¢,1,a X{)] =1 LogLpe faec X ¢
=1 LadLbefdeng—hthcXc (2.31)
=1 LadLbefdeng—clxé
s0?
fabe = fabe = LadLbefdegL_q-c1 (2.32)
If we then define a new T s with the transformed f's,
[Ta.]bc - [Té,]bc = LadLbe[Td]egL;cl (2.33)
or
[Ta] = [Ty] = Laa L[T4]L ™" (2.34)

In other words, a linear transformation on the X s induces a linear transfor-
mation on the T,s which involves both a similarity transformation and the
same linear transformation on the a index that labels the generator. But in the
trace the similarity transformation doesn’t matter, so

TI‘(TaTb) — ’I‘I‘(TéTé) = LacLbd TI'(TCTd) (2.35)

2Because of the L™ in (2.32), it would be make sense to treat the third index in fabe
differently, and write it as an upper index — f£,. We will not bother to do this because we are
going to move very quickly to a restricted set of groups and basis sets in which Tr(T,T,) o<
dab. Then only orthogonal transformation on the X,s are allowed, L™ = L7, so that all
three indices are treated in the same way.
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Thus we can diagonalize the trace by choosing an appropriate L (here we
only need an orthogonal matrix). Suppose we have done this (and dropped
the primes), so that

Tr(ToTy) = k%qp no sum (2.36)

We still have the freedom to rescale the generators (by making a diagonal
L transformation), so for example, we could choose all the non-zero k%s to
have absolute value 1. But, we cannot change the sign of the ks (because L
appears squared in the transformation (2.35)).

For now, we will assume that the k%s are positive. This defines the
class of algebras that we study in this book. They are called the compact
Lie algebras. We will come back briefly below to algebras in which some
are zero.> And we will take

Tr(ToT}) = Adab (2.37)

for some convenient positive A. In this basis, the structure constants are com-
pletely antisymmetric, because we can write

fabe = =i A" Te([Tu, To] T) (2.38)
which is completely antisymmetric because of the cyclic property of the trace.

Tr([Ta, Tb] Tc) = (TaTch - TbTaTc)

(2.39)
= (TchTa. - TchTa) = Tr([Tb,Tc] Ta)

which implies
fabe = f bea - (2.40)

Taken together, (2.19) and (2.40) imply the complete antisymmetry of f,5.

fabe = foca = feab
2.41
= — foac = _fa.cb = _fcba . ( )

In this basis, the adjoint representation is unitary, because the T, are imagi-
nary and antisymmetric, and therefore hermitian.

3 Algebras in which some of the k,s are negative have no nontrivial finite dimensional
unitary representations. This does not mean that they are not interesting (the Lorentz group is
one such), but we will not discuss them.
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2.5 Simple algebras and groups

An invariant subalgebra is some set of generators which goes into itself
under commutation with any element of the algebra. That is, if X is any
generator in the invariant subalgebra and Y is any generator in the whole al-
gebra, [Y, X] is a generator in the invariant subalgebra. When exponentiated,
an invariant subalgebra generates an invariant subgroup. To see this note that

h=eX, g=¢Y (2.42)
g lhg =X (2.43)
where
o 1
X =e WX =X -i[Y,X] - 5 Y, [Y,X]} +---. (2.44)

Note that the easy way to see this is to consider
X'(e) = e7*Y XY (2.45)

then Taylor expand in € and set ¢ = 1. Each derivative brings another com-
mutator. Evidently, each of the terms in X’ is in the subalgebra, and thus e*X '
is in the subgroup, which is therefore invariant.

The whole algebra and O are trivial invariant subalgebras. An algebra
which has no nontrivial invariant subalgebra is called simple. A simple alge-
bra generates a simple group.

The adjoint representation of a simple Lie algebra satisfying (2.37) is
irreducible. To see this, assume the contrary. Then there is an invariant sub-
space in the adjoint representation. But the states of the adjoint representation
correspond to generators, so this means that we can find a basis in which the
invariant subspace is spanned by some subset of the generators, T;. forr = 1
to K. Call the rest of the generators T, for z = K + 1 to N. Then because
the rs span an invariant subspace, we must have

[Te)zr = =1 fazr =0 (2.46)

for all a, z and r. Because of the complete antisymmetry of the structure
constants, this means that all components of f that have two rs and one z or
two zs and one r vanish. But that means that the nonzero structures constants
involve either three rs or three zs, and thus the algebra falls apart into two
nontrivial invariant subalgebras, and is not simple. Thus the adjoint represen-
tation of a simple Lie algebra satisfying (2.37) is irreducible.
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We will often find it useful to discuss special Abelian invariant subalge-
bras consisting of a single generator which commutes with all the generators
of the group (or of some subgroup we are interested in). We will call such
an algebra a U(1) factor of the group. U(1) is the group of phase transfor-
mations. U (1) factors do not appear in the structure constants at all. These
Abelian invariant subalgebras correspond to directions in the space of gener-
ators for which k, = 0 in (2.36). If X, is a U(1) generator, fgp. = O for all b
and c. That also means that the corresponding k¢ is zero, so the trace scalar
product does not give a norm on the space. The structure constants do not tell
us anything about the U(1) subalgebras.

Algebras without Abelian invariant subalgebras are called semisimple.
They are built, as we will see, by putting simple algebras together. In these
algebras, every generator has a non-zero commutator with some other gen-
erator. Because of the cyclic property of the structure constants, (2.38), this
also implies that every generator is a linear combination of commutators of
generators. In such a case, the structure constants carry a great deal of in-
formation. We will use them to determine the entire structure of the algebra
and its representations. From here on, unless explicitly stated, we will dis-
cuss semisimple algebras, and we will deal with representations by unitary
operators.

2.6 States and operators

The generators of a representation (like the elements of the representations
they generate) can be thought of as either linear operators or matrices, just as
we saw when we were discussing representations of finite groups —

Xolt) = |5)(51Xald) = |7)[Xalji (2.47)

with the sum on j understood. As in (1.98), the states form row vectors and
the matrix representing a linear operator acts on the right.

In the Hilbert space on which the representation acts, the group elements
can be thought of as transformations on the states. The group element e Xa
maps or transforms the kets as follows:

i) = |i') = e*®eXe]i). (2.48)
Taking the adjoint shows that the corresponding bras transform as

(i| = ('] = (i|e"*%Xa (2.49)
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The ket obtained by acting on |z) with an operator O is a sum of kets, and
therefore must also transform as in (2.48).

Oli) — e®X=0l4)

— eiaaXaOe—iaa,XaeiaaXa,i> — Ollzl> ) (250)
This implies that any operator O transforms as follows:
0 = O = gloaXeQemi®aXa, (2.51)

The transformation leaves all matrix elements invariant.
The action of the algebra on these objects is related to the change in the
state of operator under an infinitesimal transformation.

—id]i) = =i (1 + i2aXo)li) — |i)) = @aXali) (2.52)
—i6(i| = —(ijeaXa (2.53)
—i60 = [a,X,, 0] - (2.54)

Thus, corresponding to the action of the generator X, on a ket
X, i) (2.55)

is — X, acting on a bra*
—(i|Xa (2.56)

and the commutator of X, with an operator
[X,,0] . (2.57)
Then the invariance of a matrix element (i|O|z) is expressed by the fact,

(|0 (Xal)) + (il [Xa, O ]i) — ((i] Xa) Olz) = 0. (2.58)

2.7 Fun with exponentials

Consider the exponential
gl e (2.59)

*The argument above can be summarized by saying that the minus signs in (2.56) and in
the commutator in (2.57) come ultimately from the unitarity of the transformation, (2.48).
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where X, is a representation matrix. We can always define the exponential
as a power series,
oo . n
0 X 10 X,
gianke - 3~ (00 Xa) (2.60)
n.
n=0
However, it is useful to develop some rules for dealing with these things with-
out expanding, like our simple rules for exponentials of commuting num-
bers. We have already seen that the multiplication law is not as simple as
just adding the exponents. You might guess that the calculus is also more
complicated. In particular,

——¢l®aXa £ i X, gi®%Xa (2.61)
day

However, it is true that

d . ; .4
E—e’sa“x“ = jop Xp 5% Xe = jeis®aXa gy X, (2.62)
s
because o, X, commutes with itself. This is very important, because you can
often use it to derive other useful results. It is also true that

0 10 Xa .
because this can be shown directly from the expansion. It is occasionally
useful to have a general expression for the derivative. Besides, it is a beautiful
formula, so I will write it down and tell you how to derive it. The formula is
. 1 . :
iezaaXa — / ds ezsa,,Xa (sz) ez(l—s)acXc (2.64)
6ab 0
I love this relation because it is so nontrivial, yet so easy to remember. The
integral just expresses the fact that the derivative may act anywhere “inside”
the exponential, so the result is the average of all the places where the deriva-
tive can act. One way of deriving this is to define the exponential as a limit
as in (2.7). .
e Xa = lim (1 4 i X,/k)* (2.65)
k—o0

and differentiate both sides — the result (2.64) is then just an exercise in
defining an integral as a limit of a sum. Another way of doing it is to expand
both sides and use the famous integral

m! n!
/ dss™ (1 =) = s (2.66)

We will see other properties of exponentials of matrices as we go along.
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Problems
2.A. Find all components of the matrix el®4 where
0 01
A=(0 0 O
1 00

2.B. If [A, B] = B, calculate

eiaA B e—iaA

55

2.C. Carry out the expansion of . in (2.11) and (2.12) to third order in

a and 3 (one order beyond what is discussed in the text).
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SU(2)

The SU(2) algebra is familiar.'
(5> Jk] = i€jke e (3.1)

This is the simplest of the compact Lie algebras because ¢;;; for 4,7,k =
1 to 3 is the simplest possible completely antisymmetric object with three in-
dices. (3.1) is equivalent (in units in which A = 1) to the angular momentum
algebra that you studied in quantum mechanics. In fact we will only do two
things differently here. One is to label the generators by 1, 2 and 3 instead
of z, y and z. This is obviously a great step forward. More important is the
fact that we will not make any use of the operator J,J,. Initially, this will
make the analysis slightly more complicated, but it will start us on a path that
generalizes beautifully to all the other compact Lie algebras.

3.1 J; eigenstates

Our ultimate goal is to completely reduce the Hilbert space of the world to
block diagonal form. To start the process, let us think about some finite space,
of dimension N, and assume that it transforms under some irreducible repre-
sentation of the algebra. Then we can see what the form of the algebra tells
us about the representation. Clearly, we want to diagonalize as many of the
elements of the algebra as we can. In this case, since nothing commutes with
anything else, we can only diagonalize one element, which we may as well
take to be J3. When we have done that, we pick out the states with the highest
value of J3 (we can always do that because we have assumed that the space

'We will see below why the name SU(2) is appropriate.
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is finite dimensional). Call the highest value of J3 j. Then we have a set of

states
JBIj’a> =j'j,0l> (32)

where « is another label, only necessary if there is more than one state of
highest J3 (of course, you know that we really don’t need a because the
highest state is unique, but we haven’t shown that yet, so we will keep it). We
can also always choose the states so that

(j7a|j7 IB) = Oqp 3.3)

3.2 Raising and lowering operators

Now, just as in introductory quantum mechanics, we define raising and low-
ering operators,

JE = (Jy 2ik)/V2 (3.4)
satisfying
[J3,JE] = £J* (3.5)
[Jt,J7]=Js (3.6)
so they raise and lower the value of J3 on the states. If
J3|m) = m|m) (3.7
then
J3JE|m) = JEJim) + JE|m) = (m + 1) JE|m) (3.8)

The key idea is that we can use the raising and lowering operators to
construct the irreducible representations and to completely reduce reducible
representations. This idea is very simple for SU(2), but it is very useful to
see how it works in this simple case before we generalize it to an arbitrary
compact Lie algebra.

There is no state with J3=j+1 because we have assumed that j is the
highest value of J3. Thus it must be that

Jtj,a) =0V « (3.9

because any non-zero states would have J3=j+1. The states obtained by act-
ing with the lowering operator have J3=j—1, so it makes sense to define

J7j, @) = Nj(a)lj — 1, @) (3.10)
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where N;(a) is a normalization factor. But we easily see that states with
different « are orthogonal, because

N;(B)* Nj(@)(j 1, 8§ - 1,a)
= (5,BlJ7 T |j, a)
= (3,8 [T, J 7] 14, @) (3.11)
= (5, B4, @)
= j{5,Bl, @) = j bap
Thus we can choose the states |j — 1, @) to be orthonormal by choosing
Nj(a) = /j=N; (3.12)
Then in addition to (3.10), we have
1
J+|.7 - l,Ol) = —"'J+J_|j’ a)
N;
L .
—N;U,J]Ma) (3.13)
J . .
= —N;I.%a) = Nj|.77a)
The point is that because of the algebra, we can define the states so that
the raising and lowering operators act without changing «. That is why the

parameter « is eventually going to go away. Now an analogous argument
shows that there are orthonormal states |j — 2, o) satisfying

J*j = 2,0) = Nj-1lj - 1,0)

Continuing the process, we find a whole tower of orthonormal states, |j —
k, ) satisfying
J7|j—k,a) =Nj_gls -k -1,
|7 a) j—klJ o) (3.15)
J+I.7 -k- 1,0() = Nj—klj - k7a>

The N's can be chosen to be real, and because of the algebra, they satisfy
N, =(j—kalJtJ|j—ka)

= (J - k,a| [J+,J—] IJ - kaa)
+(j — k,alJ7I*|j — k, )

(3.16)
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This is a recursion relation for the N's which is easy to solve by starting with
N L.
j:

N? =j
N}, - N? =j-1
N}, — Ni,, =j—k (3.17)

N, = (k+1)j—k(k+1)/2
= 3(k+1)(2 — k)

orsettingk =j5—m

Ny = -%\/(j+m)(j—m+l) (3.18)

Because the representation is finite dimensional (by assumption — we haven’t
proved this) there must be some maximum number of lowering operators, £,
that we can apply to |7, &). We must eventually come to some m = j — £ such
that applying any more lowering operators gives 0. Then £ is a non-negative
integer specifying the number of times we can lower the states with highest
J3. Another lowering operator annihilates the state —

J|j—£,0)=0. (3.19)

But then the norm of J~|j — ¢, &) must vanish, which means that

Nj_e= %\/(2‘1—@(84—1) =0 (3.20)

the factor £ + 1 cannot vanish, thus we must have
£=2j3. (3.21)

Thus

14

2
Now we can get rid of c. It is now clear that the space breaks up into

subspaces that are invariant under the algebra, one for each value of «, be-

cause the generators do not change . Thus from our original assumption of

irreducibility, there must be only one « value, so we can drop the « entirely.

j = = for some integer . (3.22)
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Furthermore, there can be no other states, or the subspace we just constructed
would be nontrivial (and invariant). Thus we have learned how the generators
act on all the finite dimensional irreducible representations. In fact, though
we won’t prove it, there are no others — that is all representations are finite
dimensional, so we know all of them.

3.3 The standard notation

We can now switch to the standard notation in which we label the states of
the irreducible representations by the highest J3 value in the representation
and the J3 value:?

|7, m) (3.23)
and the matrix elements of the generators are determined by the matrix ele-

ments of J3 and the raising and lowering operators, J*:3

(j’ m,|J3|ja m) =m 6m’m
G, | T¥15,m) = /(G + m 4 1) —m)/2 b (3.24)
Gy /|1, m) = /(G +m) (G —m +1)/2 G e

These matrix elements define the spin j representation of the SU(2) algebra:
[Jlke = (G, d + 1 = k| Jalg,j +1—£) (3.25)

Here we have written the matrix elements in the conventional language where
the rows and columns are labeled from 1 to 25 + 1. In this case, it is often
convenient to label the rows and columns directly by their m values, which
are just j + 1 —£and j + 1 — k above in (3.25). In this notation, (3.25) would
read

(T lmim = (j, m'|Jalj, m) (3.26)

where m and m’' run from j to —; in steps of —1. We will use these in-
terchangeably — choosing whichever is most convenient for the problem at
hand.

2Well, not completely standard — in some books, including the first edition of this one,
the j and m are written in the other order.

3The +/2 factors are the result of our definition of the raising and lowering operators and
are absent in some other treatments.
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For example, for 1/2, this gives the spin 1/2 representation

1
J11/2=l<0 1) = ;01

2l1 0/ 72
12 170 —i) _1 (3.27)
& —2(i 0)‘2(’2
iy2_1/1 0\ _1
I3 _2(0 —1)‘ 73

where the os are the Pauli matrices.

01=((1) é) 02=(? B’) 03=<(1) _01) (3.28)

satisfying .
040b = ap + 1€abcTc (3.29)

The spin 1/2 representation is the simplest representation of SU(2). It is
called the “defining” representation of SU (2), and is responsible for the name
SU, which is an acronym for “Special Unitary”. Exponentiating the gener-
ators of the spin 1/2 representation to get the representation of finite group
elements gives matrices of the form

i a2 (3.30)

which are the most general 2 x 2 unitary matrices with determinant 1. The
“special”, in Special Unitary means that the determinant is 1, rather than an
arbitrary complex number of absolute value 1.

All the other irreducible representations can be constructed similarly. For
example, the spin 1 representation looks like

. 1 (0 1 0)
Jl = —= 1 0 1
V2 0 1+ 0

L1 (Q — 0.) 3.31)
J2=—' K3 0 —1
0 i 0
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while the spin 3/2 representation is

3/2

S

o o&lo
N

o N o
= Nl%l o o o Ql
. [\ [%)

P

ogo o
[1{J)

;_/

|
oI © o © o1 O N O
~. o,

0 - 0
s~ JEZ \(}g | (3:32)
_JE
0 0
3 (1) 0 0
R0 8
o0 o0 -3

The construction of the irreducible representations above generalizes to
any compact Lie algebra, as we will see. The J3 values are called weights,
and the analysis we have just done is called the highest weight construc-
tion because it starts with the unique highest weight of the representation.
Note that the same construction provides a systematic procedure for bringing
an arbitrary finite dimensional representation into block diagonal form. The
procedure is as follows:

1. Diagonalize J3.
2. Find the states with the highest J3 value, j.

3. For each such state, explicitly construct the states of the irreducible
spin j representation by applying the lowering operator to the states
with highest J3.

4. Now set aside the subspace spanned by these representations, which
is now in canonical form, and concentrate on the subspace
orthogonal to it.

5. Take these remaining states, go to step 2 and start again with the

states with next highest J3 value.
(3.33)
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The end result will be the construction of a basis for the Hilbert space of the
form
|7, m, a) (3.34)

where m and j refer to the J3 value and the representation as usual (as in
(3.23) and « refers to all the other observables that can be diagonalized to
characterize the state. These satisfy

(jlv m/7 allj7 m, a) = 6m’m 6j’j 6a’a (3.35)

The Kronecker ds are automatic consequences of our construction. They are
also required by Schur’s lemma, because the matrix elements satisfy

(4", m', & |Ja|f, m, @)
= [ T (3, M, & |, m, 02) (3.36)

= <jl’ m,a allj, m”7 a) [J(Z]m/'m

because we can insert a complete set of intermediate states on either side of
Jo.  Thus (j',m/,d'|j,m,a) commutes with all the elements of an irre-
ducible representation, and is either 0 if j # j' or proportional to the identity,

Omim if j = 5.

3.4 Tensor products

You have probably all used the highest weight scheme, possibly without
knowing it, to do what in introductory quantum mechanics is called addi-
tion of angular momentum. This occurs when we form a tensor product
of two sets of states which transform under the group.* This happens, in turn,
whenever a system responds to the group transformation in more than one
way. The classic example of this is a particle that carries both spin and orbital
angular momentum. In this case, the system can be described in a space that
you can think of as built of a product of two different kinds of kets.

li,2) = |i) |=) (3.37)

where the first states, |i) transforms under representation D; of the group
and the second, |z), under Ds. Then the product, called the tensor product,

*We saw an example of this in the normal modes of the triangle in our discussion of finite
groups.
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transforms as follows:

D(9) |i,z) = |5, v) [Die2(9)]jyic
= I]) ly) [Dl( ]]1 [DZ ]yz
= (17) [D1(9)15:) (ly) [D2(9)]lyz)

In other words, the two kets are just transforming independently under their
own representations. If we look at this near the identity, for infinitesimal «,,

(3.38)

(1 + 1aqdy) |3, z)
=15,9)(G,yl (1 +iaada) i, )
= 15,9) (854 + il 132 (9))syic)
= 17,y) (51'1' + iaa[‘]al]ji) (5yw + iaa[Jg]yz)
Thus identifying first powers of o,

2% @lsvie = alsidyz + 05l T3lue (340

(3.39)

When we multiply the representations, the generators add, in the sense shown
in (3.40). This is what happens with addition of angular momenta. We will
often write (3.40) simply as

LS =J+J; (3.41)

leaving you to figure out from the context where the indices go, and ignoring
the é-functions which, after all, are just identity operators on the appropriate
space. In fact, you can think of this in terms of the action of the generators as

follows:
Ja(13)12)) = (Jali))12) +15) (Vale)) (3.42)

3.5 J;values add

This is particularly simple for the generator J3 because we work in a basis in
which J3 is diagonal. Thus the J3 values of tensor product states are just
the sums of the J; values of the factors:

T (i1, ma)ljasma)) = (m1 +ma) (ljn,mu)ljzima))  (3.43)

This is what we would expect, classically, for addition of angular momentum,
of course. But in quantum mechanics, we can only make it work for one
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component. We can, however, use this in the highest weight construction,
(3.33).

Consider, for example, the tensor product of a spin 1/2 and spin 1 rep-
resentation. The highest weight procedure (3.33) is what you would use to
decompose the product space into irreducible representations. Let’s do it ex-
plicitly. There is a unique highest weight state,

13/2,3/2) =11/2,1/2)|1,1) (3.44)

We can now construct the rest of the spin 3/2 states by applying lowering
operators to both sides. For example using (3.42)

T713/2,3/2) = 1 (j1/2,1/21L,1))

(3.45)
- \/g|3/2,1/2> = \/g|1/2,—1/2)|1,1) +11/2,1/2)|1,0)

or
13/2,1/2) = \/§|1/2, -1/2)|1,1) + \/—§'|1/2, 1/2)|1,0) (3.46)
Continuing the process gives
13/2,-1/2) = f|1/2 —1/2)|1,0) f{1/2 1/2)|1,-1)
13/2,-3/2) =|1/2,-1/2)|1,-1)

(3.47)

Then the remaining states are orthogonal to these —

\/g|1/2,—1/2)|1,1)—-\/—§]1/2,1/2)|1,0) (3.48)

V2 -2 -\ 2nzpn-n G

applying the highest weight scheme to this reduced space gives

1/2,1/2) = 2172, -1/2)01) - 22,200
3 3 (3.50)
172, -1/2) =22, 1210 - 22,21 -y

In this case, we have used up all the states, so the process terminates. Note
that the signs of the spin 1/2 states were not determined when we found the
states orthogonal to the spin 3/2 states, but that the relative sign is fixed be-
cause the J3 = +1/2 states are related by the raising and lowering operators.

and
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Problems
3A. Use the highest weight decomposition, (3.33), to show that
s+j
{le{syt= > &
©l=(s—j|

where the @ in the summation just means that the sum is a direct sum, and
{k} denotes the spin k representation of SU(2). To do this problem, you do
not need to construct the precise linear combinations of states that appear in
each irreducible representation, but you must at least show how the counting
of states goes at each stage of the highest weight decomposition.

3.B. Calculate
(i7 7

where & are the Pauli matrices. Hint: write 7 = |7] 7.

3.C. Show explicitly that the spin 1 representation obtained by the high-
est weight procedure with j = 1 is equivalent to the adjoint representation,
withfape = €gpe by finding the similarity transformation that implements the
equivalence.

3.D. Suppose that [0,];; and [7]zy are Pauli matrices in two different
two dimensional spaces. In the four dimensional tensor product space, define
the basis

1) =li=Dle=1) 2) =i = D]z =2)
3) =li=2)z=1) [4) = i = 2)|z = 2)
Write out the matrix elements of o3 ® 7; in this basis.

3.E. We will often abbreviate the tensor product notation by leaving out
the indices and the identity matrices. This makes for a very compact notation,
but you must keep your wits about you to stay in the right space. In the
example of problem 3.D, we could write:

[Ga]z’j[nb]zy as  ogMh

0ij[Mblzy as m
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5ij6:1:y as 1

So for example, (01)(o2n1) = i0o3n1 and (o172)(0173) = Wny.
To get some practice with this notation, calculate
@  [oa,007c]
®  Tr(oa{m ocna})

© (o171, 02m2] .
where o, and 7, are independent sets of Pauli matrices and {A, B} = AB +

BA is the “anticommutator.”
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Tensor Operators

A tensor operator is a set of operators that transforms under commutation
with the generators of some Lie algebra like an irreducible representation of
the algebra. In this chapter, we will define and discuss tensor operators for
the SU(2) algebra discussed in chapter 3. A tensor operator transforming
under the spin-s representation of SU(2) consists of a set of operators, O}
for £ = 1 to 2s+1 (or —s to s), such that '

[Ja, Of] = O [Jzlme - 4.1

It is true, though we have not proved it, that every irreducible representa-
tion is finite dimensional and equivalent to one of the representations that we
found with the highest weight construction. We can always choose all tensor
operators for SU(2) to have this form.

4.1 Orbital angular momentum

Here is an example — a particle in a spherically symmetric potential. If the
particle has no spin, then .J, is the orbital angular momentum operator,

Jo = Lo = €ape Th Pe 4.2)

The position vector is related to a tensor operator because it transforms under
the adjoint representation

[Ja,Tb] = €acd [T Pdy T8 = —i€acd Tc Obd 3)

= —l€gehTec = Te [J:dj]cb

68
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where J24 is the adjoint representation, and we know from problem 3.C that
this representation is equivalent to the standard spin 1 representation from the
highest weight procedure.

4.2 Using tensor operators

Note that the transformation of the position operator in (4.3) does not have
quite the right form, because the representation matrices J24 are not the stan-
dard form. The first step in using tensor operators is to choose the operator
basis so that the conventional spin s representation appears in the commuta-
tion relation (4.1). This is not absolutely necessary, but it makes things easier,
as we will see. We will discuss this process in general, and then see how it
works for 7.

Suppose that we are given a set of operators, §); for z = 1 to 2s+1
that transforms according a representation D that is equivalent to the spin-s
representation of SU(2):

[Ja, ] = Qy [I7 )ye (4.4)

Since by assumption, D is equivalent to the spin-s representation, we can find
a matrix S such that
SJPs-l=7s 4.5)

or in terms of matrix elements
[Slew (T2 ey (S~ yer = [Jglew (4.6)

Then we define a new set of operators

0; =0y (S forl=-stos 4.7)
Now Oy satisfies

[Ja, Of]

= {Jany] [S_l]ye

= QZ[JaD]zy [S_l]yﬁ (4.8)

= QZ[S_l]zl’ [S]l’z’ [JaD]z’y [S_l]yf
= Op [J3lee
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which is what we want. Notice that (4.8) is particularly simple for J3, because
in our standard basis in which the indices £ label the J3 value, Jg, (or J3 for
any s) is a diagonal matrix

[J5)we =€0gy forl,l' = —stos. (4.9)

Thus
[J3,04] = Op [J3]lee = £ O; - (4.10)

In practice, it is usually not necessary to find the matrix S explicitly. If
we can find any linear combination of the €, which has a definite value of
J3 (that means that it is proportional to its commutator with J3), we can take
that to be a component of O°, and then build up all the other O° components
by applying raising and lowering operators.

For the position operator it is easiest to start by finding the operator 7.
Since [J3,73] = 0, we know that r3 has J3 = 0 and therefore that r3 o 7.

Thus we can take
T =T3 “4.11)

Then the commutation relations for the spin 1 raising and lowering operators
give the rest

JE rl=r

7% )= rs 4.12)
=F(r £iry)/V2

4.3 The Wigner-Eckart theorem

The interesting thing about tensor operators is how the product O} |j, m, o)
transforms.

Ja Og ‘]7 m, CY)
= [Ja’ O;] IJ) m, a) + Of Ja, IJa m, a) (413)
= O't?/ l]v m, a) [Ji]e'e + 05 l]a m’aa) [Jg]m’m

This is the transformation law for a tensor product of spin s and spin j, s ® j.
Because we are using the standard basis for the states and operators in which
J3 is diagonal, this is particularly simple for the generator J3, for which (4.13)
becomes

J3 03 j,m, @) = (£+m) Of |j,m, ) (4.14)

The J; value of the product of a tensor operator with a state is just the
sum of the J3 values of the operator and the state.
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The remarkable thing about this is that the product of the tensor operator
and the ket behaves under the algebra just like the tensor product of two
kets. Thus we can decompose it into irreducible representations in exactly
the same way, using the highest weight procedure. That is, we note that
O: |4,7,) with J3 = j + s is the highest weight state. We can lower it
to construct the rest of the spin 7 + s representation. Then we can find the
linear combination of J3 = j + s — 1 states that is the highest weight of the
spin 7 + s — 1 representation, and lower it to get the entire representation,
and so on. In this way, we find explicit representations for the states of the
irreducible components of the tensor product in terms of linear combinations
of the O} |7, m, a). You probably know, and have shown explicitly in problem
3.A, that in this decomposition, each representation from 7 + s to |j — s|
appears exactly once. We can write the result of the highest weight analysis
as follows:

ST 0§15, M —t,0) (s,5,6,M — £ | J,M) = k; |J, M) (4.15)
e

Here |J, M) is a normalized state that transforms like the J3 = M compo-
nent of the spin J representation and & is an unknown constant for each J
(but does not depend on M). The coefficients (s,j,¢,M — £ | J, M) are
determined by the highest weight construction, and can be evaluated from
the tensor product of kets, where all the normalizations are known and the
constants £ are equal to 1:

> 1s,8) |5, M — €) (s,5,6, M — €| J, M) = |J, M) (4.16)
VA

One way to prove! that the coefficients can be taken to be the same in (4.15)
and (4.16) is to notice that in both cases, J¥ |J,J) must vanish and that
this condition determines the coefficients (s, 7,¢,J — ¢ | J,J) up to a mul-
tiplicative constant. Since the transformation properties of Oj |j,m) and
|s,£) |j,m) are identical, the coefficients must be proportional. The only
difference is the factor of k; in (4.15).

We can invert (4.15) and express the original product states as linear com-
binations of the states with definite total spin J.

gts
O ljm,e) = > (JL+m]s,j,6,m)ky|JL+m) (4.17)
J=|j—s|

"This is probably obvious, but as we will emphasize below, the operators are different
because we do not have a scalar product for them.
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The coefficients (J, M | s, j,¢, M — ¢) are thus entirely determined by
the algebra, up to some choices of the phases of the states. Once we have a
convention for fixing these phases, we can make tables of these coefficients
once and for all, and be done with it. The notation (J, £ + m/|s, j, ¢, m) just
means the coefficient of |J,£ + m) in the product |s,£) |j,m). These are
called Clebsch-Gordan coefficients.

The Clebsch-Gordan coefficients are all group theory. The physics comes
in when we reexpress the |J, £ + m) in terms of the Hilbert space basis states

1']’€+m7:8) -
ky|J,£+m) = kag|J,£+m,B) (4.18)
]

We have absorbed the unknown coefficients & into the equally unknown co-
efficients k3. These depend on «, j, O° and s, because the original products
do, and on 3 and J, of course. But they do not depend at all on £ or m. We
only need to know the coefficients for one value of £+ m. The kqg are called
reduced matrix elements and denoted

kop = (J, 8] O° |5, ) (4.19)

Putting all this together, we get the Wigner-Eckart theorem for matrix ele-
ments of tensor operators:

(J,m’, 8| Of |5, m, o)
= 5m',£+m (']ae + mlsaj7ev m) : (Jvﬁ' o’ |.7’ a)

(4.20)

If we know any non-zero matrix element of a tensor operator between states
of some given J, 5 and j, o, we can compute all the others using the algebra.
This sounds pretty amazing, but all that is really going on is that we can use
the raising and lowering operators to go up and down within representations
using pure group theory. Thus by clever use of the raising and lowering oper-
ators, we can compute any matrix element from another. The Wigner-Eckart
theorem just expresses this formally.

4.4 Example

Suppose

(1/25 1/27a| T3 |1/2’1/2’ﬂ) =A (4.21)
Find

<1/271/2aal T1 |1/27—1/25;B) =7 (4.22)
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First, since g = r3,
(1/2,1/2,a|r0[1/2,1/2,8) = A (4.23)

Then we know from (4.12) that

r=slra o) (4.24)
Thus
<1/27 1/2, Ot| T1 |1/2’ _1/2,ﬂ)
- <1/12, 12,0] Je(ria+r) U2, -1/28)  @2s)
= —E<1/27 1/21 a! T+1 |1/2a _1/2’ ﬂ)

Now we could plug this into the formula, and you could find the Clebsch-
Gordan coefficients in a table. But I'll be honest with you. I can never re-
member what the definitions in the formula are long enough to use it. In-
stead, I try to understand what the formula means, and I suggest that you do
the same. We could also just use what we have already done, decomposing
1/2 ® 1 into irreducible representations. For example, we know from the
highest weight construction that

13/2,3/2) =r4111/2,1/2,8) (4.26)

is a 3/2,3/2 state because it is the highest weight state that we can get as a
product of an r; operator acting on an |1/2,m) state. Then we can get the
corresponding |3/2,1/2) state in the same representation by acting with the
lowering operator J~

13/2,1/2) = \/gr 13/2,3/2)
= [Erolz 2.0 + L rai/z-12.0

But we know that this spin-3/2 state has zero matrix element with any spin-
1/2 state, and thus

4.27)

0=1(1/2,1/2,2|3/2,1/2)
= \/§(1/2, 1/2,0|1011/2,1/2, B) (4.28)

+ —;;(1/2, 1/2,a|rs111/2,-1/2,8)



74 CHAPTER 4. TENSOR OPERATORS

SO
(1/2,1/2,a| r411/2,-1/2, )
= —v2(1/2,1/2,a| 79 |1/2,1/2, B) (4.29)
=-V24
SO
(1/2,1/2,a| 1 |1/2,-1/2,8) = A (4.30)

Although we did not need it here, we can also conclude that

|1/2a 1/2> = \/%7‘0 |1/27 1/2a a) - \/g'r—{-l |1/2a _'1/27 a> (4.31)

is a 1/2,1/2 state. This statement is actually a little subtle, and shows the
power of the algebra. When we did this analysis for the tensor product of j=1
and j=1/2 states, we used the fact that the |1/2,1/2) must be orthogonal to
the |3/2,1/2) states to find the form of the |1/2,1/2) state. We cannot do this
here, because we do not know from the symmetry alone how to determine the

norms of the states
re|1/2,m) (4.32)

However, we know from the analysis with the states and the fact that the
transformation of these objects is analogous that

Jt|1/2,1/2) =0 (4.33)

Thus it is a 1/2,1/2 state because it is the highest weight state in the represen-
tation. We will return to this issue later.

There are several ways of approaching such questions. Here is another
way. Consider the matrix elements

(1/2,m,alrq|1/2,m’, B) (4.34)

The Wigner-Eckart theorem implies that these matrix elements are all propor-
tional to a single parameter, the k5. Furthermore, this result is a consequence
of the algebra alone. Any operator that has the same commutation relations
with J, will have matrix elements proportional to r,. But J, itself has the
same commutation relations. Thus the matrix elements of r, are proportional
to those of J,. This is only helpful if the matrix elements of J, are not zero
(if they are all zero, the Wigner-Eckart theorem is trivially satisfied). In this
case, they are not (at least if @ = 3)

1
(1/2,m,a| J, [1/2,m',B) = 5a[3§[oa]mm/ (4.35)
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Thus
(1/2,m,a|re |1/2,m', B) x [0a)mm’ (4.36)

This gives the same result.

4.5 * Making tensor operators

If often happens that you come upon a set of operators which transforms
under commutation with the generators like a reducible representation of the
algebra

[Ja, ) = Q[TP]ye (4.37)

where D is reducible. In this case, some work is required to turn these into
tensor operators, but the work is essentially just the familiar highest weight
construction again. The first step is to make linear combinations of the {2,
operators that have definite J3 values

[J3,0m,a]l = MmO q (4.38)

This is always possible because D can be decomposed into irreducible rep-
resentations that have this property. Then we can apply the highest weight
procedure and conclude that the operators, with the highest weight, O, o are
components of a tensor operator with spin j, one for each c. If there are any
operators with weight j—1/2, O;_y/3 g, they will be components of tensor
operators with spin j—1/2. However, things can get subtle at the next level.
To find the tensor operators with spin j—1, you must find linear combinations
of the operators with weight j—1 which have vanishing commutator with J+
— then they correspond to the highest weights of the spin 7—1 reps

[J1,0/-1,] (4.39)

The point is, if you get the operators in a random basis, you have nothing like
a scalar product, so you cannot simply find the operators that are “orthogo-
nal” to the ones you have already assigned to representations. I hope that an
example will make this clearer. Consider seven operators, a4, b+; and ag,
bo and ¢y, with the following commutation relations with the generators:

[J3’ a‘+1] =a41 [J3, b+1] = b+1
[J3,a0] = [J3,b0] = [J3,c0] =0 (4.40)
[J3,(1_1] = a1 [J3ab—1] = _b—l
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[J+7a+l] = [J+,b+l] =0
[JF,a0] = a1 [J*,b0] = bys [JF,c0] = ay1 = by

1 4.41)
[J+,a-1] =y [J+,b_1] = 5(&0 + bo — 3¢p)

_ 1 _ 1
[J7,a41] = 5(00 + bo + co) [J7,b41] = 5(00 +bp — co)

[J—,a()] =2a_1+b_ [J—, bg] =a-1+b_ [J—,C()] =a_

[J",a_l] = [J*,b._1] =0
(4.42)
To construct the tensor operators, we start with the highest weight states,
and define

Ayi=a41 Bu=by (4.43)

Then we construct the rest of the components by applying the lowering oper-
ators

1 1
Ay = §(a0+b0+60) By = §(a0+b0 —C()) 4.44)

and
A_1=2a_1+b_ B_1=a_1+b_ (4.45)

You can check that the raising operators now just move us back up within the
representations.

Now there is one operator left, so it must be a spin O representation.
But which one is it? It must be the linear combination that has vanishing
commutator with J* — therefore it is

Co =ag — bo —C (4.46)

Let me emphasize again that we went through this analysis explicitly
to show the differences between dealing with states and dealing with tensor
operators. Had this been a set of seven states transforming similarly under
the algebra, we could have constructed the singlet state by simply finding
the linear combination of J3 = 0 states orthogonal to the J3 = 0 states in
the triplets. Here we do not have this crutch, but we can still find the singlet
operator directly from the commutation relations. We could do the same thing
for states, of course, but it is usually easier for states to use the nice properties
of the scalar product.



4.6. PRODUCTS OF OPERATORS 77

4.6 Products of operators

One of the reasons that tensor operators are important is that a product of two
tensor operators, O;! and O;2, in the spin s; and spin sy representations,
transforms under the tensor product representation, s; ® sz because

[J0-7 O:,%l Oﬁ,%z]
= [Ja, O51] 032, + O3 [Ja, 072, ] (4.47)
= Ojrill Ovsrfg [Xgl]m’lm1 + O:ril O::'z [ng]mgmz

Thus the product can be decomposed into tensor operators using the highest
weight procedure.

Note that as usual, things are particularly simple for the generator J3.
(4.47) implies

(73,03, 032,] = (my +m2) O3, O3, (4.48)

The J3 value of the product of two tensor operators is just the sum of the J3
values of the two operators in the product.

Problems

4.A. Consider an operator O, for £ = 1 to 2, transforming according to
the spin 1/2 representation as follows:

[Ja) Oc] = Oy [00a]ya/2
where o, are the Pauli matrices. Given
(3/2,-1/2,a| 01 ]1,-1,8) = A
find
(3/2,-3/2,a| 02]1,-1,0)

4.B. The operator (r1)? satisfies

[L+, ("‘+1)2] =0

It is therefore the O2 component of a spin 2 tensor operator. Construct the
other components, O,,. Note that the product of tensor operators transforms
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like the tensor product of their representations. What is the connection of
this with the spherical harmonics, Y; (0, $)? Hint: let r; = sinf cos ¢,
r9 = sinfsin¢, and r3 = cosf. Can you generalize this construction to
arbitrary £ and explain what is going on?

4.C. Find
eiaaX ;

where the X} are given by (3.31) Hint: There is a trick that makes this one

easy. Write
a X! = ad X!

where
a=+/a.0, Aol =1

You know that é, X} has eigenvalues +1 and 0, just like X} (because all
directions are equivalent). Thus (&g X ;)2 is a projection operator and

(daX;)3 = (afaX;)

You should be able to use this to manipulate the expansion of the exponential
and get an explicit expression for e*®Xa,



Chapter 5

Isospin

The idea of isospin arose in nuclear physics in the early thirties. Heisenberg
introduced a notation in which the proton and neutron were treated as two
components of a nucleon doublet

N= (3) (5.1)

He did this originally because he was trying to think about the forces between
nucleons in nuclei, and it was mathematically convenient to write things in
this notation. In fact, his first ideas about this were totally wrong — he re-
ally didn’t have the right idea about the relation between the proton and the
neutron. He was thinking of the neutron as a sort of tightly bound state of
proton and electron, and imagined that forces between nucleons could arise
by exchange of electrons. In this way you could get a force between proton
and neutron by letting the electron shuttle back and forth — in analogy with
an H2+ ion, and a force between neutron and neutron — an analogy with a
neutral H molecule. But no force between proton and proton.

5.1 Charge independence

It was soon realized that the model was crazy, and the force had to be charge
independent — the same between pp, pn and nn to account for the pat-
tern of nuclei that were observed. But while his model was crazy, he had
put the p and n together in a doublet, and he had used the Pauli matrices to
describe their interactions. Various people soon realized that charge indepen-
dence would be automatic if there were really a conserved “spin” that acted
on the doublet of p and n just as ordinary spin acts on the two J3 compo-
nents of a spin-1/2 representation. Some people called this “isobaric spin”,

79
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which made sense, because isobars are nuclei with the same total number of
baryons,! protons plus neutrons, and thus the transformations could move
from one isobar to another. Unfortunately, Wigner called it isotopic spin and
that name stuck. This name makes no sense at all because the isotopes have
the same number of protons and different numbers of neutrons, so eventually,
the “topic” got dropped, and it is now called isospin.

5.2 Creation operators

Isospin really gets interesting in particle physics, where particles are routinely
created and destroyed. The natural language for describing this dynamics is
based on creation and annihilation operators (and this language is very useful
for nuclear physics, as we will see). For example, for the nucleon doublet in
(5.1), we can write

|0)

,2,0

a
o 110 (5.2)

Ip, o) =

In, @) =

where the '

Oy il (5.3)
are creation operators for proton (+%) and neutron (— %) respectively in the
state a, and |0) is the vacuum state — the state with no particles in it. The N
stands for nucleon, and it is important to give it a name because we will soon
discuss creation operators for other particles as well. The creation operators
are not hermitian. Their adjoints are annihilation operators,

a N, + % o (54)
These operators annihilate a proton (or a neutron) if they can find one, and
otherwise annihilate the state, so they satisfy

Oxs4,l0) = 0 5.5

The whole notation assumes that the symmetry that rotates proton into neu-
tron is at least approximately correct. If the proton and the neutron were not
in some sense similar, it wouldn’t make any sense to talk about them being in
the same state.

'Baryons are particles like protons and neutrons. More generally, the baryon number is
one third the number of quarks. Because, as we will discuss in more detail later, the proton
and the neutron are each made of three quarks, each has baryon number 1.
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Because the p and n are fermions, their creation and annihilation opera-
tors satisfy anticommutation relations:

{aNmcs Oy m 5} = O Gap (5.6)
{a;f,m,a’ajv,m’,ﬁ} = {anm,a:aNm 8} =0

With creation and annihilation operators, we can make multiparticle states
by simply applying more than one creation operator to the vacuum state. For

example
n proton creation operators

I's \

t .
alNa%)al aN,%aan |0) (57)
o |n protons; aj,- -, op)

produces an n proton state, with the protons in states, o through oy,. The
anticommutation relation implies that the state is completely antisymmetric
in the labels of the particles. This guarantees that the state vanishes if any
two of the as are the same. It means (among other things) that the Pauli
exclusion principle is automatically satisfied. What is nice about the creation
and annihilation operators is that we can construct states with both protons
and neutrons in the same way. For example,

n nucleon creation operators
A~

~ ~

1 1
AN my,en " UN Mg 0n |0> (5.8)
o |n nucleon; my,ai;- - ;Mp, 0n)

is an n nucleon state, with the nucleons in states described by the m variable
(which tells you whether it is a proton or a neutron) and the « label, which
tells you what state the nucleon is in. Now the anticommutation relation
implies that the state is completely antisymmetric under exchange of the pairs
of labels, m and a.

= —|n nucleon; ma, ag; M1, a5+ 3 My, ) '

If you haven’t seen this before, it should bother you. It is one thing to assume
that the proton creation operators anticommute, because two protons really
cannot be in the same state. But why should proton and neutron creation
operators anticommute? This principle is called the “generalized exclusion
principle.” Why should it be true? This is an important question, and we will
come back to it below. For now, however, we will just see how the creation
and annihilation operators behave in some examples.



82 CHAPTER 5. ISOSPIN

5.3 Number operators

We can make operators that count the number of protons and neutrons by
putting creation and annihilation operators together (the summation conven-
tion is assumed):

t

ON+1,0 0N +1a

counts protons

ay _ la aN,_Lla counts neutrons (5.10)

T
AN m.a ON;m.a counts nucleons

Acting on any state with N}, protons and IV, neutrons, these operators have
eigenvalues Ny, N, and N, + Ny, respectively. This works because of (5.5)
and the fact that for a generic pair of creation and annihilation operators

[aTa,aT] = af (5.11)

Notice that the number operators in (5.10) are summed over all the possible
quantum states of the proton and neutron, labeled by a. If we did not sum
over «, the operators would just count the number of protons or neutrons or
both in the state . We could get fancy and devise more restricted number
operators where we sum over some « and not others, but we won’t talk further
about such things. The total number operators, summed over all «, will be
particularly useful.

5.4 Isospin generators

For the one-particle states, we know how the generators of isospin symmetry
should act, in analogy with the spin generators:

1
Talm, @) = |m’, @) [J3/lmm = 5|m’, @) [Galmim (5.12)
Or in terms of creation operators

1
To @ ma |0) = al o 10) T2/ ) im = Ea’}fv,m’,a 10) [Ga)mim  (5.13)
Furthermore, the state with no particles should transform like the trivial rep-
resentation —

T, [0) =0 (5.14)
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Thus we will get the right transformation properties for the one particle states
if the creation operators transform like a tensor operator in the spin 1/2 rep-
resentation under isospin:

1

[Ta, a}’V,m,a] = a;\,’m,,a [Ji/z]m’m = é_a‘;vvm’va [Ua]mlm (5'15)

It is easy to check that the following form for T, does the trick:

To = aly o [T lmim aNmoa + -+

= _a;rv,m’,a [Oa)mim anma + -

2

_ 1

= 5aN’O‘o-aaN,a_+_...

where --- commutes with the nucleon creations and annihilation operators
(and also annihilates |0)). The last line is written in matrix form, where we
think of the annihilation operators as column vectors and the creation op-
erators as row vectors. Let us check that (5.16) has the right commutation
relations with the creation operators so that (5.15) is satisfied.

[a—y

(5.16)

[Ta’ a’];\/,m,a]

= (bt T2 s arv i 0l ]

T

= a’N,m’,,B [J;/2]m/m// {aN,m”,ﬁ, a}’\’,m,a} (5.17)

- {a;\l,m’,ﬂ’ a;\/,m,a} [J;/z]m’m” aN,m" .3

= a’;V,m',a [Jg/z]m’m
The advantage of thinking about the generators in this way is that we now
immediately see how multiparticle states transform. Since the multiparticle
states are built by applying more tensor (creation) operators to the vacuum
state, the multiparticle states transform like tensor products — not a surpris-
ing result, but not entirely trivial either.

5.5 Symmetry of tensor products

We pause here to discuss an important fact about the combination of spin
states (either ordinary spin or isospin). We will use it in the next section to
discuss the deuteron. The result is this: when the tensor product of two iden-
tical spin 1/2 representations is decomposed into irreducible representations,
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the spin 1 representation appears symmetrically, while the spin O appears an-
tisymmetrically. To see what this means, suppose that the spin 1/2 states are

11/2,£1/2, ) (5.18)

where « indicates whatever other parameters are required to describe the
state. Now consider the highest weight state in the tensor product. This is
the spin 1 combination of two identical J3=1/2 states, and is thus symmetric
in the exchange of the other labels:

I1,1) =]1/2,1/2,a)|1/2,1/2,8) = [1/2,1/2,8)[1/2,1/2,0)  (5.19)

The lowering operators that produce the other states in the spin 1 representa-
tion preserve this symmetry because they act in the same way on the two spin
1/2 states.

1
25 (212,072,178
+]1/2,1/2,a)|1/2,-1/2, ﬁ)) (5.20)
11,-1) =1/2,-1/2,a)|1/2,~1/2, )

Then the orthogonal spin O state is antisymmetric in the exchange of o and

B:

Il,O) =

% (|1/2, -1/2,0)|1/2,1/2, B)

~[1/2,1/2,011/2,~1/2,0))

10,0) =
(5.21)

5.6 The deuteron

The nucleons have spin 1/2 as well as isospin 1/2, so the « in the nucleon
creation operator actually contains a J3 label, in addition to whatever other
parameters are required to determine the state.

As a simple example of the transformation of a multiparticle state, con-
sider a state of two nucleons in an s-wave — a zero angular momentum state.
Then the total angular momentum of the state is simply the spin angular mo-
mentum, the sum of the two nucleon spins. Furthermore, in an s-wave state,
the wave function is symmetrical in the exchange of the position variables
of the two nucleons. Then because the two-particle wave function is pro-
portional to the product of two anticommuting creation operators acting on
the vacuum state, it is antisymmetric under the simultaneous exchange of the
isospin and spin labels of the two nucleons — if the spin representation is
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symmetric, the isospin representation must be antisymmetric. and vice versa.
When combined with the results of the previous section, this has physical
consequences. The only allowed states are those with isospin 1 and spin O or
with isospin 0 and spin 1. The deuteron is an isospin O conbination, and has
spin 1, as expected.

5.7 Superselection rules

It appears, in this argument, that we have assigned some fundamental physical
significance to the anticommutation of the creation operators for protons and
neutrons. As I mentioned above, this seems suspect, because in fact, the
proton and neutron are not identical particles. What we actually know directly
from the Pauli exclusion principle is that the creation operator, a:fl for any
state of a particle obeying Fermi-Dirac statistics satisfies

(a;)2 =0 (5.22)

If we have another creation operator for the same particle in another state,
a};, we can form the combination af, + a%, which when acting on the vacuum
creates the particle in the state & + 3 (with the wrong normalization). Thus

the exclusion principle also implies

(ol + a;)2 =0 (5.23)

and thus
{ag,a},} =0 (5.24)

This argument is formally correct, but it doesn’t really make much physi-
cal sense if af, and a}i create states of different particles, because it doesn’t
really make sense to superpose the states — this superposition is forbidden
by a superselection rule. A superselection rule is a funny concept. It is the
statement that you never need to think about superposing states with different
values of an exactly conserved quantum number because those states must be
orthogonal. Anything you can derive by such a superposition must also be
derivable in some other way that does not involve the “forbidden” superpo-
sition. Thus as you see, the superposition is not so much forbidden as it is
irrelevant. In this case, it is possible to show that one can choose the creation
operators to anticommute without running into inconsistencies, but there is a
much stronger argument. The anticommutation is required by the fact that the
creation operators transform like tensor operators. Let’s see how this implies
the stated result for the two nucleon system.



86 CHAPTER 5. ISOSPIN

Call the creation operators for the baryons ali (dropping the N for
brevity) where the first sign is the sign of the third component of isospin and

the second is the sign of third component of spin. Since (aT+ +)2 = 0, there
is no two nucleon state with 73 = 1 and J3 = 1. But this means that there is
no state with isospin 1 and spin 1, since the highest weight state would have
to have T3 = 1 and J3 = 1. In terms of creation operators, for example

[T—, (a1+)2] ={al,,al } =0 (5.25)

Similar arguments show that the operators must anticommute whenever they
have one common index and the others are different.

The argument for operators that have no index in common is a little more
subtle. First compute

[J‘, [T‘, (aT++)2:” ={al_al }+{alial }=0 (520

But the two terms in the sum must separately vanish because they are phys-
ically distinguishable. There cannot be a relation like (5.26) unless the two
operators

{al_.al,}10) (5.27)

and
{al,.al_}10) (5.28)

separately vanish, because these two operators, if they did not vanish, would
do physically distinguishable things — the creation of a proton with spin up
and a neutron with spin down is not the same as the creation of proton with
spin down and a neutron with spin up. Thus the operators (5.27) and (5.28)
must separately vanish. Thus, not only does the isospin 1, spin 1 state (5.26)
vanish but so also does the isospin 0, spin O state

{aT___, afH} |0) — {aT__,_, al_} |0) (5.29)

5.8 Other particles

When isospin was introduced, the only known particles that carried it were
the proton and neutron, and the nuclei built out of them. But as particle
physicists explored further, at higher energies, new particles appeared that
are not built out of nucleons. The first of these were the pions, three spinless
bosons (that is obeying Bose-Einstein, rather than Fermi-Dirac statistics) with
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charges Q = +1, 0 and —1, and T3 = (, forming an isospin triplet.> The
creation and annihilation operators for the pions can be written as

ajr,m,a y  Orma form=-1to1 (5.30)

They satisfy commutation, rather than anticommutation relations

[aw,m,aaajr,m’,ﬁ] = mm’éaﬂ (5 31)

[a;(r,m,a?azr,m’,ﬂ] = [aﬂ,m,a’aﬂ',m',ﬁ] =0

so that the particle states will be completely symmetric. They also commute
with nucleon creation and annihilation operators.
The isospin generators look like

T, = aIr,m,a {Jé]mm’ Gl (5.32)

where as in (5.16) the - - - refers to the contributions of other particles (like
nucleons). Again, then the creation operators are tensor operators.

There are many many other particles like the nucleons and the pions that
participate in the strong interactions and carry isospin. The formalism of cre-
ation and annihilation operators gives us a nice way of writing the generators
of isospin that acts on all these particles. The complete form of the isospin
generators is

T, = Z aL,m,a [ng]mm’ az.m' o (5.33)

particles =
states o
T3 values m,m’

where a;m,a and az . o are creation and annihilation operators for z-type
particles satisfying commutation or anticommutation relations depending on
whether they are bosons or fermions,

[ o], = Ot 60
Az, m,as Ay ' = Omm/O0ap0zz’
Ay (5.34)
t f = [a Qqy m! ] =0
a’z,m,a? a’z’,m’,ﬁ + z,m,a Yz’ ,m’ B]
The rule for the & (+ for anticommutator, — for commutator) is that the anti-

commutator is used when both z and z’ are fermions, otherwise the commu-
tator is used. The j, in (5.33) is the isospin of the z particles.

*When these particles were discovered, it was not completely obvious that they were not
built out of nucleons and their antiparticles. When very little was known about the strong
interactions, it was possible to imagine, for example, that the 7% was a bound state of a proton
and an antineutron. This has all the right quantum numbers — even the isospin is right. It just
turns out that this model of the pion is wrong. Group theory can never tell you this kind of
thing. You need real dynamical information about the strong interactions.
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5.9 Approximate isospin symmetry

Isospin is an approximate symmetry. What this means in general is that the
Hamiltonian can be written as

H=Hy+AH (5.35)

where Hy commutes with the symmetry generators and AH does not, but
in some sense AH is small compared to Hy. It is traditional to say in the
case of isospin that the “strong” interactions are isospin symmetric while
the weak and electromagnetic interactions are not, and so take Hy = Hg
and AH = Hgps + Hw where Hg, Hgpr and Hyy are the contributions
to the Hamiltonian describing the strong interactions (including the kinetic
energy), the electromagnetic interactions, and the weak interactions, respec-
tively. From our modern perspective, this division is a bit misleading for two
reasons. Firstly, the division between electromagnetic and weak interactions
is not so obvious because of the partial unification of the two forces. Sec-
ondly, part of the isospin violating interaction arises from the difference in
mass between the u and d quarks which is actually part of the kinetic energy.
It seems to be purely accidental that this effect is roughly the same size as the
effect of the electromagnetic interactions. But this accident was important
historically, because it made it easy to understand isospin as an approximate
symmetry. There are so many such accidents in particle physics that it makes
one wonder whether there is something more going on. At any rate, we will
simply lump all isospin violation into AH. The group theory doesn’t care
about the dynamics anyway, as long as the symmetry structure is properly
taken into account.

5.10 Perturbation theory

The way (5.35) is used is in perturbation theory. The states are classified
into eigenstates of the zeroth order, isospin symmetric part of the Hamilto-
nian, Hy. Sometimes, just Hy is good enough to approximate the physics
of interest. If not, one must treat the effects of AH as perturbations. In the
scattering of strongly interacting particles, for example, the weak and electro-
magnetic interactions can often be ignored. Thus in pion-nucleon scattering,
all the different possible charge states have either isospin 1/2 or 3/2 (because
1®1/2 = 3/2 & 1/2), so this scattering process can be described approxi-
mately by only two amplitudes.

The mathematics here is exactly the same as that which appears in the
decomposition of a spin-1/2 state with an orbital angular momentum 1 into
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states with total angular momentum 3/2 and 1/2. The state with one pion and
one nucleon can be described as a tensor product of an isospin 1/2 nucleon
state with an isospin 1 pion state, just as the state with both spin and orbital
angular momentum can be described as a tensor product, having both spin
and angular momentum indices.

Problems

5.A. Suppose that in some process, a pair of pions is produced in a state
with zero relative orbital angular momentum. What total isospin values are
possible for this state?

5.B. Show that the operators defined in (5.33) have the commutation
relations of isospin generators.

5.C. A+t A*, A% and A~ are isospin 3/2 particles (T3 = 3/2, 1/2,
—1/2 and —3/2 respectively) with baryon number 1. They are produced
by strong interactions in 7-nucleon collisions. Compare the probability of
producing A*+ in 7P — AT with the probability of producing A® in
7~ P — A



Chapter 6

Roots and Weights

Now we are going to generalize the analysis of the representations of the
SU(2) algebra to an arbitrary simple Lie algebra. The idea is simple. First,
we do what we always try to do in quantum mechanics — find the largest
possible set of commuting hermitian observables and use their eigenvalues to
label the states. In this case, our observables will be the largest set of hermi-
tian generators we can find that commute with one another, and can therefore
be simultaneously diagonalized. Their eigenvalues will be the analog of J3.
The rest of the generators will be analogous to the raising and lowering op-
erators in SU(2). We will find that every raising operator corresponds to an
SU (2) subgroup of the Lie algebra, and then we can use what we know about
SU (2) to learn about the larger algebra.

6.1 Weights

We want the largest possible set of commuting hermitian generators because
we want to diagonalize as much as possible. A subset of commuting hermi-
tian generators which is as large as possible is called a Cartan subalgebra.
It will turn out that the Cartan subalgebra is essentially unique, in that any
one we choose will give the same results.

In a particular irreducible representation, D, there will be a number of
hermitian generators, H; for : = 1 to m, corresponding to the elements of the
Cartan Subalgebra called the Cartan generators satisfying

Hi=H!, and [H,H;]=0. 6.1)
The Cartan generators form a linear space. Thus we can choose a basis in

90



6.2. MORE ON THE ADJOINT REPRESENTATION 91

which they satisfy
'H‘(HiHj) = /{JD(Sij fori,7 =1tom (6.2)

where k is some constant that depends on the representation and on the nor-
malization of the generators. The integer m, the number of independent Car-
tan generators, is called the rank of the algebra.

Of course, the point is that the Cartan generators can be simultaneously
diagonalized. After diagonalization of the Cartan generators, the states of the
representation D can be written as |u, ¢, D) where

Hilu,l',D) :,U‘i}/J"x7D) (6.3)

and z is any other label that is necessary to specify the state.

The eigenvalues p; are called weights. They are real, because they are
eigenvalues of hermitian operators. The m-component vector with compo-
nents y; is the weight vector. We will often use a vector notation in which

a-pu=o;u; and a? = o0 6.4

6.2 More on the adjoint representation

The adjoint representation, defined by (2.27), is particularly important. Be-
cause the rows and columns of the matrices defined by (2.27) are labeled by
the same index that labels the generators, the states of the adjoint representa-
tion correspond to the generators themselves. We will denote the state in the
adjoint representation corresponding to an arbitrary generator X, as

| Xa) - (6.5)

Linear combinations of these states correspond to linear combinations of the
generators —

alXa) + Bl Xb) = |aXa + BXp) - (6.6)
A convenient scalar product on this space is the following:!
(Xa Xp) = AT (X1X5) 6.7)

(A is what we called kp for the adjoint representation — see (2.37)). Now
using (6.6) and (2.27), we can compute the action of a generator on a state,
as follows:
Xale) = |XC> (XC‘Xale) = ‘Xc) [Ta]cb =—i fa.clec>
= i fabe| Xe) = |i fabeXe) = I[Xa,Xb]) .

'We need the dagger because we will be led to consider complex linear combinations of
the generators, analogous to the raising and lowering operators for SU(2).

(6.8)
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6.3 Roots

The roots are the weights of the adjoint representation. Because [H;, H;| =
0, the states corresponding to the Cartan generators have zero weight vectors

H;|H;) = |[H;, Hj]) =0 (6.9)

Furthermore, all states in the adjoint representation with zero weight vectors
correspond to Cartan generators. Because of (6.2), the Cartan states are or-

thonormal,
(HﬂHj) =\"1Tr (HiHj) = 51']' (6.10)

The other states of the adjoint representation, those not corresponding to
the Cartan generators, have non-zero weight vectors, o, with components «;,

H;|E,) = ;| Ea) (6.11)
which means that the corresponding generators satisfy
[H;i, Ey] = 0 Eq (6.12)

It will turn out (and we will prove it below) that for the adjoint representation,
the non-zero weights uniquely specify the corresponding states, so there is no
need for another parameter (like z in (6.3) in the arbitrary representation D).
Like the SU(2) raising and lowering operators, the E, are not hermitian.
They cannot be hermitian because we can take the adjoint of (6.12) and get

[H, EL] = -aiE} (6.13)

thus we can take
El=E_,. (6.14)
This should remind you of the raising and lowering operators J* and J~ in

SU(2).

States corresponding to different weights must be orthogonal, because
they have different eigenvalues of at least one of the Cartan generators. Thus
we can choose the normalization of the states in the adjoint representation
(that is, the generators) so that

(BalBg) = NV Tx (BLEp) = bap (= [] baip) . (6.19)

The weights «; are called roots, and the special weight vector a with compo-
nents ¢; is a root vector.
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6.4 Raising and lowering

— The E., are raising and lowering operators for the weights, because the
state E1,|u, D) has weight y + o —

H;Ei.|p, D) = [H;, Exq] |p, D) + ExoHilp, D) = (1 £ a);Exq|u, D) .
(6.16)
At this point, we have no notion of positivity, so it doesn’t make sense to ask
which is raising and which is lowering. But we will introduce this later.
Equation (6.16) is true for any representation, but it is particularly impor-
tant for the adjoint representation. To see why, consider the state Eq|E_,).
This has weight o — a = 0, thus it is a linear combination of states corre-
sponding to Cartan generators. This in turn implies that [E,, E_,] is a linear
combination of Cartan generators:

Eo|E_o) = Bi |H;) = |BiH;i) = |8+ H) = |[Eq, E-4a]) - (6.17)
But we can actually compute § —

ﬁi = (Hi,EalE—a>
= A" Tr (H; [Ey, E_g]) this follows from (6.8)

=\ Iy (E_q [Hiy Eq])  from the cyclic property of Tr © 185

=A"la; Tr (E-aFEq) from (6.12)
= q; from (6.15).
Thus
[Ea, .E_a] =" H . (6.19)

This should remind you of the SU(2) commutation relation [J*, J~] = J;.
It is this analogy that we will exploit to learn about the compact Lie groups
and their representations.

6.5 Lotsof SU(2)s

For each non-zero pair of root vectors, ta;, there is an SU(2) subalgebra of
the group, with generators

E* =|o| 'Eiq

Es3 =|o|%a-H. (6:20)



94 CHAPTER 6. ROOTS AND WEIGHTS

To see this, note that

[E3, EX] = |a| 3 [a- H, E+q] 6.21)
=|a|%a- (£a)Eiq = £|a| ' Eiq = +E* '
and from (6.19)
[E+’E_] = 10‘|—2 [Eas E_q]

6.22
=|a|™%2a-H = E3. (622)

We know on general grounds that the states of each irreducible represen-
tation of the full algebra can be decomposed into irreducible representations
of any one of these SU(2) subalgebras, and we already know everything
about the irreducible representations of SU(2). This puts very strong con-
straints on the nature of the roots. For example, we can now easily prove that
the root vectors correspond to unique generators. Suppose the contrary, so
that there are two generators, E, and E),. We can choose linear combina-
tions of these two so that they are orthogonal in the adjoint representation (I
will use the same names for the two generators, assuming that I chose them
to be orthogonal from the beginning, just to avoid useless notation) — thus
we can write

(EolEf) = X' Tr (BLEL) = 7' Tr (B_oB}) = 0. (6.23)

Consider the behavior of the state |E’,) under the action of the SU(2) subal-
gebra (6.20). E~|E,,) has zero weight vector, and thus it is a linear combina-
tion of Cartan states. But

(Hi|E™|E,) = A\~ Tx (H; [E™, E,])
=-\"'Tr (B [H;, By)) (6.24)
= -\ Tr (BLE™) =0

for all 4, and thus the coefficient of every Cartan state in E~|E!) vanishes,

and therefore
E“E,’,) =0. (6.25)

But we also have
E3|E,) = |o| - H|E,) . = |Ey). (6.26)

Equations (6.25) and (6.26) are inconsistent, because (6.25) implies that | EY,)
is the lowest J3 state in an SU(2) representation, and (6.26) implies that it
has J3 = 1. But the lowest J3 state of an SU(2) representation cannot have
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positive J3 — the J3 value is always —j for a non-negative half integer j.
Thus E/, cannot exist, and we have shown, as promised, that | E,) is uniquely
specified by a — no other labels are required.

In fact, if « is a root, then no non-zero multiple of o (except —ca) is a
root. To see this, note that the three states | E3) and |E) form a spin 1 repre-
sentation of the algebra (6.20), because they form the adjoint representation.
Now suppose ka a root for k # +1. Clearly, k¥ must be a half-integer, be-
cause the E3 value of the corresponding state must be a half integer. But if &
is an integer not equal to £1, the state is part of a representation that contains
another state with root «;, which is impossible, by the argument we just gave.
And if k is half an odd integer, then there is a state with root /2, and we can
repeat the argument using the SU(2) associated with that generator and get a
contradiction in the same way.

6.6 Watch carefully - this is important!

More generally, for any weight  of a representation D, the E3 value is

a .
Bslu,, D) = —5lu,2, D). 6.27)
Because the E3 values must be integers or half integers,
2 -
o 3 E s an integer. (6.28)
a

The general state |y, z, D) can always be written as a linear combination
of states transforming according to definite representations of the SU(2) de-
fined by (6.20). Suppose that the highest spin state that appears in the linear
combination is j. Then there is some non-negative integer p such that

(E*)? |p,z, D) #0 (6.29)

with weight p+p a is the highest E3 state of the SU(2) spin j representation,

so that .
(E*)"*" |u,z, D) =0. (6.30)

The E5 value of the state (6.29) is

a-(u+pa o- .
(“a2p ) - Fp=i. 6.31)

Likewise, there is some non-negative integer ¢ such that

(E7)!|p,z,D) #0 (6.32)
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with weight 11 — g « is the lowest Ej3 state of the SU(2) spin j representation,
so that

(E7)" |u,z,D) = 0 (6.33)

and the Ej3 value of the state (6.32) is

a-(u—qa Q- :
(“azq ) _ —F-q=-j. (6.34)

Adding (6.31) and (6.34) gives

20 -
S L yp—g=0 (6.35)
a
or 1
a'[.l:___ _
E=—6-0. (636)

We will refer to (6.36) as the “master formula”. The relations (6.31), (6.34)
and (6.36) are the basic relations that lead to a geometrical classification of
all the compact Lie groups. They don’t look like much, but when we augment
them with some geometrical intuition, we can exploit them to great effect, as
you will see.

Here is a simple first step. Applying (6.36) to the roots gives a particu-
larly strong constraint, because we can apply it twice for any pair of distinct
roots, & and (3. Defining the SU (2) algebra with E,, gives

a-fB 1
——=—(p—9q). 6.37
2 5(P—a) (6.37)
Defining the SU(2) algebra with Eg gives

B-a 1, ’

—=—=(p —q). 6.38

Multiplying these gives a remarkable formula for the angle 6,3 between the
roots « and G:

B2 (p-q—¢
cos? B = (‘;2 ﬂ,} ! y ) (6.39)

What is remarkable about this is that (p — ¢)(p’ — ¢') must be an integer, so
(because it must be non-negative) there are only four interesting possibilities
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(up to complements) for angles between roots!

-9 —q) Bap

0 90°

1 60° or 120° (6.40)
2 45° or 135°

3 30° or 150°

The possibility (p — q)(p" — ¢') = 4, corresponds to 0° or 180° — neither
is interesting. 0° is already ruled out by our theorem on uniqueness. 180°
is trivial because roots always come in pairs with opposite signs, both in the
same SU (2) subgroup.

Problems

6.A. Show that [E,, Eg] must be proportional to E, 5. What happens
if & + [ is not a root?

6.B. Suppose that the raising lowering operators of some Lie algebra

satisfy
[Eo,Egl = N Eqip

for some nonzero N. Calculate

[Eaa E-—a—ﬂ]
6.C. Consider the simple Lie algebra formed by the ten matrices:
Oa OqT1 0473 T2

for a = 1 to 3 where o, and 7, are Pauli matrices in orthogonal spaces (see
problem 3.E). Take H; = o3 and H; = o373 as the Cartan subalgebra. Find
(a) the weights of the four dimensional representation generated by these
matrices, and

(b) the weights of the adjoint representation.

Hint: Although you have enough information to do the problem after read-
ing this chapter, it may be easier after you have seen the example of SU(3)
worked out in the next chapter.



Chapter 7

SU(3)

After SU(2) the most important algebra in particle physics is SU(3). Maybe
it is more important. I’'m not sure. SU(3) is the group of 3 x 3 unitary
matrices with determinant 1 (again, as in (3.30), the U stands for “unitary”
and the S stands for “special”, which means determinant 1).

7.1 The Gell-Mann matrices

SU (3) is generated by the 3 x 3 hermitian, traceless matrices. There are vari-
ous ways of seeing that the tracelessness constraint is what gives determinant
1. If we exponentiate the hermitian generators to get unitary matrices

U(a) = ei®Xe (7.1)

we can compute the determinant in any basis. In particular, if we diagonalize
aaX a»
VagX,V =D (7.2)

where D is diagonal, we have

det(U(a)) = det(e!P) = Hei[D]ff =l T'D = ¢iTraeXa (7.3)
J

Thus if Tr o, X, = 0, the determinant is 1.
The standard basis for the hermitian 3 x 3 matrices in the physics litera-
ture is in terms of a generalization of the Pauli matrices, called the Gell-Mann

98
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0
/\2=(z
0
0

B
0 0

0 —i
)l
0 O

0 0 1100
0 —i s=—=(0 1 0
zO) \/—<00—2>

These are generalizations of the Pauli matrices in the sense that the first three
Gell-Mann matrices contain the Pauli matrices acting on a subspace:

matrices:

>~
=
Il

|
o,
SO O
SN——

O = O
O =
oS O O
\—/

[en i en]

(7.4)
As =

HOOOOoOOoOO O

O = OO O -

0
0
1
0
0
0

A7 =

>
w
I

Coos o000 R—L ~

,\a=<‘81 8) fora=1to3 (1.5)

You can imagine that we could go on and construct 4 x 4 matrices that contain
these 3 x 3 matrices in the same way, and so on.
The SU(3) generators are conventionally defined by

T, = =) (1.6)

and they satisfy
1
Tr (ToTh) = 50 (1.7)

Clearly, T, for a = 1 to 3 generate an SU(2) subgroup of SU(3).
This is sometimes called the isospin subgroup, for reasons that will become
apparent when we discuss SU(3) as an approximate symmetry of the strong
interactions — where this subgroup is in fact Heisenberg’s isospin. It is con-
venient to put T3 in the Cartan subalgebra. There is one generator, T3, that
commutes with 73, so we put it in the Cartan subalgebra as well, and take

H=T; H=T (7.8)
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7.2  Weights and roots of SU(3)

The weights of this representation are easy to find because 73 and T3y are
already diagonal

5 00 10 0

2

T3=(0 ~3 0) T8=—6‘/§(0 1 0) (7.9)
0 0 0 00 -2

The eigenvectors, and associated weights are

1
(0 — (1/2,V3/6)
0

0
(1 - (=1/2,V3/6) (7.10)
0

0
(0 — (0,—V3/3)
1

These vectors, plotted in a plane, form the vertices of an equilateral triangle

T
Hj

(~1/2,V3/6) * *(1/2,V3/6)
H1 —

(7.11)

¢ (0, _\/§/3)

The roots are going to be differences of weights, because the corresponding
generators must take us from one weight to another. It is not hard to see that
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the corresponding generators are those that have only one off-diagonal entry:

(T1 + iTQ) = E:i:l,O

~5l-51-

—5 (To £4T7) = Ezy o 4.3

S

where the =+ signs are correlated. The roots form a regular hexagon, plotted
here along with the two elements of the Cartan subalgebra in the center:

T
H,

(7.13)

Fo\Y
\\ 24
p

Hl—)

Problems

7.A. Calculate f147 and f458 in SU(3)

7.B. Show that T}, T, and T3 generate an SU (2) subalgebra of SU (3).
Every representation of SU(3) must also be a representation of the subalge-
bra. However, the irreducible representations of SU(3) are not necessarily
irreducible under the subalgebra. How does the the representation generated
by the Gell-Mann matrices transform under this subalgebra. That is, reduce,
if necessary, the three dimensional representation into representations which
are irreducible under the subalgebra and state which irreducible representa-
tions appear in the reduction. Then answer the same question for the adjoint
representation of SU(3).
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7.C. Show that Ay, A5 and A7 generate an SU(2) subalgebra of SU(3).
Every representation of SU(3) must also be a representation of the subalge-
bra. However, the irreducible representations of SU(3) are not necessarily
irreducible under the subalgebra. How does the representation generated by
the Gell-Mann matrices transform under this subalgebra. That is, reduce,
if necessary, the three dimensional representation into representations which
are irreducible under the subalgebra and state which irreducible representa-
tions appear in the reduction. Then answer the same question for the adjoint
representation of SU(3).



Chapter 8

Simple Roots

What we need to complete the analogy between SU(2) and an arbitrary sim-
ple Lie algebra is a notion of positivity for the weights. Then we can dis-
cuss things like raising and lowering operators, and the “highest weight” in
a meaningful way. What we want is a definition that ensures that every non-
zero weight is either positive or negative, and that if u is positive, —u is
negative and vice versa.

8.1 Positive weights

It is easy to find such a scheme — indeed, in a multi-dimensional space, there
are an infinite number. In some arbitrary basis for the Cartan subalgebra, the
components, 41, 42, - - ., of the weight are fixed. We will say that the weight
is positive if its first non-zero component is positive and that the weight is
negative if its first non-zero component is negative. While this depends on
the arbitrary basis, it does have the properties we want. Eventually, we will
see that the results will not depend on the basis, but for now, we will just fix
it and forget it.

For example, in SU(3), the 3 dimensional defining representation looks

103
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like this:

(=1/2,v/3/6)

is negative

o (1/2,V/3/6)

is positive
H 1 —

(8.1)

1(0,=1/V3)

is negative

The weight (0, —1/+/3) is negative because its first component is zero so the
sign is determined by the sign of the second component.
With this definition, we can define an ordering in the obvious way:

u > v if u — v is positive 8.2)

This allows us to talk about the highest weight in a representation.

In the adjoint representation, the positive roots correspond to raising op-
erators and the negative roots to lowering operators. The highest weight of
any representation has the property that we cannot raise it, so that all genera-
tors corresponding to positive roots must annihilate the corresponding state.

In the SU(3) adjoint representation, in our usual basis, the positive roots
are on the right and the negative on the left, as shown below:

T
Ho

° e.
negative | positive

negative positive (8.3)

H1—)

@\
A

negative | positive
L] [ ]
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8.2 Simple roots

But we don’t want to check all the roots if we don’t have to. Clearly, some
of the positive roots can be built out of others. So it makes sense to define
simple roots as positive roots that cannot be written as a sum of other positive
roots. We will then see that if a weight is annihilated by the generators of all
the simple roots, it is the highest weight of an irreducible representation. Fur-
thermore, from the geometry of the simple roots, it is possible to reconstruct
the whole algebra. The logic of this is fun and worth understanding in detail.
1 — If o and S are different simple roots, then o — [ is not a root. This is
true because one of them, say [, is larger, so that # — « is positive. But then
B is the sum of two positive roots, & and 5 — a.

2 — Because « — (3 is not a root

E_o|Eg) = E_g|E,) =0 (8.4)
Then in the master formula (6.36)

2l -0

the integer q is zero. Similarly in

B« 1
N = —5(10’ -q)
the integer ¢’ is zero. Thus
a-f_ p B-a_p
w -2 @2 ®3)

Knowing the integers p and p’ for each simple root is equivalent to knowing
the angles between the simple roots, and their relative lengths because

Vo' B _p
COSs eag = ——2— gz- = F (86)
3 — The angle between any pair of simple roots satisfies
ggo<n (8.7)

The first inequality follows from (8.6) because the cosine is less than or equal
to zero. The second inequality follows because all the roots are positive. Sim-
ple multidimensional geometry then implies that the simple roots are linearly
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independent. Here’s a proof — consider a linear combination of the simple
roots,

Y=Y Zaa (8.8)

If all the coefficients have the same sign, then clearly, -y cannot vanish unless
all the coefficients vanish, because the « are all positive vectors. But if there
are some coefficients of each sign, we can write

Y=p—v (8.9)

where p and v are strictly positive vectors,

p= Y o v=— 3 zZ.a (8.10)

To>0 Ta<0

But the norm of -y cannot vanish because
(p—v)?=p+02-2u-v)>u?+12>0 (8.11)

where the last inequality follows from the fact (a - 3) < 0 for any pair of
simple roots, (8.6).

Thus no linear combination of the simple roots can vanish and they are
linearly independent.
4 — Any positive root ¢ can be written as a linear combination of simple
roots with non-negative integer coefficients, ko

p=) koo (8.12)

This is just logic. If ¢ is simple, this is true. If not, we can split it into two
positive roots and try again.

5 — The simple roots are not only linearly independent, they are complete,
so the number of simple roots is equal to m, the rank of the algebra, the
number of Cartan generators. If this were not true, then there would be some
vector ¢ orthogonal to all the simple roots, and therefore orthogonal to all the

roots. But then
[§-H,Eg] =0 for all roots ¢ (8.13)

Since ¢ - H also commutes with the other Cartan generators, it commutes with
all the generators and the algebra is not simple, contrary to assumption.

6 — Finally, we are in a position to construct the whole algebra from the
simple roots. For now, we will simply show how to determine all the roots.
We will find easier ways of doing this later, and also discuss how to construct
the actual algebra.
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We know that all the positive roots have the form
bk = kot (8.14)
(07

for non-negative integers, k,, where the integer £ is

k=Y ka (8.15)

If we can determine which ¢, are roots, we will have determined the roots in
terms of the simple roots. It is straightforward to do this inductively, using
the master formula.

All the ¢’s are roots because these are just the simple roots themselves.
Suppose now we have determined the roots for £ < £. Then we look at

Eq|de) (8.16)

for all a, which gives roots of the form ¢, ;. We can compute

) (8.17)

But we will always know ¢, because we will know the history of how ¢, got

built up by the action of the raising operators from smaller k. Thus we can
determine p. If p > 0, then ¢y + « is a root.

Let’s illustrate this inductive procedure for £ = 1. In this case, we always

start with a simple root, ¢; = 3 where (3 is a simple root. All the gs are zero

o)
2-¢1 _2a-8 _
a2 o2
Thus if o - 8 = 0, then p = 0 and « + (3 is not a root. Otherwise p > 0 and
a + (B is aroot.

The only way this procedure could fail to find a root is if there exists
some positive root ¢,; which is not the sum of a root ¢, and some simple
root. This is impossible, because if there were such a ¢y, it would be an-
nihilated by all the E_, (because E_4|¢y+1) if non-zero would be a ¢, state
and we could apply E, to it and get |¢,1) back). Thus |$s41) would have to
transform like the lowest weight state of all the SU (2) subalgebras associated
with the simple roots, which requires that the E3 values o - ¢p41/ a? < 0 for
all a. But then

(8.18)

bir1 = koot pr1 <O (8.19)
(67
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which is a contradiction. Thus we always find all the roots ¢, by acting on
all the ¢, with all the simple roots. For SU(3), for example, the positive root
(1,0) is the sum of the other two, which are the simple roots

ot = (1/2,V3/2) o? = (1/2,—V3/2) (8.20)

as shown
T
Ho
simple
) al
- q ol +o? (8.21)
H1 —
° a2
simple
We have
o= =1 ol -a?=-1/2 (8.22)
thus L -y
20" -« 207 - «
e = 2 =-1 (8.23)

and thus p = 1 for both o! acting on |a?), and vice versa. Thus o! + o2 is a
root, but 2a! + o2 and a! + 20?2 are not.

8.3 Constructing the algebra

The procedure outlined above can give us more than a listing of the roots. We
can actually construct the entire algebra from the simple roots. Let us go back
to the derivation of the master formula, where we found in (6.31) and (6.34)
o p . - :
—&2—'!-?:.7 o2 =-=J (8.24)
This follows because a state |u) with weight x in any irreducible representa-
tion must have some component that transforms under the largest spin repre-
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sentation of the SU(2) algebra associated with «, generated by (from (6.20))

E* =a| 'Eiq 325

Es=lo|%a-H

This largest spin is the 7 in (8.24). In general, |u) may also have lower spin
components, but j is the highest one. It must be there so that (E*)? |u)
transforms like a |7, j) state, which is non-zero, but annihilated by another
E*, and (E~)™ |u) transforms like a |j, —5) state, annihilated by another
E~. Adding these two relations gives the master equation. But subtracting
them gives

p+q=2j (8.26)

Thus if we know p and g, we know the highest spin representation that over-
laps with the weight state.

If u is a root in the adjoint representation, the situation is even simpler.
Because we have already shown that each root appears only once in the ad-
joint representation, if we know p and g, and therefore j for a root 3 under
the action of the SU (2) associated with a simple root o, we can conclude that
|B) is the state with E3 = « - B/a? in the spin j representation,

18) = |j, - B/a?) (8.27)

It is completely determined up to a phase. Thus we also know exactly how
E¥ acts, up to phases. Let’s see how this enables us to construct the algebra
in the example of SU(3). The root diagram looks like this:

T
H,

—al=—a?, ool +0? (8.28)

C‘\
&
1
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where
2 2
o =a*" =1 al-a?=-1/2
al - o? ol - a? 1
al? a?? 2

We already know that p = 1 and ¢ = 0 for both o' acting on |a?), and vice
versa. We already know how the Cartan generators commute with everything.
So we just need the commutation relations of the raising and lowering oper-
ators. Let’s begin by explicitly constructing the raising operator, E,1 ,2.
Since p + ¢ = 1, we have j = 1/2 and therefore, if we look at the o! raising
operator

E+|Ea2> = |a1|_1Ea1 |Ea2)

= EallEa2) = |[Ea1a az])

1 (8.29)
= Ea|1/2, —11/2> = 5I/%1/2)
= —ﬁnlEa1+a2>

where 7 is a phase. This may need some explanation. The |E,2) state is
properly normalized, by assumption, and it corresponds to the |1/2, —1/2)
state under the o SU(2) (the Ej value is a! -042/0112 = —1/2). Acting on it
with the raising operator E7 tells us what the correctly normalized |1/2,1/2)
state is. But this, up to a phase, which we called 7, must be the properly
normalized state |E,1 ). Putting all this together, and choosing n = 1 by
convention, we have

|Eatta2) = ﬁ'[EalaEa"’D (8.30)

and thus

Epiio2 = V2[Eq, Ege) (8.31)

Now that we have expressed the other positive root as a commutator of
the simple roots, we can compute any commutator just using the Jacobi iden-
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tity. For example
[E_al ) Ea1+a2]
= \/i[E—ala [Ealan'z”
= V2[[E_a1, Eq1], En2] (8.32)

=2 [—al H, E'az]

1
V2
We already knew this, because we are just moving back down the SU(2)
representation. Here’s another, slightly more interesting:

=—V2a' - 0?E, = —=E,

[E_az, Eat1o]
= V2([E_u2,[Eqa1, Eo2]]
= V2([Eq,[E_s, Eo]]
=2 [Eal, —a?- H]

=2 [a2 . H,Eal]
1
V2

The interesting thing here is the phase — which is determined to be a — sign.

(8.33)

= v2a! -onEax =—-——F,

8.4 Dynkin diagrams

A Dynkin diagram is a short-hand notation for writing down the simple roots.
Each simple root is indicated by an open circle. Pairs of circles are connected
by lines, depending on the angle between the pair of roots to which the circles
correspond, as follows:

(=0 if the angle is 150° (8.34)

(O if the angle is 135°

O—O if the angle is 120°

O (O if the angle is 90°
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The Dynkin diagram determines all the angles between pairs of simple roots.
This doesn’t quite fix the roots, because there may be more than one choice

for the relative lengths. We will come back to that later.

O is the diagram for SU(2)

(O—0 is the diagram for SU(3)

8.5 Example: G,
Suppose that an algebra has simple roots

ol =(0,1) o®=(V3/2,-3/2)
This is an allowed pairing, because

12 22

a =1 o =3
al-a?=-3/2
1,2 1,2
2aa1-2a — _3 2aa2-2a — 1
The angle between the two roots is determined by
coSOy142 = —é 0142 = 150°

2

Thus this corresponds to the Dynkin diagram

=0
This algebra is called G.

8.6 The roots of G5

(8.35)

(8.36)

(8.37)

(8.38)

For E,: acting on |a?) we have p = 3. For E,: acting on |a!) we have

p = 1. Thus
ol +a? 2a'+0® and 3a! + o?

are all roots but
al +2a% and 4ol + o?

(8.39)

(8.40)
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are not. In terms of ¢y, in (8.14) we have
P2 = al +a? ¢3 = 20! + o? ¢q = 3a! + o? (8.41)

We know that the ¢o state is unique from the general properties of simple
roots. The ¢ state is unique because o + 202, the only other state that could
be obtained by acting on ¢», is not a root. To see whether there is another ¢4
state, we must check whether 20! + 202 is a root, that is, whether it can be
obtained by acting on ¢3 with a simple root, which must be o?.

202 (2a' +a?)  —6+6
a?? 3

But ¢ = 0 because 2! is not a root, and thus p = 0, so 2a! + 2a? isnot a
root. Actually, we could have come to this conclusion more simply by noting
that 2a! + 202 = 2(a! + a?) which is twice the root o + o2, but we proved
in the discussion after (6.26) that no multiple of a root can be a root.
Now to get the ¢5 states, note that we already know that 4at + o? is not
a root, so we need only check 3a! + 2a2.
202 (3a' +a?)  —9+6

a2? 3

0=—-(p—q) (8.42)

-1=—(p—q) (8.43)

Again, ¢ = 0, thus p = 1 and ¢5 = 3a! + 20 is a root. Because p = 1, we
also know that 3a! + 3a2 is not a root, so to check for ¢g, we need only look
at 4a! + 2a2.

2a! - (3at +2a%) 6-6

; =——=0=-(p—q) (8.44)

ol
g = 0 because 2a’ + 2a? is not a root, so we are finished (again, we could

has just used the fact that 20! + o is a root to see that 4! +2a? is not), and
the roots look like this:

—a’e f}z ®3al +o?
¢!
—al —a%e ®2a! + a?
—3a! — 2oc2e @ H1£01 +2a? (8.45)
—2al —a?e ool +a?
—ale
—3al —a?e ®.?
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What we did can be summarized in the following diagram:

T
[ ] H2

L

(8.46)

’

®
s
!

8.7 The Cartan matrix

There is a useful way of keeping track of the integers p* and ¢° associated
with the action of a simple root o’ on a state |¢) for a positive root ¢ that
eliminates the need for tedious geometrical calculations. The idea is to label
the roots directly by their ¢* — p* values. The g* — p of any weight, u, is
simply twice its E3 value, where E3 is the Cartan generator of the SU(2)
associated with the simple root o, because

2H - ot 2u - o

2B3lp) = ——Iu) = ) = (¢" =) ). (8.47)

ai?

Because the o* are complete and linearly independent, the g* — p* values for
the weights contain the same information as the values of the components of
the weight vector, so we can use them to label the weights. The advantage of
doing so is that it will make very transparent the structure of the representa-
tions under the SU (2)s generated by the simple roots.

Since a positive root, ¢, can be written as ¢ = Ej kjaj , the master
formula can be written as

2¢ - ot
ai?

207 - ot
= ki (8.48)

ai?

J
= Z kjAji
J

i

¢ -p =
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where A is the Cartan matrix

A = 207 - ot
Jji = aiZ

(8.49)

The matrix element A;; is the g — p value for the simple root o acting on the
state |a?), twice the E3 value, thus all the entries of A are integers. The di-
agonal entries are all equal to 2. This is obvious from the definition, and also
from the fact that the simple roots have E3 = 1 because the SU (2) generators
themselves transform like the adjoint, spin 1 representation. The off-diagonal
entries, all 0, —1, —2 or —3, record the angles between simple roots and their
relative lengths — the same information as the Dynkin diagram, and they tell
us how the simple roots fit into representations of the SU(2)s associated
with the other simple roots. It is easy to see that the Cartan matrix is invert-
ible because the o are complete and linearly independent. Note that the jth
row of the Cartan matrix consists of the ¢; — p; values of the simple root
o,
For SU (3), the Cartan matrix looks like

2 -1
( 1 9 ) (8.50)
For the G5 algebra we have just analyzed, it looks like
2 -1
( 3 9 ) (8.51)

8.8 Finding all the roots

We now show how to use the Cartan matrix to simplify the procedure of
building up all the roots from the simple roots. When we go from ¢ to ¢ + o/
by the action of the raising operator E,;, this just changes k; to k; + 1, and
thus ¢* — p* to ¢* — p* + Aj;.

kj—)kj+1
C T (8.52)
¢ —p' = q —p + Ay

If we think of the ¢* — p* as the elements of a row vector, this is equivalent to
simply adding the jth row of the Cartan matrix, which is just the vector ¢ — p
associated with the simple root o/. This allows us to streamline the process
of computing the roots. We will describe the procedure and illustrate it first
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for SU(3). Start with the simple roots in the ¢ — p notation. We will put each
in a rectangular box, and arrange them on a horizontal line, which represents
the £ = 1 layer of positive roots — that is the simple roots.

k=1 ®33

It is convenient to put a box with m zeros, representing the Cartan generators,
on a line below, representing the k£ = 0 layer.

= wat 65
k=0 H,

Now for each element of each box we know the ¢* value. For the ith element
of !, ¢ = 2, because the root is part of the SU(2) spin 1 representation
consisting of E i and o - H. For all the other elements, ¢/ = 0, because
o' — oJ is not a root.

=2 0 0 2

k=1 59
k=0 H;

Thus we can compute the corresponding p?.

pP=01 10

- ®50
k=0 e

Since the ith element of o is 2 (because it is a diagonal element of A), the
corresponding p* is zero (of course, since 20 in not a root). For all the
others, p is just minus the entry. For each non-zero p, we draw a line from
the simple root to a new root with & = 2, on a horizontal line above the
k = 1 line, obtained by adding the appropriate simple root. The line starts
above the appropriate entry, so you can keep track of which root got added
automatically. You can also draw such lines from the £ = 0 layertothe k = 1
layer, and the lines for each root will have a different angle. You then try to
put the boxes on the k = 2 layer so that the lines associated with each root
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have the same angle they did between the 0 and 1 layer. These lines represent
the action of the SU(2) raising and lowering operators.

P= 00
g= 1 1

k=2

k=1 (8.57)

k=0

The procedure is now easy to iterate, because everything you need to know
to go from k = £to k = £ + 1 is there in your diagram. At each stage, you
compute p by subtracting the element of the vector from the corresponding g.
For SU (3), the procedure terminates at £ = 2, because all the ps are zero.

Clearly, we could have continued this diagram farther down and shown
the negative roots in the same way.

k=2
k=1
k=0 (8.58)
k=-1
k=—2

8.9 The SU(2)s

The transformation properties of the roots under the two SU(2)s should be
obvious from (8.58). In fact, instead of thinking about p and ¢, we can just
see how each Ej3 value fits into an SU(2) representation. Then the process
terminates as soon as all the SU(2) representations are completed. This is
equivalent to actually computing the ps and gs, because we got the master
formula by thinking about this SU(2) structure anyway, but it is much faster
and easier.



118 CHAPTER 8. SIMPLE ROOTS

Let us illustrate this with the diagram for G'5:

k=5
k=4
k=3
k=2
k=1 (8.59)
k=0

The argument in terms of the SU(2) structure goes as follows. We know
that the simple roots o' = and o? = @ are the highest weights of
spin 1 representations for their respective SU (2)s. EI must be the bottom
of a doublet under o2, because of the —1, and @ is the bottom of a spin

3/2 quartet under o because of the —3. So we just follow these up to the
end, makini sure that each root fits happily into representations under all the

SU(2)s. [—11]is fine because it is the top of the o doublet and in the o'

quartet. is fine because it is an o singlet and in the o' quartet.
finishes the o! quartet and starts a new o doublet. And finally, finishes
the o2 doublet and is an o singlet, so it doesn’t start anything new, and the
process terminates.

8.10 Constructing the G, algebra

We will do another example of this procedure later. Now let’s stay with G2
and construct the algebra. The two relevant raising operators are

1
Ef = E, E;_ = —-\/—?)_-Ea2 (8.60)

Start with the | E,2) state. We know, because p = 3 and g = 0 or by looking at
the roots in (8.59) that it is the lowest weight state in a spin 3/2 representation
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of the o' SU(2). Call it
IEaz) = |3/2’—3/271> (8.61)

Then applying the o! raising operator

|[Ea17 a2]>
_ \/§ 13/2,-1/2,1) (8.62)

3
~Va |Eat +02)

The last line is a definition, in that it involves a phase choice, but the con-
struction using the raising operator guarantees that we have the normalization
right. Applying the raising operator again gives

I[Eal ’ [Ea1 ’ az]])

_ 2\/§ 13/2,1/2,1) (8.63)
= \/glE2a1+a2>

and a third time gives

'[Eal’ [Eal’ [Ea1 ’ Ea2]]])

3
= \/;/6 13/2,3/2,1) (8.64)
=3 !E3a1+a2>

=3]1/2,-1/2,2)

where we have written the last line because this is also the lowest weight state
of spin 1/2 representation of the o® SU(2). Then applying the o raising
operator gives

l[Ea2a [E;al ’ [Eal ) [Eal’ a"’m])
= 3V37511/2,1/2,2) (8.65)

g V2

=7 | E3q1 +202)

Putting this all together, we have expressions for all the positive roots in
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terms of the generators associated with the simple roots:

Ept o2 =1/ = [Egt, Eoe]

Y

e

[Ealv [Eal ’ Ea2]]
Eo, [Eal’ [Eal ’ Ea?]]]

Eo1,,2 =
2al +a (866)

E3p1 102 = 5{
V6

E'3ozl—l~2oz2 = T [Ea27 {Eala [Ealv [Eala a2]m

This is enough to determine all the commutation relations by just repeatedly
using the Jacobi identity. For example, let’s check that the ! lowering oper-
ator acts as we expect. For example

[E_al, Eal +a2]
2
= \/j [E—al ) [Eal y Ea2]]
2
= § [[E——al7Ea1] 7Ea2] (8.67)

=20 BB,

2 3
= — §a1-012Ea2 =\/;Ea2

This is what we expect for a lowering operator acting on |3/2, —1/2) state.
The other relations can be found similarly. The general form involves some
multiple commutator of negative simple root generators with a multiple com-
mutator of positive simple root generators. When these are rearranged using
the Jacobi identity, the positive and negative generators always eat one an-
other in pairs, so that in the end you get one of the positive root states, or one
of the negative root states or a Cartan generator, so the algebra closes.

8.11 Another example: the algebra C’

Let’s look at the algebra corresponding to the following Dynkin diagram

O—C=0 (8.68)

where 0 9
=02 =1 ¥ =2 (8.69)
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The Cartan matrix is

2 -1 0
-1 2 -1 (8.70)
0o -2 2

Then the construction of the positive roots goes as follows:!

[2-10] F12-1 [0-22] (8.71)

000

This algebra is called C3. It is part of four infinite families of simple
compact Lie algebras, called the classical groups. We will discuss them all
later.

8.12 Fundamental weights

Suppose that the simple roots of some simple Lie algebra are o/ for j =
1 to m. The highest weight, u, of an arbitrary irreducible representation, D
has the property that u + ¢ is not a weight for any positive root, ¢. From the
preceding discussion, it is clearly sufficient that 1 + o not be a weight in the
representation for any j, because then

Eqils) = 0Yj 8.72)

which implies that all positive roots annihilate the state, because any positive
root can be expressed as a multiple commutator of simple roots. We will
see soon that this is an if and only if statement, because an entire irreducible

'Here, because the group is rank 3, we are projecting a three dimensional root space onto
two dimensions — for groups of higher rank, these diagrams can get quite busy.
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representation can be constructed by applying lowering operators to any state
with this property. So if (8.72) is true, then p is the highest weight of an
irreducible representation. This means that for every E,; acting on |u), p =
0, and thus .
2a7 - 7 .,
=/ 8.7
— (8.73)

where the ¢/ are non-negative integers. Because the a’s are linearly indepen-
dent, the integers ¢ completely determine . Every set of #7 gives a s which
is the highest weight of some irreducible representation.

Thus the irreducible representations of a rank m simple Lie algebra can
be labeled by a set of m non-negative integers, /. These integers are some-
times called the Dynkin coefficients.

It is useful to consider the weight vectors, 7, satisfying

J.uk
2°‘aj2“ = 6k (8.74)

Every highest weight, 4, can be uniquely written as
m . .
p=>_ 0y (8.75)
j=1

We can therefore build the representation with highest weight 1 by construct-
ing a tensor product of £! representation of highest weight u!, £2 with highest
weight 12, and so on. This representation will generally be reducible, but we
can always then pick out the representation u by applying lowering operators
to |p).

The vectors p are called the fundamental weights and the m irreducible
representations that have these as highest weights are called the fundamental
representations. We will sometimes denote them by D’. Remember that
the superscripts are just labels. The vectors also have vector indices. It’s
potentially confusing because both run from 1 to m.

There is more to say about the Dynkin coefficients. Since the fundamen-
tal weights form a complete set, we can expand any weight of any representa-
tion in terms of them, as in (8.75). Then we can run the argument backwards
and get (8.73) which implies that for a general p,

O=g —p (8.76)

that is #7 is the ¢/ — p’ value for the simple root o . Thus the matrix elements
of the vectors we were manipulating in constructing the positive roots of var-
ious algebras were just the Dynkin coefficients of the roots (though of course,
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for a general weight or root, the Dynkin coefficients will not necessarily be
positive). In particular, the highest box in the construction is just the highest
weight in the adjoint representation. The rows of the Cartan matrix are the
Dynkin coefficients of the simple roots. Later, we will use a similar analysis
to discuss arbitrary representations.

8.13 The trace of a generator

This is a good place to prove a theorem that we will see often in examples,
and that will play a crucial role in the discussion of unification of forces:

Theorem 8.9 The trace of any generator of any representation of a compact
simple Lie group is zero.

Proof: It suffices to prove this in the standard basis that we have developed
in chapter 6 and this chapter, because the trace is invariant under similarity
transformations. In the weight basis, every generator is a linear combination
of Cartan generators and raising and lowering operators. The trace of raising
or lowering operators is zero because they have no diagonal elements. The
Cartan generators can be written as linear combinations of & - H, because
the simple roots, &', are complete. But each & - His proportional to the
generator of an SU(2) subalgebra and its trace is zero because every SU(2)
representation is symmetrical about 0 — the spin runs from —j to j. Thus
the Cartan generators have zero trace and the theorem is proved.

Problems

8.A. Find the simple roots and fundamental weights and the Dynkin di-
agram for the algebra discussed in problem (6.C).

8.B. Consider the algebra generated by o, and 0,7; where o, and 7, are
independent Pauli matrices. Show that this algebra generates a group which is
semisimple but not simple. Nevertheless, you can define simple roots. What
does the Dynkin diagram look like?

8.C. Consider the algebra corresponding to the following Dynkin dia-
gram
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where
ol? = a2 =2 o3t =1
Note that this is similar to C3 in (8.68), but the lengths (and relative
lengths) are different. Find the Cartan matrix and find the Dynkin coefficients
of all of the positive roots, using the diagrammatic construction described in
this chapter. Don’t forget to put the lines in the right place — this will make

it harder to get confused.



Chapter 9

More SU(3)

In this chapter, we study other irreducible representations of SU(3) and in
the process, learn some useful general things about the irreducible represen-
tations of Lie algebras.

9.1 Fundamental representations of SU (3)
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