


AN INTRODUCTION TO

PARTICLE PHYSICS 
AND THE
STANDARD MODEL

82981_FM.indd   1 10/23/09   11:36:32 AM





A TAYLOR & FRANC IS BOOK

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton   London   New York

ROBERT MANN
UNIVERSITY OF WATERLOO
ONTARIO, CANADA

82981_FM.indd   3 10/23/09   11:36:32 AM



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-8298-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any copyright material has 
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Mann, Robert, 1955-
An introduction to particle physics and the standard model / Robert Mann.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-8298-2 (hardcover : alk. paper)
1. Particles (Nuclear physics) 2.  Quark models. 3.  String models.  I. Title.

QC793.2.M36 2010
539.7’2--dc22 2009026775

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com 

82981_FM.indd   4 10/23/09   11:36:32 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-8298-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any copyright material has 
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Mann, Robert, 1955-
An introduction to particle physics and the standard model / Robert Mann.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-8298-2 (hardcover : alk. paper)
1. Particles (Nuclear physics) 2.  Quark models. 3.  String models.  I. Title.

QC793.2.M36 2010
539.7’2--dc22 2009026775

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com 

82981_FM.indd   4 10/23/09   11:36:32 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-8298-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any copyright material has 
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Mann, Robert, 1955-
An introduction to particle physics and the standard model / Robert Mann.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-8298-2 (hardcover : alk. paper)
1. Particles (Nuclear physics) 2.  Quark models. 3.  String models.  I. Title.

QC793.2.M36 2010
539.7’2--dc22 2009026775

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com 

82981_FM.indd   4 10/23/09   11:36:32 AM

The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a 
Creative Commons Attribution-Non Commercial 4.0 International.

DOI: 10.1201/9781420083002

Open Access funded by SCOAP3

Copyright 2021 Robert Mann

This eBook was converted to open access in 2021 through the sponsorship of SCOAP3 licensed  
under the terms of the creative commons Attribution-NonCommercial 4.0 International License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits use, sharing, adaptation distribution 
and reproduction in any medium or format, as long as you give appropriate credit to the author(s)  
and the source, provide a link to the creative commons license and indicate if changes were made, this 
license does not permit the Contribution to be used commercially.

https://creativecommons.org/licenses/by-nc/4.0/
http://www.taylorandfrancis.com
http://www.taylorandfrancis.com
http://www.crcpress.com


Contents

Preface xiii

Acknowledgments xvii

Further Reading xix

1 Introduction and Overview 1
1.1 Methods of Study . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Large Accelerators . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Precision Measurements . . . . . . . . . . . . . . . . . 3
1.1.4 Cosmological Data . . . . . . . . . . . . . . . . . . . . 4
1.1.5 Empirical Analysis . . . . . . . . . . . . . . . . . . . . 6
1.1.6 Model Building . . . . . . . . . . . . . . . . . . . . . . 6
1.1.7 Numerical Computation . . . . . . . . . . . . . . . . . 7
1.1.8 Mathematical Foundations . . . . . . . . . . . . . . . . 7
1.1.9 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Bosons and Fermions . . . . . . . . . . . . . . . . . . . 9
1.2.2 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 A Review of Special Relativity 23
2.1 Basic Review of Relativity . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Relativity of Simultaneity . . . . . . . . . . . . . . . . 24
2.1.2 Length Contraction . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.4 Velocity Addition . . . . . . . . . . . . . . . . . . . . . 28

2.2 4-Vector Notation . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Spacetime Structure . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Momentum and Energy . . . . . . . . . . . . . . . . . . . . . 33
2.5 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Broadside Collision . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Compton Scattering . . . . . . . . . . . . . . . . . . . 38
2.5.3 3-Body Decay . . . . . . . . . . . . . . . . . . . . . . . 39

v



vi

2.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Symmetries 45
3.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Axioms of a Group . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Representations . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Irreducible Representations . . . . . . . . . . . . . . . 50
3.1.4 Multiplication Tables . . . . . . . . . . . . . . . . . . . 51

3.2 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 The Rotation Group SO(3) . . . . . . . . . . . . . . . . . . . 55
3.5 Appendix: Lie Algebras from Lie Groups . . . . . . . . . . . 58
3.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Conservation Laws 63
4.1 The Action Principle . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Spacetime Symmetries and Their Noether Currents . . . . . . 68

4.3.1 Spatial Translations . . . . . . . . . . . . . . . . . . . 68
4.3.2 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Time Translations . . . . . . . . . . . . . . . . . . . . 69

4.4 Symmetries and Quantum Mechanics . . . . . . . . . . . . . . 70
4.4.1 Spatial Translations . . . . . . . . . . . . . . . . . . . 71
4.4.2 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Time Translations . . . . . . . . . . . . . . . . . . . . 73

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Particle Classification 77
5.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Basic Classification . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Spectroscopic Notation . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Adding Angular Momenta . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Appendix: Tools for Angular Momenta . . . . . . . . . . . . . 87

5.5.1 Pauli-Matrices . . . . . . . . . . . . . . . . . . . . . . 87
5.5.2 Clebsch-Gordon Tables . . . . . . . . . . . . . . . . . . 88

5.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Discrete Symmetries 93
6.1 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Parity of the Photon . . . . . . . . . . . . . . . . . . . 96
6.1.2 Parity Conservation . . . . . . . . . . . . . . . . . . . 96

6.2 Time-Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



vii

6.2.1 Detailed Balance . . . . . . . . . . . . . . . . . . . . . 98
6.3 Charge Conjugation . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Charge Conjugation of the Pion . . . . . . . . . . . . . 101
6.3.2 Charge Conjugation of Fermions . . . . . . . . . . . . 101

6.4 Positronium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 A Puzzle with ORTHO . . . . . . . . . . . . . . . . . 104
6.4.2 Testing Fermion-Antifermion Parity . . . . . . . . . . 105

6.5 The CPT Theorem . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Accelerators 111
7.1 DC Voltage Machines . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Linacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Focusing the Beam . . . . . . . . . . . . . . . . . . . . 116
7.3 Synchrotrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.1 Focusing Beams at Synchrotrons . . . . . . . . . . . . 120
7.4 Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 The Future of Accelerators . . . . . . . . . . . . . . . . . . . 132
7.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Detectors 135
8.1 Energy Transfer and Deposition . . . . . . . . . . . . . . . . . 135

8.1.1 Charged Particles . . . . . . . . . . . . . . . . . . . . . 135
8.1.2 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 Detector Types . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.1 Scintillation Counters . . . . . . . . . . . . . . . . . . 144
8.2.2 Cloud Chambers . . . . . . . . . . . . . . . . . . . . . 146
8.2.3 Bubble Chambers . . . . . . . . . . . . . . . . . . . . . 146
8.2.4 Spark Chambers . . . . . . . . . . . . . . . . . . . . . 148
8.2.5 Wire Chambers . . . . . . . . . . . . . . . . . . . . . . 148
8.2.6 Time Projection Chambers . . . . . . . . . . . . . . . 149
8.2.7 Cerenkov Counters . . . . . . . . . . . . . . . . . . . . 150
8.2.8 Solid State Detectors . . . . . . . . . . . . . . . . . . . 152
8.2.9 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Modern Collider Detectors . . . . . . . . . . . . . . . . . . . . 156
8.3.1 Tracking Chambers . . . . . . . . . . . . . . . . . . . . 156
8.3.2 Electromagnetic Shower Detectors . . . . . . . . . . . 156
8.3.3 Hadron Shower Calorimeters . . . . . . . . . . . . . . 157
8.3.4 Muon Chambers . . . . . . . . . . . . . . . . . . . . . 158

8.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



viii

9 Scattering 161
9.1 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3 Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.4 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.4.1 General Features of Decay Rates and Cross-Sections . 171
9.5 2-Body Formulae . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.5.1 2-Body Decay Rate . . . . . . . . . . . . . . . . . . . . 172
9.5.2 2-Body CM Cross-Section . . . . . . . . . . . . . . . . 173
9.5.3 2-Body Lab Cross-Section . . . . . . . . . . . . . . . . 173

9.6 Detailed Balance Revisited . . . . . . . . . . . . . . . . . . . . 174
9.6.1 Pion Spin . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10 A Toy Theory 179
10.1 Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.2 A-Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.3 Scattering in the Toy Theory . . . . . . . . . . . . . . . . . . 187
10.4 Higher-Order Diagrams . . . . . . . . . . . . . . . . . . . . . 190
10.5 Appendix: n-Dimensional Integration . . . . . . . . . . . . . . 194
10.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11 Wave Equations for Elementary Particles 201
11.1 Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . . 202
11.2 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 203
11.3 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . 206
11.4 Antiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.5 Appendix: The Lorentz Group and Its Representations . . . . 210
11.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

12 Gauge Invariance 219
12.1 Solutions to the Dirac Equation . . . . . . . . . . . . . . . . . 219
12.2 Conserved Current . . . . . . . . . . . . . . . . . . . . . . . . 221
12.3 The Gauge Principle . . . . . . . . . . . . . . . . . . . . . . . 222
12.4 The Maxwell-Dirac Equations . . . . . . . . . . . . . . . . . . 223

12.4.1 Physical Features of the Maxwell-Dirac Equations . . 225
12.5 The Wavefunction of the Photon . . . . . . . . . . . . . . . . 226
12.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

13 Quantum Electrodynamics 231
13.1 Feynman Rules for QED . . . . . . . . . . . . . . . . . . . . . 234
13.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

13.2.1 Electron-Muon Scattering . . . . . . . . . . . . . . . . 236
13.2.2 Bhabha Scattering (electron-positron scattering) . . . 238
13.2.3 Compton Scattering . . . . . . . . . . . . . . . . . . . 240



ix

13.3 Obtaining Cross-Sections . . . . . . . . . . . . . . . . . . . . . 241
13.4 Appendix: Mathematical Tools for QED . . . . . . . . . . . . 246

13.4.1 The Casimir Trick . . . . . . . . . . . . . . . . . . . . 246
13.4.2 Dirac γ−Matrices and Their Traces . . . . . . . . . . 247

13.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

14 Testing QED 251
14.1 Basic Features of QED Scattering . . . . . . . . . . . . . . . . 252

14.1.1 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 252
14.1.2 Propagator . . . . . . . . . . . . . . . . . . . . . . . . 253
14.1.3 Matrix element . . . . . . . . . . . . . . . . . . . . . . 253
14.1.4 Dimensionality . . . . . . . . . . . . . . . . . . . . . . 254
14.1.5 Antiparticles . . . . . . . . . . . . . . . . . . . . . . . 254

14.2 Major Tests of QED . . . . . . . . . . . . . . . . . . . . . . . 255
14.2.1 Scattering Processes . . . . . . . . . . . . . . . . . . . 255
14.2.2 Anomalous Magnetic Moments . . . . . . . . . . . . . 256
14.2.3 Lamb Shift . . . . . . . . . . . . . . . . . . . . . . . . 262
14.2.4 Running Coupling Constant . . . . . . . . . . . . . . . 264

14.3 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

15 From Nuclei to Quarks 271
15.1 Range of the Nuclear Force . . . . . . . . . . . . . . . . . . . 271
15.2 Isospin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
15.3 Strangeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
15.4 Flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
15.5 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
15.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

16 The Quark Model 291
16.1 Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
16.2 Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
16.3 Mass Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 300
16.4 Magnetic Moments . . . . . . . . . . . . . . . . . . . . . . . . 305
16.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

17 Testing the Quark Model 309
17.1 Vector-Meson Decay . . . . . . . . . . . . . . . . . . . . . . . 309
17.2 Hadron Production . . . . . . . . . . . . . . . . . . . . . . . . 312
17.3 Elastic Scattering of Electrons and Protons . . . . . . . . . . 316

17.3.1 The Photon-Proton Vertex . . . . . . . . . . . . . . . 317
17.3.2 The Rosenbluth Formula . . . . . . . . . . . . . . . . . 318

17.4 Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . 320
17.5 Quark Model Predictions . . . . . . . . . . . . . . . . . . . . 323
17.6 Quark Structure Functions . . . . . . . . . . . . . . . . . . . . 326
17.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328



x

18 Heavy Quarks and QCD 331
18.1 Charm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

18.1.1 The OZI Rule . . . . . . . . . . . . . . . . . . . . . . . 337
18.2 Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
18.3 Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
18.4 QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

18.4.1 Basic Physical Features of QCD . . . . . . . . . . . . . 349
18.5 Appendix: QCD and Yang-Mills Theory . . . . . . . . . . . . 352

18.5.1 Feynman Rules for QCD . . . . . . . . . . . . . . . . . 352
18.5.2 Yang-Mills Theory . . . . . . . . . . . . . . . . . . . . 356

18.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

19 From Beta Decay to Weak Interactions 361
19.1 Fermi’s Theory of Beta-Decay . . . . . . . . . . . . . . . . . . 363
19.2 Neutrino Properties . . . . . . . . . . . . . . . . . . . . . . . 367
19.3 Kaon Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . 374
19.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

20 Charged Leptonic Weak Interactions 383
20.1 Neutrino-Electron Scattering . . . . . . . . . . . . . . . . . . 386
20.2 Muon Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
20.3 Appendix: Mathematical Tools for Weak Interactions . . . . . 392

20.3.1 A Note on the ε−Tensor . . . . . . . . . . . . . . . . 392
20.4 Appendix: 3-Body Phase Space Decay . . . . . . . . . . . . . 393
20.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

21 Charged Weak Interactions of Quarks and Leptons 399
21.1 Neutron Decay . . . . . . . . . . . . . . . . . . . . . . . . . . 399
21.2 Pion Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
21.3 Quark and Lepton Vertices . . . . . . . . . . . . . . . . . . . 406
21.4 The GIM Mechanism . . . . . . . . . . . . . . . . . . . . . . . 412
21.5 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 415
21.6 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

22 Electroweak Unification 423
22.1 Neutral Currents . . . . . . . . . . . . . . . . . . . . . . . . . 423
22.2 Electroweak Neutral Scattering Processes . . . . . . . . . . . 426

22.2.1 Neutrino-Electron Neutral Current Scattering . . . . . 428
22.2.2 Electron-Positron Neutral Current Scattering . . . . . 430

22.3 The SU(2)×U(1) Model . . . . . . . . . . . . . . . . . . . . 433
22.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435



xi

23 Electroweak Symmetry Breaking 437
23.1 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . 437
23.2 Breaking the SU(2) Symmetry . . . . . . . . . . . . . . . . . 442

23.2.1 The Gauge Equations . . . . . . . . . . . . . . . . . . 443
23.2.2 Gauge-Field Mixing . . . . . . . . . . . . . . . . . . . 445
23.2.3 Gauge Boson Masses . . . . . . . . . . . . . . . . . . . 447

23.3 Fermion Masses . . . . . . . . . . . . . . . . . . . . . . . . . . 448
23.4 Appendix: Feynman Rules for Electroweak Theory . . . . . . 455
23.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

24 Testing Electroweak Theory 467
24.1 Discovery of the W and Z Bosons . . . . . . . . . . . . . . . 467
24.2 Lepton Universality and Running Coupling . . . . . . . . . . 473
24.3 The Search for the Higgs . . . . . . . . . . . . . . . . . . . . . 476
24.4 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

25 Beyond the Standard Model 483
25.1 Neutrino Oscillation . . . . . . . . . . . . . . . . . . . . . . . 485
25.2 Neutrino Experiments . . . . . . . . . . . . . . . . . . . . . . 488

25.2.1 Solar Neutrinos . . . . . . . . . . . . . . . . . . . . . . 488
25.2.2 Atmospheric Neutrinos . . . . . . . . . . . . . . . . . . 493
25.2.3 Laboratory Neutrinos . . . . . . . . . . . . . . . . . . 495

25.3 Neutrino Masses and Mixing Angles . . . . . . . . . . . . . . 497
25.4 Axions and the Neutron Electric Dipole Moment . . . . . . . 500
25.5 Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

25.5.1 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . 506
25.5.2 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . 507
25.5.3 Grand Unification . . . . . . . . . . . . . . . . . . . . 508
25.5.4 Supersymmetry and Superstrings . . . . . . . . . . . . 510

25.6 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
25.7 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

A Notation and Conventions 517
A.1 Natural Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
A.2 Relativistic Notation . . . . . . . . . . . . . . . . . . . . . . . 518

A.2.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
A.2.2 Momentum and Energy . . . . . . . . . . . . . . . . . 521
A.2.3 Lorentz Transformations . . . . . . . . . . . . . . . . . 521

A.3 Greek Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . 522

B Kronecker Delta and Levi-Civita Symbols 523
B.1 Kronecker Delta . . . . . . . . . . . . . . . . . . . . . . . . . . 523
B.2 Levi-Civita Symbol . . . . . . . . . . . . . . . . . . . . . . . . 524

C Dirac Delta-Functions 527



xii

D Pauli and Dirac Matrices 529
D.1 Pauli Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 529
D.2 Dirac Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 530
D.3 Identities and Trace Theorems . . . . . . . . . . . . . . . . . 530

E Cross-Sections and Decay Rates 533
E.1 Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
E.2 Cross-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

E.2.1 2-Body CMS . . . . . . . . . . . . . . . . . . . . . . . 534
E.2.2 2-Body Lab Frame . . . . . . . . . . . . . . . . . . . . 534

F Clebsch-Gordon Coefficients 537

G Fundamental Constants 541

H Properties of Elementary Particles 543

I Feynman Rules for the Standard Model 551

J The Large Hadron Rap 557

References 561

Index 579



Preface

The purpose of this book is to introduce 4th-year or senior undergraduate
students to what is known as the Standard Model of Particle Physics, the
model that presently encompasses all of our empirical knowledge about the
subject.

Particle physics was in a near-continual state of flux for several decades,
finally settling down around the mid 1990s when the mass of the Z boson had
been accurately measured, the number of light quarks and leptons had been
established, and the top quark had been discovered. The Standard Model has
since then faced pretty much every experimental challenge to its authority
with flying colors, and today it stands as the established fundamental theory
of the non-gravitational interactions, describing all known forms of subatomic
matter that we have observed.

The goal of this book is to familiarize students with the Standard Model
and in so doing, with particle physics in general. It grew out of a one-term
course I have taught at the University of Waterloo nearly every year over the
past two decades. It was an interesting course to teach because the subject
matter would change as particle physics continued to develop, with new results
coming out from LEP, Fermilab, Super-K, SNO and more on the experimental
side, and from supersymmetry, string theory, and lattice gauge theory on the
theoretical side. Students taking the course typically had taken at least one
course in quantum mechanics (in which they would have seen the solution
to the hydrogen atom from Schroedinger’s equation), one in mathematical
physics (covering vector calculus, Fourier transforms, and complex functions),
and had a solid background in special relativity (having encountered the basic
phenomena of length contraction and time dilation).

This book assumes that students have a good working knowledge of spe-
cial relativity, quantum mechanics, and electromagnetism. From this basis
students who work through the material will develop a solid command of the
subject and a good working knowledge of the basics of particle physics, in
terms of mathematical foundations, experimental methods, and basic pro-
cesses. Each chapter has a number of questions, and there is a solutions
manual available that has complete answers to all of the questions.

I have taken the approach of describing the Standard Model in terms of its
Electromagnetic, Strong, and Weak components, so that students can under-
stand the subject from the perspective of the reigning paradigm. Throughout
I have endeavored to show why this paradigm does indeed reign – in other
words, how and why the different parts of the Standard Model came to be
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what they are today, particularly pointing out and describing the experiments
that were essential in arriving at these conclusions. I have also made efforts
to show where the Model is in need of improvement and what possible physics
might lie beyond what it describes. This is particularly addressed in the last
chapter, but also appears throughout the book in a number of places. Our
understanding of particle physics is by no means a finished project, and I hope
that students will catch the excitement of the ongoing nature of research in
this subject.

Particle physics is both mathematically and conceptually challenging, and
many have thought that it can only be taught in a very superficial way at
the undergraduate level, if it is taught at all. In my 20 years of teaching this
subject I have found that students can indeed rise to the challenge, if both the
formalism and background are carefully explained to them in a manner that
allows them to connect with the physics they have already learned. I have
taken that approach in this book, beginning (after a review of relativity) with
some basic concepts in group theory and classical mechanics that lead into the
subjects of symmetries, conservation laws, and particle classification. Three
chapters following that are devoted to the experimental tools and methods,
and analysis of particle physics. The next three chapters introduce students
to Feynman diagrams, wave equations, and gauge invariance, building up to
the theory of Quantum Electrodynamics. The remainder of the book then
deals with the three pillars of the Standard Model: QED in Chapters 13 and
14, the strong interactions and QCD in Chapters 15 – 18, and Electroweak
interactions in Chapters 19 – 24, with the final chapter devoted to what might
lie beyond the Standard Model. I have also taken an historical approach to
the development of the subject wherever possible, showing how it emerged
from the physics that most students have learned about in other courses.

The book is designed to be used in a single course over one term, essentially
twelve weeks of lectures in a three-hour lecture week. Though I would typically
cover two chapters per week, there is a bit too much in the book for one term,
and so a few topics inevitably get scant attention. I suggest that students
read the first chapter on their own, and that instructors need cover only the
formalism in chapter 2 that may be unfamiliar to students. Instructors may
also wish to omit the material on the Higgs mechanism in Chapter 23, and
perhaps the material on QCD in Chapter 18 if time does not permit.

Theoretical Particle Physics rests on the foundation of Quantum Field The-
ory (QFT), that subject combining both special relativity and quantum me-
chanics into a unified whole. I have found that students can learn and make
use of the basic results of QFT – Feynman diagrams, scattering amplitudes,
antiparticles, decay processes – without having to go through a full discussion
of path integrals, Wick’s theorem, Interaction pictures, and the like. I have
avoided the use of the language of quantum fields, preferring to use the term
wavefunction so that students can make better contact with what they are fa-
miliar with. Throughout the book I acknowledge the quantum field theoretic
foundations on which the subject stands where appropriate. My goal is that
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students see both the forest and the trees, and not get too bogged down in
formalism.

That said, the subject is one requiring serious mathematical and intellec-
tual effort. I have attempted to cater to the more mathematically inclined
students by putting into appendices mathematically challenging material that
enriches but is not essential to the understanding of the material in a given
chapter. Any appendix can be avoided in a first reading of the book, and most
students will probably wish to do this. However, calculational derivations are
made explicit wherever possible, and students willing to work through the
appendices will be rewarded with an enriched understanding of the material
and a set of formidable technical skills.

It is my hope that undergraduate students reading this book or taking a
course that makes use of this book will be inspired by the subject of particle
physics. I also hope that beginning graduate students may be able to make
use of the book as preparation for more advanced courses they might take or
as a resource for basic calculations and background material. I have tended
to err on the side of completeness in my discussion to ensure that students are
able to make use of the book in as broad a range of applications as possible.

This book was written while I was at the University of Waterloo in Ontario,
Canada, and completed while I was on sabbatical at the Kavli Institute for
Theoretical Physics at the University of California, Santa Barbara, California
U.S.A., for whose hospitality I am most grateful. I am also grateful to Don
Marolf and Martin Einhorn for their efforts in ensuring that I could be hosted
there.
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even that is now over 300 pages. I think a better way to access its information
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http://pdg.lbl.gov/
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or process you want with only a couple of clicks of the mouse, along with any
review article you like.
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1

Introduction and Overview

It is remarkable to realize that at the beginning of the 20th century – little
more than 100 years ago – the structure of the atom was unknown. The
electron had only been discovered a few years earlier, and its behavior and
properties were still not well understood. Nobody knew anything about nuclei,
protons, quarks, neutrinos, photons, gluons, and any of the many subatomic
particles that we know about today. Quantum mechanics and special relativity
were unknown conceptual frameworks for describing the physical world.

As the first decade of the 21st century draws to a close, the world will see
the Large Hadron Collider (or LHC) at CERN turn on∗. The thousands of
scientists making use of this enormous machine – 27 kilometers in circumfer-
ence and 24 stories underground – pivot their efforts around a key goal: to
experimentally observe the Higgs particle and to measure its mass. If this
experiment is successful, then we will have full empirical confirmation of the
model – known as the Standard Model – that summarizes everything we know
about the subatomic world at this point in history. Such confirmation would
represent both a triumph of the human intellect and a gift of understand-
ing that would ennoble humankind. Yet if the Higgs particle is not found,
then the situation will be even more exciting. It will mean that something
is wrong with our current understanding of particle physics, something that
will be superseded by – it is hoped – more fundamental knowledge.

So what is particle physics? Particle physics is the study of nature at the
most reductionist level possible: it is the study of the ultimate con-
stituents of matter and the laws governing their interactions. The
idea that matter ultimately consisted of small indivisible particles is an old
idea, going back 2500 years to Democritus and Leucippus of Abdera, a town on
the seacoast of Thrace in Greece [2]. These philosophers proposed that all of
matter was made of ατoµoσ, or atoms (a Greek word meaning “uncuttable”)
and empty space.

This idea survived through the centuries, and was used by scientists such as
Newton, Dalton, Maxwell, and Mendeleyev to explain the behavior of gases
and chemical compounds. It grew into the subjects we now call chemistry and

∗The LHC has attracted a lot of attention worldwide, in part because of the fundamental
questions it addresses and in part because of its large cost. There are many Web sites about
it with information, novels have been written in which the LHC is a principal setting, a
movie, Angels and Demons, in which the LHC plays a role, was released in May 2009, and
there is even a rap (reproduced in Appendix J) about the LHC on YouTube!
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2 An Introduction to Particle Physics and the Standard Model

physics, each of which has further subdivided into a variety of subdisciplines,
that in turn have a healthy synergy with one another.

Particle physics can be regarded as the subdiscipline that pushes the atomic
idea as far as possible. Simply put, it proceeds from two basic observations
about our world, common to everyday experience:

1. Things exist (i.e. there is matter)

2. Things happen (i.e. interactions occur)

The goal of particle physics, then, is to reduce to as elementary a level as
possible our understanding of these two observations.

1.1 Methods of Study

One of things that distinguishes particle physics from most other subdisci-
plines in physics is in its approach to the natural world. In most other subdis-
ciplines – optics, condensed matter physics, acoustics, biophysics – the basic
(or effective) physical laws and constituents are known, and one works out
the consequences of these laws†. However, in particle physics the goal is to
discover what the laws and constituents are – one cannot take them as given.

So how does one study particle physics? As with all of science, research
proceeds on two fronts: experimental and theoretical. Each has a broad range
of intellectual activity, with theoretical efforts often appearing to be nothing
more than abstract mathematics, and experimental work seeming at times
indistinguishable from engineering. Don’t be fooled by superficial appearances
though! Each of these activities plays a vital role in advancing the subject,
and the two approaches have a healthy and vibrant interplay. Conceptually we
can categorize each approach, as summarized in table 1.1. The two columns
in table 1.1 form the primary conceptual categories in each area. There is a
lot of overlap both vertically down the columns and horizontally across the
rows. Let’s look briefly at each category.

1.1.1 Large Accelerators

Most of our experimental knowledge of particle physics comes from colliding
particles together at very high speeds, resulting in very energetic collisions.
For this reason, particle physics is sometimes called high energy physics. Very

†This by no means makes such subdisciplines less intellectually challenging, less valuable,
or less important. Indeed, they have led to an understanding of many novel phenomena
and applications, including vortices, superfluids, photonic band gaps, and more.
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TABLE 1.1

Approaches to Particle Physics
Experimental Theoretical

Large Accelerators Empirical Analysis
Detectors Model Building
Precision Measurements Numerical Computation
Cosmological Data Mathematical Foundations

large machines called accelerators –kilometers in length – are needed to do
this [3]. When we wish to examine very tiny systems (i.e. very short dis-
tances and/or very short times) we must cope with limitations imposed by
the uncertainty principle :

4p4x ≥ } =⇒4p ≥ }/4x⇒ 4p is large for small 4x
4E4t ≥ } =⇒4E ≥ }/4t⇒ 4E is large for small 4t

Also, since from relativity E = mc2, large mass particles need high energies
to be created. Hence we need accelerators that can attain very high energies
in order to study such short distance effects. In order to implement this,
the accelerators need to be quite large in size – we’ll see why in Chapter 7.
The LHC at CERN is currently the largest such machine in the world, and is
capable of accelerating particles to almost the speed of light [4].

1.1.2 Detectors

It does no good to smash particles together unless you can see what happens.
A detector is a machine designed to do just that. There are many kinds of
detectors, as we’ll see in Chapter 8, with the main job of each one being that
of measuring as much physical information about the particles emerging from
a collision as possible: their momenta, their masses, their spins, their charges,
their energies, and so on. These detectors are typically of enormous size – the
ATLAS detector at CERN is as high as a 5-story building (see figure 1.1) –
because of the large amount of sophisticated apparatus needed to ensure that
all of these measurements can take place.

However, large detectors are not the only kinds of detectors employed in
particle physics, nor are all detectors deployed in high-energy collision exper-
iments. This brings us to our next approach.

1.1.3 Precision Measurements

Not all of what we know about particle physics comes from smashing par-
ticles together. Sometimes we need to measure very subtle properties about
particles that cannot be observed in high-energy collisions. For example inter-
actions of neutrinos with other kinds matter (electrons, nuclei) do not require
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FIGURE 1.1
Installation of the beam pipe in the Atlas detector at the LHC in June 2008.
(Photograph: Maximilien Brice, copyright CERN; used with permission).

high energies. Furthermore, they are very infrequent and unlikely to occur.
Hence there is a need for sensitive detectors to pick out the signal from the
noisy background of the everyday world. The Sudbury Neutrino Observa-
tory was an example of a large-scale precision measurement facility designed
to detect the properties of solar neutrinos [5]. Other experiments – searches
for dark matter, axions, and other exotic phenomena – employ detectors of
all shapes and sizes, custom-made to seek out (or place limits on) the phe-
nomenon of interest.

1.1.4 Cosmological Data

The early universe was an environment of a hot plasma of all kinds of particles
[6]. The average temperature – and hence the average collision energy –
was very high, much higher than can be attained in controlled terrestrial
experiments. This means that observations from cosmology can provide us
with useful and important information about particle physics. An example of
this was a cosmological limit on the number of kinds of low-mass neutrinos,
which had to be less than 4 from the corroboration of Big Bang nucleosynthesis
with observation. The limit was later confirmed by experiments on the Z-
particle [7], which showed that there were only three kinds of neutrinos that
were lighter than half the mass of the Z.

It is common today for particle physicists and cosmologists to interact and
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FIGURE 1.2
View of the Sudbury Neutrino Observatory detector after installation of the
bottom photomultiplier tube panels, but before cabling (Photo courtesy of
Ernest Orlando Lawrence Berkeley National Laboratory; used with permis-
sion).
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collaborate with one another, with findings from each subdiscipline shedding
light on findings from the other. In fact, astroparticle physics has pretty much
become a separate subdiscipline of its own, with a community of theorists
and experimentalists actively seeking to further our understanding of this
interesting interdisciplinary subject [8].

1.1.5 Empirical Analysis

You might expect that a key job of a particle physicist is to analyze the data,
and you would be right. The experimentalists do this first, converting raw
data into usable information, such as measurements of the masses or lifetimes
of particles. Theorists make use of this information to seek new patterns in
the data, to critique existing analysis, and to suggest new experiments.

The analysis of the data itself makes use of a variety of mathematical tech-
niques of some sophistication, and today typically require vast amounts of
computer processing. The LHC will produce a data volume of 1 trillion bytes
per second, equivalent to 10,000 sets of an Encylopedia Brittanica each second
[4]. During its expected lifespan the LHC should produce an amount of data
equivalent in volume to that contained in all of the words ever spoken by
humankind in its existence on earth. Such an enormous volume of data per
unit time must be supplemented by a large computational infrastructure, as
well as a very sophisticated level of data processing and programming skill.

1.1.6 Model Building

A very common activity for a particle theorist is to propose a model for
how nature works at the subatomic level. This involves making a clear set of
assumptions about the particle content, the interactions between the particles,
and the basic symmetries respected by each, all with an eye toward making
a falsifiable prediction that an experimentalist could check. For example,
a theorist might suggest that electrons and muons are themselves made of
simpler particles that bind together according to some new force‡.

The difference between a theory and a model is often confusing to new-
comers to the subject. The distinction between the two is rather subtle, and
perhaps can best be understood in the following way. A theory is a basic
mathematical framework used for describing physics. Quantum mechanics,
Yang-Mills theory, and Special Relativity are all examples of these. A model
is a particularization of a theory to a specific context – it still very much has
a mathematical character, but also has a specificity designed to describe a
particular system or situation. For example the quark model is a particular

‡Such models were indeed proposed, with the constituents known by names such as preons
and rishons, and became known as substructure models [9].
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description of the underlying structure of particles such as the proton, neu-
tron, and pion (more generally of all hadrons), that makes use of quantum
mechanics, group theory, and Yang-Mills theory to elucidate its key features.

1.1.7 Numerical Computation

Computers have gone from playing a supplementary role in analyzing data
to an essential role in working out the consquences of physical theory. Many
of the problems in particle physics cannot be analyzed from a theoretical
standpoint without the use of computers. The calculations are simply too
big or too long for any person (or group of persons) to carry out in a reasonable
amount of time.

Lattice gauge theory is a good example [10]. In this approach to understand-
ing the behavior of quarks and gluons, many theorists work on attempting to
solve the basic equations of Quantum Chromodynamics (QCD) on a com-
puter, where spacetime is approximated as a lattice of discrete points. The
goal here is to solve the equations with as few approximations as possible,
something that has eluded formal theoretical analysis thus far.

1.1.8 Mathematical Foundations

This type of work involves a basic exploration of the mathematical structure
of particle physics and its models. It is highly mathematical, and involves
examining the basic foundations of current theory, as well as its proposed
extensions. Here the theorist attempts to prove/refute certain properties of
broad classes of models, with secondary regard as to their empirical content.

String theory is perhaps the best-known example of this kind of work [11].
Over the past 25 years it has given birth to new mathematical methods, new
conceptual frameworks, and new calculational techniques in particle physics,
a number of which could have interesting implications for the subject in the
years to come.

1.1.9 Units

Particle physics is commonly concerned with understanding highly energetic
processes at very short distances. This is a regime where special relativity
and quantum mechanics are both important, as noted earlier, and so both
Planck’s constant } and the speed of light c, which have the values [1]

} = 1.05457266× 10−34 Js

c = 2.99792458× 108 ms−1

must be taken into account. Retention of these constants in every expression
can often be a cumbersome nuisance, so most particle physicists prefer to
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work in what are called natural units where } = h
2π = 1 and c = 1. This also

allows one to set the permittivity of free space, ε0 = 1, provided all charges
are rescaled in units of (}c)−1/2. I will typically adopt these conventions,
except in certain cases where it is useful to illustrate the explicit units. This
will typically be when I display a result that can be directly compared to
experiment (such as a decay rate or a cross-section), in which case the factors
of ~ and c are useful.

With a bit of practice it is not hard to convert an expression in natural
units to one with the proper powers of ~ and c. The general prescription
for any given expression is to (a) express all velocities as a fraction of the
speed of light and all times in terms of the light-travel distance (b) convert
distances into units of inverse energy (or vice versa) as appropriate, using
the conversion factor }c = 197 MeV-fm, and (c) express charges, masses and
momenta in units of energy.

TABLE 1.2

Natural Units
Physical Quantity Notation Units Natural→ Physical

velocity ~β unitless ~β → ~v
c

time t ~/MeV t→ t/~
length d ~c/MeV d→ d/}c
mass m MeV/c2 m→ mc2

momentum ~p MeV/c ~p→ ~pc
charge q unitless q → q√

}c
energy E MeV

So for a given expression that depends on mass, time, momentum, energy
and charge, to convert it to standard units just apply the conversion factors
in the right-hand column of table 1.2. The resultant expression will be in
terms of physical quantities with respective units of kilograms, seconds, kg-
meters/second, Joules, and electrostatic units. There will also be a number of
factors of ~ c that will cancel out to leave an appropriate resultant expression.

For example in natural units the Compton wavelength λ = 1/m. To convert
this to physical units we set λ → λ/~c and m → mc2, giving λ → λ/~c =
1/mc2 or λ = ~/mc, which is the standard formula.
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1.2 Overview

The picture of particle physics circa 1940 was that everything in the universe
was made of 4 particles:

e− the electron
p the proton
n the neutron
ν the neutrino

All known chemical elements were made of the first three of these in some
combination, and it was generally believed at that time that all known ex-
traterrestrial matter – stars, planets, and interstellar dust – were made of
the same three particles. The last of these, the neutrino, was a hypothetical
particle needed to ensure that radioactive processes respected conservation of
energy and angular momentum, but had no direct observational confirmation
at that time.

The following 60 years saw a radical modification in our understanding of
the subatomic world. As experimental energies increased, hundreds of new
particles (almost all of them unstable) were discovered. For a period of time
the subject was in a considerable amount of confusion, but by the end of
the 1970s a general understanding of the situation had emerged, along with
a model – now called the Standard Model – that could describe all current
knowledge of the subject [12].

1.2.1 Bosons and Fermions

Today we know that all matter and its physical interactions can be described
in terms of two basic kinds of particles: bosons and fermions. Bosons are
particles of integer spin in units of Planck’s constant } – they are the ele-
mentary particles that govern what we describe as a force in the everyday
world. Fermions are particles of half-integer spin in the same units, and are
the elementary constituents of what we call matter.

Bosons and fermions are distinguished by their collective properties under
the interchange of two particles. Suppose we have a system consisting of two
identical particles. If we enclose the system in a box, then the probability of
finding one particle in a given position and the other in another position –
let’s call this P (1, 2) – must be equal to the probability of finding the particles
interchanged in position (in other words we have P (1, 2) = P (2, 1)) because
they are identical and so we can’t tell them apart. Since quantum mechanics
implies that probabilities are given by square of wavefunction amplitudes, we
have

P (1, 2) = P (2, 1)⇒ |Ψ(1, 2)|2 = |Ψ(2, 1)|2 (1.1)
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However, this doesn’t mean that the wavefunction Ψ(1, 2) = Ψ(2, 1). Instead
we have the more general possibility that Ψ(1, 2) = eiφΨ(2, 1) where φ is some
phase. Applying the switch again would give Ψ(1, 2) = e2iφΨ(1, 2), implying
that eiφ = ±1, or

Ψ(1, 2) =
{

+Ψ(2, 1) boson
−Ψ(2, 1) fermion (1.2)

and we mathematically define bosons to be particles whose wavefunctions
maintain sign under particle interchange, whereas fermions are particles whose
wavefunctions flip sign under particle interchange. The spin-statistics theorem
states that all fermions have half-integer spin and all bosons have integer spin
[13]. In this text I will assume as valid the conditions that render the theorem
true§.

Note that indistinguishable means just that – two elementary particles of
the same type are perfect duplicates of one another. It is simply not possible
by any measurement we can make to tell one electron apart from another,
or put a label on one π+ to distinguish it from another π+. This property
of elementary particles is unlike anything in our everyday experience in the
macroscopic world, where we are used to things that are similar – such as
identical twins, or computers off of an assembly line – but not exactly the
same. The elementary microscopic constituents of our universe are huge in
number – about 1080 particles in all – but are of only 38 elementary types
(including antiparticles), as we shall see shortly. It could have been otherwise,
in which case it is hard to imagine how a coherent physical description of the
universe would be possible. Just imagine trying to construct a theory with
1080 different kinds of particles, each of which had its own distinct properties!

Of course the existence of these 38 elementary types is our state of knowl-
edge at the present time, and we now know that it is almost certainly incom-
plete. Over the past three decades we have discovered from observations in
cosmology and astronomy that only 4% of the total energy of the universe
is made of known matter (i.e. the matter that makes up the elements in
the periodic table). Another 23% of the this energy budget is dark matter,
whose presence is known to us only by the gravitational attraction it exerts
on galaxies and clusters of galaxies [6]. Its composition in terms of elementary
particles remains unknown to us at this point in history. The remaining part
of the energy – 73% – is called dark energy, which is even more mysterious
since it is causing the universe to accelerate in its expansion, whereas ordi-
nary mass/energy (and the dark matter) would exert a decelerating influence.
The ultimate composition of this form of energy is not at all clear, though
the simplest explanation would appear to be that it is the vacuum energy

§A generalization of the result that all bosons have integer spin and all fermion half-integer
spin (in units of }) occurs in theories with only two space dimensions. In this case it is
possible to have particles that have any possible spin, and such particles are called “anyons.”
These kinds of wavefunctions have applications in condensed matter physics [14].
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of the universe, i.e. the ground-state energy of the aggregate of all bosons
and fermions [15]. The problem with this interpretation is that although the
cosmological vacuum energy is the largest fraction of the total energy of the
universe (about 3/4), theoretical calculations indicate that it should be much
larger than the value we observe – about 10120 times larger!

Nobody knows how to resolve the puzzles of dark energy and dark matter,
and much effort is currently being expended by cosmologists, astronomers,
and particle physicists to find out what these things are and how they behave.
For the most part I will ignore these interesting issues thoughout most of this
textbook, concentrating on elucidating the structure of the 4% of matter that
we do know something about, and which is described by the Standard Model
of particle physics. But there is one thing that we can be fairly confident
about – whatever the dark stuff is, its elementary constituents will be bosons
and/or fermions.

1.2.2 Forces

As far as experiment has been able to tell us, all known interactions in the
world are governed by some combination of four basic forces: gravity, elec-
tromagnetism, nuclear (called the strong force), and radioactive (called the
weak force). These forces have very different properties and manifestations,
as illustrated in table 1.3.

Note that each force is associated with something called a mediator. What
does this mean? Suppose we have a source of electric charge Q and we want to
know what force a small test charge q experiences in its vicinity. In classical
physics the answer is well known: we express the effect of Q on q in terms of
something called an electric field −→E :

−→
F on q = q

−→
E =

Qq

4πr2
r̂ + · · · = (monopole) + (dipole) +(quadrupole, etc.)

which we say is due to the source Q. It is a vector, each component of which
is a continuous function of the distance r. Of course the electric field itself is
not directly observable; only the force −→F is.
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This classical notion of force is modified at short distances due to quantum
effects [16]. As Planck and Einstein noted in the last century, in order to
describe certain phenomena (such as blackbody radiation or the photoelectric
effect) the electromagnetic field should be “lumpy” – that is, it should come
in distinct quanta called photons. In this picture, the source Q influences q
by exchanging a photon with it, as shown in figure 1.3.

FIGURE 1.3
The left side is the classical picture of forces and fields, in which an element
of charge Q a displacement ~r away exerts a force ~F on a test charge q. The
right side is the quantum picture, in which the force is mediated by photons
exchanged between Q and q, here represented by the dashed line.

We say that the exchanged photon is virtual, which means that it is not
directly observed. But this means that we shouldn’t see it transmit any net
energy or momentum. In other words, the exchange of this virtual photon can
only satisfy the requirements of energy and momentum conservation provided
that the energy ∆E and momentum ∆−→p exchanged in the process cannot be
detected. This will be true if these quantities are bounded within the limits
of what the uncertainty principle permits (so that any putative detection of
the photon is washed out by quantum uncertainty). Specifically this means
that

∆E∆t ≤ } and | ∆−→p | |∆−→r | ≤ } (1.3)

where

∆t = r/c = time scale for photon exchange to take place (1.4)
|∆−→r | = r = distance scale for photon exchange to take place

So the force experienced by q due to N virtual photons each transferring
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momentum ∆−→p is

−→
F = N

∆−→p
∆t

= N
(}/r)
(r/c)

r̂ = N}c
r̂

r2
=

Qq

4πr2
r̂ (1.5)

provided we normalize N = Qq/ (4π}c) – in other words, the number of
virtual photons emitted/absorbed should be proportional to the product of
the charges. In this sense the photon mediates the electromagnetic force!

This concept of a mediator is how all forces are understood in the context
of modern particle physics. The basic idea is that any two subatomic particles
exert forces on each other by exchanging other virtual quanta of subatomic
particles – the mediators.

There are 12 mediators for all the non-gravitational forces: 1 photon, 8
gluons, and 3 weak vector bosons, more commonly referred to as the W+,
W− and the Z. So far, experiment has indicated that these mediators have
helicity 1 (i.e. integer spin }). This is important, since our descriptions of
bosons entail the following properties of bosons listed in table 1.4. I’m not

TABLE 1.4

Attractive/Repulsive Character of Forces

ODD-INTEGER SPIN PARTICLES: mediate forces that are
both attractive and repulsive

EVEN-INTEGER SPIN PARTICLES: mediate forces that are
either attractive or repulsive

going to prove the results in table 1.4 here – they can be demonstrated from
some basic properties in quantum field theory. What this means is that since
all non-gravitational forces are mediated by spin-1 bosons, they all have both
an attractive and a repulsive character.

What if we include gravity? The fact that gravity is always attractive means
that it must be mediated by an even-integer spin particle; we call this particle
the graviton and it has spin-2. The Higgs boson (should it be found) has
spin-0 and so will have a purely attractive character as well. This will add
two more elementary particle types to the list, for a total of 14 out of the 38
elementary types¶.

¶It could be argued that I shouldn’t include these two because, strictly speaking, we don’t
have direct observational confirmation of their existence. However, there is little doubt
that the graviton is present, and the Higgs particle is foundational to our understanding
of the Standard Model. I may be skating on thin ice with this one though: more Higgs
particles than one may be discovered at the LHC or, more radically, no Higgs particle may
be discovered.
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1.2.3 Matter

So far we have been exploring bosons: the things that mediate forces. Now
let’s look at particles: the stuff that things are made of.

All known matter (excluding dark matter and dark energy) is made of spin-
1/2 particles called fermions that have anticommuting statistics:

Ψ(1, 2) = −Ψ(2, 1)

where Ψ(1, 2) is the wavefunction for a system of two identical fermions. The
proton and the electron are the best known of these, with the electron being
the first fermion to be discovered (in 1897) [17]. The nucleus was discovered
by Rutherford in 1910 [18], but it was not until 1932 that the nucleus was
understood to be a composite object consisting of two kinds of fermions,
known as protons and neutrons.

Uhlenbeck and Goudsmit postulated that the electron had spin }/2 [19] in
order to properly account for the Zeeman effect [20] and the Stern-Gerlach
experiments [21]. This meant that Schroedinger’s wave equation could not
be used to describe the behavior of electrons, since it did not have take spin
into account. In 1927 Dirac wrote down a relativistic wave equation that
he required to be LINEAR in E and −→p (i.e. linear in the operators ∂/∂t
and −→∇). This equation predicted that a charged particle of −e had spin }/2.
Remarkably, it also predicted that there was another particle of spin }/2 with
identical mass but charge +e. This particle is the antiparticle of the electron
and is called the positron. Just as remarkably, it was discovered by Anderson
in 1933.

All spin-}/2 (or spin-1/2) particles obey Dirac’s equation; you just adjust
the mass and charge in the equation to describe the particle of interest. Hence
each spin-1/2 particle has a corresponding antiparticle. This is also true for
most bosons, but for some bosons (the photon being the best known example)
the antiparticle is the particle itself ‖. In general all quantum numbers of an
antiparticle are the negative of that of its corresponding particle except for
its mass, which remains unchanged.

As far as experiment has indicated, all spin-1/2 particles in the world come
in two basic types, leptons and quarks, listed in table 1.5. We can also con-
struct a table listing the basic features of each of these kinds. In table 1.6
the quantity “color” labels the three distinct kinds of strong charge that a
quark can have. These colors – called red, green and blue – have nothing
to do with actual colors we can see – instead the term “color” is shorthand
for “strong charge.” Antiquarks have strong charges antired, antigreen and
antiblue. Since the leptons do not experience the strong interactions, they
have no color charge (they are color neutral) and so that entry in table 1.6 is
blank.

‖It is also possible for a fermion to be its own antiparticle; in this case it is called a Majorana
fermion instead of a Dirac fermion
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TABLE 1.5

The Kinds of Matter

LEPTONS particles that do not
experience strong interactions

QUARKS particles that do
experience strong interactions

TABLE 1.6

Basic Properties of Quarks and Leptons
Flavor EM Charge Color Helicity Mass (MeV)

L
E
P
T
O
N
S

(
electron e
e-neutrino νe

)
(

muon µ
µ-neutrino νµ

)
(

tau τ
τ -neutrino ντ

)

(
-1
0

)
(

-1
0

)
(

-1
0

)

(
L,R
L,?

)
(

L,R
L,?

)
(

L,R
L,?

)

(
0.511

< 2× 10−6

)
(

106
< 0.19

)
(

1777
< 18

)

Q
U
A
R
K
S

(
up u
down d

)
(

charm c
strange s

)
(

top t
bottom b

)

(
+2/3
-1/3

)
(

+2/3
-1/3

)
(

+2/3
-1/3

)

(
R,G,B
R,G,B

)
(

R,G,B
R,G,B

)
(

R,G,B
R,G,B

)

(
L,R
L,R

)
(

L,R
L,R

)
(

L,R
L,R

)

(
2
5

)
(

1200
100

)
(

171,000
4,200

)

The quantity “flavor” is actually the charge experienced by the weak inter-
actions. We will see that a strong interaction has the effect of changing a
quark of one color (red, say) into a quark of another color (blue, say). Like-
wise, a weak interaction has the effect of changing a particle of one flavor (for
example an electron) into another flavor (its corresponding neutrino). So in
this sense flavor is to weak what electric-charge is to electromagnetism and
what color is to strong (and what mass is to gravity). Note that flavor is
the property by which we distinguish different types (or species) or particles.
This is often the source of some confusion when one first tries to learn about
the weak force, and so I have deferred the discussion of weak interactions to
appear in Chapter 20 after the electromagnetic and strong forces in order that
you can become more comfortable with a number of other concepts first. So
there are 6 flavors (or types) of leptons, plus each of their antiparticles, and
6 flavors of quarks, plus each of their antiparticles, for a total of 24 fermion
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particle types in all∗∗. Including the 14 types of bosons, this brings the list of
elementary particle types to 38.

An additional complication in understanding particles has to do with quarks.
Despite considerable effort over the years, it has not been possible to directly
observe quarks. What we actually observe are bound states of quarks. It
is generally believed (but not yet proven!) that quarks can bind together in
only two possible ways, given in table 1.7. We call a bound state of quarks a

TABLE 1.7

Quark Bound States
BARYONS: qqq (a 3-quark bound state)
MESONS: q 6= q (a quark-antiquark bound state) } HADRONS

hadron. So far all observed hadrons have come in one of two types: baryons
(which are bound states of three quarks) and mesons (which are bound states
of a quark with some other antiquark). All hadrons are color-neutral, and
the proton is the only stable hadron known (a free neutron will decay in less
than 15 minutes). Understanding this structure will be one of our main tasks
when we come to the strong interactions beginning in Chapter 15.

Note that the masses of the particles vary quite widely and (unlike the
quantities in the rest of table 1.6) appear to have no pattern. It is generally
believed that the masses of all elementary particles are acquired through some
symmetry breaking-effect with a field called a Higgs field. The basic idea is
that the Higgs field causes a kind of “drag” on all elementary particles of
varying strength, and this drag is what we perceive as inertial mass. A
consequence of this idea is that there must exist at least one spin-0 boson,
which is called a Higgs particle. In October 2000 tantalizing evidence was
presented from LEPII at CERN that the Higgs particle has been observed
with a mass of approximately 114 GeV. However, subsequent analysis of the
data has failed to confirm this, and the best that we can say at this point
in time is that the Higgs mass is not less than 114 GeV. One of the main
purposes of the LHC is to find the Higgs particle if it indeed exists.

Finally, note that both the leptons and the quarks come in three groupings
according to mass: a light group, a medium group, and a heavy group. We
refer to these groupings as generations (or sometimes as families). The light-
est generation consists of the up and down quarks, and the electron and its
neutrino (plus all their antiparticles). As noted above, all matter in the peri-

∗∗It might be argued that I shouldn’t count the antiparticles, since they are just like the
particles except for a reversal of the signs of all the charges. I have made the distinction
because a particle and its antiparticle counterpart are not identical – they can easily be
distinguished in experiment.
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odic table is made of combinations of these 4 particles (with the up and down
quarks combining into protons and neutrons). Each generation is identical
to the others in structure except for the differing masses. At present it is
not known why this structure exists, and why the pattern has this particular
form.

1.3 The Standard Model

The Standard Model of particle physics refers to the sum total of our knowl-
edge of all the forces and particles described above. It is a particular kind of
quantum theory, called a quantum field theory, that has a particular particle
content and a particular symmetry group. There are infinitely many other
models of the same general type that one could construct, but with different
particle content and/or symmetries, as well as different values for the pa-
rameters. The Standard Model is the one that describes what we actually
observe.

This particularity sounds reasonable – after all, isn’t it the job of physics
to describe what is observed? Furthermore, so far there are no experiments
known that disagree with the predictions of this model. However, the model
has a number of parameters that must be input from experiment before any
further predictions can be made, summarized in table 1.8.

TABLE 1.8

Standard Model Parameters
masses of all fermions 12
coupling constants 4
mixing angles 8
vacuum angle 1
Higgs mass and coupling 2
Vacuum Energy 1

We see from table 1.8 that there are a total of 28 parameters in all. I’ve
included the possibility that neutrinos have nonzero mass, though strictly
speaking the Standard Model assumes they have zero mass. I’ve also included
gravity (which accounts for one of the coupling constants of the four forces)
and the strength of the dark energy (the vacuum energy) as two of the pa-
rameters. Together with General Relativity, the Standard Model provides us
with 38 coupled differential equations for each of the particle types, depen-
dent on the 28 parameters above. Once these 28 parameters are given we can
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predict the outcome of any process in particle physics from this model – and
so far there are no experiments that disagree with any predictions which have
been made. Not all of these parameters have been accurately measured, and
their precise measurement is one of the current tasks of experimental particle
physics.

The origin of these parameters and their empirical values is an unexplained
mystery. It is hoped that a unified theory of physics (if one can ever be
constructed) will explain both their values and their interrelationships, and
that the set of 38 equations will actually be derived from one more unified
theoretical structure, ideally one master equation. At present we don’t know
what that might be, so we must make do with the model that we have if
we want to explain our observations of the subatomic world. You might
think that 38 equations is a bit much to deal with. It is, but in practice we
don’t have to deal with them all at once – instead we can work with subsets
of these equations, depending on the system of interest. Furthermore, the
different equations have some common (and elegant) features amongst them
due to the particular symmetries of Lorentz invariance and gauge invariance,
subjects we will explore in chapters 2 and 12 respectively.

The purpose of this book is to teach you about the Standard Model: to
fully acquaint you with its basic structure and features, to show you how
to compute simple predictions from it, and to inform you of its empirical
underpinnings. So let’s get started!
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FIGURE 1.4
A pictorial representation of the different particles in the Standard Model and
their interactions. A line between different shapes indicates that all particles
within a given shape interact with all others in the connected shape, except
for the photon, which does not interact with particles below the dashed lines
(i.e. the neutrinos and the Z). Lines joining a shape to itself indicate self-
interactions amongst the particles in the shape.

1.4 Questions

1. (a) It is possible to understand the strong force between a neutron and
a proton as being effectively mediated by a boson called the pion, whose
mass is 139 MeV. Use this to estimate the range of the strong force.

(b) Similarly the weak force is mediated by the W -boson, whose mass
is about 80 GeV. What range do you estimate this force has?

2. Before the neutron was discovered, beta-decay (the emission of an elec-
tron from a nucleus) seemed to support the idea that a nucleus consisted
of protons with electrons trapped inside. The atomic number of a nu-
cleus was given by the excess of protons over electrons.
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(a) Using this picture, estimate the minimum momentum that a trapped
electron must have.

(b) Use the relativistic relation E2 = (pc)2 + (mc2)2 to estimate its
corresponding energy.

(c) How does this energy compare to that for an electron emitted in a
typical beta-decay process? Does beta-decay tend to support or refute
the trapped-electron model of the nucleus?

3. An experimentalist wants to probe distances of d ≤ 10−20 cm. How
much collision energy must the machine be able to produce? How does
this compare with the maximum energy of the LHC? If the size of the
machine scales with the energy, how large would this machine have to
be?

4. Suppose the electron had a mass 10 times its mass of 511 KeV. What
particles would you expect to populate the universe?

5. Suppose that fermions were found to have different masses from their
antiparticles. How many new parameters would there be in the Standard
Model?
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A Review of Special Relativity

Particle physics is concerned with understanding the behavior of the natural
world in the most reductionistic manner possible. This means we need to
probe interactions over very short timescales and very tiny distances. This
in turn requires, among other things, an ability to collide particles at very
high energies, energies that are far larger than the rest mass energies of the
particles in the collision, where relativistic effects are significant.

So for particle physics an understanding of special relativity is crucial. Here
I will review the basics of special relativity [22]. You probably have seen this
material elsewhere – but what we do here might be in a repackaged notation
that you may not be familiar with [23].

2.1 Basic Review of Relativity

The basic postulates of special relativity are twofold:
1) The laws of physics are equally valid in all inertial reference systems,

where inertial means that Newton’s first law holds.
2) The speed of light is constant and of the same value in all inertial systems.

The first of these postulates is familiar from Newtonian mechanics. It
means that the laws of physics do not depend upon either the location, the
orientation, or the constant velocity of the reference frame that we use to
describe motion.

It is the second postulate that is counterintuitive, forcing a conceptual leap
in our understanding to less than familiar territory. So let’s explore this
postulate in more detail.

Suppose we have 2 inertial systems (frames) S and S′, where S′moves at
velocity �v with respect to S. If we orient the axes of both systems so that
they are identical at t = t′ = 0 and so that the relative motion is along the
x/x′ direction, then we know that

x′ = γ(x − vt)
y′ = y
z′ = z
t′ = γ(t − vx/c2)

where γ =
1√

1 − v2/c2
(2.1)

23
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a transformation known as a boost transformation. To invert this transforma-
tion (i.e. to go from S′ to S ), just change ~v → −~v :

x = γ(x′ + vt′)
y = y′

z = z′

t = γ(t′ + vx′/c2)

(2.2)

You can easily check that solving eq. (2.1) for x′ and t′ in terms of x and t
results in eqs. (2.2).

These transformations have several important physical consequences. Let’s
look briefly at what they are.

2.1.1 Relativity of Simultaneity

An event is defined as something that occurs at a specific place and time,
along with all necessary preconditions and unavoidable consequences. It is
something that happens in the real world, such as a supernova, an earthquake,
or the fall of a raindrop. Usually we think of events taking place in a particular
chronological order, regardless of who is observing them. The first surprise
of special relativity is that this is not the case: events occurring at the same
time in S but at different locations do NOT occur at the same time in S′.

Let’s look at this more carefully. Suppose an observer in frame S records
two events A and B located at the respective positions xA and xB as taking
place at the same time: tA = tB . The above transformations then give

⇒ t′A − t′B = γ(tA − vxA/c2)− γ(tB − vxB/c2) = γ
v

c2
(xB − xA) 6= 0 (2.3)

and so the observer in S′ would record them as happening at different times.
As an example consider an event (fig. 2.1) in which lightning strikes both
ends of a moving train. There is an observer on a flatcar in the middle of
the train that is moving (Mona), and another observer (Stan) standing on the
ground beside the train as it moves by. Let F be the event “Lightning strikes
the front end,” and B be the event “Lightning strikes the back end.”

Stan receives (“sees”) the light emitted from events F and B simultaneously,
and concludes that: “since I am midway between the marks on the tracks, and
since the speed of light is a constant, then events F and B are simultaneous.”
However, Mona receives (“sees”) the light emitted from event F first, then
from B, and concludes that: “since I am midway between the marks on the
train, and since the speed of light is a constant, then events F and B are NOT
simultaneous: F occurred before B.” See fig. 2.2 for a diagram in space and
time of this event.

The reason this happens is that light has a finite speed, and so the infor-
mation conveyed in the light from the bolt in the back has to “catch up” to
Mona, who is riding in the middle of the train. Similarly Mona is “catching
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FIGURE 2.1
Lightning strikes the front and back ends of a moving train. The lightning
strikes leave marks on the train and on the tracks, and the pulse of light is
large enough to be detected by both Stan (on the ground) and Mona (on the
train). Mona sees the front signal before the back signal; Stan sees both at
the same time.

up” to the light coming toward her from the bolt at the front of the train.
Stan, on the other hand, is not moving and so sees the bolts at the same time.

As we will see, since the second postulate implies that nothing travels faster
than the speed of light, it will in turn imply that the transmission of all forms
of information cannot travel faster than light. Unlike a Newtonian universe
(in which an infinite speed of information transmission is possible in principle),
finite transmission speeds in a relativistic universe force us to abandon a notion
of universal simultaneity.

2.1.2 Length Contraction

This phenomenon refers to the fact that an object at rest in S′ is shortened
with respect to S. For example a rod of length L at rest in S′ can be positioned
so that one end is at x′ = 0, the other at x′ = L. Since it is moving in S, we
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FIGURE 2.2
Paths of Stan (dotted), Mona and the ends of the train (dash), train tracks
(solid), and the light pulses (dot-dash) from the lightning bolts as they move
forward in time.

must record its length by measuring its ends at the same time (t = 0, say).
So its length in S is, using (2.1) with t = 0:

xone end − xother end =
1
γ

(
x′one end − x

′
other end

)
= L/γ < L (2.4)

So moving objects are shortened along the direction of motion.

Consider observers on a spaceship that have a poster of Einstein on the wall
of their ship. From their perspective the picture is 4 ft.× 3 ft. However, an
observer standing on an asteroid looking through the window of the ship as it
goes by at 77% of the speed of light will see that the poster is only 4 ft.× 1.5
ft., as shown in fig. 2.3.

The importance of this phenomenon in particle physics occurs in the con-
struction of accelerators – as the particles move at high velocities down an
accelerator tube the effective length of the pipe is shortened in their direction
of motion, and must be taken into account in the design parameters of the
machine.
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FIGURE 2.3
Length contraction demonstrated pictorially. Apic/Hulton archive/Getty Im-
ages.

2.1.3 Time Dilation

Suppose there is a clock ticking off an interval in S′ – a consequence of rela-
tivity is that it ticks off a longer interval in S. If the clock runs from t′ = 0
to t′ = T , then using eq. (2.2) above we have

∆tin S = γ(∆t′ + v∆x′/c2) = γ∆t′ = γT > T (2.5)

FIGURE 2.4
A laser clock for measuring time dilation.
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where ∆x′ = 0 because the clock is always at the same location in S′. So
moving clocks run slow.

Consider a “clock” that consists of a laser capable of sending out very short
pulses and a mirror to reflect those pulses back to a detector (fig. 2.4). The
proper time will be measured by an observer at rest with respect to this
“clock.” Suppose this clock is on that same spaceship. Then an observer on
the asteroid can watch as this “clock” goes by him/her at some speed (from
his/her point of view). This observer will see the light pulse traveling a greater
distance before it returns to the detector (see fig. 2.4). Since according to
the postulates of special relativity the speed of light is the same for both
inertial observers, the observer on the asteroid will claim that the spaceship
clock is running slowly with respect to asteroid clocks. If the spaceship is
moving at 77% of the speed of light, then for every three hours of time on the
asteroid, the spaceship clocks register that only a little more than two hours
have passed.

In particle physics we see this phenomenon manifest in decay rates of un-
stable particles: they take longer to decay the faster they are moving.

2.1.4 Velocity Addition

If a particle has velocity ~u′ in the x′ direction in S′, then its velocity in S is

u =
∆x
∆t

=
γ(∆x′ + v∆t′)

γ(∆t′ + v∆x′/c2)
=

(∆x′

∆t′ + v)
(1 + v

c2
∆x′

∆t′ )
=

u′ + v

1 + u′v
c2

(2.6)

showing that velocities do not simply add. Notice, though that if the speed of
light is large compared to either of the velocities, then

u =
u′ + v

1 + u′v
c2

= (u′ + v)
(

1− u′v

c2
+ · · ·

)
' u′ + v (2.7)

and we see that velocities add as they do in the non-relativistic everyday world
of experience.

This is one of the more counterintuitive things to understand about relativ-
ity, but it follows from (and is consistent with) the second postulate. To see
how, suppose the moving observer in S′ is shining a flashlight pointed in the
direction of motion. The light will leave with speed c as seen by the moving
observer. This means that we must set |~u′| = u′ = c. The observer in S then
measures this speed to be

u =
c+ v

1 + cv
c2

= c
c+ v

c+ v
= c (2.8)

or in other words, the speed of the light is seen to be exactly the same, in
accord with postulate 2!
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2.2 4-Vector Notation

In the examples in section 2.1 the two frames were neatly aligned along the
direction of motion. Of course this need not be the case; in general they could
be moving in any direction relative to each other. So it’s useful to introduce
simplifying notation that unifies time and space components together.

This anticipated union suggests that vectors will have to be generalized
from their 3-component form to having 4-components: one for each spatial
direction and one for time. We call such objects 4-vectors, and can write one
of them as, say, aµ = (a0,−→a ). The 0th component is the “time” component,
and the others are the spatial (3-vector) components.

Let’s define
x0 = ct x1 = x x2 = y x3 = z (2.9)

to be the components of a 4-vector xµ that denotes the location in space
and the time elapsed at some event (relative to a fixed choice of origin).
Multiplication of the time by c ensures that each coordinate has units of
length. In other words, we measure the time elapsed in terms of the light-
travel-time: how far light would travel in a given time. Since all observers
agree on what the speed of light is, the difference in ct as measured by various
observers is equivalent to the difference in time t.

Now we can write the particular Lorentz transformation given in eq. (2.1)
as a matrix equation

x′µ =
3∑

ν=0

Λµ νx
ν where Λµ ν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 (2.10)

with γ = 1√
1−β2

and β = v/c. So for the transformation (2.1) all compo-

nents of the matrix Λµ ν are zero, except for

Λ0
0 = Λ1

1 = γ Λ0
1 = Λ1

0 = −βγ Λ2
2 = Λ3

3 = 1 (2.11)

Before continuing, let’s get a few conventions straight: I will use Greek
letters to indicate spacetime indices that run over the values 0,1,2,3, and I will
use Latin letters from the middle of the alphabet (i, j, k, ...) to denote spatial
indices of the type familiar from vector calculus; these will take on the values
1,2,3. I’ll also use the summation convention: repeated indices are summed
over (unless otherwise indicated). This means I can replace

∑3
ν=0 Λµ νx

ν with
Λµ νx

ν in eq. (2.10) since the ν index is repeated. Repeated indices almost
always occur in pairs, so it is always clear what indices to sum over – I’ll
make it clear whenever this is not the case. Note that the repeated index is
arbitrary, since we are summing over all of its values; in the sum in eq. (2.10),
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instead of ν we could have used ρ, σ, ς, or any Greek letter we wanted! We
can use the summation convention for any repeated index (Greek or Latin).
So Greek indices are summed from 0 to 4, and Latin indices from 1 to 3.

Now by postulate (2), a pulse of light emitted at t = 0 and ~x = 0 in S
has the same velocity in S′. Hence the distance ds to the wavefront from any
point ∆~x in S at time ∆t is the same as the distance ds′ measured from any
point ∆~x′ in S′ at time ∆t′. Using Pythagoras’ theorem we have

(c∆t)2 −
(
∆x1

)2 − (∆x2
)2 − (∆x3

)2
= ds2 = ds′2

= (c∆t′)2 −
(
∆x′1

)2 − (∆x′2)2 − (∆x′3)2 (2.12)

and you can easily check that (2.1) and (2.2) satisfy this relation.
The quantity is called an invariant ; it has the same value in any inertial

system. Invariants are nothing new – this concept is present in non-relativistic
Newtonian mechanics. For example the length of a vector is invariant under
rotations in Newtonian mechanics. What is new in relativity is that invariants
typically involve a mixture of spatial quantities with temporal quantities.

The invariant quantity above in eq. (2.12) is a bit cumbersome, and it
would be nice to write it in the form of a sum. The problem is we have 3
minus signs. We deal with this by writing

ds2 = gµν∆xµ∆xν = gµν∆x′µ∆x′ν (2.13)

where gµν is a matrix called the metric

gµν =


+1
−1
−1
−1

 i.e.
g00 = +1
gij = −δij
g0i = 0

(2.14)

which generalizes the 3-dimensional Kronecker-delta function used in vector
calculus as you can see from eq. (2.14).

Notice that, since x′µ = Λµ νx
ν , we have

gµνx
′µx′ν = gµν (Λµ αx

α)
(

Λµ βx
β
)

=
(
gµνΛµ αΛµ β

)
xαxβ (2.15)

Since this relation has to hold for all possible xα and x′µ, we must have

gµνΛµ αΛµ β = gαβ (2.16)

This “boxed” relation is very important: it must be obeyed by all Lorentz
transformations Λµ ν . Alternatively, any matrix obeying this “boxed” equa-
tion is a valid Lorentz transformation. We take the boxed relation to mathe-
matically define a Lorentz transformation.

While there are infinitely many possible Lorentz transformations, it is pos-
sible (and useful) to categorize them into six kinds. Since there are three
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distinct directions (along x, y, and z ) for a moving observer to travel, three
kinds of Lorentz transformations are transformations from the stationary to
the moving observer along each of these directions. These are called boosts.

What are the other three kinds of transformations? Suppose we don’t
make any boosts. This means that Λ must have the form

Λµ ν =
(

1 0
0 Rij

)
(2.17)

where Rij is some 3 × 3 matrix. It’s easy to show from the boxed relation
that this matrix must obey RikRjk = δij , which in matrix form is RTR =
I. This is just the defining relation for a rotation (or rather an orthogonal
transformation, to put it in mathematical terms), and so we see that rotations
are a subset of the Lorentz transformations! It’s clear then that there are 3
kinds of rotations (about x, y and z), and putting these together with the 3
boosts makes a total of 6 kinds of continuous Lorentz transformations.

Lorentz transformations are actually the relativistic analog of rotations.
They transform 4-vectors analogous to the way that rotations transform 3-
vectors. In this sense they define for us 4-vectors (and 4-tensors – mathe-
matical objects with more than one Lorentz index) just in the same way that
rotations are used to define 3-vectors (and 3-tensors – mathematical objects
with more than one spatial index). We can make the following comparative
table:

TABLE 2.1

Rotations compared to Lorentz transformations
Rotations Lorentz Transformations

RikRjk = δij gµνΛµ αΛµ β = gαβ

φ′(~x) = φ(R−1~x) SCALAR φ′(xµ) = φ(
(
Λ−1

)µ
ν
xν)

V ′i (~x) = R j
i Vj(R

−1~x) VECTOR V ′α(~x) = ΛαµV
µ(
(
Λ−1

)µ
ν
xν)

T ′ij(~x) = R k
i R

l
i Tkl(R

−1~x) TENSOR T ′αβ(~x) = ΛαµΛβ νT
µν(
(
Λ−1

)µ
ν
xν)

2.3 Spacetime Structure

We can use the metric to define a new vector xν from our event-vector xν and
vice versa:

xµ = gµνx
ν and xµ = gµνxν (2.18)
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where gµν is the inverse of gµν . So using this we can write (2.13) as

ds2 = ∆xµ∆xµ = ∆x′µ∆x′µ (2.19)

“Raised” indices are called contravariant ; “lowered” indices are called covari-
ant. This distinction – unimportant in the three-dimensional flat spatial world
of vectorial quantities in Newtonian mechanics – is of crucial importance in
our description of the four-dimensional relativistic world. A given covariant
vector Aµ and its contravariant counterpart Aµ contain the same informa-
tion – it is how this information is expressed and manipulated compared to
other physical quantities that makes the covariant/contravariant distinction
important.

Here’s an example. Notice that for any 2 four-vectors Aµ and Bµ we have

A′µB
′µ = gµνA

′µB′ν = gµν (Λµ αA
α)
(

Λµ βB
β
)

=
(
gµνΛµ αΛµ β

)
AαBβ = gαβA

αBβ = AβB
β (2.20)

i.e. AβBβ is invariant (it is the same in any inertial frame). It is the four-
dimensional analog of a dot-product. Sometimes we will write A · B for the
dot product:

A ·B = AβB
β = A0B

0 −AjBj = A0B
0 − ~A · ~B (2.21)

where 3-vectors will always have “arrows” on top (or have Latin indices at-
tached to them) so we know that’s what they are∗.

Notice that the “square” of a 4-vector need not be positive:

A2 = A ·A = AβA
β = A0A

0 − ~A · ~A (2.22)

This means that our concept of magnitude needs to be extended in special
relativity. To do this we define:

A2 > 0 timelike
A2 = 0 null or lightlike
A2 < 0 spacelike

Why this terminology? It’s descriptive of how spacetime (i.e. space and time)
appear to a given observer. Consider an observer at a position xµ relative to
the origin. We thus have either x2 > 0, x2 = 0, or x2 < 0. This splits
spacetime up into three regions about any given point, as illustrated in fig.
2.5. A classification is given in table 2.2.

∗I will write AjB
j = AjBj = AjBj = AjBj = ~A · ~B – these all mean the same thing for

3-vectors. Note that the quantity AβBβ = A0B0 + AjBj is not invariant – it will look
different in different Lorentz frames.
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FIGURE 2.5
The diagram on the left shows the causal structure of space time in special
relativity. The light cone about a point “P” plays a fundamental role in
determining the events that can and cannot affect (or be affected by) P. The
non-relativistic version of this diagram is at the right: all events are either to
the future or past of P unless they are simultaneous with P, i.e. are in the
“now” of P.

2.4 Momentum and Energy

Because xµ is a position 4-vector, it cannot remain fixed – even if the spatial
components remain constant, the time x0 must increase, since the observer
cannot remain frozen in time. In the most general situation, all the compo-
nents of xµ will be changing with time. We can parametrize this change by
making each component a function of some parameter τ . As we shall see, we
are typically more interested in how these functions change as τ changes, so
let’s define

uµ = lim
∆τ→0

∆xµ

∆τ
=
dxµ

dτ
(2.23)

which is the rate of change of the position 4-vector with respect to this pa-
rameter.

What is τ? If we choose it to be the time coordinate, then we would have
uµ =

(
d(ct)
dt ,

d~x
dt

)
=
(
c, d~xdt

)
. This looks like a velocity in the spatial part, but

leaves us with a problem: which clock is measuring the time? In Newtonian



34 An Introduction to Particle Physics and the Standard Model

TABLE 2.2

Past, Present, and Elsewhere

x2 > 0⇒ |ct| > |~x|
{
t > 0
t < 0

Future

Past

everything the observer
potentially will influence
everything that potentially
influenced the observer

x2 < 0⇒ |ct| < |~x| Elsewhere no influence between
observer and environment

x2 = 0⇒ |ct| < |~x| Lightcone Boundary between elsewhere
past and future

mechanics time is absolute, but in Einsteinian mechanics, moving clocks run
slow, as we saw in section 2.1.3.

What we want is for τ to be a time that all observers can agree on. There
is one such definition of time – namely the time measured by a clock that
is at rest with respect to the observer whose position 4-vector is xµ(τ). For
example, suppose the observer is on a plane. The clocks on the plane (and
everything else: the flight attendants, the heart rate of the passengers, the
movie) tick slow relative to you standing on the ground. If your clock ticks
off an interval ∆t, the plane’s time is ∆τ where

∆τ = ∆t/γ (2.24)

Even though the clocks on the plane are moving slower, everybody will agree
on what those clocks say. So both you and observers on the plane (and
anyone else moving in some other inertial frame) will agree that the clocks on
the plane tick off an interval ∆τ . We call ∆τ the proper time of the observer.
It is the shortest time any observer can measure, and it is invariant, since all
observers (moving or not) agree with what it is.

Note that if we have a collection of N observers located at xµA, each moving
at different speeds, then each will have their own (invariant) proper time τA
(A = 1, ..., N). At ordinary speeds γ = 1 to about 1 part in 1020, so we
never notice this effect, and each observer perceives time as absolute. This
is why the non-relativistic picture at the right of fig. 2.5 is so useful, and so
much in accord with our everyday intuition. However, in particle accelerators
γ � 1 and these time-dilation effects are crucial. For example the lifetimes of
unstable subatomic particles can dramatically increase at very high velocities.

Since τ is invariant, uµ is covariant:

u′µ =
dx′µ

dτ ′
=
dx′µ

dτ
=

d

dτ
(Λµ νx

ν) = Λµ ν
dxν

dτ
= Λµ νu

ν (2.25)
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and the components of uµ are

uµ =
(
c
dt

dτ
,
d~x

dτ

)
=
dt

dτ

(
c,
d~x

dt

)
= Λ0

0

(
c,
d~x

dt

)
= γ

(
c,
d~x

dt

)
= γ (c,~v)

(2.26)
We see that the spatial component of the 4-velocity is related to the usual 3-
velocity by ui = γvi ' vi, where the approximation is good whenever |~v| � c.
The magnitude of the 4-velocity is

u · u = γ2
(
c2 − ~v · ~v

)
= c2γ2

(
1− ~v · ~v/c2

)
= c2 (2.27)

which is invariant!
Note that u2 > 0 : the 4-velocity of a particle is always timelike. In

terms of the causal structure in figure 2.5, this means that the trajectory of
any physical object must remain within its future light cone, and must have
emerged from its past light cone at any event P. This trajectory is called the
worldline of the particle, and if the particle has mass the worldline must be
timelike as shown in figure 2.5.

Now let’s consider momentum. Since this is (mass)×(velocity) in Newtonian
mechanics, let’s define

pµ = muµ (2.28)

where we identify the constant m with the mass of the body whose 4-velocity
is uµ since

pi = mui = γmvi ( ' mvi for small vi) (2.29)

This seems like a reasonable definition of the spatial components of the mo-
mentum. What, then, is p0? We have

p0 = mu0 = γmc =
mc

1− v2/c2

=
1
c

[
mc2 +

1
2
mv2 +

3
8
m
v4

c2
+ · · ·

]
(2.30)

upon expanding in powers of vc . The 2nd term in the series is easily recognized
as the non-relativistic kinetic energy, and so we define

p0 = E/c where E = γmc2 =
mc2√

1− v2/c2
(2.31)

Remember that in non-relativistic mechanics it is only changes in energy
that are physically meaningful. However, in relativity, every body has a min-
imum constant energy mc2 called its rest energy (or rest mass):

R = mc2 (2.32)

Note that since m is a constant it is an invariant: all observers agree on what
it is. The kinetic energy is the difference between the full energy and the rest
energy

T = E −R = (γ − 1)mc2 =
1
2
mv2 +

3
8
m
v4

c2
+ · · · (2.33)
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which is the usual non-relativistic term plus an infinite series of speed-dependent
corrections.

What is the magnitude of pµ? It’s easy to compute it:

p2 = p · p = m2u · u = m2c2 (2.34)

and so p2 is an invariant. However, we also have p · p = (E/c)2− ~p · ~p, and so

E2 =
(
mc2

)2
+ |c~p|2 ⇒ E =

√
(mc2)2 + c2 |~p|2 (2.35)

which gives an expression for the energy of a particle in terms of its mass and
its momentum, analogous to the non-relativistic relation E = p2

2m .
The interesting thing about the relation (2.35) is that it holds even for a

massless object! Setting m = 0 in eq. (2.35) we find

E = |~p| c and p2 = 0 (2.36)

which means that a massless particle has a 4-momentum of zero magnitude!
We can’t make sense out of this from our earlier expressions E = mc2√

1−v2/c2

and ~p = m~v√
1−v2/c2

because both would give zero – unless the massless body

travels at the speed of light (i.e. |~v| = c). In this case we have a zero-over-zero
limit, and the preceding expressions become ambiguous.

Rather than work with such ambiguity, we regard equation (2.34) as being
the equation that fundamentally defines the 4-momentum of a particle of rest
mass m. This equation is valid for all m ≥ 0, and yields equation (2.35) for
m 6= 0, and equation (2.36) for m = 0.

2.5 Collisions

Energy and momentum are conserved in any process (as we’ll see in Chapter
4), which is why they are useful quantities to deal with. In fact our picture of
collisions in relativity is quite similar to our non-relativistic picture! Each has
both elastic and inelastic collisions, and energy and momentum are always
conserved. The key difference between the non-relativistic and relativistic
cases has to do with the conservation of mass, something not true in relativistic
physics. Table 2.3 illustrates the parallels between the two situations.

In solving collision problems, it is generally a matter of ensuring that the
relation

∑
pµin =

∑
pµout is satisfied. In principle this can be done component-

by-component. However, in practice such an approach is rather cumbersome.
A better strategy is to search for invariants, exploiting relationships between
them to simplify the situation and solve the problem. This is typically done
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TABLE 2.3

Collisions
Collisions

Non-relativistic Relativistic

Momentum is conserved∑
~pin =

∑
~pout

Energy is conserved∑
Ein =

∑
Eout

4−momentum is conserved∑
pµin =

∑
pµout ⇒

{∑
Ein =

∑
Eout∑

~pin =
∑
~pout

Mass is conserved∑
min =

∑
mout

Mass is NOT necessarily conserved∑
min 6=

∑
mout

Kinetic energy may Kinetic energy may
or may not be conserved or may not be conserved

by isolating the quantities of interest in the problem, and then taking dot-
products and squares to obtain the desired answer.

Let’s look at some examples of how to use this formalism.

2.5.1 Broadside Collision

Two particles each of mass m and speed v, collide at right angles, forming a
new body of mass M . What is the mass of M?

Answer
The best way to solve this problem is to recognize that the squares of the

4-momenta of both the incoming and outgoing particles are invariants.

First conserve momentum : pµ1 + pµ2 = pµ

Square both sides : p2
1 + p2

2 + 2p1 · p2 = p2

Each of the squared momenta is the rest mass of its corresponding particle,
and so

(mc)2 + (mc)2 + 2
(
E1E2

c2
− ~p1 · ~p2

)
= (Mc)2 (2.37)

Now we use the fact that the spatial momenta are orthogonal ( ~p1⊥~p2 ) and
that the energies are related to the rest masses via EA = γAmc

2, where
A=1,2 labels which particle we are interested in. Hence

2m2 (1 + γ1γ2) = M2

⇒M2 = 2m2

(
1 +

1
1− v2/c2

)
= 2m2

[
2− v2/c2

1− v2/c2

]
(2.38)
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FIGURE 2.6
A Broadside collision between two equal mass particles moving at right-angles
to each other.

Note that M > 2m. This is a sticky collision and so the mass increases
because kinetic energy is converted into rest energy.

2.5.2 Compton Scattering

A massless particle elastically collides with a massive one (mass M) at rest.
What is the final energy of the massless particle if it is scattered at an angle
θ?

FIGURE 2.7
Compton Scattering of a massless particle from a massive one

Answer

Setting c = 1 for simplicity, as before we conserve momentum and find in-
variants. The most complicated momentum is the momentum of the massive
scattered particle, since we don’t know the angle it scatters to, nor do we
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know its final speed. So we isolate p′µ and then square both sides:

First conserve momentum : p′µ = pµ + kµ − k′µ

Isolate the most complicated
momenta and square : p′2 = (p+ k − k′)2

Simplify : M2 = M2 + k2 + k′2

+2 (p · (k − k′)− k · k′)
Rearrange (remember k2 = 0 = k′2) : p · k = k′ · (k + p)

Now we need to insert the given information in the problem, namely that
kµ = E

(
1, k̂
)

, where k̂ is a unit vector that points along the direction of
motion of the initial massless particle. We know that this is the form kµ

takes because it is null: we must have kµkµ = 0. Similarly k′µ = E′
(

1, k̂′
)

,

where we know from the setup of the problem that k̂ · k̂′ = cos θ. Hence we
have k′ · k = EE′ − EE′k̂ · k̂′ = EE′(1 − cos θ). We also know the initial
4-momentum of the massive particle because it is at rest: pµ =

(
M,~0

)
.

Putting this into the above gives

Write in terms of components : ME = E′ (E +M)− E′E
(
k̂ · k̂′

)
= EE′(1− cos θ) +ME′

Solve for the final energy : E′ =
ME

E(1− cos θ) +M

=
E

1 + E
M (1− cos θ)

(2.39)

Note that the only variable in the problem is the scattering angle θ: the
energy E′ of the scattered massless particle is fully determined by this angle
and all other given variables.

2.5.3 3-Body Decay

A particle of mass M explodes into 3 identical particles each of mass m, which
move away from each other at equal angles. What speed(s) do the particles
move at?

Answer

Again, we conserve momenta. The relation is

pµ = pµ1 + pµ2 + pµ3 (2.40)
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FIGURE 2.8
Diagram for the three-body explosion

Here we have to make clever use of the fact that all 3 particles come out at
the same angle. This means that

~pi · ~pj = |~pi| · | ~pj | cos θ for every i, j = 1, 2, 3 (2.41)

In this example it is more useful to look at the components of the conservation
law. First let’s check the spatial components

Spatial momentum conservation ⇒ ~p1 = −(~p2 + ~p3)

⇒ | ~p1|2 = −~p1 · (~p2 + ~p3) = cos θ | ~p1| (|~p2|+ |~p3|)

Doing this for all three particles, we find

cos θ =
| ~p1|

|~p2|+ |~p3|
=

| ~p2|
|~p3|+ |~p1|

=
| ~p3|

|~p2|+ |~p1|

and so we see that |~p1| = |~p2| = |~p3|.

Now let’s use energy conservation. Since pµ =
(
Mc,~0

)
, we have

Energy conservation : Mc =
E1

c
+
E2

c
+
E3

c
= 3

E

c
= 3

mc√
1− v2/c2

where each energy must be equal since the momenta and rest masses of the
final particles are all equal. Hence

v = c

√
1− 3 (m/M)2 (2.42)
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2.6 Questions

1. Show that the product AβB
β is Lorentz-invariant but the products

AβBβ and AβBβ are not.

2. Suppose we write the velocity v of a particle as v = c tanh η, where η is
a parameter called the rapidity.

(a) Find the form of a Lorentz transformation for a particle moving in
the x direction in terms of this rapidity parameter.

(b) Consider a succession of two boosts, both in the x direction, with
velocities v1 and v2. What is the value of the rapidity parameter for the
combination of these transformations in terms of the rapidity parameters
η1 and η2 for each?

3. A particle moving at speed v collides with an identical particle at rest.
What is the center-of-mass frame speed of this particle?

4. The lifetime of the muon is 2.2 × 10−6 seconds. Muons are produced
high in the atmosphere (10,000 meters above the surface of the earth)
from pions in cosmic rays moving at 99.9% of the speed of light. Once
produced the muons move at the same very high speed.

(a) How far will the muon travel according to non-relativistic physics?
Will it make it to the surface of the earth?

(b) How far will the muon travel according to relativistic physics? Will
it make it to the surface of the earth?

(c) The pion lifetime is 2.6× 10−8 seconds. Is it possible for the pions
to reach the surface of the earth?

FIGURE 2.9
Diagram for question #5
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5. (a) An η moving at 3/4 the speed of light decays into two photons of
equal energy E, which are each emitted at an angle θ relative to the
direction of the η’s motion. Find θ.

(b) Consider the same process, but now with the photons emitted along
the direction of motion. What is the frequency difference between the
two photons?

6. It is possible to define the force on a particle in special relativity as the
proper-time derivative of its spatial momentum

Fµ =
dpµ

dτ

where pµ = muµ.

(a) Show that the acceleration aµ = duµ

dτ of a particle is always orthog-
onal to its 4-velocity uµ.

(b) Express the relationship between the spatial acceleration ~a = d~v
dt and

the spatial force ~F . Do they always have the same direction?

(c) What is the meaning of the 0th component F 0?

7. Neutral pions can be produced from the collision of a photon with a
proton p+ γ → p+ π0.

(a) What is the minimum energy a photon must have for this process
to take place when the proton is at rest?

(b) The largest energy a photon in the cosmic microwave background
can have is about 1 meV. What is the minimum energy that a cosmic
ray proton must have in order to produce pions by scattering off of the
microwave background?

8. A pion traveling at speed v decays into an lepton of mass m` and its
correspond antineutrino ν̄`. Suppose the antineutrino is emitted at
right angles to the direction of motion of the pion.

(a) Find an expression for the angle that the lepton is emitted relative
to the orginal direction of motion.

(b) Suppose a pion of speed v emits a muon at angle θ, and another pion
at speed v′ emits an electron at the same angle, each having emitted
the antineutrinos at right angles to the direction of motion. How much
larger or smaller is v compared to v′?

9. Particle A decays into two particles: A −→ B + C.

(a) Find an expression for the energy of each outgoing particle in terms
of the various rest masses.

(b) Find the magnitudes of the outgoing momenta of B and C.

(c) Under what circumstances can your answer in part (b) equal zero?
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10. Find the energies of the outgoing particles for the following decays

π+ → e− + ν̄e
K− → π− + π0

π0 → 2γ
Λ→ p+ π−

ρ→ π+ + π−

11. Particle A collides into particle B, which is at rest, and three or more
particles are produced as a result: A+B −→ C1 + C2 + · · ·+ CN .

Find the threshold energy for this reaction to take place in terms of the
rest masses of the particles.

12. Find the threshold energies for the following reactions

p+ p→ p+ p+ π0

π− + p→ K0 + Σ0

p+ p→ p+K0 + Σ+

p+ p→ p+ p+ π+ + π−

p+ p→ p+ p+ p+ p̄

13. Particle A decays into three or more particles: A −→ B +C +D + · · ·
(a) Find the maximum and minimum energies that particle B can have
in terms of the rest masses of the other particles in the problem.

(b) For the decay D0 −→ K− + π− + e+ + νe, find the maximum and
minimum energies the e+ can have.

14. Consider a two-body scattering event A + B −→ C + D. Define the
following quantities

s = (pA + pB)2
t = (pA − pC)2

u = (pA − pD)2

which are a set of variables called Mandelstam variables.

(a) Show that the sum of the Mandelstam variables is a Lorentz invari-
ant quantity and compute its value.

(b) Find the energy of A in the lab frame, where particle B is at rest in
terms of the Mandelstam variables and the rest masses of the particles.

(c) Find the center-of-mass energy of A in terms of the Mandelstam
variables and the rest masses of the particles. What is the total energy
in this frame?
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Symmetries

One of the most fundamental notions of physics is that of symmetry: the
idea that certain systems, or properties of a system, or laws governing a
system, remain unchanged when you do something to them. For example, the
gravitational field of a homogeneous spherical object is rotationally symmetric:
it is the same no matter how you orient yourself about the sphere. Another
example is a crystal: an arrangement of atoms that looks the same if you shift
it in space in a certain direction. You can learn a lot about a physical system
(and the mathematics that describes it) just by knowing what symmetries
it has. In physical theories symmetries manifest themselves in terms of two
basic notions: invariance and covariance.

Invariance is the term used to describe properties of a system that do not
change when a symmetry transformation is performed. If a quantity is invari-
ant, all observers will agree on its value. We’ve already seen that the proper
time of an observer is an invariant under the Lorentz transformations: all
observers agree on what the proper time is for any given observer. Rest mass
is another such invariant.

Covariance is the term used to describe properties of a system that change
in accord with the changes induced by the symmetry transformation. For
example, if the equations of motion describing a given system have well-defined
transformation properties when a given symmetry operation is performed,
we say that these equations are covariant (i.e. they vary along, or co-vary,
with the transformation). In the above example, the equations describing
the motion of a body around a homogeneous spherical object are covariant
with respect to rotations – they will transform in a manner consistent with
rotational symmetry.

We’ll see later that symmetries necessarily result in conservation laws.
These laws may be used to obtain new information about a given system,
which in turn may yield further laws. In general a given interaction respects
many conservation laws: conservation of momentum, angular momentum,
charge etc. This stringently constrains the possible mathematical description
of the interaction.

Symmetries can be either continuous or discrete. For example, time-reversal
is a discrete symmetry (all clocks either advance or retreat), whereas time-
translation is a continuous one (the zero of time is a completely arbitrary
choice). Discrete symmetries result in multiplicative conservation laws, where-
as continuous symmetries yield additive laws.

45
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3.1 Groups

Mathematically, symmetries are properly described by making use of two
concepts: that of a group and that of an algebra. Let’s look at both of these,
with some examples [24].

3.1.1 Axioms of a Group

When we think of a symmetry, we think of performing certain operations,
or transformations, on a system that leave some of its basic properties un-
changed. We can collect all of the relevant transformations into a set,
G = {g1, g2, ...} (which may be infinite in size), and then ask what basic
properties the set should have in order for it to describe a symmetry. Math-
ematically the answer is given in terms of what we call a group.

A group is a set of G = {g1, g2, ...} of objects with a binary operation “�” –
some operation that allows us to combine two elements in the set – that has
four properties:

TABLE 3.1

Properties of a Group
CLOSURE If g1, g2 ∈ G⇒ g1 � g2 ∈ G (combinations

remain in the set)

IDENTITY There exists I ∈ G (one element
⇒ I � gi = gi for every gi ∈ G does nothing)

INVERSE Every gi ∈ G has a g−1
i ∈ G (combinations

such that g1 � g−1
i = I can be undone)

ASSOCIATIVITY If g1, g2, g3 ∈ G (combinational
⇒ (g1 � g2) � g3 = g1 � (g2 � g3) groupings can

be interchanged)

These properties are (in most cases) the minimum ones needed for trans-
formations to be meaningful in physics, and for the most part are motivated
by common-sense considerations. If the elements gi are transformations, then
we’d like a combination of two transformations to be the same kind of trans-
formation (closure). We also want to undo transformations (inverse), and not
do transformations (identity). Finally, we’d like our answer to be indepen-
dent of how we combine any three transformations together, provided we don’t
change their sequential order (associativity). Note the order of applying the
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“�” is relevant: in general g1 � g2 6= g2 � g1 for any two elements∗.
How do we know if something is a group or not? The only sure way is to

check all four properties. Let’s look at the integers as an example, shown in
table 3.2. A simple check shows that the integers form a group under addition,

TABLE 3.2

Integers as a Group
Integers: G = Z

Addition (� = +) Multiplication (� = ×)

Closure Z1 + Z2 ∈ Z X Z1 × Z2 ∈ Z X

Identity 0 + Zi = Zi X 1× Zi = Zi X

Inverse Zi + (−Zi) = 0 X Zi × 1/ (Zi) = 1
but 1/ (Zi) /∈ Z ×

Associativity (Z1 + Z2) + Z3 (Z1 × Z2)× Z3

= Z1 + (Z2 + Z3) X = Z1 × (Z2 × Z3) X

but not under multiplication. However, in this latter case, if we modify the
set of integers Z to include all fractions and exclude 0, we get a group Q: the
non-zero rational numbers under multiplication.

This latter example is a common feature: if we have a set of elements that
don’t form a group under some combining operation, we can sometimes get
a group by either modifying the set, or modifying the combining operation
(or both). It is quite common in physics to have a set of transformations
(typically implied by experiment) that almost satisfies the properties of a
group, but not quite. Often it is obvious how to generalize the set so that
the group properties are satisfied, although there is no general prescription
as to how to do this. Part of the job of a theoretical particle physicist is to
make intelligent guesses as to how to find such generalizations to ensure that
a given system has a desired symmetry. This symmetry can then be exploited
to help make further predictions about the system that can then be tested
against experiment.

Table 3.3 provides an example of another kind of group. This group is
called U(1), the Unitary group of complex 1× 1 matrices. Unlike the group

∗If g1 � g2 = g2 � g1 then we say that the group is abelian. Transformations that shift
location in space (translations) yield the same result no matter what order they are applied
in, and so they are abelian. Rotations in space about a fixed point are not abelian – a
rotation about the x-axis followed by one about the y axis will yield a different result than
performing these operations in the opposite order.



48 An Introduction to Particle Physics and the Standard Model

TABLE 3.3

Complex Phases as a Group

Complex Phases (G = U(1) =
{
eiθ
}
, � = × =multiplication; θ ∈ R)

Closure eiθ1 × eiθ2 ∈ U(1) X
Identity e0 × eiθi = eiθi X
Inverse eiθi × e−iθi = e0 = 1 X
Associativity

(
eiθ1 × eiθ2

)
× eiθ3 = eiθ1 ×

(
eiθ1 × eiθ3

)
X

of the integers under addition, which has countably infinitely many elements,
this group has an uncountably infinite number of elements since the elements
depend continuously on a real parameter θ. As we’ll see in Chapter 12, this is
the symmetry group of the electromagnetic interactions.

3.1.2 Representations

So far we’ve discussed properties and examples of sets of transformations.
But how are groups of transformations used in particle physics? What is it
that the transformations act on?

In particle physics the most common thing that is transformed under a sym-
metry operation is the wavefunction of a particle or set of particles. In general
the wavefunction can be written down as a multicomponent single column
matrix with complex entries (a complex column vector) in some (abstract)
multi-dimensional space†. The symmetries of the system are transformations
that act on the wavefunction via multiplication by complex matrices.

In (almost) all cases in particle physics, the groups we are interested in are
sets of complex matrices, and the combining operation is matrix multiplica-
tion. So what we need is a way of understanding group elements as matrices.
This leads us to the concept of representations.

If we have a symmetry group, how do we write down the elements of the
group in terms of matrices? Or alternatively, if we have a set of matrices,
how do we know that these matrices correspond to the group elements of the
symmetry that we are interested in?

It is a result of the mathematics of group theory [25] that every group G
can be represented by a set of matrices: in other words

For every g ∈ G there is a corresponding matrix Mg such that
g1 � g2 = g3 ⇒Mg1Mg2 = Mg3

which means that the matrix multiplication table of our set of matrices must
correspond to the multiplication table of the group. A set of matrices {Mg1}

†In introductory quantum mechanics, the wavefunction has only a single component, i.e.,
it is one complex function. In particle physics it will commonly be necessary to generalize
it to multiple components.
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that has this property is called a representation‡ of the group G.
The main advantage of using a matrix representation of a symmetry is

that you can carry out explicit calculations. Since matrix multiplication is
associative, the associativity property is automatically satisfied for any rep-
resentation. Furthermore, the inverse property demands that all matrices in
a representation must be invertible, which significantly reduces the possible
forms the matrix representation of a group can have. Finally, the identity
group element is easily represented by the identity matrix.

There are several somewhat counterintuitive points about representations
that are worth noting:

• Representations are not unique. Since the only constraint on a set of
matrices to represent a group is that it reproduce the multiplication
table as described above, it is clear that a group can have many different
matrix representations, since there are many ways of doing this. In fact,
a given group G has infinitely many representations!

• Representations in general are not faithful for the same reason: typically,
more than one element of a given group is represented by one matrix.
The most extreme case of this is to represent all elements by the identity
(the n×n unit matrix)§. If the representation is 1-1 (i.e. if every group
element is represented by one and only one matrix – and vice versa)
then we say the representation is faithful¶. A faithful representation
provides the maximum amount of information that we can have about
the group.

• A group of matrices is already a faithful representation of itself: this
is called the fundamental representation. In general it is possible to
use other matrices to form different representations of the same matrix
group. For example the group of 2× 2 unitary matrices (called SU(2))
can be represented by matrices of every possible dimension: 1×1, 2×2,
3× 3, 4× 4, ...

‡Strictly speaking, a d-dimensional representation is a map ρ (called a homomorphism)
from the group to a set of dxd matrices M = {Mg}:

ρ : G →M

§Note that this representation causes us to lose all information about the multiplication
properties of the group.
¶So why not only use faithful representations? Why would we be interested in any rep-
resentation that was less than faithful? One reason is that we often don’t need all of the
information about the group. A good example of this is to represent every group element
by either +(Identity) or −(Identity) – this will tell us about the basic even/odd properties
of the group, and hence something about the basic physics of the system. For example, if
the group is the group of rotations, then this kind of representation tells us whether or not
we have a reflection, i.e. a transformation of odd parity.



50 An Introduction to Particle Physics and the Standard Model

3.1.3 Irreducible Representations

How do we know what all the representations are for a particular group? This
is a major problem in group theory, one complicated by the fact that you can
combine old representations together to form new ones:

Suppose Mg1Mg2 = Mg3 and Ng1Ng2 = Ng3

where
{
Mgi is an m×m representation
Ngi is an n× n representation

}
of G

Then Lgi =
(
Mgi 0

0 Ngi

)
is also a representation: Lg1Lg2 = Lg3

and is an (m+ n)× (m+ n) representation

This shows why a group has infinitely many representations: we can always
keep enlarging the matrices from smaller representations in this block-diagonal
way.

But this is redundant! Clearly we shouldn’t count the set {Lgi} as a separate
representation, because it is a trivial combination of smaller, block-diagonal
representations. What we really want to know are the non-redundant sets
of matrices that can represent a group. We call such sets irreducible rep-
resentations. Specifically, any representation whose matrices simultaneously
cannot all be decomposed into block-diagonal form is called an irreducible
representation‖. Once the irreducible representations (irreps) are known for
a given group, then all possible representations are known, because they can
be constructed out of the irreps.

So in particle physics (and other kinds of physics), if we have a system S
that is believed to have some symmetry S, we conceptualize our treatment of
the system as follows:

1. Find the group G associated with the symmetry S.

2. Find all the irreps of the group G.

3. The wavefunctions that transform under these different irreps are the
only wavefunctions that are mathematically permitted – and hence phys-
ically realizable∗∗ – to describe the physics of the system S.

For example, the group SU(3) is the symmetry group under which the
color charges of quarks transform (we’ll see why later). This group has
representations of dimension 3, 6, 8, 10, . . .. Hence quark wavefunctions must
be complex column vectors with either 3, 6, 8, 10, etc. entries. These are the
only kinds of quark wavefunctions that can exist if SU(3) is the symmetry –

‖Mathematically we say that irreducible representations have no invariant subspaces.
∗∗These wavefunctions are commonly called multiplets, where the“multi” part refers to how
many components the wavefunction has. A doublet has 2 components, a triplet 3, etc.
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the math won’t allow anything else! Likewise, bound states of quarks must
have wavefunctions that are one or more of these same dimensionalities.

How do we find (step 2) the different irreps of a given group G? This is
a major task for group theory [26], one beyond the scope of what I’m able
to present here. However, the problem has been solved (and a well-defined
procedure exists) for a certain class of groups that are of interest in particle
physics: Lie Groups!

3.1.4 Multiplication Tables

You are no doubt familiar with the multiplication table

× 1 2 3
1 1 2 3
2 2 4 6
3 3 6 9

where I’ve only written down the first few entries for all the natural (counting)
numbers. The table tells us to combine two numbers under multiplication to
get another number: by choosing a number x in the leftmost column and
another number y topmost row, we can find out what the answer is when we
multiply these two numbers together simply by looking at where the row that
x is in intersects the column that y is in. In a similar manner, a multiplication
table provides a straightforward way of writing down all of the information
about a given group.

For groups of very large or infinite size this is generally not very practical.
But for groups of a reasonable finite size it can provide a handy way of letting
us know what kind of information the group contains, and what kinds of
relationships exist between its various elements.

One of the interesting things to consider in a finite group is what happens
when we take a given element and keep combining it with itself. Consider the
sequence of elements obtained by taking successive “powers” of some element
x ∈ G of order n: x, x2 = x � x, x3 = x � x � x, ... We can show that
eventually this sequence repeats itself in a cyclic manner. This is not too
hard to see. Suppose that the first repeated element in the group is xp and
that it is repeated after q + 1 steps. Therefore xq+1 = xp for p ≤ q + 1.
Consequently

x−1 � xq+1 = x−1 � xp ⇒ xq = xp−1 ⇒ p = 1

because we can’t have xp−1 appear in the sequence before xp unless p = 1.
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3.2 Lie Groups

A Lie Group is a group in which the group elements are smooth (continuous
and differentiable) functions of some finite set of parameters θa ∈ R, and in
which the “�” operation depends smoothly on those parameters. A typical
element g ∈ G is written as

g = g(θ1, . . . , θN ) = exp [iθaTa] = exp
[
i~θ · ~T

]
(3.1)

where a = 1, . . . , N and {θa} are continuous parameters

The Ta’s are mathematical objects called the generators of the group. There
are N of them – they are called generators because if you know what they are,
you can construct any element of the group that you want by exponentiating
as above – in other words, they generate the group. So the Ta’s contain all
the relevant information†† of the group in a very economical form!

Lie groups are important in physics because most of the symmetries we
consider are continuous symmetries. For example, rotations depend continu-
ously on parameters called angles. A given angle specifies how much rotation
has been carried out around a given axis.

Almost all of the important symmetry groups in particle physics are Lie
groups [27]. The most important of these are the UNITARY and ORTHOG-
ONAL groups. In particular, SO(3) is the group that describes rotational
symmetry, a symmetry we believe to be true of all the laws of nature‡‡. It
is almost identical in structure to another group, SU(2), which is the most
important internal symmetry group. In general, in particle physics, we refer
to symmetries as being either spacetime symmetries (they transform space
and time co-ordinates in some way) or internal symmetries (they transform
wavefunction components and/or charges amongst themselves).

The action of any group on a wavefunction multiplet will result in a re-
arrangement of multiplet components. If the group is a symmetry, then we
mean that the physics of the system is insensitive to this rearrangement.

Lie groups have been completely classified in terms of their transformation
properties. Table 3.4 lists all the kinds and their uses in particle physics.

††Actually this is not quite true. The Ta’s contain all local information about the group –
in other words, if you know all N of the Ta’s then you can construct any group element that
is continously connected to the identity element. However, other group elements – those not
continuously connected to the identity – cannot be constructed in this way. This property
is relevant in constructing the vacuum state in quantum electrodynamics as discussed in
Chapter 25.
‡‡Of course this assertion must be tested by experiment, which so far has provided no
indication that rotational symmetry is not a symmetry of the laws of physics at their most
fundamental level.
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3.3 Algebras

Closely related to the notion of a group is that of an algebra. An algebra is a
vector space V = {vI} with a binary (combining) operation “◦” such that

vI ◦ vJ =
∑
K

CIJKv
K = CIJKv

K (3.2)

where the summation convention was used in the last step. This rule ensures
that when vectors in V are combined, they always give a vector in V , which can
be expressed as a linear combination of the other vectors in V ; the CIJK ’s
are the coefficients of this combination, known as the structure constants.
Note that all we care about here is closure – there doesn’t have to be either
an inverse or an identity! The relation (3.2) implies that knowledge of all
possible CIJK ’s is equivalent to knowledge of the combining operation “◦” –
in this sense the CIJK ’s characterize the algebra under consideration. The
I, J in the CIJK are not raised using the metric, but rather are placed there
for ease of notation.

A familiar example of an algebra is the vector cross-product. The set of
elements in the algebra is the set of vectors in 3-dimensional space, and the
combining operation ◦ = ×, the cross-product. Any two vectors ~a and ~b
combine under the cross-product to give a third vector ~a×~b, which is also a
vector in the 3-dimensional space. In terms of the unit vectors {x̂, ŷ, ẑ} of a
Cartesian coordinate system we have

x̂× ŷ = ẑ ŷ × ẑ = x̂ ẑ × x̂ = ŷ

with all other cross-products zero. In this example CIJK turns out to be the
Levi-Civita symbol εIJK , which shall be defined below.

3.3.1 Lie Algebras

Why is an algebra important? The reason is that the Taylor-series expansion
of a Lie group G gives us an algebra called a Lie Algebra (denoted G). The
demonstration of this is given in the appendix. The elements of G are the
generators Ta of the Lie group, and the combining operation ◦ = [, ] is the
commutator [

Ta,Tb
]

= ifab
c Tc (3.3)

where the CIJK ’s are denoted by the fab
c ’s. The group associativity law implies

the relation[[
Ta,Tb

]
,Tc

]
+
[[

Tb,Tc
]
,Ta

]
+
[
[Tc,Ta] ,Tb

]
= 0 (3.4)
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which is called the Jacobi identity. Any algebra for which (3.3) and (3.4) hold
is a Lie Algebra.

As noted previously, we can write the group elements of any Lie Group in
the form g (θ1, ..., θN ) = exp (iθaTa) . Consequently, if we know what all of
the Ta’s are, we can produce any element of the group that we want. As
stated above, we say that a Lie group is generated by the Ta’s, which are called
the generators of the group. Hence we can study (most of) the symmetries
of physics simply by studying their infinitesimal structure using Lie Algebras
[28], instead of the more complicated structure of Lie Groups.

3.4 The Rotation Group SO(3)

A rotation about, say, the ẑ-axis is given by:

x′ = cos θ x+ sin θ y
y′ = − sin θ x+ cos θ y

−−−−→small θ
x′ = x+ θ y = x− (θẑ × ~x) · x̂
y′ = −θ x+ y = y − (θẑ × ~x) · ŷ (3.5)

( More generally ~x′ = ~x−
(
~θ × ~x

)
where ~θ = θẑ )

Do the set of all possible rotations form a group? It’s clear that any two
rotations yields a rotation (closure), that rotation by an angle θ = 0 is the
identity and that every rotation can be undone simply by performing the
same rotation by the negative of the angle. So if we use matrices to represent
the rotations, we’ll have a group (since associativity will automatically hold).
Moreover, we know that any rotation can be constructed by taking products
of matrices from the set

R =


1 0 0

0 cos θx sin θx
0 − sin θx cos θz

 ,

 cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

 ,

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1


(3.6)

and so our group G = R is the set of all matrices that are products of ma-
trices in the above set, where {θx, θy, θz} are three arbitrary parameters. A
general group element r ∈ R will be a function of these parameters, i.e.
r = r(θx, θy, θz). This group is the orthogonal group of 3 × 3 matrices of
determinant one, so it is SO(3).

Let’s construct the Lie Algebra of SO(3). We can do this by examining the
elements of R, rewriting them in the form exp

[
iθlTl

]
' I + iθlTl for θl � 1.

For example  cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 '
 1 θz 0
−θz 1 0

0 0 1

+O
(
θ2
z

)
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=

1 0 0
0 1 0
0 0 1

+ θz

 0 1 0
−1 0 0
0 0 0


= I + iθzTz (3.7)

which means that Tz = −i

 0 1 0
−1 0 0
0 0 0

. This is the generator of rotations

about the ẑ-axis. Performing a similar exercise on the other two matrices, we
obtain the set of generators

{Tx,Ty,Tz} =

−i
0 0 0

0 0 1
0 −1 0

 ,−i

0 0 −1
0 0 0
1 0 0

 ,−i

 0 1 0
−1 0 0
0 0 0

 (3.8)

which form the basis of the Lie algebra of SO(3), which we call so(3). We
can check the commutation relations

[Tx,Ty] = (−i)2

0 0 0
0 0 1
0 −1 0

0 0 −1
0 0 0
1 0 0

− (−i)2

0 0 −1
0 0 0
1 0 0

0 0 0
0 0 1
0 −1 0


=

 0 1 0
−1 0 0
0 0 0

 = iTz (3.9)

with the rest being similar: [Ty,Tz] = iTx and [Tz,Tx] = iTy. So altogether
we have [

Ta,Tb
]

= iεab
c Tc (i.e. fab

c = εab
c ) (3.10)

which are the commutation relations of the rotation group familiar from quan-
tum mechanics (e.g. in solving for the wavefunction of the Hydrogen atom).

The object εab
c is called the Levi-Civita symbol or (more commonly) the

epsilon tensor. We can write it in several equivalent ways: εab
c = εcab = εcab .

It has the following properties

εabc =


0 if any of c, a, bare equal

−εacb = +εcab = −εcba switches sign under interchange

of any pair of indices

= +εbca = −εbac

1 if a = 1, b = 2, c = 3

(3.11)

The epsilon tensor plays a role in the cross-product analogous to the role that
the Kronecker-delta symbol plays in dot product. We have

~A · ~B = δijAjBk
(
~A× ~B

)i
= εijkAjBk (3.12)
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or more explicitly

~A · ~B = A1B1 +A2B2 +A3B3(
~A× ~B

)1

= A2B3 −A3B2
(
~A× ~B

)2

= A3B1 −A1B3(
~A× ~B

)3

= A1B2 −A2B1

Just in the same way that δij can be defined in n-dimensions (by letting
the indices i, j take on all values from 1 to n), so also can the epsilon tensor
be defined in n-dimensions, with the key distinction being that it has as many
indices as there are dimensions. So in 2 dimensions, the epsilon tensor has
two indices (εij), in 3 dimensions three indices (εijk), in 4 dimensions four
indices (εµναβ) and so on. We will be making use of all of these dimensional
versions of the epsilon tensor in this text∗∗∗ .

The algebra so(3) (and its Lie group SO(3)) is so commonly used in physics,
we give its generators a special notation: Ta = Ja, so that the set of generators
{Jx,Jy,Jz} obeys [

Ja,Jb
]

= iεabcJc (3.13)

and using (3.11) it’s not hard to show that

εabdεdce + εbcdεdae + εcadεdbe = 0 (3.14)

and so from (3.13) we have[[
Ja,Jb

]
,Jc
]

+
[[

Jb,Jc
]
,Ja
]

+
[
[Jc,Ja] ,Jb

]
= 0 (3.15)

which means the Jacobi identity (3.4) holds. So so(3) is indeed a Lie algebra.
As noted above, each group element of SO(3) can be written in the form

exp
[
i~θ · ~J

]
, which is the matrix that corresponds to a rotation of angle

∣∣∣~θ∣∣∣
about the θ̂ direction. For example. if ~θ = θŷ:

exp
[
i~θ · ~J

]
= exp [iθJy] =

∞∑
n=0

(iθJy)n

n!

=

1 0 0
0 1 0
0 0 1

+
∞∑
n=1

(−1)n (θ)2n

(2n)!

1 0 0
0 0 0
0 0 1

 (3.16)

+
∞∑
n=0

(−1)n (θ)2n+1

(2n+ 1)!

0 0 −1
0 0 0
1 0 0


∗∗∗ There is an important distinction in 4 dimensions compared to 3 and 2, having to do with
the raising and lowering of the indices. In 3 spatial dimensions we have εab

c = εcab = εcab .

However, it is NOT true that εµναβ = ε ναβ
µ = ε µ αβ

ν etc. Instead we must raise/lower
indices of εµναβ using the metric gµν .
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=

1 +
∑∞
n=1

(−1)n(θ)2n

(2n)! 0 −
∑∞
n=0

(−1)n(θ)2n+1

(2n+1)!

0 1 0∑∞
n=0

(−1)n(θ)2n+1

(2n+1)! 0 1 +
∑∞
n=1

(−1)n(θ)2n

(2n)!


=

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (3.17)

which is a rotation of angle θ about the ŷ−axis. From this we see that Jy

generates rotations about the y-axis. Using similar methods you can show
that Jx generates rotations about the x-axis and Jz generates rotations about
the z-axis.

The above formalism means that we can rewrite a general element in the
set of rotational transformations (3.6) in the form

x′i =
(

exp
[
i~α · ~J

]) j

i
xj (3.18)

which for small angles |αk| << 1 gives

x′i '
(
δ j
i − ε

jk
i αk

)
xj = xi − (~α× ~x)i (3.19)

of which eqs (3.5) are a special case.

3.5 Appendix: Lie Algebras from Lie Groups

As I noted earlier in this chapter, a Lie group, when “Taylor-series expanded,”
becomes a Lie Algebra. Here I will outline in more detail how this works.

Closure of the Lie group implies

exp (iΘaTa) exp
(
iΥbTb

)
= exp (iΞc(Θ,Υ)Tc) (3.20)

where Ξc(Θ,Υ) must be an analytic function of (Θ,Υ). Clearly Ξc(Θ, 0) = Θc

and Ξc(0,Υ) = Υc. In fact, Ξc can only depend on odd powers of Θ and Υ;
otherwise Ξc(Θ,−Θ) won’t equal zero, which it must equal when Υc = −Θc .
Hence

Ξc(Θ,Υ) = Θc + Υc −
1
2

fab
c ΘaΥb +O(ΘΥ3 or Θ3Υ) + · · · (3.21)

where the fab
c are coefficients in the series expansion.

Expanding the exponentials on both sides of equation (3.20)

1 + i (Θa + Υa) Ta +
(i)2

2!
(ΘaΘb + ΥaΥb) TaTb + (i)2ΘaΥbTaTb + · · ·

= 1 + i (Θc + Υc) Tc − i

2
fab

c ΘaΥbTc +
(i)2

2!
(Θa + Υa) (Θb + Υb) TaTb + · · ·
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gives upon cancellation

−ΘaΥbTaTb = −1
2

ΘaΥb

(
TaTb + TbTa

)
− i

2
fab

c ΘaΥbTc (3.22)

⇒ −1
2

ΘaΥb

(
TaTb −TbTa

)
= − i

2
fab

c ΘaΥbTc (3.23)

This must be true for any Θ and Υ, so[
Ta,Tb

]
= ifab

c Tc (3.24)

which is (3.3).

3.6 Questions

1. Consider an equilateral triangle, with the following set of symmetry
operations

I identity
R+ Positive rotation of 2π

3 around center
R− Negative rotation of 2π

3 around center
A Reflection through a line joining vertex A to the midpoint of line BC
B Reflection through a line joining vertex B to the midpoint of line CA
C Reflection through a line joining vertex C to the midpoint of line AB

FIGURE 3.1
Diagram for question #1.
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(a) Show that these six elements form a group.

(b) Construct the multiplication table of this group.

2. Find a non-trivial one-dimensional representation of the triangle group
in question #1.

3. (a) Find multiplication tables for the groups G2 = {I, a} and G3 =
{I, a, b} respectively consisting of two and three elements each.

(b) Are the multiplication tables unique? Why or why not?

(c) Find a multiplication table for the group G3 = {I, a, b, c} consisting
of four distinct elements. Is it unique?

(d) Find the multiplication table for the group ∆ consisting of symmetry
transformations on the equilateral triangle.

4. An orthogonal matrix is defined by the relation RTR = 1, where R is
an N ×N matrix, where T refers to the transpose,

(
RT
)
ij

= Rji

(a) Show that the set of all orthogonal N ×N matrices forms a group.

(b) Show that the set of all orthogonal N ×N matrices of determinant
1 forms a group.

5. A unitary matrix is defined by the relation U†U = 1, where U is an
N ×N matrix, and the † operation means take the Hermitian conjugate
(the complex-conjugate of the matrix transpose), i.e.

(
U†
)
ij

= U∗ji.

(a) Show that the set of all unitary N ×N matrices forms a group.

(b) Show that the set of all unitary N × N matrices of determinant 1
forms a group.

6. A symplectic matrix is defined by the relation STκS = κ, where S is an
2N × 2N matrix and where κ is a matrix of the form

κ =
(

0 IN
−IN 0

)
and where IN is an N × N identity matrix. Show that the set of all
symplectic N ×N matrices forms a group.

7. Consider a set of three objects {i, j, k} with the following properties

ij = k jk = i ki = j

and where i2 = j2 = k2 = −1. Show that the set {1, i, j, k} forms a
group under multiplication using these rules.
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FIGURE 3.2
Diagram for question #8

8. (a) Find the general form of a Lorentz transformation for an arbitrary
velocity ~v as shown in 3.2.

(b) From your answer in part (a), work out the general form for velocity
addition for two velocities ~v and ~u.

(c) Under the velocity addition formula in part (b), does the set of
velocities form a group? Why or why not?

9. For matrices A and B, show

exp [−A] B exp A = exp(−adA)B where adAB ≡ [A,B]

10. (a) Show that the Jacobi identity implies

fab
d fdc

e + fbc
dfda

e + fca
dfdb

e = 0

(b) Show that the structure constants of a Lie group generate a represen-
tation of the group, i.e. that (Ta)b

c = ifab
c generates a representation.

This is called the adjoint representation of the group.
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4

Conservation Laws

In the previous chapter I mentioned that symmetries necessarily result in con-
servation laws. In fact, it turns out that a conservation law exists for every
symmetry. This is very useful, because conservation laws are something that
can be checked experimentally. Even better, from an experimental perspec-
tive we can turn the reasoning around, and inductively conclude that if a
conservation law is present, then the underlying theory should have a related
symmetry.

So what is the connection between symmetries and conservation laws? Re-
call that a symmetry is an operation on a system that leaves some (or all) of
its properties unchanged. Rotations of a sphere are an excellent example, in
this case, of a symmetry of shape. A crystal forms another example, in this
case, a symmetry of structure, in which the atoms forming the crystal can be
displaced in a certain way that replicates the crystal structure.

In particle physics, fundamental symmetries are revealed not so much in
terms of shape or physical structure, or even in terms of the motions of par-
ticular objects or systems. Rather they are revealed in terms of the set of
all possible motions a system can have. In other words, symmetries are in
general manifest in the EQUATIONS OF MOTION of a system, rather than
in particular solutions to these equations∗. To see how this works let’s recall
the basic formulation of the equations of motion from Lagrangian dynamics.

4.1 The Action Principle

To describe the motion of a body in classical physics, we assign it a set of
coordinates q(t), that in general are functions of time, since the body will be

∗Of course it is possible for a particular solution of a given theory to have a high degree
of symmetry. But when we talk about a symmetry of nature, we are referring to general
properties of the equations and not to particular solutions.
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moving around†. To deduce its equations of motion we require that the action

S[q] ≡
∫
dtL[q, q̇] where

q = {q1,q2,q3, . . . qn}
q̇i = dqi

dt

(4.1)

be stationary with respect to variations of the trajectory. Conceptually, this
means that we modify the actual (and at this point unknown) path of motion
that the particle takes and change it in some small but arbitrary manner (see
fig. 4.1). This is done point-by-point along the trajectory, so we replace in the
action q(t) with q(t)+δq(t), where δq(t) is the arbitrary small change. By
demanding that the action be stationary with respect to small changes of the
trajectory, we in fact require that the action is minimized (or more generally,
extremized) with respect to these small changes. Hence we require

0 = δqiS = S[q + δq]− S[q]

=
∫ tF

tI

dt

[
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

]
+ · · ·

=
∫ tF

tI

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi +

∂L

∂q̇i
δqi

∣∣∣∣tF
tI

(4.2)

The “+ · · ·” in eq. (4.2) means that I neglect any terms proportional to
(δqi)

2. The third line follows from the second via an integration by parts,
where δq̇i = δ dqidt = d

dtδqi.
To proceed further we need to incorporate additional information: namely

we assume δqi = 0 at the endpoints of all the trajectories. The reason for
this is that we want to find out what equations of motion take our body
from a given set of initial conditions to another given set of final conditions.
The only way this comparison will be meaningful is if we require that all
the trajectories in our variation have the same initial (and final) conditions,
i.e., the same endpoints. This means that δqi = 0 at these endpoints. This
eliminates the last term in the preceding expression. Since δqi is otherwise
arbitrary, eq. (4.2) can only be satisfied if

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 Euler-Lagrange equations (4.3)

where I have written the general name these equations get due to their special
significance. We can alternatively write them as

dpi
dt

=
∂L

∂qi
(4.4)

†What we are doing here is considering the body to be a point mass. However, if we were
interested in the detailed structure of the body we could assign each of its constituents a
coordinate, idealizing each constituent as a point mass.
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FIGURE 4.1
A sample trajectory (solid), and a variation of this trajectory (dot-dash).

where
pi ≡

∂L

∂q̇i
a quantity known as the canonical momentum pi.

So what I have shown is that solutions to the Euler-Lagrange equations
are trajectories q(t) that extremize the action. For a given set of initial
conditions, any solution q(t) to the equations (4.3) is regarded as a possible
motion of the system. Conversely, functions q(t) that do not obey equations
(4.3) will not yield an extremal action.

The variational principle is a very powerful principle – it implies that equa-
tions of motion governing a system are determined by extremization of a
scalar functional (the action) [29]. It generalizes to quantum mechanics, gen-
eral relativity and quantum field theory. Pretty much all of the equations of
fundamental physics are founded on an action principle. The scalar character
of the action makes it ideal for introducing symmetries.

When we consider a symmetry of the system, we are contemplating a group
of transformations G = {gi} such that

q′i = gi[q] where invariance ⇒ S[q′] = S[g[q]] = S[q] (4.5)

Suppose we choose to describe the motion in terms of the transformed vari-
ables q′(t′). What equations of motion will they obey? We can find them by
computing the variation

0 = δqiS[q] =
δq′j
δqi

δq′j (S[q]) =
δq′j
δqi

δq′j (S[g[q]]) =
δq′j
δqi

δq′jS[q′]

⇒ δq′iS[q′] = 0 (4.6)

where the first equality holds provided q(t) solves (4.3) and the last holds

because δq′j
δqi
6= 0.
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Hence if q(t) solves (4.3), then the transformed quantities q′(t′) will also be
a solution to a set of equations of motion. These will not in general be identical
to the set that the q(t) obey, but they will be obtainable from this set using
the same transformations: an invariant action yields covariant equations of
motion!

In other words both qi(t) and q′i(t
′) = g[q(t)] extremize the action if

S[g[q]] = S[q], provided G is a group. This last requirement ensures that

det δqjδq′i 6= 0 (all group elements must have an inverse, ensuring δq′j
δqi
6= 0); were

it not to hold then we could not ensure that δq′iS[q′] = 0, but only that some
linear combination of variations of S[q′] would vanish.

4.2 Noether’s Theorem

An even more general principle holds whenever we have a symmetry, namely,

For every symmetry of the action there is a conservation law

which is called Noether’s theorem, obtained by Emmy Noether in 1917.
To see why this is true, notice that for a fully arbitrary variation (one for

which neither the equations of motion (4.3) hold nor for which the endpoints
are fixed) we have

δqiS =
∫ tF

tI

dt [δqiL] =
∫ tF

tI

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi +

∂L

∂q̇i
δqi

∣∣∣∣tF
tI

(4.7)

so that

δqiL =
[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi +

d

dt
[piδqi] (4.8)

Now let’s consider a (small) symmetry transformation, parametrized by a set
of parameters α = {α1, α2, α3, . . . , αm} so that

qi → q′i = q′i[α] = gi[α,q]

⇒ δαj
qi = q′i − qi =

∂q′i
∂αj

∣∣∣∣
α=0

δαj + · · ·

and where we define α = 0 to be the identity transformation (q′i[α = 0] =
gi[0,q] = qi).

Let’s see what happens if set δjqi = δαj
qi, neglecting terms of order (δα)2

and higher. First we see that equation (4.8) becomes

d

dt

[
pi
∂q′i
∂αj

]
=

∂L

∂αj
−
[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
∂q′i
∂αj

(4.9)



Conservation Laws 67

to leading order. Next consider the action: invariance of the action means
S[q′] ≡ S[q+ δαj

q] = S[q], or alternatively δαj
S = 0. This can only be true if

0 = δαj
S =

∫ tF

tI

dt [δαj
L] =

∫ tF

tI

dt
∂L

∂αj

∣∣∣∣
α

= 0 + · · · (4.10)

The most general condition under which this holds is

∂L

∂αj

∣∣∣∣
α=0

=
d

dt

[
G

(
q,
∂q′

∂αj

)]
α=0

(4.11)

provided the function G is some function of q and δαj
q that vanishes at the

endpoints. This is the most general form δαj
L can take that vanishes upon

integration. The function G is some function that must be calculated case-by-
case for each given symmetry.

The important thing to note here is that this equality follows because we
have a symmetry transformation. For a symmetry transformation, δαj

L must
be a total time derivative, whereas for an arbitrary variation it is not in general
a total time derivative (unless the equations of motion are satisfied), as is clear
from eq. (4.8) above. We can form an object

Jk =
(
pi
∂q′i
∂αk
−G

(
q,
∂q′

∂αk

))∣∣∣∣
αa=0

(4.12)

and easily show using (4.9) that

d

dt
Jk =

(
d

dt

[
pi
∂q′i
∂αk

]
− d

dt
G

)∣∣∣∣
αa=0

=
(
∂L

∂αk
−
[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
∂q′i
∂αk
− d

dt
G

)∣∣∣∣
αa=0

=
(
∂L

∂αk
− d

dt
G

)
αa=0

= 0 (4.13)

which means that Jk is conserved: it stays the same at all times, provided the
equations of motion are satisfied. Note that we impose the Euler-Lagrange
equations to get the third line; the last line follows from (4.11).

The current Jk is called the Noether current associated with the symmetry
α. Equation (4.13) is Noether’s theorem: the symmetry parametrized by
the α’s ensures that Jk does not change with time. In other words Jk is
conserved. Noether’s theorem is very far-reaching – I’ve only proved it for
classical mechanics, but it can be shown to hold in both general relativity [30]
and quantum field theory [31]. It is a very general result that holds for any
theory of physics based on action principle.

The meaning of Jk depends on what the symmetry is, or in other words,
what the α’s are. Let’s look at some examples.
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4.3 Spacetime Symmetries and Their Noether Currents

The foundational symmetries of particle physics (indeed all of physics) are
spacetime symmetries: symmetries that transform the coordinates of space
and time. Let’s find the associated Noether currents for these.

4.3.1 Spatial Translations

We expect the fundamental laws of nature to be insensitive to a special lo-
cation in space. This means that there is no special choice for the origin of
coordinates. Under a spatial translation, the choice of origin is shifted, so
this symmetry requirement means that the action should be translationally
invariant. A translationally invariant action will have

L[q + α, q̇] = L[q, q̇] where q′ = q + α and q̇′ = q̇ (4.14)

where there are three symmetry parameters {α1, α2, α3} that parametrize the
translation distances. Equation (4.14) implies ∂L

∂αi

∣∣
α=0

= 0 and so we can set
G = 0 (or a constant vector; it doesn’t matter). We also have

∂q′i
∂αk

= δik (4.15)

and so the Noether current Jsp-trans
k is

Jsp-trans
k = pi

∂q′i
∂αk

−G
(

q,
∂q′

∂α

)
= pi (δik)− 0 = pk (4.16)

This means that‡
d

dt
Jsp-trans
k = 0⇒ d~p

dt
= 0 (4.17)

which is the conservation of linear momentum! Hence

space translation invariance ⇒ conservation of linear momentum

4.3.2 Rotations

What happens if we insist that our system be rotationally invariant? Rota-
tional symmetries are described by the orthogonal group SO(3). In Chapter
3 we saw that these take the form

q′i =
(

exp
[
i~α · ~J

]) j

i
qj '

(
δ j
i − ε

jk
i αk

)
qj = qi − (~α× ~q)i (4.18)

‡Note that if G were set to be a constant vector, then this would have the effect of shifting
the definition of conserved momentum by some constant (and irrelevant) value; momentum
would still be conserved. This is why we choose G = 0.
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where the (small) symmetry parameters {α1, α2, α3} are the angles of rotation
around each orthogonal coordinate axis, the J ’s are the rotation generators
we looked at before, and {q1, q2, q3} are the 3 spatial coordinates. Hence

⇒ ∂q′i
∂αk

= −ε jki qj = +ε kji qj = εikjqj (4.19)

Since the magnitude of a vector is invariant under rotations, a rotationally
invariant Lagrangian will only depend on the magnitude of ~q, (i.e. L =
L (|~q|)), so we will have L (|~q′|) ≡ L (|~q|) (i.e. ∂L

∂αi

∣∣
α=0

= 0) and we can once
again choose G = 0.

The Noether current Jrot
k is thus

Jrot
k = pi

∂q′i
∂αk

= pi (εikjqj) = −εkijpiqj = − (~p× ~q)k = (~q × ~p)k (4.20)

and we obtain
d

dt
Jrot
k = 0⇒ d

dt
(~q × ~p) = 0 (4.21)

which is the conservation of angular momentum! Hence

rotational invariance ⇒ conservation of angular momentum

4.3.3 Time Translations

We expect that the same laws of physics were operative yesterday as they
are today, so it is reasonable to require invariance of the action under time
translations. Under a small time translation t′ = t+ δα,

δαq = q(t+ δα)− q(t) ⇒ ∂q′i
∂α

∣∣∣∣
α=0

= q̇i (4.22)

There is now just one symmetry parameter {α}, which parametrizes how much
the origin of time has shifted. We will also have a non-zero G because

δαL = L (t′)− L(t) =
dL

dt
δα+ · · · ⇒ ∂L

∂αi

∣∣∣∣
α=0

=
dL

dt
(4.23)

which tells us that G = L − L0, where L0 is an irrelevant constant that we
can set to zero. Hence the Noether current Jt-trans is

Jt-trans =
(
pi
∂q′i
∂α
− L

)∣∣∣∣
α=0

= piq̇i − L ≡ H (4.24)

dJt-trans

dt
= 0⇒ dH

dt
= 0 (4.25)

which is the conservation of energy, since H = piq̇i − L is the Hamiltonian.
Hence

time translation invariance ⇒ conservation of energy
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Time-translation will be a symmetry of any system whose Lagrangian does
not explicitly depend on the time coordinate. After all, if the Lagrangian
did depend on the time coordinate, then the action would not be invariant
under a time translation. This is a feature of all closed systems: that there is
no possibility of the system being externally modified at some later time(s).
Consequently conservation of energy will hold for any closed system.

4.4 Symmetries and Quantum Mechanics

The preceding discussion was valid for systems of non-relativistic classical
particles. The transition to quantum mechanics changes the situation in two
ways§. First, it necessitates a reformulation of the symmetry-principle/con-
servation-law relationship. Second, it allows for a broader class of symmetries
called internal symmetries: symmetries that rearrange the charges and inter-
nal structure of wavefunctions without transforming space and time.

A physical system (or particle) in non-relativistic quantum mechanics is
represented by a wavefunction Ψ that obeys Schroedinger’s equation:

i}
∂Ψ
∂t

= HΨ(t) (4.26)

where H is a quantum operator that is constructed from the classical Hamil-
tonian H = piq̇i−L. Already we see a difference from the classical discussion
in that H (and not the Lagrangian) is now playing a fundamental role. For a
stationary state Ψs(t) = exp (−iEt/~)ϕ (~q), the eigenvalues of H correspond
to the allowed energies (the allowed values of E) that the system can have.

In passing from classical to quantum mechanics, we replace q(t) −→ Ψ(t,q),
so we expect that a symmetry operation is described as

q′i = gi[α,q] −→ Ψ′(t; q′) = U(α)Ψ(t; q) (4.27)

where U(α) is a matrix that acts on the (possibly multicomponent) wavefunc-
tion Ψ. Since U(α) represents a symmetry of the system, the normalization
of the wavefunction should not change and so∫

dq′Ψ′†(t; q′)Ψ′(t; q′) = 1

⇒
∫
dqΨ†(t; q)U†(α)U(α)Ψ(t; q) =

∫
dqΨ†(t; q)Ψ(t; q) = 1 (4.28)

§The transition to relativity, while preserving the basic conservation laws in section 4.3,
introduces a change of another kind that we will examine in Chapter 11.
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which means for any symmetry operation represented U(α) we must have

U†U = I (4.29)

so that the normalization is preserved. Hence a symmetry in quantum me-
chanics must be represented by a unitary transformation on the wavefunction:
U(α) must be a unitary matrix.

How are conserved quantities associated with symmetries in quantum me-
chanics? Based on the classical discussion we expect that a symmetry oper-
ator U(α) corresponds to a conserved quantity ω that is observable. Specifi-
cally, consider

ω =
∫
dq Ψ†(t; q)U(α)Ψ(t; q) (4.30)

and compute its time derivative

dω

dt
=
∫
dq
(
∂Ψ†

∂t
UΨ + Ψ†U

∂Ψ
∂t

)
=
i

}

∫
dq
(
Ψ†HUΨ−Ψ†UHΨ

)
=
i

}

∫
dqΨ† [H,U] Ψ (4.31)

where equation (4.26) was used. We see that the quantum number ω will
be conserved (i.e.dωdt = 0) provided [H,U] = 0. So the quantum version of
Noether’s theorem is

Conserved quantum number⇔ [U,H] = 0⇔ U is a symmetry of the system

The set of matrices {U(αi)} that form a group is called the symmetry group
of the Hamiltonian.

Note that the matrix U need not be connected with any spacetime transfor-
mation (e.g. rotations, translations) – it might simply represent a symmetry
that mixes up the wavefunction components. An example of this would be a
symmetry that rearranges the color charges of quarks. We will see later that
such internal symmetries underlie all the non-gravitational forces of nature.

Let’s look again at our spacetime symmetries in this context.

4.4.1 Spatial Translations

We expect that since the classical Noether current is ~p, the symmetry operator
associated with space translations is (−i~∇) once we make the identification
~p → (−i}~∇) from standard quantum mechanics. This is indeed correct.
Invariance under a translation means that

q′ = q + α → Ψ′(q′) = Ψ(q)⇒ Ψ′(q) = Ψ(q− α) (4.32)

and expanding this for small α yields

Ψ′(qi) = Ψ(qi−αi) ' Ψ(qi)−
(
~α · ~∇

)
Ψ(qi) =

(
1− i~α · (−i~∇)

)
Ψ(qi) (4.33)
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and so the symmetry operator is ~P = −i}~∇ (where Planck’s constant }
ensures that the units are correct on both sides of this relation). We thus
must have [

~α · ~P,H
]

= 0 (4.34)

for a translationally invariant system. This is conservation of linear momen-
tum in the direction ~α.

Since ~α is arbitrary, we can choose it to point in any one of the three
orthogonal directions, in which case we have

[Pi,H] = 0 (4.35)

for any given direction. Since the various components of ~P commute with
each other (because ∇i∇j = ∇j∇i), in a translationally invariant quantum-
mechanical system components of the linear momentum can be defined along
all of the measurement axes.

4.4.2 Rotations

Under a rotation of angle α around an axis n̂ (~α = αn̂), a one-component
wavefunction Ψ transforms as

q′i =
(

exp
[
i~α · ~J

]) j

i
qj = R j

i qj −→ Ψ′(q′) = Ψ(q)⇒ Ψ′(q) = Ψ(R−1q)

(4.36)
and expanding this for small ~α gives

Ψ′(qi) ' Ψ(qi + (~α× ~q)i) ' Ψ(qi) +
(

(~α× ~q) · ~∇
)

Ψ(qi)

=
(

1 + i~α ·
(
~q × (−i~∇)

))
Ψ(qi) (4.37)

and so the symmetry operator associated with rotations is ~L =~q × (−i}~∇).
Note that this is equivalent to the Noether current ~q × ~p once we make the
identification that ~p → (−i}~∇) = ~P from standard quantum mechanics as
before. Hence a rotationally invariant quantum system must obey the relation[

~α · ~L,H
]

= 0 (4.38)

which we recognize from 3rd year quantum mechanics as conservation of an-
gular momentum ~L around the axis ~α.

Unlike the situation for translations, the different components of ~L do not
commute with each other. This leads to a subtle but important distinction
from the classical case. In the classical case, we saw that ~q × ~p was con-
served, and so angular momentum around any axis is classically conserved
in a rotationally invariant system. Since in quantum mechanics the different
components of ~L do not commute with each other (even though any specific
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component commutes with the Hamiltonian H), in a rotationally invariant
system the angular momentum can only be defined about a chosen axis. The
choice of this axis is arbitrary (reflecting the classical conservation about any
axis) but – once chosen – the remaining components are rendered inaccessible
to measurement.

Let’s look at the implications of this non-commutativity in a bit more detail.
For any function f(x, y, z)

[Lx,Ly] f(x, y, z) =
[(
~q × (−i}~∇)

)
x
,
(
~q × (−i}~∇)

)
y

]
f(x, y, z)

= i2}2

[(
y
∂

∂z
− z ∂

∂y

)
,

(
z
∂

∂x
− x ∂

∂z

)]
f

= −}2

(
y
∂

∂z
− z ∂

∂y

)(
z
∂f

∂x
− x∂f

∂z

)
+}2

(
z
∂

∂x
− x ∂

∂z

)(
y
∂f

∂z
− z ∂f

∂y

)
= }2

[
zy

(
∂2f

∂x∂z
− ∂2f

∂z∂x

)
+ xy

(
∂2f

∂z2
− ∂2f

∂z2

)
+z2

(
∂2f

∂y∂x
− ∂2f

∂x∂y

)
+zx

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
− y ∂f

∂x
+ x

∂f

∂y

]
= }2

(
x
∂

∂y
− y ∂

∂x

)
f

= i}Lzf (4.39)

We can repeat this, cycling through (x, y, z) and arrive at the relation[
La,Lb

]
= i}εabcLc (4.40)

which is the same kind of relationship between the L’s that we had for the
J’s in Chapter 3 (see eq. (3.13)). We will make use of this in subsequent
chapters.

4.4.3 Time Translations

This is a special case in quantum mechanics, since time plays the role of an
ordering parameter. Under a time translation t′ = t+ α,

Ψ′(t′) = Ψ(t)⇒ Ψ′(t) = Ψ(t− α) ' Ψ(t)− α∂Ψ
∂t

=
(

1 +
i

}
αH
)

Ψ (4.41)

which means that the Hamiltonian H is the symmetry operator. This triv-
ially commutes with itself, and so energy is always conserved in a quantum
mechanical theory.
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4.5 Summary

Under a symmetry g[α]:

INVARIANCE
of the ACTION ⇒ conservation of Jk =

(
pi

∂q′i
∂αk
−G

)∣∣∣
αk=0

COMMUTATION
[U(α),H] = 0 ⇒ conservation of ω =

∫
dq Ψ†(t; q)UΨ(t; q)

Specifically, for spacetime symmetries:

Rotational Invariance ⇒ conservation of angular momentum
Space-translation Invariance ⇒ conservation of linear momentum
Time-translation Invariance ⇒ conservation of energy

4.6 Questions

1. Suppose an operator F has real expectation values, i.e., 〈ψ |F |ψ〉 is real
for any wavefunction ψ. Show that F is Hermitian, i.e., that F † = F .

2. Consider the following action in classical mechanics

S =
∫
dt

[
1
2
m

∣∣∣∣d~xdt
∣∣∣∣2 − V (~x)

]

(a) Suppose we want to make a transformation that rescales the coordi-
nates by a constant factor of σ, i.e. ~x′ = σ ~x. How must the time rescale
in order that the action remains invariant if the potential V (~x) = 0?

(b) Under what circumstances is the action invariant under this trans-
formation if V (~x) 6= 0? Find the general form of the potential.

(c) Find the Noether current associated with this transformation and
show that it is conserved when the equations of motion are satisfied.
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3. Consider a system ofN particles, whose wavefunction is Ψ (q1,q2, . . . ,qN ).
If this system is invariant under translations, find the associated Noether
current.

4. Consider an algebra consisting of the set of operators {Px, Py, Pz, Lx, Ly, Lz}
with the combining operator being the commutator. Does this algebra
close?

5. Show that the operators ~P · ~P and ~L· ~L commute with all elements of
the algebra in question #4.

6. Consider the operator U = exp
(
− i

}~a · ~P
)

where ~P = −i}~∇ is the
momentum operator and ~a is a vector displacement from the origin.
How does U act on a wavefunction Ψ (~x, t)?

7. Consider the operator U = exp
(
− i

} n̂ · ~L
)

where ~L = ~x× (−i}~∇) is the
angular momentum operator and n̂ is a unit vector. How does U act on
a wavefunction Ψ (~x, t)?





DOI: 10.1201/9781420083002-5

5

Particle Classification

One of the uses of symmetries in particle physics is to classify the possible
types of particles. Intuitively we conceive of a particle as a tiny, possibly
indivisible bit of matter. However, we know from quantum mechanics that
it is described by a wavefunction, and is in a certain sense delocalized over a
region of space at any given instant.

But what kind of wavefunction should we use for a given particle? Clearly
we can’t use the same kind of wavefunction for each particle because they
have very distinct properties. Electrons have small mass and negative charge,
quarks have color and large mass, pions can be charged or neutral and have
no spin, etc. A single type of wavefunction could not properly describe these
distinct properties.

This is where symmetries come in. Symmetries provide a framework that
constrains the types of wavefunctions we can use to describe particles [32].
Intuitively, the wavefunctions that we use should covariantly transform with
respect to the fundamental symmetries of nature that we believe (on empirical
grounds) to be valid. From this perspective we then ask given a symmetry,
what particle wavefunctions can logically exist? And what are their charac-
teristics? In this chapter we will consider these issues.

5.1 General Considerations

To answer these questions, the first thing we need to specify is the system. If
we want to classify a particle, the system under consideration should be just
the particle and nothing else. This means that the action for the system is
just the kinetic energy of the particle – no other interactions or potentials are
present!

Let’s work non-relativistically to start with. In this case we have

Classically : S =
∫

d3x

[
1
2
m

∣∣∣∣
d�x

dt

∣∣∣∣
2
]

=
m

2

∫
d3x |ẋ|2 (5.1)

Quantum Mechanically : i�
∂Ψ
∂t

= −∇2

2m
Ψ(t) (5.2)

77
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for a free particle of mass m.
This system is clearly invariant under all spacetime symmetries: space

translations, time translations, and rotations. Hence we can classify a free
particle by its properties under these symmetries. Note that the particle
might be composite (e.g. the pion, the proton, the Kaon, etc.) or elemen-
tary∗ (e.g. electron, up quark, photon, etc.). In either case, as long as the
particle is represented non-relativistically by (5.1) or (5.2), our classification
will be valid.

Consider first translations. Invariance under spatial translations means
that the momentum of a free particle is always conserved, and invariance
under time translations means that its energy is conserved (both classically
and quantum mechanically). In the rest frame of the particle the momentum
vanishes. Hence every free particle is characterized by its energy in the rest
frame – which is its mass†. We say that the mass of the particle (by which
we mean the inertial mass) is a good quantum number of the system.

Rotations are somewhat less trivial. We’ve already seen that a rotation
is a transformation R for which RTR = I, i.e., the group is the group of
orthogonal transformations of 3 × 3 matrices, which we call SO(3). Such
transformations preserve angles between vectors and their lengths. We saw
earlier that they can be written in the form

R = exp
[
i~θ · ~J

]
⇒ R j

i =
(

exp
[
i~θ · ~J

]) j
i

(5.3)

where the J operators obey [
Ja,Jb

]
= iεabcJc (5.4)

and also (as a consequence of (5.4))[[
Ja,Jb

]
,Jc
]

+
[[

Jb,Jc
]
,Ja
]

+
[
[Jc,Ja] ,Jb

]
= 0 (5.5)

with a = 1, 2, 3. We also saw in the previous chapter that ~L =~x × (−i}~∇)

satisfies the relations (5.4) – that is, setting Ja = La = }
(
~x× (−i~∇)

)a

for

∗By definition elementary particles are indivisible – they are not made of smaller compo-
nents. So how do we know if a particle is elementary or not? The answer is that we don’t!
What we can do theoretically is to assume a given particle is elementary and work out the
consquences. To the extent that experiment is in agreement with theory, this assumption
is valid. For example all experimental evidence to date indicates that the electron behaves
like an elementary particle for distances no smaller than 10−20 cm [33]. Future experi-
ments that can probe even shorter distances might uncover evidence that the electron is
not elementary – if so, then our theory of the electron would have to be modified [34].
†Since we are working non-relativistically, we actually can’t conclude that the energy in the
rest frame is the mass. However, this result would follow were we to work relativistically
(which we’ll do later on). Note that even non-relativistically we must specify the parameter
m in order to write down the action or Hamiltonian – since m commutes with H, it can be
used to characterize (i.e. classify) the particle.



Particle Classification 79

a = 1, 2, 3 will satisfy (5.4), with an appropriate factor of } inserted. It is
easy to check that (5.5) is also satisfied – indeed, it must be if (5.4) holds.

The nice thing is that any set of N×N matrices Ja that satisfy the relation
(5.4) can be considered as symmetry operators of SO(3) that act on some
wavefunction Ψ. Note that this turns the problem around. We originally
began with the matrices

{Tx,Ty,Tz} =

−i
0 0 0

0 0 1
0 −1 0

 ,−i

0 0 −1
0 0 0
1 0 0

 ,−i

 0 1 0
−1 0 0
0 0 0

 (5.6)

and showed that they satisfied (5.4) by setting Ja = Ta Now we want to
consider (5.4) as the defining relation for rotational symmetry and find all
possible matrices – of any dimensionality – that satisfy this defining relation.

Recalling the definition from group theory, any such set will be a represen-
tation of the rotation group. We only want the irreducible representations
(the irreps). Each irrep will correspond to a possible way that a free quantum
particle can manifest rotational symmetry. Hence the irreps of the rotation
group classify free particles. Once we know these irreps, we know all the
possible physically distinct particle wavefunctions!

It’s a general problem in group theory to find these irreps, and I won’t do
that here [35]. Instead, setting ~ = 1, I’ll just write down the most general
solution to (5.4):

(Ja) KI =
(
~x× (−i~∇)

)a

δ KI + (Sa) KI

= Laδ KI + (Sa) KI (5.7)

or more succinctly, ~J = ~L + ~S. Non-relativistically this operator will act on
an N -component wavefunction Ψ (~x, t) = (Ψ1 (~x, t) ,Ψ2 (~x, t) , · · · ,ΨN (~x, t)),
where the K-th component is

ΨK (~x, t) = ϕ (~x, t)χK (5.8)

i.e. the wavefunction is the product‡ of a spatial part ϕ (~x, t) and an N -
component spin part χ. The orbital angular momentum operator ~L acts only
on ϕ and the spin angular momentum operator ~S acts only on χ , i.e.

~JΨ=
(
~Lϕ
)
χ+ϕ

(
~Sχ
)

(5.9)

Note that rotational invariance implies via Noether’s theorem only that[
~J,H

]
= 0 (5.10)

‡Relativistically this does not hold – although it will hold in the non-relativistic limit and
in the rest frame of the particle.
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and that in general [
~L,H

]
6= 0

[
~S,H

]
6= 0 (5.11)

In other words ~L and ~S will in general not commute with the Hamiltonian,
though they commute with each other.

In the rest frame of a particle, there is no orbital angular momentum and
all eigenvalues of ~L vanish. However, the eigenvalues of the spin (or intrinsic)
angular momentum do not vanish. This gives us our second good quantum
number for free particles: spin.

5.2 Basic Classification

So far we’ve seen that invariances of a free particle under time and space
translations and rotations imply that its momentum, energy, and angular
momentum are all well-defined (are “good quantum numbers”), and so can
be used to classify a particle. In the rest frame of the particle these quantities
reduce to the particle mass m, and its spin s.

The mass is specifiable simply by giving a numerical value for m in whatever
the relevant units are. We know of no principle that determines the particular
values that m might have for a given elementary particle. The best we can do
is to determine the value of m from experiment on a case-by-case (or perhaps
I should say particle-by-particle) basis and input this value into our theories.

The spin s, on the other hand, is not so freely specifiable; instead it is
determined from one of the irreducible solutions to (5.4):[

Sa,Sb
]

= iεabcSc (5.12)

where ~J = ~S since we are in the rest frame of the particle. Any irreducible set
of 3 matrices {Sx,Sy,Sz} that solves (5.12) determines a possible s value of
the particle. Hence knowledge of all irreps satisfying (5.12) (i.e. all possible
~S’s) is equivalent to knowledge of all allowed particle spins.

As noted above, finding these irreps is a problem in group theory. Table
5.1 lists the three simplest (and most commonly used) irreps, along with the
general form.

The quantities σi in table 5.1 are

{σx, σy, σz} =
{
σ1, σ2, σ3

}
=
{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
(5.13)

and the quantities Ti in table 5.1 are

{Tx,Ty,Tz} =
{
T1,T2,T3

}
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TABLE 5.1

Irreducible Representations of Spin
Spin Irrep Terminology Transformation (Rest Frame)

s = 0 ~S = 0 Scalar Ψ = φ φ′ = φ

s = 1
2

~S = 1
2~σ Spinor Ψ = ψ ψ′a = exp

[
i
2
~θ · ~σ

] b
a
ψb

a, b = 1, 2

s = 1 ~S = ~T Vector Ψ = ~A A′i = exp
[
i~θ · ~T

] j
i
Aj

i, j = 1, 2, 3
...

...
...

...

s ~S Tensor Ψ = χ χ′M = exp
[
i~θ · ~S

] N

M
χN

M,N = 1, 2, . . . , (2s+ 1)

=

−i
0 0 0

0 0 1
0 −1 0

 ,−i

0 0 −1
0 0 0
1 0 0

 ,−i

 0 1 0
−1 0 0
0 0 0

(5.14)

which are the generators of spatial rotations of a vector that we encountered

in Chapter 3. The general form of
(
~S
) N

M
is a square matrix of dimension

(2s+ 1)× (2s+ 1) which obeys (5.12).
Note the implications of the results listed in table 5.1: the spin of an el-

ementary particle must be either an integer or a half-integer (in units of }).
There can never be an elementary particle with s = 9/7 or s =

√
3 or some

other real number that is not one of these two types – rotational symmetry
forbids this possibility§.

All representations have the following two features in common:

S2Ψ =
(
~S · ~S

)
Ψ = s(s+ 1)Ψ (5.15)

SzΨ = szΨ (5.16)

where sz is a number that can have any value in the set {−s,−s + 1,−s +
2, . . . , s− 1, s}, for a total of 2s+ 1 values in all.

The s = 1
2 representation (or the spinor representation) is of significant

import in particle physics. It was found by Pauli [36], and the ~σ’s are given
the name Pauli matrices. You can find out more about their properties in

§Actually this statement depends on the number of spatial dimensions. In two spatial
dimensions spin need not come in units of }/2. An particle whose spin differs from some
integer times ~/2 is called an anyon, as noted in Chapter 1.
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appendix D. They obey (5.12), i.e.

[
1
2
σ1,

1
2
σ2

]
=
i

2
σ3 + cyclic (5.17)

and we see that the factor of 1
2 is crucial to this end¶. This factor implies

that under a 2π rotation (about, say, the z-axis) the spinor representation
transforms as

ψ′a = exp
[
i

2
(2π)σz

] b
a

ψb = exp
[
(iπ)

(
1 0
0 −1

)] b
a

ψb

=
(
eiπ 0
0 e−iπ

) b

a

ψb =
(
−1 0
0 −1

) b

a

ψb

= −ψb (5.18)

So the wavefunction ψ → −ψ under a 2π rotation! Notice that for the same
rotation the scalar and vector wavefunctions do not change sign (φ → φ

and ~A → ~A). It is this peculiar feature of half-integer spin particles that
distinguishes them from integer-spin particles.

What does relativity do to all of this? We could repeat our analysis by
replacing R j

i with Λ ν
µ . The preceding results do not change – the only kinds

of wavefunctions allowed are those permitted by the rotation group. Including
boosts adds nothing new to this. Instead, relativity has a different physical
implication for the allowed wavefunctions, which we’ll look at in Chapter 11.

Tables 5.2 and 5.3 summarize our current knowledge of which elementary
and composite subatomic particles have which spins. Question marks ap-
pear beside particles hypothesized to exist, but which have not actually been
observed ‖.

¶Note that
ˆ
σ1, σ2

˜
= 2iσ3 & cyclic. The factor of 2 is what destroys agreement with eq.

(5.12).
‖You might have noticed that there are no elementary particles with spins larger than 2,
and that there appears to be no elementary particle of spin 3/2. There is a theoretical
obstruction to writing down theories describing pointlike elementary particles spins larger
than 2 – nobody knows how to get them to interact according to standard approaches in
quantum field theory. Superstring theories do not have such obstructions – see chapter 25
for more details.
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TABLE 5.2

Classification of Bosonic Particles
Spin-0 Spin-1 Spin-2

Elementary
Composite

Higgs?
Pseudoscalar Mesons

Photon, Gluon, W, Z
Vector Mesons

Graviton?
??

TABLE 5.3

Classification of Fermionic Particles
Spin-1/2 Spin-3/2

Elementary
Composite

Quarks, Leptons
Baryon Octet

Gravitino?
Baryon Decuplet

5.3 Spectroscopic Notation

It’s common to write the general (non-relativistic) spin-s wavefunction as χ,
where

χ = |s sz〉 where sz = −s, ..., s (5.19)

so that

S2 |s sz〉 = s(s+ 1) |s sz〉 (5.20)
Sz |s sz〉 = sz |s sz〉 (5.21)

S± |s sz〉 =
√
s(s+ 1)− sz(sz ± 1) |s (sz ± 1)〉 (5.22)

where the matrices ~S have been written as

S± = Sx ± iSy = S1 ± iS2 and Sz = S3 (5.23)

S2 = (Sx)2 + (Sy)2 + (Sz)2 (5.24)

In addition to its mass and spin a particle (e.g. if it is composite) may
have other good quantum numbers (“good” because they are constants of the
motion and so their associated operators commute with H). For example, it
is very common that [

~L · ~L,H
]

= 0
[
~S · ~S,H

]
= 0 (5.25)

which physically corresponds to assuming that there are no forces or inter-
actions that can change the magnitude of either the spin or orbital angular
momentum (although there may be forces or interactions that change their
directions). So more generally we write

J2 |j m〉 = j(j + 1) |j m〉 (5.26)
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Jz |j m〉 = m |j m〉 m = −j,−j + 1, . . . , j − 1, j (5.27)

J± |j m〉 =
√
j(j + 1)−m(m± 1) |j (m± 1)〉 (5.28)

for a particle (composite or not) of total spin j and z-component m, with the
J ’s defined analogously to the S’s. When (5.25) holds, a particle is charac-
terized by the quantum numbers given in table 5.4 in addition to the mass.

TABLE 5.4

Particle Quantum Numbers
Quantity Operator Eigenvalues
total angular momentum ~J · ~J j(j + 1)
total spin ~S · ~S s(s+ 1)
total orbital ang. mom. ~L · ~L `(`+ 1)
Axial component of ang. mom. Jz jz = m

We summarize this information using spectroscopic notation[37]

2S+1LJ

for a state of total angular momentum j = J and spin s = S. The numerical
values ` of L are often denoted by S,P,D,F (for historical reasons∗∗) instead
of 0,1,2,3. Note that L can have only integer (and not half-integer) values.
Hence a particle in the state 3S1 has s = j = 1 and ` = 0; a particle in the
state 5D3 has s = 2, j = 3 and ` = 2.

5.4 Adding Angular Momenta

When particles collide they produce resonances (short-lived bound states),
which in turn decay into other particles. These resonances will have spins
that will be determined by the intrinsic spins of the colliding particles and
their relative angular momenta. For example, the vector mesons are bound
states of a quark with an antiquark in a spin-1 combination.

Consequently a key general question in particle physics (as well as in atomic
physics) is how, quantum mechanically, do we add two (or more) angular

∗∗The letters, “S”, “P”, “D”, and “F”, for the first four values of ` respectively stand
for “Sharp”, “Principal”, “Diffuse”, and “Fundamental”, based on the properties of the
spectral series observed in alkali metals.
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momenta? Of course we know the answer classically: we just add the com-
ponents. Quantum mechanically this doesn’t make sense, because we can’t
measure all components of ~J simultaneously. A measurement of Jx neces-
sarily alters Jy. The best we can do is to simultaneously measure J2= ~J · ~J
(the magnitude ~J) and one component of ~J, since each component commutes
with J2. By convention we choose this component to be Jz. This is why
we often label angular momenta of wavefunctions in the form |j jz〉 or, more
commonly, as |j m〉.

So what can we do to describe how particles of different spin combine?
The answer (as you might have guessed) is also found in group theory and is
called the Clebsch-Gordon Decomposition (or CG decomposition††). Given
two particles of angular momenta |j1m1〉 and |j2m2〉, they can combine in
the following linear combination of angular momentum states

|j1m1〉 ⊗ |j2m2〉 =
j1+j2∑

j=|j1−j2|

Cjm ( j1, j2;m1m2) |j m〉

= C|j1−j2|m1+m2
||j1 − j2| ,m1 + m2〉

+C|j1−j2|+1
m1+m2

||j1 − j2|+ 1,m1 + m2〉+ · · ·

+C(j1+j2)
m1+m2

|(j1 + j2),m1 + m2〉 (5.29)

where the value of m is always the sum of the incoming m’s, i.e. m = m1+m2.
The left-hand side of eq. (5.29) is the product of two spin wavefunctions
corresponding to angular momenta j1 (with z-component m1) and j2 (with
z-component m2). The right-hand side of eq. (5.29) is a linear combination
of all possible spin-wavefunctions that are permitted by the rules of quantum-
mechanical angular momentum conservation.

This rather formidable looking notation is more easily understood by noting
that the CG decomposition has three essential features.

1. Since we can always measure (by convention) Jz unambiguously, the
z-components of angular momenta just add, as noted above, i.e. m =
m1 + m2. So every wavefunction on the right-hand side of eq. (5.29)
has z-component m1 +m2, as is clear from each term in the sum.

2. The magnitudes of the angular momenta do not add: the total magni-
tude depends on the relative orientation of the incoming angular mo-
menta ~J1 and ~J2. Since this is empirically unknowable (because we can
at best measure a component of each ~J along only one axis), we get all
possible spin-wavefunctions in the linear combination on the right-hand
side of eq. (5.29) that are group-theoretically allowed. The biggest

††The coefficients are named after two German mathematicians Alfred Clebsch (1833-1872)
and Paul Gordan (1837-1912), who encountered an equivalent problem in invariant theory.
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value for ~J is when ~J1 and ~J2 are parallel (giving j = j1 + j2) – both
angular momenta are aligned along the z-axis. The smallest is when ~J1

and ~J2 are antiparallel – both are anti-aligned along the z-axis, giving
j = |j1 − j2|. All other possible values for ~J are given by going between
these values in integer steps

j = |j1 − j2| , |j1 − j2|+ 1, |j1 − j2|+ 2, . . . , j1 + j2− 1, j1 + j2 (5.30)

3. The Cjm ’s are numbers that depend on the input parameters j1, j2,m1

and m2. A book on quantum mechanics will tell you how to calculate
them [38], and the numbers are listed in tables known as Clebsch-Gordon
tables. They are included in the appendix to this chapter. Reading these
tables takes a bit of practice. The total spins being combined are given in
the upper left of one of the sub-tables. The m-values (or z-components)
of these spins are given in the lower-left boxes in a subtable, and the
possible output |j m〉 wavefunctions are in the upper right boxes in the
same sub-table. The Cjm ’s are the square roots of the numbers in the
relevant middle boxes, where the minus sign (if there is one) goes outside
of the square root.

5.4.1 Examples

5.4.1.1 Glueballs

A bound state of two gluons is called a glueball. What possible spins can the
lowest-energy glueball states have?

Gluons have spin s = 1, so the possible total spin values range
between 1 − 1 = 0 and 1 + 1 = 2. Since the states are of lowest
energy, the gluons must have no orbital angular momenta. Hence
the possible spins are 0, 1 and 2.

5.4.1.2 Positronium

An electron and a positron can form a bound state called positronium. What
are the possible spins of a positronium “atom” if the e+ and e− have relative
orbital angular momentum 1?

The spin j of positronium will be given by combining the spins of
e+ and e− and their relative orbital angular momentum. Each
spin s = 1

2 , so the combined spin (without taking orbital angular
momentum into account) is either 0 or 1. Since ` = 1 we get
j = 0, 1, 2 if the combined spin is 1. If the combined spin is 0 we
get j = `+ 0 = 1.
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5.4.1.3 Capture

An electron is temporarily captured by an Ω+ particle, forming a resonance. If
the z-components of their spins are positive and equal, what is the probability
of observing this resonance to have its maximal angular momentum allowed
in a state of lowest energy? How does this answer change if the z-components
of their spins are equal and opposite?

For this problem we need the CG tables. The Ω+ has spin 3
2 and

the electron has spin 1
2 so we need the 3

2 ⊗
1
2 sub-table. Since

we are in a state of lowest energy, ` = 0 and so orbital angular
momentum makes no contribution. Since the z-components of the
spins are positive and equal, we must have m = 1

2 for each particle,
because this is the only allowed positive z-value for the electron.
Reading from the 3rd line of the lower-left box in the 3

2 ⊗
1
2 table,

we have ∣∣∣∣32 1
2

〉
⊗
∣∣∣∣12 1

2

〉
=
√

3
2
|2 1〉 − 1

2
|1 1〉

where the coefficients are found by taking square roots of the num-
bers in the central box to the right, and the wavefunction compo-
nents are found from the box above this one, column by column.
The maximal angular momentum state is therefore |2 1〉, i.e. j = 2.

The probability of observing it is
(√

3
2

)2

= 75%. If the spins are
equal and opposite we have, from the 5th line of the lower-left
boxes in the 3

2 ⊗
1
2 table,∣∣∣∣32 1

2

〉
⊗
∣∣∣∣12 − 1

2

〉
=

1√
2
|2 0〉 − 1√

2
|1 0〉

and so the probability of observation of the |2 0〉 state is now(
1√
2

)2

= 50%.

5.5 Appendix: Tools for Angular Momenta

5.5.1 Pauli-Matrices

The 3-Pauli matrices are

{σx, σy, σz} =
{
σ1, σ2, σ3

}
=
{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
(5.31)

and we don’t distinguish between upper and lower indices, so that σ1 =
σ1, σ

2 = σ2, σ
3 = σ3. We have the product rule

σiσj = δijI + iεijkσk = δij + iεijkσk (5.32)
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where the 2 × 2 unit matrix I is often suppressed, as in the 2nd part of the
expression above. This rule implies

(σ1)2 = (σ2)2 = (σ3)2 = 1
σ1σ2 = iσ3 and cyclic (5.33)

[σi, σj ] = 2iεijkσk {σi, σj} = 2δij

and for any two vectors ~a and ~b :

(~a · ~σ)
(
~b · ~σ

)
= ~a ·~b+ i

(
~a×~b

)
· ~σ (5.34)

We also have the exponential relation

exp
[
~θ · ~σ

]
=
∞∑
n=0

(
~θ · ~σ

)n
n!

= cos θ + iθ̂ · ~σ sin θ (5.35)

where ~θ = θθ̂.

5.5.2 Clebsch-Gordon Tables

Clebsch-Gordon tables contain explicit formulae for all the Cjm ( j1, j2;m1m2)
coefficients given in eq. (5.29). I have reproduced them on the next two pages
and in appendix F.

The total spins (j1, j2) being combined are given in the upper left of one
of the sub-tables. The respective (m1,m2)-values (or z-components) of these
spins are given in the lower-left boxes in a subtable, and the possible output
|j m〉 wavefunctions are in the upper right boxes in the same sub-table. The
Cjm ’s are the square roots of the numbers in the relevant middle boxes, where
the minus sign (if there is one) goes outside of the square root.
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5.6 Questions

1. (a) A ∆+ with jz = −1/2 collides with an Ω− with jz = +1/2 temporar-
ily forming a resonance. What is the probability that the resonance is
spinless? What is the probability that the resonance has spin-2?

(b) A spin-2 glueball decays into a quark-antiquark pair. What are
the possible values of the orbital angular momenta of the resultant qq̄
system? What is the parity of the glueball?

2. A clever experimentalist figures out how to collide two Ω particles of
opposite charge into a resonance (i.e., a short-lived bound state) called
an omegaball.

(a) What are the possible spins of an omegaball in its lowest-energy
state?

(b) The experimentalist then figures out how to make a supply of 10,000
omegaballs of lowest energy by repeatedly colliding Ω+ and Ω− together
with opposite spins along the z-axis. What must these spin components
be if more highest-spin omegaballs are made than any other kind? Find
approximately how many of each spin are made in the sample of 10,000.

(c) How does your answer to (b) change if the highest-spin omegaballs
are fewest in number in the sample?

3. Λ-particles are produced by a pion beam in the reaction

π− + p→ K0 + Λ

and are observed via their decay Λ→ π−+p. You are an experimentalist
trying to determine the total spin s(Λ) of the Λ. The angle of the decay
products relative to the beam axis is θ.

(a) If the Λ is produced exactly along the beam axis what are the possible
values of sz(Λ)?

(b) A trustworthy theorist tells you that s(Λ) can’t be larger than 3.
Given this constraint, what are the possible angular decay distributions
for the forward-produced Λ’s as a function of their spin?

4. Consider the Hamiltonian

H = H0 − g
µ0

}
~J · ~B

where ~B is an external magnetic field, g, µ0 are constants, and H0 com-
mutes with the angular momentum operator ~J. If the magnetic field is
pointing along the z-axis, find the commutator

[
H,~J

]
.
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5. (a) Find the simplest irreducible representation of the gravitino, a spin-
3/2 particle hypothesized to exist in superstring theory.

(b) Suppose two gravitini collide to form a bound state (a gravitiball).
What possible spins could this bound state have?

(c) Suppose you had 10,000 gravitiballs of lowest energy, formed by
repeatedly colliding two gravitini together with opposite spins along
the z-axis. What must these spin components be if more highest-spin
gravitiballs are made than any other kind? Find approximately how
many of each spin are made in the sample of 10,000.

6. Verify the following:

(a) exp
[
~θ · ~σ

]
=
∑∞
n=0

(~θ·~σ)n
n! = cos θ + iθ̂ · ~σ sin θ

(b)

(σ1)2 = (σ2)2 = (σ3)2 = 1
σ1σ2 = iσ3 and cyclic

[σi, σj ] = 2iεijkσk {σi, σj} = 2δij

7. In 1932 the decay of the neutron into a proton and an electron was
observed. What conservation laws did this decay violate, if any?

8. Suppose an electron is in the state ψ = α

(
1
0

)
+ β

(
0
1

)
.

(a) What relationship must α and β obey in order for ψ to be normal-
ized?

(b) What values might be obtained upon measurement of Sx, and what
is the probability of each?

(c) What values might be obtained upon measurement of Sy, and what
is the probability of each?

(d) What values might be obtained upon measurement of Sz, and what
is the probability of each?
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6

Discrete Symmetries

Some symmetries in nature are not continuous, but discrete: you either per-
form them or you don’t. In other words they can’t be generated from in-
finitesimal transformations. Because of this the conservation laws associated
with such symmetries are multiplicative instead of additive. In this chapter
we will examine the notion of discrete symmetries and their implications for
particle physics.

In general, a multicomponent wavefunction Ψ will transform under a dis-
crete symmetry as

Ψ′
A(x′) = (UD) B

A ΨB(x) where x′µ =
(
ÛDx

)µ

(6.1)

⇒ Ψ′
A(x) = (UD) B

A ΨB(Û−1
D x) (6.2)

where UD is some matrix (acting on the components of the wave function)
that is to be determined for each discrete symmetry, and ÛD is its represen-
tation when acting on the spacetime coordinates. For a continuous symmetry
U = I+ε(something) where ε is small. This kind of Taylor-series expansion
is not possible for a discrete symmetry. The matrices UD must be fully known
in order for their action on wavefunctions to be explicitly computed.

Fortunately this is not difficult to do. I won’t deal with all possible discrete
symmetries here, but instead will concentrate on the three most important
for particle physics: parity, time-reversal, and charge conjugation. Let’s look
at each.

6.1 Parity

Parity is the act of reflecting a system in a mirror. If the mirror-system has
all the same physical properties as the original, then we say the system is
invariant under parity.

Mathematically this kind of reflection involves specifying a plane for the
mirror and then switching the signs of all the coordinates in the directions
orthogonal to this plane. An example is shown in fig. 6.1. This is generally

93
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quite inconvenient, so usually a parity transformation is implemented by per-
forming an inversion on the coordinates ~x→ −~x: every point is carried to its
diametrically opposite location through the origin. This is a combination of a
reflection with a 180o rotation. Both transformations turn a right hand into
a left hand and vice versa. Inversions are easier to work with, since we don’t
have to choose a plane for the mirror. We shall generally refer to inversions
as parity transformations. The difference between the two is illustrated in
figures 6.1 and 6.2.

FIGURE 6.1
Reflection in the x-z plane: (x, y, z) −→ (x,−y, z)

FIGURE 6.2
Inversion: (x, y, z) −→ (−x,−y,−z)
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So if we call the parity operator P, we have

P : (t, x, y, z)→ (t,−x,−y,−z)⇒ P
(
~V
)

= −~V (6.3)

where ~V is any vector. Note that

P
(
~V · ~W

)
= P

(
~V
)
· P
(
~W
)

=
(
−~V
)
·
(
− ~W

)
= ~V · ~W (6.4)

but

P
(
~V × ~W

)
= P

(
~V
)
× P

(
~W
)

=
(
−~V
)
×
(
− ~W

)
= +~V × ~W (6.5)

which we expect, since P changes right-handed coordinate systems to left-
handed ones.

So we see that there are two kinds of vectors: those that reverse sign under
P and those that do not. We call this 2nd kind of vector a pseudovector, since
it transforms under parity opposite to the way a vector transforms. Note that
if ~V is a vector and ~A is a pseudovector then

P
(
~V × ~A

)
=
(
−~V
)
×
(

+ ~A
)

= −~V × ~A⇒ a vector (6.6)

P
(
~V · ~A

)
=
(
−~V
)
·
(

+ ~A
)

= −~V · ~A⇒ a pseudoscalar (6.7)

and so tensor quantities (scalars, vectors, etc.) may or may not be pseudo,
depending on how they transform under P. The various possibilities are listed
in table 6.1.

TABLE 6.1

Behavior of Scalars and
Vectors under Parity

Scalar P(s) = +s
Pseudoscalar P(p) = −p
Vector P

(
~V
)

= −~V

Pseudovector P
(
~A
)

= + ~A

If P is applied twice we must get what we had originally, and so

P2 = I (6.8)

or in other words the eigenvalues of P are ±1. Scalars and pseudovectors
have eigenvalue +1, whereas pseudoscalars and vectors have eigenvalue −1.
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Note also that we can write a representation of P as a matrix when it acts on
spacetime coordinates:

P : (t, x, y, z)→ (t,−x,−y,−z)⇒ (ΛP)µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (6.9)

This shows that ΛP is also a Lorentz transformation, since gαβ (ΛP)αν (ΛP)βµ =
gµν , something easily shown by explicit calculation for each component.

So in addition to their mass and spin, wavefunctions of elementary particles
are also classified according to their parity eigenvalues. Let’s look at a simple
example.

6.1.1 Parity of the Photon

What is the parity of the photon? We can figure it out by recalling that
in the hydrogen atom the wavefunctions (or rather, the spatial part of the
wavefunctions) have the form

Ψ (~x) = Ψ (r, θ, φ) = ϕ(r)Ym` (θ, φ) (6.10)

where the Ym` (θ, φ) are the spherical harmonics, given in table ??. Now note
that

P : (t, x, y, z)→ (t,−x,−y,−z)
⇒ P : (t, r, θ, φ)→ (t, r, π − θ, π + φ) (6.11)

⇒ P [Ψ (~x)] = Ψ (−~x) = ϕ(r)Ym` (π − θ, π + φ)

= (−1)` ϕ(r)Ym` (θ, φ) = (−1)` Ψ (~x) (6.12)

and so we see that a state with orbital angular momentum ` has a parity
eigenvalue of (−1)`. This means that the S,D,G,... states of the Hydrogen
atom (the ` =even ones) have even parity, whereas the P,F,H,... states
have odd parity. In a transition where ∆` = ±1, one photon is absorbed (or
emitted). Hence (since electromagnetism is parity-conserving) the photon has
negative parity.

6.1.2 Parity Conservation

We also assign positive parity to quarks and leptons (and negative parity to
their antiparticles). Of course, this is a convention, and we could have chosen
a reverse assignment; it won’t matter as long as parity is conserved∗.

∗Thinking ahead to when we include relativity, we will find that we need to include antipar-
ticles. It is possible to show that a fermion has a parity opposite to that of its antiparticle
whereas a boson has a parity that is the same as that of its antiparticle. This result follows
from quantum field theory, a subject beyond the scope of this text.



Discrete Symmetries 97

To the best of our experimental knowledge, parity is conserved in strong
and electromagnetic interactions. However, it is not conserved in weak-
interactions. Weak interactions affect all known particles including a neutral
fermion of very small mass called a neutrino. All neutrinos are left-handed
(and all antineutrinos are right-handed): their spins are always antiparallel
to their momenta†. Figures 6.3 and 6.4 illustrate this concept. Nature is not
mirror-symmetric – parity is violated!

FIGURE 6.3
A right-handed particle is one that rotates in the direction of the fingers of
the right hand while traveling in the direction of the thumb. Similarly, a
left-handed particle rotates in the opposite direction.

6.2 Time-Reversal

Macroscopic physics is generally NOT invariant under time-reversal; for ex-
ample an explosion does not look the same if a movie of it is run backwards!
This is what we refer to as the arrow of time. Unlike the spatial coordinates,
which can be traversed in any direction we like, the time coordinate seems

†This discovery was first made in the 1950s by Wu [39] and we’ll look at it in more de-
tail when we consider weak interactions in Chapter 19. Recent observations at Super-
Kamionkande [41] and SNO [42] have revised the original understanding of neutrinos as
zero-mass particles. There is now excellent evidence that they are very light-mass particles,
in which case there are also right-handed neutrinos! Our best experimental information so
far is that the right-handed neutrinos do not experience the weak interactions.
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FIGURE 6.4
A diagram representing the relationship between momentum, spin, and hand-
edness. The thick arrow points in the direction of the spin vector. The thin
straight arrow is the momentum vector.

to be one for which only a one-way journey (from past to future) is not only
allowed, but required. Understanding why this should be the case is one of
the outstanding puzzles of modern physics [43].

At a macroscopic level the asymmetry associated with the arrow of time
is a consequence of initial conditions, which according to the laws of thermo-
dynamics always become less ordered overall as time increases (though local
regions can become more ordered as in, say, the construction of a building).
We say that a physical system in combination with its environment experi-
ences an increase in entropy.

At the microscopic level of collisions between the fundamental particles in
our example of the explosion, the situation is quite different. At this level
we might expect time reversal invariance to hold because Newton’s laws are
time-reversal invariant. From this perspective the puzzle of the arrow of time
reduces to the problem of the origin of initial conditions.

Common quantities transform under time reversal T and parity P are shown
in table 6.2.

As with parity, we can represent T as a matrix when it acts on coordinates:

T : (t, x, y, z)→ (−t, x, y, z)⇒ (ΛT)µν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (6.13)

and it, too, is a Lorentz transformation: gαβ (ΛT)αν (ΛT)βµ = gµν . Both
fermions and their antiparticles transform the same way under time-reversal‡;
the same holds for bosons and their antiparticles.

6.2.1 Detailed Balance

Time-reversal is difficult to test – as noted above, since all physical systems
experience time to move forward, we have no way of directly forcing a system

‡This is another result from quantum field theory.
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TABLE 6.2

Transformations of Common Physical Quantites under Time-reversal and Par-
ity

Quantity T P Comments

Position ~r ~r −~r
Momentum ~p −~p −~p Polar vector
Spin ~s −~s ~s Axial vector

(like ~r × ~p)

Electric field ~E ~E − ~E ~E = −~∇V
Magnetic field ~B − ~B ~B like a ring current

Magnetic
dipole moment ~µ −~µ ~µ

Electric
dipole moment ~d ~d −~d

Longitudinal
polarization ~s · ~p ~s · ~p −~s · ~p Chirality

Transverse
polarization ~s · (~p1 × ~p2) −~s · (~p1 × ~p2) ~s · (~p1 × ~p2)

to reverse its trajectory in the time direction (i.e., we just can’t “run the
movie backward”).

However, we can take a particular physical reaction and run it in reverse.
Consider for example the two-body scattering of a neutron off of a proton to
form a deuteron and a photon. Under time-reversal we would have

n+ p −→ D + γ ⇐ T⇒ D + γ −→ n+ p (6.14)

T-invariance, if it held, would force the rate for both processes to be the same
for corresponding conditions of energy, momentum and angular momentum;
this is called the Principle of Detailed Balance [44]. It is the most direct test
of time reversal that we have.

So far all experiments have indicated that time-reversal invariance is a sym-
metry of the strong and electromagnetic interactions, with the principle of
detailed balance holding for every known case for these interactions. Un-
fortunately the places where we expect to see T-violation are in the weak
interactions: after all, this is where parity is violated (and, as we will see,
charge-conjugation invariance as well). Here the principle of detailed balance
is extremely difficult to test. For example the weak decay of the Λ meson is
Λ→ p+ π, so we would expect to test detailed balance via

Λ→ p+ π ⇐ T⇒ p+ π −→ Λ (6.15)
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This would in principle form a check, but in practice the pion and the proton
form many other states besides the Λ when they collide. This is because
the strong interaction between the pion and the proton totally dominates the
feeble weak interaction that would form the Λ. It is therefore pretty much
impossible in practice to pick out the time-reversed reaction on the right-hand
side of eq. (6.15).

Can we do anything about this? Yes – we can precisely measure static quan-
tities whose value should be exactly zero if T is a symmetry. Any empirical
evidence that such quantities were nonzero would therefore be firm evidence
that T is not a symmetry of nature.

One such quantity is the electric dipole moment ~d of an elementary particle.
If it were nonzero it would have to be either aligned or antialigned with the
spin of the particle since there is no other direction available. But from table
6.2 we see that an electric dipole moment does not change sign under time-
reversal whereas the spin does, so any nonzero-value of ~d would be a signature
of time-reversal violation. At present the best limits that we have are for the
electron [45] and the neutron [46]:

|~dn| < 6× 10−26e cm |~de| < 1.6× 10−27e cm (6.16)

setting stringent upper bounds on T-violation. We’ll look more at the situa-
tion for the neutron in Chapter 25.

6.3 Charge Conjugation

Charge conjugation, denoted by C, transforms any state into a state with the
same energy, momentum, spin and mass but with all other quantum numbers
(the “charges”) reversed. In other words, C transforms each particle into its
antiparticle, e.g.

C |p〉 = |p〉 C
∣∣π+

〉
=
∣∣π−〉 (6.17)

Obviously C2 = +1 (just like T2 = +1 and P2 = +1), and so it also has
eigenvalues ±1. However,, unlike P, most particles are not eigenstates of C,
because a particle is not the same state as its antiparticle (for example, a
positron is not an electron). Any particle that is an eigenstate of C must be
its own antiparticle, since the eigenvalue equation for C requires

C |particle〉 = |antiparticle〉 = ± |particle〉 (6.18)

The photon is one such particle, and the π0, η, η′, ρ0, φ, ω, and J/ψ mesons
are also their own antiparticles. Consequently they can be assigned definite
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charge-conjugation quantum numbers. By convention, C does not change the
mass, energy, momentum or spin of a particle§.

6.3.1 Charge Conjugation of the Pion

If electromagnetic charge is reversed for all particles in a given system, then
the sign of the electromagnetic field in the system must also be reversed, and
so C =− 1 for the photon. We can use this to deduce the value of C for the
pion. For the π0, experiments have shown that

π0 → 2γ (6.19)

which is an electromagnetic decay, because only photons are in the final state.
Hence we must have C = + 1 for the π0 since C is conserved in electromag-
netism.

The conservation of C is therefore something we can check by searching for
the decay of the π0 into odd numbers of photons. Any positive evidence for
such a decay would indicate that something was wrong with our understanding
of electromagnetism and, by extension, the Standard Model. Perhaps our
theory of electromagnetism would need revision, or perhaps the π0 would have
a structure that is different from our current understanding. Experimentally
we have

Γ
(
π0 → 3γ

)
Γ (π0 → 2γ)

< 3.1× 10−8 (6.20)

and so we see that C is conserved in electromagnetism, to better than one
part in 10 million [47].

6.3.2 Charge Conjugation of Fermions

A fermion-antifermion bound state of orbital angular momentum ` and spin s
must have C = (−1)`+s. This can be deduced by noting that the lowest-energy
state, which has s = ` = 0, can decay into two photons by energy conservation.
Since C = −1 for the photon, we must have C = (C(photon))2 = +1 for this
bound state. If the bound state has s = 1, then the fermion-antifermion pair
have the same spins: a spin-flip transition to an s = 0 state results in the
emission of one photon, so C = (−1)s if ` = 0. Finally, if ` 6= 0, the excited
bound state can decay electromagnetically with ` → ` − 1 by emitting one
photon. The only consistent choice that describes these observations is to set
C = (−1)`+s for a fermion-antifermion bound state.

§Strictly speaking, the antiparticle of an electron with spin ~s, and momentum ~p is a positron
of spin −~s, and momentum −~p. However, we are interested in how C changes the internal
quantum numbers of a particle – the electric charge, the quark color, etc – and so we define
C as an operator that reverses only internal quantum numbers of any given particle.
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C is not a symmetry of the weak interactions: C applied to a left-handed
neutrino gives a left-handed anti-neutrino (i.e. a neutrino with opposite “weak
charge”). But left-handed anti-neutrinos do not couple to any known parti-
cles¶, so C is not conserved for weak interactions.

6.4 Positronium

An ideal place to strengthen our understanding of discrete symmetries is with
positronium. Positronium is an electromagnetically bound state of e+e− that
can decay to photons:

e+e− −→ 2γ, 3γ, . . . (6.21)

It is bound together just like the Hydrogen atom, except that a positron is
responsible for the binding instead of a proton. The wavefunction is

Φ = Ψ (r, θ, φ;µ) Ξ(s) = Ψ (r, θ, φ;µ) (ψe− ⊗ ψe+) (6.22)

where Ψ is the wavefunction of the Hydrogen atom, but with reduced mass

µ =
(

1
me

+ 1
me

)−1

= 1
2me. Its energy levels will be given by the Bohr formula

En = −α
2mc2

4n2 for n = 1, 2, 3, . . . where α = e2

4π~c '
1

137 is a dimensionless
quantity called the fine-structure constant.

The wavefunction Ψ provides information about the relative spatial rela-
tionship between any two particles regardless of their structure. The object
Ξ(s) = (ψe+ ⊗ ψe−) is the spin part of the wavefunction, composed of the
spins of the electron and positron. Since each of these are spin-1/2, they can
only combine to give a total spin of 0 or 1. Using the Clebsch-Gordon tables
??, we have

Ξ(1, 1) = ψ↑e−ψ
↑
e+

Ξ(1, 0) = 1√
2

(
ψ↑e−ψ

↓
e+ + ψ↓e−ψ

↑
e+

)
Ξ(1,−1) = ψ↓e−ψ

↓
e+

 triplet S = 1
ORTHOPOSITRONIUM (6.23)

Ξ(0, 0) =
1√
2

(
ψ↑e−ψ

↓
e+ − ψ

↓
e−ψ

↑
e+

) singlet S = 0
PARAPOSITRONIUM(6.24)

Now recall that charge-conjugation changes a spin-up (which I’ll write as
spin-↑) e− into a spin-↑ e+. Hence under C:

C [Ξ(1, 1)] = C
[
ψ↑e−ψ

↑
e+

]
= ψ↑e+ψ

↑
e− = −ψ↑e−ψ

↑
e+ = −Ξ(1, 1) (6.25)

¶It was once thought that they didn’t exist, but experiments at the Sudbury Neutrino
Observatory [42] strongly imply that neutrinos have mass, which means that both right-
handed and left-handed neutrinos and antineutrinos exist. We will consider this subject in
Chapter 25.
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where the 2nd from last step follows because fermion wavefunctions anticom-
mute due to the Pauli principle. Hence

CΦORTHO = −ΦORTHO and CΦPARA = ΦPARA (6.26)

which you can easily check. Recalling that the photon is negative under C,
we consequently find that

ΦPARA −→ 2γ + 4γ + 6γ + · · · (6.27)

ΦORTHO −→ 3γ + 5γ + 7γ + · · · (6.28)

or in other words, PARA can only decay into even numbers of photons, and
ORTHO only into odd numbers of photons‖. A 2-Body decay process is
“easier” to go to than a 3-Body one – the phase space is larger for decay
into smaller numbers of objects – so we expect PARA to decay faster than
ORTHO. Also, the amplitude for emission of one photon is proportional to
the charge e of the electron. This means that the probability for PARA to
decay will be proportional to |e2|2 ∼ α2. Since ORTHO decays by emitting 3
photons instead of 2, we expect its decay rate to be smaller than PARA’s by
a factor of α.

Note that positronium decay depends on the electron and positron annihi-
lating each other, a situation that can only occur if they are in the same place
at the same time. Hence the decay rate must be proportional to |Ψ (0)|2, i.e.
the square of the wavefunction at the origin, which is where the electron and
positron “collide.” From atomic physics we know that

|Ψ (0)|2 =
1
πa3

=
α6

8πr3
e

(6.29)

where a = 2re
α2 is the Bohr radius of the positronium atom and re = e2

4πmc2 is
the classical electron radius. The actual theoretical calculations give [48, 49]

Γ (PARA→ 2γ) = 4π}cr2
e |Ψ (0)|2 =

mec
2

2
α5 =

(
1.252× 10−10s

)−1

= 8.00 (nsec)−1 (6.30)

Γ (ORTHO→ 3γ) =
2

9π
(
π2 − 9

)
mec

2α6 =
(
1.374× 10−7s

)−1

= 7.21 (µsec)−1 (6.31)

for the decay of the ground states.

‖The 2-photon and 3-photon decays are the dominant processes; decays into more photons
are higher-order corrections.



104 An Introduction to Particle Physics and the Standard Model

6.4.1 A Puzzle with ORTHO

Until very recently more accurate calculations yielded a puzzle. While the
agreement between theory and experiment for PARA was always in good
shape, there existed a discrepancy between theory and experiment for ORTHO
that went unexplained for decades. Experiments as recently as 1990 differed
by at least 6 standard deviations from the theoretical calculation. This led
theorists to propose that all kinds of exotic hypotheses that were sometimes
rather bizarre extensions of the Standard model. These ideas included axions,
C-odd bosons, millicharged particles, forbidden numbers of gamma rays, and
even a mirror universe!

FIGURE 6.5
A schematic of the cavity used in the new precision orthopositronium de-
cay rate measurement. Positrons are focused through two apertures of an
aluminum cavity onto an porous silica film. The emitted thermal positron-
ium decays in vacuum. Reprinted figure with permission from R. S. Vallery,
P.W. Zitzewitz, and D.W. Gidley, Phys. Rev. Lett. 90 203402 (2003) [50].
Copyright (2003) by the American Physical Society.

However, in May 2003, R.S. Vallery and colleagues published a paper [50]
describing the results of a more careful experiment on orthopositronium. They
created orthopositronium by firing a low-energy positron beam into a spe-
cial micron-thick nanoporous silica film; orthopositronium formed from the
slowed-down positrons as they captured electrons. Vallery and collaborators
were able to measure how long this took by detecting the gamma rays after
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annihilation in a scintillator. This set-up, illustrated in fig. 6.5, overcame
problems encountered in previous experiments to measure decay rates, which
sometimes measured energetic positronium annihilating on the cavity walls
of the detector. In the Vallery experiment, only positrons that annihilated
their bound electrons were detected. They measured a lifetime for ORTHO
in agreement with the current QED calculation that differed by only about
0.014% from the theoretical value!

The moral? Sometime a simple explanation – in this case, that something
was wrong with the experiments – is the right one.

Theory Experiment
Γ (PARA) 7.9852± .010 (nsec)−1 [48] 7.994± .011 (nsec)−1 [51]

Γ (ORTHO) 7.039979± .000011 (µsec)−1 [49]


7.0516± .0013 (µsec)−1 [52]
7.0514± .0014 (µsec)−1 [53]
7.0482± .0016 (µsec)−1 [54]
7.0404± .0018 (µsec)−1 [50]

6.4.2 Testing Fermion-Antifermion Parity

Consider next the parity of positronium. For PARA we have

PΦPARA = − (−1)` ΦPARA (6.32)

where the first minus sign is due to the opposite parity of the electron and
positron, and the (−1)` comes from the parity of the spatial wavefunction.
Since ` = 0 for the ground state, the final state for the 2 emitted photons
from PARA must have negative parity.

FIGURE 6.6
Schematic diagram of Positronium decay.

In the rest frame of PARA the 3-momenta of the photons must be ~k and −~k
as shown in figure 6.6. The initial state has no angular momentum (J = 0).
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The final state wavefunction |γ1γ2〉 can only depend on the photon momenta
and polarizations, and must also have J = 0 by angular momentum conser-
vation. Therefore it must be a scalar function of the momenta and polariza-
tions. Furthermore, since photons are bosons, we must have |γ1γ2〉 = + |γ2γ1〉.
Hence

|γ1γ2〉 = A ê1 · ê2 + B ( ê1 × ê2) · k̂ (6.33)
where A and B are scalar functions of the momentum and polarizations. Now
by conservation of parity we must have P |γ1γ2〉 = − |γ1γ2〉. Hence

|γ1γ2〉 = B ( ê1 × ê2) · k̂ (6.34)

since P ( ê1 × ê2) · k̂ = − ( ê1 × ê2) · k̂ but Pê1 · ê2 = ê1 · ê2. The amplitude
〈PARA |γ1γ2〉 is largest for ê1 ⊥ ê2.

FIGURE 6.7
Schematic diagram of test of parity conservation in positronium decay. The
polarization angle φ corresponds to a rotation perpendicular to the page.

If one emitted photon exhibits an X-polarization, the other always shows
a Y -polarization, i.e., the planes of their polarizations must be perpendic-
ular to each other. This may be confirmed experimentally by utilizing the
feature that Compton-scattering cross sections for polarized photons are sig-
nificantly greater for scattering into the plane at right angles to the E-vector
of the incident photon, i.e., 90◦ to the direction of polarization. The setup
is schematically shown in figure 6.7. The optical analog of the scattering
material is the polarizing filter. The Klein-Nishina formula [56] shows the
scattering cross section σ is proportional to:

σ =
k

k0
+
k0

k
− 2 sin2 θ cos2 φ (6.35)
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with k0 and k representing the momenta of the incident and the scattered
photons respectively, θ the angle of scattering, and φ the angle between the
plane of scattering and the ê-vector of the incident photons.

This experiment was first done by Wu and Shaknov [57] with 64Cu as the
source. At θ = 90◦, annihilation radiation scattering turns out (for the ener-
gies relevant to the source 64Cu) to be two times stronger for φ = 90◦ (when
ê1 ⊥ ê2) than for φ = 0◦ (when ê1 ‖ ê2), thus providing an effective γ-ray
polarization analyzer. They observed

Rate(φ = 90o)
Rate(φ = 0o)

= 2.04± 0.08 (6.36)

in agreement with the expected value of 2.00. We can regard this experiment
as demonstrating that electrons and positrons have opposite parity.

6.5 The CPT Theorem

Strong and electromagnetic interactions are observed to separately conserve
C, P and T and our present theories of these interactions (QCD and QED)
are constructed so that these symmetries are preserved∗∗.

Weak interactions, however, violate C and P separately. Parity-violation in
β-decay was first observed by Wu et al. [39] and has been seen directly in
nuclear reactions [40] such as

16O
JP= 2− −→

12C
JP= 2+ +4He Γ = (1.0± 0.3)× 10−10s (6.37)

Weak interactions also violate C-invariance: no left-handed antineutrinos have
ever been observed. And finally, Kaon decays violate both C and P. We’ll
look at all of these processes in subsequent chapters.

There is a theorem by Schwinger, Lüders and Pauli [58] called the CPT-
theorem which states that:

ANY Lorentz-invariant Hermitian Lagrangian is invariant under
CPT provided

1. The ground state is invariant.

2. The theory is local (i.e. has no action at a distance).

∗∗There is actually a subtle exception to this for the strong interactions that we will look
at in Chapter 25.
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A given theory might violate any of C, P or T separately, but it must respect
the combined operation CPT if these two conditions hold. Experimentally this
means

1. Particles and antiparticles must have the same mass

2. Particles and antiparticles must have the same lifetimes

3. Particles and antiparticles must have the same magnetic moments

Any discrepancy in such experiments would signal a breakdown of quan-
tum mechanics! Hawking and Penrose have each separately suggested that
quantum gravity forces such a breakdown [59]. For example, the presence of
black holes might imply that pure states evolve into mixed states (something
that can’t happen in quantum mechanics) because part of the wavefunction
is “absorbed” by the black hole is therefore irretrievably lost if the black hole
evaporates in a purely thermal fashion††.

Table 6.3 summarizes the results of a few key experiments that test the
CPT theorem. So far CPT violation has not been observed – yet!

TABLE 6.3

Sample Tests of CPT
Lifetime τµ+/τµ− = 1.00002± .00008
Mass |mK0 −mK̄0 | /maverage < 10−18

Magnetic Moment µe+/µe− < 10−11

6.6 Questions

1. Are any of these processes allowed? Why or why not?

(a) ρ0 −→ π+ + π− (b) η0 −→ 5γ
(c) ρ0 −→ 3π0 (d) η0 −→ π+ + π− + π0

2. According to the Standard Model, which of the following reactions are
allowed and which are forbidden? State the reasons why if not. If
allowed, state what interaction is responsible for the process.

††This is because no information is contained in the outgoing thermal radiation.
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(a) n̄ −→ p̄+ e+ + ν (b) γ + Z0 −→ νe + π0

(c) µ+ + τ− −→ γ + γ + γ (d) Z0 −→ ν̄µ + νµ

(e) D0 −→ K− + ρ+ (f) e− + ν̄ −→ t̄+ b

3. Consider the non-relativistic Schroedinger equation with the Hamilto-
nian

H =
|~p|2

2m
+ V (~x)

satisfied by the wavefunction Ψ (~x). Under what circumstances will
Ψ (−~x) satisfy the Schroedinger equation?

4. The deuteron is a 3S1 bound state of a neutron and a proton, and
must have a wavefunction that is antisymmetric under proton-neutron
interchange. What is the parity of the deuteron?

5. Show that Maxwell’s equations are invariant under time-reversal.

6. Suppose the expectation value of J ·P were found to be nonzero in
some process.

(a) What would this imply about parity conservation?

(b) What would this imply about time-reversal invariance?

7. Time reversal interchanges initial and final states, so that if T |χ〉 = |χ〉t
then

T (〈ϑ |χ〉) =t 〈ϑ |χ〉t = 〈χ |ϑ〉 = (〈ϑ |χ〉)∗

where the first equality is due to interchange of initial and final states
and the second equality is the property of quantum-mechanical ampli-
tudes.

(a) Show that the above relation implies Tc = c∗T where c is any com-
plex number.

(b) Given that T~J = −~JT where ~J is the angular momentum operator,
show that

|χ1〉 ≡ −T
∣∣∣∣12 ,−1

2

〉
and |χ2〉 ≡ T

∣∣∣∣12 ,12
〉

form a spin-1/2 in the time-reversed system.

(c) What is T2 for a state |φ〉 with an odd number of spin-1/2 particles?
What is T2 for a state |ϕ〉 with an even number of spin-1/2 particles?

(d) Suppose the state |φ〉 in (c) is an eigenstate of the Hamiltonian.
What is the degree of the degeneracy of this state? (i.e. how many
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distinct states are there at a given energy level?) This degeneracy is
called Kramer’s degeneracy.

(e) Is Kramer’s degeneracy preserved in an electric field? Is it preserved
in a magnetic field?
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Accelerators

Experimental information in high-energy physics has historically most “com-
monly” been obtained from accelerators: machines that accelerate charged
particles to very high speeds and then let them collide with other particles.
They are very expensive to build and maintain, and they have a limited use
in terms of the fundamental physics that they can reveal. Yet they provide us
with a kind of information about the subatomic world that cannot be obtained
in any other way.

Accelerators basically do two things. First, they provide us with informa-
tion about the detailed structure of subatomic systems. They produce new
interactions and/or bound states of known particles, whose characteristics
provide us with further information about the laws of nature and the struc-
ture of matter. Second, they produce new particles. This is why they cost so
much money – in order to produce a new particle you need at least as much
energy as the rest mass of the particle. This might not sound like much at the
subatomic level, but there is a lost of energy “wasted” in a collision process
because we can’t directly control the products of the collision that emerge nor
the loss of energy due to other effects.

Accelerators have played an essential role in particle physics. Without them
it would simply not be possible to check in any detailed way whether or not
our theories were correct. They have led to the discovery of particles and
interactions that nobody anticipated, and have provided us with a picture of
the subatomic world that no one imagined as recently as a century ago. They
probe the shortest distances humankind has ever measured by manipulating
beams of particles traversing millions of kilometers in a few seconds to micron
precision. They have been compared to the great cathedrals of Europe by
Robert R. Wilson because of their immense size, intricate complexity, and
symbolic representation of the human intellect [62].

The first accelerators that were constructed in the 1930s had particle beams
whose energies were a few hundred keV. Seventy years later, in the first decade
of the 21st century, the Large Hadron Collider will generate particle beams
with energies of nearly 1013eV – a factor 100 million times greater! The
effective energy available to study new physics is even larger, about 1018eV,
since the LHC arranges for two beams of similar energy to collide. This will
allow us to probe distances shorter than 10−18cm, yielding the world’s most
powerful microscope.

Accelerators have grown out of their core purpose of providing experimen-

111
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tal information for particle physics, and today are used in condensed mat-
ter physics, biomedical technologies, geophysics, electronics, food processing,
and many other areas. Accelerator science has become a separate intellec-
tual subdiscipline with both pure and applied aspects, providing yet another
illustration of how basic research can foster positive economic and social de-
velopment.

This chapter will provide a brief overview of accelerator physics. Following
an historical path, we shall begin with the earliest machines, sketching the
emergence of the more complex technologies as they developed over the past
70 years.

7.1 DC Voltage Machines

The simplest way to accelerate charged particles is with a high voltage DC
source [61]. Such machines today can at best achieve beam energies of 20
MeV. For nuclear physics experiments this is useful, but for particle physics
this is too low an energy. A picture is given in figure 7.1.

FIGURE 7.1
Prototype of the simplest accelerator.

A particle of charge q is generated by a source of ions. It is then accelerated
in an electric field ~E, which means it experiences a force ~F , and consequently
gains energy E as it travels a distance d

~F = q ~E ⇒ E =
∣∣∣~F ∣∣∣ d = q

∣∣∣ ~E∣∣∣ d = qV (7.1)

where V =
∣∣∣ ~E∣∣∣ d is the voltage of the machine. The system must also be

in as high a vacuum as is manageable – otherwise the accelerating particle
will lose most of its energy in collisions with air molecules in the accelerator.
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These elements – particle source, accelerating structure, and vacuum pump –
appear in every accelerator.

FIGURE 7.2
A Cockcroft-Walton Accelerator. Diagram courtesy of the Contemporary
Physics Education Project (used with permission).

The earliest such machine of this type is called a Cockroft-Walton accelera-
tor [63], shown in fig. 7.2. The ion source was hydrogen gas, and the original
machine developed by John Cockroft and Ernest Walton was able to acceler-
ate protons to 400 keV. Such machines today can reach a maximum voltage
of 1 MeV due to voltage breakdown and discharge. These machines are often
used as the first step of a multistage process that accelerates particles to much
higher energies in more powerful accelerators.

A more sophisticated DC machine is a Van de Graff accelerator [64], in
which a conveyor belt carries positive charge (in the form of ions that are
sprayed onto the belt) to a collector which in turn transfers the positive charge
to the dome. The principle at play here is that charge on any conductor
resides on its outermost surface. If a conductor that is carrying charge touches
another conductor whose surface surrounds it, then the charge on the first
conductor will be transferred to the second one. Hence, as Robert van de
Graff realized, one can “pile up” charge on a conductor to increase voltage by
continually transferring charge to it via a conveyor belt, as shown in fig. 7.3.

This technique can yield voltages of up to 12 MeV. Positive charge (obtained
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FIGURE 7.3
A diagram of a Van de Graff accelerator.

from gas ionized at high voltage) is sprayed or brushed onto a conducting
conveyer belt, which continually rotates about two drums (somewhat like the
fan belt in a car). One end of the belt is inside of a conducting dome. A wire
brush is attached to the sphere and brushes against the belt. The charge on
the belt will then travel through the brush and spread out on the sphere. The
motors turning the drum provide the work needed to carry out this process.
The points at which the charges are sprayed onto the belt are called corona
points.

To complete the accelerator an ion source must be placed within the con-
ducting dome near an evacuated tube. This tube leaves the dome and provides
a conduit for the accelerated particles to eventually hit a target. If positive
ions are emitted from the source, they will be accelerated away from the
positively charged dome down the tube and toward the target. The tube is
constructed with equipotential metallic rings, embedded within an insulating
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tube, and the entire structure is contained within a pressurized chamber of
gas (typically SF6) of about 15 atm. The energy limit that the machine can
reach is constrained by the voltage at which the gas discharges.

Higher energies can be attained through the following trick. If negative ions
are emitted from a source at one end of an acclerating tube that is outside of
the dome, they will be attracted to it. A stripper inside the dome can remove
some of their electrons and make them positive. These ions again accelerate
down another tube, away from the terminal and toward a target. In this
manner the maximal energy can be doubled to about 25 – 40 MeV. Such a
machine is called a Tandem Van de Graff [65].

DC machines cannot achieve the requisite energies of modern particle physics.
However, they have a high beam intensity (up to 100 microamperes) and a
stable beam energy, and so are useful in nuclear physics research and (more
recently) in solid state physics, where these machines are used to implant ions
into materials to achieve a desired doping.

7.2 Linacs

Linear accelerators (LINACS) attempt to overcome the aforementioned limi-
tation by giving the charged particle a series of “kicks” using an AC source.
The basic idea is to repeatedly accelerate the particle many times over. A
LINAC does this via a series of cylindrical tubes (called drift tubes), each of
which is connected to a high-frequency oscillator. The succesive tubes are
arranged to have opposite polarity. Inside the tubes the electric field is zero,
but in the gaps in between, the electric field alternates with the generator
frequency.

Suppose a particle of charge e enters this setup. The electric field at the first
gap is set so that it attracts the particle, accelerating it to the first tube. The
length of this tube is arranged so that when the particle arrives at the next
gap the relative voltages of the tubes have flipped so as to provide another
accelerating field in the gap. This further accelerates the particle and the
process is repeated up to the tolerance voltages of the device, as illustrated in
fig. 7.4. Each tube must increase in length because the speed of the electron
rapidly increases as it moves down the tube. The length L of the tube must
equal 1

2vT , where T is the period of the oscillation and v is the speed of the
particle.

Typically such machines gain a few MeV per meter in beam energy. Proton
linacs typically reach about 50 MeV; the best in the world is the meson factory
at Los Alamos that can reach 800 MeV. Electron linacs can reach much higher
energies (∼ 25 GeV maximum) since the electron is much lighter. The largest
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FIGURE 7.4
A schematic drawing of a linac.

electron linac in the world is at Stanford. It is 3 km long and has a 25 GeV
electron beam which pulses 60 times per second.

7.2.1 Focusing the Beam

One of the problems with such big machines is in keeping the beam well-
collimated. Light from a flashlight, say, will spread out, and the same kind
of thing will happen with a particle beam. And, just as the spreading light
can be refocused with lenses, the same sort of thing can be done for particle
beams by using magnets∗. The Lorentz force equation describes the motion
of a particle of charge q in an electromagnetic field:

~F = q

(
~E +

~v

c
× ~B

)
=
q

c
~v × ~B (7.2)

where ~v is the velocity of the particle and we have set ~E = 0. For ~v⊥ ~B, the
particle will experience a centripetal force

∣∣∣~F ∣∣∣ = mv2

r normal to both of these
directions, and so

mv2

r
=
q

c
vB ⇒ r =

mvc

qB
=

pc

qB
(7.3)

is the radius of curvature r through which the particle bends as it goes through
the magnetic field.

To get an idea of how big the magnetic fields are that are required for focus-
ing, consider an electron whose kinetic energy Ekin is 1 MeV. Its momentum

∗Electric fields could also be used, but the field strength required for focusing high-energy
particle beams is impractically large.
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FIGURE 7.5
A schematic diagram of a quadrupole magnet.

is therefore given by solving

Ekin =
√

(pc)2 + (mc2)2 −mc2 ⇒ pc = 1.42 MeV = 1.42× 106eV (7.4)

since the mass of the electron is 0.511 MeV. Because the charge of the electron
is 1.60217733× 10−19 Coulombs = 3× 109esu, we find from eq.(7.3)

Br =
pc

q
=

1.42× 106

3× 109
= 4.73× 103 Gauss-cm (7.5)

Unfortunately a magnet can bend particles only in one plane, and so can
focus only in this plane, unlike an optical lens that can focus in more than
one plane. How can a magnetic field be used to focus in two planes? The
solution to this problem was found in 1950 by Christofilos [66] (and again in-
dependently in 1952 by Courant, Livingston and Snyder [67]): the quadrupole
magnet ! This magnet focuses in one plane, and defocuses in the orthogonal
plane – see figure 7.5 for a conceptual representation of how this works. In the
diagram, particles in the horizontal plane are deflected inward, while those in
the vertical plane are deflected outward. Rotate this magnet by 90o and the
opposite effect occurs: particles in the horizontal plane are deflected outward,
and those in the vertical plane are deflected inward. Consequently two such
magnets rotated 90o to one another around the beam axis behave as an op-
tical lens, and a net focusing occurs. A picture of a quadrupole magnet that
was used for PEP (Positron-Electron Project) at SLAC is shown in 7.6.

Fig. 7.7 is a diagram of the SLAC linac, which is the world’s highest energy
LINAC.

LINACs can achieve arbitrarily high energies in principle. However, the
greater the desired energy, the larger the cost – a 500 GeV accelerator would
have to be 75km long! This is prohibitively expensive and environmentally
costly. A new solution for achieving higher energies is required.
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FIGURE 7.6
A quadrupole magnet once used in the storage ring at the Australian Syn-
chrotron, Clayton, Victoria, Australia. Photo by John O’Neill; used with
permission.

FIGURE 7.7
A diagram of the LINAC at SLAC. Image courtesy of SLAC National Accel-
erator Laboratory.

7.3 Synchrotrons

The idea of the synchrotron is to use one voltage source to repeatedly acceler-
ate the particle instead of many sources as in the linac. Instead of the particles
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moving in a straight line, they move around in a circle, their motion synchro-
nized with a changing voltage source and magnetic field that increases their
energy. This idea of circularly accelerating particles was proposed in 1930 by
Lawrence [68], and such machines were called cyclotrons.

A cyclotron consists of two hollowed out metal vaccum chambers, each in
the shape of the letter D. These are placed side-by-side along their straight
edges with a gap, and each is connected to an alternating high voltage source.
This entire setup is then placed inside a magnetic field that is perpendicular
to the D-shaped chambers. The high-voltage source produces an electric field
only in the gap between the D’s because the metal chambers shield the in-
sides, where only the magnetic field pervades. If an ion source is placed in the
gap, the electric field will accelerate ions toward one of the D-chambers. The
magnetic field meanwhile causes the ion to move in circular motion. By ap-
propriately setting the alternating frequency of the voltage source, the ion, as
it leaves the first D-chamber, will be accelerated toward the second one. This
process can be repeated many times, with the ion being accelerated across
the gap each time it leaves a D-chamber. Its speed and its radial orbit will
continue to get larger until one wishes to extract it (say by turning off the
magnetic field) to have it impact upon a target.

A fixed-frequency cyclotron cannot accelerate particles to high energies,
where relativistic effects must be taken into account. The maximum energy
a proton cyclotron can obtain is 20 MeV. A more sophisticated machine is
needed to attain higher energies. These machines are called synchrotrons.

A synchrotron consists of straight segments in accelerating cavities com-
bined with circular segments that cause the particle to repeatedly traverse
the same trajectory. The charged particles are first linearly accelerated into
the ring, and then traverse a vacuum tube in a torus. A magnetic field keeps
the particles moving in a circle. The straight segments have a RF field that
turns on as the particles enter the cavity, accelerating them to higher speeds.

For a particle injected into a ring of radius R at speed v, the time for one
full turn is

T =
2πR
v

=
2πR
pc2
E (7.6)

since p = mγv and E = mγc2. Hence the circular frequency is

Ω =
2π
T

=
pc2

ER
(7.7)

and the acceleration of the particle is

d~p

dt
=
q

c
~v × ~B (7.8)

where the magnetic field is orthogonal to the direction of motion. Recalling
that ~v = vθ̂ for circular motion, we have ~v × ~B = −vBr̂. Similarly, we have

d~p

dt
=
dp

dt
θ̂ + p

dθ̂

dt
=
dp

dt
θ̂ − p v

R
r̂ (7.9)
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which for constant p = |~p| yields

−p v
R
r̂ = −q

c
vBr̂. (7.10)

or alternatively
B =

pc

qR
(7.11)

Of course p is not constant: once per revolution, the particles are accel-
erated to increase v. Obviously B must increase in a synchronized manner
(otherwise the particles will crash into the walls of the tube) – hence the name
synchrotron. As the particles are accelerated by an RF generator of frequency
ω, they will gain energy and momentum. The frequency ω must be an integer
multiple of Ω to keep the beam within the tube. As the energy increases, we
have pc→ E and so

ω = kΩ = k
pc2

ER
→ kc

R
and B =

pc

qR
→ E

qR
(7.12)

since pc → E at high energies. The magnetic field and the RF are increased
from their initial values to final values chosen in such a manner as to always
maintain the above relations. Clearly the limitation on the beam energy is B.
The best superconducting magnets currently furnish magnetic fields slightly
larger than 5 Tesla (50 kilogauss).

A notable feature of large acclerators is that the particles cannot be accel-
erated from zero (or small) velocity into the machines – the range over which
the RF and magnetic fields would have to operate is too big. Consequently
such machines are built in stages, with smaller machines pre-acclerating the
particles to speeds that the larger machines can handle. The Large Hadron
Collider (LHC) at CERN is an excellent example of a machine that makes use
of smaller linacs and synchrotrons to achieve high energies, as shown in fig.
7.8.

7.3.1 Focusing Beams at Synchrotrons

Particle beams in general do not consist of streams of charged particles. In-
stead, they occur in clusters, or bunches. The reason for this is that there is
always some finite spread in the time of arrival of the particles as they enter
an acceleration region. Consider a cyclotron. Particles arriving “on time”
will experience just the right electric field to keep them moving in the correct
orbit in the D-chambers. A particle arriving earlier will experience a stronger
electric field, causing it to traverse an orbit of larger radius. This in turn
causes it to return to the gap at a later time, closer to the return time of the
original “on time” particles. A particle arriving later will experience a weaker
electric field and thus traverse an orbit of smaller radius, causing it to return
to the gap earlier, which again is closer to the return time of the original “on
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time” particles. The second time around, the advanced particles will arrive
less early and so be accelerated less, whereas the delayed particles will arrive
less late and so be accelerated more. This continues for each orbit, resulting
in the bunching of particles about the synchronous orbit. This bunching is
the “RF structure” present in all such acclerators.

Ideally, the particle bunches would move uniformly, all accelerate in step,
and hit the target precisely. In practice, small misalignments of the beam,
magnet inhomogeneities, etc. cause the beam (or rather the bunches) to wan-
der. Deviations from the ideal circular path are called betatron oscillations.
With appropriate focusing using quadrupole magnet pairs (quadrupole dou-
blets) as discussed above, these can be made quite small compared to the
beam radius R. Longitudinal oscillations of a bunch are called synchrotron
oscillations. Appropriate RF “kicking” stabilizes these bunches, which oscil-
late in size around the ideal equilibrium position. A typical beam thickness is
∼ 1 mm. The concept of stabilizing the bunches via corrective field methods
was developed independently by Vladimir Veksler [69] in 1944 and by Edwin
McMillan [70] in 1945.

Proton synchrotrons operate by first accelerating the protons in a Cockroft-
Walton machine to about 1 MeV, after which they are further accelerated into
a linac before injection into the synchrotron, typically at an energy of several
hundred MeV. The magnets are positioned in a ring along the circular path
of the beam line. The world’s largest proton synchrotron beam is the LHC at
CERN.

Since electrons are lighter and so much easier to accelerate, why not build
electron synchrotrons? This can be done, but there is a significant cost because
all charged particles radiate energy as they accelerate. Circularly moving
particles at higher and higher speeds accelerate more and more, losing energy
∆E with each revolution:

∆E =
4π
3
q2β3γ4

R
−→ 4π

3
q2

R

(
E

mc2

)4

as v → c (7.13)

where the formula for energy loss is given in Jackson (eq. (14.31)) [71]. Hence
the energy loss varies inversely with the fourth power of the mass, and so

(∆E)electron
(∆E)proton

=
(
mproton
melectron

)4

' 1013 (7.14)

which is a huge energy loss: at 20 GeV beam energy it is 16 MeV per turn.
This makes electron synchrotrons a very expensive but excellent source of
intense short-wavelength light, called synchrotron radiation. This emitted
radiation permits unique research in a variety of scientific fields in physics
chemistry and biology. The Canadian Light Source in Saskatoon, Canada, is
a good example of a state-of-the-art machine of this type. However, for the
purposes of particle physics, proton accelerators provide much more energy
per unit cost.
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7.4 Colliders

All of the aforementioned machines are fixed-target machines: the particle
beam, after reaching its optimum energy, hits some target. Nearby detectors
then measure what happens. This used to be the way that all high energy
experiments were carried out. In the last 30 years, a new type of machine
called a collider has become important. Here 2 beams are smashed into each
other, with nearby detectors monitoring the collision.

Why is this better than a fixed-target machine? Consider 2 particles with
4 momenta pµb and pµt for the beam and target respectively. The total 4-
momentum pµ is, by momentum conservation

pµ = pµb + pµt ⇒ p2 = (pb + pt)
2

⇒ p2 = p2
b + p2

t + 2pb · pt

⇒ p2c2 = m2
bc

4 +m2
t c

4 + 2(EbEt − ~pb · ~ptc
2) (7.15)

where mb and mt are the masses of the beam and target particles respectively.
The center of momentum system (CMS) is defined to be that system in

which pµ = (Etotal,~0). If the target is at rest, then ~pt = 0 and so

E2
total = m2

bc
4 +m2

t c
4 + 2Ebmtc

2 → Etotal '
√

2Ebmtc2 (7.16)

for beam energies Eb � mbc
2,mtc

2. However, if both the beam and the target
are moving toward each other so that ~pt + ~pb = 0, then

E2
total = m2

bc
4 +m2

t c
4 + 2(EbEt + |~pb|2 c2)→ Etotal ' 2Eb (7.17)

for beam energies Eb ' Et � mbc
2,mtc

2. Hence in fixed target machines,
the total energy increases as the square root of the beam energy, whereas for
colliders it increases linearly with the beam energy. Clearly much more total
energy is available for particle creation in colliders!

Colliders have several disadvantages. The particles in the beam must be
stable, unlike the previous machines we have considered, which can be used
to produce secondary beams of unstable particles. Hence only protons, an-
tiprotons, electrons and positrons can be used in colliders. The other (more
serious) disadvantage is that the collision rate is low. The relationship between
the rate R and the other parameters of the beam is:

R = σL with L = fn
N1N2

A
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where the quantities associated with the luminosity L are

f = frequency of revolution of bunches
n = number of bunches per beam

N1, N2 = number of particles per bunch in beams 1,2
A = area of beam

σ = cross-section for interaction
(computed from underlying theory)

For colliders, L is typically ∼ 1031/cm2/s , whereas in fixed target machines
L ∼ 1037/cm2/s. This is a necessary trade-off between the two kinds of
machine – attaining higher energies comes at the cost of reduced luminosity.

FIGURE 7.9
Schematic diagram of stochastic cooling. A pickup coil delivers a signal de-
pending on deviation from the antiprotons from the ideal orbit, and this acti-
vates a kicker which deflects them toward the ideal orbit as they come around
the ring. After the bunch is cooled, it is kicked into the inner half of the
chamber and stacked together with previous bunches.

The cross-section, denoted by σ, is a quantity that is characteristic of the
fundamental physics governing the interaction, and can be thought of as the
effective area that one particle presents to another. We shall defer a discussion
of its properties until chapter 9.

Non particle-antiparticle machines (e.g. ep or pp) need 2 separate beam
pipes and 2 sets of magnets. Particle-antiparticle machines (e+e− or pp̄) need
only one pipe and set of magnets. pp̄ machines pose unique problems in that
obtaining a beam of antiprotons is much harder than obtaining a positron
beam. Antiprotons are produced from fixed target proton-nucleus collisions:
these have a low yield and give a hot gas of antiprotons.

To cool this gas a technique called stochastic cooling was developed by
Simon van der Meer, illustrated in fig. 7.9. The antiprotons are placed in a
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FIGURE 7.10
A diagram of the facilities at the Fermilab Tevatron. Image courtesy of Fer-
milab National Accelerator.

ring. A sensitive pickup coil in one part of the ring senses the deviation from
an ideal path and sends a signal to a kicker in another part of the ring to
deflect them to an ideal orbit. It takes about 2 seconds of circulation to cool
the injected beam.

After cooling, the injected bunch is put into a stacking ring in the same
tube. After a day or so about a trillion antiprotons exist in the beam and
can be used for experimentation. This method was used in the CERN SPS
collider to obtain proton-antiproton collisions which led to the discovery of
the W and Z bosons [73].

The highest-energy machine currently operative is the Tevatron at Fermilab.
A schematic illustration of the setup at Fermilab is shown in fig. 7.10. The
TEVATRON at Fermilab is 1 km in radius and can achieve a beam energy
of 1000 GeV = 1 TeV (tera electron volt). It is a pp̄ machine, which uses a
Cockroft-Walton, a Linac and a booster ring in order to get the protons to
sufficiently high energy before they enter the main ring.

One machine that played a very important role in experimental particle
physics in the 1990s was called LEP (for Large Electron-Positron machine).
This machine was designed to run at collision energies (about 90-100 GeV)
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that would allow the Z-boson to be produced in large numbers. This worked
very well, and an enormous amount of empirical information was obtained
about the Standard Model from the experiments done at this facility. In
April 2000 the energy of LEP’s particle beams was boosted to be as high as
possible – up to 209 GeV, well beyond the original design energy. Significant
experimental data was accumulated at a center-of-mass energy in excess of
206 GeV, and a number of events compatible with a Higgs boson production
with mass around 114-115 GeV were reported in the combined results of the
four LEP experiments, ALEPH, DELPHI, L3 and OPAL. Unfortunately the
topology of these events is also compatible with those originating from other
known Standard Model processes, and so it is at present impossible either to
rule out or confirm the existence of a 114-115 GeV Higgs boson [74]. LEP
was shut down several years ago so that its facilities could be renovated to
convert it to the LHC.

FIGURE 7.11
The four main experiments and the two ring structure of the LHC (copyright
CERN; used with permission).

Higgs bosons of such a light mass are expected to be copiously produced
at the LHC, the centerpiece of the future scientific program at CERN. The
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LHC is housed in a circular tunnel 27 km in circumference, buried at a depth
of 50 to 175 m underground on the Swiss/French border on the outskirts of
Geneva, with a planned start-up in 2008. This machine will achieve energies
of 7 TeV+7 TeV for a proton-proton beam (the highest ever attained), and
luminosities of 1037/cm2/s. For most of the ring, the beams travel in two sep-
arate vacuum pipes in opposite directions, but at four points they collide in the
hearts of the main experiments, known by their acronyms: ALICE (designed
to see if it is possible to make and detect a quark-gluon plasma), ATLAS
(whose purpose is to find the Higgs), CMS (which will look for evidence of
supersymmetry), and LHCb (whose purpose is to make precise measurements
of CP-violation in the b-quark sector). A conceptual diagram of the LHC at
complex appears in fig. 7.11, and the tables 7.1, 7.2, and 7.3 should help you
to keep all the acronyms straight.

TABLE 7.1

Accelerator Acronyms
AAC Antiproton Accumulator Complex (LHC)
AGS Alternating Gradient Synchrotron (Brookhaven)
CESR Cornell Electron Storage Ring
CLIC Compact LInear Collider (proposed CERN)
DAFNE/DAPHNE Double Annular Factory for Nice Experiments
EPA CERN’s Electron Positron Accumulator
FMI Fermilab Main Injector
FNAL Fermi National Accelerator Laboratory
HERA Hadron-Electron Ring Accelerator (DESY)
KEK B-Factory CP-violation in the B meson (KEK)
LEAR/LEIR Low Energy Ion Ring
LEP Large Electron Positron collider
LHC Large Hadron Collider
LIL Lep Injector Linac
PEP Positron Electron Project (SLAC)
PSB Proton Synchrotron Booster (CERN)
PS Proton Synchrotron (CERN)
RHIC Relativistic Heavy Ion Collider (Brookhaven)
SLAC Stanford Linear Acclerator
SPEAR Stanford Positron Electron Accelerating Ring
SPS Super Proton Synchrotron
Tevatron Fermilab’s 2-TeV proton-antiproton accelerator



128 An Introduction to Particle Physics and the Standard Model

TABLE 7.2

LaboratoryAcronyms
ANL Argonne National Laboratory, (Argonne, Illinois, USA)
BNL Brookhaven National Laboratory (Upton, Long Island, USA)
CERN Originally “Conseil Europenne pour Recherches Nuclaires”

now European Laboratory for Particle Physics (Geneva, Switzerland)
CLS Canadian Light Source (Saskatoon, Saskatchewan, Canada)
DESY Deutches Elektronen SYnchrotron laboratory (Hamburg, Germany)
FNAL Fermi National Accelerator Laboratory (Batavia, Illinois, USA)
KEK Koo Energy Ken (Tsukuba, Japan)
LNF Laboratori Nazionali di Frascati (Rome, Italy)
SLAC Stanford Linear Accelerator Center (Palo Alto, California)
SNO Sudbury Neutrino Observatory (Sudbury, Ontario, Canada)
TRIUMF TRI-University Meson Facility (Vancouver, British Columbia, Canada)
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FIGURE 7.12
The proposed CLIC facility (copyright CERN; used with permission).

7.5 The Future of Accelerators

The most important parameters of any accelerator are its final energy and its
beam intensity. The energy is proportional to the magnetic field for a given
radius of curvature, and so our ability to generate strong magnetic fields is
a limiting factor here. With a typical iron magnet the field achieved can be
about 20 kG (or 2 Tesla), whereas a superconducting magnet can achieve
fields of 50kG (5 Tesla). These are now being used at Fermilab and the LHC.
As far as bean intensity is concerned, stochastic cooling techniques can be
used to ensure that this is under control.

However, neither is enough to go much beyond the energies of the LHC.
The key reason is cost, which runs into the 10s of billions of dollars. New tech-
nologies must therefore be explored that will raise the energy threshold, and
this is currently under study. One example is the Compact LInear Collider,
or CLIC facility (see fig. 7.12). The basic idea of CLIC is to point two linacs
toward each other, and to increase the beam energy to 1-3 TeV in each beam
using an RF source of 30 GHz, for a total CMS energy of 2-5 TeV. If this
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could be implemented, it would be the highest-energy particle acclerator in
the world [75].

7.6 Questions

1. Plans are made to upgrade TRIUMF in Vancouver so that it will be
a 60GeV synchrotron with a high intensity (200 µA) beam of protons
that can be used to produce several new kinds of subatomic particle
beams (e.g. K’s, π’s, η’s etc.). However, these beams are difficult
to focus: the number of betatron oscillations ∆ν varies as N/

(
β2γ3

)
where β and γ are the relativistic speed and energy parameters and N
is the accelerable charge per pulse. A typical 60 GeV synchrotron has
an injection energy of 300 MeV in its first stages.

(a) How much greater must the injection energy be to increase the use-
able beam current by a factor of 10 without defocusing?

(b) How does this answer change if a 5% increase in defocusing can be
tolerated?

2. In the LHC two beams of protons will collide head on, each with energies
of 7 TeV.

(a) How does this energy compare to that of a typical cosmic-ray proton?

(b) How much energy must a single proton beam have to yield the same
CM energy on a fixed target of hydrogen?

3. (a) A proton beam of kinetic energy 20 MeV enters a dipole magnet 2m
in length. How strong must the field be to deflect the beam by 10o?

(b) Suppose now the beam has 200 GeV of kinetic energy. How much
deflection will be induced by a magnetic field of 25 kG?

4. What is the minimum energy needed to produce antiprotons from the
collision of two protons? Remember that conservation laws must be
respected in the production process.

5. (a) Two proton storage rings with a beam currents of 20 A each are
directed to collide into each other. The interaction region has an area
of 1 cm2 and is 5 cm long. The relative velocity of the two beams is
approximately the speed of light. How many collisions take place per
second?

(b) Now consider a proton beam colliding with a fixed target of liquid
hydrogen that is 5 cm long and 1 cm2 in area. How much current would
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have to be in the beam for it to have the same collision rate as in part
(a)?

6. The largest magnetic field possible in a superconducting magnet is about
30 Tesla. What is the largest energy that protons can be accelerated to,
in an accelerator that circles the Earth’s equator?

7. What would the energy loss per turn be for the acclerator in question
#6?
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Detectors

In a number of ways detectors are more fundamental in expanding our knowl-
edge of particle physics than accelerators are [76]. Without particle acclera-
tors we would still be able to learn much about particle physics by making
detectors sensitive enough to probe naturally occuring cosmic rays, neutrinos,
photons, and other subatomic particles. Of course an accelerator gives us
crucial control over the energy of a given experiment, and its importance to
particle physics cannot be understated. Yet without the proper accompanying
detectors, accelerators are useless.

After the collision of a particle beam with some target (or another beam)
detection of what happens becomes the key task. In order to do this, the
particle must leave some imprint of its presence, which is made possible by
the fact that particles ultimately transfer energy to the medium they are
traversing – if not, we’d never observe them! The construction and design of
detectors depends on exploiting this property of energy transfer. There are
many ways that this can happen, and we will begin by looking at the various
possibilities.

8.1 Energy Transfer and Deposition

8.1.1 Charged Particles

When a charged particle moves through a medium it will interact with the
fundamental constituents of that medium: its nuclei and electrons. It can lose
energy via three basic means: ionization, coulomb scattering, and radiation.
Its primary interactions are with the atomic electrons of the medium, and
this forms the dominant mode of energy loss∗. The reason for this is that
scattering from nuclei causes large changes in the momentum of the incoming
particle but relatively small changes in its energy, whereas scattering from
atomic electrons (or ionization of nuclei) is an inelastic process that entails

∗The incoming particle can also have a direct collision with a nucleus, but this is an ex-
tremely rare process, and so can be neglected.
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substantively more energy transfer. At very high energies, the dominant mode
of energy loss is radiation if the incoming particle is an electron or a positron;
for more massive particles this process is negligible.

As a charged particle moves through a medium, we expect it lose energy
through its interaction with the medium. The key quantity of interest is the
rate

(
dE
dx

)
of energy loss per unit path length that the particle traverses whilst

in the medium, a quantity called the stopping power of the medium. Once we
know what it is, we can compute the range R, that any particle will have in
the medium:

R =
∫ R

0

dx =
∫ E

0

(
dE

dx

)−1

dE (8.1)

The stopping power can be calculated for the different ways that the particle
can lose energy. Let’s look at these.

8.1.1.1 Ionization Loss

At relativistic speeds v = βc, with Lorentz factor γ =
(
1− β2

)−1/2, the energy
loss of a charged particle as a function of distance can be reliably calculated
from our knowledge of electromagnetism, and the formula†(

dE

dx

)
ionization

= −4πNA(ze)2e2

mec2β2

(
Z

A

)[
ln
(

2mec
2β2

I
γ2

)
− β2

]
(8.2)

has been verified experimentally over a wide range of energies for different
kinds of particles and media. This formula was derived by Hans Bethe and
Felix Bloch [77], and describes the mean rate of energy loss of a particle of
charge q = ze due to ionization of a medium with ionization potential I,
atomic number Z and nucleon number A. Here e is the charge on the electron
(mass me) and NA =1023mol−1 is Avagadro’s number. Most of the energy
loss is due to formation of ion pairs, either by the particle itself, or by the
electrons in the ion pairs causing further ionization. The total number of ion
pairs is proportional to the energy loss of the incident particle.

The energy loss most strongly depends on the incident velocity β and so
can be used to evaluate this quantity. For small β we have(

dE

dx

)
ionization

→ −4πNA(ze)2e2

mec2β2

(
Z

A

)[
ln
(

2mec
2β2

I

)]
(8.3)

and we see that
dE

dx
∝ β−2 lnβ ' β−2 ' (M/p)2 (8.4)

where M is the mass of the incident particle (to see this, recall that p =
Mγv = Mcβγ); particles of the same momenta but different mass will have

†Derivation of this formula is beyond the scope of this text [78]. I have included it here to
impress upon you that this energy loss can be quantitatively computed.
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different energy loss. The energy loss decreases with increasing particle ve-
locity, reaching a minimum value before growing as ln(γ2). Note that at very
low energies the stopping power becomes negative. This unphysical value in-
dicates a breakdown in the above formula, since a low-energy incident particle
can now capture electrons from the medium and form its own atomic systems.
Other approximations can be made at lower and higher energies that provide a
good description of the stopping power over a very wide range of momentum,
as illustrated in figure 8.1.

At high energies eventually long-range interatomic screening effects (ignored
in (8.2)) make dE

dx approach a constant value, and it becomes impossible to
distinguish particle types based on ionization loss. For solid media the increase
is very slight, but for gaseous media there is a rapid increase due to relativistic
effects before the plateau is reached. For about 2 orders of magnitude above
the ionization minimum, dEdx is about the same for all materials, having a value

(
dE

dx

)
ionization

' −2ρMeV/g/cm2 (8.5)

where ρ is the density of the absorber.

FIGURE 8.1
Diagram of the stopping power for −dE/dx antimuons in copper as a function
of momentum, plotted in terms of βγ = p/Mc. The solid curves indicate the
total stopping power, and vertical bands indicate boundaries between different
approximations. Image courtesy of the Particle Data Group [1].
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8.1.1.2 Straggling and Scattering

Electromagnetism, being long range, will tend to scatter incident charged
particles from those in the medium (electrons and nuclei). Since dE

dx ∼
1
M ,

only for M = me (i.e., electrons and positrons) is this energy loss appreciable.
Energy loss of incident nuclei due to electromagnetic interactions is negligible.
This kind of energy loss is called straggling and occurs because the energy that
the incident particles transfer to the medium (i.e., the detector) is variable.
Sometimes a lot will be transferred to the particle, and other times only a little
energy will be transferred. If we know the functional form that describes the
energy transfer, we can compute the mean energy loss and its dispersion.

For example, suppose that the cross-section describing energy transfer to a
given detector is

dσ

dq2
= e−8q2/λ2

(8.6)

where q2 is the square of the momentum transferred to the detector from
the beam and λ is a constant characterizing the detector. This formula
approximately describes the scattering of nucleons off of nuclei of radius λ−1

at low energies. If the detector is made of particles of mass M and the incident
(beam) particles are of mass m, then conservation of 4-momentum implies

pµbeam + pµdetector = p′µbeam + p′µdetector (8.7)

and the transfer of momentum (as we shall see in Chapter 13) is defined to be
q2 = −

(
p′µbeam − pµbeam

)2
= −

(
p′µdetector − pµdetector

)2
. If the detector is initially

at rest, then we have

q2 = −
[
(E′/c−Mc)2 − |~p ′|2

]
= −

[
(E′/c)2 − |~p ′|2 − 2E′M +M2c2

]
= 2M

(
E′ −Mc2

)
(8.8)

where p′µdetector = (E′/c, ~p′). Hence the kinetic energy transferred to the de-
tector is

T=E′ −Mc2 =
q2

2M
(8.9)

and we can compute its mean and its dispersion. We find

〈T〉 =
∫
dσT

σ
=

∫∞
0
dq2 q2

2M e−8q2/λ2∫∞
0
dq2e−8q2/λ2 =

λ2

16M
(8.10)

〈
T2
〉

=

∫∞
0
dq2

(
q2

2M

)2

e−8q2/λ2∫∞
0
dq2e−8q2/λ2 =

λ4

128M2
(8.11)
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using
∫∞

0
dxxne−kx = n!/kn+1, and so the dispersion is

∆T =
√〈

(T- 〈T〉)2
〉

=
√〈

T2
〉
− 〈T〉2 =

λ2

16M
(8.12)

which in this example happens to equal the mean energy loss.
The detector, predominantly made of nuclei, will have λ proportional to

the inverse mean radius of the nucleus, which goes like 1.2A1/3, where A is
the atomic weight. This is almost proportional to the mass and so

∆T ' 1

16A
(
1.2A1/3

)2 =
(

20A5/3
)−1

GeV (8.13)

which is about 0.05 GeV = 50 MeV if the target is protons, but about 7 KeV
if the target is lead!

Scattering due to the coulomb field of the nucleus is another effect that
needs to be taken into account. This effect limits the precision with which
the direction of a particle can be measured. The Rutherford formula‡

dσ

dΩ
=
(
Qq

pv

)2 1
sin4(θ/2)

(8.14)

indicates that the cross section σ(θ) is large for small θ, and so the probability
for small deflections is high. Hence in traversing a material, the net scattering
is the sum total of a large number of small deviations.

So multiple Coulomb scattering yields a distribution in the net scattering
angle. This distribution is approximately Gaussian. The root mean square
of the angle is approximately

〈θ〉rms = 20MeV
q

βpc

√
L

X0
(8.15)

where the incident particles have charge q, velocity βc, and momentum p as
they pass through a substance of thickness L and radiation length X0. This
last quantity is one we shall now consider.

8.1.1.3 Radiation Loss

Charged particles radiate electromagnetic energy (photons) when they accel-
erate or decelerate. Electrons, being so light, are particularly susceptible to
this form of radiation loss or bremsstrahlung, or braking radiation as it is
sometimes called. We saw that the power loss in synchrotron radiation varies

‡Beginning with Chapter 9 we will learn how to calculate this formula and others like it. For
now you can regard the integral of the right-hand-side of eq. (8.14) as giving the effective
area a given nucleus presents to the incoming charged particle.
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like (E/m)4, so only for small mass particles is this effect appreciable. The
bremsstrahlung energy loss per unit length in a given medium is(

dE

dx

)
brem

= − E

X0
⇒ E = E0e

−x/X0 (8.16)

whereX0 is a constant characteristic of the medium called the radiation length.
For fast moving electrons this form of energy loss dominates over ionization
loss, since as β → 1(

dE

dx

)
brem

→ 1√
1− β2

but
(
dE

dx

)
ionization

→ ln

(
1√

1− β2

)
(8.17)

Empirically the ratio of these two types of energy loss is approximately(
dE
dx

)
brem(

dE
dx

)
ionization

=
ZE

1200Mc2
(8.18)

where Z is the atomic number of the medium and M the rest mass of the
particle entering the medium. The critical energy Ec is that energy for which(
dE
dx

)
brem
'
(
dE
dx

)
ionization

. From the preceding equation we deduce

Ec '
600
Z

MeV (8.19)

if electrons are the particles entering the medium.
Table 8.1 lists values of X0 for various materials.

TABLE 8.1

Radiation Length for Various Materials
Material Z Density (g/cm3) Critical Energy (Mev) X0 (cm)

Liquid H2 1 0.071 340 887
Liquid He 2 0.125 220 745
C 6 1.5 103 28
Al 13 2.7 47 9.0
Fe 26 7.87 24 1.77
Pb 82 11.35 6.9 0.56
Air 0.0012 83 30870
Water 1.0 93 36.4

8.1.2 Photons

Even though they are electromagnetically neutral, photons are carriers of the
electromagnetic force, and so can experience interactions with any medium.
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In particular, high energy photons (X-rays or γ-rays ) traveling through a
medium will interact with the atoms of that medium and so lose energy [79].
The change of photon intensity I per unit thickness of material is proportional
to the intensity and so (

dI
dx

)
= −µI ⇒ I = I0e

−µx (8.20)

where µ is called the effective absorption coefficient of the medium. The value
of µ−1 is the mean free path for absorption of a photon, or the average distance
through which a beam of photons will pass before its intensity is 1/e of its
original value.

The total absorption coefficient µ is the sum of the absorption coefficients
for each process:

µ = µphoto + µCompton + µpair (8.21)

which signify the three ways that photons can lose energy in a medium. It is
proportional to the scattering cross-section, as we shall see in chapter 9. Fig.
8.2 illustrates the relative importance of these three processes (plus a couple
of other sub-dominant ones) as a function of energy. Let’s briefly consider
each.

8.1.2.1 Photoelectric Effect

This phenomenon refers to the absorption of a photon by a bound electron,
which subsequently is ejected from its atom. If the bound electron is in an
inner shell of the atom then one of the outer electrons will move to occupy
this lower and more stable energy level by emitting an X-ray photon of the
appropriate frequency for this transition. Hence the emitted electron can be
accompanied by an X-ray photon.

Since the energy for ejection is a chemical energy, this process dominates
at low energies. Computation of the cross sections involves details associated
with quantum electrodynamics and atomic physics. Setting M = me to be
the mass of the electron, experimentally the behavior is observed to be

σphotoelec '

{
Z5

E7/2 for E < mec
2

Z5

E for E > mec
2

(8.22)

additionally illustrating the importance of this process for high-Z atoms.

8.1.2.2 Compton Scattering

At intermediate energies the incoming photon scatters off of electrons. It is
not energetic enough to produce pairs, but is too energetic to eject electrons
from atoms. Instead it scatters off on an electron, analogous to the manner
in which two billiard balls scatter off one another classically. This process is
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called the Compton Effect. We have already calculated the kinematics in
Chapter 2, where we found in eq. (2.39) that

E′ =
E

1 + E
mec2

(1− cos θ)
(8.23)

where E is the energy of the incoming photon that is scattered into a photon
of energy E′ at an angle θ relative to its original direction. The electron is
initially assumed to be free, a good approximation if the incoming photons
have enough energy so that atomic binding energies can be neglected. It is
clear that E′ < E and so the scattered photon loses energy. The cross-section
scales as

σCompton '
Z

E
(8.24)

and dominates from photon energies in the range 0.1 to 10 MeV.

8.1.2.3 Pair Production

In pair production a photon is converted into an electron-positron pair. In
free-space this is impossible because energy and momentum can’t be con-
served. The reason for this is as follows. Suppose the photon has a small but
nonzero mass. If a single photon could produce a pair of particles, then the
total (rest) mass of the particles would have to be smaller than the photon
mass, since we can always go to a frame in which the photon is at rest and
for which the total energy is its rest mass. This would mean that the photon
could only produce pairs of oppositely electromagnetically charged particles
that were lighter than half of its mass. Empirically we know that electrons
and positrons (the lightest electromagnetically charged particles) are much
heavier than the photon; in fact we will later see that we have very good
reasons to expect the photon mass to be zero!

So a free photon cannot decay into (or rather produce) pairs. However, a
photon traversing the Coulomb field of a nucleus can, because the recoil of the
nucleus can balance energy and momentum. The threshold energy for pair
production is twice the electron (or positron) mass, which is 1.022 MeV. The
cross-section behaves as

dσ

dΩ
∼ Z2 (8.25)

and we see that it will dominate for high energy photons. Dominance of
energy loss due to pair-production sets in for photon energies greater than 10
MeV.

What happens to the positrons that are produced? Along with the produced
electrons, they will traverse the medium and lose energy via the mechanisms
discussed above for charged particles. At sufficiently low energies they will
capture an electron in the medium and bind to it to form positronium. As
we saw in Chapter 6, positronium is highly unstable, decaying into a pair of
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FIGURE 8.2
Absorption cross-sections of photons as a function of energy in carbon and
lead. The different contributions are of the photoelectric effect (σp.e.), Comp-
ton scattering σCompton, and pair production (κnuc, due to the nuclear elec-
tromagnetic field, and κe, the electron field) are shown. Two other relatively
small effects not considered in the text – Rayleigh scattering (σRayleigh in which
the atom is neither excited nor ionized), and Photonuclear interactions (σg.d.r

in which the target nucleus is broken up) – are also illustrated. Image courtesy
of the Particle Data Group [1].



144 An Introduction to Particle Physics and the Standard Model

photons in about 10−10 seconds, with each photon from the produced pair
having 0.511 MeV. This provides a way of both detecting positrons and of
calibrating detectors at low energies.

8.2 Detector Types

Detection requirements are exacting in particle physics. The key quantities
of interest that one would like to measure are the position (or rather trajec-
tory), momentum, energy, arrival time, charge, spin, and any other relevant
quantum numbers associated with the identity of the particle. In addition,
it is important to know which particles are associated with each other in a
given reaction. No one detector can do all this, so in practice combinations
of detectors are used to extract the information required.

In a fixed target machine the detector is typically placed behind the target,
and the geometrical arrangement is shown in fig. 8.3. However, in a collider
the detector must be placed around the target (fig. 8.4) , in order to maximize
the amount of information obtained from the collisions. In general, each
detector consists of a layered array of materials, with each layer sensitive to
detection of a particular kind of particle.

FIGURE 8.3
Geometry of detectors in a fixed-target experiment. The different layers corre-
spond to different kinds of detection materials. Image courtesy of the Particle
Data Group [1].

8.2.1 Scintillation Counters

Scintillation counters were the earliest counters invented: called spinthari-
scopes, the first one was made in 1903 by Crookes [80] and consisted of a ZnS
screen that would flash whenever an alpha-particle hit it. The detector was
the human eye and the recorder was pen and paper. Geiger and Marsden [81]
used two screens to perform the first coincidence experiment in 1910, checking
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FIGURE 8.4
Geometry of detectors in a collider experiment. The different layers corre-
spond to different kinds of detection materials. Image courtesy of the Particle
Data Group [1].

to see if two alpha particles were emitted by a radioactive gas within a given
“short” time. The unreliability of the human eye as a detector led to the
abandonment of these devices.

In 1944 these detectors were reintroduced, with a photomultiplier replacing
the eye. The basic arrangement for such a detector appears in fig. 8.5. When
a charged particle passes through the scintillator it excites the medium inside;
as the medium de-excites photons are emitted, providing information about
the particle’s trajectory. It was subsequently discovered that mixtures of
organic liquids and aromatic molecules yielded high numbers of photons per
unit loss of energy (about 10,000 photons per MeV) [82]. So the most common
materials used for the medium in today’s scintillators are organic liquids and
plastics (which emit UV light, which is then converted to blue light via dye
molecules) and inorganic solids (such as sodium iodide, whose dopants capture
electron-hole pairs and then emit visible light).

Photomultiplier tubes use the photoelectric effect to record the photons
emitted from the medium. These photons liberate electrons at a photocathode
(whose conversion efficiency is about 25%), which then travel down a channel
of increasing potential electrodes (the dynodes) which emit more electrons
causing amplification. There are typically 6-14 dynodes yielding an amplifi-
cation factor of about 104 to 109. Sodium iodide doped with thallium has a
high detection efficiency but a slow decay time (about 250 nanoseconds) for
each pulse. Plastic scintillators (anthrancence or napthalene) can shorten the
pulse decay time to 10 nanoseconds (with a resolution of about 200 picosec-
onds) and so such detectors are ideal triggering devices – in other words their
signal is used to decide whether or not to activate the rest of the detector
and/or to record the event. However, their efficiency is low.

The signal that emerges is passed through a discriminator, whose function
is to eliminate random noise pulses emitted through thermal electron emis-
sions from the cathode and the dynodes. The final signal is not sharp, but
instead has a shape that is a consequence of the experimental resolution of
the detector. This signal is sent to a pulse-height analyzer, which digitizes
and displays the pulses.
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FIGURE 8.5
Schematic diagram of a Scintillation counter.

8.2.2 Cloud Chambers

Cloud chambers were first developed by Charles T.R. Wilson around 1911
for experiments on the formation of rain clouds [83]. The cloud chamber is
a sealed environment containing a supercooled, supersaturated water vapor.
When a charged particle interacts with the mixture, it ionizes it. The result-
ing ions act as condensation nuclei, around which a mist forms because the
mixture is at the point of condensation. The high energies of the incoming
particles mean that a trail is left, due to many ions being produced along
the path of the charged particle. These tracks have distinctive shapes. For
example an alpha particle’s track is broad and straight, while an electron’s is
thinner and shows more evidence of deflection. Anderson made use of a cloud
chamber in 1933 in his discovery of the positron [84].

8.2.3 Bubble Chambers

These descendants of the cloud chamber were invented by Glaser in 1952
[85]. Unlike scintillation counters, which yield only information about the
energy of the particle passing through, bubble chambers look at all possible
processes/particles passing through them.

They consist of a superheated liquid (one whose pressure is lower than its
equilibrium vapor pressure, i.e. “hotter than its boiling point”) placed in some
(relatively thin) container. As an ionizing particle passes through, the liquid
will start boiling by forming bubbles at nucleation centers. The superheated
liquid is prepared by starting with the very cold liquid under pressure (about
5 atmospheres and 3K) and then, just before the particle beam arrives, the
pressure is reduced suddenly by using a piston to expand the volume by about
1%.

Ions form good nucleation centers, and so a charged particle moving through
this detector will leave a trail of bubbles. These bubbles are then pho-
tographed, allowing one to directly trace the actual track(s) of the ionizing
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FIGURE 8.6
An important bubble chamber photograph. A K− impacts upon a proton in
the reaction K− + p→ Ω− +K+ +K0. This photograph (and others like it)
provided evidence for the Ω− particle, whose discovery gave strong support
to the quark model. Photo courtesy of Brookhaven National Laboratory.

particle(s). In conjunction with a strong magnetic field (which curves the
tracks provided the field is orthogonal to the plane of the thin container), the
momentum can be deduced from the track curvature. An example from an
actual experiment is shown in fig. 8.6.

Bubble chambers are very useful in studying complicated interactions of
many particles. The first bubble chambers contained only a few cc’s of liquid,
but the volume rapidly increased to be about a million times larger as new
ones were built. The best ones produced 35 million photographs per year.
Unfortunately they cannot be used in colliders because of the interaction
geometry of the beams. They are also not selective because they cannot
be triggered – just as a surveillance camera at a bank photographs every
visitor, a bubble chamber records everything that goes through it, and so
every picture must be developed and scanned to see if there is any useful
information present.
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8.2.4 Spark Chambers

Short high voltage pulses (10-50 MV/cm) between parallel plate electrodes
enclosing a gas will yield short electrical breakdowns in the structure of the
gas. An ion trail will then leave “flashes” or “sparks” of light due to such
discharges, as Greinacher found in 1931: the passage of an alpha particle
through such a system generated a spark between the wire and the plate,
allowing for a direct track image to be photographed with good spatial reso-
lution. Like a bubble chamber, events must be recorded by some means and
evaluated later. However, spark chambers operate much more rapidly and can
be made highly selective by using auxiliary detectors to screen out unwanted
events. Because of its selectivity, the spark chamber is most useful in search-
ing for very rare events. They can be highly automated, with data collected
and stored electronically instead of photographically, as is necessary with the
bubble chamber. A high-speed computer, which may operate simultaneously
with the experiment, can then be used to analyze the data. This provides im-
mediate evaluation of the quality of the data and affords optimum operating
conditions to be continuously maintained. Very large spark chambers have
helped to detect neutrinos. A picture of cosmic rays flying through a spark
chamber at CERN in 1999 appears in figure 8.7.

8.2.5 Wire Chambers

Wire chambers were developed by Georges Charpak in 1968 [87] and have
excellent time resolution, very good position accuracy and are self-triggered.
A schematic diagram outlining the basic features of a wire chamber appears
in figure 8.8. These consist of a plane of positively charged wires precisely
separated (typically by about 2 mm) from each other. The plane is in between
two cathodes (often made of aluminum foil) that are about 1 cm away. This
whole structure is encased and then filled with a gas, which ionizes when a
charged particle passes through it. Upon ionization of the gas by a charged
particle, electrons drift toward the nearest wire, gaining energy. If this energy
exceeds the ionization energy of the gas the process will repeat, leading to
an avalanche of ion pairs. The amplification factor is typically ∼ 105. Sand-
wiching a set of these counters in concert (see fig. 8.9) allows for accurate
measurement of position.

These multiwire proportional counters (MWPC’s), when modified by an
electric field, cause the ionized electrons to drift before getting to the high
amplification region near the anode. By timing the arrival of the pulse relative
to some external fast signal the drift distance can be obtained, yielding the
position of the particle. The pulse height can be used to measure the mass
of the particle causing the ionization. Hence the track of the incident particle
can be reconstructed – with a precision of up to 100 microns!

If a set of MWPC planes is placed on either side of a region that has an
applied magnetic field, there will be a change in the trajectory of the particle
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FIGURE 8.7
Cosmic rays – created when subatomic particles from outer space collide with
the atmosphere – can be seen in this photograph of a large spark chamber
at CERN. Their tracks are visible as a series of sparks between metal plates
(or planes of parallel wires) several millimeters apart, induced by the passage
of each charged particle as it moves through the spark chamber (copyright
CERN; used with permission).

as it passes from the first set of planes to the second. This change provides
information about the momentum of the particle, using the formula (7.5)
pc = qBr, where r is the radius of the curved arc traced out by the changing
trajectory of the particle of charge q, and B is the magnitude of the applied
magnetic field.

8.2.6 Time Projection Chambers

Time projection chambers (TPCs) were invented in 1974 by David Nygren
to give spatial resolution of particle tracks in all 3 dimensions over as large
a solid angle as possible [88]. A drift chamber is filled with gas (usually
some inexpensive mixture of Argon and CH4) and then uniform electric and
magnetic fields are applied parallel to the beam axis. Ion pairs are produced
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FIGURE 8.8
Schematic diagram of a wire counter.

as the charged particle passes through the TPC. The electric field causes
the electrons of the ion pairs to acclerate towards one end of the chamber,
and the magnetic field causes the trajectories to become tiny spirals along the
magnetic field axis, i.e., parallel to the beam axis. The point of impact of
the electrons on the end caps yields the projection of the trajectory, giving
two spatial coordinates. The arrival time of the electrons can be used to
determine the third spatial coordinate. The total charge deposited at the
ends gives the total ionization and hence the total energy lost by the original
charged particle. Since the detectors surround the beam pipe completely, a
large solid angle is covered. The large number of sensitive elements at each
end allows observation of many particles simultaneously, thereby providing
efficient pattern recognition of the event.

8.2.7 Cerenkov Counters

Whenever a charged particle moves at a speed faster than c/n (where n =
index of refraction of the medium), a coherent wavefront forms as a cone of
angle θ about the trajectory as in fig. 8.12. Named after Pavel Cerenkov, who
discovered this effect in 1934 [89], this radiation is called Cerenkov radiation
and it appears as a continuous spectrum. Measurement of the angle θ of
the emitted light, as shown in fig. 8.12, provides a direct measurement of
β = v/c. Note that if βn < 1 no signal is observed [90].

This effect can also used to identify different particles of the same momenta.
Consider protons, pions, and kaons, each moving with a momentum of 1

GeV/c. From the relationship p = mγv = mv
(

1− v2

c2

)−1/2

between velocity
and momentum, the respective velocities of these particles are 0.73c, 0.99c,
and 0.89c. Observation of each of these particles using a Cerenkov detector
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FIGURE 8.9
Georges Charpak (left) works with students on the multiwire proportional
counter. Densely packed anode wires and cathode planes are enclosed in
a gas-tight chamber. Each wire acts as an individual detector similar to a
proportional counter. A particle leaves a trace of ions and electrons that drift
toward the nearest wire, which then emits a pulse of current. Several planes
of wires with different orientations are used to track the trajectory of the
particle very accurately (copyright CERN; used with permission).

requires media of differing refractive indices – in this case n must be larger
than 1.37, 1.01, and 1.12 respectively. If we put two Cerenkov detectors in
sequence – say one with water (where n = 1.33) and one with a gas where
n = 1.03, then the pion will register a signal in both detectors, the kaon only
in the water detector, and the proton will not register at all.

Velocity resolutions of 10−7 have been obtained using these kinds of de-
tectors. This was the chief detection method used at the Sudbury Neutrino
Observatory [91], where the medium is heavy water, with n = 1.32828. Neu-
trinos in these detectors scatter electrons as they enter the water. As these
electrons travel through the heavy water they do so at velocities larger than
c/n, and so register a signal which is picked up by photomultiplier tubes.

The main limitation of Cerenkov detectors is that a very feeble signal is
produced. In general the number of photons radiated per unit path length `
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FIGURE 8.10
A view of one of the first full-energy collisions between gold ions at Brookhaven
Lab’s RHIC (Relativistic Heavy Ion Collider). The image was captured by
the Solenoidal Tracker At RHIC (STAR) detector. Each track indicates a
path taken by one of the thousands of subatomic particles produced in the
collision. Photo courtesy of Brookhaven National Laboratory.

for photons of wavelength λ to λ+ dλ is

dN

d`
dλ = 2πα

(
1− 1

β2n2

)
dλ

λ2
(8.26)

where α is the fine structure constant. The maximum number of photons
per cm emitted is in the range of 200 to 300 photons. This means that the
detectors typically need to be several meters long to ensure detection of a
signal.

8.2.8 Solid State Detectors

The newest technology in detecting charged particles was developed in the
1980s at SLAC [92]. The basic idea is to make use of diodes to detect the
movement of charged particles. Wafers of very lightly doped silicon are very
sensitive to the passage of charged particles – for example the formation of
an electron-hole pair requires only about 3 eV of energy. A diode (i.e. a
p-n junction) will be able to detect charged particles that move through its
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FIGURE 8.11
The STAR detector at RHIC, a Time Projection Chamber, that tracks and
identifies particles emerging from heavy ion collisions, just before its comple-
tion. Photo courtesy of Brookhaven National Laboratory.

FIGURE 8.12
Cerenkov radiation. The angle cos θ = 1/βn provides a measurement of the
speed of the particle.

depletion region (the interface between the p and n materials). As the charged
particle moves through the interface it interacts electrically with the lattice,
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FIGURE 8.13
Schematic diagram of a Ring-Imaging Cerenkov (or RICH) Radiation De-
tector. The electrons produced by these photons will form a ring pattern.
Image courtesy of SLAC National Accelerator Laboratory.

creating electron-hole pairs in a narrow column along its trajectory. The
electrons and holes move in opposite directions under the influence of the
electric field that has been established by the ionized impurity atoms in the
wafer. This creates an electrical signal whose location corresponds to the
trajectory of the particle.

The depletion region is made as thick as possible (typically 300 microns) so
that the path of the charged particle is as long as possible, thereby yielding
a stronger signal. By fabricating the diodes in parallel strips with a spacing
of 25 microns (see fig. 8.14), a resolution of about 5 to 10 microns in the tra-
jectory of the particle can be achieved. By gluing two such microstrip wafers
together at an angle, the passage of a charged particle gives two independent
signals as it moves through the detector, thereby yielding two independent co-
ordinates which allows for the specification of a unique set of points in space
corresponding to its path. Solid-state microstrip detectors are now being used
in all the major high energy facilities today. They are what permitted the
detection of the top quark, and (it is hoped) will assist in the search for the
Higgs boson.
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FIGURE 8.14
Section of a typical microstrip plane.

8.2.9 Calorimeters

These devices work on the principle that an incident particle generates sec-
ondary ones, which generate tertiary ones, ... so that all of the incident energy
is absorbed into the medium. A calorimeter absorbs all of the kinetic energy
of a particle, yielding a signal that is proportional to this energy. Such detec-
tors have energy resolution like ∼ 1/

√
E, allowing for high precision. They

also permit quick decisions on event selection.

FIGURE 8.15
Schematic diagram of a modern calorimeter. Image courtesy of the Particle
Data Group [1].



156 An Introduction to Particle Physics and the Standard Model

There are several kinds of calorimeters, each designed for detection of par-
ticular kinds of particles. They are often made of an absorbing material that
is interspersed with sampling devices that determine the energy of the de-
veloping shower of particles. However, they can also be made of a single
homogeneous material (for example lead glass) – these have better resolution
but are considerably more expensive to construct.

8.3 Modern Collider Detectors

A modern detector in a collider is layered, with each layer performing a dif-
ferent function. Fig. 8.16 illustrates the general structure of a such a device.
Let’s look in a bit more detail at each layer.

8.3.1 Tracking Chambers

The inner region of any collider detector is called a tracking chamber. Its
main function is to detect as accurately as possible the trajectories of the
particles that leave the collision. It is generally a segmented combination of
multi-wire proportional counters, streamer chambers, and solid-state detec-
tors. Typically the innermost part of this chamber consists of a set of silicon
microstrip detectors whose purpose is to provide precise spatial information
about the trajectories of the charged particles that emerge from the collision
point. They must be sufficiently thin so as to minimize errors due to multiple
scattering. Outside of this are drift chambers, typically in an axial magnetic
field, that provide measurement of the momentum of any emitted charged par-
ticles. The outermost stage is a set of pre-shower counters, which are about
3 radiation lengths of absorbing material followed by scintillation counters.
They provide the first evidence of particles that are electromagnetically inter-
acting because high energy photons traveling through the absorbing material
will convert into electron/positron pairs that in turn produce a shower in front
of the scintillators.

8.3.2 Electromagnetic Shower Detectors

High energy photons and electrons can produce cascade showers. The incident
electron produces photons, which produce e+e− pairs, which produce more
photons, which produce more e+e− pairs .... The result is a cascade of pho-
tons and electrons increasing exponentially with depth. Coulomb scattering
causes the shower to spread laterally. Almost all of the energy of the shower
appears as ionization loss of charged particles in the medium. These detectors
are built from high-Z materials with small X0 (typically about 25 radiation
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lengths, which is one mean free path for hadronic interactions) so the shower
is contained in a small volume. They are placed after the tracking chamber,
and absorb all of the energy of electrons and photons that pass through them.

8.3.3 Hadron Shower Calorimeters

These work on the same principle as above, except that an incoming hadron
produces secondary hadrons, which produce tertiary hadrons ... . These
detectors are much larger than the EM ones because the length scale for
development of the shower is much longer than the radiation length of the
medium. Another complication is that ' 30% of the incident energy is lost by
either exciting or breaking up nuclei. This can be compensated for by using
238U as the medium; in 238U extra energy is released by fast neutron and
proton fission of the nucleus, which compensates for the losses from breakup.
These detectors absorb the energy of all of the remaining emitted particles
except for muons and neutrinos.

FIGURE 8.16
Schematic diagram of how particles deposit energy in calorimeter detectors.
Note that the photons and neutrons, being neutral particles, are not detected
in certain layers. Image courtesy of the Particle Data Group [1].
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FIGURE 8.17
A cross-section of a calorimeter, showing the various tracks of different particle
decays. Image courtesy of the Particle Data Group [1].

8.3.4 Muon Chambers

The only (known) particles that can make it beyond the hadronic calorime-
ters are high-energy muons and neutrinos. The muons are detected in the
outermost layer, which measures their momentum. Their trajectories can be
traced back to the inner region by checking consistency with the data from
the previous three layers. Only neutrinos escape undetected. Their pres-
ence is inferred from conservation of 4-momentum – a lack of momentum and
energy balance amongst the remaining particles suggests the presence of one
or more particles that do not experience either the strong or electromagnetic
interactions.

How do we know the undetected particle is a neutrino? The best way to be
sure is to check the overall consistency of the event with a prediction of the
Standard model. If the event is not consistent with such predictions, then it
may very well signal the existence of a new particle or a new type of inter-
action. In order to be sure that all of the missing energy is accounted for,
the detectors must cover as much of the 4π solid angle around the interaction
point as possible and the layered detectors must minimize energy loss due to
their structure. This is a great technical challenge. It is a remarkable achieve-
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ment of modern physics that such detectors can be constructed, providing us
with reliable empirical information about the subatomic world.

8.4 Questions

1. Antiprotons were first discovered in an experiment by Chamberlain et
al. that produced them at a momentum of 1.2 GeV. In order for them to
be detected by a Cerenkov counter, what would its minimum refractive
index have to be?

2. A 400 GeV muon passes through a block of iron 500 cm thick. To what
accuracy can its incident angle be measured?

3. Two particles of the same momentum but different mass travel between
two scintillation counters separated by a distance L.

(a) What is the difference in their time of arrival?

(b) What is the minimum flight path necessary to distinguish Kaons
from pions with momentum 4 GeV/c if the time of flight can be mea-
sured to an accuracy of 200 picoseconds?

4. How long would a gas Cerenkov counter of refractive index n have to
be in order to distinguish Kaons from pions of identical momentum p?
Assume that at least 100 photons in the visible range are needed to
ensure a detection.

5. The rate of energy loss of protons traveling a material of density ρ
typically follows a power law

dE

dx
= −K

ρ

(
E

E0

)−p
where the constants K and p are characteristic of the material and E0

is a reference calibration energy that we can take to be 1 MeV.

(a) Find an expression for the thickness of material that will reduce the
energy of a proton by half the value it has upon entering the material.

(b) For Carbon, K = 212 g-MeV/cm2, and p = 0.757; for Lead, K =
89.5 g-MeV/cm2, and p = 0.694. How much thicker must a slab of
Carbon be than a slab of Lead in order to reduce a proton of incident
energy 150 MeV by half?

6. Alpha particles of energy 300 MeV pass through a copper foil 100 mi-
crons thick. How much energy do they lose?
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7. In a photomultiplier tube, each incident photon produces n electrons.
Over N repetitions of this process the average number of electrons pro-
duced is

n̄ =
1
N

N∑
i=1

ni

and the probability of observing a particular number n of electrons for
a typical measurement is

P (n) =
n̄n

n!
e−n̄

a distribution called a Poisson distribution.

(a) Show that
∑
n P (n) = 1.

(b) Compute the average 〈n〉 =
∑
n nP (n)

(c) Find the standard deviation
√〈

(n− 〈n〉)2
〉

of the number of elec-

trons observed.

8. An underground scintillator at SNOlab counts five muons per hour on
average. Suppose this experiment is run for 1000 hours. How often
will counts of 2, 4, 6, 8 and 10 muons be recorded?



DOI: 10.1201/9781420083002-9

9

Scattering

We obtain empirical information about particle physics from a variety of
sources: from studying cosmic rays, the cosmic microwave background, and
bound states – the latter is particularly important when it comes to quark
physics. However, most of what we know experimentally in particle physics
comes from data on the decays of unstable particles and on the scattering of
one particle from another. The accelerators and detectors that were discussed
in chapters 7 and 8 are the primary tools used to measure these phenomena.
We want to make use of the data that emerges from these experiments to
modify, corroborate, and falsify our theories of the subatomic world, the ulti-
mate goal being that of obtaining the deepest understanding possible of the
laws of nature.

In order to do this – that is, in order for theory and experiment to make
contact – we need to deal with quantities that the theorist can calculate and
that the experimentalist can measure. There are a number of such quantities,
but the most important two are lifetimes and cross-sections.

9.1 Lifetimes

The lifetime τ of an elementary particle is the average amount of time it takes
for the particle to decay into something else. If it doesn’t decay into anything
then we expect the lifetime to be infinite; we say that such a particle is stable.
In practice we can experimentally only set lower bounds on the lifetime of
stable particles. For example the lifetime of the proton [93] has been measured
to be τp > 2.1 × 1029 years; for the electron [94] it is τe− > 6.4 × 1024 years∗.
We will assume that particles that have only lower bounds on their lifetimes
are indeed stable, never decaying into anything. There are only a few particles
in nature of this type. The vast majority of elementary particles are unstable
and will generally decay into some other particles.

∗These lifetimes are for the proton and electron to decay into anything – known particles
or not. If we add the additional requirement that the decays be into known particles, then
these lifetimes increase by a factor of 100-1000 [95].

161
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In principle, measurement of the lifetime of a particle is simple: just watch
it to see how long it takes to decay! However, in practice this is complicated
by relativistic effects (faster moving particles take longer to decay than slower
moving ones) and quantum effects (particles moving at the same speed will
decay at different rates due to the uncertainty principle – we can’t arbitrarily
reduce the measurement error of the time it takes to decay).

Both of these problems may be circumvented by considering a group of
identical particles in their rest frame. In this case relativistic effects average
out and although we cannot predict the lifetime of a given particle in the
group, we can predict (and measure!) the rate of decay of the group as a
whole. So we are interested in how many particles per unit time, on average,
will decay in a large group. This is the decay rate Γ: the probability per unit
time that a particle will decay (as measured in its rest frame).

So if we have, say, N(t) unstable particles at time t, the probability that
any one of them will decay in time ∆t is Γ∆t. Hence the entire sample
consisting of N(t) particles will decrease by an amount ∆N where

∆N = −NΓ∆t =⇒ N(t) = N0e
−Γt (9.1)

and so the number of particles decreases exponentially with time. Here N0

is the number of particles in the sample at t = 0. It’s easy to show that the
mean lifetime is just τ = 1/Γ.

Most particles decay by several routes: for example, the τ -lepton can decay
into µ− + νµ + ντ , or into e− + νe +ντ , or into π− + ντ , or to a number of
other types of elementary particles of smaller mass. The total decay rate is
the sum of the individual rates for each process

Γtot =
n∑
i=1

Γi (9.2)

and the mean lifetime is

τ =
1

Γtot
(9.3)

The branching ratio is the fraction of all decays into a given mode:

Bi =
Γi

Γtot
(9.4)

and in practice this is the quantity of interest.
The task of the theorist is then to compute as accurately as possible the

decay rates Γi for each particle described by his or her proposed theory. The
task of the experimentalist is to measure each Γi as precisely as possible to
test the theory.
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9.2 Resonances

Unstable particles are observed as resonances. These are local maxima in the
cross-section as a function of energy, or as a maximum in the invariant mass
distribution of the particles in the final state of a reaction.

To understand better the character of a resonance, let’s consider at atom
modeled as a massive pointlike nucleus with a charge at the origin surrounded
by a cloud of equal but opposite charge. If the nucleus is displaced from the
origin relative to the cloud then the system will undergo oscillations. In any
given spatial direction there will be an infinite set of damped modes, each
with a characteristic frequency and width. Since there are three independent
spatial directions there is a triply-infinite set of modes. Treating the system
classically, suppose we let X be the coordinate measuring the distance of the
system from equilibrium, where X = X0. To a very good approximation we
will have

X (t) = X0 exp
(
−Γ

2
t

)
cos (ωt) (9.5)

for some characteristic frequency ω and width Γ.
Suppose now that the system is subjected to a periodic force with frequency

Ω and amplitude proportional to F0 in the direction of motion. This could be
done by directly shining monochromatic light onto the atom. The behavior
now becomes

X (t) = X0 exp
(
−Γ

2
t

)
cos (ωt) +

kF0√
(ω2 − Ω2)2 + Ω2Γ2

cos (Ωt+ ϕ) (9.6)

and we see that for late times, the first term becomes negligible and the system
undergoes periodic motion. The average (kinetic) energy of the atom is easily
found to be

〈E〉 =
1
4

m2k2F 2
0 Ω2

(ω2 − Ω2)2 + Ω2Γ2
= R (ω)

m2k2F 2
0

4Γ2
(9.7)

where m is the mass of the atom, and I have written this average in terms of
the response function

R (ω) =
Ω2Γ2

(ω2 − Ω2)2 + Ω2Γ2
(9.8)

that tells us the general dependence of the average energy of the atom inde-
pendently of its mass, and the amplitude of the driving force. The response
function is a maximum when ω = Ω, and we can approximate its behavior
near the maximum via

R (ω) '
(

Γ
2

)2
(ω − Ω)2 +

(
Γ
2

)2 (9.9)
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an expression known as the Breit-Wigner shape function [96].
Applying these ideas to particle physics, we can regard the ground state

of the atom as one kind of “particle” and an excited level as another kind of
“particle”. This may sound a bit strange at first, but each of these states of
the atom has their own characteristic energy, frequency and lifetime, where
the latter is infinite for the ground state and finite for all of the excited states.
The search for unstable particles in particle physics is analogous to the search
for unstable atomic states of an atom. To find such unstable atomic states
we could shine a monochromatic light beam whose frequency we could vary
and then search for resonant behavior of the atom (initially in its ground
state) as the frequency is varied. Peaks in the intensity of the scattered light
will correspond to the excited atomic states (the unstable “particles”). The
resonance will occur at a definite energy (the value ω, which is the “mass” of
the “particle”) and will have a definite width proportional to Γ. The shape of
the peak will be given by the Breit-Wigner shape function. Similarly, to find
unstable subatomic particles, we collide two beams together and search for
increases in the number of particles reaching the detector – that is, for peaks
in the cross-section (described in detail below) – as a function of energy.

We can also find resonances by producing them as intermediate states. For
example, consider the reaction

A+B → R+ E → C +D + E (9.10)

which means that particles A and B collide to temporarily form a particle E
and a metastable particle R (the resonance), that in turn decays into particles
C and D. We expect in such cases that the mass MCD of the final state of
C and D will be described by a Breit-Wigner function peaked at the mass of
the resonance with width Γ. If there is no resonance then the mass MCD can
have any value consistent with energy, momentum, and angular momentum
conservation and will be a smooth function of collision energy that is not
peaked.

9.3 Cross Sections

If we have two particles at our disposal then we can have them collide to
see what happens. Again this is a conceptually simple idea – just throw the
two particles against each other (perhaps by placing one as a fixed target,
or perhaps by throwing both) and measure what comes out. However, this
simple idea is fraught with complications: due to the uncertainty principle it’s
impossible to aim the particles with arbitrarily precise accuracy. As with the
previous case, we deal with this inherent randomness by considering groups
of particles scattering off of one another.
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Let’s consider what happens in a frame where one group of particles (the
target) is at rest. For example we might consider a beam of neutrons impacting
upon hydrogen gas (essentially protons). We then have a situation of the
type described in fig. 9.1. The beam consists of a flux of particles with
luminosity L: the number of particles per unit time incident on a given area
that is perpendicular to the axis of the beam. As a particle in the beam
approaches the target it will experience some kind of interaction with the
target (or rather, with the potential generated by the target) and will scatter
off at some angle θ relative to its initial trajectory. This angle depends upon
the impact parameter b, the distance by which the incoming particle would
have missed the scattering center had it not been scattered. The particles with
impact parameters between b and b+ db will scatter at angles between θ and
θ− dθ, where the minus sign expresses the fact that as the impact parameter
gets larger the scattering angle gets smaller. In general the dependence of θ on
b will depend upon the particular type of interaction between the particle and
the target. In other words, it will depend upon our underlying fundamental
physical theory.

FIGURE 9.1
Particle incident in an area dσ (the shaded region on the plane) scatters into
a solid angle dΩ (the shaded region on the sphere).

The beam of particles between b and b+db will form an annular ring centered
about the beam axis. The part of the beam between angles φ and dφ (where φ
is the angle around the annular ring relative to some axis perpendicular to the
beam axis) will have dN = Ldσ particles passing through the infinitesimal
area dσ of the annular ring per unit time. This part of the beam will be
scattered into some solid angle dΩ between Ω and Ω + dΩ.

The differential cross-section D(θ, φ) is defined as the ratio between these
two quantities:

D(θ, φ) =
dσ

dΩ
=

1
L
dN
dΩ

(9.11)
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Hence an experimentalist can measure the differential cross section† by count-
ing the number of particles scattered into a given solid angle per unit time
and dividing by the luminosity, which is controlled by the apparatus. Most of
the time D(θ, φ) is independent of φ since we deal with spherically symmetric
potentials.

FIGURE 9.2
Hard sphere scattering

As an example, suppose we scatter a particle off of a hard sphere. Our
“theory” is that the scattering center consists of a potential that is zero ev-
erywhere except at the edge of the sphere of fixed radius R, where it becomes
infinite. Hence any particle encountering the sphere will elastically bounce off
of it, with its angle of incidence α equalling its angle of reflection. We can see
from fig. 9.2 that the scattering angle θ = π − 2α. If the impact parameter
is b and the radius of the sphere is R we have b = R sinα = R cos θ2 , yielding
(indirectly) the dependence of θ on b. Geometrically dσ = |b db dφ| and the
scattering solid angle dΩ = |sin θ dθ dφ|. Consequently

dσ

dΩ
=
|b db dφ|
|sin θ dθ dφ|

=

∣∣R cos θ2 d
(
R cos θ2

) ∣∣
|sin θ dθ |

=
R2 cos θ2 sin θ

2

2 sin θ
=
R2

4
(9.12)

and integrating over solid angle we have σ =
∫
dΩR2

4 = πR2. So the effective

†Note that in mathematical terms the quantity D(θ, φ) is not really a differential at all. In
practice people refer to dσ

dΩ
as the differential cross-section, and sometimes even abbreviate

this to just dσ, with the implicit understanding that an integral over the solid angle must
be carried out to find σ.
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area the sphere presents to the beam is the projected area of its forward
hemisphere: any particles within πR2will scatter; all others will not!

This example illustrates the character of a cross-section: it is the effective
area that the target presents to the beam or, more generally, it is the effective
area that one particle presents to another. However, it is important to be
aware of the limitations of this example – in general the target is not one that
you either hit or miss (as was the case here) but rather is one for which the
closer you come the greater the deflection. The dependence of the differential
cross-section as a function of angle (in turn determined by underlying theory)
in general terms encodes this “soft” behavior.

For cross-sections, we often are interested only in the case where the final
state consists of a particular type of particle (or set of particles). As with
the decay rate we have many possible outcomes for a given set of incident
particles, each of which will have their own cross-section σi. The total (or
inclusive) cross-section is obtained by summing over all possible channels (or
modes) of scattering:

σtot =
n∑
i=1

σi for n possible modes of scattering (9.13)

In general σ is inversely proportional to velocity, since the cross section should
be proportional to the amount of time the incident particle spends near the
target. Hence if we graph σ vs. velocity (or, more commonly σ vs. Energy),
we expect to see it montonically decrease. However, this behavior is not
universal: a bump in this graph means that the particle “likes” to be near
the target at that energy – the target presents a much larger area to the
incident beam. This is another example of a resonance, which in this case is
a short-lived semibound state of particle and target. Hunting for resonances
in the plot of σ vs E is the chief way in which new (unstable) particles are
discovered.

The absorption coefficient described in Chapter 8 can be related to the
scattering cross section by recognizing that any particle scattered out of a
beam produces an increase in the counting rate for scattering or equivalently
a drop in the beam intensity. Suppose that there are n scattering centers per
unit volume of material, each scattering center having a cross-section σ. Then
number of particles scattered through a material of thickness dx is nσdx, and
this must correspond to the fraction of the beam dI/I that is attenuated.
Hence

nσdx =
∣∣∣∣dII

∣∣∣∣ = µdx (9.14)

using the definition of absorption coefficient from eq. (8.20), which implies

µ = nσ (9.15)
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9.4 Matrix Elements

The essential job of the theorist is to take his or her favorite theory and use
it to compute Γ and dσ

dΩ for various processes of interest. These quantities are
computed from something called the scattering amplitude [97].

The scattering amplitude (or S-matrix element) is defined to be

Sif =T→∞ 〈Φ |S|Ψ〉T→−∞ ≡ S-matrix element (9.16)

i.e. it is the amplitude for some state |Ψ〉 in the distant past (where we
idealize all particles emitted by the source to be initially non-interacting) to
evolve into some other state 〈Φ| in the future (where the detector is again
idealized to absorb only free non-interacting particles). This action is just a
time translation, so S is unitary.

Most of the time in a scattering reaction, particles just zip by each other
and nothing happens. To account for this we write

Sif = δif + iMif = 1 + i 〈p′1 · · · p′m |M| p1 · · · pn〉 (9.17)

where the “1” is the identity matrix in the Hilbert space spanning initial and
final states. It is the matrix element M – the part of the S-matrix that is not
the identity – that a theorist computes from a given theory.

Quantum-mechanically, the probability for scattering is given by the square
of the magnitude of the amplitude. Hence we expect for decay rates that

dΓ ∝ |〈p′1 · · · p′m |M| p1〉|
2 (9.18)

since there is just one initial particle, and for cross sections

dσ ∝ |〈p′1 · · · p′m |M| p1p2〉|
2 (9.19)

since there are two particles in the initial state.
You might think that we could begin calculating once we had M, but this

isn’t quite right for several reasons:

(a) we need to conserve momenta between initial and final states

(b) because of the uncertainty principle we can’t prepare our initial states
with exactly the momenta ~pi

(c) again, because of the uncertainty principle, we can’t precisely measure
the final momenta ~p′i of the outgoing particles
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The first problem (a) is easy to correct. We just multiply by a δ-function
that ensures the sum of the incoming 4-momenta equals the sum of the out-
going 4-momenta

(2π)4
δ(4)

(
m∑
i=1

p′i − p2 − p1

)

= (2π)4
δ(3)

(
m∑
i=1

~p′i − ~p2 − ~p1

)
δ

(
m∑
i=1

E′i − E2 − E1

)
(9.20)

where the factor of (2π)4 is a convention. To address (b) and (c) we should
multiply by the uncertainty (∆p)3 in momentum for each ~p′i and for ~p2 and
~p1. However, this quantity isn’t Lorentz-invariant. Instead, we multiply by
(∆p)3

E . This is because in a frame moving with velocity β = v/c along some
axis we have

(∆p′)3

E′
=

(
∆p′‖

)
(∆~p′⊥)

E′
=
γ
(
∆
(
p‖ − βE

))
(∆~p⊥)

γ
(
E − βp‖

)
=

((
1− β ∆E

(∆p‖)

))
(∆~p⊥)

(
∆p‖

)
E
(
1− β p‖E

) =

(
1− β p‖E

)
(∆p)3

E
(
1− β p‖E

)
=

(∆p)3

E
(9.21)

where ~p⊥ is the component of momentum orthogonal to the direction of the
moving frame and p‖ is the component parallel to the moving frame‡. So it

is the quantity (∆p)3

E that is Lorentz invariant, and we multiply by this.
Putting it all together, for cross-sections we get

dσ ∝ W = W0

m∏
i=1

(∆p′i)
3

2E′i (2π})3 |〈p
′
1 · · · p′m |M| p1p2〉|

2 (∆p1)3

2E1 (2π})3

(∆p2)3

2E2 (2π})3

× (2π)4
δ(4)

(
m∑
i=1

p′i − p2 − p1

)

= W0

[(
(∆p′1)3

2E′1 (2π})3

)(
(∆p′2)3

2E′2 (2π})3

)
· · ·

(
(∆p′m)3

2E′m (2π})3

)]
(9.22)

× |〈p′1 · · · p′m |M| p1p2〉|
2 (∆p1)3

2E1 (2π})3

(∆p2)3

2E2 (2π})3

× (2π)4
δ(4)

(
m∑
i=1

p′i − p2 − p1

)

‡The prime in eq. (9.21) refers to the moving frame (and not the final state).
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where (2π})3 is the quantum phase space volume and W0 is a normalization
factor. In order to turn the proportionality into an equality, note that

dσ =
(

Probability of scattering

to final state

)
× area

= SW ÷
(

incident

(target) density

)
÷
(

incident

(beam) flux

)
= SW ÷N1 ÷

[
N2 ×

(
relative

velocity

)]
=

S
N1N2 |~v2 − ~v1|

W (9.23)

where N1 and N2 are the incident particle densities and S is a statistical
factor that corrects for overcounting of identical particles (we’ll look at it in a
bit more detail below). Now recall [98] that the density of states for a particle
with quantum numbers nx, nyand nz is

(∆p)3 =
(

2π}
L

)3

(∆n)3 =
(∆n)3

L3
(2π})3 ∝ (2π})3N (9.24)

where the particle is in a volume V = L3. Applying this to the incident
particles, we have

dσ =
SW0

N1N2 |~v2 − ~v1|

m∏
i=1

(∆p′i)
3

2E′i (2π})3 |〈p
′
1 · · · p′m |M| p1p2〉|

2

× N1N2

4E1E2
(2π)4

δ(4)

(
m∑
i=1

p′i − p2 − p1

)
(9.25)

or

dσ =
}2S

4
√

(p1 · p2)2 − p2
1p

2
2

[
m∏
i=1

c (∆p′i)
3

2E′i (2π)3

]
|〈p′1 · · · p′m |M| p1p2〉|

2

× (2π)4
δ(4)

(
m∑
i=1

p′i − p2 − p1

)
(9.26)

choosing the normalization W0 to obtain equality and the correct units. This
is the cross section for a process in which particle 1′ has a 3-momentum that
lies in the range ∆p′1 around the value ~p′1, particle 2′ has a 3-momentum that
lies in the range ∆p′2 around the value ~p′2, etc. Typically the momenta of all
but one of the particles (say particle 1′) in the final state are integrated over;
what remains after integration is the differential cross-section for particle 1′

to emerge into the solid angle dΩ.
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If we only had one particle in the initial state, we’d be interested in the
decay rate, and a similar analysis would give

dΓ =
Sc2

2}E

[
m∏
i=1

c (∆p′i)
3

2E′i (2π)3

]
|〈p′1 · · · p′m |M| p〉|

2 (2π)4
δ(4)

(
m∑
i=1

p′i − p

)
(9.27)

where the decaying particle initially has momentum ~p.

9.4.1 General Features of Decay Rates and Cross-Sections

Some comments on these formulae are appropriate.

1. The factors in front of the cross-section and decay rate come from
Lorentz covariance. It is not hard to show that dΓ has inverse time-
dilation properties (i.e. it transforms as an inverse time). The factor in
front of the expression for dσ can be written as

c3
√

(p1 · p2)2 − p2
1p

2
2 = E1E2 |~v2 − ~v1| (9.28)

for particles in a head-on collision, where ~p2 = −~p1.

2. The factor S is a statistical factor – it equals 1/n! for each group of n
identical particles in the final state. For example, if a particle decays
into four identical particles of one kind, and three of another kind, then
S = 1

4!
1
3! = 1

144 .

3. The factor
[∏m

i=1

c(∆p′i)
3

2E′i(2π)3

]
(2π)4

δ(4) (
∑m
i=1 p

′
i − p) is called the phase

space of the final state, where E′i =
√
|~p ′i |2 +m2

i . Physically it is the
kinematic information in the scattering process: it tells us how many
different ways the available energy and momentum can be partitioned
into the final state. If a heavy particle decays into very light ones, then
lots of phase space is available because only a little bit of the initial
energy will go into the rest masses of the final particles. But if a particle
decays into one close to its own rest mass (such as a neutron decaying
into a proton, an electron, and an antineutrino), then very little phase
space is available, reducing the decay rate. The phase space factor is
Lorentz invariant. If we want to sum over all possible final states, we
must integrate over this quantity:

σ =
}2S

4
√

(p1 · p2)2 − p2
1p

2
2

[∫ m∏
i=1

cd3p′i

2E′i (2π)3

]
|M|2

× (2π)4
δ(4)

(
m∑
i=1

p′i − p2 − p1

)
(9.29)
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Γ =
Sc2

2}E

[∫ m∏
i=1

d3p′i

2E′i (2π)3

]
|M|2 (2π)4

δ(4)

(
m∑
i=1

p′i − p

)
(9.30)

which gives the total cross section (or decay rate) for the process under
consideration. Here I have written |M|2 = |〈f |M| i〉|2 as the square of
the matrix element between initial and final states.

4. The quantity |M| is a scalar function of the momenta. If the particles
emitted have spin, then |M| is still a scalar function, but it can now
depend on things like ~p′1 ·~s1, ~p′1 ·~s2, and ~s1 ·~s2. However, we will always
work with spin-averaged quantities, in which case these terms average
out to zero.

One other comment: The factors of (2π) can seem like a nuisance, but they
are essential to get the numerical values of the answers correct. And they are
not too hard to remember: just put a (2π) in the numerator for every δ (so
δ(4) gets a (2π)4 and put a (2π) in the denominator for every d (so each d3pi
is divided by (2π)3). Once you’ve done this, you can of course cancel them
out accordingly.

Enrico Fermi called the formulae (9.26) and (9.27) for computing cross-
sections and decay rates the Golden Rule [99], though most of the work leading
up to it was done by Dirac [100]. Basically the rule says that to find the
transition rate for any process, take the modulus of the amplitude, square it,
and multiply by the phase space. The Golden Rule not only occurs in particle
physics, but also in non-relativistic time-dependent perturbation theory in
quantum mechanics [101], where you may have already encountered it.

9.5 2-Body Formulae

The general formulae for decays and cross-sections are rather formidable. For-
tunately they really simplify if – as is very common – there are only two par-
ticles in the final state. This will prove to be very useful in understanding
much of particle physics, so we will list these formulae here.

9.5.1 2-Body Decay Rate

In the rest frame of a decaying particle the 2-Body decay rate becomes

Γ2-Body =
S |~p| c

8π} (Mc)2 |M|
2 (9.31)

where ~p is the momentum of either of the outgoing momenta in the final state
(it’s the same for each final particle since momentum is conserved), and M is
the rest mass of the decaying particle.
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9.5.2 2-Body CM Cross-Section

The cross section can have two useful forms if the final state has only two
particles. In the center-of-momentum frame (CM frame), when both particles
collide head-on

(
dσ

dΩ

)
2-Body CM

=
(

}c
8π

)2 S |M|2

(E1 + E2)2

|~p ′|
|~p|

CM frame:
{

~p1 = −~p2 = ~p
~p ′1 = −~p ′2 = ~p ′

(9.32)

FIGURE 9.3
Two body scattering in the center-of-momentum frame.

9.5.3 2-Body Lab Cross-Section

In the lab frame ~p2 = 0. The differential cross section becomes somewhat
messy in this frame unless we have elastic scattering (A + B −→ A + B), in
which case

(
dσ

dΩ

)
2-Body elastic-LAB

=
(

}
8π

)2 S |M|2 |~p ′1 |
2

M2 |~p1| [|~p ′1 | (E1 +M2c2)− |~p1|E′1 cos θ]

Lab frame:
{

~p2 = 0
E2 = M2c

2 (9.33)

Note that these formulae are valid no matter what |M| is. This is why they
are so useful – we don’t have to do the delta-function integration every time.
I’ve left the derivation of these formulae for you to do in the problems at the
end of this chapter.
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FIGURE 9.4
Elastic scattering in the Lab frame.

9.6 Detailed Balance Revisited

The factor
|M| = |〈f |M| i〉| = |〈p′1 · · · p′m |M| p1p2〉| = |Mfi| (9.34)

is what we compute from a given physical theory such as quantum electro-
dynamics (QED), or quantum chromodynamics (QCD). For a given physical
process, different competing theories will give different values for this factor:
this is where theory and experiment “meet.” For particles with spin we have

|M| = |〈f |M| i〉| = |〈p′1, s′1; . . . ; p′m, s
′
m |M| p1, s1; p2, s2〉| = |Mfi| (9.35)

The spins can really complicate the formulae for Γ or σ. Fortunately we
can avoid this complication in most cases because experiments use beams of
unpolarized particles for the initial states and detectors are insensitive to the
final state spins§. Hence we define

|M|
2

=
(

average over initial spins
and sum over final spins

)
|M|2 (9.36)

=
1

(2s1 + 1) (2s2 + 1)

∑
s1,s2,s′

|〈p′1, s′1; . . . ; p′m, s
′
m |M| p1s1; p2s2〉|

2

whenever the incoming or outgoing particles have spin.
Note under time-reversal and parity

PT 〈p′1, s′1; . . . ; p′m, s
′
m |M| p1,s1 ; p2,s2〉

= P 〈−p1,−s1;−p2,−s2 |M| − p′1,−s′1; . . . ;−p′m,−s′m〉
= 〈p1,−s1; p2 − s2 |M| p′1,−s′1; . . . ; p′m,−s′m〉 (9.37)

§This is true most of the time and it is the only situation we will consider. However, keep
in mind that for polarized beam experiments, such as those carried out sometimes at the
Stanford Linear Collider this is NOT true, and a more detailed analysis must be carried
out.
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and if these are both symmetries of a given interaction then∑
s1s2

∑
s′

|〈p′1, s′1; · · · ; p′m, s′m |M| p1s1; p2s2〉|
2

=
∑
s1s2

∑
s′

|〈p1,−s1; p2 − s2 |M| p′1,−s′1; · · · ; p′m,−s′m〉|
2 (9.38)

since summing over a given spin from −s to +s is the same as summing from
+s to −s. Inserting factors of (2si + 1) to take care of spin-averaging gives

2∏
i=1

(2si + 1) |Mfi|
2

=
m∏
i=1

(2s′i + 1) |Mif |
2

(9.39)

which is the principle of detailed balance!

9.6.1 Pion Spin

Let’s apply this to a general 2-Body scattering situation. The 2-Body cross-
section is

σ (AB → CD) =
(

}c
8π

)2 SCD
E2

0

|~p ′|
|~p|

∫
dΩ|Mfi|

2
(9.40)

in the CM frame, with EA + EB = E0. For the reverse reaction carried out
at the same total energy we find

σ (CD → AB) =
(

}c
8π

)2 SAB
E2

0

|~p|
|~p ′|

∫
dΩ|Mif |

2
(9.41)

and so detailed balance implies the relation

σ (AB → CD)
σ (CD → AB)

=
(2sC + 1) (2sD + 1)
(2sA + 1) (2sB + 1)

|~p ′|2

|~p|2
SCD
SAB

(9.42)

which can be tested in experiments.
For example, consider the reaction

p+ p −→ π+ + D (9.43)

which is the collision of two protons forming a deuteron D and a pion. We
have from the above

σ (p+ p −→ π+ + D)
σ (π+ + D −→ p+ p)

=
(2sπ + 1) (2sd + 1)
(2sp + 1) (2sp + 1)

|~pπ|2

|~pp|2
1

(1/2)
(9.44)

where we have a symmetry factor of 1
2 because the protons are identical.

Independent measurements indicate that the proton spin is 1
2 and the deuteron

spin is 0, so for |~pπ|2 = |~pp|2

σ (p+ p −→ π+ + D)
σ (π+ + D −→ p+ p)

=
(2sπ + 1)

2
(9.45)
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Measurements by Cartwright, Clark and Durbin [102] showed that

σ (π+ + D −→ p+ p)
σ (p+ p −→ π+ + D)

= 2.0± 0.4 =⇒ sπ = 0 (9.46)

from which we empirically determine that the pion is a spin-0 particle!
As a final comment, for the weak interactions, parity and time-reversal are

not symmetries, and so detailed balance does not hold in general. However,
first order perturbation theory in the weak interactions indicates thatMif =
Mfi, and so detailed balance will hold to lowest order in the weak coupling.

9.7 Questions

1. Show that the 2-Body decay rate is

Γ =
S |~p| c

8π} (Mc)2 |M|
2

2. Show that the formula for the 2-Body cross-section in the CM frame is(
dσ

dΩ

)
CM

=
(

}c
8π

)2 S |M|2 |~pf |
(E1 + E2)2 |~pi|

3. Show that the resonance function

R (ω) =
Ω2Γ2

(ω2 − Ω2)2 + Ω2Γ2

can be approximated by the Breit-Wigner function near ω = Ω.

4. Consider a non-relativistic particle of mass M scattering off of a fixed
repulsive potential V = k

r2 , where k is constant.

(a) Find the scattering angle θ as a function of the impact parameter b.

(b) Find the differential cross-section for this process.

(c) Compute the total cross-section.

5. (a) Show that√
(p1 · p2)2 − p2

1p
2
2 = (E1 + E2) |~p1| = E1E2|~v2 − ~v1|

in the CM frame.

(b) Compute this quantity in the lab frame.
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6. For elastic scattering A + B → A + B in the lab frame, show that the
differential cross-section is(

dσ

dΩ

)
LAB

=
(

}
8π

)2 S |M|2 |~p ′1 |
2

M2 |~p1| [|~p ′1 | (E1 +M2c2)− |~p1|E′1 cos θ]

and simplify it in the limit that the recoil energy of the target B is
negligible, i.e. mBc

2 >> EA.

7. Find the expression for the differential cross-section in the lab frame
when the final state particles are massless

8. For elastic scattering with the incident particle massless, find the ex-
pression for the differential cross-section in the lab frame.

9. Find the general expression for the decay rate of a massive particle into
two massless ones.
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A Toy Theory

We have now established all of the necessary background for confronting the-
ory with experiment. The key task from a theoretical viewpoint is to compute
the matrix element M for a given process. However, before trying to evaluate
“real-world” processes such as those that occur in Quantum Electrodynam-
ics (QED) or Quantum Chromodynamics (QCD), it’s useful to look at what
physicists call a “toy”-theory: a theory that is not necessarily intended to
model the real world but whose purpose is to illustrate the essential features
of the method.

We are interested in computing the matrix element, i.e., the quantity

|M| = |〈f |M| i〉| = |〈p′1, s′1; · · · ; p′m, s′m |M| p1, s1; p2, s2〉| = |Mfi| (10.1)

for a given theory. The key method for doing this is to use a set of diagrams
called Feynman diagrams∗. Each diagram corresponds to a set of mathemat-
ical rules (called Feynman rules) that are in turn used to compute the matrix
elements of interest. This is the method that we want to illustrate with our
toy theory.

In order to properly understand where the rules come from we need to make
use of more advanced methods from quantum field theory – an extension of
quantum mechanics that allows for the creation and annihilation of particles
in physical processes. This requires a rather formidable mathematical back-
ground that is beyond the scope of this book. Fortunately we don’t need to
have all of this background in order to actually employ the rules to compute
matrix elements. So the approach that I will take here is to show you what
the rules are and how to use them. If you want to know for a given theory
how to derive the rules (in other words find out why the rules are what they
are) you will have to study quantum field theory [106].

We can see from the above that in general a matrix element depends on
both the momenta and spins of the initial and final states. Spin is an essential
feature of the real world (all matter has spin-1/2, and photons have spin-1)
but unfortunately its inclusion leads to a fair amount of messy algebra when
calculating cross sections, decay rates, etc. Fortunately spin has nothing to do
with how to calculate a Feynman diagram as such. Hence in our first attempt

∗These were developed by Richard Feynmann in 1949 [103] and were concurrently derived
from quantum field theory by Freeman Dyson [104, 105].

179
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to learn the rules we would like to get rid of the complications introduced by
spin.

This means that our toy theory will contain only spin-0 (or scalar) particles.
In order to calculate M we will need to know what the Feynman rules are
for such particles. These rules are of two types – rules (and conventions) that
are valid for any physical theory, and then rules that are specific to our toy
theory.

10.1 Feynman Rules

Let’s first look at the rules that hold for any physical theory of spinless par-
ticles. For simplicity I will set the speed of light c and Planck’s constant }
equal to one, restoring them in the final expressions for the cross-sections and
decay rates.

1. NOTATION. Label the incoming (outgoing) four-momenta by p1, p2, . . . , pn
(p′1, p

′
2, . . . , p

′
m) and label the internal four-momenta q1, q2, . . . , qj , as shown

in figure 10.1

FIGURE 10.1
The general form of a Feynman diagram in a theory of spinless particles.
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Although fig. 10.1 is a diagram in momentum space†, you can think of
time as flowing from bottom to top and of space as being in the horizontal
direction. In diagram 10.1 we have n different (spin-0) particles coming in
from distant regions, idealized as free plane-wave states in the distant past
from where they are produced by some source. They then collide together,
interacting in a region that is symbolized by the “blob” in the middle, which
refers to all possible processes that can cause the initial state to become the
final state. We will see that these interactions can be understood in terms of
particle exchange – in fig. 10.1 we see that there j particles exchanged during
the interaction. After all interactions have taken place there are m particles
produced that fly off to distant regions, again idealized as plane-wave states,
where they may be detected. Note that n,m and j are not in general equal.

These processes are dictated by the laws of physics; the rules encode these
laws into the diagram. The labeling (p’s for external particles, q’s for internal
ones) is a convention – you can of course choose any labels you want for the
momenta – but in first learning how to use Feynman diagrams it is helpful to
stick to a common set of conventions. All physical theories have diagrams of
this basic form.

2. INTERNAL LINES. As noted above, inside the blob there will be various
particles interacting with one another. The trajectory of each particle is
represented by a line. In our toy theory with only scalar particles, each
internal line contributes a factor as follows:

FIGURE 10.2
An internal line in ABB theory.

where m is the mass of the particle of momentum q. The factor i
q2−m2 is

called the propagator.
You might think that the propagator should be infinite – after all, isn’t

the square of the 4-momentum of a particle equal to the square of its mass,
as in eq. (2.34)? However, for internal particles, which are called virtual
particles, q2 6= m2. Only for free particles in plane-wave states does q2 = m2.
Particle physicists say that a virtual particle is not on its mass shell, which

†This is because it corresponds to the Fourier transformation of the amplitude in physical
space, another result from quantum field theory.
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is another way of saying that q2 6= m2. Virtual particles do not obey
their free equations of motion (considered in Chapter 11). Rather they are
regarded as being in intermediate states (hence the term “virtual”) – they
are not themselves directly detectable but instead mediate physical processes
that change initial states into final states.

Note that since there are two particles in our toy theory, we will have two
propagators: one for particle A ( i

q2−m2
A

) and one for particle B ( i
q2−m2

B
).

Rule 2 depends on the spin of the particle, as we will see later on when we
look at realistic physical theories. All spin-0 particles contribute this factor
to any Feynman diagram.

3. CONSERVATION OF ENERGY AND MOMENTUM In order for interac-
tions to take place we will need to define something called a vertex, which is a
point at which interactions take place. We shall do this later, since the rules
for a vertex are specific to a given theory. However, regardless of the theory
there is a general rule stating that for each vertex, insert a delta function
factor of the form

(2π)4δ(4) (k1 + k2 + k3 + · · ·+ kN )

where the k’s are the four-momenta coming into the vertex (i.e. each kµ will
be either a qµ, a pµ, or a p′µ). If the momentum leads outward, then kµ is
minus the four-momentum of that line. This rule imposes conservation of
energy and momentum at each vertex (and hence for the diagram as a whole)
because the delta function vanishes unless the sum of the incoming momenta
at the vertex equals the sum of the outgoing momenta. All physical theories
respect this rule.

4. INTEGRATE OVER INTERNAL MOMENTA For each internal momentum
q, insert a factor

d4q

(2π)4

and integrate. The idea here is that the virtual particles will – for any given
process – have any momenta possible that is consistent with conservation of
energy and momentum. On probabilistic grounds, all such possibilities will
occur and so we have to add them all up – this is what this integration does.
The rule holds for all physical theories.

5. CANCEL THE DELTA FUNCTION
After performing the integrations the result will include a factor

(2π)4δ(4) (p′1 + p′2 · · ·+ p′m − p1 − p2 − · · · − pn)

corresponding to overall energy-momentum conservation. Cancel this factor
(because we have already included it in our expressions for decay rates and
cross-sections), and what remains is −iM. The rule holds for all physical
theories.
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After a bit of practice you can compress rules 3,4, and 5 into a single rule:
integrate over all undetermined internal momenta. This way is faster, but
in first learning the method it is easier to break this up into these 3 distinct
rules. The factors of (2π) are necessary – their origin is rooted in Fourier
transformations of wavefunctions of the various states‡, and they must be
included if the correct numerical answer is to be obtained. Most of them
cancel out against each other, but you must keep careful track of them.

Except for rule 2, all of the above rules hold for any physical theory, and
rule 2 holds for any spin-0 particle. However, we don’t yet have a theory
because we don’t know how the particles can interact. This is where the next
rule comes in. We will suppose that we have 2 spinless particles – A and
B (with masses mA and mB respectively) – and then propose a rule for how
they can interact. This kind of rule – dependent on which particles exist and
how they interact – is what distinguishes one theory from another. The rule
is the “vertex factor” rule. For our A, B theory we will propose the simplest
rule possible [107].

6. VERTEX FACTORS For every interaction between particles A and B,
draw a point with three lines coming out signifying one A particle and two B
particles as shown in fig. 10.3, and include a factor of −ig for every vertex that

FIGURE 10.3
The vertex of ABB theory.

appears in a given diagram. Due to the choice of interaction, I will call this
theory§ ABB-theory. The quantity g is the coupling constant of ABB-theory:

‡Again, a proper derviation of this follows from the advanced methods of quantum field
theory.
§Many particle physicists would prefer to call this a model rather than a theory, reserving
the term theory for the more general formalism that describes interacting quantum scalar
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it measures the strength of our proposed interaction.
Of course I could have proposed other interactions with still other particles.

For example either of the two vertices in fig. 10.4 would be valid choices for an
interaction between three scalar particles (A, B, and C). The theory described
by the vertex on the right allows for only one interaction where each kind of
particle meets together at a single point in spacetime. The vertex on the left
corresponds to a theory having what is called a 4-point interaction: in this
theory, the only interaction that can take place is one in which four particles
meet at a single point in spacetime – two must be distinct and the B particle
must appear twice. I could also draw other vertices, and I could use more

FIGURE 10.4
Other possible vertices for theories of spinless particles.

than one vertex in my theory.
So which vertices should I use? This depends on my mood, which is why

we call this a “toy” theory: the interaction is something I invent for fun. Less
fancifully, theorists develop toy theories to illustrate ideas and/or methods
that they believe have something to do with reality. In the real world, the
vertices model interactions that we hypothesize to be true in nature. Guided
by experiment, in a real physical theory, we want these interactions to accu-
rately describe the world we observe. For now we’ll stick to ABB theory, that
has only the single 3-point vertex in figure 10.3.

An important difference to note here between the toy theory and a real-
world theory is that the coupling constant g has units of momentum. In
real-world theories (like QED), the coupling constant is dimensionless. The
dimensionality of g will have physical consequences, as we will see when we
consider particle decay in ABB theory.

There is one more rule that we need in order to be able to start calculating.
This rule is the one that tells us how to construct the diagrams from the rules

fields. I shall stick to the term theory, but you should keep this subtle distinction in mind.
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and put them all together. It’s called the topology rule, and holds for all
physical theories.

7. TOPOLOGY To get all contributions for a given process, draw diagrams
by joining up all internal vertex points either to the external lines or to each
other by internal lines in all possible arrangments that are topologically in-
equivalent, consistent with rule 6. The number of ways a given diagram can
be drawn is the topological weight of the diagram. The sum of all diagrams
is equal to −iM.

Given the above set of rules, there are infinitely many possible diagrams
that one can draw for any physical process. So how could we possibly add
them all up? The answer is hidden in rule 6: each diagram has a factor of a
coupling constant. If the coupling constant is small, then diagrams with more
factors of the coupling (more vertices or more interactions) are less important
(are numerically smaller) than diagrams with fewer couplings. So in practice
we group diagrams by the number of powers of the coupling, and truncate the
sum at whatever given order of the coupling we desire. In other words, the
diagrams are to be understood in a perturbative sense: the matrix element
will have the general form

−iM =− iM1g+− iM2g
2+− iM3g

3+ · · · (10.2)

where M1 is computed from a finite number of diagrams of order g, M2

from a finite number of order g2, etc. In understanding the basic physics in a
scattering process, it is typically sufficient to retain only the terms of leading
order.

Now we’re ready to calculate some processes in ABB theory.

10.2 A-Decay

The simplest diagram we can draw is given in figure 10.5. It has no internal
lines and only one vertex. Applying rule 3 we get

−iM = −ig(2π)4δ(4)
(
p′B1

+ p′B2
− pA

)
(10.3)

and then discarding the overall δ−function (rule 5), we get

−iM = −ig ⇒M = g (10.4)

The two-body decay rate is, in the rest-frame of the A:

Γ =
S |~p| c

8π} (Mc)2 |M|
2 =

|~p| g2

16π}m2
Ac

(10.5)
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FIGURE 10.5
Decay of the A particle.

where ~p is the magnitude of the outgoing momentum of either of the two B-
particles and S = 1

2! since the final particles are indistinguishable. Momentum
conservation due to the δ-function implies

mA =
√
|~p|2 +m2

B +
√
|~p|2 +m2

B

⇒ p =

√
m2
A

4
−m2

B (10.6)

and so we get

Γ =
g2

32π}cmA

√
1− 4

m2
B

m2
A

(10.7)

for the decay rate of the A particle.
For any given theory the masses mA and mB are fixed, reflecting the fact

that in the real world an elementary particle cannot change its rest mass.
However, we can mathematically adjust the mass to be whatever we like – in
so doing we are really comparing a whole continuum of theories dependent on
the choice of the particle masses. We can also do the same for the couplings.
Such comparsions afford important physical insight.

For the decay process above, we see that the smaller the value of g, the
smaller the decay rate, in accord with our intuition that a weaker coupling
makes for a less probable interaction or a less likely decay. If mB > mA

2 (i.e.
if the B-particle has a rest-mass more than half that of the A), then the decay
rate becomes imaginary – in other words there is no decay! This corresponds
to a stable A particle as we expect. But note that for large mA, the decay
rate Γ ∼ m−1

A : it is small, yielding a long lifetime for a heavy A particle.
This leads to the counter-intuitive result that a heavier A particle (i.e. heavy
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relative to the B) would decay less rapidly than a lighter one! We actually
find a maximum for the decay rate when mA = 2

√
2mB , and so a toy theory

with this mass value would have the shortest-lived unstable A particle. We
will see later on that a similar situation exists in the real world for pion decay,
in which it is less probable for the pion to decay to relatively light products
than relatively heavy ones.

The reason for this strange result – contrary to what we saw in Chapter
9 from general phase-space considerations – is that the coupling constant g
has units of momentum (or alternatively of (mass)×(speed of light)) in the
toy theory, whereas the analog of the coupling g for a real world theory is
dimensionless. In the real world, it is the matrix element that provides the
proper dimensionality to ensure that Γ has the correct units. This typically
means that it introduces additional powers of the mass, forcing Γ ∼ m and
leading to the result that in the real world heavy particles typically decay
with more rapidity than light ones. However, there are exceptions to this as
the toy theory illustrates, and we will see in Chapter 21 that in the real world
the pion is one of them.

10.3 Scattering in the Toy Theory

Let’s compute the cross section for the elastic scattering process B + B −→
A+ A. The diagrams are (to lowest order in g – rule 7) given in figure 10.6,
where we note that we combine the diagrams in all possible ways consistent
with rule 6. The diagram on the left gives

−iMI = (10.8)

(−ig)2︸ ︷︷ ︸
∫

d4q

(2π)4︸ ︷︷ ︸ (2π)4δ(4) (p′1 + q − p1)︸ ︷︷ ︸ (2π)4δ(4) (p′2 − q − p2)︸ ︷︷ ︸ i

q2 −m2
B︸ ︷︷ ︸

rule 6 rule 4 rule 3 rule 3 rule 2

and the one on the right gives

−iMII = (−ig)2
∫

d4q

(2π)4
(2π)4δ(4) (p′2 + q − p1)

×(2π)4δ(4) (p′1 − q − p2)
i

q2 −m2
B

(10.9)

The integrations are easy, since¶∫
d4q

(2π)4
(2π)4δ(4) (q − k)F (q) = F (k) (10.10)

¶See the appendix on Dirac delta functions if you are rusty on this.
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FIGURE 10.6
Lowest order diagrams for B +B −→ A+A.

Integrating over q we find that the first delta-function gives forMI

MI = (2π)4δ(4) (p′1 + p′2 − p1 − p2)
g2

(p′1 − p1)2 −m2
B

(10.11)

and for MII

MII = (2π)4δ(4) (p′1 + p′2 − p1 − p2)
g2

(p′2 − p1)2 −m2
B

(10.12)

Adding them together and using rule 5 gives

M = g2

[
1

(p′1 − p1)2 −m2
B

+
1

(p′2 − p1)2 −m2
B

]
(10.13)

for the lowest-order matrix element which describes this process.
Of course we could have integrated over the second delta-function in eqs.

(10.9) and (10.10). Had we done so, the intermediate steps would have dif-
fered, but the end result (10.13) would have been the same.

FIGURE 10.7
B +B −→ A+A scattering picture.

Now we can take |M|2 and put this into the 2-Body cross-section we com-
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puted last time. In the CM system

E1 = E2 = E, ~p1 = −~p2 = ~p
E′1 = E′2 = E′, ~p ′1 = −~p ′2 = ~p ′

and energy conservation implies that E = E′. For simplicity, let’s takemA = 0
and mB = m. Then

(p′1 − p1)2 −m2
B = (p′1)2 + (p1)2 − 2p′1 · p1 −m2

= 0 +m2 − 2 (E′E − ~p · ~p ′ cos θ)−m2

= −2E (E − |~p| cos θ) (10.14)

and by similar arithmetic

(p′2 − p1)2 −m2
B = −2E (E + |~p| cos θ) (10.15)

Putting this into the formula for dσ
dΩ in the CM system gives

dσ

dΩ
=
(

}c
8π

)2 S |M|2

(E1 + E2)2

|~p ′|
|~p|

=
(

}c
8π

)2 (1/2)E′

4 |~p|E2

∣∣∣∣g2

[
− 1

2E (E − |~p| cos θ)
− 1

2E (E + |~p| cos θ)

]∣∣∣∣2
=

1
2

(
}cg2

16π

)2
c3

E |~p|
(
E2 − |~pc|2 cos2 θ

)2 (10.16)

where S = 1/2 due to identical A’s in the final state and I have inserted the
correct factors of c in the last line.

Let’s pause to note some things about this formula. At high energies
|~pc| ' E, and dσ

dΩ →
(}c)2(cg)4

E6(1−cos2 θ)2
∼ (}c)2(cg)4

E6 sin4 θ/2
. The cross-section falls off

rapidly with increasing energy (high-energy particles are less likely to interact)
and with increasing angle (it’s more likely to scatter in a forward (or backward)
direction than in a perpendicular one). Note also that the units are correct: gc
has units of energy and ~c has units of (energy)×(length), so the cross-section
does indeed have units of area.

For a massless A particle, ABB theory is a toy version of QED, with A
playing the role of a spinless photon, and B playing the role of a spinless
electron. The scattering process in this example is pair-annihilation, where
two B particles destroy each other and become a pair of “photons.” We will
encounter the real-world version of this process a bit later on, and we will see
that the basic physics described above will be preserved.
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10.4 Higher-Order Diagrams

All we’ve looked at so far are “tree” diagrams that are lowest-order in g. For
example each diagram in figure 10.6 is of order g2. Higher order diagrams

FIGURE 10.8
A lowest order diagram for BB annihilation.

will contribute to this process; for example the diagrams in figure 10.9 all

FIGURE 10.9
Some higher order diagrams for BB annihilation.
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contribute to order g4. I’ve drawn the three distinct diagrams in which
the added line starts on the lower-left B-line and connects to another line
according to the rules. There are another three for the lower-right B-line,
but we’ve already counted one of these (the diagram on the upper-right in
10.9), so we get two more. Each of the final A-lines can have a B-bubble,
and there is one more diagram in which an A-particle leaves and returns to
the internal B-line (an A-bubble). So in all there are eight diagrams, plus
another eight for the crossed version (where the final state A’s have switched
places – the diagram at the right in figure 10.6). Note that disconnected
diagrams, those that can be separated into two distinct parts without cutting
any line, don’t count.

So there are 16 diagrams to compute at the next order. Let’s compute the
diagram in figure 10.10 for which the internal B line has a bubble. There

FIGURE 10.10
An A-bubble diagram.

are four internal lines, and so rule 4 gives four integrations. There are four
propagators (rule 2) and four delta functions (rule 3). Hence we get

(−ig)4
∫

d4q1

(2π)4

∫
d4q2

(2π)4

∫
d4q3

(2π)4

∫
d4q4

(2π)4

i

q2
1 −m2

B

i

q2
2 −m2

A

× i

q2
3 −m2

B

i

q2
4 −m2

B

(2π)4δ(4) (p′1 + q1 − p1) (2π)4δ(4) (q2 + q3 − q1)

×(2π)4δ(4) (q4 − q2 − q3) (2π)4δ(4) (p′2 − q4 − p2) (10.17)

The delta-functions make the integrations fairly easy to do. Integrating over q1

means setting q1 = p1− p′1, and integrating over q4 means setting q4 = p′2− p2.
This gives

(−ig)4 1[
(p′1 − p1)2 −m2

B

] 1[
(p′2 − p2)2 −m2

B

] ∫ d4q2

(2π)4

i

q2
2 −m2

A
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×
∫

d4q3

(2π)4

i

q2
3 −m2

B

(2π)4δ(4) (q2 + q3 + p′1 − p1)

×(2π)4δ(4) (p′2 − p2 − q2 − q3) (10.18)

Integrating over q2 gives

(2π)4δ(4) (p′1 + p′2 − p1 − p2)
g4[

(p′1 − p1)2 −m2
B

]2
×
∫

d4q3

(2π)4

1
(p′1 + q3 − p1)2 −m2

A

1
q2
3 −m2

B

(10.19)

where I have used the delta-function to set p′1−p1 = p2−p′2 to simplify things.
Using rule 5 gives (dropping the redundant “3” index on q3):

−iM =
g4(

(p′1 − p1)2 −m2
B

)2 ∫ d4q

(2π)4

1
(p′1 + q − p1)2 −m2

A

1
q2 −m2

B

+ · · ·

(10.20)
where the dots refer to contributions from other diagrams.

We see that we have one integration left to do. At this point we run into
big trouble: the remaining integral is infinite. This is easy to see: there are
four integrations to do but only four powers of q in the denominator. For
large q we get∫

d4q

(q2)2
= [angular integration]×

∫ ∞
0

dq

q
∼
∫ ∞

0

dq

q
∼ ln (q)|∞ =∞ (10.21)

and we see that the integral diverges logarithmically.
This situation is endemic to all quantum field theories: matrix elements

are power series in small couplings (here g) with infinite coefficients. This
was first realized in 1930 and remained an unsolved problem until Tomonaga
(in 1946) [108] and Feynman and Schwinger (in 1947) [103, 109] proposed a
solution called renormalization.

How does renormalization work? Let’s parametrize the infinity by “cutting
off” the integral for large q, i.e., let’s take∫

d4q ∼ −i
∫
q3dq −→ −i

∫ Λ

0

q3dq

where Λ is some large momentum and the factor of −i arises from analytic
continuation‖. Here q is a radial type of variable in a 4-dimensional space;

‖This is a technical point – it is easiest to do the integral if we set q0 → −iq4 and then
used methods from complex analysis to calculate the result. This procedure is called Wick
rotation.
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there will also be an angular integration, but it will just multiply the integral
by a constant factor of 2π2. The rest of the integral gives

M =
( g

2π

)4 2π2[
(p′1 − p1)2 −m2

B

]2 [ln( Λ
m2

)
+ · · ·

]
(10.22)

where for simplicity I’ve taken mB = mA = m. Of course if Λ → ∞ this is
still infinite.

But now a miracle happens: by adding this to the first diagram of O (g) in
the B + B −→ A + A process we computed above, we find that this ln (Λ)
term corrects the mass:

M =
g2

(p′1 − p1)2 −m2
B

+
(
g2

2π

)2 1[
(p′1 − p1)2 −m2

B

]2 [ln( Λ
m2

)
+ · · ·

]

' g2

(p′1 − p1)2 −
[
m2
B +

(
g

2π

)2 ln
(

Λ
m2

)] + · · ·+O
(
g6
)

(10.23)

where the dots refer to finite terms. The second diagram in B+B −→ A+A
is similarly corrected by the crossed-version of the A-bubble diagram. So we
interpret

mphysical
B = mB + δmB

=

√
m2
B +

( g

2π

)2

ln
(

Λ
m2

)
' mB +

1
2mB

( g

2π

)2

ln
(

Λ
m2

)
(10.24)

Other diagrams with infinite contributions all either correct the masses of
the particles or the coupling g. So when we add all such infinities together
we find

mphysical = m+ δm gphysical = g + δg (10.25)

The quantities δm and δg are infinite as Λ → ∞, but that’s okay: we can’t
measure them anyway! All we can measure are mphysical (for A and B)
and gphysical. These are finite by definition. So we can take account of the
infinities by using mphysical and gphysical in the diagrams instead of the
original m’s and g we started with (which themselves are assumed infinite to
cancel the infinities in δm and δg).

Of course this trickery doesn’t come without a price. The price we pay is
that the masses and coupling in our theory can never be predicted. They
must be input from experiment. Perhaps this isn’t too bad a price to pay:
there are only 2 masses and 1 coupling in ABB-theory, so all we need are 3
inputs. A renormalizable theory is one in which all infinites can be absorbed
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by these kinds of redefinitions of a finite number of parameters. ABB
theory is an example of a renormalizable theory. QED and QCD – indeed all
gauge theories – have also been shown to be renormalizable. Renormalizable
theories are very important since they have predictive power – they yield
answers for decay rates and cross-sections that do not depend upon the cutoff.

Non-renormalizable theories do not have this feature – they have an infinite
number of infinities, and so yield meaningless results. It would be nice if we
could just ignore these kinds of theories, but we can’t – it turns out that our
best theory of gravity – general relativity – is a non-renormalizable theory.
This is one of the major problems of quantum gravity – the methods that
yield predictive quantum theories for the non-gravitational forces of nature
(described by gauge theories like QED or QCD) yield meaningless results
when applied to gravity.

What do the finite contributions do? They also correct mA, mB , and g
by finite calculable amounts that are functions of the four-momenta of the
external particles. This means the effective masses and couplings depend on
these four momenta, i.e. on the energies of the particles involved. We call
them “running” masses and “running” couplings. This dependence is slight,
but it does have observable consequences in both QED (in the form of the
Lamb shift) and in QCD (in the form of asymptotic freedom), as we shall see
in subsequent chapters.

10.5 Appendix: n-Dimensional Integration

It is common in particle physics to compute integrals over spaces of different
dimensionality. Most of the time these integrals come from loops that ap-
pear in Feynman diagrams. These integrals are generalizations of the switch
from Cartesian coordinates to polar coordinates in two dimensions, or from
Cartesian coordinates to spherical coordinates in three dimensions. In gen-
eral computing the integral involves transforming from Cartesian coordinates
in n dimensions to generalized spherical coordinates in n dimensions.

Recall that in two dimensions the transformation is

x1 = r cos θ
x2 = r sin θ

}
⇒ d2x = dx1dx2 = rdrdθ (10.26)

where I have written (x, y) =
(
x1, x2

)
. The factor of r comes from computing

the Jacobian of the transformation:

J =

∣∣∣∣∣det

[
∂x1

∂r
∂x2

∂r
∂x1

∂θ
∂x2

∂θ

]∣∣∣∣∣ =
∣∣∣∣det

[
cos θ sin θ
−r sin θ r cos θ

]∣∣∣∣ = r cos2 θ + r sin2 θ = r

(10.27)
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The procedure applies to any number of dimensions. We write (x1, x2, . . . , xn)
for the Cartesian coordinates and (r, θ1, . . . , θn−1) for the angular coordinates.
The transformation between them is

x1 = r cos θ1

x2 = r sin θ1 cos θ2

...
xn−1 = r sin θ1 sin θ2 · · · cos θn−1

xn = r sin θ1 sin θ2 · · · sin θn−1

(10.28)

and every angle has a range from 0 to π, except for θn−1 which has a range
from 0 to 2π. The Jacobian is∣∣∣∣∣∣∣∣∣∣

det


∂x1

∂r
∂x2

∂r · · ·
∂xn

∂r
∂x1

∂θ1
∂x2

∂θ1 · · ·
∂xn

∂θ1

...
. . .

...
∂x1

∂θn−1 · · · · · · ∂xn

∂θn−1


∣∣∣∣∣∣∣∣∣∣

= rn−1
(
sin θ1

)n−2 (
sin θ2

)n−3 · · · sin θn−1

(10.29)
and can be obtained by induction. So we have

dnx = dx1dx2 · · · dxn

= rn−1
(
sin θ1

)n−2 (
sin θ2

)n−3 · · ·
(
sin θn−2

)
drdθ1 · · · dθn−1

= rn−1drdΩn−1 (10.30)

where dΩn−1 is shorthand notation for the angular part of the integral.
For example, the three dimensional volume element is

d3x = dx1dx2dx3 = r2
(
sin θ1

)
drdθ1dθ2 = r2 sin θdθdφ (10.31)

where I have written the more familiar notation θ1 = θ and θ2 = φ in the last
term.

How can we do the angular integration? There is a trick to this that makes
use of Gaussian integrals and the Gamma function. Recall that a Gaussian
integral gives ∫ ∞

−∞
e−z

2
dz =

√
π (10.32)

and that the Gamma function (the factorial function) is defined as

Γ (n) =
∫ ∞

0

zn−1e−zdz (10.33)

Let’s consider the integral∫ ∫ ∞
0

e−r
2
rn−1drdΩn−1 =

∫ ∞
0

e−z
(√
z
)n−1 dz

2
√
z

∫
dΩn−1
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=
1
2

∫ ∞
0

e−zzn/2−1dz

∫
dΩn−1

=
1
2

Γ
(n

2

)∫
dΩn−1 (10.34)

wher I have set r =
√
z in the first line on the right-hand side; the final line

easily follows from the definition of Γ (n). Since r2 =
(
x1
)2 +

(
x2
)2 + · · · +

(xn)2, we have e−r
2

= e
−

h
(x1)2

+(x2)2
+···+(xn)2

i
= e−(x1)2

e−(x2)2

· · · e−(xn)2 –
the exponential of the sum is the product of the exponentials. Hence we can
write∫ ∫ ∞

0

e−r
2
rn−1drdΩn−1 =

∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxne−(x1)2

e−(x2)2

· · · e−(xn)2

=
∫ ∞
−∞

dx1e−(x1)2
∫ ∞
−∞

dx2e−(x2)2

· · ·
∫ ∞
−∞

dxne−(xn)2

=
(√
π
)n (10.35)

where the last line follows since each integral gives the same factor of
√
π.

We can equate the two expressions to obtain∫
dΩn−1 =

2π
n
2

Γ
(
n
2

) (10.36)

for the (n− 1)-dimensional angular integral. For n = 2 this gives
∫
dθ =

2π
Γ(1) = 2π, which is the circumference of a circle (the area of a 1-dimensional

“sphere”) and for n = 3 this gives
∫
dθ = 2π3/2

Γ( 3
2 ) = 4

3π, which is the area of a

sphere of unit radius.
Our 4-dimensional momentum integrals are typically of the form∏

A

∫
d4qFA((q0 − p0A)2 − |~q − ~pA|2)

or in other words, a product of functions of relativistic invariants. The easiest
way to do these integrals is to analytically continue the time components,
so that q0 → iq4, p0A → ip4A, a procedure called Wick rotation. One then
has a 4-dimensional integral that can be carried out, and then final answer
is obtained by Wick rotating back, so that p4A → −ip0A. There are some
mathematical properties the integrand has to obey in order for this procedure
to be valid, but they will be satisfied for all the integrals we consider in this
book. In the simplest case we have, after Wick rotating∫

d4q → i

∫
dq1

∫
dq2

∫
dq3

∫
dq4

= i

∫
dq̃q̃3

∫
dΩ3
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= i
2π2

Γ (2)

∫
dq̃q̃3

= 2iπ2

∫
dq̃q̃3 (10.37)

where (q̃)2 =
(
q1
)2 +

(
q2
)2 +

(
q3
)2 +

(
q4
)2 is the “radial” momentum variable.

10.6 Questions

1. Consider ABB theory in which the A is massless.

(a) Find the differential cross-section in the lab-frame for the reaction

B +A −→ B +A

What is the angular dependence of the cross-section at high energies?

(b) Find the differential cross-section in the CMS for the reaction

A+A −→ B +B

FIGURE 10.11
Vertex for ABC theory.

2. Consider a generalization of ABB theory to ABC theory, whose vertex
rule is given in figure 10.11 and in which the C is massless and the A
and B have equal mass m.

(a) Draw all allowed lowest-order diagrams for the reaction

C +A −→ C +A
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and find the matrix element and differential cross-section in the lab-
frame to this order.

(b) Draw all allowed lowest-order diagrams for the reaction

C + C −→ 2B

and find the matrix element and differential cross-section in the CMS
to this order.

3. For the ABC theory of question #2:

(a) Find the differential cross-section in the lab-frame for the reaction

C +B −→ C +B

(b) Find the differential cross-section in the CMS for the reaction

C + C −→ A+A

4. (a) Consider a process in the ABC theory of question #2 that has nA
external A-lines, nB external B-lines and nC external C-lines. Find
a simple rule that shows which processes are allowed and which are
forbidden in ABC theory.

(b) Test your rule on the following processes. Draw a diagram for each
allowed process.

B −→ C + C + C B +B −→ A+ C + C

A+ C −→ B +B +B A+B + C −→ A+B + C

5. Consider a variant of the ABC theory in question #2, in which both B
and C are massless and the A has mass m.

(a) Find the differential cross-section in the lab-frame for the reaction

A+ C −→ A+ C

(b) Find the differential cross-section in the CMS for the reaction

C + C −→ B +B

6. Consider the process A → B + B in ABB theory. Draw all diagrams
relevant for this process to order g3.

7. Consider a theory of three spinless particles A,B and C. Each particle
is its own antiparticle. The C is massless and mA > mB . The Feynman
rules for the theory are in figure 10.12

(a) What are the possible parities for each particle if parity is conserved?



A Toy Theory 199

FIGURE 10.12
Vertices for question 7.

(b) Under what circumstances can C =− 1 for the C-particle?

(c) Which particles can be unstable in this theory? Under what condi-
tions?

(d) Compute the decay rate in terms of the masses and the coupling con-
stant(s) for any one of the unstable particles that satisfy the conditions
you find in part (c) to lowest order in the coupling(s).

(e) Draw and label all diagrams which correct the process in part (c) to
next-lowest order in the couplings.

8. For the theory in question #7:

(a) Consider scattering of a B particle with an A particle. What par-
ticles can appear in the final state (to lowest order in the couplings)?
Draw and label the diagram(s) associated with this process.

(b) Find the matrix element for this process (i.e., for B + A → your
answer) to lowest order in g1 and g2. Simplify your answer in the lab
system, where the A particle is at rest. What does it become in the
limit that the incident energy of the B particle is large?

(c) Draw two diagrams that are the next-order corrections to the process
in part (b). Label only the names of the particles in each diagram.
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11

Wave Equations for Elementary Particles

In order to compute matrix elements for real world theories, we need a better
understanding of how to write down the incoming and outgoing states for
actual physical particles. We saw in Chapter 5 that the group of spacetime
symmetries – space-and-time translations, rotations, parity – have allowed us
to classify particles according to some basic properties, which I have recapit-
ulated in table 11.1.

TABLE 11.1

Particle Classification
Space and time Translations Mass-energy (the rest mass, m)

Rotations Intrinsic spin (spin s = 0, �
2 , �, ...)

Parity Intrinsic parity (P = ± 1)
Charge Conjugation Intrinsic charge conjugation (C = ± 1)

However, we have not yet seen how relativity (i.e. boost covariance) aids in
the classification. To do this, we’ll need wave equations for the irreps we’ve
developed so far (i.e. for wavefunctions of definite mass and spin) so that we
can do quantum mechanics, compute matrix elements, and make predictions
for decay rates and cross sections.

Clearly we need to go beyond the free-particle Schroedinger equation

i�
∂

∂t
Ψ = HΨ = −�2∇2

2m
Ψ (11.1)

because it is not relativistic: space and time are treated differently. However,
we can use it to get a hint of how to find relativistic wave equations by noting
that its solution is a plane wave

Ψ = Ψ0 exp [−i (Et − �p · �x) /�] where E =
�p · �p
2m

=
|�p|2

2m
(11.2)

where we interpret E as the energy and �p as the momentum of the particle.
The only thing non-relativistic about the solution Ψ is the relationship be-
tween E and �p, namely that E = |�p|2

2m . In general, for stationary states in

201
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which HΨ = EΨ, we have

i}
∂

∂t
Ψ = EΨ⇒ Ψ = Ψ (~x) exp [−iEt/}] (11.3)

in other words the time derivative of the wave function gives us a constant
that we interpret as the energy. Note that the minus sign in the exponent of
the plane-wave solution is crucial because it ensures that the energy of the
particle is positive. Had we written Ψ = Ψ0 exp [+i (Et− ~p · ~x) /}], we would
have obtained E = − |~p|

2

2m , i.e., this would correspond to a particle of negative
kinetic energy, which does not solve the free-particle Schroedinger equation
(11.1) above.

11.1 Klein-Gordon Equation

From now on let’s set } = c = 1 for simplicity. The preceding approach
suggests a guess that a relativistic free particle has the wavefunction

φ = φ0 exp [−i (Et− ~p · ~x)] = φ0 exp [−ipµxµ] (11.4)

where now we require E =
√
~p · ~p+m2 and pµ = (E, ~p)

and the sign is chosen in accord with the non-relativistic case. We can find
the equation that φ obeys by differentiating it twice with respect to ~x:

∇2φ = i~p · ~∇φ = (−~p · ~p)φ =
(
m2 − E2

)
φ = m2φ+

∂2φ

∂t2

=⇒
(
∂2

∂t2
−∇2

)
φ+m2φ = 0 (11.5)

which we can also write as (
∂µ∂

µ +m2
)
φ = 0 (11.6)

an equation called the Klein-Gordon equation. Here ∂µ ≡
(
∂
∂t ,

~∇
)

= ∂
∂xµ is

the relativistic gradient, with t = x0. Note that

∂µ∂
µ = gµν

∂

∂xµ
∂

∂xν
= (+1)

∂

∂t

∂

∂t
− ∂

∂x

∂

∂x
− ∂

∂y

∂

∂y
− ∂

∂z

∂

∂z
=

∂2

∂t2
−∇2

(11.7)
Since the operator ∇2 is invariant under rotations, so is ∂µ∂µ, and so the

rotation properties of φ must be trivial – in other words φ is a scalar (i.e. it has
spin-0). We interpret pµ = (E, ~p) as the 4-momentum of the particle whose
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wavefunction is φ. Note that for small ~p, we have E =
√
~p · ~p+m2 ' m+ |~p|

2

2m
and the solution reduces (up to a phase) to the solution for the free-particle
Schroedinger equation.

The Klein-Gordon equation (or KG equation) was the first attempt∗ at
developing a relativistic version of Schroedinger’s equation (and was actually
first proposed by Schroedinger [110]!). It is relativistically invariant, since

x′µ = Λµ νx
ν ⇒ ∂′ν =

∂

∂x′µ
=
∂xµ

∂x′ν
∂

∂xµ
= Λµ ν∂µ ⇒ ∂′µ∂

′µ = ∂µ∂
µ (11.8)

and so (
∂′µ∂

′µ +m2
)
φ′(x′) =

(
∂µ∂

µ +m2
)
φ(x) = 0 (11.9)

This is nice. However, there is an awkward snag – unlike the Schroedinger
equation above, the KG equation has another solution

φ̂ = φ̃0 exp [+ipµxµ] = φ̃0 exp [+i (Et− ~p · ~x)] = φ̃0 exp [−i (−Et+ ~p · ~x)]
(11.10)

where the 4-momentum of the particle is now pµ = (−E,−~p). The time-
derivative of φ̂ is easily seen to be i∂φ̂∂t = −Eφ̂ = −

√
~p · ~p+m2φ̂– in other

words the particle has negative energy! Of course this is what we expect
from a 2nd order differential equation, namely that there are two independent
solutions. Inserting either solution into the KG equation gives(

∂µ∂
µ +m2

)
φ(x) = −

(
p2 −m2

)
φ(x) = 0(

∂µ∂
µ +m2

)
φ̂(x) = −

(
p2 −m2

)
φ̂(x) = 0

This other solution was quite puzzling to theorists in the 1920s. Not only
were there negative energy solutions, but the probability density associated
with the equation could be shown to be positive for positive-energy states and
negative for negative energy states! Even worse, the equation was not able
to incorporate the newly discovered property of electron spin. It turned out
that these problems were not occupying too much attention in the physics
community at that time because shortly afterward Dirac came out with a
different equation that incorporated relativity into quantum mechanics.

11.2 Dirac Equation

The problem with the negative energy solution appears to arise because there
are two time derivatives in the KG equation (this is what gives p2 −m2 = 0,

∗In 1926 Pauli wrote in a letter to Schroedinger that he didn’t “believe that the relativisitic
equation of 2nd order with the many fathers corresponds to reality.” The Klein-Gordon
equation has a rather interesting history [111], involving many people in its early develop-
ment.
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which has two solutions for the energy). If we wanted an equation that had
only one time derivative, then it must have only one space derivative as well.
So we might guess

(aµ∂µ +m) Ψ = 0 (11.11)

Note that if aµ is just a 4-vector, then for a plane wave this equation gives
iaµpµ +m = 0, which is the wrong relation between 4-momentum and mass.
This is not what we want. However, if Ψ were a multi-component wavefunction
(with components ψb), then maybe we could get the right relationship if aµ

were a matrix. Let’s call this matrix γµ – kind of like a 4-vector, but with
each entry a matrix.

So let’s guess (summing over repeated indices!)(
i (γµ) ba ∂µ −mδ

b
a

)
ψb = 0

or (iγµ∂µ −m)ψ = 0
suppressing

matrix indices
(11.12)

Note that we write mI = m, where I is the identity matrix (whose components
are δ ba ). At this point we don’t know the dimensionality of either the identity
or of the (γµ) ba (i.e., of the range of the indices a, b), but we will soon find out
what this must be.

We need to be sure that we can recover the usual relationship p2 −m2 = 0
between the 4-momentum pµ and the mass of the multicomponent wavefunc-
tion ψ. If ψ had no spin, it would behave like a KG field, i.e. like e−ip·x. Let’s
guess that something similar happens here, and set

ψa = ua(p)e−ip·x (11.13)

where ua(p) is some N -component “column matrix” (recall that we don’t yet
know the value of N ; all we know so far is that a = 1, 2, . . . , N) that is a
function of the 4-momentum. Our proposed equation becomes

0 = (iγµ∂µ −m)ψ = e−ip·x (γµpµ −m)u(p)⇒ (γµpµ −m)u(p) = 0
(11.14)

and so we have a constraint on the N -component object u(p). Let’s multiply
eq. (11.14) by the matrix (γµpµ +m):

0 = (γνpν +m) (γµpµ −m)u(p)
=
(
(γνpν) (γµpµ) +m (γµpµ)−m (γνpν)−m2

)
u(p)

=
(
γµγνpµpν −m2

)
u(p) (11.15)

where in the second line I have put brackets around the objects that are
matrices. The set of manipulations involved in getting the last line is

(γνpν) (γµpµ) = (γνpν) c
a (γµpµ) b

c = (γν) c
a pν (γµ) b

c pµ

= (γν) c
a (γµ) b

c pµpν = (γµ) c
a (γν) b

c pνpµ

= (γµ) c
a (γν) b

c pµpν (11.16)
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which follows from a recognition that the γµ’s are matrices (and so don’t
commute) but the pµ’s aren’t (and so do commute).

This looks like an extra constraint on the column matrix u(p). If we don’t
want this to be an extra constraint then we must require it to hold because
p2 − m2 = 0 and not for any other reason. Hence we must constrain the
γ-matrices to obey

(γµ) ca (γν) bc pµpν −m
2δ ba =

(
p2 −m2

)
δ ba = 0

or alternatively γµγνpµpν = p2 = gµνpµpν (11.17)

As noted previously the γµ’s are matrices and the pµ’s are not, so we can
write

γµγνpµpν =
1
2
γµγν (pµpν + pνpµ)

=
1
2
γµγνpµpν +

1
2
γµγνpνpµ

=
1
2

(γµγν + γνγµ) pµpν (11.18)

where the last line follows from relabeling the indices. In order to ensure that
γµγνpµpν = p2 we must have

1
2

(γµγν + γνγµ) pµpν = gµνpµpν (11.19)

or alternatively, since this must hold for any pµ :

(γµγν + γνγµ) = 2gµνI (11.20)

where I is the identity matrix.
The preceding relation provides a very important constraint on the γµ ma-

trices. We can write it as

{γµ, γν} = 2gµν (11.21)

where {γµ, γν} ≡ (γµγν + γνγµ) is the anticommutator. For any two opera-
tors or matrices, the anticommutator is defined as

{A,B} ≡ AB +BA (11.22)

So any set of 4 γ-matrices that obey eq. (11.21) will guarantee that p2−m2 =
0 for the ψ wavefunction without imposing any further constraints on ψ. The
simplest solution† to (11.21) is when N = 4, i.e., the γ-matrices are 4× 4:

†How do we know that this is the simplest solution? It’s done by brute force. The matrices

must be at least 2-dimensional, and must obey
`
γ0
´2

= I = −
`
γ1
´2

= −
`
γ2
´2

= −
`
γ3
´2

as well as anticommute with each other. The three 2×2 Pauli matrices do this, but we
need a 4th matrix (the γ0matrix) that also does this, so 2×2 (N = 2) is too small. You can
show that there are no 3×3 solutions. The next simplest thing is the 4×4 case shown here.
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γ0 =
(
I 0
0 −I

)
γi =

(
0 σi

−σi 0

)
(11.23)

where I =
(

1 0
0 1

)
is the 2 × 2 identity matrix and the σi are the 3 Pauli

matrices. Note that we can obtain many other 4× 4 solutions to (11.21) by
writing γµ′ = U†γµU where U is a 4 × 4 unitary matrix. It doesn’t matter
which γ-matrices you use as long as they satisfy (11.21).

So we see that since the γ-matrices are 4× 4, the wavefunction ψ must be
a 4-component wavefunction ψ, and that it obeys the equation

(iγµ∂µ −m)ψ = 0 (11.24)

which we now call the Dirac equation, proposed by Dirac [112] in 1927 as
a relativistic generalization of the Schroedinger equation. Any wavefunction
that obeys this equation automatically satisfies the KG equation (but not the
converse!) since all its solutions will have p2−m2 = 0. In this sense the Dirac
equation is like the “square-root” of the Klein-Gordon equation.

Note that, although ψ has four components it is not a 4-vector, in other
words it does not transform under a Lorentz transformation the way the a
4-vector does. That’s why I used Latin indices a, b to label the components
of ψ.

11.3 Physical Interpretation

So what is ψ? Let’s look at the solutions to the Dirac equation to see if we
can find out. The block-structure of the γ-matrices suggests that it might be
useful to write

ψ = u(p)e−ip·x =
(
ξ
χ

)
e−ip·x (11.25)

where ξ and χ are each 2-component objects. Recalling that pµ = (E,−~p),
and using γµ∂µ = γ0 ∂

∂t + ~γ · ~∇, the Dirac equation (11.24) then can be
decomposed as follows:

i

(
γ0 ∂

∂t
+ ~γ · ~∇

)(
u(p)e−ip·x

)
−m

(
u(p)e−ip·x

)
= 0

⇒ e−ip·x
[
i
(
−iγ0E + i~γ · ~p

)
(u(p))−m (u(p))

]
= 0

⇒ e−ip·x
(
E −m −~p · ~σ
~p · ~σ −E −m

)(
ξ
χ

)
= 0 (11.26)
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This equation breaks up into two parts

(E −m) ξ − (~p · ~σ)χ = 0
− (E +m)χ+ (~p · ~σ) ξ = 0

}
⇒ χ =

~p · ~σ
(E +m)

ξ =
|~p|

(E +m)
(p̂ · ~σ) ξ (11.27)

where I used the lower equation to determine χ in terms of ξ. Inserting this
solution into the first equation just gives

(E −m) ξ − (~p · ~σ)χ = (E −m) ξ − (~p · ~σ)2

(E +m)
ξ =

E2 −m2 − |~p|2

E +m
ξ = 0

(11.28)
since (~p · ~σ)2 = ~p · ~p, and E2 = m2 + |~p|2. Consequently the components of
ξ are not determined, and we have

ψ = N(p)

(
ξ

|~p|
(E+m) (p̂ · ~σ) ξ

)
e−ip·x = N(p)

(
ξ√

E−m
E+m (p̂ · ~σ) ξ

)
e−ip·x

(11.29)
where N(p) is an undetermined normalization. Let’s choose it to eliminate
the energy term in the denominator of ψ, so that N(p) = ψ0

√
E +m, giving

ψ = ψ0

√
2m

√E+m
2m ξ√
E−m
2m (p̂ · ~σ) ξ

 e−ip·x (11.30)

where ψ0 is just an arbitrary constant.
Now notice something. Suppose we are in the rest frame of ψ, where ~p = 0.

In this case E = m and we have

ψ (~p = 0) = ψ0

√
2m
(
ξ
0

)
e−imt (11.31)

and so there are really only two independent components of ψ, namely the
two components of ξ! We can normalize these so that

ξ(↑) =
(

1
0

)
and ξ(↓) =

(
0
1

)
(11.32)

which means that we actually have two independent solutions to the Dirac
equation

ψ(i)(x) = u(i)(x) = ψ0

√
2m

√E+m
2m ξ(i)√
E−m
2m (p̂ · ~σ) ξ(i)

 e−ip·x (11.33)

corresponding to each of these possibilities, with i =↑, ↓.
Dirac interpreted these solutions to correspond to the spin-up electron and

the spin-down electron – something I’ve anticipated in the notation above.
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The solution with ξ(↑) corresponds to a plane-wave solution of a particle whose
spin is parallel with respect to the p̂-axis, and the solution with ξ(↓) corre-
sponds to a plane-wave solution of a particle whose spin is anti-parallel with
respect to the p̂-axis. Non-relativistically we can ignore the lower two compo-
nents of ψ, as the above derivation shows. Indeed, since non-relativistically
there are only two independent solutions, the wavefunction ψ must correspond
to a spin-1/2 particle, because this is the only representation of the rotation
group that has two components!

11.4 Antiparticles

Hence the solutions to the Dirac equation are those of a relativistic particle
of spin-1/2: a relativistic spinor! Superfically it appears that the lower two
components have no physical content, but Dirac soon realized this was not
correct. Since the Dirac equation is a 4-component coupled first-order differ-
ential equation, it must have 4 independent solutions. The natural thing to
do to find these other solutions is to write

ψ = v(p)e+ip·x =
(
ξ
χ

)
e+ip·x (11.34)

and see what happens. Using the same calculational approach as before, we
find

(γµpµ +m) v(p) = 0

⇒ e+ip·x
(
E +m −~p · ~σ
~p · ~σ −E +m

)(
ξ
χ

)
= 0 (11.35)

⇒ (E +m) ξ − (~p · ~σ)χ = 0
(E −m)χ− (~p · ~σ) ξ = 0

}
⇒ ξ =

~p · ~σ
(E +m)

χ =
|~p|

(E +m)
(p̂ · ~σ)χ

where we now write ξ in terms of χ so as to have a well-defined non-relativistic
limit. Hence

ψ̂(i) = v(i)(x) = ψ̃0

√
2m

√E−m
2m (p̂ · ~σ) ξ(i)√
E+m
2m ξ(i)

 eip·x (11.36)

are two other solutions to the Dirac equation. Now the non-relativistic limit
(E → m) removes the top two components instead of the bottom two!

Note that the eip·x factor is just like the negative-energy solution to the
KG equation – and so we expect that the v(p) solution is a negative-energy
spin-1/2 plane wave. It looks like we have not cured the problem that we
encountered in the spin-0 case after all.
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Dirac thought that perhaps the v(p) solutions could be eliminated from
the theory‡. Since the solutions to the Dirac equation have spin-1/2, they
should obey the Pauli principle: there can only be one particle of a given
spin per state. So Dirac hypothesized that all states corresponding to the
v(p) solutions were filled: there was a completely filled sea of negative energy
electron states!

Weird as this might sound, it offered a reason as to why we don’t observe
the negative energy solutions – they are all occupied, and so do not physically
appear in any experiment ever carried out§. However, Dirac also realized that
if one of these states ever received an energy larger than 2mc2, the electron in
that state would “appear” as a positive energy particle, since it was excited out
of the occupied sea. It would also be accompanied by a hole in the sea that had
the same energy but opposite spin, momentum, and charge as the electron.
The hole was interpreted as a positively charged electron: the positron [113].
Hence the relativistic generalization of a spinor led to a remarkable prediction:

FIGURE 11.1
Schematic Diagram of the Dirac sea. Energy (represented by the lightning
bolt) can excite a state in the filled sea up into the empty region. We observe
this state as an electron; the hole left in the sea is observed as a positron.

the existence of antimatter! Positrons – the antiparticles of electrons – were
first observed in 1933 by Anderson [84], confirming Dirac’s prediction.

‡Dirac originally wanted to interpret these other two solutions as corresponding to the two
spin states of the proton. However, because of the eip·x factor, these solutions appear to
have negative energy (as did the eip·x solution to the Klein-Gordon equation) and so this
can’t be right. Furthermore, this would force the mass of the proton to equal that of the
electron, which is also experimentally unacceptable.
§Note that we can’t use the same reasoning for the KG equation because its solutions don’t
obey the Pauli principle.
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Nowadays we don’t think in terms of a filled sea – we regard the e−ip·x solu-
tions as corresponding to particles and the e+ip·x solutions as corresponding to
antiparticles. This approach means that we can also make this interpretation
for the KG solutions as well. Indeed the KG equation is valid for all spin-0
particles and their antiparticles; the Dirac equation is valid for all spin-1/2
particles and their antiparticles¶.

Antiparticles also have another interpretation. Notice under time reversal
that

T (exp [+ipµxµ]) = T (exp [−i (−Et+ ~p · ~x)])
= exp [−i (Et− ~p · ~x)]
= exp [−ipµxµ] (11.37)

which is like a positive energy solution! This was Feynman’s interpreta-
tion of the negative energy states: an antiparticle moving forward in time is
equivalent to a negative energy solution moving backward in time!

The Lorentz-transformation properties of the relativistic scalar are quite
simple, and we looked at them above. However, the Lorentz-transformation
properties of the relativistic spinor are quite complicated. The details don’t
matter much for the remainder of the text, and so I’ve included these prop-
erties in an Appendix.

11.5 Appendix: The Lorentz Group and Its Represen-
tations

In order to see how spinors – or any other relativistic wavefunctions – trans-
form, we’ll need to look at the underlying symmetry group. This group is
the Lorentz group, the group of all matrices Λµ ν which obey

gµνΛµ αΛµ β = gαβ (11.38)

Since this is similar to rotations (RTR = I), let’s proceed the way we did in
Chapter 3. In that case we wrote R (θ) = exp

[
i~θ · ~J

]
, and then used closure

under small rotations to get the commutation relations for the rotation group,
whose generators are the 3 ~J ’s. In a similar manner, Lorentz transformations
are either of the form

Λrot (11.39)

¶This interpretation of particle and antiparticle wavefunctions properly requires the con-
ceptual and calculational foundations of quantum field theory [97].
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=




1 0 0 0
0 1 0 0
0 0 cos θx sin θx
0 0 − sin θx cos θz

 ,


1 0 0 0
0 cos θy 0 − sin θy
0 0 1 0
0 sin θy 0 cos θy

 ,


1 0 0 0
0 cos θz sin θz 0
0 − sin θz cos θz 0
0 0 0 1




or, for boosts

Λboost (11.40)

=




γx −βxγx 0 0
−βxγx γx 0 0

0 0 1 0
0 0 0 1

 ,


γy 0 −βyγy 0
0 1 0 0

−βyγy 0 γy 0
0 0 0 1

 ,


γz 0 0 −βzγz
0 1 0 0
0 0 1 0

−βzγz 0 0 γz




where γx = 1/
√

1− β2
x etc.

We write ~θ = θn̂ to denote a rotation of angle θ about an axis pointing in
the direction of the unit vector n̂, and ~β = βn̂ to denote a boost to velocity
βc along the n̂ direction. For small |~θ| and |~β| we obtain the generators{

Ĵ x, Ĵ y, Ĵ z
}

(11.41)

=

−i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ,−i


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 ,−i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


{

K̂x, K̂y, K̂z
}

(11.42)

=

−i


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ,−i


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,−i


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0




which can easily be shown to give the commutation relations[
Ĵ x, Ĵ y

]
= iĴ z + cyclic[

K̂x, K̂y
]

= −iĴ z + cyclic (11.43)[
Ĵ x, K̂y

]
= iK̂z + cyclic

The first part is the familiar set of commutation relations from the rotation
group SO(3). The rest of the commutation relations indicate how the boost
generators K̂i interact with the rest of the group.



212 An Introduction to Particle Physics and the Standard Model

T
A

B
L
E

1
1
.2

R
ot

at
io

ns
co

m
pa

re
d

to
L

or
en

tz
tr

an
sf

or
m

at
io

ns
Sp

in
Ir

re
p

T
er

m
in

ol
og

y
Fu

ll
T

ra
ns

fo
rm

at
io

n

s
=

0
S
µ
ν

=
0

Sc
al

ar
φ
′ (
x

)
=
φ
( Λ
−

1
x
)

s
=

1 2
(S

µ
ν
)
b a

=
i 4

([
γ
µ
,γ
ν
])
b a
≡

(Σ
µ
ν
)
b a

Sp
in

or
ψ
′ a
(x

)
=

ex
p
[ i 2
ω
µ
ν
Σ
µ
ν
] b a
ψ
b

( Λ
−

1
x
)

s
=

1
(S

µ
ν
)
β α

=
i
( gµβ

δν α
−
g
ν
β
δµ α
) ≡(

J
µ
ν
)
β α

V
ec

to
r

A
′ α

(x
)

=
ex

p
[ i 2
ω
µ
ν
J
µ
ν
] β α

A
β

( Λ
−

1
x
)

a
,b

=
1,

2,
3,

4
:

D
ir

ac
in

di
ce

s
α
,β

=
0,

1,
2,

3
:

L
or

en
tz

in
di

ce
s



Wave Equations for Elementary Particles 213

The algebra of the Lorentz group is a bit awkward written in this way. We
can clean things up by writing

J0i = −Ji0 = iK̂i Jij = εijkĴ k (11.44)

so that [
Jµν , Jλσ

]
= −i

(
gµλJνσ − gµσJνλ + gνσJµλ − gνλJµσ

)
(11.45)

which embodies all the relations between the Ĵ ’s and K̂’s above.
We now regard any solution to (11.45) as a valid way to represent a Lorentz

transformation. The most general solution is

(Jµν) MN =
[
Lµνδ MN + (Sµν) MN

]
(11.46)

where Lµν is the orbital part and Sµν the spin part of the Lorentz generators.
Analogous to the rotation group we have

Lµν = i (xµ∂ν − xν∂µ) (11.47)

and it is not too hard to show that Lµν is a solution to (11.45). In the
rest-frame of a particle, this will vanish when acting on any wavefunction; all
that will remain is the spin-operator Sµν acting on the wavefunction.

Hence we classify particles by their spin-values – i.e. by the possible Sµν ’s
that are irreducible solutions to (11.45). Finding all of these is an exercise
in group theory beyond the scope of this text. The answer turns out to be
analogous to what happened with rotations, as shown in table 11.2.

The matrix Σµν = i
4 ([γµ, γν ]), and the associated tensor ωµν is a parameter

matrix; it’s analogous to the ~θ parameters in rotations. In fact, by comparing
the Lorentz rotations to the standard rotations, we find

ωij = εijkθk and sinhω0j ≡ sinh ηj = βjγj =
βj√

1− β2
j

(11.48)

The quantities θk are called the rotation angles and the quantities ηj are called
the rapidity parameters. Note also that the Lorentz and Dirac indices are quite
distinct from each other, even though both take on 4 different values. This is
a coincidence that holds only in 4 spacetime dimensions‖. And don’t confuse
the relativistic γj =

(
1− β2

j

)−1/2 with the Dirac gamma matrices – they are
mathematically distinct quantities that for reasons of historical accident make
use of the same symbol.

‖The range of a Lorentz index is from 0 to d − 1 in d spacetime dimensions, whereas the
range of a Dirac index is from 0 to 2[d/2] where [d/2] is the integer just less than d/2. Hence
a spinor in 11 dimensions has 32 components, but a vector has only 11.
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Let’s look a little more closely at the spinor transformation matrices. We
have

Σ0i =
i

4
([
γ0, γi

])
= − i

2

(
0 σi

σi 0

)
(11.49)

Σij =
i

4
([
γi, γj

])
= − i

4

([
σi, σj

]
0

0
[
σi, σj

]) =
1
2
εijk

(
σk 0
0 σk

)
(11.50)

So for rotations

i

2
ωµνΣµν =

i

2
ωijΣij =

i

2
εijkθkΣij =

i

2

(
~θ · ~σ 0

0 ~θ · ~σ

)

⇒ exp
[
i

2
εijkθkΣij

]
=

 exp
(
i
2
~θ · ~σ

)
0

0 exp
(
i
2
~θ · ~σ

)(11.51)

and for boosts

i

2
ωµνΣµν = iω0iΣ0i = iηkΣ0k =

1
2

(
0 ~η · ~σ
~η · ~σ 0

)
⇒ exp

(
iηkΣ0k

)
= exp

[
1
2

(
0 ~η · ~σ

~η · ~σ 0

)]
= cosh

(
|~η|
2

)
+ η̂ ·

(
0 ~σ
~σ 0

)
sinh

(
|~η|
2

)
(11.52)

where the last line follows by taking the power series of the exponential func-
tion and noting that(

0 ~η · ~σ
~η · ~σ 0

)2

=
(

(~η · ~σ)2 0
0 (~η · ~σ)2

)
=
(
~η · ~η 0
0 ~η · ~η

)
= |~η|2

(
I 0
0 I

)
= |~η|2 I4×4 (11.53)

where I4×4 is the 4× 4 identity matrix.
Consider a spinor of the form

ψ =
(
ζ
%

)
Under rotations it transforms as

ψ′ = exp

[
i

2

(
~θ · ~σ 0
0 ~θ · ~σ

)]
ψ =

 exp
(
i
2
~θ · ~σ

)
ζ

exp
(
i
2
~θ · ~σ

)
%

 (11.54)
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and so we see that rotations do not mix up the upper and lower components.
This is consistent with our non-relativistic experience that an electron wave-
function (which would have only the upper two components) can always be
rotated into a form that is fully spin-up or fully spin-down.

If ~θ = 2πẑ, then we can easily show that ψ′ = −ψ, which is what a spinor
must do under a 2π rotation as we saw in Chapter 5 (see eq. (5.18)). Under
a boost it transforms as

ψ′ = exp
[

1
2

(
0 ~η · ~σ
~η · ~σ 0

)]
ψ

=

 cosh
(
|~η|
2

)
ζ + η̂ · ~σ sinh

(
|~η|
2

)
%

cosh
(
|~η|
2

)
%+ η̂ · ~σ sinh

(
|~η|
2

)
ζ

 (11.55)

and so we see that boosts do mix up the upper and lower components. Hence
a moving spinor is a linear combination of electron-like and positron-like wave-
functions.

One other issue – what exactly is γµ? Is it a 4-vector or a matrix? Actually
it’s a bit of both. Using the relationships above it is possible to show that

S−1γµS = Λµνγ
ν (11.56)

where exp
[
i
2ωµνΣµν

]
= S is the Lorentz-transformation matrix for a spinor

under a Lorentz transformation x′µ = Λµνx
ν . Using this it is not too hard to

show the following relationships

ψ
′
ψ′ = ψψ (11.57)

ψ
′
γ5ψ′ = det (Λ)

(
ψγ5ψ

)
(11.58)

ψ
′
γµψ′ = Λµν

(
ψγνψ

)
(11.59)

ψ
′
γµγ5ψ′ = det (Λ) Λµν

(
ψγνγ5ψ

)
(11.60)

where γ5 = iγ0γ1γ2γ3 is the product of all the γ-matrices, and ψ ≡ ψ†γ0. We
see that ψψ transforms as a scalar, but ψγ5ψ transforms as a pseudoscalar,
since det (Λ) = −1 under a reflection. Similarly, ψγνψ has the properties of
a 4-vector and ψγνγ5ψ the properties of a 4-pseudovector.

11.6 Questions

1. Show for Dirac spinors u(p) and v(p) that∑
i=↑,↓

u(i)
a (p)u(i)

b (p) =
(
/p+m

)
ab

and
∑
i=↑,↓

v(i)
a (p)v(i)

b (p) =
(
/p−m

)
ab
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2. Find spinors u that satisfy (γµpµ −m)u(p) = 0 that have positive en-
ergy and that are eigenstates of the operator p̂ · ~S where is the unit
vector of the 3-momentum of the spinor and

~S =
}
2
~Σ =

}
2

(
~σ 0
0 ~σ

)
is the spin angular momentum operator.

3. (a) Write the Dirac equation in Hamiltonian form by isolating the time-
derivative of the spinor ψ on the left-hand side of the equation. The
Hamiltonian H will be the operator on the right-hand side of the equa-
tion. What is H?

(b) Find the commutator of H with the orbital angular momentum
operator ~L.

(c) Find the commutator of H with the spin angular momentum oper-
ator ~S.

(d) Find the commutator of H with the total angular momentum oper-
ator ~J = ~L+ ~S.

(e) Show that all spinors are eigenstates of ~S · ~S = S2. Since S2 =
}2s (s+ 1), what is the value of s for a Dirac spinor?

4. Prove the following

Tr [I] = 4 and Tr [γµγν ] = 4gµν

Tr [odd # of γ-matrices] = 0
Tr
[
γµγνγαγβ

]
= 4

(
gµνgαβ − gµαgνβ + gµβgνα

)
Tr
[
γ5γµγνγαγβ

]
= −4iεµναβ with ε0123 = −1

γαγ
νγα = −2γν

γαγ
µγνγα = 4gµν

Tr
[
γ5
]

= 0

where εµναβ is the 4-dimensional Levi-Civita symbol (or epsilon-tensor)
which obeys

ε0123 = −1 ε0123 = +1

εµναβ =
{
−1 (if µναβ is an even permutation of 0123)
+1 (if µναβ is an odd permutation of 0123)

εµναβ =
{

+1 (if µναβ is an even permutation of 0123)
−1 (if µναβ is an odd permutation of 0123)

5. Writing exp
[
i
2ωµνΣµν

]
= S, show

S−1γµS = Λµνγ
ν
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where x′µ = Λµνx
ν is a Lorentz-transformation. (Hint: use exp(z) =

limN→∞
(
1 + z

N

)N ).

6. Verify the following Lorentz transformation properties:

ψ
′
ψ′ = ψψ

ψ
′
γ5ψ′ = det (Λ)ψγ5ψ

ψ
′
γµψ′ = Λµνψγ

νψ

ψ
′
γµγ5ψ′ = det (Λ) Λµνψγ

νγ5ψ

for a Dirac spinor ψ.

7. Charge-conjugation transforms a spinor ψ according to the relation

Cψ = iγ2ψ∗

where the ∗ denotes the complex-conjugate. Compute the charge-conjugates
of v(↑)(x) and v(↓)(x). How do they compare to u(↑)(x) and u(↓)(x)?
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12

Gauge Invariance

Perhaps the most powerful symmetry principle in physics associated with the
non-gravitational interactions is gauge invariance. It forms the foundation
of our understanding of the Standard Model and all of its generalizations.
Its origins emerged in the 1820s with the discovery of electromagnetism and
the first theory of electrodynamics. Over a period of several decades of ex-
perimental study and theoretical refinement, physicists realized that different
forms of the vector potential result in the same observable forces. James Clerk
Maxwell [114] formulated the equations of electromagnetism that embody the
first known gauge principle, though the nomenclature “gauge” was not used
then and the equations were written in a rather obscure way that many peo-
ple found hard to understand. The quest to understand relativistic quantum
mechanics in 1926 led Klein [115] to formulate the Klein-Gordon equation in
such a way that Fock [116] discovered it was invariant with respect to mul-
tiplication of the wave function by a phase factor that depended on position
and location, provided one incorporated the vector potential in a suitable way
[117].

Hermann Weyl [118] declared this invariance as a general principle and
called it Eichinvarianz in German and gauge invariance in English. In this
chapter I will introduce you to this principle in its simplest context.

12.1 Solutions to the Dirac Equation

We have seen that the Dirac equation

(iγµ∂µ − m) ψ = 0 (12.1)

has the following complete set of solutions
{

u(i)(p)e−ip·x, v(i)(p)eip·x
}

i =↑, ↓
(
/p − m

)
u(p) = 0

(
/p + m

)
v(p) = 0 (12.2)

u(i)(p) =
√

2m




√
E+m
2m ξ(i)

√
E−m
2m (p̂ · �σ) ξ(i)


 v(i)(p) =

√
2m




√
E−m
2m (p̂ · �σ) ξ(i)

√
E+m
2m ξ(i)




219
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where for convenience I have employed the “slash” notation, in which any
4-vector that is multiplied by a γ-matrix is written with a slash through it:
for example, /p = γµpµ and /∂ = γµ∂µ.

If we wanted to obtain quantum probabilities from these solutions, we might
expect that the relevant quantity to compute is ψ†ψ. Let’s try this for a
specific u-type solution that is, say, spin-up. We find

ψ†(↑)ψ(↑)

= u†(↑)(p)u(↑)(p)

=
(
ψ0

√
2m
)2 (√

E+m
2m ξ(↑)†

√
E−m
2m ξ(↑)† (p̂ · ~σ†))

√E+m
2m ξ(↑)√
E−m
2m (p̂ · ~σ) ξ(↑)


= 2mψ2

0

[(
E +m

2m

)
ξ(↑)†ξ(↑) +

(
E −m

2m

)
ξ(↑)† (p̂ · ~σ†) (p̂ · ~σ) ξ(↑)

]
= 2mψ2

0

[(
E +m

2m

)
+
(
E −m

2m

)]
= 2Eψ2

0 (12.3)

which is not Lorentz invariant! The final answer depends on the energy, whose
value depends upon the (boosted) frame of reference, and so the probability
will depend on the frame as well.

Clearly ψ†ψ is not the correct thing to compute. But what is? How can we
fix this problem?

Notice that if the two factors in the second-last line were subtracted, then
we would have a Lorentz-invariant quantity. This means that we need the
lower two components to subtract instead of add. We can arrange for this to
happen by defining the conjugate of ψ to be ψ ≡ ψ†γ0. In this case we find

ψ
(↑)
ψ(↑)

= u(↑)(p)u(↑)(p)

=
(
ψ0

√
2m
)2

√E+m
2m ξ(↑)†

√
E−m
2m ξ(↑)† (p̂ · ~σ†) ( I 0

0 −I

) √E+m
2m ξ(↑)√
E−m
2m (p̂ · ~σ) ξ(↑)


=
(
ψ0

√
2m
)2 (√

E+m
2m ξ(↑)†

√
E−m
2m ξ(↑)† (p̂ · ~σ†))

√E+m
2m ξ(↑)

−
√

E−m
2m (p̂ · ~σ) ξ(↑)


= 2mψ2

0

[(
E +m

2m

)
ξ(↑)†ξ(↑) −

(
E −m

2m

)
ξ(↑)† (p̂ · ~σ†) (p̂ · ~σ) ξ(↑)

]
= 2mψ2

0

[(
E +m

2m

)
−
(
E −m

2m

)]
= 2mψ2

0 (12.4)

which is Lorentz-invariant!
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The idea that the conjugate of ψ is not just its complex-conjugate transpose
(i.e. the dagger) may seem strange, but it actually is what we need to make
sense of the conjugate of the Dirac equation. Taking its dagger, we find

0 = ((iγµ∂µ −m)ψ)† = −i∂µψ† (γµ)† −mψ† (12.5)

which doesn’t look much like the conjugate of the Dirac equation. However,
using the relation∗ (γµ)† = γ0γµγ0 (and the fact that

(
γ0
)2 = 1) we get

0 = ((iγµ∂µ −m)ψ)† = −i∂µψ† (γµ)† −mψ† = −
(
i∂µψγ

µ +mψ
)
γ0

⇒ ψ
(
i
←−
∂ µγ

µ +m
)

= 0 (12.6)

where the symbol ←−∂ µ means that the derivative operator acts on objects to
its left.

So it is ψ that obeys the conjugate Dirac equation, and we say that ψ is
the adjoint of ψ.

12.2 Conserved Current

How then do we interpret ψ†ψ? Well, we can write ψ†ψ = ψγ0ψ, which
looks like the 0-th component of a 4-vector. Indeed, from eq. (11.59) in
Chapter 11, we know that ψγµψ has the transformation properties of a 4-
vector. Furthermore, the Dirac equation implies that

∂µ
(
ψγµψ

)
=
(
∂µψγ

µ
)

(ψ) + ψγµ∂µψ = imψψ − imψψ = 0 (12.7)

which means that ψγµψ is conserved! Suppose we set ψ†ψ ∝ ρ and ψ†γ0~γψ ∝−→J . We then find that

0 = ∂µ
(
ψγµψ

)
= ∂0

(
ψ†ψ

)
+ ~∇ ·

(
ψ†γ0~γψ

)
∝ ∂ρ

∂t
+−→∇ · −→J (12.8)

which is just like the conservation of an electric current J µ = (ρ,−→J ) :

∂ρ

∂t
+−→∇ · −→J = 0⇔ ∂µJ µ = 0 (12.9)

In other words, the Dirac equation automatically has a conserved current
ψγµψ!

Indeed, if we assume that the wavefunction ψ is that of an electron, it
should have a charge (−e), and it is tempting to interpret ρ = −eψ†ψ as its

∗This is easily proved by brute force. Just check it for each value of µ.
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charge density and −→J = −e
(
ψ†γ0~γψ

)
= −eψ~γψ as its electric current. Dirac

thought that this was correct, and suggested using it in Maxwell’s equations
−→∇ · −→E = ρ = −eψ†ψ (12.10)

−∂
−→
E

∂t
+−→∇ ×−→B = −→J = −eψ~γψ (12.11)

as the current and charge density.

12.3 The Gauge Principle

The presence of a conserved current indicates the presence of a symmetry.
Let’s see what that symmetry is.

If we are going to use the 4-current −eψγµψ as a source for Maxwell’s equa-
tions, then we should also modify the Dirac equation; otherwise the Dirac
wavefunction will influence the evolution of the electromagnetic field (it pro-
vides a source for the field), but the electromagnetic field won’t affect the
evolution of the electron (which it must, from observation).

How can we do this? Consider the phase of ψ(x). The charge and current
densities remain unchanged if we redefine ψ(x) → eiαψ(x), where α is some
constant. This is as we expect – the diffraction pattern of an electron beam is
insensitive to phase changes. However, we actually have more: we would find
that ρ and −→J would remain the same even if α = α(x) – even if we changed
the phase differently at every point in space and time! Can we impose this
much more powerful symmetry?

At first, it looks like it might be hard to do this. Under the transformation
ψ(x)→ ψ′(x) = eiα(x)ψ(x) we find that the Dirac equation changes

(iγµ∂µ −m)ψ′ = eiα(x) [(iγµ∂µ −m)ψ − γµ (∂µα)ψ] (12.12)

because we pick up derivatives of α. Since we want this more powerful
invariance to hold (i.e., we want α = α(x)), we must invent a new kind of
derivative operator Dµ such that (Dµψ)′ = eiα(x)Dµψ. For this to work, we
will need to introduce another 4-vector – let’s call it Aµ(x) – that ensures this
transformation property. This 4-vector – referred to as a vector field, since it
depends on space and time – has to compensate for the ∂µα term. So let’s
define

DµΨ = ∂µΨ + ieAµΨ (12.13)

which can be valid for any wavefunction Ψ (and not just a Dirac wavefunction).
This new derivative operator will cancel out the α-derivative provided we
require the transformation to be

Ψ′(x) = eiα(x)Ψ(x) and A′µ = Aµ −
1
e
∂µα (12.14)
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so that

(DµΨ)′ = eiα(x)

[
∂µΨ + i (∂µα) Ψ + ie

(
Aµ −

1
e
∂µα

)
Ψ
]

= eiα(x)DµΨ

(12.15)
This transformation is called a gauge transformation. If α is constant then

we call it a global gauge transformation, whereas if α is a function we call it a
local gauge transformation†. Note that the group of transformations depends
upon one continuous parameter α. From our discussion on Lie Groups in
Chapter 3 (recall table 3.3) we know that this group of transformations is
U(1): the set of transformations of unitary 1 × 1 matrices (i.e. of complex
phases). The derivative operator Dµ is called a gauge covariant derivative
because it “co-varies” along with the gauge transformation (i.e. it transforms
the same way that Ψ does). The object Aµ must be a 4-vector by Lorentz
covariance, and is in general a function of space and time.

So the locally gauge invariant Dirac equation is

(iγµDµ −m)ψ = 0 (12.16)

which couples the wavefunction ψ to Aµ.

12.4 The Maxwell-Dirac Equations

Now we need an equation for Aµ to obey – one that is gauge invariant, Lorentz-
covariant and (we hope) simple. We could try

∂µAµ = 0 (12.17)

which is simple, but not gauge invariant. The next-simplest thing to try is
something with two derivatives‡. So let’s try

a∂µ∂
µAν + b∂ν∂

µAµ = 0 (12.18)

where a and b are constants, and demand that it be gauge-invariant:

0 = a∂µ∂
µA′ν+b∂ν∂µA′µ = a∂µ∂

µAν+b∂ν∂µAµ−
1
e

(a+b) (∂µ∂µ∂να) (12.19)

†The terms local and global can be understood like this. Consider a cubic box filled with
billiard balls all of the same color that are closely packed. Rotation of this box about any
axis through its center by a 90o angle leaves the box looking the same. This is a global
transformation because we have done the same thing to every ball in the box. However,
if every ball is individually rotated by any amount about any axis (while remaining inside
the box of course) then this operation also leaves the box looking the same. This is a local
transformation – we have acted differently on every ball in the box.
‡Note that we can’t use the γ-matrices here because Aµ has no spinor indices.
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which forces a+ b = 0. Scaling out the constant a gives

∂µ∂
µAν − ∂ν∂µAµ = 0 (12.20)

which may be rewritten as

∂µFµν = 0 where Fµν = ∂µAν − ∂νAµ (12.21)

The quantity Fµν is obviously gauge invariant:

F ′µν = ∂µA
′
ν − ∂νA′µ = ∂µ

(
Aν −

1
e
∂να

)
− ∂ν

(
Aµ −

1
e
∂µα

)
= ∂µAν − ∂νAµ = Fµν (12.22)

It also obeys
∂λFµν + ∂µFνλ + ∂νFλµ = 0 (12.23)

Now notice if we write

Fi0 =
∂A0

∂xi
− ∂Ai

∂t
= Ei and Fij =

∂Aj
∂xi
− ∂Ai
∂xj

= εijkBk (12.24)

then the previous two equations become

∂µFµν = 0 ⇒

{ −→∇ · −→E = 0

−∂
−→
E
∂t +−→∇ ×−→B = 0

(12.25)

∂λFµν + ∂µFνλ + ∂νFλµ = 0⇒

{ −→∇ · −→B = 0
∂
−→
B
∂t +−→∇ ×−→E = 0

(12.26)

which are eqs. (12.10,12.11) with ρ = J = 0: the source-free Maxwell-
equations!

We therefore interpret Aµ = (ϕ,−→A ) to be the electromagnetic 4-vector po-
tential, with −→A the usual vector potential and ϕ = A0 the Coulomb potential.
Since Aµ has a single 4-vector index it transforms like a spin-1 wavefunction
under Lorentz-transformations: A′µ = Λ ν

µ Aν . The quantity Fµν is the field
strength of this potential (sometimes referred to as the Faraday tensor) since
it encodes both the electric and magnetic fields that are determined from Aµ.

Based on Dirac’s idea above, we now see how to couple Aµ to ψ. We write

∂µFµν = Jν (12.27)

and this will modify the first two Maxwell equations as already noted. The
current Jν can actually be anything provided it is conserved since

∂νJν = ∂ν∂µFµν = 0 (12.28)
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where the latter equality holds because Fµν = −Fνµ and ∂ν∂µ = ∂
∂xν

∂
∂xµ

=
∂
∂xµ

∂
∂xν

= ∂µ∂ν . However, we want to couple Aµ to ψ and vice versa, so we

set J µ = −eψγµψ and write the following closed system of equations:

∂µFµν = −eψγνψ
(iγµDµ −m)ψ = 0

(12.29)

which are called the Maxwell-Dirac Equations.
The Maxwell-Dirac equations, when quantized, are the theory of Quantum

Electrodynamics, or QED. Formulated by Tomonaga [108], Feynman [103],
and Schwinger [109], it was the first quantum field theory constructed, and
the one with the most spectacular agreement between theory and experiment
of any non-gravitational theory known – up to parts in a trillion!

12.4.1 Physical Features of the Maxwell-Dirac Equations

The Maxwell-Dirac equations have a number of important features that I shall
summarize here.

1. All non-gravitational interactions are founded on the principles we used
to construct QED, namely Lorentz-covariance and local gauge invari-
ance. For QED the local gauge invariance is just a local phase invari-
ance. For the weak and strong interactions there is also a local gauge
invariance that has a conceptually similar character but becomes more
complicated in detail, as we’ll see in subsequent chapters.

2. The gauge principle – plus the simplicity of minimal coupling (the fewest
number of derviatives and terms possible in each equation) gave us a
set of four wave equations for the spin-1 wavefunction Aµ. We know
these equations as Maxwell’s equations. As a consequence of the gauge
principle the Aµ wavefunction (or gauge field as it is more commonly
called) is massless. A mass term m would modify eq. (12.27) to be

∂µFµν +m2Aν = Jν

but this would not be invariant under the gauge transformation (12.14),
and so we must set the mass to m = 0. This is a general consequence
of gauge invariance – the gauge fields are massless. In QED we call the
particle whose wavefunction is Aµ the photon.

3. The group of gauge transformations depends on one parameter – the
phase function α – and so the symmetry group of the theory is U(1).
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4. The local gauge invariance implies that the charge Q = −e
∫
d3xψγ0ψ

is conserved§.

5. Gauge-invariant theories are renormalizable: they have predictive power.

12.5 The Wavefunction of the Photon

We can solve the source-free Maxwell equations for Aµ quite easily. Suppose
we have a solution Aµ for the source-free Maxwell equations. Then Aµ + ∂µλ
also solves this system, and we can use the gauge freedom in the function λ
to impose a constraint on Aµ:

∂µAµ = 0 (12.30)

a constraint known as the Lorentz condition¶. In this case Maxwell’s equations
become

∂µ∂
µAν = 0 (12.31)

which is like a set of four massless Klein-Gordon equations – one for each
component of Aµ. Hence the solution is

Aν(x) = a0εν(p)e−ip·x (12.32)

where a0 is a constant and the Maxwell equations and the Lorentz condition
imply

p2 = 0 and ε · p = 0 (12.33)

§This can be shown as follows.

d

dt
Q = −e

Z
d3x

∂

∂t

“
ψγ0ψ

”
= +e

Z
d3x ~∇ ·

“
ψ~γψ

”
= e

I
d~S ·

“
ψ~γψ

”
= 0

where the 3rd line follows from Gauss’ theorem and the last line follows by taking the
surface intergral to be at large distance where ψ vanishes.
¶Two years after Maxwell the Danish physicist Ludvig Lorenz [119] also formulated the
basic equations for electromagnetism, and reached the same conclusions Maxwell did about
the relationships between light, charge, and current. He also formulated eq. (12.30), so we
really should call this the Lorenz condition. However, more than 40 years later the Dutch
physicist H. A. Lorentz wrote extensive encyclopedia articles and a book on electromag-
netism [120] establishing him as an authority in classical electrodynamics and leading the
community to refer to eq. (12.30) as the Lorentz condition. So don’t feel too guilty if you
accidentally drop the ‘t’ every now and then!
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The quantity εµ(p) characterizes the spin of the photon. It looks like it has
three independent components, since ε ·p = 0 is only one condition. However,
this is not right: the Lorentz condition (12.30) does not allow us to uniquely
specify Aµ because we could perform a further gauge transformation with
functions ζ that obey ∂µ∂µζ = 0. To eliminate this last bit of indeterminacy
we can impose

A0 = 0 −→∇ · −→A = 0 (12.34)

a set of constraints known as the Coulomb gauge, in which case

εµ = (0, ε̂) where ε̂ · ε̂ = 1 and ε̂ · ~p = 0 (12.35)

and so εν(p) actually has only two independent components. These corre-
spond to the two possible polarization states – or spin states – of the photon.

For a photon moving in the ẑ-direction, we can write

εµ(x) = (0, 1, 0, 0) εµ(y) = (0, 0, 1, 0) (12.36)

and any photon wavefunction will consist of some complex linear combinations
of these two polarizations. For example a circularly polarized photon would
have

εµ(+) = − 1√
2

(0, 1, i, 0) εµ(−) =
1√
2

(0, 1,−i, 0) (12.37)

and these correspond to the two spin states sz = ±1 of the photon.
So instead of four independent components for the photon wavefunction

Aµ we have only two. But a massive spin-s particle has 2s + 1 spin states
as we saw in Chapter 5. Since the photon has spin s = 1, shouldn’t it have
2s + 1 = 3 independent spin states instead of 2? The reason it has only two
independent spin states is because the photon is massless. This means that
there is no rest frame for the photon (or any massless particle), which in turn
means that is not possible for an observer traveling in the same direction as
the particle to move faster than the particle and observe a reversal of the
component of its spin along its direction of motion. Hence the component
of spin along the direction of motion for any massless particle must be fixed,
which means that it must be either aligned or antialigned with its direction of
motion. Hence a massless spin-s particle has only two spin states regardless
of the value of s (unless s = 0 in which case it has only one spin state).

We are now in a position to be able to write down the Feynman rules for
QED, the subject of the next chapter.

12.6 Questions

1. Apply the local gauge invariance principle to the Schroedinger equation.
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2. Find the Maxwell-Klein-Gordon equations, applying the same procedure
that was used to find the Maxwell-Dirac equations. Note that you will
have to consider a complex scalar field ϕ in order to make this work.

3. Show that the current

ie
[
ϕ∗ (Dµϕ)− (Dµϕ)∗ ϕ

]
is conserved for solutions to the Maxwell-Klein-Gordon equations.

4. (a) Find the charge density ρ and current density ~J from the current in
question #3.

(b) Consider a gauge transformation that makes ϕ purely a real scalar.
How does your answer to part (a) change?

5. Write the equation
(iγµDµ −m)ψ = 0

in Hamiltonian form by isolating the time-derivative of the spinor ψ
on the left-hand side of the equation. The Hamiltonian H will be the
operator on the right-hand side of the equation. What is H?

6. (a) For a wavefunction Ψ with charge e show that

[Dµ, Dν ] Ψ = ieFµνΨ

(b) Use the preceding relation to show that Fµν is gauge-invariant. This
provides another way to obtain the field strength of the electromagnetic
potential.

7. (a) Consider a modification to the Maxwell-Dirac equation

(iγµDµ −m)ψ = gϕψ

where ϕ is a scalar wavefunction and g is a constant. How must ϕ
transform if this equation is to remain gauge-covariant?

(b) Find the corresponding equation obeyed by ψ̄ that is gauge-covariant.

8. Consider a theory of one complex scalar particle with wavefunction ϕ
and two spin- 1

2 particles ψ and χ, each of which couples to the photon
via the equations

(iγµDµ −mψ)ψ = gϕχ

(iγµDµ −mχ)ψ = gϕ∗ψ

DµDµϕ+m2
ϕϕ = gψ̄χ

where m2
ϕ, mψ, and mχ are the respective masses of the ϕ, ψ and χ

particles.
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(a) Find the most general local phase transformation of ϕ, ψ and χ
that leaves this system gauge-covariant.

(b) What is the relationship between the charges of ϕ, ψ and χ ?

(c) In Maxwell’s equations

∂µFµν = Jν

what is the current Jν for this theory?
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Quantum Electrodynamics

Quantum Electrodynamics – or QED – is the quantum theory of electromag-
netism that is founded on the Maxwell-Dirac Equations:

∂µFµν = Jν

(iγµDµ − m) ψ = 0 where
Dµ = ∂µ + ieAµ

Fµν = ∂µAν − ∂νAµ
(13.1)

The current Jν can be anything that obeys the conservation law ∂νJν = 0.
For fermions it has the form

Jν = e1ψ1γνψ1 + e2ψ2γνψ2 + · · · + J ext
ν (13.2)

where ej is the charge of the “j-th” particle ( e.g. −e for electrons, +2
3e for

up-quarks, etc.), and ψj is its wavefunction. Each ψj obeys its own Dirac
equation

(iγµ (∂µ + iejAµ) − mj) ψj = 0 (13.3)

where the repeated index “j” is NOT summed over, since it denotes which kind
of particle we are considering. The J ext

ν part is called an external current;
we include it if we want to consider particles moving in some background
electromagnetic field∗.

QED is one of three parts of the Standard Model of Particle Physics (usually
referred to as the “Standard Model”), the other two parts being the theories
of the strong and weak interactions. The basic structure and foundations of
QED [121] are incorporated into the other parts of the Standard Model, and
so what we learn from QED will be useful when it comes to learning about
the other parts of the Standard Model. We will also see beginning in Chapter
23 that QED is actually subsumed into a more comprehensive theory called
Electroweak theory, and in this sense the Standard Model has only two parts.
For now we will treat QED separately.

Table 13.1 recapitulates the solutions to these equations that we obtained in
previous chapters (or that, as for the completeness relations, you can deduce
from calculation as per the questions at the end of this chapter).

∗A background field, by definition, is assumed to be purely classical. Of course as far as
we know quantum mechanics is pervasive and there is no physical system that is purely
classical. So what we mean by a background quantity is one whose quantum effects are
negligible relative to its classical ones. For example, if we act on an electron using a large
magnet, we can generally treat the magnet and its magnetic field using classical physics, in
which case we say that the magnet generates a background magnetic field.

231
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We can test QED by determining its predictions. This is done in two ways.

1. Bound States: Electromagnetism is the force that binds atoms together.
By considering the Maxwell-Dirac equations for bound systems we can
search for phenomena peculiar to QED. We’ll look at this in Chapter
14.

2. Scattering: As with the toy theory, we wish to compute the matrix
element M

−iM = 〈p′1 · · · p′m |M| p1 · · · pn〉 =
sum of all relevant

Feynman Diagrams
(13.4)

= αf(p′, p) + α2g(p′, p) + · · ·

where α is the fine-structure constant that we encountered in Chapter
6, experimentally given by

α =
e2

4π}c
=

1
137.035989

' 1
137

(13.5)

It is a dimensionless number that characterizes the strength of the elec-
tromagnetic coupling. Since it is small, we compute all matrix elements
as a perturbation series, using α as the expansion parameter.

FIGURE 13.1
A general QED diagram.
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13.1 Feynman Rules for QED

Now let’s write down the Feynman rules for QED. For comparison I will
include the rules for scalars where appropriate.

1. NOTATION. Label the incoming (outgoing) four-momenta as p1, p2, . . . , pn
(p′1, p

′
2, . . . , p

′
m) , the incoming (outgoing) spins as s1, s2, . . . , sn (s′1, s

′
2, . . . , s

′
m),

the incoming (outgoing) photon polarizations as εµ1 , ε
µ
2 , . . . (εµ′1 , ε

µ′
2 , . . .), and

label the internal four-momenta q1, q2, . . . , qj . Assign arrows to the lines as
shown in fig. 13.1.

Note that in fig. 13.1 time flows from bottom to top, wiggly lines are
photons, and lines with arrows are fermions (if they point upward with time)
or antifermions (if they point downward against time).

2. EXTERNAL LINES. Each external line contributes a factor as follows
where I’ve included scalars for comparison. Note that the factors associated

FIGURE 13.2
External lines in QED.

with external lines correspond to the incoming/outgoing plane-wave states;
this is consistent with our scattering assumption that all particles are free
particles in the past/future asymptotic limits. For the scalars in the toy
theory this rule was not required because the factor was unity.

3. INTERNAL LINES. Each internal line contributes a factor shown in figure
13.3, where m is the mass of the particle. As before q2 6= m2 because the
particle flowing through the line is virtual (i.e. it does not obey its equations
of motion). These internal lines are called propagators.

The next two rules are the same as for ABB theory.
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FIGURE 13.3
Internal lines in QCD.

4. CONSERVATION OF ENERGY AND MOMENTUM For each vertex,
write a delta function of the form

(2π)4δ(4) (k1 + k2 + k3 + · · ·+ kN )

where the k’s are the four-momenta coming into the vertex (i.e. each kµ will
be either a qµ or a pµ). If the momentum leads outward, then kµ is minus the
four-momentum of that line). This factor imposes conservation of energy and
momentum at each vertex (and hence for the diagram as a whole) because
the delta function vanishes unless the sum of the incoming momenta equals
the sum of the outgoing momenta.

5. INTEGRATE OVER INTERNAL MOMENTA For each internal momentum
q, insert a factor

d4q

(2π)4

and integrate.

6. VERTEX FACTOR This is the rule that characterizes QED. For every
interaction between charged particles and photons draw a point with three
lines coming out signifying one photon and two fermions as shown in figure
13.4. and insert a factor of −ige(γµ)ab, where a is the spinor index of the
fermion pointing away from the vertex (the “barred” fermion) and b that
of the fermion pointing toward the vertex (the “unbarred” one), and where
ge = e =

√
4π}cα is the dimensionless coupling for electrons/positrons. In

general it is the magnitude of the fermion charge entering/leaving the vertex
in units of the positron charge.

7. TOPOLOGY To get all contributions for a given process, draw diagrams
by joining up all internal vertex points either to the external lines or to each
other by internal lines in all possible arrangments that are topologically in-
equivalent, consistent with rule 6. The number of ways a given diagram can
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FIGURE 13.4
The QED vertex, where εµ is the photon polarization.

be drawn is the topological weight of the diagram. The result is equal to
−iM.

The next two rules apply to all theories that have fermions.

8. ANTISYMMETRIZATION Because fermion wavefunctions anticommute,
we must include a minus sign between diagrams that differ

(a) only in the interchange of two incoming (or outgoing) fermions/anti-
fermions of the same kind

or
(b) only in the interchange of an incoming fermion with an outgoing

antifermion of the same kind (or vice versa).

9. LOOPS Every fermion loop gets a factor of (−1).

10. CANCEL THE DELTA FUNCTION The result will include a factor

(2π)4δ(4) (p′1 + p′2 · · ·+ p′m − p1 − p2 − · · · − pn)

corresponding to overall energy-momentum conservation. Cancel this factor,
and what remains is −iM.

13.2 Examples

The best way to learn the rules is to use them. We will consider here a
variety of physical processes to illustrate how the rules are used in QED.
Unless otherwise stated, all computations will be to lowest order in α.

13.2.1 Electron-Muon Scattering

Let’s begin by looking at the simplest scattering process that occurs in QED
– namely the scattering of one charged particle from another of a different
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kind. Electron-muon scattering is a realistic physical example:

e− + µ− −→ e− + µ−

To lowest order in the coupling, there is only one diagram since the particles
are all distinct†. Applying the rules we get

−iM =
∫

d4q

(2π)4︸ ︷︷ ︸
[
u(i′1)(p′1)︸ ︷︷ ︸ (−igeγµ)︸ ︷︷ ︸u(i1)(p1)︸ ︷︷ ︸

](
−igµν
q2

)
︸ ︷︷ ︸

rule 5 rule 2 rule 6 rule 2 rule 3

×
[
u(i′2)(p′2)︸ ︷︷ ︸ (−igeγν)︸ ︷︷ ︸u(i2)(p2)︸ ︷︷ ︸

]
rule 2 rule 6 rule 2

×(2π)4δ (p′2 − q − p2) (2π)4δ (p′1 + q − p1)︸ ︷︷ ︸ (13.6)

rule 4

It’s easiest to see this by taking an outgoing fermion line (e.g. the row-matrix

FIGURE 13.5
Electron-muon Scattering Diagram. The muon is drawn with a thicker line
to distinguish it from the electron.

u
(i′1)
a (p′1)), following it backward to attach it to the vertex (e.g., (−igeγµ)ab,

where the index µ is the same as that of the “internal polarization” εµ of
the virtual photon), and then following it back to the incoming line (e.g. the
column-matrix u(i1)

b (p1)). The result is the first term in the above expression‡.

†Note that we will get the same kind of answer for any two distinct charged fermions
scattering off of each other (e.g., electron-quark, muon-tau, etc). All that will change are
what we put in for the charges and the masses.
‡I’ve put this expression in square brackets to emphasize that this is the product [(row-
matrix)×(square-matrix)×(column-matrix)].
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Doing this for the muon line gives the second term, where we must attach a
different polarization εν to the photon at that vertex. The indices on the
internal photon line are chosen so as to join these together with a metric,
whose indices are the same as the two γ’s.

Doing the integral in (13.6) is easy, since it is just an integral over delta-
functions, just like what we did in eq. (10.9); carrying out the same procedure
and simplifying a bit gives

−iM =
[
u(i′1)(p′1)γµu(i1)(p1)

] ie2

(p′1 − p1)2

[
u(i′2)(p′2)γµu(i2)(p2)

]
(13.7)

Notice the structure of M in eq. (13.7): it is of the form

(current)µ × (propagator)× (current)µ

This is the general form of all fermion-fermion interactions.
To proceed further we would have to put in the initial conditions for the

electron spin-state u(i1)(p1) and the muon spin-state u(i2)(p2), as well as the
final states for each. The resultant matrix elementM would then be squared
and put into a cross-section formula to yield a predicted scattering rate. This
is very tedious and we won’t do this here – we will see later that there is an
alternative method that avoids resorting to such initial and final conditions.

13.2.2 Bhabha Scattering (electron-positron scattering)

The next simplest process is that of the scattering of a particle off of its own
antiparticle. Let’s consider electrons scattering off of positrons, since these
kinds of beams can be easily produced in a laboratory setting:

e− + e+ −→ e− + e+

To lowest order in ge we have two diagrams, shown in fig. 13.6 where the one
on the right is similar to the one we computed in eq. (13.6):

−iMright =
∫

d4q

(2π)4

[
u(i′1)(p′1) (−igeγµ)u(i1)(p1)

](−igµν
q2

)
×
[
v̄(i2)(p2) (−igeγν) v(i′2)(p′2)

]
×(2π)4δ (p′2 − q − p2) (2π)4δ (p′1 + q − p1) (13.8)

except that we have positron-wavefunctions v(i1)(p) instead of the muon wave-
functions§.

§The easiest way to construct the
h
v̄(i2)(p2) (−igeγν) v(i′2)(p′2)

i
expression for the positron

is to follow the arrow backwards from bottom to top. The incoming antifermion yields a
factor of

`
v̄(i2)(p2)

´
b

; the vertex yields the term (−igeγν)ba; and the outgoing antifermion

yields a factor of
“
v(i′2)(p′2)

”
a
, yielding the product

`
v̄(i2)(p2)

´
b

(−igeγν)ba

“
v(i′2)(p′2)

”
a
.

Summing over the repeated {a, b} indices gives
h
v̄(i2)(p2) (−igeγν) v(i′2)(p′2)

i



Quantum Electrodynamics 239

FIGURE 13.6
Bhabha scattering to lowest order.

The diagram on the left represents annihilation of the electron and positron
into a single virtual photon which then produces an electron-positron pair.
Here the rules give

−iMleft =
∫

d4q

(2π)4

[
u(i′1)(p′1) (−igeγµ) v(i′2)(p′2)

](−igµν
q2

)
×
[
v̄(i2)(p2) (−igeγν)u(i1)(p1)

]
×(2π)4δ (p′1 + p′2 − q) (2π)4δ (q − p1 − p2) (13.9)

Now we have to apply rule 8, which tells us whether or not one diagram gets a
minus sign (i.e. whether or not we add or subtract these two diagrams). This
means that we need to see if these diagrams are the same or not if we switch,
say, the incoming electron with the outgoing positron. From figure 13.7 it’s
easy to see that they are, and so rule 8 says that these diagrams subtract.

FIGURE 13.7
Equivalence of the two diagrams under particle interchange.
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Hence we obtain

−iM = −iMleft −
(
−iMright

)
= (−ige)2

[
u(i′1)(p′1)γµv(i′2)(p′2)

] ie2

(p1 + p2)2

[
v̄(i2)(p2)γνu(i1)(p1)

]
− (−ige)2

[
u(i′1)(p′1)γµu(i1)(p1)

] ie2

(p′1 − p1)2

[
v̄(i2)(p2)γνv(i′2)(p′2)

]
(13.10)

for the matrix element for this process.

13.2.3 Compton Scattering

This process involves a photon scattering off of an electron:

e− + γ −→ e− + γ

Again we have two diagrams to lowest order as shown in figure 13.8 and now

FIGURE 13.8
Compton scattering to lowest order.

we add them since fermion interchange is irrelevant. Applying the rules now
gives

−iMleft = ε∗′µ (p′2)
∫

d4q

(2π)4

[
u(i′1)(p′1) (−igeγµ)

i (γ · q +m)
q2 −m2

(−igeγν)u(i1)(p1)
]

×εν(p2)(2π)4δ (p′1 + p′2 − q) (2π)4δ (q − p1 − p2) (13.11)

and

−iMright = ε∗′ν (p′2)
∫

d4q

(2π)4

[
u(i′1)(p′1) (−igeγµ)

i (γ · q +m)
q2 −m2

(−igeγν)u(i1)(p1)
]

×εµ(p2)(2π)4δ (p′2 + q − p1) (2π)4δ (p′1 − q − p2) (13.12)

Note that the only differences have to do with where the polarizations contract
and with how the delta functions conserve momenta.
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13.3 Obtaining Cross-Sections

In order to finish any of these calculations we would have to specify all of the
initial and final spins in the problem, insert the corresponding free-particle
solutions into the expression forM and then integrate over the solid angle to
get the cross-section. This is enormously tedious and fortunately unnecessary
– as we discussed in Chapter 9, most particle beams are unpolarized, with
spins randomly distributed along any axis, and most particle detectors count
particles regardless of spin. We therefore apply the spin-summing/averaging
trick of eq. (9.36):

∣∣M∣∣2 =
(

1
2

)2 ∑
i1,i2=↑,↓

∑
i′1,i
′
2=↑,↓

|M|2 (13.13)

where the factor of
(

1
2

)2 arises because we have two initial spins to average
over. The expressions then simplify due to the following identities∑

i=↑,↓

u(i)
a (p)u(i)

b (p) =
(
/p+m

)
ab

∑
i=↑,↓

v(i)
a (p)v(i)

b (p) =
(
/p−m

)
ab

(13.14)

which you can prove yourself. These identities are used in what are called the
“Casimir tricks” [122]:∑

iA,iB=↑,↓

[
u(iA)(pA)ΓIu

(iB)(pB)
]† [

u(iA)(pA)ΓIIu
(iB)(pB)

]
= Tr

[
ΓI
(
/pA +mA

)
ΓII

(
/pB +mB

)]
(13.15)∑

iA,iB=↑,↓

[
v(iA)(pA)ΓIv

(iB)(pB)
]† [

v(iA)(pA)ΓIIv
(iB)(pB)

]
= Tr

[
ΓI
(
/pA −mA

)
ΓII

(
/pB −mB

)]
(13.16)∑

iA,iB=↑,↓

[
v(iA)(pA)ΓIu

(iB)(pB)
]† [

v(iA)(pA)ΓIIu
(iB)(pB)

]
= Tr

[
ΓI
(
/pA −mA

)
ΓII

(
/pB +mB

)]
(13.17)

for any two 4× 4 matrices ΓI and ΓII, where ΓI ≡ γ0 Γ†Iγ
0. I’ll relegate the

proof of these relations to an Appendix. For now, let’s use them to finish the
calculations.

Let’s consider electron-muon scattering. First we need |M|2:

|M|2 =M†M
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=
e4

(p′1 − p1)4

([
u(i′1)(p′1)γµu(i1)(p1)

] [
u(i′2)(p′2)γµu(i2)(p2)

])†
×
([
u(i′1)(p′1)γνu(i1)(p1)

] [
u(i′2)(p′2)γνu(i2)(p2)

])
=

e4

(p′1 − p1)4

([
u(i′2)(p′2)γµu(i2)(p2)

]† [
u(i′1)(p′1)γµu(i1)(p1)

]†)
×
([
u(i′1)(p′1)γνu(i1)(p1)

] [
u(i′2)(p′2)γνu(i2)(p2)

])
=

e4

(p′1 − p1)4

([
u(i′1)(p′1)γµu(i1)(p1)

]† [
u(i′1)(p′1)γνu(i1)(p1)

])
×
([
u(i′2)(p′2)γµu(i2)(p2)

]† [
u(i′2)(p′2)γνu(i2)(p2)

])
(13.18)

Note that I’ve done two things here. In the first line, I relabeled the Greek
index µ (in theM† part) to ν (in theM part) so I won’t get confused between
the two. Then, in going from the 2nd line to the 3rd line, I regrouped the
square-bracketed pieces with common factors of momenta so that I can use
the Casimir trick. For this particular case, the ΓI and ΓII matrices are going
to be given by γµ and γν . The trick implies that∑

i1,i′1=↑,↓

[
u(i′1)(p′1)γµu(i1)(p1)

]† [
u(i′1)(p′1)γνu(i1)(p1)

]
= Tr

[
γµ
(
/p
′
1

+m
)
γν
(
/p1

+m
)]

(13.19)∑
i2,i′2=↑,↓

[
u(i′2)(p′2)γµu(i2)(p2)

]† [
u(i′2)(p′2)γνu(i2)(p2)

]
= Tr

[
γµ

(
/p
′
2

+M
)
γν

(
/p2

+M
)]

(13.20)

where m is the electron mass and M is the muon mass. So we get

∣∣M∣∣2 =
(

1
2

)2 ∑
i1,i2=↑,↓

∑
i′1,i
′
2=↑,↓

|M|2

=
1
4

(
e2

(p′1 − p1)2

)2

Tr
[
γµ
(
/p
′
1

+m
)
γν
(
/p1

+m
)]

×Tr
[
γµ

(
/p
′
2

+M
)
γν

(
/p2

+M
)]

(13.21)

and so we see that spin-summing/averaging has turned the calculation into a
problem of computing products of traces over γ-matrices!

How do we do these? The first thing to note is that

γµ ≡ γ0 (γµ)† γ0 = γµ (13.22)
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which you can show by brute force from the definition of the γ-matrices. The
next step is to note that, since the γ-matrices are 4× 4 matrices, we get the
following two simple identities

Tr [I] = 4 and Tr [γµγν ] = 4gµν (13.23)

proved in problem 2 from Chapter 11, along with other results for traces and
products. These are listed in section 13.4.2 of the appendix for convenience.

Using these results we find

Tr
[
γµ
(
/p
′
1

+m
)
γν
(
/p1

+m
)]

= Tr
[
γµ/p

′
1
γν/p1

]
+m2Tr [ γµγν ]

= Tr
[
γµ/p

′
1
γν/p1

]
+m2Tr [ γµγν ]

= Tr
[
γµ
(
p′1λγ

λ
)
γν (p1ηγ

η)
]

+ 4m2gµν

= p′1λp1ηTr
[
γµγλγνγη

]
+ 4m2gµν

= 4p′1λp1η

(
gµλgνη − gµνgλη + gµηgνλ

)
+ 4m2gµν

= 4
(
p′µ1 p

ν
1 + p′ν1 p

µ
1 + gµν

[
m2 − p′1 · p1

])
≡ 4Lµν(p′1, p1;m2) (13.24)

where note that in going from the 3rd to the 4th line the p’s come out of the
trace because they are not matrices. In going from the 4th to the 5th line I
used the relation

Tr
[
γµγλγνγη

]
= 4

(
gµλgνη − gµνgλη + gµηgνλ

)
(13.25)

listed in the appendix. Similarly

Tr
[
γµ

(
/p
′
2

+M
)
γν

(
/p2

+M
)]

= 4
(
p′2µp2ν + p′2νp2µ + gµν

[
M2 − p′2 · p2

])
= 4Lµν(p′2, p2;M2) (13.26)

So the matrix element is

∣∣M∣∣2 =
16
4

(
e2

(p′1 − p1)2

)2

Lµν(p′1, p1;m2)Lµν(p′2, p2;M2)

= 4

(
e2

(p′1 − p1)2

)2 (
p′µ1 p

ν
1 + p′ν1 p

µ
1 + gµν

[
m2 − p′1 · p1

])
×
(
p′2µp2ν + p′2νp2µ + gµν

[
M2 − p′2 · p2

])
= 4

(
e2

(p′1 − p1)2

)2

[2 (p′1 · p′2) (p1 · p2) + 2 (p′1 · p2) (p1 · p′2)
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+2 (p′2 · p2)
[
m2 − p′1 · p1

]
+ 2 (p′1 · p1)

[
M2 − p′2 · p2

]
+4
[
m2 − p′1 · p1

] [
M2 − p′2 · p2

]]
= 8

(
e2

(p′1−p1)
2

)2

[(p′1 · p′2) (p1 · p2) + (p′1 · p2) (p1 · p′2)

− (p′1 · p1)M2 − (p′2 · p2)m2 + 2m2M2
]

(13.27)

which is a Lorentz-invariant scalar!

FIGURE 13.9

We could now evaluate this quantity in some frame of reference and compute
a cross-section from it! For example, in the lab frame, with the muon initially
at rest as illustrated in figure 13.9:

pµ1 = (E, ~p) pµ2 = (M, 0) p′µ1 = (E′, ~p′) (13.28)

and we need to compute all of the “dot products” in the expression. These
are:

p1 · p2 = EM p′1 · p2 = E′M p′1 · p1 = EE′ − |~p| |~p ′| cos θ
p1 · p′2 = p1 · (p1 + p2 − p′1) = m2 + EM − (EE′ − |~p| |~p′| cos θ)
p′1 · p′2 = p′1 · (p1 + p2 − p′1) = (EE′ − |~p| |~p ′| cos θ) + E′M −m2

p′2 · p2 = p2 · (p1 + p2 − p′1) = EM +M2 − E′M (13.29)

(p′1 − p1)2 = m2 +m2 − 2 (EE′ − |~p| |~p ′| cos θ)

and so

(p′1 · p′2) (p1 · p2) + (p′1 · p2) (p1 · p′2)− (p′1 · p1)M2 − (p′2 · p2)m2 + 2m2M2

=
[
(EE′ − |~p| |~p ′| cos θ) + E′M −m2

]
EM

+E′M
[
m2 + EM − (EE′ − |~p| |~p′| cos θ)

]
− [EE′ − |~p| |~p ′| cos θ]M2

−
[
EM +M2 − E′M

]
m2 + 2m2M2

= M (E′ − E +M) |~p| |~p′| cos θ +M2
(
EE′ +m2

)
+M

(
EE′ − 2m2

)
(E − E′) (13.30)
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giving ∣∣M∣∣2 =
8e4

4 [m2 − (EE′ − |~p| |~p ′| cos θ)]2

× [M (E′ − E +M) |~p| |~p ′| cos θ
+M2

(
EE′ +m2

)
+M

(
EE′ − 2m2

)
(E − E′)

]
(13.31)

which can be put into the lab-frame cross-section and evaluated:(
dσ

dΩ

)
LAB

=
(

}
8π

)2
∣∣M∣∣2 |~p ′|2

M |~p| [|~p ′| (E +Mc2)− |~p|E′ cos θ]
(13.32)

The preceding expression is quite cumbersome, but we can understand its
physics using a simple approximation. Suppose that the muon is so heavy
that we can neglect its recoil. This implies that M >> E,E′ and |~p| ' |~p ′| ,
E ' E′ '

√
|~p|2 +m2 so eq. (13.31) reduces in this limit to

∣∣M∣∣2 ' 8e4M2
[
|~p|2 (1 + cos θ) + 2m2

]
4 |~p|4 [1− cos θ]2

=
e4M2

[
|~p|2 cos2 θ

2 +m2
]

|~p|4 sin4 θ
2

(13.33)

and eq.(13.32) becomes (putting into M the correct factors of c and remem-
bering that e =

√
4πα )

(
dσ

dΩ

)
Mott

'
(

}
8πM

)2 M2e4
[
|~p|2 cos2 θ

2 + (mc)2
]

|~p|4 sin4 θ
2

=

(
}α

2 |~p|2 sin2 θ
2

)2 [
|~p|2 cos2 θ

2
+ (mc)2

]
(13.34)

which is called the Mott formula [123].
The Mott formula is a good approximation for electron-muon scattering or

for that matter electron-proton scattering if we take M to be the proton mass.
Note that if the incident electron is non-relativistic then |~p| ∼ m |~v| << (mc)
and eq. (13.34) reduces to(

dσ

dΩ

)
Mott

'

(
}cα

2mv2 sin2 θ
2

)2

=
(
dσ

dΩ

)
Rutherford

(13.35)

which is the original Rutherford scattering formula [18], first developed by
Ernest Rutherford to explain the data from his experiments scattering alpha
particles off of a gold foil. Mott’s formula was developed by Neville Mott to
describe the analogous process when alpha particles are replaced by electrons
which, being much lighter, have relativistic momenta necessitating use of the
more detailed formula (13.34).



246 An Introduction to Particle Physics and the Standard Model

13.4 Appendix: Mathematical Tools for QED

13.4.1 The Casimir Trick

It is very common to encounter terms of the form
[
u(iA)(pA)Γu(iB)(pB)

]
when

evaluating Feynman diagrams, where Γ will be some product of matrices (typ-
ically composed of γ matrices). The Casimir trick helps us deal with these
quantities when we employ spin-averaging and spin-summing to our expres-
sions.

Consider the following expression:[
u(iA)(pA)ΓIu

(iB)(pB)
]†

=
[
u†(iB)(pB)Γ†Iu

†(iA)(pA)
]

=
[
u†(iB)(pB)γ0γ0Γ†Iγ

0u(iA)(pA)
]

=
[
u(iB)(pB)γ0Γ†Iγ

0u(iA)(pA)
]

=
[
u(iB)(pB)ΓIu

(iA)(pA)
]

(13.36)

The second line follows because
(
γ0
)2 = I and because u† =

((
u†
)
γ0
)† = γ0u

(since
(
γ0
)† = γ0). The last line follows from the definition ΓI = γ0Γ†Iγ

0.
Now consider∑

iA,iB=↑,↓

[
u(iA)(pA)ΓIu

(iB)(pB)
]† [

u(iA)(pA)ΓIIu
(iB)(pB)

]
=

∑
iA,iB=↑,↓

[
u(iB)(pB)ΓIu

(iA)(pA)
] [
u(iA)(pA)ΓIIu

(iB)(pB)
]

=
∑

iA,iB=↑,↓

u(iB)
a (pB)

(
ΓI
)
ab
u

(iA)
b (pA)u(iA)

c (pA)
(
ΓII
)
cd
u

(iB)
d (pB)(13.37)

where in the last line I have explicitly written out all of the Dirac indices that
are summed over, so that for example ΓIIu

(iB)(pB) =
∑4
d=1

(
ΓII
)
cd
u

(iB)
d (pB) =(

ΓII
)
cd
u

(iB)
d (pB) using the summation convention. We can now sum over the

spin-indices:∑
iA,iB=↑,↓

u(iB)
a (pB)

(
ΓI
)
ab
u

(iA)
b (pA)u(iA)

c (pA)
(
ΓII
)
cd
u

(iB)
d (pB)

=
∑

iA=↑,↓

u(iB)
a (pB)

(
ΓI
)
ab

 ∑
iB=↑,↓

u
(iA)
b (pA)u(iA)

c (pA)

(ΓII
)
cd
u

(iB)
d (pB)

=
∑

iA=↑,↓

u(iB)
a (pB)

(
ΓI
)
ab

(
/pA +mA

)
bc

(
ΓII
)
cd
u

(iB)
d (pB) (13.38)
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where the last line follows from the identity
∑

i=↑,↓ u
(i)
a (p)u(i)

b (p) =
(
/p+m

)
ab

.

Now I can do the other spin-sum by moving the components of u(iB)
d (pB) all

the way to the left (since they’re just functions, this is allowed)∑
iA=↑,↓

u(iB)
a (pB)

(
ΓI
)
ab

(
/pA +mA

)
bc

(
ΓII
)
cd
u

(iB)
d (pB)

=
∑

iA=↑,↓

u
(iB)
d (pB)u(iB)

a (pB)
(
ΓI
)
ab

(
/pA +mA

)
bc

(
ΓII
)
cd

=
(
/pB +mB

)
da

(
ΓI
)
ab

(
/pA +mA

)
bc

(
ΓII
)
cd

(13.39)

using the same identities as before. Note now that the last line is just the
trace of the product of the 4 matrices

(
/pB +mB

)
,ΓI,

(
/pA +mA

)
, and ΓII.

Hence we find∑
iA,iB=↑,↓

[
u(iA)(pA)ΓIu

(iB)(pB)
]† [

u(iA)(pA)ΓIIu
(iB)(pB)

]
=
(
/pB +mB

)
da

(
ΓI
)
ab

(
/pA +mA

)
bc

(
ΓII
)
cd

= Tr
[ (
/pB +mB

)
ΓI
(
/pA +mA

)
ΓII
]

= Tr
[

ΓI
(
/pA +mA

)
ΓII

(
/pB +mB

)]
(13.40)

where the last line follows from trace cyclicity (Tr(AB) =Tr(BA)). This is
the Casimir trick. By similar reasoning (try it!) you can show∑

iA,iB=↑,↓

[
v(iA)(pA)ΓIv

(iB)(pB)
]† [

v(iA)(pA)ΓIIv
(iB)(pB)

]
= Tr

[
ΓI
(
/pA −mA

)
ΓII

(
/pB −mB

)]
(13.41)∑

iA,iB=↑,↓

[
v(iA)(pA)ΓIu

(iB)(pB)
]† [

v(iA)(pA)ΓIIu
(iB)(pB)

]
= Tr

[
ΓI
(
/pA −mA

)
ΓII

(
/pB +mB

)]
(13.42)

13.4.2 Dirac γ−Matrices and Their Traces

The γ−matrices are

γ0 =
(
I 0
0 −I

)
γi =

(
0 σi

−σi 0

)
(13.43)

and obey the relation
{γµ, γν} = 2gµν (13.44)
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We define some auxiliary matrices via the relations

γ5 = iγ0γ1γ2γ3 Σµν =
i

4
[γµ, γν ] (13.45)

Σ0i = − i
2

(
0 σi

σi 0

)
Σij =

1
2
εijk

(
σk 0
0 σk

)
(13.46)

Note that we now must distinguish between raised and lowered indices: γ0 =
γ0 and γi = −γi. The following identities can be directly verified:(

γ0
)† = γ0

(
γi
)† = −γi γµ = γµ(

γ0
)2 = I

(
γi
)2 = −I γαγ

α = 4
γαγ

νγα = −2γν γα/aγ
α = −2/a

γαγ
µγνγα = 4gµν γα/a/bγ

α = 4a · b
γαγ

µγνγλγα = −2γλγµγν γα/a/b/cγ
α = −2/c/a/b

Using these relations, we get the following trace theorems

Tr [I] = 4 Tr [odd # of γ-matrices] = 0
Tr [γµγν ] = 4gµν Tr

[
/a/b
]

= 4a · b
Tr
[
γµγνγαγβ

]
= 4

(
gµνgαβ − gµαgνβ + gµβgνα

)
Tr
[
/a/b/c/d

]
= 4 (a · b c · d− a · c b · d+ a · d b · c)

Tr
[
γ5
]

= 0 Tr
[
γ5γµγν

]
= 0

Tr
[
γ5γµγνγαγβ

]
= 4iεµναβ Tr

[
γ5/a/b/c/d

]
= 4iεµναβaµbνcαdβ

where εµναβ is the 4-dimensional Levi-Civita symbol (or epsilon-tensor) which
obeys

ε0123 = −1 ε0123 = +1

εµναβ =
{
−1 (if µναβ is an even permutation of 0123)
+1 (if µναβ is an odd permutation of 0123) (13.47)

εµναβ =
{

+1 (if µναβ is an even permutation of 0123)
−1 (if µναβ is an odd permutation of 0123)

Using this it is possible to prove the following

εµναβεµρτκ = −δνρδατ δβκ − δαρ δβτ δνκ − δβρ δντ δακ
+δνρδ

β
τ δ

α
κ + δβρ δ

α
τ δ

ν
κ + δαρ δ

ν
τ δ
β
κ (13.48)

εµναβεµντκ = −2
(
δατ δ

β
κ − δακδβτ

)
(13.49)

εµναβεµνακ = −6δβκ (13.50)
εµναβεµναβ = −24 (13.51)

as I will later demonstrate in the appendix of Chapter 20.
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13.5 Questions

1. Consider a theory in which the electron couples to a massless pseu-
doscalar particle (the φ) with the vertex

FIGURE 13.10

(a) Draw the lowest-order Feynman diagrams for the process e++e− −→
2φ.

(b) Compute to lowest order the differential cross-section for the process
in (a) in the CMS frame.

2. For the theory in question #1

(a) Draw the lowest-order Feynman diagrams for the process φ+ φ −→
e+ + e−.

(b) Compute to lowest order the differential cross-section for the process
in (a) in the CMS frame.

3. For the theory in question #1:

(a) Draw the lowest-order Feynman diagrams for the process φ+e− −→
φ+ e−

(b) Compute to lowest order the differential cross-section for the process
in (a) in the lab frame.

4. The lowest-order diagram for the process e−+µ− −→ e−+µ− is shown
in fig. 13.11. Draw (but don’t calculate) and label all relevant diagrams
to next-lowest order in the coupling constant.

5. The lowest-order diagrams for the process e+ + e− −→ e+ + e− are
shown in fig. 13.12. Draw (but don’t calculate) and label all relevant
diagrams to next-lowest order in the coupling constant.
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FIGURE 13.11
Electron-muon Scattering Diagram. The muon is drawn with a thicker line.

FIGURE 13.12
Electron-positron Scattering Diagrams to lowest order.

6. Consider the Dirac equation in (1 + 1) dimensions (1 spatial + 1 tem-
poral):

(iγµ∂µ −m)ψ = 0

where the index µ = (0, 1), ∂µ =
(
∂
∂t ,

∂
∂x

)
and the 2x2 γ-matrices are:

γ0 =
(

1 0
0 −1

)
γ1 =

(
0 1
−1 0

)
(a) Compute {γµ, γν}. What is the physical interpretation of this
result?
(b) Find the solutions to the Dirac equation in (1 + 1) dimensions. Phys-
ically interpret your results. Do the particles have spin? Are there
antiparticles?
(c) Apply the principle of local gauge invariance to this equation and
write down the results.
(d) Show that the quantity Jν = eψγνψ is conserved. What is the
physical interpretation of the components?

7. Find all diagrams of order e4 for the processes below. Label them but
do not calculate them.
(a) e+ + γ −→ e+ + γ

(b) γ + γ −→ e+ + e−
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Testing QED

In Chapter 13 we saw that the matrix element for electromagnetically scat-
tering an electron (mass m, initial momentum pµ

1 ) off of a muon (mass M ,
initial momentum pµ

2 ) is, from figure 14.1

FIGURE 14.1
Electron-muon Scattering Diagram. The muon is drawn with a thicker line
to distinguish it from the electron.

M = i
[
u(i′1)(p′1)γ

µu(i1)(p1)
] e2

(p′1 − p1)
2

[
u(i′2)(p′2)γµu(i2)(p2)

]
(14.1)

which after spin-summing/averaging boiled down to

∣∣M∣∣2 =
8e4F(E,M,m, θ)

4 [m2 − (EE′ − |�p| |�p ′| cos θ)]2

with
F(E,M,m, θ) = [M (E′ − E + M) |�p| |�p ′| cos θ (14.2)

+M2
(
EE′ + m2

)
+ M

(
EE′ − 2m2

)
(E − E′)

]

in the lab-frame. This is an elastic scattering process (A + B −→ A + B), so
we obtain in the Lab frame

pµ
1 = (E, �p) p′µ1 = (E′, �p ′) �p2 = 0 E2 = M

251
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(where the muon is at rest) the expression

dσ

dΩ
=
(

}
8π

)2 S
∣∣M∣∣2 |~p ′|2

M |~p| [|~p ′| (E +Mc2)− |~p|E′ cos θ]
(14.3)

where the statistical factor S = 1.
The final energy E′ of the muon is determined in terms of the initial condi-

tions (E, ~p, and M) and the scattering angle θ, which is the only independent
variable. We can see this by noting that momentum conservation gives

p′22 = (p2 + p1 − p′1)2 ⇒M2 = M2 + p2
1 + p′21 + 2 (p2 · (p1 − p′1)− p1 · p′1)

⇒ 0 = m2 +M (E − E′)− (EE′ − |~p| |~p ′| cos θ) (14.4)

Proceeding along the lines given in Chapter 2, we solve for E′

E′ =
(M + E)

(
m2 +ME

)
+ |~p|2 cos θ

√
M2 −m2(1− cos θ)

(M + E)2 − |~p|2 cos2 θ
(14.5)

in terms of (E, ~p, and M). When the mass m of the electron can be neglected
we obtain

E′ ' (M + E) (0 +ME) + |~p|2 cos θ
√
M2

(M + E)2 − |~p|2 cos2 θ

=
ME (M + E) +ME2 cos θ

[(M + E)− E cos θ] [(M + E) + E cos θ]

=
ME

E(1− cos θ) +M
(14.6)

which is the result (2.39) that we found in Chapter 2!

14.1 Basic Features of QED Scattering

Putting all of this together – inserting eqs. (14.2) and (14.5) into eq. (14.3) to
get the resultant differential cross-section – gives a very complicated looking
formula! Despite this, we can extract some meaningful physical insight from
it by looking at some key features it has in common with other 2-fermion
QED scattering diagrams.

14.1.1 Coupling

Note that ∣∣M∣∣2 ∝ e4 ∼ α2 ⇒ dσ

dΩ
∝ α2 (14.7)
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This is because the amplitude has two vertices, each with a factor of e ∼√
α. The next order correction goes like α4, and higher orders contribute

further corrections proportional to even powers of α. The power of α from
any diagram is always αn/2 where n is its number of vertices.

14.1.2 Propagator

The denominator of the matrix element comes from the internal line, which
gives a factor

1
(p′1 − p1)2 =

1
2 [m2 − (EE′ − |~p| |~p ′| cos θ)]2

' 1
2 [EE′ (1− cos θ)]2

+O

((m
E

)2

,

(
M

E

)2
)

=
1

8 (EE′)2 sin4 θ
2

(14.8)

at high energies, where|~p| ' E and |~p ′| ' E′. If the matrix element had no
other structure, then dσ

dΩ ∝
1

sin4 θ
2

which is the salient term in the Rutherford
scattering formula (13.35). The exchange of a single virtual particle between
two scattering particles will always produce a sin4 θ

2 factor in the denominator
at sufficiently high energy.

14.1.3 Matrix element

The numerator of the matrix element is

F(E,M,m, θ) = [M (E′ − E +M) |~p| |~p ′| cos θ
+M2

(
EE′ +m2

)
+M

(
EE′ − 2m2

)
(E − E′)

]
' 2M2EE′ cos2 θ

2
(14.9)

again at high energies, where|~p| ' E and |~p ′| ' E′, indicating that in this
limit dσ

dΩ ∝ cos2 θ
2 . This feature is due to the spin of the fermions and does

not occur in a scalar theory like ABB theory. The reason is due to helicity
conservation. Suppose that at high energies, the incoming electron is moving
along the z-axis with spin up (i.e., spin aligned with its direction of motion).
It will be in the state

u(↑)(p) =
√

2m

√E+m
2m ξ(↑)√
E−m
2m (p̂ · ~σ) ξ(↑)

 '

(√

E
0

)
σ3

(√
E
0

)
+O

(m
E

)
=
√
E


1
0
1
0


(14.10)
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whereas the outgoing electron – which is scattered at an angle θ – is effectively
in a frame that is rotated by an angle θ relative to the z-axis. Setting, say,
~θ = θŷ , it has the form

u(↑)(p′) =

 exp
[
i
2
~θ · ~σ

]
0

0 exp
[
i
2
~θ · ~σ

]u(↑)(p′, θ = 0)

=
((

cos θ2 + iσ2 sin θ
2

)
0

0
(
cos θ2 + iσ2 sin θ

2

))u(↑)(p′, θ = 0)

'


cos θ/2 sin θ/2 0 0
− sin θ/2 cos θ/2 0 0

0 0 cos θ/2 sin θ/2
0 0 − sin θ/2 cos θ/2

√E′


1
0
1
0



=
√
E′


cos θ/2
− sin θ/2

cos θ/2
− sin θ/2

 (14.11)

in the same high-energy limit. This gives

u(↑)(p′)γ0u(↑)(p) '
√
EE′

(
cos

θ

2
,− sin

θ

2
, cos

θ

2
,− sin

θ

2

)(
γ0
)2


1
0
1
0


= 2
√
EE′ cos

θ

2
(14.12)

and so
∣∣u(↑)(p′)γ0u(↑)(p)

∣∣2 ' EE′ cos2 θ
2 , consistent with our formula above.

14.1.4 Dimensionality

At high energies, we have∣∣M∣∣2 ∝ EE′

(EE′)2 =
1

EE′
and

dσ

dΩ
∝
∣∣M∣∣2 E′

E
⇒ dσ

dΩ
∝ 1
E2

(14.13)

because σ is like an area∼(length)2 ∼ }2/(momentum)2 ∼ (}c)2/(energy)2.
At high energies particle masses are negligible, and dimensionality forces the
cross-section to behave like 1/E2 ∼ 1/(CMS energy)2 since this is the only
energy scale in the problem. This feature is shared by all 2-Body cross-
sections in QED.

14.1.5 Antiparticles

We would get exactly the same answer for positron-muon scattering, or electron-
antimuon scattering, or positron-antimuon scattering. This is because QED



Testing QED 255

is charge-conjugation invariant.

14.2 Major Tests of QED

There are a number of different ways to test QED. The most important of these
have to do with measurements of scattering processes, anomalous magnetic
moments, atomic energy level shifts, and changes in the coupling strength.
Let’s look at a brief sketch of each.

14.2.1 Scattering Processes

There are various scattering processes of interest in QED, which are given
in the diagrams in figures 14.2 and 14.3 These can be computed using the

FIGURE 14.2
Lowest order inelastic scattering processes in QED.
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FIGURE 14.3
Lowest order elastic scattering processes in QED.

diagrammatic formalism of Chapter 13, and the resultant cross-sections have
been shown to agree with experiment to a high degree of precision.

14.2.2 Anomalous Magnetic Moments

All charged objects with angular momenta have magnetic moments, so we
expect electrons (and muons, and taus) to also have magnetic moments. An
object with a magnetic moment ~µ will (non-relativistically) have its interac-
tion with a magnetic field ~B described by a term in the Hamiltonian that is
proportional to the magnetic field. This is

Hmag = −~µ · ~B where ~µ = gµB ~S = g
e}

2mc
~S (14.14)

where ~S is the spin operator with eigenvalues
∣∣∣~S∣∣∣2 = s(s + 1) for a particle

of spin-s, and µB = e}
2mc = 5.78838263 × 10−5 eV T−1 is the Bohr magneton

in units of electron volts per Tesla. The quantity g is called the gyromagnetic
ratio of the particle. It is the ratio of the magnetic dipole moment to the
mechanical angular momentum of a system – a dimensionless number that
indicates the strength of the magnetic moment in Bohr magnetons.
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The Dirac equation predicts g = 2. We can see this by rewriting the
Dirac equation so that it is in non-relativistic Hamiltonian form. Writing
Aµ =

(
φ, ~A

)
, we have

(iγµDµ −m)ψ = 0⇒ iγ0 ∂ψ

∂t
=
[
−i~γ · ~∇ψ + eφγ0ψ − e~γ · ~Aψ +mψ

]
(14.15)

Anticipating taking the non-relativistic limit, let’s write ψ = e−imt
(
ϕ
χ

)
and

insert it into (14.15). This gives a pair of 2-component spinor equations

i
∂ϕ

∂t
= eφϕ+ ~σ ·

(
~p− e ~A

)
χ (14.16)

i
∂χ

∂t
= (−2m+ eφ)χ+ ~σ ·

(
~p− e ~A

)
ϕ (14.17)

where ~p = −i~∇. So far this is an exact result. Now let’s take the non-
relativistic limit, where we have

m >> eφ,

∣∣∣∣∂χ∂t
∣∣∣∣ (14.18)

and so the 2nd equation has the approximate solution

χ '
~σ ·
(
~p− e ~A

)
2m

ϕ (14.19)

⇒ i
∂ϕ

∂t
' eφϕ+

1
2m

[
~σ ·
(
~p− e ~A

)]2
ϕ (14.20)

where eq. (14.20) is the Pauli equation (named after Wolfgang Pauli who
first proposed the concept of electron spin [124]). It is an equation for a
2-component spinor ϕ that generalizes the non-relativistic Schroedinger equa-
tion to include spin!

Now we can use the identities (5.32) σiσj = δij + iεijkσk to write[
~σ ·
(
~p− e ~A

)]2
=
∣∣∣~p− e ~A∣∣∣2 − e~σ · ~B (14.21)

the proof of which I have left as a problem. This gives

i
∂ϕ

∂t
'


∣∣∣~p− e ~A∣∣∣2

2m
+ eφϕ− e

2m
~σ · ~B

ϕ = Hϕ (14.22)

The first two terms correspond to the Hamiltonian for a particle of charge
e moving in an electromagnetic field with vector potential ~A and Coulomb
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potential φ. Since ~S = ~σ
2 for a spin- 1

2 particle, the last term on the right-
hand-side suggests that we identify

Hmag = − e

2m
~σ · ~B = −2

e

2m

(
~σ

2
· ~B
)

= −2
e}

2mc

(
~S · ~B

)
(14.23)

(putting in the correct factors of ~ and c) which implies that g = 2 for a Dirac
particle of charge e, as promised∗.

Here then is a clear prediction from the Dirac equation, one that can be
easily compared to experiment by putting an electron (or muon or tau) in a
magnetic field and checking the value of the coupling. The g-values of the
e− and µ− leptons have indeed been measured – but they disagree with the
value g = 2 by ∼ 0.2%! It’s a tiny discrepancy – but one that is not within
limits of error.

Thus the Dirac picture of a pointlike e− and µ− is not exact. Why?
The actual reason has to do with quantum field theory: the quantum for-

malism in which the wavefunctions of the e− or µ− and photons are themselves
quantized so that they can create or destroy particles. This feature allows the
e− (or µ−) to continually emit and reabsorb its own photons. From the dia-
grams in figure 14.4 we see that the g-factor should be corrected. The actual
computation of these diagrams is quite tedious – I’ve put in the answers that
come from computing them. The diagram at the bottom comes from adding
up the two diagrams in the middle row of 14.4. Upon comparison with Hmag
above, we see that

g = 2
(

1 +
α

2π

)
(14.24)

and so the magnetic moment receives a correction of order α with a coefficient
of 1

2π , responsible for the 0.2% correction noted above and first obtained by
Schwinger [125].

We also see that the charge of the electron (or muon) is corrected by a term
of order α

eelectron = e

(
1 +

α

π

∫
dq

q

)
(14.25)

but with a coefficient of infinite magnitude!
What to do? This is the problem of diverging quantities noted earlier in

the ABB theory. The results of quantum field theory indicate that physical
quantities are perturbatively corrected in powers of the coupling α. Sometimes
these corrections are finite (as with the magnetic moment), but sometimes
they are not. For the electron charge this problem is dealt with by regarding
the charge e as not being directly measurable – instead, what is measured in
the lab is the quantity eelectron above. It is the quantity eelectron that is defined

∗Experimentally the magnetic moments of the neutron and proton differ widely from this
value. As we will see beginning in Chapter 16, this implies that these particles have internal
structure.
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FIGURE 14.4
Lowest-order diagrams contributing to the anomalous magnetic moment of the
electron. Only the interaction terms the arise from computing the diagram
have been written.

to agree with experiment. The quantity e (the bare charge) is assumed to be
divergent in such a manner as to render eelectron finite.

As with the ABB theory, this crazy idea works because QED is renormal-
izable: once this redefinition of the charge is made (plus a similar redefinition
of the mass and the wavefunctions), all other quantities in QED (e.g., cross-
sections, decay rates) are finite and uniquely calculable. One of these quan-
tities is the magnetric moment, given above, which to this order is predicted
to be g = 2

(
1 + α

2π

)
= 2.00232....

Can we test this? The answer is yes, and the comparison between theory
and experiment is nothing short of spectacular [126]. The above procedure
for computing the magnetic moment has been carried out to 5th order in α.
These computations involve ∼1,000 diagrams. The result for the electron is
[127](

g − 2
2

)QED

e

=
α

2π
− 0.328478444

(α
π

)2

+ 1.181234017
(α
π

)3

−1.7283
(α
π

)4

+ 0.0
(α
π

)5

+ 1.71173× 10−12 · · ·

= .0011596521884± .0000000000043
= 1, 159, 652, 188.4(4.3)× 10−12 (14.26)

The first term is represented by a Feynman diagram with one closed loop,
and requires no more than a page or two of hand calculation. The second
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term represents seven diagrams, and originally took seven years to calculate.
Seventy-two Feynman diagrams are needed for the third term, and all of
them have been evaluated exactly using symbolic manipulation programs on
computers, after nearly thirty years of hard work. The fourth term requires
the evaluation of 891 four-loop Feynman diagrams, and has been estimated
numerically using large-scale computations on supercomputers. The fifth term
is even more laborious, and the coefficient 0.0 has an error of ±3.7. The last
term (not involving the fine-structure constant) is a small correction caused by
particles in the loop other than the electron, and strong and weak interaction
corrections.

The particle data book lists the experimental value as [1]

(
g − 2

2

)QED-expt

e

= 1, 159, 652, 181.11± (0.074)× 10−12 (14.27)

which is a world average over all experiments. This agreement between the
theoretical value above and the experimental value(s) given here is the most
precise for any non-gravitational theory and experiment to date.

To properly compare experiment and theory, we need to know the value of
the fine-structure constant. The measurements of the value of this constant
aren’t as accurate as those of (g − 2)! There are many ways of doing this
[127]. For example one can measure α using the quantum Hall effect, get
1/137.0360037(27) (an accuracy of 0.020 ppm), and predict

(
g − 2

2

)QED/qH

e

= 1, 159, 652, 156.4(22.9)× 10−12 (14.28)

One can measure α using the ac Josephson effect to be 1/137.0359770(77)
(0.056 ppm), and predict

(
g − 2

2

)QED/acJ

e

= 1, 159, 652, 378.0(65.3)× 10−12 (14.29)

Or, one can measure Planck’s constant } and the mass of the neutron, and
derive α to be 1/137.03601082(524) (0.039 ppm) to predict

(
g − 2

2

)QED/n

e

= 1, 159, 652, 092.2(44.4)× 10−12 (14.30)

The numbers in parentheses are due to the uncertainty in the experimental
value of α; the errors in the computer-measurement of the theoretical formula
is much smaller (plus or minus 1.2). If you trust QED, you can work backwards
to an even better estimate of α: 1/137.03599993(52), with an estimated error
of 0.0038 ppm.
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For the muon the result is(
g − 2

2

)QED

µ

=
α

2π
− 0.765857408

(α
π

)2

+ 24.05050959
(α
π

)3

+130.9916
(α
π

)4

+ 663
(α
π

)5

+ 709.4× 10−10 (14.31)

where the last part is due to strong and weak interaction corrections. The
best theoretical calculations yield

(
g − 2

2

)QED

µ

=


1, 165, 847, 181.0(1.6)× 10−12 pure

QED

1, 165, 917, 880(20)(460)(350)× 10−12 including strong

& weak corrections

(14.32)
where in the top line the quantities in brackets indicate the error due to un-
certainties in the fine structure constant, and in the bottom they indicate the
errors due to electroweak, lowest-order hadronic, and higher-order hadronic
contributions, respectively. The best data [1] indicate that(

g − 2
2

)expt

µ

= 1, 165, 920, 800(540)(330)× 10−12 (14.33)

where the errors in brackets are due to statistical and systematic errors re-
spectively.

As you can see, strong and weak interactions provide significant correc-
tions that are still not fully understood to 12 decimal place precision. The
discrepancy is

∆
(
g − 2

2

)
≡ ∆aµ = 292(63)(58)× 10−11 (14.34)

which is 3.4 standard deviations away from the expected result.
Experiment E821 at Brookhaven [128] have indicated that there is some-

thing we don’t understand about the anomalous magnetic moment of the
muon. The current situation (as of June 2009) is described in figure 14.5.
Notice that theory and experiment do not agree within limits of error: the
present experimental value differs from that predicted by QED, or more prop-
erly the Standard Model, since relevant weak and strong corrections have been
included. The uncertainty on the Standard Model theoretical values is dom-
inated by the uncertainty on the lowest-order hadronic vacuum polarization.
This contribution can be determined directly from the annihilation of e+e−

to hadrons through a dispersion integral (the lower open circle point). The
indirect determination using data from hadronic τ decays, the conserved vec-
tor current hypothesis, plus the appropriate isospin corrections, appear to
improve the agreement between theory and experiment, but nobody knows
why.
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FIGURE 14.5
Results for calculations of the anomalous magnetic moment of the muon,
subtracted by the central value of the experimental average, given in by the
bottommost point on the right. The shaded band indicates the experimental
error. The Standard Model predictions (DEHZ, DH, EJ) are from various
groups doing calculations that take into account different ways of incorporat-
ing hadronic corrections. Image courtesy of Particle Data Group [209]; used
with permission.

A definitive understanding of the muon g factor will have to await further
refinements of both the experimental and the theoretical values. Major ad-
vances may be some time in coming. On the experimental side, the E821
project has been shut down by the United States Department of Energy, at
least for the time being. From the theoretical viewpoint, the next major stage
will require evaluation of the five-loop Feynman diagrams. There are 12,672
of those. Anyone eager to do this calculation?

14.2.3 Lamb Shift

The Dirac equation can be solved exactly in the presence of a Coulomb po-
tential, where Aµ = (Zer , 0). The computation is a tedious but analogous
extension of the computation of the energy levels for a Hydrogen-like atom
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using Schroedinger’s equation. For the Dirac case, the energy levels are also
fully and uniquely calculable and the result is [129]

E =
mrc

2√
1 + (Zα)2h

n−(j+1/2)+
√

(j+1/2)2−(Zα)2
i2

n = principal quantum number

j = 1
2 ,

3
2 ,

5
2 , . . .

= total angular momentum

= mrc
2

(
1− 1

2
(Zα)2

n2
+

3
8

(Zα)4

n4
− (Zα)4

n3(2j + 1)
+ · · ·

)
(14.35)

where mr is the reduced mass of the electron and Ze is the charge of the
spinless nucleus. The expansion is in powers of Zα, and the first non-trivial
term is the usual part that one gets from the Schroedinger equation.

FIGURE 14.6
Comparison of theory and experiment for the Lamb shift of hydrogen. Open
circles (o) denote direct measurements, and crosses (x) denote indirect mea-
surements dependent upon the 2P1/2 lifetime of 1.5961887 (15) ×10−9 s. The
measurement “This work” is by van Wijngarten et al. Lamb-shift measure-
ment in hydrogen by the anisotropy method Can. J. Phys. 76, 95 (1998),
fig. 3 pg. 102 [131]; other results appear in ref. [133]. Copyright 2008 NRC
Canada or its licensors. Reproduced with permission.
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Note that there is no explicit dependence on either the orbital angular
momentum ` or on the electron spin s; instead the energy levels just depend
on the total angular momentum j = `+ s. Hence states with differing ` but
the same j will have the same energy – for example, the 2S1/2 (i.e. n = 2,
` = 0) and the 2P1/2 (i.e. n = 2, ` = 1) are predicted to be degenerate.
Hence (

E2S1/2
− E2P1/2

)Dirac eqn = 0 (14.36)

which upon comparison to experiment [131](
E2S1/2

− E2P1/2

)expt = 1057.852± .015 }MHz ' 4.374× 10−6eV (14.37)

indicates a small but clear discrepancy.
This discrepancy is explained by quantum-field-theoretic effects in QED: the

self-energy of an electron bound to a nucleus depends on the orbital angular
momentum ` and causes the above shift, first measured in 1947 by Willis
Lamb and Robert Retherford [132]. The (rather long) calculation gives to
leading order [130]

(
E2S1/2

− E2P1/2

)QED =
mα5

6π

(
ln
(

m 〈E2P〉
2Ryd 〈E2S〉

)
+

91
120

)
= 1052.1 }MHz

(14.38)
an early triumph of QED!

Other tests of QED involve investigation of spin-flip transitions in the
ground states of positronium (e+e−) and muonium (µ+e−). There is an
ongoing effort in atomic physics to push for ever-greater precision in con-
fronting QED with experiment to see just how accurate the Standard Model
is.

14.2.4 Running Coupling Constant

A test charge inside a polarizable (dielectric) medium is shielded by the di-
electric and so has a smaller Coulomb potential than in free space. This is
a well-known effect in crystals. In a quantum field theory such as QED, the
vacuum itself is a polarizable medium, as illustrated in figure 14.7. A charged
particle can emit and reabsorb virtual photons which themselves emit and
reabsorb e+e− pairs which shield the particle: this is called vacuum polariza-
tion.

We observe a charged particle from large distances when it is “fully shielded.”
As we probe closer and closer to the “core” of the particle (i.e. within a Comp-
ton wavelength), shielding becomes small and the potential due to the “bare”
charge is observed.

How do we actually measure this effect? Recall that if we have 2 charged
particles of charges Z1e and Z2e that the lowest order scattering diagram is
given by fig. 14.8 for which the matrix element is
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FIGURE 14.7
Schematic diagram of vacuum polarization.

FIGURE 14.8
Lowest order QED scattering.

M = − [u(p′1)γµu(p1)]
Z1Z2e

2

(p′1 − p1)2 [u(p′2)γµu(p2)] (14.39)

However, higher-order corrections modify this. One of the most interesting is
shown in figure 14.9, which contributes

δM = −i [u(p′1)γµu(p1)]
Z1Z2e

4

(p′1 − p1)4 Iµν [u(p′2)γνu(p2)] (14.40)

to the matrix element, where the quantity Iµν is, using the rules for QED,

Iµν = −
∫

d4k

(2π)4

Tr
[
γµ (/k +m) γν

(
/q − /k +m

)]
(k2 −m2)

(
(q − k)2 −m2

)
= −igµν

q2

12π2

[
lim

Λ→∞

∫ Λ

m2

dx

x
− f

(
− q2

m2

)]
+ qµqνK(q2) (14.41)
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with f
(
− q2

m2

)
and K(q2) calculable functions, and m is the mass of the

particle in the fermion loop in fig. 14.9, here taken to be an electron. The

FIGURE 14.9
A higher order correction to the process in fig. 14.8.

K(q2) contributes nothing to M, since it is proportional to qµqν and so is
annihilated by the [uγµu] terms. For example

qµu(p′1)γµu(p1) = u(p′1)/qu(p1) = u(p′1)
(
/p
′
1
− /p1

)
u(p1)

= u(p′1) (m−m)u(p1) = 0 (14.42)

(recall
(
/p−m

)
u(p) = 0 for any u-spinor). So the full matrix element is

Mtot =M+ δM

= − Z1Z2e
2

(p′1 − p1)2 [u(p′1)γµu(p1)] [u(p′2)γµu(p2)]

×

(
1 +

e2

12π2

[
lim

Λ→∞

∫ Λ

m2

dx

x
− f

(
− q2

m2

)])
(14.43)

If we take the limit Λ → ∞ we obtain an infinite answer. However, if we
define a renormalized coupling via

er = e

(
1− e2

12π2
lim

Λ→∞

∫ Λ

m2

dx

x

)1/2

(14.44)

then (since (p′1 − p1)µ = qµ) we obtain to this order in e2

Mtot = − [u(p′1)γµu(p1)]
Z1Z2e

2
r

q2

(
1 +

e2
r

12π2
f

(
− q2

m2

))
[u(p′2)γµu(p2)]

= − [u(p′1)γµu(p1)]
Z1Z2e

2
r

q2

(
1−

e2r
12π2 f

(
− q2

m2

)) [u(p′2)γµu(p2)] (14.45)
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where we can interpret the terms Z1er [u(p′1)γµu(p1)] = J µ1 and Z2er [u(p′2)γµu(p2)] =
J µ2 as the currents associated with the 2 charged particles.

Let’s see how to interpret this. Suppose that the two charged particles are
approximately static, and each is spin-up. Then setting ξ = ξ(↑) and E ' m
in eq. (11.33) gives [u(p′1)γµu(p1)] '

√
2m1 and [u(p′2)γµu(p2)] '

√
2m2, and

qµ = (p′1 − p1)µ = (E′1 − E1, ~p
′

1 − ~p1) ' (0, ~p ′1 − ~p1) = (0, ~q). In this case the
Fourier transform of eq. (14.45) is

Mtot = Z1Z2

√
2m1

√
2m2V (r)

where r = |~r| = |~x1 − ~x2| is the separation between the two charged particles,
and we can interpret the function

V (r) =
∫

d3q

(2π)3

e2
r e−i~q·~r

−|~q|2
(

1−
e2r

12π2 f
(
|~q|2
m2

))
' −e2

∫
d3q

(2π)3

e−i~q·~r

|~q|2
= − e2

4π|~r|
(14.46)

as the potential between them, where the last expression is obtained by re-
taining only the lowest order in e. Including the next-order loop corrections
[134] and Fourier transforming gives

V (r) = −α(r)
r

= −α
r

[
1− 2α

3π
Q(r)

]−1

(14.47)

where α =
e2r

4π~c is the familar fine-structure constant and

Q(r) =
∫ ∞

1

du
2u2 + 1
u4

√
u2 + 1e−2mru +O(α)

=

{
ln
(

1
mr

)
− γE − 5

6 + · · · mr � 1
3
√
π

8(mr)3/2
e−2mr mr � 1 (14.48)

with γE = .5772... which is Euler’s constant.
So for large r � 1/m, the quantum corrections Q(r) to the Coulomb po-

tential fall off exponentially, and V (r) ≈ −αr , which is the usual Coulomb
potential. However, for r � 1/m, the quantum corrections Q(r) grow loga-
rithmically – in other words, V (r) increases with decreasing distance!

We can express this phenomenon by modifying the electromagnetic coupling
α→ α(r). We say that the coupling varies (or runs) with decreasing distance,
or increasing energy q2. For QED

α(r) =
α[

1− 2α
3πQ(r)

] (14.49)
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and so the running coupling increases with decreasing distance. In fact, it
becomes singular at Q(r) = 3π

2α , or at

r ' }
mc

exp
[
−3π

2α

]
= 3.86× 10−291cm (14.50)

In other words the quantum potential of the electron becomes infinite at a
non-zero distance (albeit a very tiny one) from its center!

This singularity is called a Landau singularity, after the Russian physi-
cist Lev Landau who argued that its presence in QED indicates that strong
vacuum polarization effects screen the electric charge completely at short dis-
tances [135]. Others, including Shirkov [136], have called it the Landau ghost
contending that it instead indicates the internal inconsistency of quantum
electrodynamics, since this singularity cannot be removed by renormalization.
Shirkov’s viewpoint has by and large been the more persuasive one, with the
singularity regarded as the distance scale in QED at which perturbation the-
ory definitely cannot be trusted, though whether or not it implies that QED
is fundamentally inconsistent is unknown. In any event, effects from quantum
gravity become relevant at 10−33cm, a much larger distance from the center
of the electron than where the Landau singularity is.

FIGURE 14.10
Qualitative behavior of the running coupling constant in QED

Although I have given the dependence of α as a function of distance, it is
actually common practice in particle physics to express the running of α as a
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function of the momentum transfer q2. The result is

α(q2) =
α
(
µ2
)[

1− zf 2α(µ2)
3π ln

(√
|q2|
µ

)] (14.51)

where zf =
∑
j Q

2
j is the sum of the squares of the charges (in units of the

electron charge) of the fermions that contribute for all energies less than or
equal to

√
|q2|. For example, for energies less than 100 GeV, all leptons and

quarks except for the top quark will contribute to the sum, which equals 20
3

(since we must include each color of quark as a separate charge). The quantity
µ is an arbitrary energy scale that cannot be fixed in QED.

At low energies
∣∣q2
∣∣→ µ2 → 0, the logarithm in the denominator vanishes,

and α(q2) → α
(
µ2
)
→ α (0) = 1

137 . A high-precision determination of α at
the Z-mass yielded [1]

α−1(M2
Z) = 128.936± 0.046 (14.52)

where I have expressed the result in terms of α−1 for convenience.

14.3 Questions

1. Show that [
~σ ·
(
~p− e ~A

)]2
=
∣∣∣~p− e ~A∣∣∣2 − e~σ · ~B

Hint: remember that ~p = −i}~∇ and that the vector potential ~A depends
on space and time.

2. (a) Calculate to lowest order the spin-averaged spin-summed matrix
element for the process e− + γ −→ e− + γ.

(b) Your answer will depend upon the polarizations
(
ε

(λ)
i , ε

(λ)
f

)
of the

respective initial and final photon states. Show that

2∑
λ=1

(
ε

(λ)
i • ε

(λ)
f

)2

= 1 + cos2 θ

where θ is the scattering angle.

(c) Use this to obtain a differential cross-section that is averaged over
initial photon polarizations and summer over final photon polarizations.
Work in the lab-frame.
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Note: This is a tedious and somewhat lengthy calculation. I recom-
mend that you make use of the simplifiying tricks given in table 13.1,
as well as average over initial fermion spins and summing over final
fermion spins. You will also find it helpful to choose the polarizations
of the initial and final photons to be orthogonal to the initial electron
momentum.

3. (a) Calculate to lowest-order the spin-averaged spin-summed matrix el-
ement for the process γ + γ −→ e− + e+.

(b) Find the differential cross-section that is averaged over initial photon
polarizations and summed over the electron/positron spins. Work in the
CM frame.

4. Show that ∫
d3q

(2π)3

e−i~q·~r

|~q|2 +m2
=
e−m|~r|

4π|~r|
where m is a constant. What does this become in the limit m→ 0?

5. Given that α−1(M2
Z) = 129 where MZ = 91 GeV, find the value of

the fine structure constant at
√
|q2| = 1 TeV, assuming that no other

particles exist beyond the known quarks and leptons.

6. Suppose the fine structure constant is found to have a value 10 times its
low-energy value at

√
|q2| = 2 TeV. How many new quarks and leptons

must there be at energies between 100 GeV and 2 TeV if the pattern of
generations in the Standard Model is upheld?
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From Nuclei to Quarks

Strong interaction physics first began with Rutherford’s discovery of the nu-
cleus in 1910 [18]. The solar-system model of the atom that emerged from this
discovery soon gave way to Bohr’s theory of the atom, and then to quantum
mechanics. Rapid progress was made in understanding atomic physics during
this period. However, for 20 years after Rutherford’s discovery the structure
of the nucleus remained quite mysterious: it had to be positively charged, but
why didn’t electromagnetic forces cause it to explode apart? In 1932 James
Chadwick discovered the neutron [137]: this led to the realization that the
nucleus is a composite object, bound together by a nuclear or “strong” force,
one much more powerful than the electromagnetic force. The strong force –
by definition – is experienced only by particles referred to as hadrons∗.

Understanding the nature of the nucleus and its structure was a long and
arduous process of calculation, experimentation, and intelligent guesswork.
The subject of nuclear physics today is indeed a complicated subject, since it
is a many-body problem that is still not fully understood. Our interest here
is in understanding the elementary constituents of nuclear matter, which are
known as quarks. In order to appreciate the origin of quarks (both in their
conception and in their discovery), we’ll proceed historically, looking at the
development of key concepts as they occurred.

15.1 Range of the Nuclear Force

Shortly after Chadwick’s discovery, Wigner realized that nuclear forces must
have a very short range (of only a few fm, where 1 fm=10−13cm) and must
be very strong [138]. The reason for this came from a consideration of the
binding energies of the deuteron (hydrogen with one extra neutron), tritium
(hydrogen with two extra neutrons, sometimes called triton), and the alpha
particle (helium). As table 15.1 indicates the binding energies are millions of
times larger than the electromagnetic energies that bind electrons in atoms.

∗Actually there are two nuclear forces – a strong force and a weak one – but the distinction
between them did not become clear until the 1950s.
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TABLE 15.1

Binding Energies of Small Nuclei
Binding Energy in MeV

# of Bonds Total per Particle per Bond

2H 1 2.2 1.1 2.2
3H 3 8.5 2.8 2.8
4He 6 28 7 4.7

Table 15.1 displays the binding energies of these three nuclides, as well as the
energies per particle and per bond. The energy per bond is not roughly the
same, and so something else is needed to explain the large increase in binding
energy. Wigner reasoned that a short-range force can explain this, because as
the number of bonds increases the nucleons pull closer together, and thereby
experience a deeper potential well. This gives an additional increase to the
binding energies per particle and per bond.

The mass and binding energy for 3He were observed to be almost the same
as for 3H – this provided evidence that the forces between any two nucleons
are the same, apart from small corrections due to electromagnetic forces, an
empirical observation for which there is overwhelming evidence today.

15.2 Isospin

At about the same time, Heisenberg [139] suggested that the proton and neu-
tron are really 2 different states of one particle called the nucleon, analogous
to the way that the spin-↑ e− and spin-↓ e− are 2 different states of the elec-
tron. A comparison appears in table 15.2. Just as we can write an electron

TABLE 15.2

Comparison between Spin and Isospin
Spin-1/2 particle
in ordinary space

Nucleon in
in Isospin space

up proton

down neutron
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wavefunction as a linear combination of spin-↑ and spin-↓, this perspective
implies that we can write the wavefunction of a nucleon |N〉 as

|N〉 = ς |p〉+ ζ |n〉 (15.1)

i.e. as a complex linear combination of proton and neutron wavefunctions.
This seems strange: the charges of the proton and neutron differ, and so we
don’t know how to define the charge of the state |N〉. However, Heisenberg’s
hypothesis entails that the nuclear force is independent of the electric charge.
We therefore can combine the two states, ignoring the effects of electromag-
netism, which are much smaller. To every such state there will also be an
orthogonal state |P 〉 :

|P 〉 = α |p〉+ β |n〉 (15.2)

so that (
|P 〉
|N〉

)
=
(
α β
ς ζ

)(
|p〉
|n〉

)
= U

(
|p〉
|n〉

)
(15.3)

where the matrix U must be unitary, 2 × 2 and of determinant one (i.e.
αζ − ςβ = 1) to conserve probability. In other words, Heisenberg’s idea is
expressed by saying that all nuclear interactions should be invariant under
SU(2)-transformations of the neutron/proton doublet!

We call such transformations isospin transformations. Just as we did for
rotations, we can write a general SU(2)-transformation matrix U as

U= exp
[
−i~Υ · ~I

]
=
(
α β
ς ζ

)
where αζ − ςβ = 1

⇒ {U (α, β, ς, ζ)} = SU(2) (15.4)

where there are 22 − 1 = 3 generators ~I = (I1, I2, I3). As noted in our
discussion in section 3.5 of Lie groups and Lie algebras, by expanding in
powers of small

∣∣∣~Υ∣∣∣ you can show that the generators obey

[Ia, Ib] = iεabc Ic (15.5)

which you might recognize from eq. (3.10) in Chapter 3 as the Lie algebra
of SO(3). These two different groups – SU(2) and SO(3) – have the same
algebra†, so we can use the same group-theory arithmetic to describe nucleon
wavefunctions.

Hence isospin is a quantum number analogous to angular momentum, ex-
cept that it “rotates” protons into neutrons (and vice versa) instead of spin-↑
into spin-↓. A proton is the positive projection of a nucleon state onto the

†I emphasize that this is a very special property of these two particular Lie Groups – in
general two different Lie groups have distinct Lie Algebras.
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z-axis in isospin-space, whereas a neutron is the negative projection of a nu-
cleon state onto this axis. A projection onto any other axis will be some linear
combination of the proton and neutron states.

The isospin operator is denoted by ~I. A particle undergoing nuclear inter-
actions will thus be in a state Ψ = |i, i3〉, where

I2Ψ =
(
~I · ~I

)
Ψ = i(i + 1)Ψ (15.6)

I3Ψ = i3Ψ (15.7)

So the proton and neutron are the isospin states

|p〉 =
(

1
0

)
=
∣∣∣∣12 , 1

2

〉
(15.8)

|n〉 =
(

0
1

)
=
∣∣∣∣12 ,−1

2

〉
(15.9)

i.e. the nucleon has total isospin i = 1/2. The I2 operator identifies the
total amount of isospin, and the I3 operator identifies which component total
isospin the state has – in other words, whether it is a proton or a neutron.

Of course we need to eventually take electric charge into account. This is
done by via the formula

Q = I3 +
B

2
=
{

+1 for the proton
0 for the neutron (15.10)

where the electric charge Q of a nucleon state in units of e and B is a quantum
number called baryon number. We set B = 1 for the nucleon in order for this
formula to work. Antinucleons (antiprotons and antineutrons) have B = −1.
Note that this formula defines baryon number – at this stage it does not lead
to any new predictions.

In strong interactions, isospin is a conserved quantum number. The earliest
evidence for this came from nuclear physics experiments that indicated that
np, pp, and pn forces were all identical (except for much feebler electromag-
netic effects). For example, energy level spectra in mirror nuclei nuclei which
change into each other under pn interchange are almost identical: e.g. 13C
and 13N or 7Li and 7Be or 11B and 11C.

Isospin invariance therefore means that the isospin operator ~I commutes
with the Hamiltonian HN governing the nuclear forces[

HN , ~I
]

= 0 (15.11)

The presence of electromagnetism destroys this invariance, which we express
as [

HN +Hem, ~I
]
6= 0 (15.12)
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However, since electric charge is conserved, then we must have the charge
operator commuting with the total Hamiltonian, which gives

[HN +Hem, Q] = 0⇒ [HN +Hem, I3] = 0 (15.13)

where the last equality holds provided the baryon number B is a conserved
quantity‡. This means that the 3rd component of isospin is conserved even in
the presence of an electromagnetic interaction. This situation is analogous
to having the z-component of spin preserved in the interactions between a
spinning particle and a magnetic field.

As with spin, we can combine i = 1/2 states to form states of higher isospin.
For example, two i = 1/2 states can form either an i = 1 triplet or an i = 0
singlet:

|i = 1, i3 = 1〉 =
∣∣ 1

2 ,
1
2

〉 ∣∣ 1
2 ,

1
2

〉
= |p〉 |p〉

|i = 1, i3 = 0〉 = 1√
2

(∣∣ 1
2 ,

1
2

〉 ∣∣ 1
2 ,−

1
2

〉
+
∣∣ 1

2 ,−
1
2

〉 ∣∣ 1
2 ,

1
2

〉)
= 1√

2
(|p〉 |n〉+ |n〉 |p〉)

|i = 1, i3 = −1〉 =
∣∣ 1

2 ,−
1
2

〉 ∣∣ 1
2 ,−

1
2

〉
= |n〉 |n〉


triplet (15.14)

|i = 0, i3 = 0〉 = 1√
2

(∣∣ 1
2 ,

1
2

〉 ∣∣ 1
2 ,−

1
2

〉
−
∣∣ 1

2 ,−
1
2

〉 ∣∣ 1
2 ,

1
2

〉)
= 1√

2
(|p〉 |n〉 − |n〉 |p〉)

 singlet (15.15)

The singlet state is the deuteron, D: a stable bound state of a proton and
neutron. It is the nuclear analog of para-positronium. We could call it para-
deuterium, and the triplet state would then be called ortho-deuterium. How-
ever, since the triplet state is unstable we drop the “para” and “ortho” labels
and call the singlet state the deuteron.

In 1947 another strongly interacting particle called the pion was observed
[140]. In fact there were 3 pion states: π+, π− and π0. The first two had
identical mass, and the last of these had almost the same mass as the first
two. This suggested that these 3 particles formed an isospin triplet. The
charge formula

Qpion = I3 +
B

2
=

+1 for π+

0 for π0

−1 for π−
(15.16)

‡As far as we know, baryon number is conserved – there is no experimental evidence sug-
gesting otherwise. Yet many physicists think that perhaps baryon number is only approxi-
mately conserved, and that the proton (being the lightest baryon) can actually slowly decay
into other particles. Such processes are permitted in grand unified theories, and may be
important in the early universe [8].
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implied that B = 0 for the pion – indeed, it was the discovery of the pion
that led to the introduction of baryon number B so that Heisenberg’s formula
could be satisfied in a more general context.

These assignments contain enough information to make predictions in scat-
tering experiments using isospin conservation. For example, consider the two
nuclear reactions

(A) p+ p −→ d+ π+ and (B) p+ n −→ d+ π0 (15.17)

Reaction (A) has i = 1 in both the initial and final states, whereas reaction
(B) has i = 1 in the final state, but is a 50/50 mixture of i = 1 and i = 0 in
the initial state. So we expect the cross-section for (B) to be half that of (A):

σ
(
p+ n −→ d+ π0

)
=

1
2
σ
(
p+ p −→ d+ π+

)
(15.18)

which is indeed observed [141]!
As another example, consider pion-nucleon scattering, π + N −→ π + N .

There are six possible elastic scattering processes:

π+ + p −→ π+ + p
π− + n −→ π− + n

}
both have i =

3
2

(15.19)

π− + p −→ π− + p
π− + p −→ π0 + n
π+ + n −→ π+ + n
π+ + n −→ π0 + p

 all have i =
1
2

(15.20)

along with their time-reversed counterparts§. To analyze these, we need to
write the pion-nucleon states into isospin irreps, a job easily done using the
1⊗ 1

2 Clebsch-Gordon table from figure ??:∣∣π+
〉
|p〉 =

∣∣∣∣32 , 3
2

〉
∣∣π0
〉
|p〉 =

√
2
3

∣∣∣∣32 , 1
2

〉
−
√

1
3

∣∣∣∣12 , 1
2

〉
∣∣π+

〉
|n〉 =

√
1
3

∣∣∣∣32 , 1
2

〉
+

√
2
3

∣∣∣∣12 , 1
2

〉
(15.21)

∣∣π−〉 |p〉 =

√
1
3

∣∣∣∣32 ,−1
2

〉
−
√

2
3

∣∣∣∣12 ,−1
2

〉
∣∣π0
〉
|n〉 =

√
2
3

∣∣∣∣32 ,−1
2

〉
+

√
1
3

∣∣∣∣12 ,−1
2

〉
∣∣π−〉 |n〉 =

∣∣∣∣32 ,−3
2

〉
§You can easily check these assignment by noting that for the top two reactions |i3| = 3

2

on each side, whereas |i3| = 1
2

on each side for the rest of the reactions.
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The cross-section is proportional to the square of the matrix element for this
process,

∣∣Mfi
∣∣2 = |〈f |HπN | i〉|2 where HπN is the relevant part of the Hamil-

tonian describing the nuclear force (neglecting electromagnetic interactions).
If we impose isospin conservation, then

[
HN , ~I

]
= 0, which implies that〈

i =
3
2

∣∣∣∣HπN

∣∣∣∣i =
1
2

〉
= 0 (15.22)

meaning that the total isospin cannot change in any scattering process. Defin-
ing

〈
i = 3

2

∣∣HπN

∣∣i = 3
2

〉
≡M3 and

〈
i = 1

2

∣∣HπN

∣∣i = 1
2

〉
≡M1, we see that

〈
π+p

∣∣HπN

∣∣π+p
〉

=
〈
π−n

∣∣HπN

∣∣π−n〉 =
〈

3
2

∣∣∣∣HπN

∣∣∣∣32
〉

=M3 (15.23)

whereas〈
π−p

∣∣HπN

∣∣π−p〉
=

(√
1
3

〈
3
2
,−1

2

∣∣∣∣−
√

2
3

〈
1
2
,−1

2

∣∣∣∣
) ∣∣∣∣HπN

∣∣∣∣
(√

1
3

∣∣∣∣32 ,−1
2

〉
−
√

2
3

∣∣∣∣12 ,−1
2

〉)

=
1
3

〈
3
2

∣∣∣∣HπN

∣∣∣∣32
〉

+
2
3

〈
1
2

∣∣∣∣HπN

∣∣∣∣12
〉

=
1
3
M3 +

2
3
M1 (15.24)

〈
π−p

∣∣HπN

∣∣π0n
〉

=

(√
1
3

〈
3
2
,−1

2

∣∣∣∣−
√

2
3

〈
1
2
,−1

2

∣∣∣∣
) ∣∣∣∣HπN

∣∣∣∣
(√

2
3

∣∣∣∣32 ,−1
2

〉
+

√
1
3

∣∣∣∣12 ,−1
2

〉)

=
√

2
3

〈
3
2

∣∣∣∣HπN

∣∣∣∣32
〉
−
√

2
3

〈
1
2

∣∣∣∣HπN

∣∣∣∣12
〉

=
√

2
3
M3 −

√
2

3
M1 (15.25)

Summarizing, we have〈
π+p

∣∣HπN

∣∣π+p
〉

=
〈
π−n

∣∣HπN

∣∣π−n〉 =M3 (15.26)〈
π−p

∣∣HπN

∣∣π−p〉 =
1
3
M3 +

2
3
M1 (15.27)〈

π−p
∣∣HπN

∣∣π0n
〉

=
√

2
3
M3 −

√
2

3
M1 (15.28)

and so

σ
(
π+ + p −→ π+ + p

)
= σ

(
π− + n −→ π− + n

)
= K |M3|2 (15.29)
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σ
(
π− + p −→ π− + p

)
= K

∣∣∣∣13M3 +
2
3
M1

∣∣∣∣2
=

1
9
K |M3 + 2M1|2 (15.30)

σ
(
π− + p −→ π0 + n

)
= K

∣∣∣∣∣
√

2
3
M3 −

√
2

3
M1

∣∣∣∣∣
2

=
2
9
K |M3 −M1|2 (15.31)

where K is a phase-space factor common to all processes. Hence we obtain
the following predictions for the scattering cross-section ratios:

σ
(
π+ + p −→ π+ + p

)
: σ

(
π− + p −→ π− + p

)
: σ
(
π− + p −→ π0 + n

)
= 9 :

∣∣∣∣1 + 2
M1

M3

∣∣∣∣2 : 2
∣∣∣∣1− M1

M3

∣∣∣∣2
' 9 : 1 : 2 if

∣∣∣∣M1

M3

∣∣∣∣� 1

' 0 : 2 : 1 if
∣∣∣∣M3

M1

∣∣∣∣� 1 (15.32)

These ratios do agree with nuclear scattering data [142].

Many experimental measurements have been made of both the total and
the differential cross-sections for pion-nucleon scattering. The earliest exper-
iments measured a collimated beam of charged pions traversing a target of
liquid hydrogen. For both positively and negatively charged pions there is a
strong peak in the total cross-section at a pion kinetic energy of 200 MeV at
an invariant mass of 1236 MeV (see fig. 15.1), discovered by Anderson, Fermi,
Long and Nagle in 1952 [143]. This is an example of a resonance as I dis-
cussed in Chapter 9. The different resonances are given different names. The
one at 1236 MeV is called the ∆(1236). The total cross-sections have a ratio
of σ(π+ + p)/σ(π− + p) = 3, indicating that the I = 3

2 amplitude dominates
at these energies, and in good agreement with the data once we realize that
we must add the cross-sections for π− + p to go to either of its possible final
states.

Note that in general there will be several different amplitudes contributing
to the total cross-section in any given energy range, which means that we
can’t always interpret a peak as specifying a unique resonant state.
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FIGURE 15.1
Variation of the total cross-section for π+ and π− mesons on protons as a func-
tion of the invariant mass. The positions of only a few of the known states
are given. Image from Figure 4.4 of Introduction to High Energy Physics, 4th
edition, D.H. Perkins, Cambridge University Press (2000); used with permis-
sion.

15.3 Strangeness

As nuclear physics experiments achieved higher and higher energies, new res-
onances called V -particles were observed. First observed by Rochester and
Butler in 1947 [144], by 1952 many of them had been seen. They were pro-
duced in large numbers (they had large cross-sections of mb) and had long
lifetimes (about 10−10s), and decayed into products in a manner that did not
conserve isospin. What were these strange things?

As an example, one V -particle was called the Λ-hyperon. It had no charged
counterpart, suggesting iΛ = 0. However, it decayed via

Λ −→ π− + p (15.33)

which has i3 = − 1
2 in the final state, meaning that the total final-state isospin

cannot be zero. Furthermore, the lifetime for this process was τΛ ' 10−10

sec, far longer than typical strong-interaction lifetimes of 10−23 sec!
This suggested that these V -particles – such as Λ’s, Σ’s, K’s – were pro-

duced by some strong nuclear interactions but decayed via a different weak
nuclear interaction¶ (as Pais first proposed [145]). If this is so, such particles

¶The same could have been said for the charged pions, except that neutrinos were associated
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must be produced in pairs (to conserve isospin), but can decay as singletons.
This is in fact what is observed – for example we see

π− + p −→

Σ− +K+

Σ0 +K0

Λ +K0
and

Σ− −→ n+ π−

Σ0 −→ n+ π0 (15.34)

but we never see

π− + p −→

Σ− + π+

n+K0

Λ + π0
(15.35)

Gell-Mann and Nishijima suggested that these strange phenomena be de-
scribed using the formula [146]

Q = I3 +
B

2
+
S

2
(15.36)

where S is a new quantum number called strangeness.
The assignment of strangeness to a given particle follows from isospin as-

signments plus some conventions. By definition the strangeness of the K+ is
set equal to +1. All nucleons and pions have zero strangeness. As new parti-
cles continued to be discovered, isospin assignments were made on the basis
of simplicity and near-degeneracy of masses of different particles when/if they
occurred. Other assignments were made based on reactions that are assumed
to conserve strangeness in production (but not necessarily in decay)‖. From
the reactions

π− + p −→

Σ− +K+

Σ0 +K0

Λ +K0
(15.37)

we see that the Σ− particle has S = −1. Clearly the antiparticles K− and
Σ+ have S = +1. A strangeness-conserving reaction is

K− + p −→ Λ + π0

S −1 0 −1 0
I − 1

2 + 1
2 0 0

implying from the above that K0 has S = +1. This raises a bit of a puzzle –
there are two Kaons with strangeness +1, but only one with S = −1. Gell-
Mann proposed that there should be an antiparticle K̄0 with S = −1. This
particle was soon seen in the reaction π+ + p −→ p+ K̄0 +K+.

with their decays, and it was then thought that weak interactions were associated only with
neutrinos. For the Λ and its compatriots, the decay is purely hadronic.
‖We now understand (and will see later) that strangeness is conserved in all strong inter-
actions, but violated in weak ones.
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15.4 Flavor

The assignment of strangeness and isospin quantum numbers soon became
haphazard and chaotic. It would be much nicer to use some kind of group
structure to organize things, the way that isospin did for the neutron, proton
and pion. In 1963 Murray Gell-Mann [147] and (independently) George Zweig
[148] did just that! They enlarged the SU(2) isospin symmetry to include
strangeness – it became an SU(3) symmetry. Let’s look at the basic outline
of how they did it.

Gell-Mann and Zweig noticed two things about the 10 lowest-mass spin-3
2

baryon states:

1. All states within the same isospin multiplet had approximately the same
mass (to within a few percent)

2. States of different strangeness differed in constant-mass increments

These features are easy to see if you plot the different spin-3
2 baryon states

on a graph with strangeness on the y-axis and isospin-3 component on the
x-axis as in fig. 15.2. For example all four of the ∆(1232) states had i = 3

2 :
each of them has strangeness S = 0, and about the same mass (namely, 1232
MeV). The lowest-mass spin- 3

2 baryon states with S = −1 were all in an
isospin triplet (i.e., i = 1) and each had a mass of about 1384 MeV (these
are called the Σ-states). The S = −2 states (the Ξ∗’s) each had mass ∼ 1533
MeV and were in an isospin doublet (i.e. i = 1

2 ).
One particle was missing in the pattern: an S = −3 state of spin- 3

2 . Since
the mass increments are ∼ 150 MeV, as isospin decreases, this state should
have a mass ∼ 1680 MeV and have i = 0. Gell-Mann called this particle the
Ω− (since it should be the last particle to be discovered), and predicted its
existence in 1961 – three years before its discovery [149]!

Similarly, the eight lowest-mass baryons with of spin-1
2 had an eight-fold

pattern. Here the mass increments were ∼ (190 ± 15) MeV: For example,
MΛ −MN ' 177 MeV, and MΞ −MΛ ' 203 MeV – the increments are not
quite as good as the spin- 3

2 collection, but are still not too bad! (Note that
there are two kinds of Σ-states: a spin-3

2 isospin triplet of mass 1384 MeV
and a spin-1

2 isospin triplet of mass 1193 MeV).
These regularities in strangeness and isospin were accounted for by Gell-

Mann and Zweig by hypothesizing that there were three types of fermion
constituents to baryons which Gell-Mann called QUARKS and Zweig called
ACES. Gell-Mann’s nomenclature won out over Zweig’s, and persists today.
Each quark had a name:
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FIGURE 15.2
Isospin/strangeness relationships amongst the spin-3/2 baryon states.

u “up” – for i3 = + 1
2 (and S = 0)

d “down” – for i3 = − 1
2 (and S = 0)

s “strange” – for i = 0 (and S = −1)

Baryons were assumed to each be composed of three quarks. Each quark
was presumed to be “one-third” of a baryon and so were assigned B = 1

3 .
Since

Q = I3 +
1
2

(B + S) = I3 +
Y

2
⇒ Q =

+ 2
3 for u
− 1

3 for d
− 1

3 for s
(15.38)

the quarks had fractional electric charge! This rather odd property of quarks
prevented most physicists from accepting them as actual particles until about
1972-74. The quantity Y = B+S is called hypercharge, and its usage persists
today.

The quantum numbers isospin and strangeness were redefined into what
we now call flavor, and the group SU(2) (which transforms the definitions
of up and down) was enlarged to become SU(3) (which now transforms the
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FIGURE 15.3
Isospin/strangeness relationships amongst the spin-1/2 baryon states.

definitions of up, down and strange). This simple idea explained both the
patterns and the mass-splittings of the eightfold collection (the OCTET) and
the tenfold collection (the DECUPLET) of baryons. As S decreases (becomes
more negative), more strange quarks are present and the mass increments
arise because ms ' 150 MeV. mu and md are presumed to be almost equal,
explaining why proton and neutron masses are roughly equal. The isospin
symmetry is an SU(2) subgroup of the SU(3) flavor symmetry, and it works
so well because of the near-equality of up and down masses.

We can now understand the octet and decuplet in terms of different col-
lections of quark flavors (i.e. u, d, and s). Working non-relativistically, we
expect that a baryon wavefunction is a bound-state wavefunction of three
quarks and has the form

Ψtotal = Φ (space)ψ (spin)χ (flavor) (15.39)

and that the SU(3) symmetry allows us to interchange any two quarks∗∗.
Since we regard quarks of different flavors as being different states of the same
particle, the Pauli principle demands that Ψtotal be antisymmetric under the
interchange of any two quarks.

∗∗Note that this SU(3) symmetry is an approximate symmetry: it would only be exact if
the mass of the strange quark were equal to that of the up and down quarks.
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Now a bound state of 3 quarks can be made from any 3 flavors, leaving
33 = 27 distinct possibilities for χ (flavor). However, we saw earlier that the
8-fold and 10-fold collections (i.e., the octet and decuplet) appear to be rather
special. The reason for this is that these collections are irreducible multiplets
of the (approximate) SU(3) flavor symmetry. Let’s see how this works.

One possible multiplet is completely symmetric under flavor interchange.
Beginning with, say |uuu〉, we write down all possible states that we can reach
from it by replacing one of the u’s with either an s or a d in all possible ways
that respect the full symmetry (so that the state doesn’t change when we
switch the positions (not the flavors) of the quarks). For example we can
get |ddd〉 by replacing each u with a d. There are 10 possible states we get
from this procedure, and so we get a decuplet, whose wavefunction we call
χS , shown in fig. 15.4.

FIGURE 15.4
The decuplet χS .

Another multiplet must be one that is completely antisymmetric, in which
the interchange of any two flavors yields a minus sign. There is only one such
possibility, called χA, given in figure 15.5.

Finally, there are also multiplets that are combinations of mixed symmetry
which are antisymmetric under the interchange of either the first two flavors
(χ12 ), the last two flavors (χ23), or the first and last flavors (χ13 ). Each
multiplet has 8 states, as illustrated in fig. 15.6. The mixed-symmetry multi-
plet χ13 does not appear in fig.15.6 because it is not independent of the other
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FIGURE 15.5
The completely antisymmetric flavor state χA.

multiplets

χ13 = χ12 + χ23 (since (χ32 + χ21) = − (χ12 + χ23) ) (15.40)

So these are all the possibilities there are: 10 + 1 + 8 + 8 = 27 states in
total. We write this as

3⊗ 3⊗ 3 = 10⊕ 1⊕ 8⊕ 8
all possible products of

3 flavors 3 times
=

4 distinct multiplets that

transform independently of each other

To get the spin part of the wavefunction, we just use the Clebsch-Gordon
tables ?? twice to get 1

2⊗
1
2⊗

1
2 = (1⊕ 0)⊗ 1

2 =
(
1⊗ 1

2

)
⊕
(
0⊗ 1

2

)
= 3

2⊕
1
2⊕

1
2 :

∣∣ 3
2 ,

3
2

〉
= |↑↑↑〉∣∣ 3

2 ,
1
2

〉
= 1√

3
(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)∣∣ 3

2 ,−
1
2

〉
= 1√

3
(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉)∣∣ 3

2 ,−
3
2

〉
= |↓↓↓〉

 spin
3
2

(ψs) (15.41)

∣∣ 1
2 ,

1
2

〉
12

= 1√
2

(|↑↓〉 − |↓↑〉) |↑〉∣∣ 1
2 ,−

1
2

〉
12

= 1√
2

(|↑↓〉 − |↓↑〉) |↓〉

}
spin

1
2

(ψ12) (15.42)∣∣ 1
2 ,

1
2

〉
23

= 1√
2
|↑〉 (|↑↓〉 − |↓↑〉)∣∣ 1

2 ,−
1
2

〉
23

= 1√
2
|↓〉 (|↑↓〉 − |↓↑〉)

}
spin

1
2

(ψ23) (15.43)

where the ↑ and ↓ symbols denote spins with z-component +1
2 and − 1

2 re-
spectively. Note that we have a fully symmetric spin-3

2 state and two mixed-
symmetry spin- 1

2 states (as with flavor we have ψ13 = ψ12 +ψ23, so the third
mixed-symmetry state is not independent).
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FIGURE 15.6
The mixed-symmetry states χ12 (top) and χ23 (bottom).

15.5 Color

Recall that we need Ψtotal = Φ (space)ψ (spin)χ (flavor) to be fully antisym-
metric because of the Pauli principle. Since we regard Ψtotal as the wave-
function for a bound state of 3 quarks, the lowest-energy bound states will
be the lowest-mass baryons. Such lowest-energy states will have no orbital
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angular momentum amongst the quarks (since angular momentum increases
the energy). This forces Φ (space) to be symmetric under quark interchange
(just as the helium atom in its ground state is symmetric under interchange
of the electrons).

So it seems we need the product wavefunction ψ (spin)χ (flavor) to be fully
antisymmetric so that Ψtotal will also be. Unfortunately this is impossible!
For the decuplet, we must have ψ (spin) = ψs and χ (flavor) = χs since
experiment tells us there are 10 states with spin- 3

2 . However, these are both
symmetric wavefunctions and hence their product is also symmetric. For
example: ∣∣∆++

〉
= |u ↑ u ↑ u ↑〉 (15.44)

and we have 3 identical particles in the same state, violating the Pauli prin-
ciple.

This problem was resolved by Greenberg [150], who suggested that there
was a new quantum number called color ! He postulated that each flavor of
quark (u, d, s) came in three distinct types, or colors – say red, green and
blue. This hypothesis implies that

Ψtotal = Φ (space)ψ (spin)χ (flavor)ϕ (color) (15.45)

and so now we have the possibility of making Ψtotal antisymmetric by making
ϕ (color) antisymmetric under the interchange of flavors. In fact, we know
how to do this: just take ϕ (color) = ϕA, where ϕA is given by χA with the
replacements u→ r, d→ b, s→ g:

ϕA =
1√
6

(|rbg〉 − |brg〉+ |bgr〉 − |gbr〉+ |grb〉 − |rgb〉) (15.46)

This proved to be an enormously fruitful idea, and today we understand
color symmetry – which also happens to be SU(3) – to be the foundational
symmetry of the strong interactions. Color is to strong interactions what
electric charge is to EM interactions, except that there are three types of
“strong charge”: r, b, and g. There are also three types of anti-strong-
charge: r̄, b̄, and ḡ. The state ϕA is a color singlet: no matter how we
switch around the definition of color amongst the quarks, this state remains
the same (up to a minus sign). The physical interpretation is that ϕA is the
wavefunction for a color-neutral bound state of three quarks.

The SU(3) color symmetry is postulated to be an exact symmetry because
two given quarks of the same flavor but of different color have the same mass,
charge, and all other quantum numbers. This is quite unlike the SU(3) flavor
symmetry, in which quarks of different flavor do not have the same mass. This
is perhaps the most confusing thing to deal with when one first encounters
quarks: there are two mathematically identical symmetry groups operating
in very different physical ways. To avoid confusion the color symmetry is
often denoted as SUC(3) and the flavor symmetry SUF (3). The role played
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by SUC(3) color symmetry is completely different than that played by the
SUF (3) symmetry. To say that there is an SUC(3) color symmetry is to assert
that the strong interaction force is the same under any unitary transformation
of color charge. The SUF (3) symmetry of the quark model, on the other hand,
is an approximate symmetry that is used to classify the different hadrons that
are made of up, down, and strange quarks. If this symmetry were exact it
would mean that all hadrons of a given spin and baryon number would have
the same mass.

Because color respects an SU(3) symmetry, we can also generate color
decuplets, octets, etc. Why don’t we see these? Without any compelling
experimental data, we append another postulate to our list, which states:

Every naturally occuring bound state of quarks is a color singlet

which implies that we always make use of ϕA in constructing hadron wave-
functions.

From these foundations we can build what is called the quark model of
hadrons.

15.6 Questions

1. Do the following exist? Why or why not?

(a) an antibaryon with charge +2
(b) a positive meson with strangeness +1
(c) a spin-0 baryon

2. An alpha particle has zero isospin. Can the reaction D +D → α+ π0

take place? Why or why not?

3. Consider the operator
G = C exp (iπI2)

an operator known as the G-parity operator, where C is the charge-
conjugation operator and I2 is the 2nd component of the isospin oper-
ator ~I.

(a) Suppose we define for the pion

C
∣∣π±〉 = −

∣∣π∓〉
Show that under G-parity

G |π〉 = − |π〉
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for the pion triplet.

(b) What is the action of G on a state |Ψ (nπ)〉 of n pions?

4. Show that all non-strange non-baryonic nucleon states are eigenstates
of G.

5. A glueball is a color-singlet bound state of two gluons, something ex-
pected from QCD. The simplest glueball state |G〉 has positive parity,
zero angular momentum, and is even under charge conjugation.

(a) What is the G-parity of this glueball?

(b) What is its strangeness?

(c) Which of the following reactions are allowed

(a) G→ π+ + π−

(b) G→ π0 + π0

(c) G→ π0 + π0 + π0

assuming that the glueball is sufficiently massive so that energy conser-
vation is satisfied for each?

6. The strong interactions are invariant under charge-conjugation. For the
following decays

(a) ρ0 → π+ + π−

(b) ω0 → π+ + π− + π0

how does this constrain the matrix elements 〈p1···pm |M| p〉 for each case?
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The Quark Model

The basic postulate of the quark model is that all hadrons are bound states
of particles called quarks. Quarks must be fermions, since only fermions can
give bound states that are both bosons (if an even number of quarks bind
together) and fermions (if odd number of quarks bind together).

The quark model was originally constructed using three kinds (or flavors)
of quarks: up, down, and strange. Today we know that there are three more
flavors of quark – charm, bottom, and top – making for six flavors in all.
However, these last three flavors are much heavier than the first three, and do
not play a role in our understanding of the lowest-mass baryons and mesons.
So I will defer discussion of the heavier quarks to Chapter 18.

TABLE 16.1

Quark Quantum Numbers and Masses
Q I Iz S C B T B Y Mass (MeV)

d − 1
3

1
2 − 1

2 0 0 0 0 1
3

1
3 5.04+0.96

−1.54

u +2
3

1
2

1
2 0 0 0 0 1

3
1
3 2.55+0.75

−1.05

s − 1
3 0 0 −1 0 0 0 1

3 − 2
3 104+34

−26

c + 2
3 0 0 0 1 0 0 1

3
1
3 1, 270+170

−70

b −1
3 0 0 0 0 −1 0 1

3
1
3 4, 200 +70

−170

t + 2
3 0 0 0 0 0 1 1

3
1
3 171, 200 ± 2, 100

Table 16.1 lists the rather surprising properties of quarks: their electric
charge is fractional, their baryon number is 1/3, and their masses∗ have no
discernable pattern. By convention, the sign of the quark flavor is chosen to

∗The definition of quark mass is rather subtle, as we shall see in this and subseqent chapters.
The list of masses in table 16.1 are current quark masses obtained from a broad range of
experiments as discussed in the Particle Data Book [1].
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be the same as that of its electric charge. Direct searches for free quarks –
in cosmic rays, in Millikan-type experiments, and in rocks from the Moon –
have been fruitless. No free quarks have ever been observed [151]. This is now
believed to be a consequence of the color force that binds them together.

The quark model reached perhaps its most sophisticated form due to the
efforts of Nathan Isgur and Gabriel Karl, who showed that all of the low energy
baryon and meson states could be understood as bound states of quarks using
the principles of atomic physics [152]. While I can’t present the full details of
this model, I can give you its foundations and basic ideas [153]. Let’s begin
our study of the quark model by looking at the two main kinds of hadrons:
baryons and mesons.

16.1 Baryons

A baryon is a hadron that is postulated to be a bound state of three different
quarks. The bound-state baryon wavefunction is

Ψbaryon = Φ (space)ψ (spin)χ (flavor)ϕ (color) (16.1)

where

ϕ (color) = ϕA =
1√
6

(|rbg〉 − |brg〉+ |bgr〉 − |gbr〉+ |grb〉 − |rgb〉) (16.2)

is the fully antisymmetric color wavefunction, ensuring that all baryons are
color-neutral, since the SUC(3) symmetry leaves the ϕA state invariant. The
spatial wavefunction Φ (space) is a function of the positions of the quarks. It
must be fully symmetric under interchange of quark position because it cor-
responds to a state of lowest energy (i.e. we wish to describe the lowest-mass
baryons), and from atomic physics we know that such a state has principal
quantum number n = 0 – this is an S-wave state, which is symmetric.

The Pauli principle requires Ψbaryon to be fully antisymmetric under the
interchange of any pair of quarks. Since Φ (space) ϕ (color) must be fully an-
tisymmetric, this means that ψ (spin)χ (flavor) must be fully symmetic under
quark-pair interchange.

So if all baryons are indeed bound states of three quarks, what we must
do is combine the irreps we found in the previous chapter for ψ (spin) and
χ (flavor) in all possible symmetric combinations. Recall that we found

SPIN:
{
ψ

3/2
S , ψ

1/2
12 , ψ

1/2
23

}
FLAVOR:

{
χ10
S , χ

8
12, χ

8
23, χ

1
A

}
where the superscript is a reminder as to which multiplet we are considering
and the subscript denotes the symmetry/antisymmetry of the wavefunction.
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All possible combinations of these wavefunction irreps that are symmetric
under particle interchange will give us the lowest mass baryons.

One obvious symmetric combination is ψ3/2
S χ10

S : we must have a decuplet
of spin- 3

2 . We get all of the explicit states by taking a direct product of the
two wave functions. For example:∣∣∣∣∆++;

3
2
,

3
2

〉
= |uuu〉 ⊗ |↑↑↑〉 = |u ↑ u ↑ u ↑〉 (16.3)∣∣∣∣∆++;

3
2
,

1
2

〉
= |uuu〉 ⊗

(
1√
3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)
)

=
1√
3

(|u ↑ u ↑ u ↓〉+ |u ↑ u ↓ u ↑〉+ |u ↓ u ↑ u ↑〉) (16.4)∣∣∣∣Σ∗+;
3
2
,

1
2

〉
=

1√
3

(|uus〉+ |usu〉+ |suu〉)⊗
(

1√
3

(|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉)
)

=
1
3

(|u ↑ u ↑ s ↓〉+ |u ↑ u ↓ s ↑〉+ |u ↓ u ↑ s ↑〉

+ |u ↑ s ↑ u ↓〉+ |u ↑ s ↓ u ↑〉+ |u ↓ s ↑ u ↑〉 (16.5)
+ |s ↑ u ↑ u ↓〉+ |s ↑ u ↓ u ↑〉+ |s ↓ u ↑ u ↑〉)

and you can construct all of the others by a similar procedure of taking direct
products.

The numerical coefficients allow us to compute probabilities of quark dis-
tributions inside a baryon. For example, suppose we had a Σ∗+ in a jz = 1

2
state. We see from eq. (16.5) that there are three terms in its wavefunction
that have a spin-↓ s-quark. Each has a coefficient of 1

3 , and so we would
have a

(
1
3

)2 +
(

1
3

)2 +
(

1
3

)2 = 1
3 chance of finding a spin-↓ s-quark. Similarly

there are six terms containing a spin-↓ u-quark and so there is a 6×
(

1
3

)2 = 2
3

probability of finding a spin-↓ u-quark in the Σ∗+– if we were able to isolate
the quarks!

Another symmetric combination follows using the χ8
12 and χ8

23 octet wave-
functions. Since ψ1/2

12 χ8
12 is symmetric on (1 ↔ 2), we can form a fully sym-

metric wavefunction by taking

ψχ = N
(
ψ

1/2
12 χ8

12 + ψ
1/2
23 χ8

23 + ψ
1/2
13 χ8

13

)
= N

(
2ψ1/2

12 χ8
12 + 2ψ1/2

23 χ8
23 + ψ

1/2
23 χ8

12 + ψ
1/2
12 χ8

23

)
(16.6)

where we recall that ψ1/2
13 = ψ

1/2
12 + ψ

1/2
23 and χ8

13 = χ8
12 + χ8

23, and N is
some normalization factor to be determined for each state (since there will
be cancellations between some terms when we look at specific spin/flavor
wavefunctions). So we expect a spin-1/2 baryon octet!

Note that the observed octet is a mixture of the two flavor octets – it must
be to ensure that ψ (spin)χ (flavor) is fully symmetic. Again, we find explicit
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states by direct multiplication. For example, a spin-up proton is∣∣∣∣p; 1
2
,

1
2

〉
= N

{
2
[

1√
2

(|↑↓〉 − |↓↑〉) |↑〉
] [

1√
2

(|ud〉 − |du〉) |u〉
]

+2
[

1√
2
|↑〉 (|↑↓〉 − |↓↑〉)

] [
1√
2
|u〉 (|ud〉 − |du〉)

]
+
[

1√
2
|↑〉 (|↑↓〉 − |↓↑〉)

] [
1√
2

(|ud〉 − |du〉) |u〉
]

+
[

1√
2

(|↑↓〉 − |↓↑〉) |↑〉
] [

1√
2
|u〉 (|ud〉 − |du〉)

]}
(16.7)

which upon simplification becomes∣∣∣∣p; 1
2
,

1
2

〉
=

N

4

(
2 |u ↑ d ↓ u ↑〉 − 2 |u ↓ d ↑ u ↑〉 − 2 |d ↑ u ↓ u ↑〉

+2 |d ↓ u ↑ u ↑〉+ 2 |u ↑ u ↑ d ↓〉
−2 |u ↑ u ↓ d ↑〉 − 2 |u ↑ d ↑ u ↓〉+ 2 |u ↑ d ↓ u ↑〉
+ |u ↑ d ↑ u ↓〉 − |u ↑ d ↓ u ↑〉
− |d ↑ u ↑ u ↓〉+ |d ↑ u ↓ u ↑〉+ |u ↑ u ↓ d ↑〉

− |u ↓ u ↑ d ↑〉 − |u ↑ d ↓ u ↑〉+ |u ↓ d ↑ u ↑〉
)

=
N

4

(
2 |u ↑ d ↓ u ↑〉 − |u ↓ d ↑ u ↑〉 − |d ↑ u ↓ u ↑〉

+2 |d ↓ u ↑ u ↑〉+ 2 |u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉

− |u ↑ d ↑ u ↓〉 − |d ↑ u ↑ u ↓〉 − |u ↓ u ↑ d ↑〉
)

(16.8)

and the normalization coefficient can be obtained by recognizing that each
state in the preceding expression is orthogonal to all the others. Hence the
requirement that

〈
p; 1

2 ,
1
2 |p;

1
2 ,

1
2

〉
= 1 gives∣∣∣∣p; 1

2
,

1
2

〉
=

1√
18

(
2 |u ↑ d ↓ u ↑〉 − |u ↓ d ↑ u ↑〉 − |d ↑ u ↓ u ↑〉

+2 |d ↓ u ↑ u ↑〉+ 2 |u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉

− |u ↑ d ↑ u ↓〉 − |d ↑ u ↑ u ↓〉 − |u ↓ u ↑ d ↑〉
)

(16.9)

and so the probability of finding, say, a spin-down d-quark in a proton (where
jz = + 1

2 for the proton spin) is 1
18 ×

(
22 + 22 + 22

)
= 2

3 .
Are there any other symmetric mixtures of ψ (spin) and χ (flavor)? The

answer is no: no other combination of mixed-symmetry wavefunctions can
be made fully symmetric, and there is no fully antisymmetric state that can
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be combined with χA. This agrees with observation: all lowest-mass baryons
are either spin-3

2 and fit into a decuplet, or are spin- 1
2 and fit into an octet†.

Constructing baryon wavefunctions is a straightforward, though somewhat
tedious, job. There are three spins, three flavors, and three colors, and
they all must be put together in a manner that satisfies the Pauli principle.
The SUF (3) flavor symmetry is approximate since the up, down and strange
quarks have different masses (though the up and down masses are nearly
identical). The SUC(3) color symmetry is believed to be exact: a red up-
quark has all the properties of a blue up-quark or a green up-quark, apart
from color. Color plays an essential (but hidden) role in all of this – without
it we would also be searching for antisymmetric spin-flavor wavefunctions.
The only way to do this for spin-3

2 is to combine it with the antisymmetric
SUF (3) singlet χ1

A – this would mean there would be only one spin-3
2 baryon,

in strong contradiction with observation.

16.2 Mesons

Another way to get color-neutral states is to combine a quark-antiquark pair
into a bound state. Since there are 3 flavors, 2 particles and 2 possible spins,
there are a total of 3×3×2 = 18 distinct such states. These states are called
mesons.

A meson wavefunction is of the form of eq. (16.1)

Ψmeson = Φ (space)ψ (spin)χ (flavor)ϕ (color)

where the Pauli principle is no longer an issue, since the particles are not
identical. The spatial wavefunction will still be symmetric (since we want
the lowest-energy states, which means Φ (space) is an S-wave) and the color
wavefunction is guaranteed to be neutral (i.e. a singlet) since it is made from
color-anticolor pairs. This color wavefunction is

ϕS =
1√
3

(
|rr̄〉+

∣∣bb̄〉+ |gḡ〉
)

(16.10)

where each color is paired with its anticolor.

†Of course excited states would be different because in that case ϕ(space) is not necessarily
symmetric since the quarks would now have some orbital angular momentum. In this case
we can construct other combintations of ψ(spin) and χ(flavor). The only restriction is that
the bound state wavefunction be antisymmetric under interchange of any two quarks (and
that it is a color singlet).
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The spin wavefunctions are

|1, 1〉 = |↑↑〉
|1, 0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|1,−1〉 = |↓↓〉

 triplet ψ1
T (16.11)

|0, 0〉 = 1√
2

(|↑↓〉 − |↓↑〉)
}

singlet ψ0
S (16.12)

as we have seen before in eqs.(6.23, 6.24) for positronium. The spin-1 triplet
state is the “ortho” state and the spin-0 singlet is the “para” state. These
are the only ways of combining two spin-1

2 particles. Hence the quark model
predicts that all (low-energy) mesons are either spin-0 (the scalar mesons) or
spin-1 (the vector mesons).

The flavor wavefunction must now be made from a quark and an antiquark.
The 9 possible flavor states decompose into an octet and a singlet as in fig.
16.1 where the minus sign is a (rather irritating) convention for expressing an

FIGURE 16.1
The octet and singlet meson flavor wavefunctions.

isospin doublet of antiquarks. We have

|u〉 =
∣∣∣∣i =

1
2
, i3 =

1
2

〉
|d〉 =

∣∣∣∣i =
1
2
, i3 = −1

2

〉
(16.13)

∣∣d〉 = −
∣∣∣∣i =

1
2
, i3 =

1
2

〉
|u〉 =

∣∣∣∣i =
1
2
, i3 = −1

2

〉
(16.14)

and note that d is isospin-up (it’s the antiparticle of isospin-down, after all),
whereas u is isospin-down. In group-theoretic language we say that the three
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quarks u, d, s belong to the fundamental 3 representation of SUF (3) and that
the three antiquarks belong to the conjugate representation 3̄. The combina-
tion of both we write as 3 ⊗ 3̄ = 8 ⊕ 1, meaning that we have a collection
of 8 objects (the octet) that transform into one another under SUF (3), and
one object (the singlet) that just transforms into itself under SUF (3). You
can easily check both statements by seeing what happens under interchange
of any pair of flavors.

For the spin-0 mesons we identify these flavor wavefunctions as in fig. 16.2,
or in other words

FIGURE 16.2
The spin-0 mesons.

∣∣π+
〉

= −
∣∣ud〉 ψ0

S∣∣π0
〉

=
1√
2

(
|uu〉 −

∣∣dd〉) ψ0
S∣∣π−〉 = |du〉 ψ0

S∣∣K+
〉

= |us〉 ψ0
S (16.15)∣∣K0

〉
= |ds〉 ψ0

S∣∣∣K0
〉

= −
∣∣sd〉 ψ0

S∣∣K−〉 = |su〉 ψ0
S
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for the pion and Kaon states‡.
The η states are a little more subtle: the flavor-spin states are

|η0〉 =
1√
3

(
|uu〉+

∣∣dd〉+ |ss〉
)
ψ0
S (16.16)

|η8〉 =
1√
6

(
|uu〉+

∣∣dd〉− 2 |ss〉
)
ψ0
S (16.17)

Note that the η0 is a para-spin state and a para-isospin state (as is the η8).
This is in contrast to the pion-triplet, which is a para-spin state but an ortho-
isopin state.

The experimental situation is a bit more complicated since the actual states
observed in nature are orthogonal linear combinations of the η0 and η8:

|η〉 = cos θη |η0〉+ sin θη |η8〉 (16.18)
|η′〉 = − sin θη |η0〉+ cos θη |η8〉 (16.19)

Experiment indicates that the mixing angle θη ' 11o. Since the η0 and η8

have identical quantum numbers, their wavefunctions can mix. However, the
simple quark model here does not explain why they mix. The actual reason
for the mixing has to do with the underlying theory of the strong SUC(3)
interaction – quantum chromodynamics, or QCD – which induces continuous
transitions between the quark-antiquark pairs in the η and η′. It is the task
of this more fundamental theory to explain the origin of this mixing angle.

For the vector mesons we have an analogous picture, given in fig. 16.3
where now ∣∣ρ+

〉
= −

∣∣ud〉 ψ1
T∣∣ρ0

〉
=

1√
2

(
|uu〉 −

∣∣dd〉) ψ1
T∣∣ρ−〉 = |du〉ψ1

T∣∣K∗+〉 = |us〉 ψ1
T (16.20)∣∣K∗0〉 = |ds〉 ψ1
T∣∣∣K∗0〉 = −

∣∣sd〉 ψ1
T∣∣K∗−〉 = |su〉ψ1

T

‡The minus signs in eqs. (16.14) and (16.15) are irrelevant phase conventions that appear
for technical reasons [31], but they do have the effect of modifying our linear combinations.
For example, a para-isospin state is

1
√

2

„˛̨̨̨
i =

1

2
, i3 =

1

2

fl ˛̨̨̨
i =

1

2
, i3 = −

1

2

fl
−
˛̨̨̨
i =

1

2
, i3 = −

1

2

fl ˛̨̨̨
i =

1

2
, i3 =

1

2

fl«
=

1
√

2
(|u〉 |d〉+ |d〉 |u〉)



The Quark Model 299

FIGURE 16.3
The spin-1 mesons.

in analogy with the spin-0 case. As with the η states, the φ0 and φ8 states
are

|φ0〉 =
1√
3

(
|uu〉+

∣∣dd〉+ |ss〉
)
ψ1
T (16.21)

|φ8〉 =
1√
6

(
|uu〉+

∣∣dd〉− 2 |ss〉
)
ψ1
T (16.22)

and so we see that the ρ-meson is an ortho-spin and ortho-isospin state,
whereas the φ0 is an ortho-spin but para-isospin state. And as before with
the spin-singlet case, the actual φ-states observed in nature are orthogonal
linear combinations of the φ0 and φ8 states :

|ω〉 = cos θφ |φ0〉+ sin θφ |φ8〉 '
1√
2

(
|uu〉+

∣∣dd〉) (16.23)

|φ〉 = − sin θφ |φ0〉+ cos θφ |φ8〉 ' |ss〉 (16.24)

where now experiment indicates that the mixing angle θφ ' 35o. This makes
the φ-meson almost completely |ss〉 (explaining why it preferentially decays
intoKK pairs), and the ω-meson 1√

2

(
|uu〉+

∣∣dd〉) (explaining why the masses
of the ρ-meson and the ω-meson are almost the same). The origin of the
mixing angle θφ is beyond the scope of the simple quark model presented
here, and requires QCD for a more complete explanation.
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Mesons are hadrons with zero baryon number. It is straightforward to
figure out their general properties under P and C. For parity, the orbital
angular momentum l contributes as for the hydrogen atom. A fermion always
has a parity opposite to that of its antifermion counterpart; by convention
we set all quarks to have positive parity and all antiquarks to have negative
parity. Hence P = (−1)l+1 for a meson. Any system consisting of spin-1

2
particle/antiparticle pairs will emit one photon if it (a) undergoes a transition
between two states where the orbital angular momentum changes by one unit
or (b) if one particle undergoes a spin-flip relative to the other particle. Since
photons have C = −1, we have C = (−1)l+s for flavorless mesons. Otherwise
C is undefined. Summarizing:

P = (−1)l+1 for all mesons

C = (−1)l+s for flavorless mesons

Many other mesons beyond the ground state scalar and vector mesons exist,
and their quantum numbers are compatible with those of a spin-1

2 particle-
antiparticle pair in an excited state with nonzero orbital angular momentum.

16.3 Mass Relations

The differing masses between the various baryon and meson states can ap-
proximately be accounted for by assuming that the strange quark has a mass
ms ' 150 MeV. For example in the decuplet we have

MΣ∗ −M∆ ' 152 MeV MΞ∗ −MΣ ' 149 MeV
MΩ −MΞ∗ ' 139 MeV (16.25)

which can be explained reasonably well by setting ms ' 150 MeV, but for the
octet we have

MΛ −MN ' 177 MeV MΞ −MΛ ' 203 MeV (16.26)

which is pretty crude. We should be able to improve on this by taking the
quark model more seriously to include a better description of how the quarks
bind. Since we are working with constituent masses, we have already included
the energy of the gluons. However, we have not taken account of interactions
due to quark spin. Specifically, if mesons and baryons really are bound states
of spin- 1

2 quarks, presumably spin-spin interactions between the quarks should
play an important role.

Why? Recall that the magnetic dipole moment for a fermion is of the form

~µ = g
e

2mc
~S (16.27)
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where g ' 2 for a spin- 1
2 fermion (modulo small QED corrections). Any two

fermions will have a dipole-dipole interaction, whose energy is

Hdipole ≈
~µ1 · ~µ2

r3
12

(16.28)

where r12 is the separation between fermion 1 and fermion 2. In a hydrogenic
atom this kind of interaction takes place between the electron and the spinning
nucleus, and splits each energy level into two very close levels. Such a splitting
is called a hyperfine splitting; for a hydrogen atom in the S-state we find that
this interaction – when averaged over all directions – vanishes everywhere
except at the origin. This gives

∆EH.F. = 〈Hdipole〉directions =
(

8π
3

)
4πα}2

mempc2
~Se · ~Sp |Ψn=0(0)|2 (16.29)

where ~S = }
2~σ, and the α is the fine-structure constant. Note that the energy

is proportional to the square of the wavefunction at the origin due to the
averaging procedure.

Quarks carry a color charge, so we expect a color -magnetic-dipole interac-
tion§. The color potential is proportional to 1/r (we’ll see why in Chapter
18), so we expect that for mesons

Mmeson = (sum of quark masses) + (color dipole interaction energy)

= mq +mq +
1
3

(
8π
3

)
4παs
mqmq

~Sq · ~Sq |Ψmeson(0)|2 (16.30)

where αs is the strong interaction constant, and the factor of 1
3 is due to the

three quark colors. For baryons we expect

Mbaryon = mq1 +mq2 +mq3 +
1
6

(
8π
3

) 3∑
i<j

4παs
mqimqj

~Sqi · ~Sqj
∣∣∣Ψbaryon(0)

∣∣∣2
(16.31)

where the factor of 1
6 is also due to quark color.

We can work out the spin-spin terms as follows. Recall that

~Sq · ~Sq =
∣∣∣~Sq∣∣∣2 = }2sq (sq + 1) =

}2

2

(
1
2

+ 1
)

=
3
4

}2 (16.32)

and that ~Sq + ~Sq = ~Smeson. Hence

~Sq · ~Sq |meson〉 =
1
2

[
~Smeson · ~Smeson − ~Sq · ~Sq − ~Sq · ~Sq

]
|meson〉

§Of course quarks also carry electromagnetic charge, leading to an electromagnetic dipole
interaction – this is negligibly weak compared to the color dipole interaction.
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=
}2

2

[
smeson (smeson + 1)− 3

4
− 3

4

]
|meson〉

=

{
+}2

4 for smeson = 1 (vector mesons)

− 3}2

4 for smeson = 0 (scalar mesons)
|meson〉(16.33)

giving a clear energy difference between vector and scalar mesons. Using

mu = md = 310 MeV and ms = 483 MeV (16.34)

we can fit all vector and scalar masses to the formula for Mmeson above to
within 1% provided

1
3

(
8π
3

)
4παs |Ψmeson(0)|2 =

(
2mu

}

)2

× 160 MeV (16.35)

which is a huge improvement!

TABLE 16.2

Quark-Model Meson Masses
Calculated Observed

π 140 138
K 484 496
η 559 549
ρ 780 776
ω 780 783
K∗ 896 892
φ 1032 1020

Note that the masses of the up, down, and strange quarks differ considerably
from those given in table 16.1. This is because the masses in table 16.1 are the
current quark masses: the mass of a quark “by itself.” However, a bound quark
is continually exchanging gluons (the force carriers of the strong interaction)
with its counterparts in the bound state, which adds an appreciable amount
to the total energy of the baryon or meson. It is convenient to define the
constituent quark mass: the current quark mass plus the mass of the gluon
particle field surrounding the quark. So for the strange quark its current
mass is 104 MeV (a modern refinement over the original crude estimate of
150 MeV), whereas its constituent mass is 483 MeV. Similar considerations
apply for the up and down quark masses.

Clearly we’re on the right track. For baryons, the spin product is a bit
trickier. If all quark masses are equal (as in the N,∆, and Ω) then

3∑
i<j

1
mqimqj

~Sqi · ~Sqj |EMB〉
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=
1
m2
q

[
~S1 · ~S2 + ~S1 · ~S3 + ~S2 · ~S3

]
|EMB〉

=
1

2m2
q

[
~Sbaryon · ~Sbaryon − ~S1 · ~S1 − ~S2 · ~S2 − ~S3 · ~S3

]
|EMB〉

=
}2

2m2
q

[
sbaryon

(
sbaryon + 1

)
− 3

4
− 3

4
− 3

4

]
|EMB〉

=
}2

m2
q

{ 3
4 for sbaryon = 3

2 (decuplet)
− 3

4 for sbaryon = 1
2 (octet) |EMB〉 (16.36)

where EMB means “equal mass baryon,” giving

MN = 3mu −
3}2

4m2
u

(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2 (16.37)

M∆ = 3mu +
3}2

4m2
u

(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2 (16.38)

MΩ = 3ms +
3}2

4m2
s

(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2 (16.39)

Actually, for the decuplet all spins are parallel (every pair combines to make
spin-1) so

1(1 + 1)}2 |decuplet〉 =
(
~Sqi + ~Sqj

)2

|decuplet〉

=
(
~Sqi · ~Sqi + ~Sqj · ~Sqj + 2~Sqi · ~Sqj

)
|decuplet〉

=
(

3
4

}2 +
3
4

}2 + 2~Sqi · ~Sqj
)
|decuplet〉

⇒ ~Sqi · ~Sqj =
1
4

}2 for the decuplet (16.40)

which gives

MΣ∗ = 2mu +ms +
}2

4

(
1
m2
u

+
2

mums

)(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2(16.41)

MΞ∗ = 2ms +mu +
}2

4

(
1
m2
s

+
2

mums

)(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2(16.42)

for the remaining decuplet states. For the Σ and Λ octet states, the up and
down quarks are respectively in isospin 1 and isospin 0 states, which means
that their spins must respectively combine to give 1 and 0. Hence

1(1 + 1)}2 |octet- Σ〉 =
(
~Su + ~Sd

)2

|octet- Σ〉

=
(

3
4

}2 +
3
4

}2 + 2~Su · ~Sd
)
|octet- Σ〉
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⇒ ~Su · ~Sd =
1
4

}2 for the octet Σ (16.43)

0 =
(
~Su + ~Sd

)2

|octet-Λ〉

=
(

3
4

}2 +
3
4

}2 + 2~Su · ~Sd
)
|octet-Λ〉

⇒ ~Su · ~Sd = −3
4

}2 for the octet Λ (16.44)

and so

MΣ = 2mu +ms +

(
~Su · ~Sd
mumd

+
~S1 · ~S2 + ~S1 · ~S3 + ~S2 · ~S3 − ~Su · ~Sd

mums

)

×
(

32π2αs
18

) ∣∣∣Ψbaryon(0)
∣∣∣2

= 2mu +ms +
}2

4

(
1
m2
u

− 4
mums

)(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2 (16.45)

MΛ = 2mu +ms −
3}2

4m2
u

(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2 (16.46)

Finally, the mass of the Ξ is computed similarly to that of the Σ, and so

MΞ = 2ms +mu +
}2

4

(
1
m2
u

− 4
mums

)(
32π2αs

18

) ∣∣∣Ψbaryon(0)
∣∣∣2 (16.47)

and so we have predictions for the masses of all states in the octet and de-
cuplet. Using the quark masses we used for the meson case, we find that
setting (

32π2αs
18

) ∣∣∣Ψbaryon(0)
∣∣∣2 =

(
2mu

}

)2

× 50 MeV (16.48)

yields agreement with experimental data to within 1%, as you can see from
table 16.3!

The actual mass of a hadron can be can be understood as consisting of two
components: (a) the current mass mcurrent from the quarks themselves and
(b) a contribution ∆m from the electric charge of the hadron (due to the work
required to put a charge on the particle), so that m = mcurrent + ∆m. If all
baryons in an octet have similar charge distributions, then we expect

∆mp = ∆mΣ+ ∆mΣ− = ∆mΞ− ∆mΞ0 = ∆mn (16.49)

Summing these equations and adding the bare masses to each side gives

mp +mΣ− +mΞ0 = mΣ+ +mΞ− +mn (16.50)
mp −mn = mΣ+ −mΣ− +mΞ− −mΞ0 (16.51)
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TABLE 16.3

Quark-Model Baryon Masses
Calculated Observed

N 939 939
Λ 1116 1114

Σoctet 1179 1193
Ξ 1327 1318
∆ 1239 1232

Σdecuplet 1381 1384
Ξ∗ 1529 1533
Ω 1682 1672

which is a formula due originally to Coleman and Glashow [154]. Empirically
we have

mp −mn = −1.3 MeV (16.52)
mΣ+ −mΣ− +mΞ− −mΞ0 = −8.0 MeV + 6.4 MeV

= −1.6 MeV (16.53)

providing good confirmation that up and down quark masses are nearly iden-
tical.

16.4 Magnetic Moments

The magnetic moment of a baryon should be the sum of its quark magnetic
moments:

~µbaryon = ~µ1 + ~µ2 + ~µ3 (16.54)

If the quarks are pointlike, then

~µquark = gquark

equark

2mquarkc
~Squark =

equark

mquarkc
~Squark =

equark}
2mquarkc

~σquark (16.55)

where gquark = 2 to a high-degree of approximation (i.e. neglecting its anoma-
lous magnetic moment). The magnitude of a baryon magnetic moment is
defined to be the expectation value of the magnetic moment operator of a
spin-up baryon states:

|~µbaryon| ≡ µB = 〈baryon ↑| (~µ1 + ~µ2 + ~µ3)z |baryon ↑〉 (16.56)

where

~µj = µj~σj with µj =
ej}

2mjc
(16.57)
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µu =
2
3

e}
2muc

µd = −1
3

e}
2mdc

µs = −1
3

e}
2msc

(retaining the factors of } and c), and where ~σz |↑〉 = + |↑〉; ~σz |↓〉 = − |↓〉 .
Let’s compute this for the proton. Recall that the quark model predicts its

wavefunction is given by eq. (16.9)

|p ↑〉 =
1√
18

(
2 |u ↑ d ↓ u ↑〉 − |u ↓ d ↑ u ↑〉 − |d ↑ u ↓ u ↑〉

+2 |d ↓ u ↑ u ↑〉+ 2 |u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉

− |u ↑ d ↑ u ↓〉 − |d ↑ u ↑ u ↓〉 − |u ↓ u ↑ d ↑〉
)

(16.58)

and we must compute 〈p ↑| (~µ1 + ~µ2 + ~µ3)z |p ↑〉 term-by-term. For example

(~µ1 + ~µ2 + ~µ3)z |u ↑ d ↓ u ↑〉 = (µu + (−1)µd + µu) |u ↑ d ↓ u ↑〉
= (2µu − µd) |u ↑ d ↓ u ↑〉 (16.59)

and so the first term contributes(
2√
18

)2

〈u ↑ d ↓ u ↑| (~µ1 + ~µ2 + ~µ3)z |u ↑ d ↓ u ↑〉 =
2
9
×(2µu − µd) (16.60)

The second term contributes(
1√
18

)2

〈u ↓ d ↑ u ↑| (~µ1 + ~µ2 + ~µ3)z |u ↓ d ↑ u ↑〉 =
1
18
µd (16.61)

and it is easy to see that all other terms contribute either 2
9 × (2µu − µd) or

1
18µd to the magnetic moment. Noting that all states in the proton wavefunc-
tion are orthogonal, we obtain [153] from a term-by-term calculation

µproton =
[
3× 2

9
(2µu − µd) + 6× 1

18
(µd)

]
=

1
3

(4µu − µd) (16.62)

We can repeat this for all the octet states, and compare to experiment. As
table 16.4 shows, agreement is good, but not outstanding. Clearly the quark
model will have to be modified (by including more detailed interactions be-
tween the quarks) if we are to improve on these predictions.

The Σ0 state has a very short lifetime of only (7.4± .07)×10−20 seconds (as
compared to lifetimes of 10−10 seconds or longer for all of the other spin-1/2
baryons). Hence the magnetic moment that can be measured is a transition
magnetic moment associated with its decay into a Λ particle. This quantity
is not really comparable to the magnetic moments of the other octet baryons
and so I have not filled in a value for it in table 16.4.
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TABLE 16.4

Quark-Model Magnetic Moments
Formula Calculated Observed

p 1
3 (4µu − µd) 2.79 2.793

n 1
3 (4µd − µu) −1.86 −1.913

Λ µs −0.613 −0.613± 0.004
Σ+ 4

3µu −
1
3µs 2.68 2.458± 0.010

Σ0 2
3 (µd + µu)− 1

3µs 0.82 (see note below)
Σ− 4

3µd −
1
3µs −1.05 −1.160± 0.025

Ξ0 4
3µs −

1
3µu −1.44 −1.250± 0.014

Ξ− 4
3µs −

1
3µd −0.51 −0.651± 0.003

(all quantities in units of nuclear magnetons
µN = e}

2mpc
= 3.152× 10−18 MeV/Gauss)

16.5 Questions

1. A well-known theorist at the University of Waterloo tells you that he has
been able to solve the three-body problem in quantum mechanics. As
expected, a fully symmetric spatial wavefunction describes the ground
state. A fully antisymmetric spatial wavefunction describes the first
excited state. Assuming this is correct, how many baryon states does
the quark model predict at the first excited level?

2. Verify the table

Magnetic Moments of Baryons

Formula
p 1

3 (4µu − µd)
n 1

3 (4µd − µu)
Λ µs

Σ+ 4
3µu −

1
3µs

Σ0 2
3 (µd + µu)− 1

3µs
Σ− 4

3µd −
1
3µs

Ξ0 4
3µs −

1
3µu

Ξ− 4
3µs −

1
3µd

3. Consider the spin-spin potential

V =
K

m1m2
~σ1~σ2δ (~r12)

between a quark and an antiquark of masses m1,m2, separated by a
distance ~r12 where K is a dimensionless constant in units where c = } =
1.
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(a) Calculate K |Ψ (0)|2 from experiment for the cc̄ system, in units
where c and } are not set to unity.

(b) Compute the splitting of the 3S1 and 1S0 states for the Υ system,
which is a bound state of a b-quark with its antiparticle.

(c) Does this work for the light mesons (e.g. for the ρ–π splitting)?
Why or why not?

4. Calculate the masses of (a) the J/ψ (a bound state of a charm quark with
its antiparticle) and the D-mesons (bound states of a charm quark with
antiquarks of lighter mass) and (b) the B-mesons and the Υ. Compare
your results to experiment, and comment on the implications for the
quark model.

5. Suppose that there were only two colors, say red and blue, with the color
symmetry being given by SUC(2). Baryons would consist of colorless
bound states of quarks, whereas mesons would consist of colorless bound
states of a quark and an antiquark.

(a) Write down the color wavefunction for a baryon and the color wave-
function for a meson.

(b) Are baryons fermions or bosons? Are mesons fermions or bosons?

(c) How do the lowest-energy baryon and meson states differ?

6. Suppose that there were N colors, with the color symmetry being given
by SUC(N). Baryons would consist of colorless bound states of quarks,
whereas mesons would consist of colorless bound states of a quark and
an antiquark. Write down the color wavefunction for a baryon and the
color wavefunction for a meson.

7. Are any of these processes allowed? Why or why not?

(a) ρ0 −→ π+ + π− (b) η0 −→ 3γ
(c) ρ0 −→ π0 + π0 (d) η0 −→ π+ + π− + π0
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17

Testing the Quark Model

Can we be confident that quarks actually exist? Or is the quark model noth-
ing more than a clever classification scheme for mesons and baryons? This
issue came to dominate the scientific community in the late 1960s, and many
remained skeptical of the existence of quarks. This began to change in 1968
when experimental evidence was found that protons had constituents called
PARTONS. For a period of time the theoretical and experimental situation
was in a state of confusion. However, after a few years partons came to be
identified with quarks, and a series of experiments were carried out that pro-
vided the best “direct” evidence for the existence of quarks that we have.
Today quarks are an established part of the Standard Model.

Quarks have never been isolated as free particles, so it is generally thought
that they are always confined to hadronic bound states. If this is the case,
how could we possibly observe them? The best way is with electromagnetism.
Everything in QED that applies to electrons also applies to quarks, provided
the appropriate charge of 2

3e or − 1
3e is used. Since quantum electrodynam-

ics is well understood, electromagnetic interactions furnish a useful probe of
hadron substructure – if quarks exist, they should be able to interact electro-
magnetically with electrons, after all.

There are three basic processes that give us experimental information about
quarks: vector meson decay [155], hadronic production, and deep inelastic
scattering. The first two of these are (roughly speaking) time-reversals of
each other, and are shown in fig. 17.1.

17.1 Vector-Meson Decay

Consider the decay of a vector meson (i.e. φ, ρ or ω) into a lepton-antilepton
pair (i.e. µ or e). The diagram at the left in figure 17.1 gives, after doing the
δ-function integrals

iM = vqj
(p2)

(
−ieqj

γµ
)
uqj

(p1)
−igµν

(p1 + p2)
2 u�−(p′2) (−ieγν) v�+(p′1)

=
ie2

M2
V

[eqj

e
vqj

(p2) (γµ) uqj
(p1)

]
[u�−(p′2) (γµ) v�+(p′1)] (17.1)

309
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We could simply square this and put it into a cross-section formula if the
initial quark and antiquark were free particles. However, they are not free
particles – they are bound together into a meson. The total quark momentum
is therefore (p1 + p2)2 = M2

V , the mass of the vector meson, and this has been
put into the formula (17.1). In fact the meson is described by the bound state
wavefunction Ψmeson = Φ (space)ψ (spin)χ (flavor)ϕ (color). We know that
the color wavefunction ϕ (color) is guaranteed to be neutral (i.e. a singlet)
since it is made from color-anticolor pairs and that Φ (space) should be a 2-
Body ground state wavefunction. The ψ (spin) is accounted for by the Dirac
wavefunctions above, but we need the proper ψ (spin)χ (flavor) combination.
So the matrix element should read

iM =
ie2

M2
V

Φϕ√
2MV

 n∑
j=1

eqj
e
χ(j)vqj (p2) (γµ)uqj (p1)

 [u`−(p′2) (γµ) v`+(p′1)]

(17.2)
where we sum over the n flavors in the meson and a normalization factor of

1√
2MV

has been inserted.
To get a decay rate we need to compute the spin-averaged matrix-element

and integrate over the spatial distribution of the quark-antiquark combina-
tion. Since we know that the quark and antiquark will only annihilate each
other when they are at the same spatial position, this integration must give
something proportional to the square of the wavefunction at the origin. Using
the Casimir trick and taking traces∗∑

i1,i2=↑,↓

[
v

(i2)
qj

(p2) (γµ)u(i1)
qj (p1)

]† [
v

(i2)
qk

(p2) (γµ)u(i1)
qk

(p1)
]

= Tr
[
γµ
(
/p2

+mj

)
γν
(
/p1
−mj

)]
δjk

= 4
(
pµ1p

ν
2 + pν1p

µ
2 − gµν

[
m2
j + p1 · p2

])
δjk

= Lµν(p1, p2;−m2
j )δjk (17.3)

where

Lµν
(
p1, p2;−m2

)
= 4

(
pµ1p

ν
2 + pν1p

µ
2 + gµν

[
−m2 − p1 · p2

])
(17.4)

and where the δjk appears because we get zero unless the two flavors of quark
in the meson are the same. This yields for the square of the spin-averaged
matrix-element

∣∣M∣∣2 ∝ e4

2M5
V

|Φ (0)|2
∣∣∣∣∣∣
n∑
j=1

eqj
e
χ(j)

∣∣∣∣∣∣
2

Lµν
(
p1, p2;−m2

j

)
Lµν

(
p′1, p

′
2;−m2

)
(17.5)

∗This procedure is exactly the same as the one we carried out in Chapter 13, so I will not
repeat any details here.
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where |ϕ (color)|2 yields an overall factor which is the same for all mesons.
Since this expression is in an arbitrary frame, we can write as a non-relativistic
approximation

pµ1 =
mqj

MV
pµV pµ2 =

mq̄j

MV
pµV (17.6)

where we ignore the relative momentum between the quark and the antiquark.
Since mqj = mq̄j this gives

Lµν
(
p1, p2;−m2

j

)
= 4

(
2
m2
qj

M2
V

pµV p
ν
V − gµν

[
2m2

qj

])

= −8m2
qj

(
gµν −

pµV p
ν
V

M2
V

)
= −2M2

V

(
gµν −

pµV p
ν
V

M2
V

)
(17.7)

since mqj = 1
2MV – the mass of the vector meson is twice the quark mass!

For the leptons emitted in the process, we have p′µ1 = (E, ~p) and p′µ2 = (E,−~p)
in the rest-frame of the meson, where |~p| ' E neglecting the mass m of the
leptons.

Hence we get

Lµν
(
p1, p2;−m2

j

)
Lµν

(
p′1, p

′
2;−m2

)
= −8M2

V

[
2 (p′1 · p′2)− 4 (p′1 · p′2)− 2

(p′1 · pV ) (p′2 · pV )
M2
V

+ (p′1 · p′2)
p2
V

M2
V

]
= −8M2

V

[
−2
(
2E2

)
− 2

(EMV )2

M2
V

+
(
2E2

)M2
V

M2
V

]
= 8M4

V (17.8)

since E = 1
2MV by energy conservation. Hence the matrix element becomes

∣∣M∣∣2 ∝ 4e4

MV
|Φ (0)|2

∣∣∣∣∣∣
n∑
j=1

eqj
e
χ(j)

∣∣∣∣∣∣
2

(17.9)

where the constant of proportionality is related to a color factor that is the
same for each meson.

The two body decay rate Γ2-Body = S|~p|c
8π}(MV c)

2

∣∣M∣∣2 becomes

Γ
(
V −→ `+`−

)
∝ α2

M2
V

∣∣∣∣∣∣
n∑
j=1

χ(j)
eqj
e

∣∣∣∣∣∣
2

(17.10)
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and will be multiplied by a function of the momenta of the initial and final
states, but (apart from the factor of M2

V ) is common to all the vector mesons.
Using

eu =
2
3
e and ed = es = −1

3
e (17.11)

along with the flavor wavefunctions for the vector mesons, we find

χ
(
ρ0
)

=
1√
2

(
|uu〉 −

∣∣dd〉)
⇒

∣∣∣∣∣∣
n∑
j=1

χ(j)
eqj
e

∣∣∣∣∣∣
2

ρ0

=
∣∣∣∣ 1√

2
2
3
− 1√

2

(
−1

3

)∣∣∣∣2 =
1
2

(17.12)

χ (φ) = |ss〉 ⇒

∣∣∣∣∣∣
n∑
j=1

χ(j)
eqj
e

∣∣∣∣∣∣
2

φ

=
∣∣∣∣(−1

3

)∣∣∣∣2 =
1
9

(17.13)

χ (ω) =
1√
2

(
|uu〉+

∣∣dd〉)
⇒

∣∣∣∣∣∣
n∑
j=1

χ(j)
eqj
e

∣∣∣∣∣∣
2

ω

=
∣∣∣∣ 1√

2
2
3

+
1√
2

(
−1

3

)∣∣∣∣2 =
1
18

(17.14)

yielding

Γ
(
ρ0 −→ `+`−

)
: Γ
(
φ −→ `+`−

)
: Γ
(
ω −→ `+`−

)
=

{
9 : 2

(
mu
ms

)2

: 1 predicted
8.8± 2.6 : 1.70± 0.41 : 1 observed

(17.15)

where you might recall that the ρ and ω have similar masses. This corrobo-
rates the flavor assignments for the φ and the ω we made in Chapter 16, and
is a test both of these assignments and of the fractional charges of quarks.
However, we can provide better evidence for the existence of quarks by looking
at this process in reverse, as we consider in the next section.

17.2 Hadron Production

When e+e− −→ qq (via a photon) the quark and antiquark will fly apart
as free particles until they reach a separation of about a fermi (10−15 m).
At this separation the strong interaction is so powerful that new quarks and
antiquarks are produced, which in turn will bind into hadrons. Dozens of
hadrons are formed, and the resultant state is a mess. However, momentum
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FIGURE 17.1
Diagrams for vector-meson decay (left) and Hadronic production (right).

conservation will force them (in the CMS frame) to emerge in two cone-like
streams called jets – each jet tracks the primordial quark or antiquark from
which it arose.

The cross-section for this process will be just like that for e+e− −→ µ+µ−

except that we must replace the charge of the muon (antimuon) with that of
the quark (antiquark). The diagrammatic rules give from fig. 17.1

iM = [uq(p′2) (−ieqγµ) vq(p′1)]
−igµν

(p1 + p2)2 [ve+(p′2) (−ieγν)ue−(p′1)] (17.16)

which upon spin-averaging and spin summing give as before

|M|
2

=
1
4

[
eeq

(p1 + p2)2

]2

Lµν(p′1, p
′
2;−m2

q)Lµν(p1, p2;−m2) (17.17)

The dot products work out to give

|M|
2

= 8

[
eeq

(p1 + p2)2

]2

((p′1 · p1) (p′2 · p2) + (p′1 · p2) (p′2 · p1)

+m2 (p′2 · p′1) +m2
q (p2 · p1) + 2m2m2

q

)
= (eeq)

2

[
1 +

m2

E2
+
m2
q

E2
+
(

1− m2

E2

)(
1−

m2
q

E2

)
cos2 θ

]
(17.18)
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where the last line is in the CM-frame, with

E1 = E2 = E3 = E4 = E

~p1 = −~p2 = ~p; |~p| =
√
E2 −m2 (17.19)

~p′1 = −~p′2 = ~p ′; |~p ′| =
√
E2 −m2

q

Now write eq = Qe, where Q is either 2/3 or −1/3. The differential 2-Body
cross-section is

dσ

dΩ
=
(

}c
8π

)2 |M|
2

4E2

|~p ′|
|~p|

=
(

}c
8π

)2
Q2 (4πα)2

8E2

|~p ′|
|~p|

×

[
1 +

m2

E2
+
m2
q

E2
+
(

1− m2

E2

)(
1−

m2
q

E2

)
cos2 θ

]
(17.20)

or, integrating over the solid angle dΩ = sin θdθdφ,

σ = (2π)
(

}c
8π

)2
Q2 (4πα)2

8E2

√
E2 −m2

q
√
E2 −m2

×

[
2

(
1 +

m2

E2
+
m2
q

E2

)
+

2
3

(
1− m2

E2

)(
1−

m2
q

E2

)]
(17.21)

which can be simplified to

σ =
π

3

(
Q}cα
2E

)2

√
1− m2

q

E2√
1− m2

E2

[(
1 +

m2

2E2

)(
1 +

m2
q

2E2

)]

−→ π

3

(
Q}cα
2E

)2

for E � m,mq (17.22)

Notice that for E < mq the square root is imaginary. This means that
there is not enough energy to create the quark-antiquark pair and the process
is kinematically forbidden.

As the beam energy E increases we will encounter a succession of thresholds:
first the muon, then the light quarks (u, d, s); later (at 1500 MeV) the charm,
the bottom (4700 MeV) and eventually the top quark (171,000 MeV). So we
expect (for E � m,mq)

R ≡ σ (e+e− −→ hadrons)
σ (e+e− −→ µ+µ−)

=
∑

colors

∑
flavors

Q2
flavor = 3

mq<E∑
j=1

Q2
j (17.23)
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which gives (neglecting corrections due to mass)

R = 3×

[(
2
3

)2

+
(
−1

3

)2

+
(
−1

3

)2
]

= 2 above the u, d, s threshold

= 3×

[(
2
3

)2
]

+ 2 =
10
3

above the c threshold

= 3×

[(
−1

3

)2
]

+
10
3

=
11
3

above the b threshold

= 3×

[(
2
3

)2
]

+
11
3

= 5 above the t threshold (17.24)

There is one correction that needs to be included: the appearance of the τ
lepton† (1784 MeV), whose discovery by Martin Perl and collaborators at
SLAC in 1975 [157] came as a surprise as experimentalists checked the value
of R as a function of energy. Once its presence was understood the prediction
for R was found to be in pretty good agreement with the data (see fig. 17.2),
especially at large E. The color factor 3 clearly needs to be there, providing
experimental evidence for color! Of course we have no experimental data
for the top since there is no e+e− collider that can reach the requisite energy
threshold.

Why isn’t the agreement better? First, there is a correction from QCD that
corresponds to the radiation of a gluon, and shows up in the final state as a
3-jet event. The process yields

R = 3
mq<E∑
j=1

Q2
j

(
1 +

αs
(
E2
)

π

)
(17.25)

at a center of mass-energy E, where αs
(
E2
)

is the running coupling constant
of QCD, analogous to the running value for α in QED. This gives a correction
of about 5%. Furthermore, in calculating the above process, we treated the
quarks in the final state as free (i.e. non-interacting) particles. However,
this isn’t correct – they are actually virtual particles that are on their way to
becoming hadrons. When the energy is at a value that is right for forming
a bound state, the interactions between the quarks dominate, leading to the
spikes in the above graph. Here our simple approximation fails badly, but
the actual QCD calculation (the solid curve in figure 17.2) does an excellent
job of matching the curve, including the resonance peaks. The flat regions of
the graph show that our approach using eq. (17.24) is reasonably good for
energies that are not nearby any resonance.

†The name comes from the Greek τριτoν, or triton, meaning “third”.
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FIGURE 17.2
World data on the total cross section of e+e− → hadrons and on the ratio
R ≡ σ(e+e−−→hadrons)

σ(e+e−−→µ+µ−) . The broken curve is the naive quark-parton model
prediction (17.24), and the solid curve is the 3-loop QCD prediction [156].
The Breit-Wigner parameterizations of the J/ψ, ψ(2S), and the Υ(nS), (n =
1, 2, 3, 4) are also shown. Image courtesy of the Particle Data Group [1].

17.3 Elastic Scattering of Electrons and Protons

At modest energies electron-proton scattering is elastic: e− + p −→ e− + p.
Based on our work in QED we might expect the spin-averaged/summed matrix
element to be similar to what we got for the muon, which is

|M|
2

=
1
2

[
−e2

q2

]2

Lµν(p′1, p1;m2)Lµν(p′2, p2;M2) (17.26)

where momentum conservation implies q2 = (p′1 − p1)2, and Lµν is given by
our formula above. However, this assumes that the proton (assumed to have
mass M) is a structureless point particle, just like the muon.

This is not right – the proton has structure. For example, we saw in Chapter
16 that its magnetic moment is 2.79 nuclear magnetons, vastly different from
a pointlike spin- 1

2 particle. Consequently we shouldn’t assume that photons
interact with it in the same way that they would with point-like objects such
as muons and electrons. The actual lowest-order diagram for this process
looks something like what is in 17.3, where the blob denotes our ignorance as
to how the photon and the proton interact.
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FIGURE 17.3
Scattering of an electron (thin line) off of a proton (thick line).

Except for this blob, the diagram is unchanged: in particular, the photon
propagator and photon-electron vertex is unchanged, and so we expect

|M|
2

=
1
2

(
e2

q2

)2

Lµν(p′1, p1;m2)Kµν(p′2, p2;M2) (17.27)

where Kµν is an unknown quantity describing the photon-proton vertex (or,
more precisely, what you get from squaring this vertex).

17.3.1 The Photon-Proton Vertex

We don’t have any diagrammatic rules to tell us how to compute Kµν . How-
ever, we can make use of some basic physics that we know must be true for
the proton: namely that it respects Lorentz invariance and electromagnetic
gauge symmetry. This means that Kµν must obey the following criteria.

1. Kµν depends only only two 4-vectors, p′µ2 and pµ2 , or alternatively qµ =
p′µ2 − pµ2 = pµ1 − p′µ1 and pµ2 . Since Kµν has two Lorentz indices, it
can depend only on quadratic products of these two 4-vectors or on the
metric, each multiplied by a different scalar function of the momenta.

2. Since Lµν is symmetric, Kµν must also be symmetric. Hence, in combi-
nation with the previous criterion, its most general form is

Kµν = −K1gµν +
K2

M2
p2µp2ν +

K3

M2
qµqν +

K4

M2
(qµp2ν + qνp2µ) (17.28)

3. The functions K1, K2, K3, and K4 must be scalar functions of qµ

and pµ2 , and so depend only on q2, q · p2 and p2
2. From momentum

conservation we have

p2
2 = M2 and q · p2 = −1

2
q2 (17.29)
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which means that the Ki are functions of q2 only.

4. Gauge invariance implies conservation of the electron current ψγµψ, or

∂µ
(
ψγµψ

)
= 0 =⇒ qµ

(
ψγµψ

)
= 0

=⇒ qµL
µν(p′1, p1;m2) = 0 (17.30)

where this follows upon Fourier-transformation [97]. Eq. (17.30) can be
easily checked and in turn implies that without loss of generality

qµK
µν(p′2, p2;M2) = 0 (17.31)

whose derivation is not obvious; I’ve left it as an exercise. This finally
yields

−K1qν +
K2

M2
(q · p2) p2ν +

K3

M2
q2qν

+
K4

M2

(
q2p2ν + (q · p2) qν

)
= 0 (17.32)

⇒ K3 =
M2

q2
K1 +

1
2
K4 and K4 =

1
2
K2 (17.33)

so that

Kµν = K1

(
q2
)(qµqν

q2
− gµν

)
+
K2

(
q2
)

M2

(
p2µ +

1
2
qµ

)(
p2ν +

1
2
qν

)
(17.34)

17.3.2 The Rosenbluth Formula

It is up to the experimentalist to determine the specific forms of the K’s and
to the theorist to find an explanation in terms of proton structure for these
forms. Inserting this into the matrix element above gives

|M|
2

=
1
2

(
e2

q2

)2

Lµν(p′1, p1;m2)

×

[
K1

(
q2
)(qµqν

q2
− gµν

)
+
K2

(
q2
)

M2

(
p2µ +

1
2
qµ

)(
p2ν +

1
2
qν

)]

=
1
2

(
e2

q2

)2 [
4
(
p′µ1 p

ν
1 + p′ν1 p

µ
1 − gµν

[
−m2 + p′1 · p1

])]
×

[
−K1

(
q2
)
gµν +

K2

(
q2
)

M2
p2µp2ν

]
(17.35)

which simplifies to

|M|
2

= 4
(
e2

q2

)2 [
−
(
m2 +

q2

2

)
K1

(
q2
)

+K2

(
q2
)( (p2 · p′1) (p2 · p1)

M2
+
q2

4

)]
(17.36)
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In the lab frame we have

pµ2 = (M, 0) pµ1 = (E, ~p) p′µ1 = (E′, ~p′) (17.37)

and so eq. (17.36) becomes

|M|
2

= 4
(
e2

q2

)2 [
−
(
m2 +

q2

2

)
K1

(
q2
)

+K2

(
q2
)(

EE′ +
q2

4

)]
(17.38)

where q2 = 2
(
m2 − EE′ + |~p ′| |~p| cos θ

)
= −4EE′ sin2 θ

2 +O
(
m2

EE′

)
< 0.

At energies E,E′ � m, the differential cross-section for e− + p→ e− + p
in the lab frame is(

dσ

dΩ

)
=
(

}
8π

)2 |M|2 |~p ′|2

M |~p| [|~p′| (E +Mc2)− |~p|E′ cos θ]
(17.39)

=

(
α

4EM sin2 θ
2

)2(
E′

E

)[
2K1

(
q2
)

sin2 θ

2
+K2

(
q2
)

cos2 θ

2

]

which is called the Rosenbluth formula [158]. Note that the kinematics of the
situation imply that q · p2 = − 1

2q
2, or

E′ =
E

1 + 2 EM sin2 θ
2

(17.40)

at energies E,E′ � m. This means that the Rosenbluth formula has only
one independent parameter: the scattering angle θ.

By counting the number of electrons scattered in a given direction for a
range of incident energies we can determine K1

(
q2
)

and K2

(
q2
)
. However,

it’s customary to define

K1

(
q2
)

=
q2

4M2
GM

(
q2
)

and K2

(
q2
)

=
GE

(
q2
)

+ q2

4M2GM
(
q2
)

1 + q2

4M2

(17.41)

where GE
(
q2
)

and GM
(
q2
)

are respectively called the electric and magnetic
form factors for the proton [159]. A comparison of the measured differential
cross-section

(
dσ
dΩ

)
e+p→e+p with the Rosenbluth formula above (17.39) then

allows a measurement of the proton form factors. This provides us with
information as to the structure of the proton.

How can we obtain direct information about the quarks inside the proton?
This is the subject of the next section.
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17.4 Deep Inelastic Scattering

Rutherford’s experiment scattering alpha particles off of gold atoms demon-
strated that the charge of an atom is concentrated in its nucleus. It pro-
vided firm evidence that the Thomson model – in which positive and negative
charges were uniformly distributed throughout the atom – was not correct,
paving the way for the Bohr model and, ultimately, our current understand-
ing of the atom. The inelastic scattering of electrons off of protons has had a
similar impact in particle physics.

In an inelastic scattering process, the particles in the final state are not the
same as in the initial state. In the context of electron-proton scattering, we
now have e− + p −→ e−+ junk. The diagram is now given by figure 17.4,
where the “junk” represents all possible particles that can come out: pions,
Kaons, ∆’s, Ξ’s – you name it! The main distinction between this case and

FIGURE 17.4
Deep inelastic scattering of electrons off of protons.

the previous elastic scattering case is that the final state momentum

p′µ2 = (p′3 + · · ·+ p′n)µ (17.42)

is no longer the square of the proton mass, i.e.

p′22 6= M2 ⇒ q · p2 6= −
1
2
q2 (17.43)

Except for this feature, the rest of the process is the same: in particular,
the photon propagator and photon-electron vertex is unchanged. Hence we
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expect for a given final state Xn (containing n particles) in the process

∣∣M (Xn)
∣∣2 =

1
2

(
e2

q2

)2

Lµν(p′1, p1;m2)Kµν(Xn) (17.44)

which will give a scattering cross-section

dσn =
}2S

4
√

(p1 · p2)2 − p2
1p

2
2

[
n∏
i=3

c
(
d3p′i

)
2E′i (2π)3

] ∣∣M (Xn)
∣∣2

× (2π)4
δ(4)

(
p′1 +

n∑
i=3

p′i − p2 − p1

)
(17.45)

for the state Xn.
It would be extremely difficult to compute this for a particular but arbitrary

final state. Fortunately this is not necessary! Experiments typically only
measure the momentum p′µ1 of the outgoing electron. Hence all we need to
do is integrate over all possible final states X = {X1, X2, . . . Xn} that could
occur. This gives

dσ =
}2πM√

(p1 · p2)2 − p2
1p

2
2

(
e2

q2

)2
c
(
d3p′1

)
2E′1 (2π)3L

µν(p′1, p1;m2)Wµν(p′2, p2;M2)

(17.46)
where now Wµν is an unknown quantity

Wµν(p′2, p2;M2) =
1

4πM

∑
Xn

{[
n∏
i=3

∫
c
(
d3p′i

)
2E′i (2π)3

]
Kµν(Xn)

× (2π)4
δ(4)

(
p′1 +

n∑
i=3

p′i − p2 − p1

)}
(17.47)

describing the photon-proton vertex (or, more precisely, what you get from
squaring this vertex). We call this the inclusive matrix element (and the
resultant cross-section the inclusive cross-section) because Wµν includes all
accessible final states X.

The energies that occur in the experiment are typically much larger than
the mass of the electron. If the mass M proton is at rest, then√

(p1 · p2)2 − p2
1p

2
2 = M

√
E2 −m2 'ME (17.48)

where E is the initial electron energy. We also have d3p′1 = |~p′1|
2
d |~p′1| dΩ '(

E
′
)2

dE′dΩ, where E
′

is the energy of the outgoing electron (if the electron
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has enough energy to blast apart the proton, then its mass is negligible).
Hence

dσ =
π

E

(
}e2

cq2

)2
E′ (dE′dΩ)

2 (2π)3 Lµν(p′1, p1;m2)Wµν(p′2, p2;M2) (17.49)

or, more compactly,

dσ

dE′dΩ
=
(

}α
cq2

)2
E′

E
LµνWµν (17.50)

since e2 = 4πα and I have inserted the relevant factors of } and c in the
cross-section.

As with Kµν , we can make use of some basic physics, namely Lorentz
invariance and electromagnetic gauge symmetry. This means that Wµν obeys
the same criteria that Kµν did, and a similar argument gives

Wµν = W1

(
qµqν
q2
− gµν

)
+
W2

M2

(
p2µ −

q · p2

q2
qµ

)(
p2ν −

q · p2

q2
qν

)
(17.51)

which is just like the expression we had before for Kµν except that now
q · p2 6= − 1

2q
2.

Inserting the form for Wµν into the matrix element above gives‡

LµνWµν = 8
[
−
(
m2 +

q2

2

)
W1

(
q2, q · p2

)
+W2

(
q2, q · p2

)( (p2 · p′1) (p2 · p1)
M2

+
q2

4

)]
(17.52)

which in the lab frame (with E,E′ � m)

pµ2 = (M, 0) pµ1 = (E, ~p) p′µ1 = (E′, ~p′) (17.53)

q2 = 2
(
m2 − EE′ + |~p ′| |~p| cos θ

)
' −4EE′ sin2 θ

2
(17.54)

becomes

LµνWµν = 4EE′
[
2W1

(
q2, q · p2

)
sin2 θ

2
+W2

(
q2, q · p2

)
cos2 θ

2

]
(17.55)

Hence at energies E,E′ � m, the inclusive differential cross-section in the
lab frame is

dσ

dE′dΩ
=

(
}α

2E sin2 θ
2

)2 [
2W1

(
q2, q · p2

)
sin2 θ

2
+W2

(
q2, q · p2

)
cos2 θ

2

]
(17.56)

‡Recall that Lµνqν = 0 and that p′1 · p1 = m2 − q2

2
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This equation is the inelastic generalization of the Rosenbluth formula (17.39):
there are still two structure functions but now they depend on two variables
(E′ and θ), since we no longer have q · p2 = − 1

2q
2, or E′ 6= E

1+2 EM sin2 θ
2

.
It’s customary to write

x ≡ − q2

2q · p2
(17.57)

so that the Wi’s are functions of q2 and x, and we have

dσ

dE′dΩ
=

(
}α

2E sin2 θ
2

)2 [
2W1

(
q2, x

)
sin2 θ

2
+W2

(
q2, x

)
cos2 θ

2

]
(17.58)

The variable x is bounded by 0 < x ≤ 1, with the elastic case the limit
x = 1. In this limit, we should be able to recover the Rosenbluth formula by
an appropriate choice of the Wi’s. After all, elastic scattering is a special case
of inelastic scattering in which (p′2)2 = M2. It’s not too hard to show that

W1,2

(
q2, x

)
= −

K1,2

(
q2
)

2Mq2
δ (x− 1) (17.59)

is the choice that recovers the elastic Rosenbluth formula once you integrate
over x.

Note that so far the only physics used in obtaining the differential cross-
section is our assumption of Lorentz invariance and gauge invariance. In
order to proceed further we need to make some hypothesis about the Wi’s to
construct specific models of the proton that in turn will allow us to predict
the cross-section. For example, suppose that the proton were a simple point
charge of spin- 1

2 . We would then have

W1

(
q2, x

)
=

1
2M

δ (x− 1) W2

(
q2, x

)
= −2M

q2
δ (x− 1) (17.60)

At low energies – where elastic scattering occurs – this is not too bad a model.
However, we know it is not fully correct – at high energies the proton scatters
inelastically, and so must have some internal structure.

17.5 Quark Model Predictions

What would a quark model predict? Well, one thing that should happen
is that at sufficiently high energies the virtual photon interacts with a sin-
gle pointlike quark that is instantaneously free. This means that the quark
structure functions should be like those for point particles as in eq. (17.59):

W j
1

(
q2, xj

)
=

Q2
j

2mj
δ (xj − 1) W j

2

(
q2, x

)
= −

2mjQ
2
j

q2
δ (xj − 1) (17.61)
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where mj is the mass of the jth quark inside the proton, and

xj ≡ −
q2

2q · pj
Qj =

ej
e

(17.62)

where pµj is its 4-momentum. Note that the structure functions are propor-
tional to the quark charge because the photon couples to the individual quarks
by a factor proportional to quark charge.

So we could compute the cross-section dσ
dE′dΩ if we knew the momentum pµj

of each quark in the proton. We don’t know this, because the momentum of
the quark inside the proton is the sum of the momentum with respect to the
proton’s center of mass plus the overall momentum in the lab. Let’s assume
that the motion with respect to the proton’s center of mass is unimportant:

pµj = zjp
µ
2 + negligible corrections (17.63)

where the total momentum pµ2 of the proton is

pµ2 =
3∑
j=1

pµj (17.64)

Essentially this assumes that each component of quark momentum gets the
same fraction of proton momentum – the “negligible” corrections are those
that include the motion of the quarks relative to the proton’s center of mass.
Using this assumption we now have

xj ≡ −
q2

2q · pj
=

x

zj
and mj = zjM

W j
1

(
q2, xj

)
=

Q2
j

2zjM
δ

(
x

zj
− 1
)

=
Q2
j

2M
δ (x− zj) (17.65)

W j
2

(
q2, x

)
= −

2zjMQ2
j

q2
δ

(
x

zj
− 1
)

= −
2x2MQ2

j

q2
δ (x− zj)

To get the structure functions of the proton in this model, we must multiply
the (pointlike) quark structure functions W j

1,2 by the probabilities fj (zj) that
the jth quark has momentum zjp

µ
2 , and then integrate over all quarks in the

proton:

W1

(
q2, x

)
=

3∑
j=1

∫ 1

0

dzjfj (zj)W
j
1

(
q2, xj

)
=

3∑
j=1

∫ 1

0

dzjfj (zj)
Q2
j

2M
δ (x− zj)

=
1

2M

3∑
j=1

Q2
jfj (x) (17.66)
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W2

(
q2, x

)
=

3∑
j=1

∫ 1

0

dzjfj (zj)W
j
2

(
q2, xj

)
= −

3∑
j=1

∫ 1

0

dzjfj (zj)
2x2MQ2

j

q2
δ (x− zj)

= −2M
q2

x2
3∑
j=1

Q2
jfj (x) (17.67)

or alternatively

MW1

(
q2, x

)
=

1
2

3∑
j=1

Q2
jfj (x) ≡ F1(x) (17.68)

−
q2W2

(
q2, x

)
2Mx

= x
3∑
j=1

Q2
jfj (x) ≡ F2(x) (17.69)

a remarkable result known as Bjorken Scaling [160]: the structure functions
(appropriately multiplied) are independent of q2!

We also see that

F2(x) = 2xF1(x) (17.70)

which is called the Callen-Gross relation [161]. Hence the prediction of the
quark-parton model is that the inelastic cross-section is

dσ

dE′dΩ
=

(
}α

2E sin2 θ
2

)2 [
2W1

(
q2, q · p2

)
sin2 θ

2
+W2

(
q2, q · p2

)
cos2 θ

2

]

=
F1(x)
2M

(
}α

E sin θ
2

)2 [
1 +

2EE′

(E − E′)2 cos2 θ

2

]
(17.71)

The importance of these relations is that they provide a clear empirical
signature for the quark model. If protons are indeed made of constituent
pointlike objects, then Bjorken scaling will hold. If the constituent objects
are spin- 1

2 , then the Callen-Gross relation holds (the function F1(x) = 0 if the
quarks have spin-0). You can see how these predictions fare against the data
in figure 17.5. They do quite well [162], and after the deep inelastic scattering
experiments [163] were performed in the early 1970s physicists accepted the
existence of quarks.
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FIGURE 17.5
A plot of F2 as a function of the energy transfer q2, using the data from deep
inelastic scattering experiments [162]. Note that it has the same value at
various scattering angles for all possible q2.

17.6 Quark Structure Functions

To finish the job, we need to compute F1(x). This is not that easy to do
because we have to make assumptions about how the quark momentum is
distributed inside the proton, assumptions that go beyond the naive delta-
function relations given above. If we really believe that mj = zjM , then

fj (x) = δ
(mj

M
− zj

)
(17.72)

since the momentum fraction of each quark is fixed. This would give for a
proton

F1(x) =
1
2

3∑
j=1

Q2
jfj (x) =

1
2

[
2
(

2
3

)2

δ
(mu

M
− x
)

+
(
−1

3

)2

δ
(md

M
− x
)]

=
1
2
δ
(mu

M
− x
)

(17.73)

where I have set the mass of the up and down quarks equal. This would make
F1(x) a sharply peaked function, which experiment shows not to be the case.

More generally, suppose that

fu (x) =
1
2
u(x) and fd (x) = d(x) (17.74)
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where u(x) is the probability density that momentum fraction x is carried by
an up quark, and d(x) is the analogous probability density for a down quark.
The factor of 1/2 ensures that u(x) is the probability density for finding either
up quark. This gives

F1(x) =
1
2

3∑
j=1

Q2
jfj (x) =

1
2

[(
2
3

)2

u(x) +
(
−1

3

)2

d(x)

]
(17.75)

The naive model would give u(x) = 2δ
(
mu
M − x

)
and d(x) = δ

(
md
M − x

)
. We

want to improve on this.
One reasonable consideration in determining u(x) and d(x) is to require

that (a) the average momentum carried by up quarks is twice that carried by
down quarks (since the proton has twice as many ups as downs) and (b) that
the masses of up and down are about the same. That is

〈
~pup

〉
= 2

〈
~pdown

〉
⇒
∫ 1

0

(x~p2u(x))dx = 2
∫ 1

0

(x~p2d(x))dx

⇒
∫ 1

0

xu(x)dx = 2
∫ 1

0

xd(x)dx (17.76)

a relationship that is supported by data from electron-neutron scattering.
This implies∫ 1

0

F2(x)dx =
∫ 1

0

x

[(
2
3

)2

u(x) +
(
−1

3

)2

d(x)

]
dx =

∫ 1

0

xd(x)dx (17.77)

Experiment indicates that the quark structure functions are∫ 1

0

xd(x)dx = 0.18
∫ 1

0

xu(x)dx = 0.36 (17.78)

which has the rather curious implication that

〈pµ2 〉all quarks =
∫ 1

0

(xpµ2u(x) + xpµ2d(x)) dx

= pµ2

∫ 1

0

(xu(x) + xd(x)) dx = 0.54pµ2 (17.79)

In other words, the average proton momentum carried by all of its quarks is
only 54% of the total proton momentum!

Where’s the rest of it? Presumably in the gluons which bind the quarks
together. But in fact the actual answer is quite complicated – virtual quark-
antiquark pairs appear inside the proton due to gluon interactions, and these
also carry some of its momentum. These virtual quarks are called “sea
quarks,” to distinguish them from the “valence” up, up, and down constituent
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quarks of the proton. The sea quarks can be any up, down or strange quark or
antiquark that can be produced at these energies (the probability that heavier
sea quarks are produced is very small due to their larger masses). Since the
exchanged photon can couple to the sea quarks as well as the valence quarks
we should modify the structure functions to include them

F1(x) =
1
2

[(
2
3

)2

[uv(x) + us(x) + us(x)]

+
(
−1

3

)2 [
dv(x) + ds(x) + ds(x) + ss(x) + ss(x)

]]
(17.80)

where the overbar denotes an antiquark. This now erodes the predictive power
of the quark model – now we have six unknown functions instead of two!
However, because all the sea quarks are produced by the same mechanism it
is reasonable to impose

us(x) = us(x) = ds(x) = ds(x) = ss(x) = ss(x) (17.81)

which implies

F1(x) =
1
18

[4uv(x) + dv(x) + 12ss(x)] (17.82)

The shape of these three structure functions can be inferred from experiment.
However, this is a difficult job, particularly as x → 0. It is one of the chal-
lenges of QCD to make a definite prediction of the quark structure functions
from first principles.

17.7 Questions

1. Suppose a 4th generation of quarks and leptons is discovered, with
masses on the order of 1 TeV. What do you predict for the ratio

R ≡ σ(e+e−−→hadrons)
σ(e+e−−→µ+µ−) ?

2. Show that

(a) qµLµν(p′1, p1;m2) = 0

(b) qµKµν(p′2, p2;M2) = 0

3. Compute K1 and K2 for a pointlike proton that obeys the Dirac equa-
tion.

4. Show that the Rosenbluth formula becomes the Mott formula

dσ

dΩMott
=

(
}α

2 |~p|2 sin2 θ
2

)2 [
|~p|2 cos2 θ

2
+ (mc)2

]
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in the limit m << E << M , using the expressions for K1 and K2 from
question #3.

5. Show that
E′ =

E

1 + 2 EM sin2 θ
2

at energies E,E′ � m for the scattering of a lepton of mass m from a
proton.

6. Show that

Wµν = W1

(
qµqν
q2
− gµν

)
+
W2

M2

(
p2µ −

q · p2

q2
qµ

)(
p2ν −

q · p2

q2
qν

)
7. Show that

LµνWµν = 8
[
−
(
m2 +

q2

2

)
W1

(
q2, q · p2

)
+W2

(
q2, q · p2

)( (p2 · p′1) (p2 · p1)
M2

+
q2

4

)]
8. Show that setting

W1,2

(
q2, x

)
= −

K1,2

(
q2
)

2Mq2
δ (x− 1)

yields the Rosenbluth formula.

9. For a proton of mass M , find the fractional momentum of the scattered
quark of mass m, where neither the proton mass nor the quark mass
can be neglected. Expand your result in the limit where both masses
are small compared to the energy.
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Heavy Quarks and QCD

So far we’ve seen that we can understand baryons as bound states of 3 quarks,
both indirectly in terms of the observable properties of baryons and directly
in terms of deep inelastic scattering.

Likewise, we’ve seen that mesons can be regarded as bound states of qq̄
pairs. In fact we can consider a meson to be a sort of a quark-antiquark
“atom,” analogous to the usual nucleus-electron atom, or the e+e− atom
(positronium). Perhaps we should call mesons “quarkonium”, since one might
expect that the methods used in positronium and ordinary atoms would work
for mesons. They do...but with two big problems.

1. We don’t know the potential.

Unlike positronium and hydrogenic atoms, in which we know that the
force is electromagnetic (and very well understood), the force binding
quarks into “quarkonium” is the color force and is not as well under-
stood. The (present-day) theory of color forces is called Quantum Chro-
modynamics (or QCD), which is similar to QED except for some non-
linear interaction terms. It constitutes the second major part of the
Standard Model, and is the foundational theory governing all that we
know about quarks and their bound states.

FIGURE 18.1
The one-photon and one-gluon exchange diagrams.

The curly intermediate line in figure 18.1 represents a gluon: the force

331
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carrier of the strong interactions. At short-distance separations for two
quarks we expect the force to be mediated by one gluon (just like one
photon in QED) and so the “one gluon exchange potential” should be

V1-gluon(r) ∼ 1
r

(18.1)

However, quarks are evidently confined at separations r > 10−13 cm,
so we must include another term Vconf(r) in the potential to account for
this. No one knows how to compute this from QCD, though some hints
have emerged from lattice gauge theory∗. At the moment we must guess
it. Some physicists assume Vconf(r) ∼ r others assume Vconf(r) ∼ ln(r),
and others Vconf(r) ∼ V0 – any of these match present-day data quite
well because they don’t differ substantially over the narrow range of
distances probed by current experiments, as shown in fig. 18.2. So we
can choose

VQCD(r) = V1-gluon(r) + Vconf(r) = −4
3
αs
r

+ F0r (18.2)

Experiment indicates [166] that F0 ' 16 tons!

2. Light quarks are relativistic.

We were able to fit baryon and meson spectra reasonably well using
SUF (3) symmetry and a potential of the above form plus spin-orbit
coupling, working in the context of a non-relativistic model. But this
raises a puzzle – not that the quark model doesn’t work perfectly (some
arbitrary parameters had to be “fit” to the data), but rather that it
works so well! It’s a puzzle because the binding energies of the light
(u,d,s) quarks into hadrons are typically a few hundred MeV, roughly
the same size as the constituent masses of the quarks! This is a highly
relativistic regime, and in strong contrast to atomic physics, where the
binding energies are 10’s of eV and the mass of the electron is 511 KeV,
making a non-relativistic approximation reasonable. At present the
reasons why the non-relativistic quark model works so well when light
quarks should be relativistic is not clear.

If heavier fourth (and fifth and sixth) quarks existed, we might be tempted
to use SU(4)flavor symmetry (or SU(5)flavor or SU(6)flavor) to explain mass
splittings. Unfortunately this would not be a good idea because the different
masses would break the flavor symmetry too badly. However, we might ex-
pect that for these heavier quarks, relativistic effects will be less important

∗This is an approach proposed by Ken Wilson [164] toward understanding the strong inter-
actions by modeling spacetime as a lattice of points and then solving the QCD equations
on this lattice by brute force on a computer [165].
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FIGURE 18.2
Form of the strong interaction potential for four distinct models, each chosen
to give a best-fit to the spectrum of cc̄ and bb̄ bound states. Image from ref.
[166]; used with permission.

(binding energies should be considerably smaller than masses) and that these
heavy quarks will bind together according to the potential (18.1) to form new
quarkonium states. These will be analogous to positronium even more than
the light mesons were.

In fact there are heavy quarks: charm (discovered in 1974), bottom (dis-
covered in 1977), and top (discovered in 1995). These particles (and their
bound states) are all very unstable, and so must be produced in accelerators.
The most straightforward way is to collide electrons and positrons, as we have
seen before. If the collision energy is just right the cross-section will rapidly
shoot up because a resonant bound state is produced. These bound states
can make transitions to other lower-mass bound states, analogous to the way
that electrons in hydrogen make transitions. Once the spectrum is empirically
determined then a potential can be inferred from it.
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18.1 Charm

Charm was actually first discovered in 1971 in cosmic ray experiments carried
out by Niu and collaborators in Japan [167]. They used an emulsion chamber,
which consists of a sandwich of emulsion sheets that can give an accurate
tracking of charged particles, followed by another sandwich of emulsion sheets
alternating with lead plates about 1 mm thick, which allows for detection of
pions, and an identification of electrons and measurement of their energy.
Events were seen corresponding to the production of two associated particles
that each decayed weakly. These particles were called X particles and were
found to have mass 1.8 GeV under the assumption they were mesons, and 2.9
GeV if baryons. These masses were far too large to be explained using strange
quarks. They in fact were charmed hadrons, having all the characteristics we
now understand for such particles, but were not recognized as such [168].

In 1974 simultaneous experiments led by Burton Richter at SLAC [169] and
by Sam Ting at Brookhaven [170] observed a series of meson resonances. The
Brookhaven researchers built a spectrometer to search for heavy particles with
the same quantum numbers as the photon (J = 1,P = −1,C = −1). Such
particles can decay into e+e− pairs for the same reasons a virtual photon does.
The idea was to search for the reaction

p+N −→ J +X −→ e+ + e− +X (18.3)

where N is a light nucleus – Be was used in the experiment. This seems
straightforward enough, but the problem is that since the (at this stage hy-
pothetical) J is produced by nuclear reactions, the charged particles coming
out will nearly always be pions instead of e+e− pairs. So the spectrome-
ter must search for particles of opposite charge but reject pions (and other
hadrons). This was done using (a) threshold Cerenkov counters that could
detect electrons or positrons, but not hadrons, and (b) a calorimeter that
measures the longitudinal shower, which would be very different for hadrons
than for electrons/positrons. A double-arm spectrometer was built, one for
each charged particle, designed to accurately measure the magnitude and di-
rection of the momentum of each charged particle. The invariant mass of the
electron/positron pair is just m2 = (p1 + p2)2, or

m
(
e+e−

)
=
√

2m2
e + 2E1E2 − 2p1p2 cos (θ1 + θ2) (18.4)

where the angles are relative to the original beam direction. If the J particle
exists, it will show up as a resonance peak in m (e+e−).

At the same time the SPEAR e+e− collider at SLAC was being operated at
its maximum CMS energy of 8 GeV, collecting data using the Mark I detector.
Some anomalies had appeared in the data at lower energies, and a decision
was made to study these by varying the energy in small steps near 3 GeV. A
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FIGURE 18.3
Observation of the J/ψ resonance at 3.1 GeV, produced by e+e− annihilation
at SLAC. Image courtesy of Institute of Physics Publishing from ref. [171].

huge resonance (called the ψ) – more than two orders of magnitude larger than
its surroundings – appeared in all cross-sections, which had the approximate
form

σ (E) =
3π
E2

ΓiΓf
(E −M)2 + Γ2

4

(18.5)

where M is the mass of the resonance, E the CMS energy, and Γ its width.
The peak area is ∫

σ (E) dE =
6π2ΓiΓf
M2Γ

(18.6)

where Γi is the partial width of the initial e+e− state and Γf the partial width
of the final state (which might be e+e−, µ+µ− or hadrons). The smaller the
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width Γ, the narrower the peak and the larger its area. The SLAC experiments
indicated that the width was extremely narrow: Γ = 0.091 MeV for the
M = 3097 MeV resonance! Furthermore, these ψ states were produced from
e+e− −→ γ −→ ψ, so the ψ had to have the same quantum numbers as the
photon: Jψ = 1 Pψ = −1, C = −1, which we write as JPC

ψ = 1−−). You can
see the original data in fig. 18.3.

The extreme narrowness of the ψ resonances indicated that they could not
be understood as excitations of bound states of any of u, d, s with any of ū, d̄, s̄.
Hence a new quark flavor called charm (c) was invented†, and the ψ was
identified as a cc̄-bound state called CHARMONIUM. More ψ resononances
were discovered (ψ′ at 3686 MeV and ψ′′ at 3770 MeV), and could be identified
with various excitations of this bound state (just the way various states of
the Hydrogen atom can be identified with excitations of the electron bound
to the proton). Indeed, the spectrum of states is completely analogous to
positronium, and the ψ was identified as the 13S1 state – orthocharmonium!

FIGURE 18.4
Quark-flow diagrams for the decay of the φ. The gluons mediating these
processes have not been drawn.

†Actually charm was predicted to exist before the discovery of the ψ by Glashow, Iliopolous
and Maini [172], who invented it to explain the absence of strangeness changing neutral
currents in the weak interactions. We’ll look at this in Chapter 21 when we discuss weak
interactions. After this, Politzer and Appelquist suggested that if a heavy “charm” quark
existed, it should form a nonrelativistic bound state cc̄, with a spectrum of energy levels
analogous to positronium [173]. They called this bound state charmonium.
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Other combinations of quarks can also form new bound states: cū, cd̄, cs̄
and their antiparticles. These states are called D-mesons, and they are much
broader than the ψ resonance (i.e. their lifetimes are much shorter). They
were observed [174] at the Mark I detector in the channels

e+ + e− −→ D0 + D̄0 +X e+ + e− −→ D+ +D− +X (18.7)

where the D-mesons appear as resonances in the final state (seen by decays
into Kaons and pions). The D0-meson has a mass 1865 MeV, and the D±-
mesons have mass 1869.5 MeV, each of which are too heavy for ψ(3097) to
decay into: mψ < 2mD. Hence the ψ must decay into states consisting only
of u, d, and s quarks.

It is this situation that gives the ψ its peculiar feature of a very narrow width
and hence anomalously long lifetime τψ ' 10−20 sec, 1000 times longer than
is typical of the strong interactions, but shorter than EM decays (typically
10−18 sec long).

18.1.1 The OZI Rule

Why does the ψ live so long? The answer goes back to Okubo, Zweig and
Iizuka and is called the OZI rule [175]. These scientists were puzzled (long
before the ψ was found) by the fact that the φ meson (ss̄ recall) decayed
much more often into 2 Kaons (K+K−) instead of 3 π’s. But the 3π decay
is energetically favored (mass(K+K−) = 990 MeV whereas mass(3π) = 415
MeV).

OZI suggested that processes with unconnected quark lines were suppressed.
For the decays shown in the diagram 18.4 we see that the decay into three
pions has unconnected quark lines and so is suppressed. Experimentally

φ −→
K+K−

K
0
K0

}
90% (18.8)

−→ π+π0π−
}

10%

In terms of gluons, the decays are given in the figure below.
Why the suppression? In the suppressed diagram on the right in fig. 18.5

there is an intermediate state of pure gluons. These must be high energy
(“hard”) gluons since the carry the total mass of the φ meson. However, on
the diagram at the left, the gluon is of low energy, since most of the energy
will be in the masses of the strange/antistrange pair of mesons. The OZI
rule is a statement that high-energy gluon-exchange processes are suppressed
in meson decay. In the context of QCD we now understand this in terms of
asymptotic freedom: low-energy gluons couple much more strongly to quarks
than high-energy gluons do, and so the low-energy gluon exchanges are more
probable. So most often the φ meson will decay via the single-gluon channel,
but occasionally it will decay with the OZI-suppressed 3-gluon channel.
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FIGURE 18.5
The OZI rule: if any diagram can be sliced in two by cutting only gluon lines,
the diagram is suppressed.

FIGURE 18.6
Why ψ-decay is suppressed: the OZI-rule favors the diagram on the left, but
energy conservation forbids this. Hence the diagram on the right describes
the leading-order decay of the ψ.
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Now we can understand charmonium decay. Since all mesons are color
singlets, the connection between the initial ψ state and its decay products
must be via a color-singlet gluon combination which needs at least two gluons.
But the ψ couples to the photon and has spin-1, and so must have C = −1.
Gluons also have C = −1 (they behave just like photons in this respect) and
so three gluons carrying all of the energy of the ψ must be exchanged. The
diagrams illustrating the suppression of decay are given in fig. 18.6. Energy
conservation forbids the process on the left, and so only the much slower OZI-
suppressed decay process can occur, giving the ψ a relatively long lifetime.

The correlation between states of charmonium and states of positronium is
remarkably good considering the aforementioned problems with quarkonium.
You can see the comparison in the figure 18.7. Given the difference in energy
scales – the hyperfine splitting between the n = 1 levels in positronium is 1011

times smaller than the corresponding split between the ψ and ηc particles –
the relative spacings are remarkably similar [176]. A numerical fit using the
Coulomb+Linear potential above can be obtained by setting F0 = 16 tons
= 900 MeV/fm.

FIGURE 18.7
Comparison of the charmonium and positronium spectra[176]. Note the dif-
fering energy scales. Reprinted with permission. Copyright 1982 by Scientific
American, Inc. All rights reserved.
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18.2 Bottom

In 1977 a 2-arm spectrometer at Fermilab was used by Leon Lederman and
collaborators [177] to study µ+µ− pairs produced in hadronic collisions

p+ (Cu,Pt) −→ µ+ + µ− +X (18.9)

where the two arms measured the momenta of the positive and negative

FIGURE 18.8
First evidence for the upsilon resonance from muon-antimuon annihilation.
The individual states Υ,Υ′ are not resolved. Reprinted figure with permission
from L. Lederman, Rev. Mod. Phys. 61, 547 (1989) figs. 12a,12b [178].
Copyright (1989) by the American Physical Society.

muon. As with the Brookhaven experiment these spectrometers must have a
high hadron rejection rate, which was attained by using a block of Beryllium
18 radiation lengths thick to stop any hadrons from entering the arms of the
spectrometer. A target was exposed to more than 1016 protons, from which
about 9000 µ+µ− events with energy m (µ+µ−) > 5 GeV were obtained.

Surprisingly, three narrow resonances (similar to the ψ) were observed at
about 9.5 − 10.5 GeV, all with JPC = 1−− as shown in fig. 18.8. These
could not be identified with any bound states of u, d, s or c and so another
flavor of quark called b (for bottom – though some researchers preferred the
term “beauty”) was introduced. The lowest-energy resonance was called Υ
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and was identified as a bb̄-bound state. A precision study at DESY using an
e+e− collider found that these three resonances had very narrow widths, and
were the ground and first two radially excited states of a bb̄-atom.

The mass of the b quark is so large (∼ 4.5 GeV) that even more states of the
bb̄-system (upsilonium) should be observed than for charmonium. Of course
the b quarks can also bind with the u, d, s, c quarks, giving rise to B-mesons.
The masses of these mesons are now known quite accurately [1], and are given
in table 18.1.

TABLE 18.1

B-Mesons

B-meson Quark
content

Measured
mass (MeV)

Stat (Sys)
errors Width or Lifetime

Υ
(
13S1

)
bb̄ 9460.30 0.26 54.02± 1.25 KeV

Υ
(
23S1

)
bb̄ 10023.26 0.31 31.98± 2.63 KeV

Υ
(
33S1

)
bb̄ 10355.2 0.5 20.32± 1.85 KeV

Υ
(
43S1

)
bb̄ 10579.4 1.2 20.5± 2.5 MeV

B+ ub̄ 5279.1 1.7(1.4) 1.638± 0.011 ps
B0 db̄ 5281.3 2.2(1.4) 1.530± 0.009 ps
B0
s sb̄ 5269.9 2.3(1.3) 1.425± 0.041 ps

B0
c cb̄ 6276 4 0.46± 0.07 ps

Note that the mass difference between the average value of the two lighter
B-mesons and the B0

s -meson is about 90 MeV – precise measurements yield a
value of 89.7±2.7±1.2 MeV, much lighter than the 150 MeV for the strange
quark predicted in the old quark model. This value is in agreement with
theoretical predictions from QCD [1]. Evidently the QCD binding energy is
a significant contribution to the mass of the low-energy mesons!
B-meson physics is playing an important role in mapping out much of the

remaining uncharted territory in the Standard Model. The reason for this
is that the b-quark can only decay into the four lighter quarks via weak in-
teractions. These decays (if the Standard Model is correct) violate CP and
so B-physics provides new independent tests of CP-violation beyond the K-
meson system. I’ll discuss this in more detail in Chapter 19 .

18.3 Top

After many years of searching, direct evidence for the existence of the top
quark was finally obtained by the CDF group at Fermilab. The first evidence
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FIGURE 18.9
Comparison of the charmonium and upsilonium spectra.

came in April of 1994, when a preliminary measurement of the t-quark mass
was given as 174± 20 GeV. This initial result was of questionable statistical
significance, and so the CDF collaboration presented their work somewhat
tentatively. However, in early 1995 [179], this sighting of the t-quark was
confirmed by CDF and by another group at Fermilab called D0. The newest
results from these two groups have increased the significance of the top quark
signal to more than 4 standard deviations. The latest measurements are
mt = 171.2±2.1 GeV [1], making the top quark the heaviest known elementary
particle, roughly twice the mass of the Z boson.

Observation of the top-quark is quite difficult [180]. Its lifetime is about
10−24 seconds, and only 1 in every 10 billion collisions produces a top. Top
quarks are produced at a Tevatron CMS energy of 1.8 TeV, primarily via
the process pp̄ −→ tt̄. According to the Standard Model, the t-quark decays
into a W -boson and a b-quark nearly 100% of the time. These events are
described by diagrams of the form given in figure 18.10 and table 18.2 lists
the possible decay modes of the top with the associated lowest-order branching
ratios. Notice that I have listed the branching ratios for the leptons separately
because they can be distinguished in the final state, unlike the quarks and
antiquarks, which produce jets. A cartoon depiction of top decay is illustrated
in fig. 18.11.

Since the top quark is so unstable, there are no top hadrons. When a lighter
quark is produced in some process it will move rapidly in a gluon field (that it
contributes to), whose energy density rapidly becomes so intense that the field
materializes into quark-antiquark pairs, forming hadrons. This hadronization
process does not happen for the top quark because its lifetime is shorter than
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FIGURE 18.10
A generic top quark decay.

the hadronization time. So in a certain sense the top quark is a free quark,
unbound to any others – but it only lives for a very short time!

The only way to really observe the top is from its decay products due to its
weak interactions, which are almost always into a W -boson and a b quark:

p+ p̄ −→ t+ t̄+X t −→W+ + b t̄ −→W−+ b̄ (18.10)

The W -bosons themselves can only be observed from their decay products,
which are into leptons (33% of the time) or hadrons (66% of the time); the
diagram in figure 18.11 is for a leptonic decay. In the hadronic decay of a
W−boson, the W decays into two quarks, which then hadronize as jets: large
numbers of particles detected in narrow but ill-defined cones along the initial
directions of the quarks. Gluons produced in pp̄ - collisions also make the
same kinds of jets. These are hard to distinguish from jets produced directly
by the pp̄ collision. Consequently, leptonic W -decays are much easier to single
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TABLE 18.2

Top Quark Decay Modes
Decay Mode Branching Ratio

tt̄→ (qq̄′b)(qq̄′b̄) 36/81
tt̄→ (qq̄′b)(eν̄eb̄) 12/81
tt̄→ (qq̄′b)(µν̄µb̄) 12/81
tt̄→ (qq̄′b)(τ ν̄τ b̄) 12/81
tt̄→ (e+νeb)(µν̄µb̄) 2/81
tt̄→ (e+νeb)(τ ν̄τ b̄) 2/81
tt̄→ (µ+νµb̄)(τ ν̄τ b̄) 2/81
tt̄→ (e+νeb̄)(eν̄eb̄) 1/81
tt̄→ (µ+νµb̄)(µν̄µb̄) 1/81
tt̄→ (τ+ν̄µb̄)(τ ν̄τ b̄) 1/81

ln the above q refers to any of u, d, s, c.

FIGURE 18.11
Pictorial depiction of Top-antitop production at the D0 Detector at Fermi-
lab. Image courtesy of Fermilab Education Office, Topics in Modern Physics
Program.

out from the background: there is a large, well isolated energy deposited by
the lepton and missing energy in the transverse direction of the beam due to
the undetected neutrino.

Both CDF and D0 require a W decay candidate from the top or antitop.
Events where both W bosons decay leptonically (dilepton events) are clean,
but only comprise 5% of all tt̄- decays. Events where oneW decays leptonically
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and the other decays into quarks (lepton plus jet events, or `j events) have a
higher branching ratio (30%) but suffer from large backgrounds. Figure 18.3
illustrates a typical top event.

FIGURE 18.12
A proton and antiproton collide producing four distinct jets (b) and some
other particles. Reprinted with permission. Copyright 1997 by Scientific
American, Inc. All rights reserved.

How is the mass of the top determined? The best measurements come from
the `j events, in which the top-antitop decay is expected to have the follow-
ing products: (i) a single electron/positron or muon/antimuon (ii) missing
transverse energy from a neutrino (iii) two jets from a W -decay (iv) two b-
jet decays. CDF begins by selecting only events that have at least four jets.
Three of them must have at least 15 GeV of transverse energy, and the 4th jet
at least 8 GeV of transverse energy. Each event that survives this criterion is
then fit to the hypothesis of tt̄ −→ single lepton + jets channel. Out of all
the possible jet assignments, the solution with the best fit (lowest χ2) is kept;
if this fit is too poor (i.e. the χ2 is too large) then the event is rejected.

Less than 100 events survive this process. To improve the accuracy, the
events are then subdivided as to whether or not a b-quark was “tagged” (cor-
rectly identified). There are either 2 b-tags, one, or none, and the events are
then regrouped into these categories, and their likelihoods recalculated within
each group. The product of these likelihoods is maximized to determine the
t-quark mass.

Since these original experiments were carried out, further experiments were
conducted with better data sets. Figure 18.14 illustrates an example of this,
based on data from a recent run at the CDF detector at Fermilab, which
obtained mtop = 171.9± 2.0 GeV/c2.
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FIGURE 18.13
Analysis of a top event. In fig. 18.3 (a), a proton and antiproton collide
producing four distinct jets (b) and some other particles. These are sketched
in figure 18.3 (b). Multiple jets and a positron signify the possible creation
of a top quark. The energies and locations of the particles measured by the
calorimeter surrounding the beam line are shown in figure 18.13, with the
energies released by the particles indicated by the heights of the bars [180].
Copyright 1997 by Scientific American, Inc. All rights reserved.

18.4 QCD

The theory underlying the strong interactions that binds quarks together is
called Quantum Chromodynamics, or QCD. QCD is very similar to QED,
except that the one electric charge (which can be positive or negative) is
replaced with three color charges – red, blue and green (and their anticolors).
Table 18.3 contains a comparative chart.

QCD is a much more complicated theory than QED, mainly because it is
a non-Abelian gauge theory. While the equations obeyed by the fermions(

iγµ
(
δBA∂µ + igsA

a
µ (λa)BA

)
−mδBA

)
ψB = 0 (18.11)

differ from the Maxwell-Dirac case only by the appearance of λa, which inter-
changes the colors, the gluons obey a generalization of Maxwell’s equations

∂µF a
µν − gsAcµF b

µν fa
cb = gsψ

A
γν (λa)BA ψB (18.12)

where
F a
µν = ∂µA

a
ν − ∂νAa

µ − gsAc
µA

b
ν fa

cb (18.13)
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FIGURE 18.14
Reconstructed top quark mass using a data sample consisting of 233 Lep-
ton+Jets event candidates, collected by the CDF II detector at Fermilab.
The darker shaded part is the background distribution, with normalization
constrained to the calculated value. Reprinted figure with permission from T.
Aaltonen et al. (CDF Collaboration), Phys. Rev. D79, 092005 (2009) [181].
Copyright (2009) by the American Physical Society.

The general structure of such equations (with ψB = 0) was first worked
out by Yang and Mills [182] and so we call them Yang-Mills equations. If
you’re curious as to where they come from, I’ve provided some details in the
appendix. But don’t worry about solving them – my purpose here is to show
you what they look like so that you can see the comparison to QED. In fact,
finding general solutions to the equations of QCD is the main motivation be-
hind lattice gauge theory, and is one of the major efforts of strong-interaction
physics today [165].

The equations in the right-hand column of table 18.3 are valid for any Lie
group, whose structure constants I have denoted by fc

ab. They form the basis
of the electroweak gauge theory, where the Lie group is SU(2) and of QCD,
whose gauge group is the Lie group SU(3). For the particular case of SU(3)
we have [

λa, λb
]

= 2ifab
c λ

c (18.14)

where the generators λc are generalizations of the Pauli matrices and are given
by

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


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λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 (18.15)

λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


often referred to as the Gell-Mann matrices. Using them, you can easily check
that the structure constants fab

c are fully antisymmetric, and that the only
non-vanishing ones are

f12
3 = 1 f12

7 = f24
6 = f25

7 = f34
5 = f51

6 = f63
7 =

1
2

f45
8 = f67

8 =
√

3
2

(18.16)

along with those that are obtained from antisymmetry, e.g. f21
7 = − 1

2 .
It is the non-vanishing of the fc

ab that make the theory non-Abelian, giving
rise to new interactions not present in the Maxwell-Dirac theory. Notice that
the field strength F a

µν for each gluon is not linear in the gluon wavefunction,
but depends on the other gluons that are present, even if there are no colored
fermions. This means that the gluons act as sources for each other, which we
can see by rewriting the equations for the gluons as

∂µ
(
∂µA

c
ν − ∂νAc

µ

)
= gsψ

A
γν (λa)BA ψB + gs∂

µ
(
Aa
µA

a
ν

)
fc
ab (18.17)

+gsAaµ
(
∂µA

b
ν − ∂νAb

µ − gsAr
µA

s
ν fb

rs

)
fc
ab

The left-hand side of this equation for each gluon wavefunction Aa
ν is just

like Maxwell’s equations. The first term on the right-hand side is the color-
current due to the quarks (analogous to the electric current ψ̄γµψ in QED)
– this gives rise to the expects quark-quark-gluon vertex. The λa have the
effect of changing one quark color into another, both in the quark current
and in the equation obeyed by the quarks. The remaining terms are the
“color current” due to the gluons. Notice that there are derivative terms that
are quadratic in gluon wavefunctions – these yield a triple-gluon vertex rule.
There is also a term cubic in the gluon wavefunctions (the g2

sA
aµAr

µA
s
ν fb

rsfc
ab

term), from which a four-gluon vertex rule arises. A complete list of Feynman
rules for QCD is given in the appendix.

18.4.1 Basic Physical Features of QCD

So as you can see, QCD is a considerably richer physical theory than QED,
and considerably more complicated. However, it has some key features that
are worth noting.
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1. Eight Gluons

There are as many gauge fields as there are generators of the group
SU(3). A unitary 3 × 3 matrix of determinant 1 has 32 − 1 = 8
generators, and so there are eight gluons. These eight gluons form a
color octet:

|1〉 = 1√
2

∣∣RB+BR
〉
|4〉 = 1√

2

∣∣RG+GR
〉
|6〉 = 1√

2

∣∣GB+BG
〉

|2〉 = − i√
2

∣∣RB−BR〉 |7〉 = i√
2

∣∣GB −BG〉
|3〉 = 1√

2

∣∣RR−BB〉 |5〉 = − i√
2

∣∣RG−GR〉 |8〉 = 1√
6

∣∣RR+BB − 2GG
〉

(18.18)
and we can write the gluon wavefunction as Aa

µ where the color index a =
|1〉 , |2〉 , . . . , |8〉. Note that each gluon is its own antiparticle. We could
also form a color singlet (|s〉 = 1√

3

∣∣RR+BB +GG
〉
), which would be

as common as the photon if it existed. Such a particle would couple to all
baryons with the same strength, but not to all leptons, and would behave
like a “fifth force” that would compete with gravity in its behavior on
baryons, violating the equivalence principle. So far all experimental
searches for such a force have yielded a null result [183].

2. Quark-antiquark potential

The gluon exchange diagram on the right of fig. 18.1 gives a 1
r potential

for the same reasons as QED. However, the non-abelian nature of the
color charges gives an interesting answer for the coefficient of this poten-
tial due to the interaction between a quark-antiquark pair. If this pair
has its color charges as part of the octet configuration above (e.g the
color charges have the wavefunction 1√

2

∣∣GB +BG
〉
), then the potential

is repulsive. But if the color charges are in the singlet configuration
(i.e. 1√

3

∣∣RR+BB +GG
〉
) then the potential is attractive! Using the

rules for QCD in the appendix, one finds

M = i
[
u(i′1)(p′1)c′†1 γ

µλau(i1)(p1)c1
] g2

sgµνδ
ab

4 (p′1 − p1)2

×
[
u(i′2)(p′2)c′†2 γ

νλbu(i2)(p2)c2
]

= i
g2
s

4 (p′1 − p1)2

[
u(i′1)(p′1)γµu(i1)(p1)

] [
u(i′2)(p′2)γµu(i2)(p2)

]
×
[
c′†1 λ

ac1

] [
c′†2 λ

ac2

]
(18.19)

which yields the 1-gluon exchange potential

V1-gluon(r) = −f
α

r
=

1
4

[
c′†1 λ

ac1

] [
c′†2 λ

ac2

] αs
r

(18.20)

This potential can either be attractive or repulsive, depending on how
the colors of the quarks are configured. A computation of the quantity
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f yields

V1-gluon(r) =
{
− 4

3
1
r color singlet – attractive!

+ 1
6

1
r color octet – repulsive! (18.21)

Because of this, quark-antiquark pair will bind into a color singlet state,
giving support to the hypothesis that only color singlets occur in nature.

3. Confinement

The preceding arguments suggest that only color singlets occur in na-
ture, but they don’t prove it. They don’t explain why we can’t see a
free quark (or a free gluon). No rigorous proof of confinement exists
yet.

FIGURE 18.15
Some 1-loop corrections to the 1-gluon exchange diagram in figure 18.1.

4. Asymptotic Freedom

In QED we saw that quantum effects modified the QED potential so
that the coupling constant varied with distance (or energy):

VQED(r) = −α(r)
r

where α(r) =
[
1− 2α

3π
Q(r)

]−1

(18.22)

which in momentum space is given by eq. (14.51)

α(q2) =
α(0)[

1− αs(0)
3π ln

(
|q2|
m2

)] (18.23)
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and α(q2) grows as q2 increases (i.e. the momentum transfer between
two particles increases, which is equivalent to the distance to between
the them becoming shorter), with m the mass of the lightest charged
particle in the theory (in QED this is the electron).

In QCD the analogous expression is

αs(q2) =
αs(µ2)[

1 +
(

11N−2F
3

) αs(µ2)
4π ln

(
q2

µ2

)] (18.24)

where µ2 is some reference energy (taken to be zero in QED, but nonzero
in QCD). The number of colors is N , which is 3 in QCD, and F is the
number of flavors (6 that we know of for sure). Note that

11N − 2F
3

=
33− 12

3
= 7 > 0 (18.25)

and we see that as q2 increases, αs(q2) decreases!

This behavior is called asymptotic freedom – the coupling decreases with
increasing energy or decreasing distance. This happens because the
gluons antiscreen the quark. What happens is that along with a fermion
loop there are now new gluon loops when one considers the exchange
of a gluon between two quarks (see figure 18.15). This additional effect
contributes oppositely to the fermion loops, leading to the result in eq.
(18.34).

The timely discovery of asymptotic freedom in 1973 by Politzer, Gross
and Wilczek [184] led to a whole new way of looking at strong interaction
physics. It meant that theorists could reliably use perturbation theory
in QCD at sufficiently high energies, since it allows us to treat quarks as
free particles. It is a basic ingredient in constructing quarkonium, and
presumably is what is responsible for the OZI rule.

18.5 Appendix: QCD and Yang-Mills Theory

18.5.1 Feynman Rules for QCD

1. NOTATION. Label the incoming (outgoing) four-momenta as p1, p2, . . . , pn
(p′1, p

′
2, . . . , p

′
m) , the incoming (outgoing) spins as s1, s2, . . . , sn (s′1, s

′
2, . . . , s

′
m),

the incoming (outgoing) colors with c1, c2, . . . , cn (c′†1 , c
′†
2 , . . . , c

′†
m) as further

discussed below, the incoming (outgoing) gluon polarizations as εµ1 , ε
µ
2 , . . .

(εµ′1 , ε
µ′
2 , . . .), the gluon colors Aa, and use labels q1, q2, . . . , qj to denote the

internal four-momenta. Assign arrows to the lines as in figure 18.16.
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FIGURE 18.16
A typical QCD diagram.

Time flows from bottom to top, curly lines are gluons, and lines with ar-
rows are quarks (if they point upward with time) or antiquarks (if they point
downward against time). Note that no other kinds of fermions interact with
gluons.

2. EXTERNAL LINES. Each external line contributes a factor as shown in
figure 18.17 where the color factors are

cR =

1
0
0

 cB =

0
1
0

 cG =

0
0
1


for red, blue, and green respectively. As in QED, factors associated with
external lines correspond to the incoming/outgoing plane-wave states, an as-
sumption that is clearly not valid for confined quarks, but which we will take
to be valid on the very short timescales in collisions that produce quarks. The
gluon color factor Aa is one of the eight gluon states given in eq. (18.18), e.g.,
1√
2

∣∣GB+BG
〉
.

3. INTERNAL LINES. Each internal line contributes a factor shown in figure
18.18, where m is the mass of the quark. As before q2 6= m2 because the
particle flowing through the line is virtual (i.e. it does not obey its equations
of motion). These internal lines are called propagators.
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FIGURE 18.17
External lines in QCD.

FIGURE 18.18
Internal lines in QCD.

The next two rules are the same as for QED and ABB theory.

4. CONSERVATION OF ENERGY AND MOMENTUM For each vertex,
write a delta function of the form

(2π)4δ(4) (k1 + k2 + k3 + · · ·+ kN )

where the k’s are the four-momenta coming into the vertex (i.e. each kµ will
be either a qµ or a pµ). If the momentum leads outward, then kµ is minus the
four-momentum of that line). This factor imposes conservation of energy and
momentum at each vertex (and hence for the diagram as a whole) because
the delta function vanishes unless the sum of the incoming momenta equals
the sum of the outgoing momenta.

5. INTEGRATE OVER INTERNAL MOMENTA For each internal momentum
q, write a factor

d4q

(2π)4
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and integrate.

6. VERTEX FACTOR In QCD there are several different vertex factors,
since gluons carry color. First there is the quark-gluon vertex in figure 18.19
that is similar to QED. The dimensionless coupling gs =

√
4π}cαs. There

FIGURE 18.19
The quark-gluon QCD vertex.

are also two vertices for gluons shown in figures 18.20 and 18.21

FIGURE 18.20
3-gluon vertex (all momenta point in).

The remaining rules are the same as for QED.

7. TOPOLOGY To get all contributions for a given process, draw diagrams
by joining up all external points to all internal vertex points in all possible
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FIGURE 18.21
4-gluon vertex (repeated indices summed over).

arrangments that are topologically inequivalent. The number of ways a given
diagram can be drawn is the topological weight of the diagram. The result is
equal to −iM.

8. ANTISYMMETRIZATION Because fermion wavefunctions anticommute,
we must include a minus sign between diagrams that differ

(a) Only in the interchange of two incoming (or outgoing) fermions/anti-
fermions of the same kind

or
(b) Only in the interchange of an incoming fermion with an outgoing

antifermion of the same kind (or vice versa).

9. LOOPS Every fermion loop gets a factor of (−1).

10. CANCEL THE DELTA FUNCTION The result will include a factor

(2π)4δ(4) (p′1 + p′2 · · ·+ p′m − p1 − p2 − · · · − pn)

corresponding to overall energy-momentum conservation. Cancel this factor,
and what remains is −iM.

18.5.2 Yang-Mills Theory

A Yang-Mills theory is a generalization of Maxwell’s theory, in which the
gauge symmetry group is non-Abelian. The equations can be derived using
the same reasoning that we used in applying the gauge principle to obtain
Maxwell’s equations.

Suppose we have a column vector Φ that transforms as

Φ′ = U (x) Φ⇒ Φ′A = UA
B (x) ΦB (18.26)
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where U is some irreducible unitary matrix representation R of a group that
in general will depend on position and time. I have put in the indices for the
representation in the right-hand equation so that the transformation structure
is clear. We say that Φ forms a representation of the group, by which we mean
it transforms according to eq. (18.26). The entries in the column vector Φ
can be thought of wavefunctions that transform into each other under this
representation. For example, if the group is SU(3) and we let Φ be a 3-
component vector, then each entry in Φ is a quark wavefunction of a given
color.

We want to define a derivative Dµ that has the same transformation prop-
erties as Φ does in eq. (18.26). It must be matrix since Φ is a column vector,
which is why I have written it in boldface. In other words, we require

(DµΦ)′ = U (x) (DµΦ) or (DµΦ)′A = UA
B (x) (DµΦ)B (18.27)

where again I have put in the indices in the expression on the right. We
also want this derivative to be a linear combination of the usual derivative
operator plus some vector potential Aµ. It is clear that the vector potential
must also be matrix-valued – otherwise we couldn’t have U act non-trivially.
So let’s write

Dµ = ∂µI + igAµ or (Dµ)A
B = ∂µδ

A
B + ig (Aµ)A

B (18.28)

where δA
B is the Kronecker-delta function, which is simply another way of

writing the identity matrix for the representation. It multiplies the partial
derivative operator because the act of differentiation itself should not mix up
any of the components of Φ.

Now we want to insert eq. (18.28) into eq. (18.27) and see what happens.
By definition each side becomes

∂µΦ′ + igA′µΦ′ = U (x) (∂µΦ + igAµΦ) (18.29)

or, putting in the indices(
∂µδ

A
BΦ′B + ig

(
A′µ
)A

B
Φ′B

)
= UA

B

(
∂µδ

B
CΦC + ig (Aµ)B

C ΦC
)

(18.30)
which simplifies to

∂µΦ′A + ig
(
A′µ
)A

B
Φ′B = UA

B∂µΦB + igUA
B (Aµ)B

C ΦC (18.31)

Upon inserting eq. (18.26) this becomes(
∂µU

A
B

)
ΦB + UA

B∂µΦB + ig
(
A′µ
)A

B
UB

CΦC

= UA
B∂µΦB + igUA

B (Aµ)B
C ΦC (18.32)

or more simply[(
A′µ
)A

B
UB

C − UA
B (Aµ)B

C −
i

g

(
∂µU

A
C

)]
ΦC = 0 (18.33)
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Since we don’t want to constrain any of the components of Φ, we must have
the first term vanish, which means(

A′µ
)A

B
= UA

C (Aµ)C
D

(
U−1

)D
B

+
i

g

(
∂µU

A
C

) (
U−1

)C
B

(18.34)

or in matrix notation

A′µ = UAµU
−1 +

i

g
(∂µU)

(
U−1

)
(18.35)

Notice that if we have an Abelian group, then U = exp (iθ (x)) and this
reduces to eq. (12.14) with g = e.

We now know how the vector-potential transforms, but we don’t know what
kind of matrix it is. This is actually not too hard to find. Since Φ transforms
under some irrep R, by definition this means that there exist generators Ta

R

such that

U (x) = exp (iθa (x) Ta
R) and

[
Ta

R,T
b
R

]
= ifab

c Tc
R (18.36)

where the fab
c are the structure constants of the Lie algebra. Suppose we

choose θa (x) = θa to all be constant. Then equation (18.35) becomes

A′µ = Aµ + iθa [Ta
R,Aµ] + · · · (18.37)

to leading order in θa. Hence we need the matrix-vector potential to also
be in the representation R; otherwise we won’t be able to make sense of the
commutator in (18.37). The most general thing we can write down is a sum
over all of the generators, Aµ = Aa

µTa
R, and so we have

Dµ = ∂µI + igAa
µTa

R or (Dµ)A
B = ∂µδ

A
B + igAa

µ (Ta
R)A

B (18.38)

for a given representation. In other words, the choice of matrix Aµ depends
on which representation Φ transforms under. For example, if the symme-
try group is SU(3) and we take Φ to be the 3 of SU(3) then (Dµ)A

B =
∂µδ

A
B + igAa

µ (λa)A
B where the λa are the Gell-Mann matrices (18.15); if

the symmetry group is SU(2) and we take Φ to be the doublet of SU(2)

then (Dµ)A
B = ∂µδ

A
B + igAa

µ

(
σa

2

)A

B
, where the σa are the Pauli matrices

(5.31).
What is the field strength of the vector potential? It’s clear that it can’t be

the same as in the Abelian case (i.e., it can’t be simply ∂µAν − ∂νAµ), since
the U -derivatives in (18.35) have a non-trivial matrix structure. We could
try to guess at the form of the field strength and then make sure that it had
the correct transformation properties, but we aren’t even sure of what those
are yet. An easier way is to use the approach of question 6 in Chapter 12 –
we will compute the commutator of the covariant derivatives acting on Φ and
define what comes out to be the field strength. In other words, we define

FµνΦ = ig [Dµ,Dν ] Φ (18.39)
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for all possible representations R. It’s not too hard to show that this gives

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ] (18.40)

or alternatively
F a
µν = ∂µA

a
ν − ∂νAa

µ − gfa
bcA

b
µA

c
ν (18.41)

where I have used the property of the structure constants that fbc
a = fbca =

−fbac = fabc = fa
bc.

You can also use (18.39) to show that

F′µν = UFµνU−1 (18.42)

under a gauge transformation. Unlike the Abelian case, where the field
strength was invariant, here we see that the field strength is covariant –
in other words the field strength itself transforms under a representation
of the gauge group. In group-theory language, matrices that tranform as
M ′ = UMU−1 are in the adjoint representation, where the generators are
the structure constants of the algebra ((Ta)b

c = ifab
c ) as discussed in ques-

tion 10 of Chapter 3. So the field strength transforms under the adjoint
representation.

Finally, we need differential equations for the vector potentials Aa
µ. To en-

sure that the Abelian case reduces to Maxwell’s theory, they must be second-
order differential equations. They should also be covariant under a gauge
transformation, which means that we must use covariant derivatives in the
equation for Fµν . The only equation that satisifies both of these criteria is

(DµFµν)a = Ja
ν (18.43)

where Ja
ν is called the Yang-Mills current, a generalization of the electric

current to Yang-Mills theory. Expanding out the left-hand side gives

∂µF a
µν − gsAcµF b

µν fa
cb = Ja

ν (18.44)

and it is possible to show from this that

(DµJν)a = 0 (18.45)

or in other words that the Yang-Mills current is covariantly conserved.

18.6 Questions

1. Draw and label one lowest-order diagram for each of the processes

(a) π− + p −→ Λ0 +K0 (b) π+ + p −→ Σ+ +K+

(c) π+ + n −→ π0 + p (d) p+ p̄ −→ K− +K+

(e) p+ p −→ Λ0 +K+ + p
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Use quark-lines in your diagrams to describe all hadronic particles.

2. Find the value of R ≡ σ(e+e−−→hadrons)
σ(e+e−−→µ+µ−) at CM energies of 2.5 GeV

and 5 GeV.

3. For the QCD λ-matrices show that Tr
(
λaλb

)
= 2δab

4. Show that 2 mesons in the color singlet state 1√
3

∣∣RR+BB +GG
〉

ex-
perience a potential V = − 4

3
1
r .

5. What is the color singlet combination |S〉 of two gluons?

6. (a) Draw and label the lowest order-diagrams for gluon-gluon scattering.

(b) Draw and label the lowest order-diagrams for quark-gluon scatter-
ing.

7. Verify the formula

λa
ijλ

a
kl = 2δilδjk −

2
3
δijδkl

for the λ-matrices.

8. (a) Given
FµνΦ = ig [Dµ,Dν ] Φ

show that
Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

or alternatively

F a
µν = ∂µA

a
ν − ∂νAa

µ − gfa
bcA

b
µA

c
ν

(b) Show that for a given representation R

((DµDν −DνDµ) Φ) = igF a
µνT

a
RΦ

9. (a) Show that
F′µν = UFµνU−1

under a gauge transformation.

(b) Show that if
(DµFµν)a = Ja

ν

then
(DµJν)a = 0

10. Show that any Hermitian 3x3 matrix can be written as a linear combi-
nation of the identity matrix and the eight λa matrices.
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From Beta Decay to Weak Interactions

The first observations of weak interactions were made by accident in 1896,
when Henri Bequerel was investigating phosphorescence [185], the phenomenon
in which certain materials glow in the dark after exposure to light. He thought
that phosphorescence might be connected with the glow produced in cathode
ray tubes by X-rays, and so would place various phosphorescent minerals on
a photographic plate to see what would happen. There was no effect until he
tried to expose a compound of uranium salts to the sun, and photographed the
emission spectrum. He stored the compound and the photographic plates in-
side a desk drawer. When he returned to develop the plates he found that they
were overexposed. The plate was deeply blackened, and it soon became clear
that the uranium compound must have emitted some new kind of penetrating
radiation quite different from phosphorescence, since the plate blackened even
when the mineral was in the dark. This was the first observation of natural
radioactivity, a phenomenon governed by the weak interactions [186].

Further exploration showed that radioactivity was a complicated phenom-
enon. A magnetic field was found to split radioactive emissions into three
types of beams: alpha, beta and gamma. The alpha rays were seen to carry
a positive charge, beta rays a negative charge, and gamma rays were neutral.
Furthermore the alpha particles were much more massive than beta particles,
as determined from their deflection angle. The alpha particles were eventually
found to be helium nuclei, the gamma particles photons, and the beta particles
electrons.

The beta particles presented a puzzle lasting 30 years. It was clear that
they were electrons that were emitted not with discrete energies, but rather
as a continuum, quite unlike the emissions due to other nuclear transitions.
Why was that? Furthermore, it was clear from experiments in the 1920s that
there were no electrons inside nuclei. So where do the beta rays come from?

Pauli suggested that there was a very light, uncharged, and penetrating
particle that he called the neutron, two years before Chadwick’s discovery
[137]. While it is common today to introduce and discover new particles, this
was a radical step in 1930, when the electron and proton were the only known
elementary particles, and Pauli wrote in a letter in December 1930 that “From
now on, every solution to the issue must be discussed. Thus, dear radioactive
people, look and judge.” Most of them judged negatively, but Fermi was one
of the few people to take Pauli’s idea seriously, and renamed the particle the
neutrino, or “little neutral one.” Fermi proposed that a neutrino is emitted

361
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along with an electron in every beta decay. Both the electron and the neutrino
share the decay energy, with the electron sometimes having a little energy and
sometimes a lot, leading to the continuous spectrum.

Controlled experiments on the very slow decays of certain neutron-rich (or
proton-rich) nuclei into other, more stable nuclei were able to isolate beta
emission. For example in the process

Cs136 −→ Ba136 + e− + νe (19.1)

there is the emission of a beta particle (the electron), along with the anti-
neutrino, which we now know is not the same as the neutrino. The initial
state (Cs136 here) is called the parent nucleus and the final state (in this case
Ba136) is called the daughter nucleus. Another example is

C10 −→ B10 + e+ + νe (19.2)

The atomic weight of the daughter nucleus in both cases is almost exactly the
same as the parent.

Radioactive decay will change one nucleus to another whenever the binding
energy of the product nucleus is larger than that of the initial decaying nucleus.
The difference in binding energy determines which decays are energetically
possible and which are not. The excess binding energy appears as kinetic and
rest mass energy of the decay products. The Chart of the Nuclides (shown
in fig. 19.1) plots the proton number, Z, of the nuclei against their neutron
number, N . This chart plots all known nuclei – stable and radioactive –
naturally occurring and artificially made – along with their decay properties.
You can see that nuclei with an excess of protons or neutrons as compared to
stable nuclei will decay toward the stable nuclei either by changing protons
into neutrons (or neutrons into protons) or by emitting neutrons or protons
(either singly or in combination)∗.

After the discovery of the neutron, it became clear that all radioactive
processes could be described by the reactions

n −→ p+ e− + νe or p −→ n+ e+ + νe (19.3)

which are referred to as β-decay processes. In terms of quark constituents,
we understand these reactions to be

d −→ u+ e− + νe or u −→ d+ e+ + νe (19.4)

but we don’t need to look at this level of substructure to understand the basic
physics of these decays.

∗Nuclei are also unstable if they are excited, that is, not in their lowest energy states. In
this case the nucleus can decay by getting rid of its excess energy without changing Z or
N by emitting a gamma ray.
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FIGURE 19.1
Chart of the Nuclides, in which horizontal rows represent the same element
(constant Z) with a variable number of neutrons (N), known as isotopes. The
black squares represent stable nuclei, the open squares unstable nuclei, and the
smooth curves are theoretical nuclide stability limits. Image from Radiogenic
Isotope Geology by A. P. Dickin, Cambridge University Press (1997) [187];
used with permission.

19.1 Fermi’s Theory of Beta-Decay

How can we understand them? Fermi proposed the first theory of β-decay in
1934 [188]. The decay probability of a nucleus of mass MN is given by the
same decay formula that we’ve been using all along

dΓ =
Sc2

2}MN

[
3∏
i=1

c
(
d3p′i

)
2E′i (2π)3

]
|〈p′1p′2p′3 |M| p〉|

2 (2π)4
δ(4)

(
3∑
i=1

p′i − p

)
(19.5)

except that we now have three particles in the final state: the stable final
nucleus, the electron and the antineutrino. So we have

dΓ =
c5

16 (2π)5 }MNE′N

[(
d3p′e

)
E′e

(
d3p′ν̄

)
E′ν̄

]
|M|2 δ (E0 − E′e − E′ν̄) (19.6)

where I have integrated out d3p′Nδ (~p ′N + ~p ′e + ~p ′ν̄ ), which just ensures that
momentum is conserved between the electron, the anti-neutrino and the fi-
nal state nucleus N ′. The quantity E0 = EN − E′N is the energy difference
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between the parent nucleus and the daughter nucleus. The kinetic energy

of the daughter nucleus is
√
|~p ′N |

2 +M2
N ′ −MN ′ ' 10−3MN ′ and so we ne-

glect it – we regard E0 as being shared entirely between the electron and the
antineutrino, and E′N 'M ′N . The phase space measures are

d3p′ν̄ = 4πp2
ν̄dpν̄ = 4πp′ν̄E

′
ν̄dE

′
ν̄ d3p′e = 4πp′2e dp

′
e (19.7)

and so

dΓ =
π2c5dp′e

(2π)5 }MNM ′N

p′2e
E′e

√
(E0 − E′e)

2 −m2
ν̄ |M|

2 (19.8)

once we integrate over the δ-function. I have included a non-zero mass for
the anti-neutrino in the above expression, since we will soon see there is some
interesting physics here.

The matrix element M is determined by what we postulate our theory of
β-decay to be. Fermi’s original idea was to take the square of the matrix
element to be proportional to the energies of the emitted particles, i.e.

|M|2 = E′eE
′
ν̄F (Z,E′e) |M0|2 (19.9)

where an additional factor F (Z,E) – called the Coulomb factor – has been
included. It takes account of the energy lost (by electrons) or gained (by
positrons) as they escape from the Coulomb field of the nucleus. Non-relativis-
tically it is [189]

F (Z,Ee) =
2πη

1− exp [−2πη]
where η = ± Ze2

4πε0}v
(19.10)

for β particles of speed v emitted from a nucleus of charge Ze. Relativistically
it is complicated to calculate, but can be done exactly.

Hence we find

dΓ =
c5 |M0|2

(32π3) }MNM ′N
p2
e (E0 − E′e)F (Z,E′e)

√
(E0 − E′e)

2 −m2
ν̄dp
′
e (19.11)

Now the decay rate is the probability that an electron with energy E = E′e
will be emitted within the momentum range p = p′e and p = p′e + dp′e. The
probability is proportional to the number of electrons emitted within this
momentum range. Dropping the primes and the subscript “e” we have

N(p)dp ∝ |M0|2 p2 (E0 − E)2
F (Z,E)

√
1− m2

ν̄

(E0 − E)2 dp (19.12)

So by plotting
√

N(p)
p2F (Z,E) vs. the emitted electron energy E, we can test

this simple picture of β-decay. Such plots are called Kurie plots, and are
found to be linear for pretty much all radioactive nuclei, indicating that the
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remaining matrix element factor |M0|2 is approximately constant and that
Fermi’s idea was on the right track. In fact, experiment indicates two possible
values for this quantity:

|M0|2 =
(
Mpc

2
)2 ×{G2

F if ∆J = 0 (Fermi transition)
3G2

F if ∆J = 1 (Gamow-Teller transition)
(19.13)

where Mp is the mass of the proton and GF is a dimensional constant now
known as Fermi’s constant. It can be found by integrating the Kurie plot
from p = 0 to p = pmax, since this gives the total decay probability. The
inverse of this probability is the half-life of the unstable nucleus. A standard
in nuclear physics is the decay

O14 −→ N14 + e+ + νe (19.14)

which yields
GF = 1.166× 10−5 (GeV)−2

from its Kurie plot [190]. Today the value of the Fermi constant is set by
accurate measurements of the lifetime of the muon [191],

GF = 1.16637(1)× 10−5 (GeV)−2 (19.15)

a process we will consider in Chapter 20.
Note that the details of a Kurie plot depend on whether or not the (anti)neu-

trino has mass. The plots in figure 19.2 show a comparison between the
straight-line mν = 0 case (dotted line), and what a Kurie plot looks like if
the neutrino has a non-zero mass. Unfortunately this has not proven to be
a very good way to determine if neutrinos have mass. β-decay spectrometers
have finite resolution that is poor near the end point energy E = E0. At
present the best limits are given in table 19.1. The upper bound for the mass

TABLE 19.1

Neutrino Mass Limits
Neutrino Upper bound on Mass (in eV)

νe 2
νµ 1.9× 105

ντ 1.82× 107

of νe comes from observations of tritium decay. These experiments actually
estimate the quantity m2

νe and find negative values, albeit consistent with
zero within limits of error [192]. This illustrates how difficult it is to extract
the mass from spectrometer experiments via Kurie plots. These experiments
report mνe < 2.3 eV, a slightly higher upper bound than the Particle Data
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FIGURE 19.2
A typical Kurie plot, showing (in exaggerated form) the difference between
zero and nonzero neutrino masses.

Group average in table 19.1. The best bounds on the mνµ mass is also lower,
mνµ < 1.7 × 105 eV [193] but the best upper bound for the mντ is from the
ALEPH group [194] and is in table 19.1.

It is possible to get bounds on neutrino mass from cosmological observa-
tions. Neutrinos with masses of only a few tenths of an electron volt (eV) can
significantly influence the formation of large-scale structures (such as galaxy
clusters) in our universe. By observing galaxy distributions in the context of
a the best-fit cosmological model, an upper bound of

∑
mνi < 0.62 on the

sum of all neutrino masses has been placed [195] using data from the 2 Degree
Field Galaxy Redshift Survey (2dFGRS), which is the largest existing redshift
survey [196].

We’ll return to the topic of neutrino masses in more detail in chapter 25,
once we’ve had a chance to study the structure of the weak interactions in
more depth.
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19.2 Neutrino Properties

Now let’s use the Fermi theory to compute a cross-section for the process

νe + p −→ n+ e+ (19.16)

We don’t yet have any Feynman rules for this process. Fortunately we don’t
need them because in the formula for the differential cross section in the lab
frame (proton at rest) is

dσ

dΩ
=
(

}
8π

)2 S |M|2 |~p ′1 |
2

M2 |~p1| [|~p ′1 | (E1 +M2c2)− |~p1|E′1 cos θ]
(19.17)

and so all we need is the matrix element, which from Fermi’s theory is |M|2 =
EE′ |M0|2 = EE′

(
Mpc

2
)2
G2
F , setting the Coulomb factor to unity. Taking

the antineutrino to be massless, so that |~p1| = E, and neglecting the mass of
the electron so that |~p ′1 | = E′, we get

dσ

dΩ
=
(

}
8π

)2
Mpc

4 (E′)2
G2
F

[(E +Mpc2)− E cos θ]
(19.18)

where M2 = Mp. For incident antineutrinos in the MeV range, Mpc
2 � E,E′

and so
dσ

dΩ
'
(

}
8π

)2
Mpc

4 (E′)2
G2
F

Mpc2

(
1 +O

(
E

Mpc2

))
(19.19)

which implies that

σ ' 4π
(

}cGFE′

8π

)2

' 10−45 cm2 (19.20)

This number will change by a factor of order unity if the target is a nucleus, so
we can regard σ = 10−45cm2 as a typical cross-section for neutrino scattering
off of any substance.

This cross-section is almost unimaginably tiny. If you think of a proton
as a hard sphere, then you might expect it to present an area of πr2

p to an
incoming particle, where rp ' 10−13 cm is the approximate radius of the
proton. This gives πr2

p ' 10−25 cm2, about 20 orders of magnitude larger!
The tiny cross-section in eq. (19.20) implies, for example, that the mean free
path of the antineutrino in water is

Lν = (length/nucleus) = (# of nuclei/vol × σ)−1 '
((

2× 108
)3 × σ)−1

= 1020cm for water (19.21)
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or 100 light years! Put another way, the probability that a single antineutrino
will interact with a target of water about a meter thick is 10−18.

This small cross section is the reason why neutrinos are so harmless. To put
this into perspective, a human body typically contains about 20 milligrams
of K40, which is β-radioactive. As a consequence, we emit about 340 million
neutrinos per day – but we don’t even notice it because they almost never in-
teract with any of our cells! The flux of neutrinos from the sun, the earth, and
other cosmological sources likewise interacts so infrequently with our bodies
and all other biomatter that we can proceed through everyday life as though
they don’t exist. Too bad the same can’t be said for ultraviolet light!

However, the small cross section in eq. (19.20) also makes neutrinos diffi-
cult to detect, because they almost never interact with anything. Remarkably,
Reines and Cowan [197] observed such interactions in 1959! Dubbing their
efforts “Project Poltergeist” (because the neutrino is so elusive), they used a
1000 MW nuclear reactor as a source, which has a flux of about 1013 antineu-
trinos /cm2/sec, as illustrated in fig. 19.3. The target was CdCl2 and water.
An antineutrino, upon interacting with a proton, will produce a neutron and
a positron. The positron rapidly comes to rest via ionization loss and forms
positronium, which emits γ-rays. The water thermalizes the neutrons before
the cadmium captures them, a process taking several microseconds. Once
captured by cadmium, the neutrons emit another γ-ray. Hence the charac-
teristic signal for an antineutrino is two γ-rays emitted microseconds apart.

FIGURE 19.3
Schematic Diagram of the Reines-Cowan experiment. Image courtesy of the
Hyperphysics Web site, copyright C.R. Nave, Georgia State University (2005).
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Nowadays, a modern neutrino experiment like NOMAD [198] detects about
one neutrino every 10 seconds, depositing on average 27 GeV in the detector.
For the entire duration of the experiment, neutrinos will have deposited a
little more than 0.03 Joules – about 1/10 the energy in a sneeze!

Neutrinos have other unusual properties that were also discovered in the
1950s and 60s. In 1956 Lee and Yang suggested (before neutrinos had been
observed in the Reines/Cowan experiment) that the weak interactions did not
conserve parity [199]. They offered this as an explanation for why the decays

K+ −→ π+π0 and K+ −→ π+π0π0 (19.22)

were both observed – the pion parity is negative and so the final states have
opposite parities. If parity were conserved then one or the other of these states
should not be seen.

In 1957 Wu tested this idea [39] by looking at the decay of Co60 nuclei at
very low temperature (0.01 oK). Co60 decays via the reaction

Co60 −→ Ni60 + e− + ν̄ (19.23)

and one can check parity violation by measuring the expectation value of the
operator Ĵ · p̂, where ~J = JĴ is the spin of the nucleus and p̂ is the direction
of the electron momentum. The quantity is a pseudoscalar (P

(
Ĵ · p̂

)
=

−Ĵ · p̂) and so if parity is conserved, the electron emission rate (which must
be proportional to Ĵ ·p̂) should be the same in either direction regardless of the
spin of the nucleus. This seems straightforward enough to measure, except
that at room temperature the spins of the nuclei will all be randomly oriented.
Consequently the experiment must be performed at ultracold temperatures in
order to minimize this effect. A magnetic field ~B will split the energy levels of
the nucleus via the Zeeman effect, so that the energy of a state with magnetic
quantum number m is E (m) = E0 − gµNm

∣∣∣ ~B∣∣∣. At a given temperature
T the number of nuclei with magnetic quantum number m′ as compared to
magnetic quantum number m will be

N (m′)
N (m)

= exp
(
−E (m′)− E (m)

kBT

)
= exp

(m′ −m)
gµN

∣∣∣ ~B∣∣∣
kBT

 (19.24)

making the most positive magnetic quantum number (e.g., m = +1 for a J = 1
state) the most likely to be populated. At room temperature the population
differences are negligible, but at low temperature kBT << gµN

∣∣∣ ~B∣∣∣, only the
most positive m state will be populated, fully polarizing the nucleus in the
direction of the magnetic field, as shown in fig. 19.4. The mirror world is
obtained by reversing the direction of the magnetic field.

The spin-parity of the cobalt nucleus is JP = 5+, and the actual decay
observed is∣∣Co60; j = 5,m = 5

〉
−→

∣∣Ni∗∗60; j = 4,m = 4
〉

+ e− + ν̄ (19.25)
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FIGURE 19.4
β-decay of Co60 and its mirror image.

where the excited nickel nucleus decays to its ground state via the emission
of two gamma rays∣∣Ni∗∗60; j = 4,m = 4

〉
−→

∣∣Ni∗60; j = 2,m = 2
〉

+ γ (1.173 MeV)

−→
∣∣Ni60; j = 0,m = 0

〉
+ γ (1.332 MeV) (19.26)

where in each electromagnetic decay there is some relative orbital angular
momentum between the gamma ray and the nucleus. This means that for
each decay the emission probability is not isotropic but will depend on the
angle of the γ emitted relative to the magnetic field. However, it won’t
depend on a reversal of the magnetic field since electromagnetic interactions
conserve parity. Hence the degree of polarization of the cobalt nucleus can be
monitored by measuring the γ anisotropy.

The experimental setup is shown in fig. 19.5. Wu used two NaI crystals
placed at 90o relative to the long direction of the container and the other was
placed close to the top (at nearly 0o) to count the emitted γ’s . The emitted
electrons are counted by a small anthracene crystal placed just 2 cm above the
cobalt sample. The magnetic field is switched on to polarize the nuclei, and
then switched off after a few seconds so that counting of electrons and photons
can take place. As expected, the same γ anisotropy was observed regardless
of the field direction, indicating the sample was polarized for a few minutes.
During this time electrons were observed to be preferentially emitted when
the magnetic field pointed up (i.e. from the north pole of the nucleus) – in
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FIGURE 19.5
Setup diagram of the apparatus used measure beta decay in Co60. The spec-
imen, a cerium magnesium nitrate crystal containing a thin surface layer of
radioactive cobalt-60, was supported in a cerium magnesium nitrate housing
within an evacuated glass vessel (lower half of photograph). An anthracene
crystal about 2 cm above the cobalt-60 source served as a scintillation counter
for beta-ray detection. A plastic rod made of lucite (upper half of photograph)
transmitted flashes from the counter to a photomultiplier at the top (not
shown). Reprinted figure with permission from C.S. Wu, E. Ambler, R.W.
Hayward, D.D. Hoppes and R.P. Hudson, Phys. Rev. 105, 1413 (1957). [39].
Copyright (1957) by the American Physical Society.

a mirror world they would be observed to be preferentially emitted from the
south pole (i.e. when the field pointed down). This must mean that parity
is violated – the only way that parity could be conserved is if the electrons
were emitted in equal numbers at both poles. The data from Wu’s experiment
appears in fig. 19.6.



372 An Introduction to Particle Physics and the Standard Model

FIGURE 19.6
Wu’s data showing the preferential counting rate of electrons emitted from
Co60 nuclei as the sample heats up from 0.01 oK. Reprinted figure with per-
mission from C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes and R.P.
Hudson, Phys. Rev. 105, 1413 (1957). [39]. Copyright (1957) by the Ameri-
can Physical Society.

So weak interactions violate parity – but by how much? The parity-
conserving electromagnetic force suggested that the neutrino is the particle
that must have parity-violating properties. A simple way to quantify this
is as follows. Consider a spinning particle moving in some direction. If its
spin is aligned with the direction of motion, we say that it is right-handed;
if it is anti-aligned, we say that it is left-handed. You can determine this
by pointing your right thumb along the direction of motion. If your fingers
curl in the same sense as the particle is rotating, the particle is right-handed;
if in the opposite sense then it is left-handed (see fig. 19.7). Note that if a
particle is massive, this is not an invariant concept – by going to a reference
frame that moves in the same direction of the particle but faster, the sense
of motion will reverse direction, but not the sense of spin. Hence chirality
(or helicity or handedness) is an observer-dependent concept for a massive
particle. However, if a particle is massless, you can never go to a frame of
reference that moves faster than the particle (since it is moving at the speed
of light) – and so chirality is an invariant concept for massless particles.

If parity is violated in weak interactions, then neutrinos of a given helicity
will be preferentially emitted more than the other helicity. Goldhaber, Grodz-
nis and Sunyar [200] figured out a clever way to measure neutrino helicity by
transferring it to a photon via the reaction

∣∣Eu152; j = 0,m = 0
〉

+
∣∣∣∣e−; j =

1
2
,me

〉
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FIGURE 19.7
Pictorial representation of helicity.

−→
∣∣Sm∗152; j = 1,mSm

〉
+
∣∣∣∣ν; j =

1
2
,mν

〉
(19.27)

where the Eu152 absorbs the electron when it is in an S-wave, i.e. no orbital
angular momentum, a process called K-capture. The excited Sm∗152 nucleus
decays via∣∣Sm∗152; j = 1,mSm∗

〉
−→

∣∣Sm152; j = 0,m = 0
〉

+ |γ; j = 1,mγ〉 (19.28)

Angular momentum conservation requires the z-components of the spins to
balance

me = mSm∗ +mν = mγ +mν (19.29)

admitting only the following relationships

me mν mγ

+ 1
2 −

1
2 1

− 1
2 + 1

2 −1

(19.30)

since mγ = ±1 because the photon is massless. This means that the z-
component of the neutrino spin – its helicity – is anticorrelated with the
z-component of the photon spin.

What one needs to do is measure the z-component of the spin of the emitted
photons. This was done by placing the Eu152 sample inside an iron slab in
a magnetic field ~B, which orients the electrons in the iron in an opposing
direction. If the photon spin is aligned with ~B then the electrons can absorb
the photons, whereas if it is antialigned then they cannot do so. In this way
the iron slab acts like a filter that admits only one value of mγ . A ring made
of Sm2O3 surrounds the detector so that the emitted photons must encounter
it. The emitted photon – if it has the right energy – will excite the Sm152 in
the ring, which upon decay back to its ground state will emit a photon that
can be detected (at least sometimes) by a NaI detector. However, the photon
hitting the ring will have the right energy only if the Sm∗152 produced from
the Eu152 is moving in the same direction as the photon, in turn ensuring the
neutrino is moving in the opposite direction. Otherwise, the recoil energy of
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the Sm∗152 will change the energy of the emitted photon, forbidding excitation
of the Sm in the ring. In this manner the orientation of the magnetic field
controls the emission direction of the neutrino. By measuring the asymmetry
in the number (or intensity) of photons at the NaI detector I± emitted for
opposite directions of ~B, one measures I± = I (mγ = ±1)

R =
I+ − I−
I+ + I−

(19.31)

and so in turn measures the handedness of the neutrinos emitted. Since
the experiment ensures that whenever a photon is detected the neutrino is
moving opposite to the direction of ~B, a measurement of R tells us how much
the neutrino spin is aligned with the direction of motion (right-handed) or
antialigned (left-handed).

The experiment showed that all neutrinos were left-handed – there were no
right-handed neutrinos. In other words the mirror-image of a neutrino does
not exist!

So the most natural interpretation of Goldhaber’s experiment is that the
neutrino is fully left-handed and therefore massless. However, recent obser-
vations of neutrino oscillations at Super-Kamiokande [41] and the Sudbury
Neutrino Observatory [42] indicate that the different species of neutrinos can
transform into each other, a process we will look at in Chapter 25. The sim-
plest explanation of this phenomenon is that neutrinos have mass, and hence
both the right-handed and left-handed kinds exist. So – more precisely – if
there are right-handed neutrinos, they do not interact with any known form
of matter†, other than their left-handed counterparts into which they can
oscillate.

19.3 Kaon Oscillation

The realization that P is not a symmetry of nature was quite disturbing to
many physicists. Why should nature be lopsided, choosing between left and
right? Pauli, for example, was very reluctant to believe it – “I cannot believe
God is a weak left hander” he said – but after Wu’s experiments, he said “God
is indeed a weak left hander – the laughter is rightly with the others” [201].
But acting with P on a left-handed neutrino yields the (evidently) non-existent
right-handed neutrino. It appears that God is completely left-handed!

However, once the properties of neutrinos were determined (by about 1960),
it appeared that CP could be a symmetry. Acting with P on a left-handed

†Of course here I mean non-gravitational interactions – since all neutrinos have energy they
will all respond to the gravitational influences of other bodies and vice versa.
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neutrino yields the (evidently) non-existent right-handed neutrino. But act-
ing with CP yields the right-handed antineutrino, which does exist! Similarly,
acting with CP on the right-handed antineutrino yields the left-handed neu-
trino.

So perhaps God is more subtly ambidextrous, since all other known particles
also respect this symmetry. For a few years people thought this was the case,
and that perhaps CP is a symmetry of nature. But in 1964 James Cronin,
Val Fitch and collaborators observed violation of CP in Kaon decay. This is
a rather peculiar situation, so we’ll pause to look at it carefully.

It had been noted in 1955 by Gell-Mann and Pais [202] that aK0 (strangeness
+1) could change into its own antiparticle, the K̄0 (strangeness +1). These
mesons had been determined to be pseudoscalars by previous experiments.
Hence

P
∣∣K0

〉
= −

∣∣K0
〉

and P
∣∣K̄0

〉
= −

∣∣K̄0
〉

(19.32)

C
∣∣K0

〉
=
∣∣K̄0

〉
and C

∣∣K̄0
〉

=
∣∣K0

〉
(19.33)

since C interchanges particles and antiparticles. Hence

CP
∣∣K0

〉
= −

∣∣K̄0
〉

and CP
∣∣K̄0

〉
= −

∣∣K0
〉

(19.34)

so we can construct eigenstates of CP:

|K1〉 ≡
1√
2

(∣∣K0
〉
−
∣∣K̄0

〉)
and |K2〉 ≡

1√
2

(∣∣K0
〉

+
∣∣K̄0

〉)
(19.35)

⇒ CP |K1〉 = |K1〉 and CP |K2〉 = − |K2〉 (19.36)

This provides us with a system in which we can test CP: if CP is conserved
then |K1〉 can decay only into eigenstates with CP = + 1, and |K2〉 only into
eigenstates with CP =−1. Since Kaons typically decay into pions we therefore
predict

K1 −→ 2π, 4π, 6π, . . . and K2 −→ 3π, 5π, 7π, . . . (19.37)

since

CP
∣∣π0π0

〉
=
(
CP
∣∣π0
〉) (

CP
∣∣π0
〉)

= (−1)2 = +1 (19.38)

CP
∣∣π+π−

〉
= C

∣∣π+π−
〉

P
∣∣π+π−

〉
= (−1)`(−1)` = +1 (19.39)

We can only produce beams of K0’s (or K̄0’s) from other scattering exper-
iments, which means that the beam is a mixture of K1 and K2 states∣∣K0

〉
≡ 1√

2
(|K1〉+ |K2〉) (19.40)

Since it is easier (more probable) to decay into fewer particles due to the
available phase space, we expect that the K1 part of the beam will decay
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FIGURE 19.8
Feynman diagram for Kaon oscillation, analogous to coupled pendula as shown
in the figure underneath.

away quickly into pairs of pions, and that after a few centimeters the beam
should be pure K2. Indeed, experiment indicates

τK1 = (0.8926± .0012)× 10−10s τK2 = (5.17± .04)× 10−8s (19.41)

Hence a beam of Kaons should decay only into 3π’s after a few centimeters.
In 1964 Christensen, Fitch, Cronin and Turlay carried out this experiment

[203]. By steering a proton beam extracted from the Brookhaven synchrotron
onto a target, a beam of Kaons and other neutral and charged particles can
be produced. The charged ones can be deflected away by magnets, leaving an
undeflected neutral beam. After a few meters only the long-lived K2 will be in
the beam, which is unavoidably contamined with neutrons and gamma rays.
The K2’s enter a volume that ideally should be vacuum, but was actually a
bag of helium gas that minimized interactions between beam particles that
could simulate the decay. A two-arm spectrometer, adjusted to anticipate
possible decays into two pions, was placed on the other side of the bag. Spark
chambers placed before and after bending magnets allowed measurement of
the momentum and charge of the decay products. By requiring that the angle
between the sum of the momenta of the decay products and the beam axis is
zero and that the mass m (ππ) of the two-particle system be compatible with
the Kaon mass, spurious three-body decays are suppressed.

Out of 22, 700 Kaon decays, 45 were into 2 pions! The simplest interpreta-
tion of this experiment is that there is a small amount of CP-violation in the
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Kaon system. The long-lived Kaon is evidently not pure K2, but is instead
mostly K2 with a small mixture of K1:

|KL〉 ≡
1√

1 + |ε|2
(ε |K1〉+ |K2〉) (19.42)

where ε is a measure of nature’s departure from perfect CP symmetry. Ex-
perimentally [1]

ε+ ε′ ≡ η+− ≡
A (KL −→ π+π−)
A (KS −→ π+π−)

= (2.285± .019)× 10−3 exp [i44o] = |η+−| eiφ
+−

(19.43)

ε− 2ε′ ≡ η00 ≡
A
(
KL −→ π0π0

)
A (KS −→ π0π0)

= (2.275± .019)× 10−3 exp [i44o] = |η00| eiφ
00

(19.44)

where |KS〉 ≡ 1√
1+|ε|2

(|K1〉 − ε |K2〉) is the short-lived orthogonal Kaon

state. We see that, empirically, the magnitudes of η00 and η+− are almost
the same, and we can set |ε| = |η+−| = .0023 – a small but non-zero effect!
This value is about 45/22, 700 = .00198, the original Fitch-Cronin result.

Interestingly, CP violation cannot be explained in the old (pre-1976) Stan-
dard Model with only four quarks; you need at least six quarks in order to be
able to explain this effect (you’ll find out why in Chapter 21). Other models
were proposed well before this to explain CP violation, most notably Wolfen-
stein’s postulated “superweak” interaction: a new force in nature whose
strength is 10−10 that of the weak interactions [204]. It predicted that ε′ = 0,
and for quite a long time was consistent with experiment. However, the most
recent experiments [1] have confirmed that Re

(
ε′

ε

)
= (1.65 ± 0.26) × 10−3,

ruling out the superweak model.
CP violation is important and interesting to study for several reasons. Al-

most all extensions of the Standard Model imply that additional sources of
CP violation exist. Futhermore, a necessary condition for baryogenesis – the
dynamical generation of the matter-antimatter asymmetry observed in our
universe – is that there be a sufficient amount of CP violation [8]. However,
the Standard Model with six quarks fails to account for this asymmetry by
several orders of magnitude [205], suggesting that there are additional sources
of CP violation.

How might such additional sources be found? In general, CP violation may
be tested by measuring

A =
Γ− Γ
Γ + Γ

(19.45)

where A is the asymmetry for a given process: the difference between a given
decay rate and its CP-conjugate divided by the sum of these rates. For Kaons
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FIGURE 19.9
Diagrams for CP violation in the B-meson sector of the Standard Model.

A is naturally small – A ∼ 10−3 for various Kaon decays. This makes the hunt
for additional sources of CP violation difficult because no matter what Kaon
decay you look at, A is always going to be this small, making it extremely
difficult to experimentally check the origin of CP violation as explained in a
given theoretical framework (Standard Model or otherwise).

Fortunately the situation is not quite so grim. The standard 6-quark model
also predicts that CP violation will also occur in the D0D̄0 and B0B̄0 sys-
tems, each by the same mechanism as the Kaon system. The D0 experimental
physics is messy, but the B-meson physics is “clean”: it is virtually a complete
analog of the Kaon system, except for its heavier mass and shorter lifetime.
But not as short as it might have been – the B0-meson fortuitously has a
relatively long lifetime of abour 10−12 sec and a large mixing with its antipar-
ticle B

0
-meson [1]. This means that, in principle, A could be of order unity

for B0 decays. This would be consistent with the Standard Model in which
CP violation arises due to the difference between various quark masses (b, s, d,
etc.). In contrast to this, the superweak theory (and most other competitors)
explain CP violation as coming from a new force independent of quark mass;
hence in these models A should be the same for B0-meson as for Kaons. So
observation of large values of A would rule out (or severely constrain) such
models.
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FIGURE 19.10
The BaBar detector, an important detector used to determine the decay prop-
erties of B-mesons. Image courtesy of SLAC National Accelerator Laboratory.

The BaBar experiment was the first to observe CP violation in the B-meson
system [206]. Studying the Υ(4s) resonance, from which tens of millions of
BB̄ pairs are produced, a search is carried out for a CP-violating decay of
a B-meson (reconstructed from the observed decay products that typically
contain charm) that is correlated with the recoil of a neutral B-meson (the
tag). Early hopes were that physics beyond the Standard Model would soon
be found.

Unfortunately things weren’t quite that easy. Direct observation of CP
violation in the decay B0 → K+π− indicates that [1]

AK+π− =
Γ
(
B̄0 → K−π+

)
− Γ

(
B0 → K+π−

)
Γ
(
B̄0 → K−π+

)
+ Γ (B0 → K+π−)

= −0.095± 0.013 (19.46)

which is rather small effect. However, CP violation has also been observed in
B → π+ +π−, B0 → ηK∗0, and B+ → ρ0K+ decays. Searches for additional
CP asymmetries in decays of B,D and K mesons continues. So far every
result obtained has been consistent with the Standard Model.

It sounds like a “good news” confirmation of the Standard Model. However,
incorporating these measurements into the Standard Model yields a prediction
that there is one proton for every 1018 photons due to the cosmic imbalance
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of particles and anti-particles. This is in disagreement with cosmological ob-
servations (one proton to 109 photons) by many orders of magnitude [205].
Clearly we have a lot to learn about CP violation!

19.4 Questions

1. How many meters of iron must a νµ of 1 GeV penetrate so that it will
scatter, on average, once? How long does this take?

2. In the decay
∣∣Co60; j = 5,m = 5

〉
−→

∣∣Ni∗∗60; j = 4,m = 4
〉

+ e− + ν̄
the intensity of the emitted electrons has the form

I (β, θ) = 1 + αβ cos θ

where β is the speed of the emitted electron relative to the speed of light
and θ is the angle between its direction and the direction of the Co60

spin. Neglecting orbital angular momenta in the final state, deduce the
value of α.

3. A K0 and a K̄0 beam, each of equal intensity, pass through a slab of
matter. Are the beams attenuated equally? Why or why not?

4. A K2 beam passes through a slab of matter. What will the emerg-
ing beam consist of and why? How can you experimentally test your
answer?

5. You make contact with alien physicists through a wormhole into an-
other part of the multiverse, and soon develop a common language of
communication with them. They have developed methods of traveling
through the wormhole in short times and are considering visiting Earth.
However, before they visit, you want to be sure that they are not made
of antimatter. Because of this lack of knowledge, it’s too dangerous to
send objects through the wormhole, but you can ask them any questions
you want about experiments they have performed, and you are able to
communicate with them results of experiments performed here.

(a) Can you determine if any of C, P, or T are conserved in all interac-
tions in their universe?

(b) Can you determine if CP is conserved by C and P are both violated
in their universe?

(c) Can you determine if CP, C and P are each violated in their universe?

6. How many kinds of neutral B-meson oscillation are there? Draw the
lowest-order diagrams for each.
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7. The GALLEX experiment measures the flux of νe from the sun by count-
ing electrons in the reaction

νe + Ga71 → e− + Ge71

The energy threshold for this reaction is 233 KeV. The expected flux
of neutrinos from the standard solar model is Φ = 6× 1014/m2/s. Sup-
pose for simplicity that the entire flux is above threshold. If detection
efficiency is 35%, how many Ga71 nuclei are needed to have one inter-
action with a neutrino per day? What mass of Ga71 does this entail?
How much mass of actual gallium is needed if the Ga71 isotope is 40%
abundant?
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Charged Leptonic Weak Interactions

Today Fermi’s theory of beta decay has been superseded by the modern-day
theory of electroweak interactions. If we remained consistent with the nomen-
clature for the electromagnetic and strong interactions, we would call this
theory Quantum Geusidynamics [207], or QGD (“geusi” meaning “flavor”
in Greek – another possibility is quantum aesthenodynamics (QAD), “aes-
theno” meaning “weak”). This nomenclature did not catch on, and today
people simply refer to the theory as Electroweak theory.

FIGURE 20.1
General form of leptonic weak interaction vertices.

All known quarks and leptons undergo weak interactions. The mediators of
weak interactions are three spin-1 particles: the W+, W−, Z0, the superscripts
referring to the electric charges of the mediators. They are analogous to the
photon in QED and to the gluons in QCD. However,, they are strikingly
different in that they are extremely massive

MW = 80.398 ± 0.0259 GeV MZ = 91.1876 ± 0.0021 GeV (20.1)

and they are unstable to decay:

ΓW = 2.141 ± 0.041 GeV ΓZ = 2.4952 ± 0.0023 GeV (20.2)

The above masses are world averages of all experimental results [1].
“Charged” weak interactions (mediated by the W ’s) are simpler than “neu-

tral” ones (mediated by the Z ) so we’ll consider them first. To start with,

383
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we’ll look at weak interactions of leptons. As with QED and QCD, we can
describe weak interactions using vertices and propagators. The fundamental
leptonic weak interaction can be described by the vertex shown in fig. 20.1
where `− = e−, µ−, or τ− and ν` = νe, νµ, or ντ . Notice that – unlike either
QED or QCD – weak interactions change one type of particle into another ! In
the case above charged leptons are changed into their neutrino partners. Note
also that there are no e−/νµ or τ−/ve vertices – leptonic weak interactions
do not “cross over” between generations!

The diagrammatic rules are similar to QED, except for two things – the
vertex factor has a 1

2

(
1− γ5

)
, and the propagator has terms that depend

upon the mass and width of the W , as shown in fig. 20.2. The width only

FIGURE 20.2
The leptonic vertex factor and internal-line propagator for W bosons.

becomes important if we are colliding particles at energies at or near the mass
of the W and so we will neglect it. The constant gW is the “weak charge,”
with αW = g2W

4π}c the weak coupling constant, analogous to α in QED and αs
in QCD.

The factor of 1
2

(
1− γ5

)
is of crucial importance, and must be inserted

(at least in the lepton sector) because of Goldhaber’s observation that all
neutrinos are left-handed. Recall (from the appendix in Chapter 11) that(

ψγµψ
)′

= Λµν
(
ψγνψ

)
(20.3)(

ψγµγ5ψ
)′

= det (Λ) Λµν
(
ψγνγ5ψ

)
(20.4)
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i.e. the
(
ψγνψ

)
transforms as a vector, but

(
ψγνγ5ψ

)
transforms as a pseu-

dovector (or axial vector, as it is often called) as indicated by the det (Λ)
factor. Since the vertex has both a vector part and an axial vector part – we
say that the W -boson couples to both a vector current and an axial-vector
current – it must violate parity. That the parts are equal in magnitude but
opposite in sign is a consequence of the purely left-handed character of the

neutrino. For a fermion ψ =
(
ϕ
χ

)
we have

1
2
(
1− γ5

)
=

1
2

(
I −I
−I I

)
⇒ ψL ≡

1
2
(
1− γ5

)
ψ =

1
2

(
ϕ− χ
− (ϕ− χ)

)
(20.5)

and we see that 1
2

(
1− γ5

)
projects out one of the two spinor components (in

this basis, the ϕ+χ part is eliminated). So a left-handed spinor has the form

ψ =
(
ζ
−ζ

)
. A right-handed spinor is obtained by projection with 1

2

(
1 + γ5

)
1
2
(
1 + γ5

)
=

1
2

(
I I
I I

)
⇒ ψR ≡

1
2
(
1 + γ5

)
ψ =

1
2

(
ϕ+ χ

(ϕ+ χ)

)

and so has the form ψ =
(
ζ
ζ

)
.

The W -propagator differs from the usual −i gµνq2 that appears in QED and
QCD because of the mass of the W ’s. In almost all reactions (except those at
LEP and higher-energy machines) q2 �M2

W , so we find

lim
q2�M2

W

[
−i gµν − qµqν/M2

W

q2 −M2
W + i}MWΓW

]
' +i

gµν
M2
W

(20.6)

as a good approximation to the W -propagator∗.
Finally, we still have the condition that the polarization vector εµ of a W

is orthogonal to its 4-momentum:

ε · p = 0 (20.7)

which reduces the number of independent degrees of freedom of a W from 4
to 3. However, unlike the photon (and gluon), this condition fully exhausts
the gauge freedom in the model of weak interactions – we do not invoke the
Coulomb gauge.

∗I should note here that the Breit-Wigner form of the propagator (20.6) is an approximation
for energies near the mass of the weak bosons, and that the ΓW term is neglected everywhere
else (ΓW � MW in general), yielding the low-energy propagator that follows from the
equations in electroweak theory.
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20.1 Neutrino-Electron Scattering

Consider the simple scattering process e− + νµ → µ− + νe as shown in fig.
20.3

FIGURE 20.3
Electron-neutrino scattering diagram to lowest order.

The matrix element is

M = (−i)2

(
gW

2
√

2

)2 [
u(p′1)γµ

(
1− γ5

)
u(p1)

]
×
[
gµν − qµqν/M2

W

q2 −M2
W

] [
u(p′2)γν

(
1− γ5

)
u(p2)

]
'

(√
2gW

4MW

)2 [
u(p′1)γµ

(
1− γ5

)
u(p1)

] [
u(p′2)γµ

(
1− γ5

)
u(p2)

]
(20.8)

The Casimir trick gives, using the trace theorems in Chapter 13∑
spins

[
u(p′1)γµ

(
1− γ5

)
u(p1)

]† [
u(p′1)γν

(
1− γ5

)
u(p1)

]
= Tr

[
γµ (1− γ5)

(
/p1

+m
)
γν
(
1− γ5

) (
/p
′
1

+mνe

)]
= Tr

[
γµ
(
1− γ5

) (
/p1

+m
)
γν
(
1− γ5

) (
/p
′
1

)]
(neglect mνe)

= Tr
[
γµ
(
1− γ5

) (
/p1

+m
) (

1 + γ5
)
γν
(
/p
′
1

)]
= Tr

[
γµ
(
1− γ5

)2 (
/p1

)
γν
(
/p
′
1

)]
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= 2Tr
[
γµ
(
1− γ5

) (
/p1

)
γν
(
/p
′
1

)]
= 2Tr

[
γµ
(
/p1

)
γν
(
/p
′
1

)]
− 2Tr

[
γµγ5

(
/p1

)
γν
(
/p
′
1

)]
= 8

[
p′µ1 p

ν
1 + pµ1p

′ν
1 − gµν (p1 · p′1) + iεµανβp1αp

′
1β

]
(20.9)

where γµ (1− γ5) = γµ
(
1− γ5

)
(as is easy to show) and the neutrino has

been taken to be massless. Hence we get

|M|
2

=
64
2

(
gW

2
√

2MW

)4 [
p′µ1 p

ν
1 + pµ1p

′ν
1 − gµν (p1 · p′1) + iεµανβp1αp

′
1β

]
×
[
p′2µp2ν + p2µp

′
2ν − gµν (p2 · p′2) + iεµρνσp

ρ
2p
′σ
2

]
=

1
2

(
gW

MW

)4

[2 (p′1 · p′2) (p1 · p2) + 2 (p1 · p′2) (p′1 · p2)

+i2εµανβp1αp
′
1βεµρνσp

ρ
2p
′σ
2

]
(20.10)

where terms of the form εµανβp1αp
′
1βp2µp

′
2ν vanish, because by momentum

conservation p′2ν = −p′1ν +p2ν +p1ν , in which case the ε-tensor contracts over
two identical objects (similarly εµανβp1αp

′
1βgµν = 0). We also have the result

εµανβεµρνσ = −2
(
δαρ δ

β
σ − δασ δβρ

)
(20.11)

which (as shown in eq. (20.33) ) follows from the definition of the ε-tensor.
Hence

|M|
2

=
1
2

(
gW

MW

)4

[2 (p′1 · p′2) (p1 · p2) + 2 (p1 · p′2) (p′1 · p2)

−2i2p1αp
′
1β

(
δαρ δ

β
σ − δασ δβρ

)
pρ2p
′σ
2

]
=

1
2

(
gW

MW

)4

[2 (p′1 · p′2) (p1 · p2) + 2 (p1 · p′2) (p′1 · p2) + 2 (p′1 · p′2) (p1 · p2)

−2 (p1 · p′2) (p′1 · p2)]

= 2
(
gW

MW

)4

(p′1 · p′2) (p1 · p2) (20.12)

a remarkably simple expression!
Now let’s look at this in the CM frame, for which

pµ1 = (E, ~p) pµ2 = (|~p| ,−~p) p′µ1 = (|~p ′| ,−~p ′) p′µ2 = (E′, ~p ′)

E′ + |~p ′| = E + |~p| ⇒ |~p ′| = 1
2

(E + |~p|)− M2

2 (E + |~p|)
(20.13)

(p1 · p2) = E |~p|+ |~p|2 (p′1 · p′2) = E′ |~p ′|+ |~p ′|2

where M is the mass of the muon. Hence

|M|
2

= 2
(
gW

MW

)4 (
E′ |~p ′|+ |~p ′|2

)(
E |~p|+ |~p|2

)
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= 2
(
gW

MW

)4

|~p ′| |~p| (E + |~p|)2

=
(
gW

MW

)4 [
(E + |~p|)2 −M2

]
(E + |~p|) |~p|

=
(
gW

MW

)4 [(
E +

√
E2 −m2

)2

−M2

](
E
√
E2 −m2 + E2 −m2

)
' 8

(
EgW

MW

)4 [
1− M2

4E2

]
+ · · · (20.14)

where the electron mass m has been neglected in the last line. The formula
for the differential scattering cross-section is

dσ

dΩ
=
(

}c
8π

)2 S |M|2

(E1 + E2)2

|~p ′|
|~p|

= 2
(

}c
8π

)2(
gW

MW

)4

E2

[
1− M2

4E2

](
(E + |~p|)2 −M2

2 (E + |~p|) |~p|

)

' 1
2

(
}cg2

W

4πM2
W c

4

)2

E2

[
1− M2c4

4E2

]2

+ · · · (20.15)

in the limit of large momentum, where in the last line the correct speed-of-light
factors have been introduced.

We see here that the cross-section increases with energy, something quite
different from what we observed in QED and QCD. This is a consequence of
our approximation of the W -propagator as we shall see.

20.2 Muon Decay

Neutrino-electron scattering is really hard to experimentally implement. How-
ever, muon-decay is an easy experiment to do, and the diagram is given in
fig. 20.4.

The matrix element is

M = (−i)2

(
gW

2
√

2

)2 [
u(p′1)γµ

(
1− γ5

)
u(p1)

] [gµν − qµqν/M2
W

q2 −M2
W

]
×
[
u(p2)γν

(
1− γ5

)
v(p2)

]
(20.16)

This is just like what we had for neutrino electron scattering, except that
the electron-antineutrino has a v-spinor final state. This is nice because the
Casimir-tricks don’t change at all provided the neutrinos are assumed to be
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FIGURE 20.4
Muon decay diagram

massless. Hence none of the manipulations change, and we get

|M|
2

= 2
(
gW

MW

)4

(p′1 · p2) (p1 · p′2) (20.17)

in other words, the matrix element is proportional to the dot products of the
lepton momenta with their counterpart neutrino partners. Note the relabeling
of momenta in fig. 20.4 relative to the diagram 20.3 for electron-neutrino
scattering.

Since we are concerned with muon decay, this time we want to look at this
expression in the rest-frame of the muon. We have

pµ1 = (p′1 + p2 + p′2)µ pµ1 = (M,~0) p′µ2 = (E′2, ~p
′
2)

⇒ (p2 + p′1)2 = m2 + 2 (p2 · p′1) = (p1 − p′2)2 = M2 − 2 (p1 · p′2)

⇒ (p2 · p′1) =
1
2
(
M2 −m2

)
− (p1 · p′2) =

1
2
(
M2 −m2

)
−ME′2 (20.18)

and so

|M|
2

= 2
(
gW

MW

)4

ME′2

(
1
2
(
M2 −m2

)
−ME′2

)
'
(
gW

MW

)4

M2E′2 (M − 2E′2) (20.19)

where the electron mass m has again been neglected. The decay rate is

dΓ =
c2

2}M

[
d3p′1

2E′1 (2π)3

d3p′2

2E′2 (2π)3

d3p2

2E2 (2π)3

]
|M|2
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× (2π)4
δ(4) (p′1 + p2 + p′2 − p1) (20.20)

where now E2 = |~p2| = E is the energy of the outgoing electron, neglecting
the electron mass. The 3-Body phase-space integral is done in the appendix,
and the result from eq. (20.56) is

dΓ =
(

gW

MW c

)4
M2E2dE

2} (4π)3

(
1− 4E

3M2

)
(20.21)

Momentum conservation forces E < 1
2Mc2 (see why in the appendix), so the

total decay rate of the muon is

Γµ =
∫ 1

2Mc2

0

dE

(
gW

MW c

)4
M2E2

2} (4π)3

(
1− 4E

3Mc2

)
=
(
gW

MW

)4
M5c2

12} (8π)3 (20.22)

for a muon lifetime of

τµ =
1

Γµ
=
(
MW

MgW

)4 12} (8π)3

Mc2
(20.23)

which goes like the inverse fifth power of the muon mass M .
Note that in both of these problems, the coupling constant gW always is

divided by the W -mass. If we define

GF =
√

2
8

(
gW

MW c2

)2

(20.24)

then

τµ =
1

Γµ
=

192π3}
G2
F (Mc2)5 (20.25)

We can experimentally measure the muon lifetime – it is τexpt
µ = 2.197×10−6

sec. The best measurements [1] then imply

GF = 1.16637(1)× 10−5 (GeV)−2 (20.26)

which (as we saw in eq. (19.15)) is Fermi’s constant! This was an early result
from the Fermi theory of β-decay. Today the muon lifetime provides the
standard by which the value of Fermi’s constant is empirically determined†.

Of course in Fermi’s original theory [188], there was no W -boson. Weak
interaction vertices were given by direct 4-fermion couplings of the type shown
in figure 20.5 but from the modern perspective we understand this diagram
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FIGURE 20.5
A vertex in Fermi’s original theory.

FIGURE 20.6
Weak interaction theory reduces to Fermi’s theory in the limit of large MW .

to be an approximation: That is, Fermi’s theory is reproduced whenever the
W -mass is much larger than any other energy in the problem! Indeed, the
idea of a W -mediator was first suggested by Oscar Klein in 1938 [208].

Today it is possible to independently measure the mass of the W , and so
we can deduce the strength of the weak coupling constant gW. We find

gW = MW c
2

√
4
√

2GF = 80×
√

4
√

2× 1.166× 10−5 = 0.653

⇒ αW =
(gW)2

4π
=

(0.653)2

12.57
= .034 ' 1

29
(20.27)

†Fermi’s constant is actually defined to be GF =
√

2
8

“
gW

MW c2

”2
(}c)3 = GF (}c)3.

Throughout this book I will work with the constant GF , defined so that it has units of
inverse energy, and (hopefully without confusion) refer to this as Fermi’s constant.
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which is a surprise – the weak coupling strength is five times larger than the
electromagnetic strength α = 1

137 !!
Weak interactions are feeble – but not because the coupling is αW small.

Instead, they are feeble because the gauge bosons that mediate the interac-
tions are very massive compared to all subatomic particles (except for the top
quark). In LEP experiments – which operated at energies comparable or a
bit bigger than the mass of the Z-boson – weak interactions were observed to
be stronger than electromagnetic ones!

20.3 Appendix: Mathematical Tools for Weak Interac-
tions

20.3.1 A Note on the ε−Tensor

The epsilon tensor is a fully antisymmetric tensor (it flips sign under inter-
change of any pair of indices) that has as many indices as there are dimensions.
In two spacetime dimensions it is

εµν = 0 if µ = ν; ε01 = 1 = −ε10 (20.28)

Note that ε01 = −1 because of the minus sign that appears in the metric
(recall εµν = gµρgνσερσ). The product of two ε-tensors in two dimensions is

εαβεµν = −
(
δαµδ

β
ν − δαν δβµ

)
(20.29)

which can be shown by brute force: we must get zero if either µ = ν or α = β.
To get a nonzero answer clearly α must equal either one of µ or ν, and β must
equal the other of these. This means that every term on the right-hand
side must be a product of delta functions between the upper indices and the
lower indices, since the magnitude of any index set is either 0 or 1. Setting
µ = 0 = α and ν = 1 = β then gives the correct signs.

The same reasoning can be applied to any dimension. In our (3 + 1)-
dimensional world the ε-tensor must have 4 indices and be fully antisymmetric
on all of them, and so is given by

εµναβ = 0 if any two indices are equal; ε0123 = 1
εµναβ = ε[µναβ] = −ενµαβ = εναµβ = −εναβµ = etc (20.30)

where the square brackets mean “fully antisymmetrize on all indices”, and
ε0123 = −1. The product of two ε-tensors is always either 0 or ±1 and so as
before we will get a product of Kronecker-delta-functions:

ερτσγεµναβ = −
(
δρµδ

τ
ν δ
σ
αδ

γ
β + all possible signed permutations

)
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= −δρ[µδ
τ
ν δ
σ
αδ

γ
β]

= −δρµδτν δσαδ
γ
β + δρνδ

τ
µδ
σ
αδ

γ
β − δ

ρ
νδ
τ
αδ
σ
µδ

γ
β + etc (20.31)

where there are 24 terms in all. Contracting over the (ρ, µ) index pair yields

ερτσγερναβ = −
(

4δτν δ
σ
αδ

γ
β − δ

τ
ν δ
σ
αδ

γ
β + δταδ

σ
µδ

γ
β − etc

)
= −δτ[νδ

σ
αδ

γ
β] (20.32)

Contracting on another pair of indices (e.g., (τ, ν)) gives

ερτσγερταβ = −δτ[τδ
σ
αδ

γ
β]

= −
(

4δσαδ
γ
β − δ

σ
αδ

γ
β + δσβδ

γ
α − δσαδ

γ
β + δσβδ

γ
α − 4δσβδ

γ
α

)
= −2

(
δσαδ

γ
β − δ

σ
βδ

γ
α

)
(20.33)

and again

ερτσγερτσβ = −2
(
δσσδ

γ
β − δ

σ
βδ

γ
σ

)
= −2

(
4δγβ − δ

γ
β

)
= −6δγβ (20.34)

and finally
ερτσγερτσγ = −24 = −4! (20.35)

Note that
γ5 = iγ0γ1γ2γ3 =

i

4!
εµναβγ

µγνγαγβ (20.36)

because the γ-matrices all anticommute.

20.4 Appendix: 3-Body Phase Space Decay

Consider the decay rate of a body of mass M into three other bodies, as in
fig. 20.4:

Γ =
1

2M

[∫
d3p′1

2E′1 (2π)3

d3p′2

2E′2 (2π)3

d3p2

2E2 (2π)3

]
|M|2

× (2π)4
δ(4) (p′1 + p2 + p′2 − p1) (20.37)

where we’ll assume that m′2 = 0 (i.e. one of the final state particles is massless)
so that

E′1 =
√
|~p ′1 |

2 +m2
1 E′2 = |~p ′2 | E2 =

√
|~p2|2 +m2

2 (20.38)
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Integrating over d3p′1 gives

Γ =
2

(4π)5
M

[∫
d3p′2d

3p2

E1E′2E2

]
|M|2 δ (E′1 + E2 + E′2 −M) (20.39)

where now E′1 =
√
|~p ′2 + ~p2|2 +m2

1.
Next let’s do the p′2-integral. We write the coordinate axes so that ~p ′2 ·~p2 =

|~p ′2 | |~p2| cos θ = |~p2|E′2 cos θ, which fixes the polar axis along the direction of
~p2. This gives

d3p′2 = |~p ′2 |
2
d |~p ′2 | sin θdθdφ = E′22 dE

′
2 sin θdθdφ (20.40)

The φ integration is easy (it gives 2π), but the θ integration requires more
care because E′1 depends on θ, and so the δ-function depends non-trivially on
θ. Explicitly

E′1 =
√
E′22 + |~p2|2 + 2 |~p2|E′2 cos θ +m2

1 ≡ X (θ)

⇒ E′2
E′1

sin θdθ = − dX
|~p2|

(20.41)

and we can rewrite the θ integration as an X integration, giving

Γ =
2

(4π)5
M

[∫
d3p2

E2

∫
E′22 dE

′
2 sin θdθdφ
E′1E

′
2

]
|M|2 δ (E′1 + E2 + E′2 −M)

=
2 (2π)

(4π)5
M

[∫
d3p2dE

′
2

|~p2|E2
|M|2

∫ X+

X−

dX δ (X + E2 + E′2 −M)

]
(20.42)

where the range of X (θ) is bounded by the cosine function:

X± = X (cos θ = ±1) =
√

(E′2 ± |~p2|)2 +m2
1 (20.43)

This yields∫ X+

X−

dX δ (X + E2 + E′2 −M) =
{

1 if X− < M − E2 − E′2 < X+

0 otherwise
(20.44)

Noting that X2
+ > (M − E2 − E′2)2

> X2
− we obtain a range for E′2 which is

E− < E′2 < E+ where E± =
1
2

(
M2 −m2

1 +m2
2

)
−ME2

M − E2 ∓ |~p2|
(20.45)

Hence we integrate∫
dE′2 |M|

2
∫ X+

X−

dX δ (X + E2 + E′2 −M) =
∫ E+

E−

dE′2 |M|
2 (20.46)
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where |M|2 is a function of E′2 as determined from the diagrams.
In a 3-Body Decay with one massless particle, we have

|M|
2

= 2
(
gW

MW

)4

(p′1 · p2) (p1 · p′2) where pµ1 = (p′1 + p2 + p′2)µ (20.47)

and conservation of momentum implies

(p2 + p′1)2 = m2
2 +m2

1 + 2 (p2 · p′1)

= (p1 − p′2)2 = M2 − 2 (p1 · p′2) (20.48)

(p2 · p′1) =
1
2
(
M2 −m2

2 −m2
1

)
−ME′2 (20.49)

simplifying the matrix element to

|M|
2

= 2
(
gW

MW

)4

ME′2

[
1
2
(
M2 −m2

2 −m2
1

)
−ME′2

]
(20.50)

which gives∫ E+

E−

dE′2 |M|
2

= M

(
gW

MW

)4 ∫ E+

E−

dE′2E
′
2

[(
M2 −m2

2 −m2
1

)
− 2ME′2

]
= M

(
gW

MW

)4 [1
2
(
M2 −m2

2 −m2
1

) (
E2

+ − E2
−
)
− 2

3
M
(
E3

+ − E3
−
)]

≡M
(
gW

MW

)4

J(E2) (20.51)

since from (20.45) E± are both functions of E2.
Finally we do the p2-integral. There is no further angular dependence, so

writing

d3p2 = |~p2|2 d |~p2| dΩ = |~p2|E2dE2dΩ⇒ d3p2

|~p2|E2
= dE2dΩ (20.52)

and using
∫
dΩ = 4π, we get

Γ =
2 (2π)

(4π)5
M

[∫
d3p2

|~p2|E2

∫
dE′2 |M|

2
∫ X+

X−

dX δ (X + E2 + E′2 −M)

]

=
2 (2π) (4π)
(4π)5

M

∫
dE2M

(
gW

MW

)4

J(E2) (20.53)

We can write
dΓ
dE

=
J(E)c2

} (4π)3

(
gW

MW c2

)4

(20.54)
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as the decay rate per unit energy of particle 2, which is usually taken to be
the electron. I have put in the factors of } and c, which you can deduce by
noting that J(E) has units of (Energy)4/c2.

For the muon decay problem m1 = 0, since the 1′ particle is also a neutrino.
Neglecting the electron mass m2 gives

E± =
1
2M

2 −ME

M − E ∓ E
⇒ E− =

1
2
M − E and E+ =

1
2
M (20.55)

yielding

J(E) =

[
1
2
(
M2
)(1

4
M2 −

(
1
2
M − E

)2
)
− 2

3
M

(
1
8
M3 −

(
1
2
M − E

)3
)]

=
1
2
M2E2

(
1− 4E

3M

)
(20.56)

which is what we obtained for muon decay.

20.5 Questions

1. (a) Compute the relative rate for the τ lepton to decay into a muon as
compared to an electron.

(b) Estimate the lifetime of the τ lepton, neglecting the mass of the
muon and the electron. How well does this agree with experiment?

2. (a) Compute the ratio

R =
σ (νµ + e− −→ νµ + e−)
σ (νµ + e− −→ νµ + e−)

assuming that me � E �MW .

(b) Experimentally R = 1.38+0.57
−0.48. Use this information to determine

the value of sin2 θW . How does it compare to the best present-day
value?

3. For the scattering process µ−+ντ → τ−+νµ, compute the cross-section
in the CM frame to lowest-order in the couplings. Do not neglect the
masses of the neutrinos.
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4. Consider muonium, a bound state of µ+ with e−.

(a) What are the possible spins of the two lowest-energy states? Which
has the lowest energy?

(b) There are two possible ways that muonium can decay. What are
they?

(c) Draw a diagram for each decay mode in part (b).

(d) Only one decay mode is possible for the lowest energy states. Which
one is it, and why?

(e) Compute the ratio of the decay rates for the state in which both
decay modes are allowed. Which is the more likely decay?

5. Compute the following for the 3-index Levi-Civita tensor εabc:

(a) εabcεdef (b) εabkεdek (c) εajkεbjk (d) εijkεijk
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Charged Weak Interactions of Quarks and
Leptons

The structure of the weak interactions for quarks is somewhat different than
for leptons. Before getting to the quark interactions themselves, let’s first see
what we can learn by applying the same methods to the decay of hadrons.
After studying a few key weak hadronic decay processes, we’ll then go on to
explore the charged weak interactions of the quarks, comparing them to those
of the leptons.

21.1 Neutron Decay

Since we experimentally observe

n −→ p + e− + νe (21.1)

we expect that charged weak interactions (mediated by the W ’s) amongst
neutrons and protons are described by the vertex in figure 21.1.

If the neutron and proton behave like leptons, then we expect the axial
current coupling cA to equal the vector current coupling cV and for both to
equal unity. Of course we only expect this to be valid at low energies, where
the substructure of the neutron and proton are irrelevant and we can treat
them both as point particles. The fundamental theory will have a vertex
containing only quarks as we shall see. For now let’s use the vertex in figure
21.1, treating it as an effective theory, and see how far we get.

So neutron decay at low energies should (to lowest order) be represented by
the diagram which is just like the diagram 20.4 for muon decay, with µ− −→ n
and νµ −→ p. Hence we obtain

M = (−i)2 cV

(
gW

2
√

2

)2 [
u(p′1)γ

µ
(
1 − εγ5

)
u(p1)

] [
gµν − qµqν/M2

W

q2 − M2
W

]

×
[
u(p2)γν

(
1 − γ5

)
v(p′2)

]

� cV

(√
2gW

4MW

)2 [
u(p′1)γ

µ
(
1 − εγ5

)
u(p1)

]

399
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FIGURE 21.1
General form of the neutron-proton-W vertex.

FIGURE 21.2
Lowest order neutron decay diagram.

×
[
u(p2)γµ

(
1− γ5

)
v(p′2)

]
(21.2)

where ε = cA
cV

. The Casimir trick now gives

∑
spins

[
u(p′1)γµ

(
1− εγ5

)
u(p1)

]† [
u(p′1)γν

(
1− εγ5

)
u(p1)

]
= 4

[(
1 + ε2

) (
p′µ1 p

ν
1 + pµ1p

′ν
1 − gµν (p1 · p′1)

)
+2iεεµανβp1αp

′
1β +

(
1− ε2

)
mnmpg

µν
]

(21.3)
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and so we get

|M|
2

=
32c2V

2

(
gW

2
√

2MW

)4 [(
1 + ε2

) (
p′µ1 p

ν
1 + pµ1p

′ν
1 − gµν (p1 · p′1)

)
+2iεεµανβp1αp

′
1β +

(
1− ε2

)
mnmpg

µν
]

×
[
p′2µp2ν + p2µp

′
2ν − gµν (p2 · p′2) + iεµρνσp

′ρ
2 p

σ
2

]
=
c2V
4

(
gW

MW

)4 [
2
(
1 + ε2

)
((p′1 · p′2) (p1 · p2) + (p1 · p′2) (p′1 · p2))

+2i2εεµανβp1αp
′
1βεµρνσp

′ρ
2 p

σ
2 − 2

(
1− ε2

)
mnmp (p2 · p′2)

]
=
c2V
2

(
gW

MW

)4 [
(1 + ε)2 (p1 · p′2) (p′1 · p2) + (1− ε)2 (p′1 · p′2) (p1 · p2)

−
(
1− ε2

)
mnmp (p2 · p′2)

]
(21.4)

where as before terms vanish whenever the ε-tensor contracts over two iden-
tical objects and we have used eq. (20.33)

εµανβεµρνσ = −2
(
δαρ δ

β
σ − δασ δβρ

)
to obtain the last line. We see that if ε = 1 (i.e. if the neutron and proton
have the same vector/axial-vector coupling to the W boson as the leptons do)
then the matrix element is the same as for the muon decay problem.

In the rest-frame of the neutron we have pµ1 = (mn,~0). Assuming the
antineutrino is massless, from momentum conservation pµ1 = (p′1 + p2 + p′2)µ

we obtain the following relations

(p2 · p′1) =
1
2
(
m2
n −m2

e −m2
p

)
−mnE

′
2

(p′2 · p′1) =
1
2
(
m2
n +m2

e −m2
p

)
−mnE2 (21.5)

(p2 · p′2) =
1
2
(
m2
p −m2

n −m2
e

)
+mnE

′
2 +mnE2

which you can show by simplifying relations such as (p2 + p′1)2 = (p1 − p′2)2 =
m2
n − 2 (p1 · p′2). Hence we get

|M|
2

=
c2V
2

(
gW

MW

)4 [
(1 + ε)2

mnE
′
2

(
1
2
(
m2
n −m2

e −m2
p

)
−mnE

′
2

)
+ (1− ε)2

mnE2

(
1
2
(
m2
n −m2

p +m2
e

)
−mnE2

)
−
(
1− ε2

)
mnmp

(
1
2
(
m2
p −m2

n −m2
e

)
+mnE

′
2 +mnE2

)]
(21.6)
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which we now insert into the 3-Body Decay rate we computed in the previous
chapter:

Γ
(
n −→ p+ e− + νe

)
=

1
(4π)4

mn

[∫
d3p2

|~p2|E2

∫ E+

E−

dE′2|M|
2

]
(21.7)

where now

E± =
1
2

(
m2
n −m2

p +m2
e

)
−mnE

mn − E ∓ |~p2|
(21.8)

with E2 = E the energy of the outgoing electron. Note that we can no
longer neglect the electron mass since mn ' mp. Carrying out the integration
(as is done in detail in the appendix of Chapter 20) gives

dΓ
dE

=
J(E)c2

} (4π)3

(
gW

MW c2

)4

(21.9)

where

J(E) =
[

1
2
(
m2
n −m2

e −m2
p

)
c2
(
E2

+ − E2
−
)
− 2

3
mn

(
E3

+ − E3
−
)]

(21.10)

putting in the correct factors of c.
To get the total decay rate of the neutron we need to integrate J(E) over

E. Rather than do this integral in full detail, we can make use of the fact
that dΓ

dE contains a lot of small numbers. Let’s define

ς ≡ mn −mp

mn
= 0.001293 δ ≡ me

mn
= 0.000511

η ≡ E

mnc2
φ ≡

√
η2 − δ2 =

|~p2|
mnc

(21.11)

and then approximate dΓ
dE to leading order in these small parameters. The

result is

Γ =
mn

(
c2V + 3c2A

)
(4π)3

(
mngW

MW

)4 ∫ ς

δ

dη η (ς − η)2
√
η2 − δ2 (21.12)

The last integral is straightforward to do, and we obtain

Γ
(
n −→ p+ e− + νe

)
=

(
c2V + 3c2A

)
4

mec
2

(4π)3 }

(
megW

MW

)4

(21.13)

×
[

2κ4 − 9κ2 − 8
15

√
κ2 − 1 + κ ln

(
κ+

√
κ2 − 1

)]
where

κ =
ς

δ
=
mn −mp

me
=

12.93
5.11

= 2.530 (21.14)
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and this gives

Γ
(
n −→ p+ e− + νe

)
= 6.533

(
c2V + 3c2A

)
4

mec
2

(4π)3 }

(
megW

MW

)4

= 8.0732× 10−4

(
c2V + 3c2A

)
4

(21.15)

for a neutron lifetime of

τn = 1239× 4
(c2V + 3c2A)

sec (21.16)

The actual lifetime of the neutron is τexpt
n = 885.7 ± 0.8 seconds [1]. It

is clear that if neutrons and protons couple the same way to the W -boson
as leptons do (i.e. if cV = cA = 1) then we get only very crude agreement
between experiment and theory. In fact, we can independently measure cV and
cA (from, for example, the decay of 14O), and the results are

cV = 1.000± 0.003 cA = 1.26± 0.02

and the most precise measurements give [209]

cA/cV = 1.27200.0018 (21.17)

which means we obtain

τn = 1239× .694 = 859.8 sec (21.18)

which is better, but still out by about 3%. More accurate calculations have
today yielded an agreement between theory an experiment to within about
1%.

Why can’t we do much better than 1%? And why do cV and cA differ?
The answer presumably lies with the strong interactions amongst the quarks
that make up the proton. It is the task of sophisticated QCD-modified quark-
model calculations – perhaps via lattice gauge theory [210] – to predict these
values.

21.2 Pion Decay

Pions are bound states of up and down quarks, known in the charged case to
decay into a lepton and its corresponding antineutrino. The decay of a π− is
a weak-interaction analog of positronium decay. We don’t know the bound
state wavefunction for a ū and d to form a π−, so let’s write the diagram as
in figure 21.3. The matrix element is
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FIGURE 21.3
Lowest-order pion decay diagram.

M = (−i)2

(
gW

2
√

2MW

)2 [
u(p′1)γµ

(
1− γ5

)
v(p′2)

]
Fµ(p) (21.19)

where the quantity Fµ(p) is called the pion form factor.
We are in a similar situation to the one we faced with deep inelastic scat-

tering: we don’t know what the vertex is between the pion and the photon.
So let’s proceed as we did in Chapter 17. By Lorentz covariance Fµ must be
a 4-vector. Since it can only depend upon the pion 4-momentum, we must
have

Fµ(p) = f
(
p2
)
pµ = f

(
m2
π

)
pµ ≡ fπpµ (21.20)

since p2 = m2
π. The quantity fπ is called the pion decay constant, and must

be determined by experiment. Summing over the final spin states gives

|M|
2

= f2
π

(
gW

2
√

2MW

)4∑
spins

[
u(p′1)/p

(
1− γ5

)
v(p′2)

]† [
u(p′1)/p

(
1− γ5

)
v(p′2)

]
=
f2
π

64

(
gW

MW

)4

Tr
[
/p (1− γ5)/p′2/p

(
1− γ5

) (
/p
′
1

+m`

)]
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=
f2
π

64

(
gW

MW

)4

Tr
[
/p
(
1− γ5

)2
/p
′
2/p/p
′
1

]
=
f2
π

8

(
gW

MW

)4 [
2 (p · p′2) (p · p′1)− p2 (p′2 · p′1)

]
(21.21)

Assuming a massless antineutrino, momentum conservation implies

(p′2 · p′1) =
1
2

(
(p′2 + p′1)2 −m2

`

)
=

1
2
(
p2 −m2

`

)
=

1
2
(
m2
π −m2

`

)
(p · p′2) = p′22 + (p′2 · p′1) = (p′2 · p′1) =

1
2
(
m2
π −m2

`

)
(21.22)

(p · p′1) = p′21 + (p′2 · p′1) = m2
` + 2 (p′2 · p′1) = m2

π

giving the expression

|M|
2

= m2
`

(
m2
π −m2

`

) f2
π

16

(
gW

MW

)4

This is the matrix-element for a 2-Body decay, which is really easy to compute:

Γ =
S |~p|

8π}m2
πc
|M|

2
=
f2
πm

3
π

256π}

(
gW

MW

)4
m2
`

m2
π

(
1− m2

`

m2
π

)2

(21.23)

From this we learn two things

1. If m` > mπ, then Γ = 0 because energy and momentum cannot be
conserved. This is as we expect – the pion cannot decay into any particle
more massive than itself, such as a τ -lepton.

2. Much more surprisingly, if m` were to vanish, then the pion could not
decay either!

This last situation is a bit counter intuitive, and merits a bit more inves-
tigation. Computing the ratio between the decays into the electron channel
and the muon channel, we find

Γ (π− −→ e− + νe)
Γ (π− −→ µ− + νµ)

=
m2
e

(
1− m2

e

m2
π

)2

m2
µ

(
1− m2

µ

m2
π

)2 = 1.28× 10−4 (21.24)

which means that the π− is about 10,000 times more likely to decay into a
muon than an electron! The experimental value for this ratio is (1.230± 0.004)×
10−4 [1]. Why is this, when phase-space considerations make the lightest par-
ticle the most probable one to decay into?

The reason is that the pion is spinless, so whenever it decays it must emit
particles that spin in opposite directions. Since the antineutrino is always
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FIGURE 21.4
Final state spins in pion decay as respectively dictated by angular momentum
conservation and the weak interaction.

right-handed, this means that the lepton `− must also come out in a right-
handed state since it is moving in the opposite direction, as shown in the
top part of figure 21.4. However, if the mass of the lepton were zero, then
weak interactions would dictate that the lepton must come out left-handed, in
violation of angular momentum conservation. The only way to reverse the spin
is through the lepton’s mass, which couples its left-handed and right-handed
parts. The smaller the lepton mass, the more suppressed this spin-reversal is,
and so the decay is heavily suppressed for the lighter electron as compared to
the heavier muon.

21.3 Quark and Lepton Vertices

We are now ready to collect together our knowledge of the charged weak
interactions, putting together in a coherent whole what we know about leptons
and quarks.

Let’s begin with the leptons. While we know that electrons can couple to
neutrinos via a W -boson, we have never observed

µ− −→W− + νe νµ −→W+ + τ− e− −→W− + ντ etc. (21.25)
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This indicates that the lepton/W -boson vertex of the weak interactions, shown
in fig. 21.5, always couples leptons within a generation:

e− −→W− + νe µ− −→W− + νµ τ− −→W− + ντ (21.26)

but never across generations. We refer to this state of affairs as the conser-

FIGURE 21.5
The charged leptonic weak vertex

vation of lepton number : “electron-ness” is always conserved in any physical
interaction (as is “muon-ness” and “tau-ness”).

The weak interaction symmetry group (as we will see) is SU(2). This
symmetry group performs a role in the weak interactions that is analogous to
the one that SUC(3) performs for the strong interactions, though with some
non-trivial subtle features as we shall see. All known lepton wavefunctions
transform as irreducible representations of this SU(2) group.

Experiment also indicates that all neutrinos are left-handed. A simple in-
terpretation of this from a group-theory viewpoint is that the right-handed
leptons (i.e. the right-handed parts of the electron, muon and tau wave-
functions) are singlets in this group. Physically this means that they don’t
couple to charged weak bosons. The left-handed leptons (all neutrinos, plus
the left-handed parts of the electron, muon and tau wavefunctions) group into
irreducible doublet representations of SU(2):

EL =
(
νe
e−

)
L

, ML =
(
νµ
µ−

)
L

, TL =
(
ντ
τ−

)
L

(21.27)

and where, for example (
ντ
τ−

)
L

=
(
ψL (ντ )
ψL (τ−)

)
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and from eq. (20.5) the Dirac wavefunctions are ψL ≡ 1
2

(
1− γ5

)
ψ. It’s

common in writing the expressions for weak doublets to just use the names
of the leptons and quarks, and I will continue this practice. But keep in mind
each entry is really a Dirac wavefunction.

So a “spin-up” EL-particle is an electron-neutrino; a “spin-down” TL-
particle is a tau lepton. In other words, what we generally regard as two
distinct particles, the weak interactions regard as two states of a single parti-
cle!

This feature of the weak interactions takes some getting used to. However,
we have seen something like it before in both electromagnetism and the strong
interactions. In electromagnetism we have a vertex corresponding to the
process e− → e− + γ. Since the photon is spin-1, angular momentum
conservation forces the electron to undergo a spin-flip in this process, for
example e−(↑) → e−(↓) + γ. We normally don’t regard the spin-up electron
as a distinct particle from the spin-down electron – instead we regard both
as different states of one particle. In QCD there is a vertex in which a
quark emits a gluon – for example u → u + g. Again angular momentum
conservation – and also color symmetry – imply that the quark must undergo
a spin-flip and that its color must change. So the vertex is really something
like uR(↑) → uB(↓) +gRB̄ – again, we regard uR(↑) and uB(↓) as different states
of the up quark, and not different particles.

From the perspective of the weak interactions, a lepton and its neutrino
partner are likewise different states of the same particle. Historically we have
regarded them as different particles because their masses and charges differ.
However, as far as the charged weak interactions are concerned, they are
different states of one particle, with vertices given in figure 21.6. For example,

FIGURE 21.6
Generalized weak vertices for the electron, muon and tau leptons

a left-handed TL wavefunction, say, emits a W− boson and continues on its
way. In the process it flips from a τ− state to a ντ state, analogous to the
way a spin- 1

2 particle flips its spin when it emits a photon, or a quark changes
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color when it emits a gluon.
What about the quarks? Since we know that the process underlying neutron

decay
n −→ p+ e− + νe (21.28)

is
d −→ u+ e− + νe (21.29)

as shown in figure 21.7 we might also guess that left-handed quarks group

FIGURE 21.7
Neutron decay in terms of quarks

themselves into irreducible doublet representations of SU(2):(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

(21.30)

However, experiment tells us this is wrong because we also observe

Λ −→ p+ e− + νe (21.31)

which corresponds to
s −→ u+ e− + νe (21.32)

as is easily seen by looking at the quark content on both sides of this reaction.
We also know that

B− −→ π0 + e− + νe (21.33)

which in quark terms is
b −→ u+ e− + νe (21.34)

and that there are many other flavor-changing decays. If this were not the
case, then we would have three more conservation laws: conservation of
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“up/down-ness,” “charm/strange-ness” and “top/bottom-ness.” This would
mean that the lightest strange meson (the K−), the lightest strange baryon
(the Λ) and the lightest B-meson would be stable and never decay. We don’t
observe this – so somehow we must take the crossover between generations
into account.

We will proceed in stages, following the historical path that led to our
current understanding. Some terminology will be helpful here. In general
there are three kinds of weak interaction processes for hadrons:

1. Leptonic: all decay products are leptons ( e.g. π− −→ `− + ν`)

2. Semi-leptonic: some decay products are leptons ( e.g. Σ0 → Σ+ + `− +
ν`)

3. Non-leptonic: no decay products are leptons ( e.g. Λ −→ p+ π−)

These are progressively harder to analyze because of the progressively great-
er importance of the strong interactions in each case. The leptonic decays are
the easiest to understand because strong interaction effects are minimized.
Hence to understand cross-over between generations, the simplest thing to
look at is the leptonic decay of the Kaon. This is the process Nicola Cabbibo
concentrated on when he wanted to understand the structure of weak hadronic
decays.

In 1963 Cabbibo suggested [211] (shortly after the 3-quark model had been
proposed) that quark charged weak-vertices were of the form given in figure
21.8 This makes the u/d/W vertex just like the νe/e/W vertex except for the
constant factor of cos θc; likewise the u/s/W vertex is just like the νe/e/W
vertex except for the sin θc factor. If θc were zero, then the weak interactions
would respect conservation of quark generations.

Experimentally, the decays of Kaons and neutrons together imply [1]

θc = 13.04o (21.35)

and we now call this angle the Cabbibo angle. This small value of θc indicates
that, empirically, we almost have conservation of quark generations – but not
quite! To see how this works, consider the decay

K− −→ ν` + `− (21.36)

where `− = e− or µ−. The diagram 21.9 is just like pion decay (fig. 21.3), so
we obtain

M = (−i)2

(
gW

2
√

2MW

)2 [
u(p′1)γµ

(
1− γ5

)
v(p′2)

]
fKpµ (21.37)

as the matrix element. All that is different is that fK replaces fπ. Hence
the decay rate is

Γ =
f2
Km

3
K

256π}

(
gW

MW

)4
m2
`

m2
K

(
1− m2

`

m2
K

)2

(21.38)
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FIGURE 21.8
Cabbibo’s proposed W -boson/quark vertices.

The strong coupling strength binding s and ū into a Kaon is presumably the
same as that which binds d and u into a pion. The only difference should be
in the weak couplings: cos θc for the pion and sin θc for the Kaon. Hence we
expect

fK
fπ

=
sin θc
cos θc

= tan θc (21.39)

yielding

Γ (K− −→ `− + ν`)
Γ (π− −→ `− + ν`)

= tan2 θc
mK

mπ

(
1− m2

`

m2
K

)2

(
1− m2

`

m2
π

)2 (21.40)

which for θc = 13.04o gives

Γ (K− −→ `− + ν`)
Γ (π− −→ `− + ν`)

=
{
.19 for `− = e−

.96 for `− = µ−
(21.41)

and compared to experiment

Γexpt (K− −→ `− + ν`)
Γexpt (π− −→ `− + ν`)

=
{
.26 for `− = e−

1.34 for `− = µ−
(21.42)
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FIGURE 21.9
Decay of a Kaon into a lepton and the associated antineutrino.

we see that there is a crude agreement. The mismatch between the theoret-
ical and experimental values is due to strong interaction effects, which are
reasonably well understood [212].

21.4 The GIM Mechanism

Cabbibo’s model worked reasonably well for many strangeness-changing de-
cays. But it also predicted the decay K0 −→ µ− + µ+ via the diagram∗

given in fig. 21.10. This seems harmless enough – experiment indicated that
the branching ratio was 7.3× 10−9 (today this is known more precisely to be
7.18 ± 0.17 × 10−9 [213]) – but the problem was that Cabbibo’s theory pre-
dicted from the “box” diagram in fig. 21.10 a known quantity I

(
pµi ;m2

u

)
from

a well-determined (and finite) loop integral mulitplied by sin θc cos θc. This
theoretical result yielded a quantity much larger than what was observed.

∗There is another diagram with the internal W ’s crossed over that I have left out.
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FIGURE 21.10
Expected lowest order diagram K0 −→ µ+µ− decay.

More generally there were some other strange features in Kaon decays that
were not satisfactorily explained by the Cabbibo theory. For example the
decays

K+ −→ π+ + νe + ν̄e K0 −→ π0 + νe + e+ (21.43)

might be expected to proceed with equal rates – after all, there is a similar
change in strangeness for each. The only difference between them is that the
lepton charge in the final state is neutral for the K+ decay (a so-called neutral
current process). Yet experiment indicated that

BR
(
K+ −→ π+ + νe + ν̄e

)
= 1.5± 1.3× 10−10

BR
(
K0 −→ π0 + νe + e+

)
= 4.98± 0.07× 10−2 (21.44)

a difference of many orders of magnitude†. Evidently strangeness-changing
processes prefer charged leptons in the final state and strangeness-changing
neutral currents are suppressed – but why?

In 1970 Glashow, Iliopoulos and Maiani (GIM) proposed that the solution
to these problems was the existence of a new quark that was a counterpart of
the up quark [172]. It had the same charge, but orthogonal couplings to the
down and strange quarks, as shown in fig. 21.11. If this new quark exists, and

†I’ve used present-day experimental values [1], but the problem was clear when these mea-
surements were much less accurate.
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FIGURE 21.11
The GIM vertices.

if its couplings are as in fig. 21.11, then the actual lowest-order diagrams for
K0 −→ µ− + µ+ are given in fig. 21.12. These diagrams thus add as follows

M = sin θc cos θcI
(
pµi ;m2

u

)
− cos θc sin θcI

(
pµi ;m2

c

)
' m2

u

m2
c

F (pµi ) (21.45)

where the pµi are the external momenta in the problem. Both diagrams give
the same integral with m2

u replaced with m2
c , and so (because of the orthogonal

couplings in fig. 21.11) the integrals cancel up to a factor of m2
u

m2
c
. Setting the

observed rate equal to the theoretical value yields mc ' 1.5 GeV.
GIM thought that this would be a charming solution to the puzzle ofK0 −→

µ− + µ+, and so they named the new quark the charm quark. Nearly four
years later it was discovered [169, 170], and had just the mass predicted by
the GIM mechanism!

So in the GIM-Cabbibo scheme, the “correct” quarks to use in the charged
weak interactions are not d and s, but rather(

u
d′

)
L

=
(
u
d cos θc + s sin θc

)
L

and
(
c
s′

)
L

=
(
c
−d sin θc + s cos θc

)
L

(21.46)
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FIGURE 21.12
Lowest order diagrams for K0 −→ µ+ + µ−.

In other words, the “elementary particles” of the electromagnetic and strong
interactions are d and s, but the “elementary particles” of the weak interac-
tions are d′ and s′, where(

d′

s′

)
L

=
(

cos θc sin θc
− sin θc cos θc

)(
d
s

)
L

(21.47)

and the matrix transforming between the two is called the Cabbibo matrix.
This mechanism suppresses the puzzling strangeness-changing neutral current
processes noted above. Since the right-handed parts of the quark wavefunc-
tions don’t experience the weak interaction, we can make the above redefini-
tion for these parts too.

21.5 The CKM Matrix

Before charm was discovered in the “November Revolution” of 1974, Makoto
Kobayashi and Toshihide Maskawa turned their attention to the problem of
CP violation in Kaon decay in 1973 [214]. They wanted to see if a GIM-type
mechanism could be used to explain it.

To do this, they needed a complex number in the Cabbibo matrix. However,
if you put one in, you can always remove it by redefining the phases of the
down and strange wavefunctions. This is because the most general relationship
between the weak (primed) eigenstates and the mass (unprimed) eigenstates
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is given by a 2× 2 unitary matrix V, whose most general form is(
d′

s′

)
= V

(
d
s

)
=
(
eiφ1 cos θ ei(φ1+φ2) sin θ
−eiφ3 sin θ ei(φ2+φ3) cos θ

)(
d
s

)
(21.48)

which has 4 parameters, as expected for a unitary matrix. You can easily
check (or deduce!) that this matrix is unitary. However, the 4 parameters are
not all physically relevant, which can be seen by writing the above as(

d′

s′

)
=
(
eiφ1 0
0 eiφ3

)(
cos θ sin θ
− sin θ cos θ

)(
1 0
0 eiφ2

)(
d
s

)
(21.49)

Redefining the quark wavefunctions so that(
d̃
s̃

)
=
(

1 0
0 eiφ2

)(
d
s

)
(21.50)(

d̃′

s̃′

)
=
(
e−iφ1 0
0 e−iφ3

)(
d′

s′

)
(21.51)

we see that the only relevant physical parameter is θ – the Cabbibo angle!
In a 6-quark model this strategy does not work because there are not enough

quark wavefunctions to absorb all of the phases in a 3×3 unitary matrix. So
their idea was to consider a 6-quark model in which the charge

(
− 1

3

)
quarks

that couple to the W -bosons are related to their strong/electromagnetic coun-
terparts via d′

s′

b′


L

=

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d
s
b


L

(21.52)

so that the quark weak-doublet structure is

DL =
(
u
d′

)
L

, SL =
(
c
s′

)
L

, BL =
(
t
b′

)
L

(21.53)

with diagrams as shown in fig. 21.13.
From this perspective the weak interactions conserve up/down′-ness, charm/

strange′-ness, and top/bottom′-ness! Somewhat analgous to the leptonic case,
a “spin-up” SL-particle is a charm quark; a “spin-down” BL-particle is a b′

quark, which is a mixture of the d, s, and b quarks (and not just a b quark).
The matrix relating primed quark wavefunctions to the unprimed ones is a

unitary matrix known as the CKM matrix (for Cabbibo-Kobayashi-Maskawa).
It is a 3× 3 generalization of the Cabbibo matrix. By redefining quark wave-
function phases, it can be written in the standard form

V ≡

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3eiδ

 (21.54)
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FIGURE 21.13
Generalized weak vertices for the down-type, strange-type and bottom-type
quarks.

where ci = cos θi, si = sin θi.
Suppose we set θ2 = θ3 = 0. It’s easy to see from eq. (21.54) that the

3rd generation doesn’t mix with the other two, and we recover the original
Cabbibo matrix, with θ1 = θc. Empirically we do observe mixing of the
third generation with the other two (in decays of B0-mesons; recall B− −→
π0 + e− + νe), but it is small, as we infer empirically from the relatively
long lifetime of the B meson and the small branching ratio of decays into
uncharmed mesons.

The parametrization of the CKM matrix given in eq. (21.54) is the original
one used by Kobayashi and Maskawa. It is more common now to use Euler
angles (θ12,θ23,θ13) and one CP-violating phase (δ) [1], in which case

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (21.55)

where again cij = cos θij and sij = sin θij . This form of the CKM matrix
makes it easy to see how the different generations couple to each other, since
couplings between quark generations i and j vanish if θij = 0.

The values of the four angles in the CKM matrix are constants of nature,
just the way that the coupling constant of electromagnetism, Planck’s con-
stant, and the speed of light are constants of nature. These angles tell us how
strongly the different quark generations couple to each other. They must be
empirically measured. Experimentally, we know only the magnitudes of the
matrix values, which are [1]

|V | ≡

 |Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


=

 .97383± 0.00024 .2272± 0.0010 .00396± 0.00009
.2271± 0.0010 .97296± 0.00024 .04221± 0.00045
.00814± 0.00048 .04161± 0.00012 .999100± 0.000034

 (21.56)
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We see that, empirically, the third generation hardly mixes at all with the
other two – s12 >> s23 >> s13. This is why Cabbibo’s original idea worked
so well.

The Standard model does not explain the origin of the values of the entries
in the CKM matrix. So far there have been no successful extensions of the
Standard model that have offered a convincing rationale for why they have the
values they do. At this point in time the best we can do is to experimentally
check these values for consistency. This is done via something called the
unitarity triangle, which exploits the fact that the CKM matrix is unitary,
i.e. V †V = 1. For example, the third row and first column entry gives(
V †V

)
31

= 0, or
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (21.57)

which is a sum of three complex numbers that add up to zero. These numbers
can be drawn as vectors in the complex plane, and since they sum up to zero
they form a closed triangle, as shown in fig. 21.14. The relative angles between
two sides are the arguments of the ratios of these complex numbers

α = arg
(
− VtdV

∗
tb

VudV ∗ub

)
β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
(21.58)

and since it’s a triangle we must have α + β + γ = 180o. Other unitarity

FIGURE 21.14
The unitarity triangle. Image courtesy of the Particle Data Group [1].

triangles can be defined from the CKM matrix, but the one in fig. 21.14 is
the most commonly used since its matrix elements are the best known.
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The areas of all unitarity triangles are the same, and have half the value of
the Jarlskog invariant J, defined as [215]

Im
(
VijVklV

∗
ilV
∗
kj

)
= J

∑
m,n

εikmεjln (21.59)

One computes the Jarlskog invariant by simply choosing particular compo-
nents of the CKM matrix; for example, J = Im (VudVcsV ∗usV

∗
cd). The unitarity

of the CKM matrix ensures that the value is numerically the same no matter
what the choice. It is a phase-independent measure of CP-violation, and has
the experimental value [1]

J = (3.08± 0.17)× 10−5 (21.60)

One of the important goals of modern particle physics is to overconstrain
the CKM matrix. Finding that its parameters do not yield unitarity triangles
would be a clear signal of physics beyond the Standard Model.

21.6 Questions

1. Calculate the decay rate for τ− −→ π−+ ντ . Using the measured value
for fπ and the lifetime of the τ−, what is the branching ratio for this
decay? How does it compare to experiment?

2. Find the branching ratio for the decays τ− −→ π− + ντ and τ− −→
K− + ντ .

3. In the decay π− −→ µ− + ν̄µ, suppose that the weak coupling vertex
factor is gW

2
√

2
γµ (1− εγ5).

(a) Calculate the spin-averaged and spin-summed matrix element for
this process.

(b) For what value of ε is the ratio

R =
Γ (π− −→ µ− + ν̄µ)
Γ (π− −→ e− + ν̄e)

maximal?

(c) How might you determine ε from experiment?

4. Consider the decays D−s → τ− + ν̄τ and D−s → µ− + ν̄µ. The decay
rates can can computed in terms of a decay constant fDs .

(a) What is the ratio of the decay rates?

(b) Calculate the expected branching ratio for the decay into τ− + ν̄τ
if fDs= 280 MeV.



420 An Introduction to Particle Physics and the Standard Model

5. For the process in figure 21.15 show that

FIGURE 21.15
Neutron decay diagram.

∑
spins

[
u(p′1)γµ

(
1− εγ5

)
u(p1)

]† [
u(p′1)γν

(
1− εγ5

)
u(p1)

]
= 4

[(
1 + ε2

) (
p′µ1 p

ν
1 + pµ1p

′ν
1 − gµν (p1 · p′1)

)
+2iεεµανβp1αp

′
1β +

(
1− ε2

)
mnmpg

µν
]

6. Suppose that the muon neutrino has a mass m.

(a) Compute the ratio R, where

R =
Γ (π+ −→ e+ + νe)
Γ (π+ −→ µ+ + νµ)

(b) For what value of m is this quantity maximized? For what value
m of is it minimized?

(c) Could the experimental value of R be used to determine an empirical
value for m? Why or why not?

7. Show that for the momenta defined in figure 21.15

(p2 · p′1) =
1
2
(
m2
n −m2

e −m2
p

)
−mnE

′
2

(p′2 · p′1) =
1
2
(
m2
n +m2

e −m2
p

)
−mnE2

(p2 · p′2) =
1
2
(
m2
p −m2

n −m2
e

)
+mnE

′
2 +mnE2
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8. Beginning with the expression for the matrix element |M|
2

for the decay
of the neutron

|M|
2

=
c2V
2

(
gW

MW

)4 [
(1 + ε)2

mnE
′
2

(
1
2
(
m2
n −m2

e −m2
p

)
−mnE

′
2

)
+ (1− ε)2

mnE2

(
1
2
(
m2
n −m2

p +m2
e

)
−mnE2

)
−
(
1− ε2

)
mnmp

(
1
2
(
m2
p −m2

n −m2
e

)
+mnE

′
2 +mnE2

)]
given in eq. (21.6), find the decay rate of the neutron in terms of the
parameters

ς ≡ mn −mp

mn
δ ≡ me

mn

η ≡ E2

mn
φ ≡

√
η2 − δ2 =

|~p2|
mn

to lowest order in these parameters. Insert the appropriate factors of c.
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Electroweak Unification

Electroweak theory – sometimes referred to as the Glashow-Salam-Weinberg
model – is a model that unifies weak and electromagnetic interactions. In other
words, from the perspective of the Standard Model these two forces are part
of a more unified whole. The first paper on unification of electromagnetic and
weak interactions by Glashow in 1961 [216] required such neutral interactions,
and in 1968 Glashow’s model was modified by Weinberg and Salam [217] to
include a physical mechanism that made the force carriers (the weak vector
bosons W and Z) massive. In 1971 Gerard ’t Hooft and Martinus Veltman
showed that this model is renormalizable [218] (with Ben Lee carrying out
similar work independently [219]), and in 1983 the W and Z particles were
discovered [73]. All subsequent particle physics experiments have confirmed
this theory.

To properly lay out the basic structure of this theory we must first turn
our attention of an aspect of the weak interactions that I have so far ignored,
namely neutral currents. The Z boson is the force-carrier of the weak neutral
force. Let’s begin by looking at its properties.

22.1 Neutral Currents

Neutral currents were first postulated by Bludman in 1958 [220], shortly after
the W -boson was proposed as the force carrier underlying the weak inter-
actions. He suggested that the W -boson had an electrically neutral partner
called the Z. Its basic interaction, shown in fig. 22.1, indicates that the Z
couples to any fermion f . Note that the identity of f is preserved in the
interaction. There is no vertex for which e− −→ Z + µ− or s −→ Z + t,
for example. Such processes would not be consistent with low-energy meson
decays, such as K0 −→ µ− + µ+. This is what made neutral currents so dif-
ficult to observe – they would be swamped by electromagnetic effects, which
are also neutral currents: the photon is electrically neutral!. For this reason
many people doubted that Bludman’s postulate was correct.

The first evidence experimentally for weak neutral currents came in 1973 at
CERN in the Gargamelle bubble chamber, shown in fig. 22.2. The searches
for neutral currents in previous neutrino experiments had resulted in discour-

423
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FIGURE 22.1
Bludman’s general proposal for the coupling of the Z to fermions.

agingly low limits, and by the late 1960s it was commonly assumed that no
weak neutral currents existed. People were more excited about the possibil-
ity of proton substructure. This provoked the question as to what structure
would be revealed by the W in neutrino experiments, analogous to what the
photon revealed in deep-inelastic electron-proton scattering.

André Lagarrigue, André Rousset and Paul Musset worked out a proposal
for a neutrino experiment that aimed to increase the event rate by an order of
magnitude, which meant building a large heavy-liquid bubble chamber. The
key challenge for the experiment was to deal with the unavoidable background
of events in which a charged hadron leaves the visible volume of the cham-
ber without visible interaction. This “fakes” a muon event. Events with a
muon candidate were collected in one category, A, while events consisting of
secondaries that were all identified as hadrons were collected in a second cat-
egory, B. Category-B events (referred to as neutron stars (n*) – don’t confuse
them with the astrophysical objects) were thought to arise when undetected
upstream neutrino interactions emitted a neutron that interacted in the cham-
ber. It was then easy to deduce from these events the fraction that did not
interact, thus simulating a muon, and to subtract them from the observed
number of events in category A.

If weak neutral currents indeed existed, they would have induced events
consisting of hadrons only, just as the n*s did, and they would be waiting to
be discovered as part of category B. The main task was then to find ways of
distinguishing neutrino-induced events from neutron-induced events. A neu-
trino beam was formed from decaying pions (π− −→ µ− + νµ, recall). The
muons were filtered out by a thick iron shield and the neutrino reactions were
observed in a bubble chamber. The purpose of Gargamelle was to “see neutri-
nos” by making visible any charged particles set in motion by the interaction
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FIGURE 22.2
The Gargamelle heavy-liquid bubble chamber, installed into the magnet coils,
at CERN in 1970 (copyright CERN; used with permission).

of neutrinos in the liquid. Neutrinos interact very rarely (recall eq. (19.20)),
so Gargamelle was designed not only to be as big as possible, but also to work
with a dense liquid - Freon (CF3Br) - in which neutrinos would be more likely
to interact. The final chamber was a cylinder, 4.8 m long and 1.85 m wide,
with a volume of 12 cubic meters.

Events of the form

νµ +N −→ νµ +X (22.1)
νµ +N −→ νµ +X (22.2)

where N is a nucleon and X is a hadron were observed [221]. Since there is
no charged lepton in the final state, such interactions must be due to a weak
neutral current. By 1973 the number of neutral-current candidates was en-
couragingly large, as table 22.1 indicates. Spatial distributions of the events

TABLE 22.1

Neutral Current Candidates from the Gargamelle
Experiment

ν-exposure ν̄-exposure

# of Charged current candidates 102 64
# of Charged current candidates 428 148
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suggested that the vertex distribution of the neutral-current candidates is
neutrino-like, since they were flat like the charged-current events. Further-
more, there was no indication of an exponentially falling distribution at the
beginning of the chamber, which is what one would expect if the neutral-
current candidates were dominantly induced by neutrons. These arguments
were both corroborated by Monte Carlo simulations. A careful check of the
neutron-induced background (that took several months to complete) indicated
that only a small fraction of the neutral-current candidates could be explained
by neutron-induced events. An independent check exploited the spatial distri-
butions of neutral current and charged-current candidates, providing further
evidence that the neutral-current sample was not dominated by n*s.

The data indicated that the branching ratios were

σ (νµ +N −→ νµ +X)

σ
(
νµ +N −→ µ− + X̃

) ' .25 and
σ (νµ +N −→ νµ +X)

σ
(
νµ +N −→ µ− + X̃

) ' .45

(22.3)
which meant that weak neutral-current reactions (due to Z exchange) were
comparable to weak charged-current interactions (due to W± exchange). This
meant that they could not be explained as a higher order effect. There was
also evidence for νµ + e− −→ νµ + e− at a similar rate: a purely leptonic
neutral current event!

This was good news to theorists, who had years earlier postulated such
weak neutral currents and used them to unify weak interactions with elec-
tromagnetism, most notably in what is sometimes called the Glashow-Salam-
Weinberg model. Together with QCD, this model forms what has come to be
called the Standard Model.

22.2 Electroweak Neutral Scattering Processes

The coupling of fermions to Z’s is somewhat more complicated than to W ’s.
The basic vertex is given in fig. 22.3 and contains both vector and axial-vector
couplings. These depend on the species of fermion f ; the values of cfV and cfA
appear in table 22.2. The rather haphazard-looking structure is a consequence
of electroweak unification as we see in Chapter 23.

Note that all the couplings depend on another angle, θW , called the weak
mixing angle. This angle also relates the weak and electromagnetic coupling
constants:

gW sin θW = ge = e and gZ cos θW = gW =
ge

sin θW
(22.4)
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FIGURE 22.3
The fermion Z-vertex.

TABLE 22.2

Neutral Current Couplings to
Fermions

f cfV cfA

νe, νµ, ντ
1
2

1
2

e−, µ−, τ− − 1
2 + 2 sin2 θW − 1

2

u, c, t 1
2 −

4
3 sin2 θW

1
2

d, s, b − 1
2 + 2

3 sin2 θW − 1
2

As with the CKM matrix, the value of the weak angle is unexplained in the
Standard Model. It must be determined from experiment, which indicates [1]

sin2 θW = 0.23119± .00014 ⇒ θ
expt
W = 28.74o (22.5)

The Z propagator is similar to that of the W , as shown in fig. 22.4 where
the masses of the W and Z are related to one another via

MZ cos θW = MW (22.6)

The predictions for the values of gW, gZ , MW , and MZ in terms of the weak
angle θW and the electric charge coupling e follow from the electroweak theory
of Glashow, Salam and Weinberg.
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FIGURE 22.4
The Z propagator.

22.2.1 Neutrino-Electron Neutral Current Scattering

Before we get to that, we can see how the weak neutral current mediates
scattering processes since we now have enough information to compute them,
say νµ + e− −→ νµ + e−. The diagram is given in fig. 22.5 and the matrix

FIGURE 22.5
Lowest-order electron neutrino scattering.

element is

M = (−i)2
cV

(gZ
2

)2
[
u(p′1)γµ

(
1
2
− 1

2
γ5

)
u(p1)

] [
gµν − qµqν/M2

Z

q2 −M2
Z + iMZΓZ

]
×
[
u(p2)γν

(
1− εγ5

)
u(p′2)

]
(22.7)

' −c
e
V

2

(
gZ

2MZ

)2 [
u(p′2)γµ

(
1− εγ5

)
u(p2)

] [
u(p′1)γµ

(
1− γ5

)
u(p1)

]
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where ε = ceA
ceV

. The procedure is completely analogous to that for neutron
decay ∑

spins

[
u(p′2)γµ

(
1− εγ5

)
u(p2)

]† [
u(p′2)γν

(
1− εγ5

)
u(p2)

]
= Tr

[
γµ
(
1− εγ5

) (
/p2

)
γν
(
1− εγ5

) (
/p
′
2

)]
+m2

eTr
[
γµ
(
1− εγ5

)
γν
(
1− εγ5

)]
= 4

[(
1 + ε2

) (
p′µ2 p

ν
2 + pµ2p

′ν
2 − gµν (p2 · p′2)

)
+ 2iεεµανβp2αp

′
2β

]
+4m2

e

(
1− ε2

)
gµν (22.8)

and so

|M|
2

=
(ceV )2

2

(
gZ
MZ

)4 [
(1 + ε)2 (p′1 · p′2) (p1 · p2) + (1− ε)2 (p1 · p′2) (p′1 · p2)

−
(
1− ε2

)
m2
e (p1 · p′1)

]
(22.9)

just as before. Neglecting the electron mass, in the CM frame we have

pµ1 = (E, ~p) pµ2 = (E,−~p) and p′µ1 = (E, ~p′) p′µ2 = (E,−~p ′)
where |~p|2 = |~p ′|2 = E2 and ~p · ~p ′ = E2 cos θ (22.10)

and so obtain

(p′1 · p′2) = (p1 · p2) = 2E2

(p1 · p′2) = (p′1 · p2) = E2 (1 + cos θ) = 2E2 cos2 θ

2
(22.11)

yielding

|M|
2
' 2E4 (ceV )2

(
gZ
MZ

)4 [
(1 + ε)2 + (1− ε)2 cos4 θ

2

]
(22.12)

The differential cross-section is

dσ

dΩ
=
(

}c
8π

)2 |M|2

(2E)2

=
E2 (ceV )2

2

(
}c
8π

)2(
gZ

MZc2

)4 [
(1 + ε)2 + (1− ε)2 cos4 θ

2

]
(22.13)

and integrating over angles yields

σ = (4π)
E2 (ceV )2

2

(
}c
8π

)2(
gZ

MZc2

)4 [
(1 + ε)2 +

1
3

(1− ε)2

]
=

(}cE)2 (ceV )2

24π

(
gZ

MZc2

)4 [
1 + ε+ ε2

]
(22.14)



430 An Introduction to Particle Physics and the Standard Model

Let’s compare this to the result for νµ+e− −→ νe+µ−, which we found from
eq. (20.15) to be

dσ

dΩ
' 1

2

(
}cg2

W

4πM2
W c

4

)2

E2

[
1−

m2
µc

4

4E2

]2

+ · · ·

where mµ is the mass of the muon. Neglecting this and integrating over the
angles gives

σ ' 1
8π

(
}cg2

W

M2
W c

4

)2

E2 (22.15)

Putting it all together we find that

σ (νµ + e− −→ νµ + e−)
σ (νµ + e− −→ νe + µ−)

=
(}cE)2 (ceV )2

24π

(
gZ

MZc2

)4 [
1 + ε+ ε2

]
1

8π

(
}cg2W
M2
W c

4

)2

E2

=
1
3

(
gZMW

gWMZ

)4 [
(ceV )2 + (ceV ) (ceA) + (ceA)2

]
=

1
3

[(
−1

2
+ 2 sin2 θW

)2

− 1
2

(
−1

2
+ 2 sin2 θW

)
+
(
−1

2

)2
]

=
1
4
− sin2 θW +

4
3

sin4 θW

=
{

0.09 Theory
0.08 Expt (22.16)

The experimental value is 0.08 [222], good to within 10%!
The reason why it took about 15 years before experiment could confirm

Bludman’s idea is that at low energies neutral current processes compete with
electromagnetic ones. An example is given by electron-positron annihilaton
into some other fermion-antifermion pair, as shown in fig. 22.6. Since the mass
of the Z is so heavy, the neutral current interaction is very feeble compared
to the electromagnetic one. That’s why neutrino beams were needed to see
weak neutral currents — neutrinos don’t couple to photons!

22.2.2 Electron-Positron Neutral Current Scattering

Let’s consider electron-positron scattering into a fermion-antifermion pair.
The lowest-order diagrams in electroweak theory are given in fig. 22.6. The
fermion can be anything except for another electron, since in that case we’d
have to add two other diagrams. The matrix element for the Z diagram in
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FIGURE 22.6
Electron-positron annihilation to some other fermion-antifermion pair to low-
est order in electroweak theory.

22.6 is

M = (−i)2
ceV c

f
V

(gZ
2

)2 [
v(p2)γµ

(
1− εeγ5

)
u(p1)

] [ gµν − qµqν/M2
Z

q2 −M2
Z + iMZΓZ

]
×
[
u(p′2)γν

(
1− εfγ5

)
v(p′1)

]
(22.17)

where q2 = (p2 + p1)2. We want to work at energies comparable to the mass
of the Z, and so the modification of the propagator to the Breit-Wigner form
will be important here, and we will no longer be able to neglect the qµ terms.
However, note that

v(p2)γµ
(
1− εeγ5

)
u(p1)qµ = 2me

[
v(p2)

(
εeγ5

)
u(p1)

]
(22.18)

which you can show using
(
/p1
−me

)
u(p1) = 0 and v(p2)

(
/p2

+me

)
= 0 .

Similiarly[
u(p′2)γν

(
1− εfγ5

)
v(p′1)

]
qν = 2mf

[
u(p′2)γν

(
εfγ5

)
v(p′1)

]
(22.19)

So the qµ terms contribute factors proportional to the electron and fermion
masses. These are negligible relative to the mass of the Z and so we neglect
them.

Hence

M = (−i)2
ceV c

f
V

(gZ
2

)2 [
v(p2)γµ

(
1− εeγ5

)
u(p1)

] [ 1
q2 −M2

Z + iMZΓZ

]
×
[
u(p′2)γµ

(
1− εfγ5

)
v(p′1)

]
(22.20)
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and the Casimir trick implies

|M|
2

=
1
4

[
ceV c

f
V

(
gZ
2

)2
|q2 −M2

Z + iMZΓZ |

]2

Tr
[
γµ
(
1− εeγ5

)
/p1
γν
(
1− εeγ5

)
/p2

]
×Tr

[
γµ
(
1− εfγ5

)
/p
′
1
γν
(
1− εfγ5

)
/p
′
2

]
=

1
2


(
ceV c

f
V g

2
Z

)2

(q2 −M2
Z)2 + (MZΓZ)2


×
{(

1 + (εe)2
)(

1 +
(
εf
)2)

[(p′1 · p′1) (p2 · p′2) + (p1 · p′2) (p′1 · p2)]

+4εeεf [(p′1 · p′1) (p2 · p′2)− (p1 · p′2) (p′1 · p2)]
}

(22.21)

where in the CM frame (22.11)

|M|
2

=

(
ceV c

f
V g

2
ZE
)2 ((

1 + (εe)2
)(

1 +
(
εf
)2) (1 + cos2 θ)− 8εeεf cos θ

)
(

(2E)2 −M2
Z

)2

+ (MZΓZ)2

(22.22)
with θ the scattering angle. The differential cross section is therefore

dσ

dΩ
=
[

(}c)
16π

]2

(
ceV c

f
V g

2
ZE
)2 ((

1 + (εe)2
)(

1 +
(
εf
)2) (1 + cos2 θ)− 8εeεf cos θ

)
(

(2E)2 −M2
Z

)2

+ (MZΓZ)2

(22.23)
which integrates to a total cross-section of

σ =

(
}cg2

ZE
)2

48π


[
(ceV )2 + (ceA)2

] [(
cfV

)2

+
(
cfA

)2
]

(
(2E)2 −M2

Z

)2

+ (MZΓZ)2


2

(22.24)

When mediated by a photon, the cross-section for the same process is, from
eq. (17.22)

σ =

(
}cg2

e

)2
48π

(
Qf
)2

E2
(22.25)

where Qf is the charge of the fermion in units of e. So the ratio is

σZ
σγ
≡
σ
(
e+e− −→ Z −→ ff̄

)
σ
(
e+e− −→ γ −→ ff̄

)
=

[
1
2 − 2 sin2 θW + 4 sin4 θW

] [(
cfV

)2

+
(
cfA

)2
]

(
sin2 θW cos2 θWQf

)2
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×

 E4(
(2E)2 − (MZc2)2

)2

+ (}ΓZMZc2)2

 (22.26)

inserting the appropriate factors of ~ and c.
At energies much less than the mass of the Z (but still much greater than

the fermion masses) we have

σZ
σγ

=

[
1
2 − 2 sin2 θW + 4 sin4 θW

] [(
cfV

)2

+
(
cfA

)2
]

(
sin2 θW cos2 θWQf

)2 (
E

MZc2

)4

(22.27)

and the electromagnetic interaction dominates, since even for E = 1
4MZc

2,

we have
(

E
MZc2

)4

' 0.3%. However, when the electron and positron collide

at exactly the rest-mass of the Z (i.e. at E = 1
2MZc

2), we have

σZ
σγ

=

[
1
2 − 2 sin2 θW + 4 sin4 θW

] [(
cfV

)2

+
(
cfA

)2
]

16
(
sin2 θW cos2 θWQf

)2 (
MZc

2

}ΓZ

)2

(22.28)

which shows that the neutral weak interaction dominates because 1
16

(
MZc

2

}ΓZ

)2

'
84.

22.3 The SU(2)×U(1) Model

The general form of the vertex for fermions coupling to W ’s is one we looked
at in the previous chapter and is shown in fig. 22.7 where the wavefunction
χ can be any one of

EL =
(
νe
e−

)
L

, ML =
(
νµ
µ−

)
L

, TL =
(
ντ
τ−

)
L

(22.29)

DL =
(
u
d′

)
L

, SL =
(
c
s′

)
L

, BL =
(
t
b′

)
L

(22.30)

where in the above νe = ψ
νe , µ− = ψ

µ−

, etc and we recall that ψL =
1
2

(
1− γ5

)
ψ (and ψL =

(
1
2

(
1− γ5

)
ψ
)†
γ0 = ψ

(
1
2

(
1 + γ5

))
). The primed

quark wavefunctions are related to the unprimed ones familiar from QED and
QCD via the CKM matrix as in eq. (21.52). What is needed to describe this
is an underlying theory that accounts for this vertex as well as for the vertex
for the Z boson in fig. 22.3.
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FIGURE 22.7
The general form of the W -boson/fermion vertex.

However, we will need more – since the W± bosons are charged, they will
need to couple to the photon – in other words, there should be a WWγ
vertex. This suggests that we need a Yang-Mills theory as our underlying
theory because (as we have seen with the gluons) it provides for vertices with
3 gauge particles.

A number of attempts were made to describe the weak interactions using a
Yang-Mills theory once it became clear from experiments on parity violation
in the 1950s that the weak nuclear force was quite different from the strong
one. Many models were proposed over the following two decades until ex-
periment finally winnowed out all but the one theory we have today, namely
the electroweak theory of Glashow, Salam and Weinberg. This theory has a
non-abelian symmetry SU(2)⊗U(1), with 3 gauge bosons{

W 1
µ,W

2
µ,W

3
µ

}
= ~Wµ

associated with the SU(2) and 1 gauge boson called Bµ that is associated
with the U(1). Physically the non-abelian symmetry means that, analogous
to gluon interactions, the W and B bosons will interact with each other as
well as with the quarks and leptons, resulting in additional vertex rules for
electroweak theory.

But the symmetry is “broken” – the lowest-energy state of the theory does
not reflect the full symmetry of the theory. We will see that the two neutral
bosons – the W 3

µ and the Bµ – mix together to form a massless boson (the
photon) and a very heavy boson (the Z). The remaining W bosons will
combine into the charged W± bosons. But how? And why do the W 3

µ and Bµ
boson wavefunctions get mixed up into the Z-boson and the photon? And
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why are the W -bosons and Z-boson so heavy, but the photon massless? You’ll
have to go to the next chapter to find out.

22.4 Questions

1. Compute the decay widths ΓW and ΓZ , neglecting fermion masses.

2. (a) Compute the decay rate Z → f + f̄ , where f is any quark or lepton
lighter than the Z. Neglect the masses of the fermions.

(b) Find the branching ratio for each species of quark and lepton, as-
suming that these are the dominant decay modes.

3. Compute the ratio R of quark pair production to muon pair production
due to e+e− scattering when the process is mediated by a Z0 particle.
How does it compare to the photon-mediated case at low energies? How
does it compare at energies equal to the mass of the Z0? Take into
account the finite lifetime of the Z0.

4. For electron-positron scattering, as depicted in the diagram in fig. 22.8,
show that

FIGURE 22.8
Diagrams for electron positron scattering in electroweak theory.

[
u(p′2)γν

(
1− εfγ5

)
v(p′1)

]
qν = 2mf

[
u(p′2)γν

(
εfγ5

)
v(p′1)

]
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and
v(p2)γµ

(
1− εeγ5

)
u(p1)qµ = 2me

[
v(p2)

(
εeγ5

)
u(p1)

]
5. Draw all relevant Feynman diagrams for the following processes to lowest

order.

(a) γ+γ −→ ντ + ν̄τ (b) γ+γ −→ Z+Z (c) W+ +W− −→ Z+γ

6. Consider the process e+ + e− → Z → f + f̄ for both right-handed and
left-handed electron wavefunctions. Compute

A =
σL − σR
σL + σR

for this process.
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23

Electroweak Symmetry Breaking

The Higgs mechanism provides a means for the weak boson gauge fields of
electroweak theory to acquire their mass. The gauge group is SU(2)×U(1),
which means the equations of the theory have two kinds of gauge fields: the
three W a

µ wavefunctions, which obey a set of Yang-Mills equations, and the Bµ

wavefunction, which obeys a Maxwell equation. This is kind of like a mixture
of QCD and QED, except that (a) in addition to fermions we will also have
the scalar Higgs wavefunction and (b) the symmetry will be spontaneously
broken.

Before considering how this mechanism works in the full electroweak theory,
it will be helpful to consider how it works in the U(1) subsector of the theory.
Let’s begin there.

23.1 The Higgs Mechanism

The idea that the weak bosons had to be very heavy was considered as long
ago as 1961 when Glashow first suggested that the weak and electromagnetic
interactions were unified [216]. The disparity in strength between the two
interactions could be accounted for if the weak bosons had large masses. But
nobody knew how to properly do this.

The problem is not that we don’t know how to give a particle a mass – for
example in the Klein-Gordon equation

(
∂µ∂µ + m2

)
φ = 0 (23.1)

the (mass)2 term appears as a constant multiplying the wavefunction – indeed,
we can regard this as a definition of mass. However, if we do this for a gauge
boson, say the Bµ, then we would modify eq. (12.27) to read

∂µ (∂µBν − ∂νBµ) + m2
BBν = jY

ν (23.2)

which would give the Bµ a mass but destroy the U(1) gauge invariance of
our theory (recall the discussion in section 12.4.1). This in turn renders the
theory unrenormalizable, and therefore of no predictive power. So it appears

437
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that if we want to give a mass to a gauge boson, we destroy renormalizability
of the theory!

The resolution to this dilemma was found by Higgs in 1963 [223], and then
applied in 1967-8 to the weak interactions by Salam and Weinberg [217]. It
involves introducing a scalar particle that couples in a particular way to the
electroweak bosons and that has a non-trivial ground state.

To see how this works, consider first a modification of the Klein-Gordon
equation (23.1):

∂µ∂
µφ+ V ′ (φ) = 0 (23.3)

where we can regard V (φ) as the potential energy of the φ particle; V ′ (φ) =
∂V(φ)
∂φ is like a self-force that acts on φ. For example, if V (φ) = 1

2m
2φ2

then we obtain
(
∂µ∂

µ +m2
)
φ = 0, which is the Klein-Gordon equation for a

massive particle. In this sense we can understand mass as being like a spring
constant in a harmonic oscillator potential!

More generally, we can make the potential anything we want it to be, but
renormalizability demands∗ that it grow no faster than φ4. Hence we can
write the most general renormalizable potential as

V (φ) = V0 + V1φ+ V2φ
2 + V3φ

3 + V4φ
4 (23.4)

The constant term V0 sets the zero of energy; we can remove it if we like,
though we won’t do so here. The cubic term can be removed by redefining φ
by a constant shift: φ = φ̃− 4V3

V4
. The linear term simply adds a constant to

the modified Klein-Gordon equation, so for simplicity we’ll set V1 = 0.
Hence we take

V (φ) = V0 −
1
2
µ2φ2 +

1
4
λ2φ4 (23.5)

which yields
∂µ∂

µφ− µ2φ+ λ2φ3 = 0 (23.6)

as the general form of our modified Klein-Gordon equation.
Although an exact solution to this equation (for arbitrary boundary condi-

tions) would tell us everything we want to know about φ, we don’t know how
obtain such a solution. Fortunately this is not necessary. We can consider
perturbative solutions by writing φ (x) = φ0 + φ̂ (x), where φ0 is the lowest-
energy state (i.e. the ground state) of φ, and φ̂ is a wavefunction describing
small excitations of φ. Inserting this into eq. (23.6), to leading order in φ̂ we
have

∂µ∂
µφ̂+

(
−µ2 + 3λ2φ2

0

)
φ̂+ λ2φ3

0 − µ2φ0 ' 0 (23.7)

But what should we take for φ0? If we want to expand about the ground
state, we need to expand about the minimal value of V (φ), i.e. the value

∗A proof of this is beyond the scope of this textbook; you’ll have to take my word for it or
else read a more advanced book on the subject [97].
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φ (x) = φ0 such that V ′ (φ0) = 0. One solution is clearly φ0 = 0; however
this gives

∂µ∂
µφ̂− µ2φ̂ ' 0 (23.8)

which is a Klein-Gordon equation with the wrong sign for the mass term.
This is strange – the excitations have imaginary mass†, so the momenta of
a φ̂ particle would be larger than its energy, implying that relativistically it
would move faster than light! However, upon closer inspection we see that
φ0 = 0 is really a local maximum of V (φ), so we perhaps should not be
surprised that these excitations are unphysical.

Another solution to V ′ (φ0) = 0 is φ0 = ±µλ ; this gives

∂µ∂
µφ̂+ 2µ2φ̂ ' 0 (23.9)

which is a Klein-Gordon equation for a particle of mass
√

2µ! So excitations
about φ (x) = ±µλ are (to leading order) those of a free (and massive) Klein-
Gordon particle! The full equation for φ̂ is

∂µ∂
µφ̂+ 2µ2φ̂+ 3µλφ̂2 + λ2φ̂3 = 0 (23.10)

and solving this equation (say perturbatively in λ) will give us the wavefunc-
tions corresponding to states excited above the ground state φ0 = µ

λ . Of
course we could have chosen φ0 = −µλ as the ground state of the system, in
which case

∂µ∂
µφ̂+ 2µ2φ̂− 3µλφ̂2 + λ2φ̂3 = 0 (23.11)

describes the excitations.
Note that there is no new physics here – the equation for φ̂ represents

exactly the same physical system as the equation for φ. However, the φ̂
version is the one better suited for describing excitations about the ground
state of the system.

The phenomenon described above is referred to as spontaneous symmetry
breaking because it breaks the original symmetry of the theory. You can see
that

V (φ) = V0 −
1
2
µ2φ2 +

1
4
λ2φ4 (23.12)

is invariant under φ←→ −φ, but that

V
(
φ̂
)

= V0 +
1
4

(
µ2

λ

)2

+ µ2φ̂2 ± µλ2φ̂3 +
1
4
λ2φ̂4 (23.13)

is not invariant under φ̂ ←→ −φ̂. This happens because the ground state of
the system does not respect the original symmetry of the theory. It is caused

†They are known as tachyons in the literature.
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by the system tending to its lowest-energy state with nothing external to the
system being responsible (hence the term “spontaneous”).

We can now make use of this phenomenon to give a mass to the gauge
bosons – this is called the Higgs mechanism. In the Standard Model it works
by coupling a scalar field to the vector bosons in such a way that the photon
remains massless but the Z does not.

Let’s consider how it works for the Bµ boson. If we want to couple this
to a scalar wavefunction ϕ then we must modify the ϕ equation so that the
derivatives in it are gauge-covariant derivatives

Dµϕ = ∂µϕ+ igYBµϕ (23.14)

thereby modifying the Klein-Gordon equation to

1
2
DµD

µϕ+
∂V
∂ϕ∗

= 0 (23.15)

where we take‡

V = V0 −
1
2
µ2ϕ∗ϕ+

1
4
λ2 (ϕ∗ϕ)2 (23.16)

We also need the equation for the gauge field, which is

∂µ (∂µBν − ∂νBµ) =
1
2
igY

(
ϕ∗Dνϕ− (Dνϕ)∗ ϕ

)
(23.17)

The quantity on the right-hand side is the current induced by the scalar
wavefunction ϕ.

Note that we have taken the scalar wavefunction to be a complex linear
combination of two wavefunctions, i.e.

ϕ = φ1 + iφ2 (23.18)

This is necessary because we want our system to be locally U(1) gauge in-
variant, i.e. invariant under

ϕ (x)→ eiα(x)ϕ (x) (23.19)

and the functional degree of freedom α (x) is sufficient to eliminate one of
the wavefunctions φ1 or φ2 (hence the need for two wavefunctions, or a single
complex ϕ). It is not hard to show that the current induced by the scalar
wavefunction is conserved:

∂ν
[

1
2
igY

(
ϕ∗Dνϕ− (Dνϕ)∗ ϕ

)]
= 0 (23.20)

as it must be to ensure the U(1) gauge invariance.

‡Note that ∂
∂ϕ∗ (ϕ∗ϕ) = ϕ. The conjugate equation is 1

2
(DµDµϕ)∗ + ∂V

∂ϕ
= 0.
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The ϕ equation is therefore a pair of equations:

∂µ∂
µφ1 − µ2φ1 + λ2

(
φ2

1 + φ2
2

)
φ1 − g2

YBµB
µφ1

−gY∂
µBµφ2 − 2gYBµ∂

µφ2 = 0 (23.21)
∂µ∂

µφ2 − µ2φ2 + λ2
(
φ2

1 + φ2
2

)
φ2 − g2

YBµB
µφ2

+gY∂
µBµφ1 + 2gYBµ∂

µφ1 = 0 (23.22)

The minimum of V (ϕ) = 0 is now located at (φ01)2+(φ02)2 = ϕ∗0ϕ0 =
(
µ
λ

)2.
There are many ways of solving this equation, since the minimum lies on a
circle – in ϕ space – of radius µ

λ . We can expand about any ground state
satisfying this condition, so we might as well write

φ1 (x) = −µ
λ

+ φ̂1 (x) φ2 (x) = φ̂2 (x) (23.23)

in which case we get

∂µ∂
µφ̂1 + 2µ2φ̂1 − 3µλφ̂2

1 − µλφ̂2
2 + λ2

(
φ̂2

1 + φ̂2
2

)
φ̂1

−g2
YBµB

µφ̂1 + g2
Y

µ

λ
BµB

µ − gY∂
µBµφ̂2 − 2gYBµ∂

µφ̂2 = 0 (23.24)

∂µ∂
µφ̂2 − 2µλφ̂1φ̂2 + λ2

(
φ̂2

1 + φ̂2
2

)
φ̂2 − g2

YBµB
µφ̂2

+gY∂
µBµφ̂1 + 2gYBµ∂

µφ̂1 = 0 (23.25)

Notice that the mass of φ̂1 is
√

2µ, but the mass of φ̂2 is zero. This isn’t
a coincidence – in fact it is a general phenomenon that always accompa-
nies spontaneous symmetry breaking, as shown by Jeffrey Goldstone [224].
Spontaneous symmetry breaking of a continuous global symmetry is always
accompanied by the presence of one or more massless scalar particles. This
result is known as Goldstone’s theorem and the the massless scalars are known
as Goldstone bosons. In our example here, the continuous global symmetry
(made local via the gauge principle) is the U(1) phase symmetry, and the
Goldstone boson is the φ̂2.

What happens to the gauge field equation? In components it is

∂µ (∂µBν − ∂νBµ) = gY

(
φ2∂νφ1 − φ1∂νφ2 − gY

(
φ2

1 + φ2
2

)
Bν
)

(23.26)

which, when expanded about the ground state becomes

∂µ (∂µBν − ∂νBµ) = gY

(
φ̂2∂ν φ̂1 − φ̂1∂ν φ̂2 − gY

(
φ̂2

1 + φ̂2
2

)
Bν

)
− (gYµ)2

λ2
Bν +

µgY

λ
∂ν φ̂2 +

2µ (gY)2

λ
Bν φ̂1 (23.27)

or alternatively

∂µ (∂µBν − ∂νBµ) +
(gYµ)2

λ2
Bν = gY

(
φ̂2∂ν φ̂1 − φ̂1∂ν φ̂2 − gY

(
φ̂2

1 + φ̂2
2

)
Bν

)
+
µgY

λ
∂ν φ̂2 + 2

µ (gY)2

λ
Bν φ̂1 (23.28)
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We now see that a miracle has happened – the gauge field has acquired a mass
mB = µgY

λ !
We can actually eliminate the φ̂2 wavefunction by using the local gauge in-

variance mentioned above; just choose α (x) = − tan−1 (φ2/φ1) in eq. (23.19).
The mechanism still works, and we are left with a massive gauge field with
three degrees of freedom, and a single scalar particle φ̂1. Note that this is the
same number of degrees of freedom as in the original system: the massless
gauge field had two degrees of freedom and we had two scalar particles. By
promoting the global phase invariance to a local gauge invariance, the mass-
less Goldstone boson is eliminated, replaced by the extra degree of freedom in
the now-massive gauge boson. Note that the physical systems are the same
both before and after expanding about the ground state – what has changed
is the description of the physics relative to the ground state.

23.2 Breaking the SU(2) Symmetry

To implement the Higgs mechanism in Electroweak theory, the Higgs wave-
function is taken to be a complex doublet under SU(2), which I will call Φ.
We take the covariant derivative to be

DµΦ = ∂µΦ− igW

2
σa·W a

µΦ + i
gY

2
BµΦ (23.29)

and repeat the above procedure, setting

Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
=
(

Φu

Φd

)
and introducing a potential V (Φ) = V0 − 1

2µ
2Φ†Φ + 1

4λ
2
(
Φ†Φ

)2. Note that
the Higgs wavefunction has both hypercharge (Y = +1) and weak isospin
of 1

2 , as it must since we want it to mix the W 3
µ and Bµ wavefunctions after

spontaneous symmetry breaking. The quantities σa are none other than the
Pauli matrices, which generate the SU(2) group (recall eq. (5.17))[

σa

2
,
σb

2

]
= iεabcσ

c

2
(23.30)

where εabc is the familiar fully antisymmetric Levi-Civita symbol. This means
that the field strength for the W aµ is

F a
µν = ∂µW

a
ν − ∂νW a

µ − gWW
c
µW

b
ν ea

cb (23.31)

which sometimes is written as

~Fµν = ∂µ ~Wν − ∂ν ~Wµ − gW
~Wµ × ~Wν (23.32)
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taking advantage of the cross-product structure from the εcab tensor. It will
also be useful to define

σ± =
1
2
(
σ1 ± iσ2

)
(23.33)

⇒ σ+ =
(

0 1
0 0

)
σ− =

(
0 0
1 0

)

23.2.1 The Gauge Equations

The equations of motion for the gauge particles of the electroweak theory are

∂µF a
µν − gWW

cµF b
µνε

a
cb =

gW

2
χL
Lγν (σa)χL

L +
gW

2
χQ
L γν (σa)χQ

L

−igW

4

(
Φ†σaDνΦ− (DνΦ)† σaΦ

)
(23.34)

∂µ (∂µBν − ∂νBµ) = i
gY

4

(
Φ†DνΦ− (DνΦ)†Φ

)
+
gY

2
[
Y L
L χ

L
Lγνχ

L
L + Y L

R χ
L
Rγνχ

L
R + Y Q

L χ
Q
L γνχ

Q
L + Y Q

R χ
Q
Rγνχ

Q
R

]
(23.35)

where we sum over the three lepton families L = E,M, and T, and the three
quark families Q = D,S, and B. Note that for the U(1) wavefunction Bµ
each fermion current in eq. (23.35) is multiplied by Y F, which signifies its hy-
percharge. As promised this differs from the QCD/QED case by the presence
of the Higgs wavefunction Φ.

Before writing down the Klein-Gordon-type equations for Φ and the Dirac-
type equations for the fermions, let’s look at this set of equations more closely.
We see from (23.35) that the U(1) wavefunction Bµ has a current coming from
both the left-handed and right-handed fermions, as well as a current from the
Higgs. The SU(2) wavefunctions W c

µ also have a Higgs current, but only a
left-handed fermion current as discussed above. There is also a current carried
by the W c

µ themselves, which comes from the left-hand side of the equation
and is due to the quadratic and cubic terms in the W ’s. As with QCD,
this last current will give rise to triple-W and quadruple-W vertices. Note
also that the fermion current for the Bµ does not change the flavor of the
fermions as they emit a Bµ particle, but that the fermion current for the W cµ

does change the flavor (e.g., turning a muon into a muon-neutrino) due to the
presence of the σa operator in χF

Lγν (σa)χF
L.

The symmetry of electroweak theory is broken because the minimum of the
potential

V (Φ) = V0 −
1
2
µ2Φ†Φ +

1
4
λ2
(
Φ†Φ

)2
is not at Φ = 0, but rather at

Φ†Φ = φ2
1 + φ2

2 + φ2
3 + φ2

4 = v2 (23.36)
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where v = µ
λ . Under a local SU(2) transformation Φ′ = exp

[
iθa (x) σ

a

2

]
Φ,

the potential remains invariant and the equations of motion are covariant
(provided the gauge and fermion wavefunctions are also correspondingly trans-
formed). Since there are three arbitrary functions θa (x) we can use these to
eliminate three of the φ’s, allowing us to write

Φ =
(

0
v + h (x)

)
(23.37)

where h (x) = 0 now signifies the ground state, i.e. the minimum of the
potential. Making this choice restricts us to a specific choice of gauge, but it
is one where the physical degrees of freedom are explicit.

To see how the gauge bosons become massive all we need to do is to insert
this form for Φ into the equations of electroweak theory. It is straightforward
to show that when (23.37) holds then

DµΦ = −igW

v

2

( (
W 1
µ − iW 2

µ

)
− gY
gW
Bµ −W 3

µ

)
+O (h) (23.38)

and so the Higgs currents to this order are

igW

4

(
Φ†σaDµΦ− (DµΦ)† σaΦ

)
=
(gWv

2

)2
{
W 1
µ ,W

2
µ ,
gY

gW

Bµ +W 3
µ

}
(23.39)

igY

4

(
Φ†DνΦ− (DνΦ)†Φ

)
= −

(v
2

)2

gWgY

(
gY

gW

Bµ +W 3
µ

)
(23.40)

and we see that only the linear combination gY
gW
Bµ+W 3

µ appears (and not Bµ
and W 3

µ independently). Hence the gauge equations (23.34, 23.35) become

∂µF 1
µν − gWW

cµF b
µνε

1
cb =

gW

2
χL
Lγν (σ1)χL

L +
gW

2
χQ
L γν (σ1)χQ

L

−
(gWv

2

)2

W 1
µ +O (h) (23.41)

∂µF 2
µν − gWW

cµF b
µνε

2
cb =

gW

2
χL
Lγν (σ2)χL

L +
gW

2
χQ
L γν (σ2)χQ

L

−
(gWv

2

)2

W 2
µ +O (h) (23.42)

∂µF 3
µν − gWW

cµF b
µνε

3
cb =

gW

2
χL
Lγν (σ3)χL

L +
gW

2
χQ
L γν (σ3)χQ

L

−
(gWv

2

)2
(
gY

gW

Bµ +W 3
µ

)
+O (h) (23.43)

∂µ (∂µBν − ∂νBµ) =
gY

2
[
Y L
L χ

L
Lγνχ

L
L + Y L

R χ
L
Rγνχ

L
R

+Y Q
L χ

Q
L γνχ

Q
L + Y Q

R χ
Q
Rγνχ

Q
R

]
−
(v

2

)2

gWgY

(
gY

gW

Bµ +W 3
µ

)
+O (h) (23.44)
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where we see mass-type terms for the gauge fields emerging. It’s still not quite
clear where the photon wavefunction is. Since the fermion current on the right-
hand side of equation (23.44) is not the current (jem)µ =

∑
f geQ

fψ
f
γµψf

of electromagnetism, we know that the photon can’t be Bµ.

23.2.2 Gauge-Field Mixing

What then is the relationship between the bosons W 3
µ and Bµ and the Z-

boson and the photon Aµ? And what is the relationship between W 1,2
µ and

the weak bosons W±µ ? Let’s write

W±µ ≡
1√
2

(
W 1
µ ∓ iW 2

µ

)
W 3
µ = cos θWZµ − sin θWAµ

Bµ = sin θWZµ + cos θWAµ (23.45)

and insert these expressions into the gauge equations (23.41-23.44). After
some algebra these become

∂µ
(
∂µW

±
ν − ∂νW±µ

)
+
(gWv

2

)2

W±ν

= ±gW∂
µ
(
W±µ W

3
ν −W±ν W 3

µ

)
− gWW

±µF 3
µν

+
gW√

2
χL
Lγν

(
σ±
)
χL
L +

gW√
2
χQ
L γν

(
σ±
)
χQ
L +O (h) (23.46)

∂µ (∂µZν − ∂νZµ) +
(gWv

2

)2
(
gY

gW

sin θW + cos θW

)2

Zν

+
(gWv

2

)2
(
gY

gW

cos θW − sin θW

)(
gY

gW

sin θW + cos θW

)
Aν

= gW cos θW

(
W+µF−µν −W−µF+

µν

)
+gW cos θW

(
∂µ
(
W−µ W

+
ν −W−ν W+

µ

))
−gY sin θW

2
(
Y L
L χ

L
Lγνχ

L
L + Y L

R χ
L
Rγνχ

L
R

)
−gY sin θW

2
(
Y Q
L χ

Q
L γνχ

Q
L + Y Q

R χ
Q
Rγνχ

Q
R

)
+
gW cos θW

2
(
χL
Lγν (σ3)χL

L + χQ
L γν (σ3)χQ

L

)
+O (h) (23.47)

∂µ (∂µAν − ∂νAµ) +
(gWv

2

)2
(
gY

gW

cos θW − sin θW

)2

Aν

+
(gWv

2

)2
(
gY

gW

cos θW − sin θW

)(
gY

gW

sin θW + cos θW

)
Zν

=
gY cos θW

2
(
Y L
L χ

L
Lγνχ

L
L + Y L

R χ
L
Rγνχ

L
R

)
+
gY cos θW

2
(
Y Q
L χ

Q
L γνχ

Q
L + Y Q

R χ
Q
Rγνχ

Q
R

)
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+
gW sin θW

2
(
χL
Lγν (σ3)χL

L + χQ
L γν (σ3)χQ

L

)
+O (h) (23.48)

where F±µν ≡ 1√
2

(
F 1
µν ∓ iF 2

µν

)
.

This is a pretty complicated set of equations, so to understand them we will
have to look at them in pieces. First notice that there is a mass term in the
last equation for Aν . If we want to identify this with the photon wavefunction,
we must eliminate this term, along with the Zν term because the photon does
not couple to the Zν . This we can do by setting gW sin θW = gY cos θW; this
also eliminates the Aν term in the equation for Zν . We also must require that
the photon current is of the form gej

em
ν = QFχF

Lγνχ
F
L. For the leptons we

have

ge (jem
ν )L =

gW sin θW

2
(
χL
Lγν (σ3)χL

L

)
+
gY cos θW

2
[
Y L
L χ

L
Lγνχ

L
L + Y L

R χ
L
Rγνχ

L
R

]
=

1
2

(gW sin θW + gYY
ν` cos θW)χν`L γνχ

ν`
L

+
1
2

(−gW sin θW + gYY
eL cos θW)χe`L γνχ

e`
L

+
gY cos θW

2
Y eRχe`R γνχ

e`
R (23.49)

with an identical structure for the µ and τ leptons. Since neutrinos have
Qν = 0 the first term on the right-hand side of eq. (23.49) must vanish, and
we must also have Y ν` = Y eL since both states in the left-handed EL doublet
must have the same hypercharge. Finally, the coefficients of both χe`L γνχ

e`
L

and χe`R γνχ
e`
R must equal −e, where e is the electron charge. Putting this

together we obtain the solution

gW sin θW = gY cos θW = ge = e Y ν` = Y eL =
1
2
Y eR = −1 (23.50)

The hypercharge assignments for the µ and τ leptons are respectively the
same, and so we obtain −eχLγνχ

L for the electric current for the leptons.
For the quarks

ge (jem
ν )Q =

gW sin θW

2
(
χQ
L γν (σ3)χQ

L

)
+
gY cos θW

2
[
Y Q
L χ

Q
L γνχ

Q
L + Y Q

R χ
Q
Rγνχ

Q
R

]
=
ge
2
[
(1 + Y uL)χuLγνχ

u
L + Y uRχuRγνχ

u
R −

(
1− Y dL

)
χdLγνχ

d
L

]
+
ge
2
Y dRχdRγνχ

d
R (23.51)
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with analogous expressions for the c, s and t, b quarks. Since Qu = 2
3 and

Qd = − 1
3 , we obtain

Y uL = Y dL = Y cL = Y sL = Y tL = Y bL =
1
3

(23.52)

Y uR = Y cR = Y tR =
4
3

Y dR = Y sR = Y bR = −2
3

(23.53)

for the quark hypercharge assignments.

23.2.3 Gauge Boson Masses

We see from eqs. (23.46 – 23.48) that the W± and the Z equations now have
mass terms

MW =
gWv

2
MZ =

(gWv

2

)( gY

gW

sin θW + cos θW

)
=

gWv

2 cos θW

(23.54)

yielding the relationship
MW = MZ cos θW (23.55)

between the W± and the Z masses. Since we can measure the mass of the
W± bosons, and since we can infer the value of gW from the measurement of
Fermi’s constant (recall eq. (20.27)), it’s not hard to show that v = 246 GeV.

We can read off the fermion current for the W± boson as

jW±
ν =

gW√
2
χF
Lγν

(
σ±
)
χF
L

the same for each quark and lepton doublet. Note that this current mixes
together the up and down isospin components of a doublet. For example

σ+E
−

L =
(

0 1
0 0

)(
νe
e−

)
L

=
(
e−

0

)
L

=
1
2

((
1− γ5

)
ψe
−

0

)
(23.56)

σ−E
−

L =
(

0 0
1 0

)(
νe
e−

)
L

=
(

0
νe

)
L

=
1
2

(
0(

1− γ5
)
ψνe

)
(23.57)

and so
gW√

2
χE
Lγν

(
σ+
)
χE
L =

gW√
2
νLγνeL

gW√
2
χE
Lγν

(
σ−
)
χE
L =

gW√
2
eLγννL (23.58)

This is very much like the isospin symmetry we looked at for the strong inter-
actions, in which the proton and neutron were placed in an isospin doublet.
The general form of a left-handed flavor wavefunction is

χF
L =

(
uL
dL

)
(23.59)
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where u refers to the isospin-up wavefunction of F (i.e. u = νe, νµ, ντ , u, c, t)
and d refers to the isospin-down wavefunction of F (i.e. respectively d =
e, µ, τ, d′, s′, b′). The full interaction term is then given by summing over all
F, analogous to the sum over all charged particles in QED.

Note that the right-handed parts χF
R have no isospin – they are singlets. I

will use the notation uR and dR where u and d refer to up-type and down-type
wave functions.

The current for the Z is a bit more complicated. If we write

j3
ν =

1
2
χF
Lγν (σ3)χF

L

then using eqs. (23.50) we get

gZj
Z
ν = −gY sin θW

2
[
Y L
L χ

L
Lγνχ

L
L + Y L

L χ
L
Rγνχ

L
R + Y Q

L χ
Q
L γνχ

Q
L + Y Q

R χ
Q
Rγνχ

Q
R

]
+
gW cos θW

2
j3
ν

= gW cos θWj
3
ν −

sin θW

cos θW

[gejem
ν − gW sin θWj

3
ν ]

=
ge

sin θW cos θW

(
(j3)µ − sin2 θW (jem)µ

)
(23.60)

and so we identify

gZ =
ge

sin θW cos θW
(23.61)

(jZ)µ = (j3)µ − sin2 θW (jem)µ (23.62)

From this expression for (jZ)µ we can pick out all of the weak neutral couplings
to the Z-boson, which we wrote down before in table 22.2! We see that in
general

cFV =
(
I3
F − 2Qf sin2 θW

)
cFA = I3

F (23.63)

For a fermion doublet χF we have(
jZF
)µ

=
1
2
χF
Lγ

µσ3χF
L −Q

F sin2 θW
(
χFγµχF

)
(23.64)

and for the total neutral current we sum over F.

23.3 Fermion Masses

The equations for the fermions are Dirac-type equations with gauge fields.
We could add in mass terms directly, but why not make use of the Higgs
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wavefunction to generate masses for the fermions as well? This would provide
a unified picture of the origin of mass, in which all particles attain their inertial
masses through their interactions with the Higgs particle.

How might we do this? First notice that the Dirac equation for a wave-
function ψ

(iγµ (∂µ − ieAµ)−m)ψ = 0 (23.65)

can be separated into its left-handed and right-handed parts

iγµ (∂µ − ieAµ)ψR = mψL iγµ (∂µ − ieAµ)ψL = mψR (23.66)

by multiplying eq. (23.65) by 1
2

(
1± γ5

)
respectively. So the way to in-

troduce a mass in electroweak theory – where left-handed and right-handed
particles are distinguished at the outset – is to insert a constant times ψL
in the equation for ψR and the same constant times ψR in the equation for
ψL. A mass-generating term must have the same effect when the symmetry
is broken.

For electroweak theory we have left-handed fermion doublets χF
L but right-

handed fermion singlets χd
R. This means that in the equation for χd

R we will
need to multiply the doublet χF

L by something that will change it into a singlet.
The only thing that will do this is another doublet, which we fortunately have
– the Higgs wavefunction! Similarly, the equation for χF

L is a 2-component
doublet equation, and so we need a doublet muliplying χF

R to give us a doublet
structure on the right-hand side.

In terms of physical processes, we want our mass terms to have the effect
that

χd
R +

(
Φu

Φd

)
→
(
χu
L

χd
L

)
and

(
χu
L

χd
L

)
→ χd

R +
(

Φu

Φd

)
(23.67)

which balances isospin and hypercharge on both sides for both quarks and
leptons, as you can easily check using equations (23.52) and (23.53). So in
other words we put a term of the form Φ†χF

L on the right-hand side of the
equation for χd

R. This term isn’t constant, but if we expand about the ground

state we have Φ†χF
L = 1√

2

(
vχd

L + h†χF
L

)
, and the vχd

L term will generate a
mass.

What about the equation for χu
R ? Here we have what appears to be a

problem: for the right-handed up-type quarks Y = 4
3 , so if we just replace χd

R

with χu
R in the above equations we find that Y = 7

3 on one side but Y = 1
3 on

the other. The reason for this is that the Higgs doublet has Y = +1.
What we need is a doublet with Y = −1. Fortunately this can be done

without introducing any new particles! Using the familiar ε-tensor (but now
in two dimensions) we construct the charge conjugate Φ̃ of the Higgs

Φ̃i = εijΦj∗ ⇒
(

Φ̃u

Φ̃d

)
=
(

Φd∗

−Φu∗

)
(23.68)
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which has Y = −1 and isospin 1
2 , so that the processes

χu
R +

(
Φ̃u

Φ̃d

)
→
(
χu
L

χd
L

)
and

(
χu
L

χd
L

)
→ χu

R +
(

Φ̃u

Φ̃d

)
(23.69)

can be consistently mediated.
As a last step we also need terms multiplying χu

R and χd
R on the right-hand

side of the equation for χF
L; clearly these must be of the form Φχd

R and Φ̃χu
R

(each of which have hypercharge Y = 1
3 ) to balance isospin and hypercharge

on both sides.
The equations for the fermions in electroweak theory generate the Higgs-

fermion-fermion vertices needed to ensure the above processes take place, and
can be written as

iγµ
(
∂µ − i

gW

2
σa ·Wa

µ + i
gY

2
Y FLBµ

)
χF
L = GFuΦ̃χ̂u

R + HFdΦχ̂d
R (23.70)

iγµ
(
∂µ + i gY2 Y

uRBµ
)
χu
R = GuK†

(
Φ̃†χK

L

)
iγµ

(
∂µ + i gY2 Y

dRBµ
)
χd
R = HdK† (Φ†χK

L

) (23.71)

where the quantities GFK and HFK are constants, known as Yukawa couplings,
that parametrize how strongly the Higgs couples to the up-type fermions (via
G ) and down-type fermions (via H ). Except for the hypercharge operator
Y , repeated indices are summed over – so when a d is repeated in a given
term it means sum over the down-type objects, and when a u is repeated it
means sum over the up-type objects.

The most general thing would be to sum over all six values of d and u. But
this would lead to processes like µR + Φu → cL, which violate lepton and
baryon number conservation. So let’s make G and H reducible matrices in the
quark (q) and lepton (l) sectors

GFK =

(
GFK

q 0
0 GFK

l

)
Hfk =

(
HFK

q 0
0 HFK

l

)
(23.72)

where each of GFK
q , HFK

q , GFK
l , and HFK

l , are 3× 3 matrices.
The above structure is still pretty complicated – if we expand about the

ground state we will get all kinds of mixings between the different flavors.
However, things are not quite so messy as they might seem because we have
a lot of freedom to redefine the flavors. For example in the quark sector we
can define

uI
L = L⇑IJv

qL ûJ
R uI

R = R⇑IJv
qL d̂JR (23.73)

dIL = L⇓IJv
qL d̂J dIR = R⇓IJv

qL d̂JR (23.74)

for both the right-handed and left-handed wavefunctions, where for conve-
nience I have defined

{ψup, ψcharm, ψtop} =
{

u1, u2, u3
}
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and

{ψdown, ψstrange, ψbottom} =
{

d1, d2, d3
}

so that the generations are labeled 1,2,3 in order of increasing mass. Here
L⇑q is a 3×3 unitary matrix that interchanges the left-handed-up-type flavors;
R⇓q is a 3 × 3 unitary matrix that interchanges the right-handed-down-type
flavors, etc.

To see what we can do with this freedom, let’s unpack the fermion equations
(23.71) into up-type and down-type parts

iγµ
(
∂µ − i

gW

2
W3

µ + i
gY

6
Bµ

)
uI
L +

gW√
2
γµW+

µ dIL

= Φd∗GIK
q uK

R + Φ̃uHIK
q dKR (23.75)

gW√
2
γµW−

µ uI
L + iγµ

(
∂µ + i

gW

2
W3

µ + i
gY

6
Bµ

)
dIL

= −Φ̃u∗GIK
q uK

R + ΦdHIK
q dKR (23.76)

iγµ
(
∂µ + i

2gY

3
Bµ

)
uI
R = GIK†

q

(
ΦduK

L − ΦudKL

)
(23.77)

iγµ
(
∂µ − i

gY

3
Bµ

)
d̂IR = HIK†

q

(
Φu∗uK

L + Φd∗dKL

)
(23.78)

and then multiply by the Lq and Rq matrices so that we obtain equations in
terms of the hatted wavefunctions

iγµ
(
∂µ − i

gW

2
W3

µ + i
gY

6
Bµ

)
ûI
L +

gW√
2
γµW+

µ

(
L⇑†q L⇓q

)IK
d̂KL

= Φd∗ (L⇑†q GqR⇑q
)IK

ûK
R + Φ̃u

(
L⇑†q HqR⇓q

)IK
d̂KR (23.79)

gW√
2
γµW−

µ

(
L⇓†q L⇑q

)IK
ûK
L + iγµ

(
∂µ + i

gW

2
W3

µ + i
gY

6
Bµ

)
d̂IL

= −Φ̃u∗ (L⇓†q GqR⇑q
)IK

ûK
R + Φd

(
L⇓†q HqR⇓q

)IK
d̂KR (23.80)

iγµ
(
∂µ + i

2gY

3
Bµ

)
ûI
R

= Φd
(
R⇑†q G†qL⇑q

)IK
ûK
L − Φu

(
R⇑†q G†qL⇓q

)IK
d̂KL (23.81)

iγµ
(
∂µ − i

gY

3
Bµ

)
d̂IR

= Φu∗ (R⇓†q H†qL⇑q
)IK

ûK
L + Φd∗ (R⇓†q H†qL⇓q

)IK
d̂KL (23.82)

This doesn’t look like much of an improvement until we realize that any
complex matrix M when multiplied on the right and left by different unitary
matrices U1, U2 becomes U†1MU2 = MD, where MD can be chosen to be real
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and diagonal§. So let’s choose(
L⇑†q GqR⇑q

)IK
=

1
v
mI

uδ
IK (

L⇓†q HqR⇓q
)IK

=
1
v
mI

dδ
IK (23.83)

to obtain

iγµ
(
∂µ − i

gW

2
W3

µ + i
gY

6
Bµ

)
ûI
L +

gW√
2
γµW+

µ

(
L⇑†q L⇓q

)IK
d̂KL

=
1
v

Φd∗mI
uûI
R + Φ̃u

(
L⇑†q HqR⇓q

)IK
d̂KR (23.84)

gW√
2
γµW−

µ

(
L⇓†q L⇑q

)IK
ûK
L + iγµ

(
∂µ + i

gW

2
W3

µ + i
gY

6
Bµ

)
d̂IL

= −Φ̃u∗ (L⇓†q GqR⇑q
)IK

ûK
R +

1
v

ΦdmI
dd̂

I
R (23.85)

iγµ
(
∂µ + i

2gY

3
Bµ

)
ûI
R =

1
v

ΦdmI
uûI
L − Φu

(
R⇑†q G†qL⇓q

)IK
d̂KL (23.86)

iγµ
(
∂µ − i

gY

3
Bµ

)
d̂IR = Φu∗ (R⇓†q H†qL⇑q

)IK
ûK
L +

1
v

Φd∗mI
dd̂

I
L (23.87)

where there is no sum over the index I in the above equations. Expanding
about the ground state Φu = 0, Φd = (v + h) gives

iγµ
(
∂µ − i

gW

2
W3

µ + i
gY

6
Bµ

)
ûI
L +

gW√
2
γµW+

µ

(
L⇑†q L⇓q

)IK
d̂KL

= mI
uûI
R +O (h) (23.88)

iγµ
(
∂µ + i

gW

2
W3

µ + i
gY

6
Bµ

)
d̂IL +

gW√
2
γµW−

µ

(
L⇓†q L⇑q

)IK
ûK
L

= mI
dd̂

I
R +O (h) (23.89)

iγµ
(
∂µ + i

2gY

3
Bµ

)
ûI
R = mI

uûI
L +O (h) (23.90)

iγµ
(
∂µ − i

gY

3
Bµ

)
d̂IR = mI

dd̂
I
L +O (h) (23.91)

and so we see that we have also used the Higgs mechanism to generate the
masses of the quarks!

I could write these equations in terms of the physical W±, Z and photon
wavefunctions, but I won’t do that here. It’s a straightforward exercise since
equations (23.88) – (23.91) are linear in each of these quantities. Instead, let’s
turn our attention to the leptons. We can repeat the same exercise in this
case, setting uI → νI and dI → `I. However, there is a crucial difference from

§To show this, the polar decomposition theorem indicates that for any complex matrix M
we can write M = HU , where H is Hermitian and U unitary. Choosing U1 = S† and
U2 = U†S where S diagonalizes H gives the result.
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the quark case because in the Standard Model the right-handed neutrino does
not appear. So we might as well set νIR = GIK

l = 0 in the above equations,
in which case repeating these derivations gives

iγµ
(
∂µ − i

gW

2
W3

µ + i
gY

6
Bµ

)
ν̂IL +

gW√
2
γµW+

µ

(
L⇑†l L

⇓
l

)IK ̂̀K
L = O (h)

gW√
2
γµW−

µ

(
L⇓†l L

⇑
l

)IK
ν̂KL + iγµ

(
∂µ + i

gW

2
W3

µ + i
gY

6
Bµ

) ̂̀I
L = mI

`
̂̀I
R

iγµ
(
∂µ − i

gY

3
Bµ

) ̂̀I
R = mI

`
̂̀I
L + O (h)

which we can rewrite as

iγµ
(
∂µ − i

gW

2
W3

µ + i
gY

6
Bµ

)
ν̃IL +

gW√
2
γµW+

µ
̂̀I
L = O (h) (23.92)

gW√
2
γµW−

µ ν̃
I
L + iγµ

(
∂µ + i

gW

2
W3

µ + i
gY

6
Bµ

) ̂̀I
L = mI

`
̂̀I
R (23.93)

iγµ
(
∂µ − i

gY

3
Bµ

) ̂̀I
R = mI

`
̂̀I
L +O (h)(23.94)

where I have defined

ν̃IL =
(
L⇓†l L

⇑
l

)IK
ν̂IL (23.95)

This means that the e, µ, τ leptons get mass, but not the neutrinos – and
it is the ν̃IL that should be identified with the distinct neutrino flavors, i.e.
ν̃1L = νe, ν̃

2
L = νµ and ν̃3L = ντ .

There is a price to be paid for this – if we switch to hatted fermion wave-
functions here, we must also do it in the equations for the gauge particles.
This will only modify the currents(

jZ,F
)µ

=
1
2
χF
Lγ

µσ3χF
L −Q

F sin2 θW
(
χFγµχF

)
=

1
2
û
K
L γ

µûK
L −

1
2
d̂
K
L γ

µd̂KL − sin2 θW

(
2
3
û
K
γµûK − 1

3
d̂
K
γµd̂K

)
+

1
2
ν̃
K
L γ

µν̃KL −
1
2
̂̀K
L γ

µ ̂̀K
L + sin2 θW

(̂̀Kγµ ̂̀K) (23.96)(
jem,F)µ = QF

(
χFγµχF

)
=

2
3
û
K
γµûK − 1

3
d̂
K
γµd̂K − ̂̀Kγµ ̂̀K (23.97)

jW+
ν =

gW√
2
χF
Lγν

(
σ+
)
χF
L

=
gW√

2
û
K
L γν

(
L⇑†q L⇓q

)KJ
d̂JL +

gW

√
2
ν̃
K
L γν

̂̀K
L (23.98)

jW−
ν =

gW√
2
χF
Lγν

(
σ−
)
χF
L
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=
gW√

2
d̂
K
L

(
L⇓†q L⇑q

)KJ
γν û

J
L +

gW√
2
̂̀K
L γν ν̃

K
L (23.99)

which we see is not much of a modification at all! The only parts that look
different are the charged quark currents in equations (23.98) and (23.99),
which have the form

gW√
2
û
K
L γν d̂

′K
L where d̂′KL =

(
L⇑†q L⇓q

)KJ
d̂JL = VKJd̂JL (23.100)

The matrix VKJ is a unitary matrix, which superficially has nine independent
components. However, since its only appearance is in the charged currents
and in the couplings of the W± to the quarks, we can eliminate some of its
components by redefining the phases of the ûJ

L and the d̂JL. This is six phases
in all, but one of these is an overall common phase that will cancel out in the
charged current, leaving us with five phases that can eliminate five of the nine
components of V.

So the hatted wavefunctions are none other than the familiar quark and
lepton wavefunctions that we have encountered in QED and QCD. We see from
the manipulations in this section that while the Higgs mechanism provides an
origin for the masses of all of these particles, it does not explain the values of
these masses – they remain as arbitrary parameters. A large coupling of the
Higgs particle to the top quark becomes the large top quark mass, and a small
coupling of the Higgs particle to the electron becomes the small electron mass.
The mysterious large ratio of the top mass to the electron mass is replaced
by an equally mysterious large ratio between the Higgs coupling to the top
and the Higgs coupling to the electron. You might also have guessed by now
that V is none other than the CKM matrix (21.54):

V ≡

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c1 s1c3 s1s3

−s1c2 c1c2c3 − s2c3e
iδ c1c2s3 + s2c3e

iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3eiδ


(23.101)

whose components are also arbitrary parameters. We have no explanation for
the values of these different parameters. At this point in time we can only
measure them.

However, there is one scalar particle left over whose mass is undetermined.
This is the Higgs particle, the last particle in the Standard model yet to be
discovered. Finding it will not only be a crucial test of Standard Model
physics, but also provide essential information on the origin of mass.
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23.4 Appendix: Feynman Rules for Electroweak Theory

1. NOTATION. Label the incoming (outgoing) four-momenta as p1, p2, . . . , pn
(p′1, p

′
2, . . . , p

′
m), the incoming (outgoing) spins as s1, s2, . . . , sn (s′1, s

′
2, . . . , s

′
m),

the incoming (outgoing) weak boson polarizations as εµ1 , ε
µ
2 , . . . (εµ′1 , ε

µ′
2 , . . .),

and label the internal four-momenta q1, q2, . . . , qj . Assign arrows to the lines
as in figure 23.1, in which time flows from bottom to top, dashed lines are

FIGURE 23.1
A typical diagram in electroweak theory. The dotted line in the outgoing state
is a Higgs particle.

weak bosons (with a, b = +,−, 0 labeling the W+,W−, Z0 bosons respec-
tively), Higgs particles are dotted lines, and lines with arrows are fermions
(if they point upward with time) or antifermions (or if they point downward
against time).

2. EXTERNAL LINES. Each external line contributes a factor as illustrated
in figure 23.2, and all incoming/outgoing Higgs particles have a factor of unity.
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FIGURE 23.2
External lines in electroweak theory.

As in QED, factors associated with external lines correspond to the incom-
ing/outgoing plane-wave states, an assumption that is clearly not valid for
the unstable weak bosons and Higgs particle (as well as for all but the lightest
fermions), but which we will take to be valid on the very short timescales in
collisions.

3. INTERNAL LINES. Each internal line contributes a factor as shown in
figure 23.3, where m is the mass of the quark or lepton, Ma is the mass of

FIGURE 23.3
Internal lines in electroweak theory.

the weak boson and Γa is its decay width. As before, a, b = +,−, 0 label
the W+,W−, Z0 bosons respectively, and the δab in the propagator simply
ensures that the identity of the weak boson is maintained in every internal
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line. Once again q2 6= m2 because the particle flowing through the line is
virtual (i.e. it does not obey its equations of motion). These internal lines
are called propagators.

The next two rules are the same as for QED, QCD and ABB theory.

4. CONSERVATION OF ENERGY AND MOMENTUM For each vertex,
write a delta function of the form

(2π)4δ(4) (k1 + k2 + k3 + · · ·+ kN )

where the k’s are the four-momenta coming into the vertex (i.e. each kµ will
be either a qµ or a pµ). If the momentum leads outward, then kµ is minus the
four-momentum of that line). This factor imposes conservation of energy and
momentum at each vertex (and hence for the diagram as a whole) because
the delta function vanishes unless the sum of the incoming momenta equals
the sum of the outgoing momenta.

5. INTEGRATE OVER INTERNAL MOMENTA For each internal momentum
q, write a factor

d4q

(2π)4

and integrate.

6. VERTEX FACTORS There are many different vertex factors in elec-
troweak theory because the symmetry breaking yields a lot of distinct inter-
actions between the various particles. They can be listed in any order, of
course. I have chosen to list them proceeding from the experimentally most-
studied interactions to the least-studied.

First there are the fermion-W vertices in figure 23.4 which differ between
quarks and leptons. Next are the fermion-Z vertices in figure 23.5 whose
couplings depend on the identity of the fermion in the process, as indicated.

f cfV cfA

νe, νµ, ντ
1
2

1
2

e−, µ−, τ− − 1
2 + 2 sin2 θW − 1

2

u, c, t 1
2 −

4
3 sin2 θW

1
2

d, s, b − 1
2 + 2

3 sin2 θW − 1
2
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FIGURE 23.4
Charged weak interaction vertices.

FIGURE 23.5
Neutral weak interaction vertices.

Since the weak bosons themselves have weak charge, they couple to each
other, and since the W bosons carry electric charge they also couple to the
photon. This gives the vertices for 3-boson couplings shown in in figure 23.6
and for 4-boson couplings in in figures 23.7 and 23.8.

Next we have the vertices describing the interaction of the Higgs particle
with all of the other particles, shown in figure 23.9.
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FIGURE 23.6
Triple gauge-boson vertices in electroweak theory.

FIGURE 23.7
Quadruple gauge-boson vertices in electroweak theory.
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FIGURE 23.8
Quadruple gauge-boson vertices in electroweak theory with at least one pho-
ton.
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Finally we have the vertices describing the self-interaction of the Higgs in
figure 23.10.

FIGURE 23.10
Higgs self-interaction vertices in electroweak theory.

The remaining rules are the same as for QED and QCD.

7. TOPOLOGY To get all contributions for a given process, draw diagrams
by joining up all external points to all internal vertex points in all possible
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arrangments that are topologically inequivalent. The number of ways a given
diagram can be drawn is the topological weight of the diagram. The result is
equal to −iM.

8. ANTISYMMETRIZATION Because fermion wavefunctions anticommute,
we must include a minus sign between diagrams that differ

(a) Only in the interchange of two incoming (or outgoing) fermions/anti-
fermions of the same kind

or
(b) Only in the interchange of an incoming fermion with an outgoing

antifermion of the same kind (or vice versa).

9. LOOPS Every fermion loop gets a factor of (−1).

10. CANCEL THE DELTA FUNCTION The result will include a factor

(2π)4δ(4) (p′1 + p′2 · · ·+ p′m − p1 − p2 − · · · − pn)

corresponding to overall energy-momentum conservation. Cancel this factor,
and what remains is −iM.
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23.5 Questions

1. Show that v = 246 GeV.

2. (a) Show that the potential

V (Φ) = V0 −
1
2
µ2Φ†Φ +

1
4
λ2
(
Φ†Φ

)2
is minimized at Φ†Φ = µ2

λ2 = v2

2 .

(b) Show that a general SU(2) transformation Φ′ = exp
[
iθa (x) σ

a

2

]
Φ

can be used to write

Φ′ =
(

0
v + h (x)

)
where h (x) is a real scalar function. (Hint: use the Euler form of the
SU(2) transformation).

3. Show that the current

1
2
igY

(
ϕ∗Dνϕ− (Dνϕ)∗ ϕ

)
is conserved for the scalar Higgs field in the Abelian case.

4. Show that if

Φ =
(

0
v + h (x)

)
then

DµΦ = −igW

v

2

((
W 1
µ − iW 2

µ

)
− Zµ

cos θW

)
+O (h)

and

igW

2

(
Φ†σaDµΦ− (DµΦ)† σaΦ

)
=
(gWv

2

)2
{
W 1
µ ,W

2
µ ,

1
cos θW

Zµ

}
+O (h)

igY

4

(
Φ†DνΦ− (DνΦ)†Φ

)
=
(v

2

)2 gWgY

cos θW

Zµ +O (h)

5. (a) How many independent real parameters are there in a unitary N×N
matrix? How does this answer change if the matrix is orthogonal?

(b) Consider an extension of the Standard Model with N generations of
quarks. Since phases of quark wavefunctions are arbitrary, how many
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independent parameters are there in the CKM matrix of this model?
For how many generations can the CKM matrix be made real?

(c) Show for N = 3 that

Jiajb ≡ Im
(
ViaVjbV

∗
ibV
∗
ja

)
(no sum over repeated indices)

provides a measure of CP-violation regardless of the choice of indices.

6. Show that the Higgs conjugate wavefunction Φ̃

Φ̃i = εijΦj∗

transforms as an SU(2) doublet, but has opposite hypercharge Y = −1.

7. Write equations (23.88) – (23.91) and (23.92) – (23.94) in terms of the
physical W±, Z and photon wavefunctions.

8. Consider a different model for electroweak interactions, one in which the
Higgs wavefunction is an SU(2) triplet Ψ of real scalars (analogous to
the way that the W ’s are a triplet) instead of an SU(2) doublet Φ of
complex scalars.

(a) Write down the potential V (Ψ) that is SU(2) invariant and renor-
malizable.

(b) Find the minimum of this potential.

(c) Write down the gauge equations for the W bosons coupled to the
Higgs wavefunction. Set all fermion wavefunctions to zero. How many
W bosons can gain a mass this way?

(d) Why isn’t this Higgs triplet used to break the symmetry of the
electroweak model?
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Testing Electroweak Theory

The electroweak theory has been scrutinized in great detail for more than 25
years, with experimentalists seeking to check as many of its predictions as
possible. Today we have great confidence in this theory, which, along with
QCD, forms the Standard Model. In this chapter we will consider some of the
main predictions of the theory and the experimental tests that confirmed it.

24.1 Discovery of the W and Z Bosons

The observation of the weak bosons at CERN in 1983 was a triumph for the
electroweak theory. The search for these particles began in 1976 when Rub-
bia, Cline, and McIntyre proposed that the CERN Super-Proton-Synchrotron
(SPS) be converted into a storage ring in which protons and antiprotons would
counter-accelerated up to high speeds and then collide [225]. Energies of 270
GeV per beam appeared feasible, yielding a CM energy large enough to pro-
duce the W and Z particles, if they indeed existed. Two experiments – UA1
and UA2 – were set up at the redesigned SPS collider to search for the weak
bosons.

The beam of antiprotons was obtained via the stochastic cooling technique
[72] developed by Simon van der Meer as discussed in chapter 7. The proton
and antiproton can be thought of as two groups of quarks and antiquarks,
each carrying roughly 1/6 of the total momentum. Since the expected masses
of the W and Z particles were somewhere between 70 and 100 GeV, a CM
energy of six times this was needed. The initial design was for 540 GeV, to
be upgraded to 640 GeV later on.

The calculation of the cross-sections begins at the quark level, then takes
into account the gluons and the quark distribution functions. At these energies
the sea quark contribution to the cross-sections is negligbly small, and so the
annihilating quark is in the proton and the annihilating antiquark is in the
antiproton. The calculations indicated that

σ
(
pp̄ −→ W− + · · · −→ e−νe + · · ·

)
� 530 pb

σ
(
pp̄ −→ Z + · · · −→ e−e+ + · · ·

)
� 35 pb (24.1)

467
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at the design phase. These are very tiny cross-sections – about nine orders of
magnitude smaller than the total pp̄ cross-section of 60 mb. This means that
the detector needs a discriminating power of about 1010. Although hadronic
decays of the W and Z are more frequent, they are very difficult to distinguish
from the background, and so only leptonic channels were considered.

The actual decay channels used in the search are listed in table 24.1 The

TABLE 24.1

Decay Channels Used in the Search for Weak Bosons
W± −→ e±νe isolated electron at high pT and high missing pT
W± −→ µ±νµ isolated muon at high pT and high missing pT
Z −→ e−e+ two isolated electrons at high pT of opposite sign
Z −→ µ−µ+ two isolated muons at high pT of opposite sign

leptons emerging from the decays must be isolated, i.e. not appearing inside
a jet. Otherwise, it is not possible to be sure that they came from a W or
Z instead of the decay of some other quark state. The crucial quantity of
experimental interest is the transverse momentum pT , which is the component
of momentum perpendicular to the colliding beams. If this quantity is small
then we cannot be sure that the lepton in question was produced by W or
Z and not some other particle in the beam. Consequently the only events
retained in the large collection of data are those with isolated leptons with
large transverse momentum. Of course if a neutrino is produced then it cannot
be detected directly. However, if there is a large amount of missing pT in
conjunction with an isolated lepton of high pT , then it is virtually certain that
a neutrino was emitted, signalling the presence of a W boson.

Any given event will have large numbers of tracks that come from the vari-
ous particles produced that are different from the W or Z. After eliminating
(or “cutting”) all data with low pT , the remaining events having some track(s)
with large pT are analyzed by neglecting all tracks with pT smaller than 1
GeV. To measure the mass of the W the “Jacobian peak” method is used.
When the W is produced its momentum is almost entirely in the direction of
the beam; it will have only a very small component of transverse momentum.
The electron and neutrino will each have large transverse momentum, mean-
ing that the angle between the direction of the W and that of the electron is
large. If we Lorentz transform to the rest frame of the W , these transverse
components remain the same (see fig. 24.1), and will be related to the angle
θ∗ relative to the original direction of motion via

pT = |~pe| sin θ∗ ' Ee sin θ∗ =
MW

2
sin θ∗ (24.2)

where we can neglect the mass of the electron at these high energies. The
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FIGURE 24.1
Decay of the W+ in the lab frame and in its rest frame. Note that the
transverse momentum pT of the positron is the same in both frames.

transverse momentum distribution, dn
dpT

is given by

dn

dpT
=

dn

dθ∗
dθ∗

dpT
=

dn

dθ∗
2

MW cos θ∗
=

1√(
MW

2

)2 − p2
T

dn

dθ∗
(24.3)

where dn
dθ∗ is the angular distribution of the electrons in the rest frame of

the W . The crucial point is that is that the Jacobian dθ∗

dpT
diverges when

pT = MW

2 . Since the transverse momentum of the W is not exactly zero this
divergence becomes a sharp peak in the pT distribution at MW

2 . By counting
the number of events as a function of pT and locating this maximum, the mass
of the W can be determined. The UA1 experiment found MW = 83± 3 GeV
[226], and UA2 found MW = 80± 1.5 GeV [227].

The mass of the Z boson can be measured by more conventional means,
since the energies of the emitted lepton and antilepton can each be measured
by the calorimeter and the angles (θ`+ , θ`−) between the beam tracks can be
determined. If the Z exists, it will show up as a peak in the invariant mass
m (`+`−), where

m
(
`+`−

)
=
√

2m2
` + 2E`+E`− − 2p`+p`− cos (θ`+ + θ`−) (24.4)

and the location of the maximum determines its mass. UA1 found MZ =
93 ± 3 GeV [226], and UA2 found MW = 91.5 ± 1.7 GeV [227]. Today we
know these values with considerably greater precision [1]

MW = 80.398± 0.0259 GeV MZ = 91.1876± 0.0021 GeV (24.5)
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and the electroweak model with its predictions for the W and Z have been
spectacularly confirmed.

Another important prediction of electroweak theory is the lifetimes – or
decay widths – of the W and Z. Let’s begin first with the W . The decay
diagram for W− → `− + ν` is given in fig. 24.2 and is straightforward to

FIGURE 24.2
Decay diagram for W− → `− + ν`

calculate since it is a two body decay. We have

M = (−i)
(
gW

2
√

2

)[
u(p2)γν

(
1− γ5

)
v(p1)

]
(24.6)

and neglecting the masses of the leptons in the final state decay rate in the
rest frame of the W is

Γ
(
W− → `− + ν`

)
=

|~p| c
8π} (MW c)

2 |M|
2

=
1
3

(
gW

2
√

2

)2
MW c

2

2π}
=
GF

(
MW c

2
)3

6
√

2π}
(24.7)

which is the same for each type of lepton! The results for the quarks are given
by the same diagram, except for two things. First, the W is color-neutral
and so when it decays into a quark-antiquark doublet the colors of the decay
products must be equal and opposite; since our detectors are color-blind we
must add over the three colors. Second, the couplings will be multiplied by
the appropriate CKM matrix elements.

The results for the full set of decay widths is given in table 24.2. You can see
that there are no entries for decays of the W into a top quark because of the
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TABLE 24.2

Decay Widths for the W Boson
Channel }Γ Value (MeV)

e− + νe
GF (MW c

2)3

6
√

2π} 225

µ− + νµ
GF (MW c

2)3

6
√

2π~ 225

τ− + ντ
GF (MW c

2)3

6
√

2π~ 225

u+ d
GF (MW c

2)3

2
√

2π} |Vud|2 640

u+ s
GF (MW c

2)3

2
√

2π} |Vus|2 35

u+ b
GF (MW c

2)3

2
√

2π} |Vub|2 .011

c+ d
GF (MW c

2)3

2
√

2π} |Vcd|2 33

c+ s
GF (MW c

2)3

2
√

2π} |Vcs|2 660

c+ b
GF (MW c

2)3

2
√

2π} |Vcb|2 1.20

heavier mass of the latter, a fact not known at the time the W was discovered.
Furthermore, the decays into b quarks are very rare due to suppression factors
from the CKM matrix. The total width, obtained by summing over all of the
partial widths, gives ΓW = Γ (W− → anything) = 2.04 GeV

The decay of the Z is computed in a similar manner. The decay diagram,
fig. 24.3, is just like the one for the W except now the couplings are given by
table 22.2. This means the matrix element is

M = (−i)
(gZ

2

) [
u(p2)γν

(
cfV − c

f
Aγ

5
)
v(p1)

]
(24.8)

yielding

Γ
(
Z → f + f

)
=

Nc |~p| c
8π} (MZc)

2 |M|
2

=
Nc
3

(gZ
2

)2 MZc
2

2π}

((
c`V
)2

+
(
c`A
)2)

= Nc
GF

(
MZc

2
)3

6
√

2π}

((
c`V
)2

+
(
c`A
)2)

(24.9)

where the relations MZ cos θW = MW and gZ cos θW = gW have been used
and I have included the color factor Nc, which is 3 for quarks and 1 for leptons.

The results for the full set of decay widths of the Z is given in table 24.3. In
this case all of the allowed decay channels (remember, top decay is forbidden
because the top is too heavy) make an appreciable contribution to the width.
The decay into neutrinos cannot be directly observed, but the total decay rate
into three neutrino flavors is

∑
` Γ (Z → ν` + ν`) = 495 MeV. If there are any

other unknown particles that couple to the Z but not to the photon or gluons
– an example would be an additional flavor of neutrino – they will contribute
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FIGURE 24.3
Decay of the Z boson into a fermion-antifermion pair

to the width of the Z if their masses are less than MZ

2 . Measurement of this
“invisible” decay channel width provides an important check on the number of
low-mass neutrinos. Likewise, it is not feasible experimentally to distinguish
the different quark-antiquark channels (though sometimes clever methods can
pick out the cc or bb ones), but we can obtain the total hadronic decay width,
which is ΓZ = Γ (Z → hadrons) = 2Γ (Z → u+ u) + 3Γ

(
Z → d+ d

)
= 1.67

GeV. The total width is given by summing over the partial widths and is
Γ (Z → anything) = 2.42 GeV.

Of course these calculations neglect corrections due to loop diagrams, and
can be done much more precisely. Today we know the empirical values of the
decay widths to very good precision [1]

ΓW = 2.141± 0.041 GeV ΓZ = 2.4952± 0.0023 GeV (24.10)

as well as distinct channels

Γ(Z → invisible) = 499.0± 1.5 MeV
Γ(Z → l + l−) = 83.984± 0.086 MeV (24.11)
Γ(Z → hadrons) = 1744.4± 2.0 MeV

and all are in excellent agreement with the Standard Model! An important
constraint is that there cannot be any more than three light (i.e. less than
half the mass of the Z) neutrino species, placing an important constraint on
fundamental particle physics models.
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TABLE 24.3

Decay Widths for the Z Boson
Channel }Γ Value (MeV)

ν` + ν`
GF (MZc

2)3

12
√

2π} 165

`− + `−
GF (MZc

2)3

6
√

2π

(
1
2 − 2 sin2 θW + 4 sin4 θW

)
83

u+ u
c+ c

GF (MZc
2)3

2
√

2π}

(
1
2 −

4
3 sin2 θW + 16

9 sin4 θW
)

280

d+ d
s+ s
b+ b

GF (MZc
2)3

2
√

2π}

(
1
2 −

2
3 sin2 θW + 4

9 sin4 θW
)

370

24.2 Lepton Universality and Running Coupling

The kinematic criteria that allowed for unambiguous identification of W pro-
duction and subsequent decay into eνe also applies for subsequent decay into
µνµ and τντ . Cross-sections for each process can be separately calculated and
measured, making a test of lepton universality possible. The results indicated
[1]

gµ
ge

= 1.00±0.07(stat)±0.04(syst)
gτ
ge

= 1.00±0.10(stat)±0.06(syst)

(24.12)
showing that the EL, ML, and TL doublets all couple in the same way and
with the same strength to the W boson.

This is in accord with the Standard Model prediction, which also states
that there is absolute conservation of three separate lepton numbers: electron
number, muon number, and tau number. These conservation laws continue to
be tested in a variety of ways. For example, the best limits on the conversion
of one charged-lepton type to another come from µ → eγ and µ → 3e, for
which [1]

Γ(µ→ eγ)
Γ(µ→ all possible)

< 1.2× 10−11 Γ(µ→ 3e)
Γ(µ→ all possible)

< 1.0× 10−12

(24.13)
For the τ lepton the corresponding limits are not as stringent

Γ(τ → µγ)
Γ(τ → all possible)

< 6.8× 10−8 Γ(τ → eγ)
Γ(τ → all possible)

< 1.1× 10−7

(24.14)
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though there is still no evidence for any violation of charged lepton num-
ber. Semileptonic decays and decays of charged leptons into other charged
antileptons yield similar limits, again in accord with the Standard Model.

What about the neutrinos? We do have firm evidence that the different
flavors of neutrinos can change into each other. I’ll postpone discussion of
this subject until the next chapter.

Another early test of electroweak theory was in the value and evolution
of the weak mixing angle θW . You might recall from Chapter 23 that this
parameter has a clear relationship to the electroweak coupling constants and
the electromagnetic coupling

gW sin θW = ge gZ =
ge

sin θW cos θW
(24.15)

and so we have another prediction from the Standard Model that can be
experimentally checked. It is difficult to directly measure the weak couplings,
but fortunately we don’t have to. We can instead make use of the relation

GF =
√

2
8

(
gW

MW c2

)2

, which gives

MW c
2 =

√√
2g2

W

8GF
=

√ √
2g2
e

8 sin2 θWGF
=

1
sin θW

√
πα√
2GF

=
37.3

sin θW
GeV

(24.16)
yielding a relationship between the measureable W boson mass, the fine struc-
ture constant, Fermi’s constant, and sin θW . Similarly the relationship be-
tween the W and Z boson masses

sin2 θW = 1− M2
W

M2
Z

(24.17)

provides an important cross-check on the validity of electroweak theory, since
each quantity can be measured independently, though in the case of sin2 θW
not directly. A variety of low-energy processes provide such checks, illustrated
in figure 24.4.

1. Parity violation in atoms. Since electrons can exchange both photons
and Z bosons with the quarks in the nucleus, there will be a parity-
violating shift in the energy levels of atoms due to the different helicity
couplings the electron has to the Z. The effect is only a few parts per
million, but can be measured and provides a test of electroweak theory
at the KeV scale [228].

2. Forward-backward asymmetry in e+e− annihilation. There is an inter-
ference between the virtual photon and Z diagrams, a process we looked
at in Chapter 22. This asymmetry has been measured in a wide energy
range [231] between 10 and 200 GeV, and is large for energies near the
mass of the Z as we have seen.
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3. Scattering of νµ and νµ off of electrons. This process is very clean due
to the absence of hadronic interactions and provides the most direct
means of determining the weak mixing angle. However, the cross-section
is very low – four orders of magnitude smaller than neutrino-nucleus
scattering. Nevertheless the CHARM2 experiment first provided the
most precise measurements of this process, yielding the experimental
result [229]

sin2 θW = 0.2324± .0083 (24.18)

results superseded by yet more accurate measurements [1].
Corrections from loop diagrams to the masses of theW and Z bosons modify

the relationship they have with sin2 θW . The most important diagrams are
when the particle in the loop is either a Higgs boson or a top/bottom quark
pair. The correction from the Higgs loop depends logarithmically on the mass
of the Higgs boson, but the correction from the quark loop is proportional to

GF
(
m2
t −m2

b

)
' GFm2

t (24.19)

which is quadratic in the mass of the top quark. A precise measurement of
the mass of the W thus allows for a prediction of the mass of the top as long
as the mass of the Higgs is not too large.

Experiments in the 1990s at LEP measured with increasing accuracy the
masses of the W and Z and sin2 θW by a variety of methods. In 1993 a bound
of the top mass was obtained

mt = 166± 27 GeV (24.20)

provided 60 GeV< mH < 700 GeV. The mass of the top was measured less
than two years later (as we saw in Chapter 18) and found to be within this
bound.

The coupling constants gW and gY in the SU(2)×U(1) Model both undergo
renormalization, and hence “run” – that is change with energy (or distance)
– the way that the electromagnetic and strong couplings do. Since

gY
gW

= tan θW (24.21)

the quantity sin2 θW will also be a function of the momentum transfer between
two particles that scatter due to weak interactions [230]. The dependence
is more complicated than that for the electromagnetic and strong couplings
because both numerator and denominator vary. The change is very small,
only a few percent over more than six orders of magnitude. The predicted
behavior and experimental values are given in figure 24.3. Fermion loops and
boson loops contribute to the renormalization but with opposite sign. At low
energies the fermion loops are important due to the large mass of the W , but
at high energies loops due to W and Z self-couplings set in. However, these
contribute to gW (since it is a non-Abelian theory) but not to gY , changing
the slope of the curve near the mass of the W .
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FIGURE 24.4
Running of the weak mixing angle as a function of energy, showing comparison
with different experimental tests. The acronyms are APV: Atomic Parity
Violation; APV : Asymmetry in Polarized Moller scattering; Z: Measurements
taken when CM energy is the mass of the Z boson (the “Z-pole” measurements
[232]); ν-DIS: Deep inelastic scattering of neutrinos from isoscalar targets
[233]; AFB: Forward-backward asymmetry at LEP. The width of the curve
reflects theoretical uncertainty from strong interaction effects [230]. Image
courtesy of the Particle Data Group [1].

24.3 The Search for the Higgs

The only particle in the Standard Model that has not been observed is the
Higgs particle. It obeys the equation

DµD
µΦ− µ2Φ + λ2

(
Φ†Φ

)
Φ =

3∑
I=1

GIχ
L
IR χL

IL +
3∑

I,J=1

χd
IRGIJχ

F
JL

+
3∑

I,J=1

χu
IRHIJχ̃

F
JL (24.22)

where the covariant derivative is
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FIGURE 24.5
One-loop correction to the W and Z propagators (and hence their masses)
due to the Higgs boson.

DµΦ = ∂µΦ− igW

2
σa·W a

µΦ + i
gY

2
BµΦ (24.23)

and we remember that Φ =
(

0
v + h (x)

)
– the actual Higgs particle is de-

scribed by the wavefunction h(x). If we insert this into the equation for Φ
we find after some algebra that its lower component gives

∂2h + 2µ2h + 3λµh2 + λ2h3

− (gW)2

4
(v + h)W−µ W

+µ −
(

gW

2 cos θW

)2

(v + h)ZµZµ

=
3∑

I=1

GIχ
L
IR χL

IL +
3∑

I,J=1

χd
IRGIJχ

F
JL +

3∑
I,J=1

χu
IRHIJχ̃

F
JL (24.24)

which shows that the mass mh of the Higgs particle is

mh =
√

2µ (24.25)

The Standard Model makes no prediction as to what its mh is – the param-
eter µ must be input into the model. This is arbitrariness is not particularly
attractive, and theorists have wanted to do better. One idea for predicting
the Higgs mass from the Standard Model was to set µ = 0 at the outset
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and then compute the effective potential Veff(h) for the Higgs boson due to
its interactions with all of the other particles in the Standard Model [234].
You might think that the only minimum of the effective potential would be
at h = 0 since we set µ = 0, but quantum loop diagrams generate an effec-
tive potential Veff(h) that has a new minimum, from which a nonzero Higgs
mass can be computed, determined from the other parameters in the Standard
Model. This approach is clearly more attractive, since the arbitrary constant
µ no longer appears. For a number of years it was thought to be viable until
the discovery of the top quark with its enormous mass (and therefore large
coupling to the Higgs) appeared to rule out this mechanism [235]. However,
recent considerations that systematically sum over higher order corrections
[236] have shown that perhaps this mechanism is viable after all, and that it
predicts a Higgs mass of mh ' 220− 225 GeV.

It is possible to obtain bounds on mh indirectly from the Standard Model
using precision measurements of electroweak observables. As I noted above,
the masses of both the W and Z bosons get 1-loop correction terms (see
figure 24.5) that depend on the logarithm of the Higgs boson mass. Since
their masses are known so precisely, we can place a bound on the Higgs mass,
although not a very stringent one due to the logarithmic dependence. A global
fit to precision electroweak data, accumulated at LEP, SLC, the Tevatron and
elsewhere implies that mh < 182 GeV at 95% confidence level [1]. This is
somewhat less than the 220 GeV prediction above, but not so much less as to
rule out the effective potential mechanism.

FIGURE 24.6
Gluon fusion produces a Higgs boson.

It’s clear we will have to wait for LHC to do its job. At present, the best
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lower bound on mh is from LEP [237]:

mh > 114.4 GeV at 95%c.l. (24.26)

which involved colliding electron-positron pairs to produce Z bosons at en-
ergies larger than MZ . The virtual Z can emit a Higgs boson, which will
preferentially decay to bb̄ quark pairs due to the heavy mass of the bottom
quark. The limit that can be reached on the Higgs mass is the difference
between the center-of-mass collision energy Ecm and MZ . LEP was able
to attain Ecm of 209 GeV by installing additional superconductive radiofre-
quency cavities in the ring, providing additional power compensate for the
large loss of energy in synchrotron radiation. This resulted in the upper limit
above.

FIGURE 24.7
Other modes of Higgs production: Associate production via W/Z
brehmsstrahlung (left) and WW or ZZ fusion (right).

It’s possible to do a bit better. Precision electroweak measurements at
LEP indirectly constrain mh to be lower than 182 GeV at the 95% C.L. This
is done by computing how the Higgs particle modifies the ratio MW

MZ
due to

loop diagrams that arise from quantum field theory. The ratioMW

MZ
has been

measured to high precision, and yields the above upper limit once the lower
bound of 114.4 GeV is taken into account. The most recent experimental
result for the Higgs mass is from Fermilab [238]. By combining all known
data from proton-antiproton collisions at Ecm = 1.96 TeV, researchers have



480 An Introduction to Particle Physics and the Standard Model

excluded a Higgs boson with mass mh = 170 GeV at 95% c.l., a direct
restriction, albeit within a very narrow energy range.

At the LHC the dominant mechanism for producing the Higgs boson is
via gluon fusion, g + g → h, as in figure 24.6. Since the top is the heaviest
quark, the Higgs couples most strongly to it, and so this quark loop dominates
all other possible loops. It is also possible to produce the Higgs via fusion
of W or Z bosons or via a brehmsstrahlung (perhaps it should be called
“Higgsstrahlung”) process as shown in figure 24.7, but these contribute less
strongly.

FIGURE 24.8
Branching Ratios for Higgs decay as a function of Higgs Mass. The solid ver-
tical line is the LEP bound of 114 GeV. Reprinted figure from A. Djouadi, J.
Kalinowski, and M. Spira, HDECAY: a program for Higgs boson decays in the
Standard Model and its supersymmetric extension Comput. Phys. Commun.
108, 56 (1998) [239]; Copyright (1998), with permission from Elsevier.
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How the Higgs particle decays will depend on its mass. If it is less than
half the W mass (mh . 140 GeV ) then it will decay into bb̄ pairs. Above this
mass up to 160 GeV it will predominantly decay into W pairs, and then above
that into Z pairs, which fully dominate if mh > 180 GeV. Only if the Higgs is
very heavy – mh . 360 GeV – will it decay into top pairs, and even then this
is not the dominant process. There are other possibilities once loop diagrams
are taken into account: the time-reversal of the diagram in figure 24.6 can
yield decay into gluon pairs (h → g + g) and also the less likely decay into
photon pairs, which is easily seen by replacing the gluon lines with photons
in figure 24.6.

A diagram of the all possible branching ratios for the decay of the Higgs
boson as a function of its mass appears in figure 24.8.

The main purpose of the Large Hadron Collider is to carry out a direct
search for the Higgs boson. If it is found it will put in place the last piece of
the puzzle in the Standard Model. If it is not found, then we will have firm
evidence of physics beyond the Standard Model – and undoubtedly another
revolution in particle physics.

24.4 Questions

1. Consider the Higgs mechanism in the Abelian case. Write down the
equations for the Higgs wavefunction and the gauge wavefunction if the
Higgs field is written as ϕ = v + h (x).

2. Suppose we used the SU(2) symmetry to write the Higgs field as

Φ =
(
v + h (x)

0

)
What would the physical theory be in this case?

3. Show that the equation for the Higgs wavefunction

DµD
µΦ− µ2Φ + λ2

(
Φ†Φ

)
Φ =

3∑
I=1

GIχ
L
IR χL

IL +
3∑

I,J=1

χd
IRGIJχ

F
JL

+
3∑

I,J=1

χu
IRHIJχ̃

F
JL

becomes

∂2h + 2µ2h + 3λµh2 + λ2h3
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− (gW)2

4
(v + h)W−µ W

+µ −
(

gW

2 cos θW

)2

(v + h)ZµZµ

=
3∑

I=1

GIχ
L
IR χL

IL +
3∑

I,J=1

χd
IRGIJχ

F
JL +

3∑
I,J=1

χu
IRHIJχ̃

F
JL

when Φ =
(

0
v + h (x)

)
. Hint: remember that the gauge currents are

conserved.

4. The Higgs potential is

V (Φ) = V0 −
1
2
µ2Φ†Φ +

1
4
λ2
(
Φ†Φ

)2
(a) Suppose V0 = 0. How much energy per unit volume does the Higgs
potential contribute to the vacuum energy density of the universe if we
assume λ = 1

10?

(b) The actual energy density of empty space is smaller than 10−4

GeV/cm3. What value would V0 have to be set to in order to ensure
that your answer in (a) does not exceed this value?

5. Compute the decay rate
h→ f + f̄

to leading order in the Standard Model, where f is a lepton or a quark.

6. Compute the decay rates

(a) h→W+ +W−

(b) h→ Z + Z

to leading order in the Standard Model.

(c) Plot the ratio
Γ(h→W+ +W−)

Γ(h→ Z + Z)

as a function of h.

7. Someone comes to you and proposes to find the Higgs using an e+e−

machine by examining the process

e+ + e− → h→W+ +W−

so that the existence of the Higgs particle can be inferred by finding
deviations relative to other intermediate states (like the photon or Z)
in producing the W+W− pair. Is this a good idea?
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Beyond the Standard Model

The Standard Model – the comprehensive theory that describes our current
understanding of the electromagnetic, strong, and weak interactions is not
expected to be the final theory of physics. There are three main reasons
underlying this expectation.

1. It has too many adjustable parameters. There are six different
quark masses, three different lepton masses (since neutrino masses are
assumed to be zero), one Higgs mass, four mixing angles from the CKM
matrix, one mixing angle associated with ground state of QCD (as we
shall see), and three coupling constants (one for each force). This is
a total of 18 arbitrary parameters that are not predicted by the Stan-
dard Model itself, which is mathematically valid and theoretically self-
consistent for any numerical values of these parameters∗. If one allows
for the possibility of neutrino masses then an additional seven parame-
ters must be added to this list – three for the masses of the neutrinos
and four associated with the mixing angles for a CKM-type matrix in
the lepton sector – bringing the total to 25. If one includes gravitation,
then two additional parameters – the gravitational coupling constant G
and the cosmological vaccum energy (parametrized by a cosmological
constant Λ ) – must also be included bringing the total number of unex-
plained adjustable parameters to 27. It is generally believed (or at least
preferred) that a more complete theory [240] will have fewer adjustable
parameters – ideally only one!

2. Gravity is not included. The problem with including gravity is not
simply a matter of adding Einstein’s equations of general relativity with
its two additional constants (G and Λ) to the model. If we neglect quan-
tum mechanics, writing down the standard model in a self-consistent
way that includes Einstein’s theory of general relativity is well-known
and understood. However, no one knows how to include gravity in a

∗I should qualify this statement, since there are mathematical issues concerning the exis-
tence of quantum field theories that are not fully resolved. What I mean by this statement
is that all of the mathematical manipulations performed to extract physical predictions
from the Standard Model would be just as valid if other values for these 18 parameters had
been used besides the ones measured in experiments.

483
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quantum framework [241]. There are three major difficulties that must
be overcome.

• General Relativity is not a renormalizable theory. Not only are
quantum corrections to gravitational processes infinite (as they are
for gauge theories), but the number of these infinite corrections
is also infinite (unlike the situation in gauge theories). The renor-
malization procedure works in the Standard Model because we only
ever need to redefine a finite number of parameters (such as mass
and charge) to eliminate these infinities. However, in gravity, every
possible physical quantity would need to be redefined to eliminate
the infinite corrections. Doing this renders the quantum theory
useless for predicting anything because there is always another ad-
justable infinite parameter that could be renormalized to agree with
experiment.
• Time is treated differently in gravity. In quantum theories time

plays the role of an ordering parameter that tells us how a quan-
tum system evolves from the past into the future. However, in gen-
eral relativity you can change your coordinate definitions of time
and space pretty much any way you want, with only a few restric-
tions due to mathematical self-consistency. This means that two
different observers in a gravitational field can have very different
definitions of how time advances, and it is not clear which defini-
tion(s) is(are) the right ones to use in incorporating the quantum
theory.
• Causality becomes uncertain. The light-cone structure of special

relativity ensures a rigid separation of past and future for any
observer at any place and time. The Standard Model – indeed
all quantum gauge theories – rely upon this structure for making
predictions. For example the scattering theory we developed in
chapter 9 depends upon a clear definition of past quantum states
that are emitted by sources and future quantum states that are
absorbed by detectors. However, in general relativity gravity dif-
ferentially slows down time, making the light-cone structure depend
on the location of the observer. Quantum gravitational corrections
are therefore expected to introduce some quantum-mechanical un-
certainty into the structure of the light-cone (and our notions of
causality) at each point in space and time. This leads to a strange
conundrum – we won’t know how to compute this kind of light cone
without first having a quantum theory of gravity, but we won’t be
able to construct a quantum theory of gravity without first under-
standing this kind of light cone!

Theorists worldwide have been trying to make progress on these prob-
lems for more than 40 years, and many ideas have been proposed. Yet
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there has been no clear path forward, and a quantum theory of gravity
appears as elusive as ever. Uniting gravity and quantum theory is a very
deep problem, regarded by many as the most challenging and significant
problem in physics today.

3. The universe is sharply biophilic. This means that our universe is
not a typical specimen out of all possible universes one might consider,
but instead has rather particular features that permit life. Of course it is
clear that we could not live in a universe that did not permit life to exist.
However, what has been slowly discovered over the past 50 years is that
even rather minor adjustments of the parameters Standard Model and
the structure of our cosmos would result in a universe that could not
support carbon-based life as we know it. For example, if the mass of
the up-quark differed by less than a percent from its experimental value,
then neutrons would not decay into protons as observed. Either they
would decay too quickly (if the up quark were a bit lighter), leaving
pretty much only protons in the early universe, or they would decay too
slowly (if the up quark were a bit heavier), making too much helium in
the early universe, with little or no hydrogen to fuel the fusion processes
in stars. In either case one of the conditions necessary for life as we
know it would no longer hold true. Such arguments can be constructed
for many different Standard Model parameters, including the masses
of the light particles, the coupling constants of all of the forces, and
the strength of the cosmological vacuum. It is rather peculiar that the
existence of life is so sensitively correlated with the actual values of these
parameters of the Standard Model. The reason for this situation goes
beyond the explanatory power of the Standard Model [242].

There has been much effort expended in the past 15 years to find what
physics lies beyond the Standard Model. In this chapter I will discuss some
of the progress that has been made so far, and what the prospects are for
further discovery.

25.1 Neutrino Oscillation

The best experimental evidence we have for new physics beyond the Standard
Model is in the neutrino sector. A solid body of evidence has accumulated
through a number of experiments indicating that the different flavors of neu-
trino can change into each other, a phenomenon called neutrino oscillation or
neutrino mixing.

The idea of neutrino mixing goes back to 1957, when Bruno Pontecorvo sug-
gested [243] that the neutrino-antineutrino system could oscillate in a manner
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analogous to the K0K̄0 system. At that time only one neutrino flavor was
known. When the νµ was discovered ten years later he pointed out that flavor
oscillations between νµ and νe were not ruled out by any known experiments
[244]. In the meantime two different Japanese groups had also proposed that
neutrino flavors could mix.

The favored explanation for this phenomenon is that neutrinos are massive.
If this is so then there will also be a 3 × 3 CKM-type mixing matrix in the
lepton sector of the Standard Model, in which case we have physics beyond
what the Standard Model predicts. As with the quarks, this will imply that
the neutrino weak-eigenstates (which we call νe, νµ and ντ ) are not the same as
the neutrino mass-eigenstates. This means that an electron neutrino produced
at a given point will, after propagating outward, have some probability for
changing into one of the other two neutrino types.

To illustrate how neutrino oscillation works, I’ll begin with a 2-flavor model.
As we will see later, this will turn out to be a good approximation for atmo-
spheric neutrinos. Since the physical eigenstates must have definite masses,
we have the relationship

Ψm ≡
(
|ν2〉
|ν3〉

)
= V

(
|νµ〉
|ντ 〉

)
≡ VΨF (25.1)

between the mass eigenstates and the flavor eigenstates, where V is a 2 × 2
matrix. Note that I have labeled the mass eigenstate wavefunctions with the
numbers 2 and 3, using the convention of labeling in order of (anticipated)
decreasing electron-neutrino content. Since probabilities are conserved, we
have

(Ψm)†Ψm =
(
ΨF
)†

ΨF ⇒ V †V = I (25.2)

and so V is unitary. We can actually make it orthogonal by redefining the
phases of the neutrino wavefunctions, as we did for the down-type quarks.
Hence the most general form of V is

V =
(

cosϑ23 sinϑ23

− sinϑ23 cosϑ23

)
=
(
c23 s23

−s23 c23

)
(25.3)

where I have used a notation that anticipates a full 3 × 3 CKM-type matrix
in the neutrino sector, and for convenience I have written cosϑ23 = c23, etc.

Working non-relativistically, since the Ψm wavefunction contains states of
definite mass-energy, we have

i}
∂Ψm

∂t
= HΨm =

(
E2 0
0 E3

)
Ψm (25.4)

which has the solution

|νi (t)〉 = e−iEit/} |νi (0)〉 ⇒ Ψm (t) = exp [−iHt/}] Ψm (0) (25.5)
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and so the flavor eigenstates have the time-dependence

ΨF (t) = V −1Ψm (t) =
(
V −1 exp [−iHt/}]V

)
ΨF (0) (25.6)

Multiplying the matrices out (and dropping the ~s) gives(
|νµ (t)〉
|ντ (t)〉

)
=
(
e−iE2tc223 + e−iE3ts2

23 c23s23

(
e−iE2t − e−iE3t

)
c23s23

(
e−iE2t − e−iE3t

)
e−iE2ts2

23 + e−iE3tc223

)(
|νµ (0)〉
|ντ (0)〉

)
(25.7)

Atmospheric neutrinos (that come from pion decays in cosmic rays) and
laboratory neutrinos (from accelerator experiments) are essentially pure νµ
sources. This means that we should set ντ (0) = 0 as one of our initial
conditions. After a time t some ντ ’s will appear, with amplitude

|ντ (t)〉 = c23s23

(
e−iE2t − e−iE3t

)
|νµ (0)〉 (25.8)

The probability of flavor conversion is therefore proportional to

|〈ντ (t) |νµ (0)〉|2 = c223s
2
23

∣∣e−iE2t − e−iE3t
∣∣2 |νµ (0)|2

=
1
4

sin2 (2ϑ23) (2− 2 cos ((E2 − E3) t)) |νµ (0)|2 (25.9)

and so we obtain (reinstating the appropriate factor of ~)

P (νµ −→ ντ , t) = sin2 (2ϑ23) sin2

(
(E2 − E3) t

}

)
(25.10)

where the latter result is actually the relative probability, since plane-wave
states can’t be normalized. Note that the only wave to conserve lepton flavor
is if the mixing angle ϑ23 = 0 – any deviation away from this value indicates
physics beyond the Standard Model.

Now I will make an approximation that goes beyond what I have assumed
in using the non-relativistic Schroedinger equation (25.4), but which is valid
for high-energy neutrinos, namely that rest-mass energy of the neutrinos is
small compared to their total energy. For high-energy neutrinos all of the
same momenta we therefore have

(E2 − E3) =
√
p2 +m2

2 −
√
p2 +m2

3 ' p
(

1 +
m2

2

2p2
−
(

1 +
m2

3

2p2

))
=

∆m2

2p
' ∆m2

2E
(25.11)

where ∆m2 = m2
2 −m2

3 and E is the average energy of either neutrino. The
path-length traveled in a time t is approximately L/c (since they are nearly
moving at the speed of light), so

P (νµ −→ ντ , t) = sin2 (2ϑ23) sin2

((
∆mc2

)2
L

4E}c

)
(25.12)
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for neutrinos of energy E moving through a distance L. The probability
that the νµ survives is then

P (νµ −→ νµ, t) = 1− sin2 (2ϑ23) sin2

((
∆mc2

)2
L

4E}c

)
(25.13)

Laboratory experiments are best suited to measuring P (νµ −→ νµ, t). A
device capable of detecting νµ is placed a distance L away from a source
of νµ of known flux and energy E, and the data are used to constrain the
value of ϑ23 and

(
∆mc2

)2. The expected flux and energy at the detector are
calculated, and the survival probablity is the ratio between the measured flux
at the detector and the calculated survival flux.

In practice there will be a spread of energies in the flux of neutrinos emerg-
ing from the source. This will modify the simple trigonometric dependence
above and therefore change the survival flux. It’s not too hard to anticipate
how. Suppose we have muon neutrinos at two similar (but not the same) en-
ergies emerging from the source. For a short period of time there will not be
much difference in the survival probability for each energy. However, as time
increases the low-energy νµ will more rapidly change flavor. Since the survival

probability is minimized when E = (∆mc2)2
L

4π}c , the lower-energy neutrino flux
reaches its smallest value before the higher-energy one does. After this the
low-energy νµ flux will increase while the high-energy νµ flux continues to
decrease. The two fluxes soon become out of phase, with high-energy flux
maximized when the low-energy flux is minimized and vice versa, with the av-
erage flux oscillating about a mean value dependent on sin2 (2ϑ23). Averaging
over a spread of energies, the νµ flux will decrease rapidly from unity and after
several oscillations settle down to a mean value about which it oscillates with
small amplitude.

25.2 Neutrino Experiments

Neutrino oscillation is of much current interest in particle physics, more so
than ever since experimental evidence at the Sudbury Neutrino Observatory
(SNO) has definitively confirmed the phenomenon. There are three main
sources of empirical evidence for this effect.

25.2.1 Solar Neutrinos

Standard nuclear astrophysics indicates that our sun should be emitting a
flux of neutrinos that is three times larger than has been observed. Much
effort has gone into trying to find out whether the discrepancy is due to some
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flaw in our understanding of the solar interior, or whether we need to modify
our theory of neutrino physics [245]. The results from the SNO experiment
have definitively adjudicated on this issue [42], indicating that the different
neutrino flavors do indeed change into one another.

Our sun burns hydrogen into helium via a thermonuclear process, in which
the average thermal energy is a few tens of KeV. This is small compared to the
Coulomb barriers of the interacting nuclei. However, the core density of the
sun (105 kg/m3) is large enough that the reaction cross-sections converting
hydrogen into helium can proceed.

FIGURE 25.1
The pp-cycle of the Standard Solar Model.

About 95% of the energy produced by the sun comes via the conversion
of four protons into a Helium nucleus, through a chain of reactions shown
in fig. 25.1. Neutrinos of varying energy are produced as a by-product.
These stream through the sun with essentially no absorption†. A “Standard
Solar Model” (SSM) has been developed over the past 60 years that reliably
describes the details of this chain of reactions and the neutrino flux produced.

Most of the νe flux produced by the sun is due to the conversion of two
protons into deuterium. Detecting this is an experimental challenge because
all the neutrinos produced are of low energy (less than 420 KeV). The highest
energy neutrinos – up to 14 MeV – are produced in the Boron conversion to

†The photons produced in these same reactions follow a different path. They interact
with the rest of the material in the sun, producing new photons of lower energy that in
turn further react with this material. This sequence continues until eventually photons are
produced at the surface of the sun that stream off into space, carrying energy that was
produced from the original reaction several thousand years earlier.
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FIGURE 25.2
The energy spectrum of solar neutrinos. Image reprinted from J. Bahcall,
A.M. Serenelli, and S. Basu Ap. J. 621, L85 (2005) [?]. Reproduced by
permission of the American Astronomical Society.

two Helium nuclei. This is a very rare process since it depends on a rare
production channel from the Be + p interaction. The more common Be
interaction produces a Lithium nucleus along with a photon and a neutrino,
which emerges at either 400 or 860 KeV. These predictions of the SSM are
illustrated in fig. 25.2.

Pontecorvo proposed that solar electron neutrinos could be detected via the
reaction

νe +37 Cl→ e− +37 Ar (25.14)

in 1946, long before neutrinos were actually detected [246]. John Bahcall
and collaborators computed the reaction rate for this process in 1962, using
the solar model that he and his collaborators were beginning to construct
[247]. While the inital reaction rate appeared to be too low for detection,
a superallowed transition at 5 MeV was discovered afterward, raising the
reaction rate by a factor of 20 to experimentally feasible levels.

Even so, the rate was still very tiny, and to observe it would mean using
a huge volume of Chlorine in a region that was shielded as much as possible
from all radioactive sources and from cosmic rays. An experiment was set up
in the Homestake mine in South Dakota, USA, beginning in 1964 led by Ray
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Davis, using 615 tonnes of C2Cl4 as the target “detector” [248]. The expected
rate of Argon production is about 1 atom per day. This would be extracted
every few weeks using a stream of helium gas and then put into a counter to
detect the argon decays. The energy threshold for the experiment was 814
KeV, which meant that only the higher-energy Be and B neutrinos could be
detected.

The experiment ran for 24 years (1970-94) and yielded the following result
after 108 runs [249]

Γ
(
νe +37 Cl→ e− +37 Ar

)
=
{

2.56± 0.16± 0.16 SNU (exp’t)
8.1± 1.3 SNU (SSM) (25.15)

expressed in Solar Neutrino Units (SNUs), which correspond to 1 capture
per 1036 atoms per second. There is a clear discrepancy by a factor of 3 as
compared to the SSM.

Of course discordant results were coming in from this experiment much
earlier than 1994, and physicists began to explore other ways to measure the
solar neutrino flux Φ. One attempt was the Kamiokande experiment, which
used a water Cerenkov detector in the Kamioka underground observatory in
Japan to measure the neutrino flux due to the elastic-scattering reaction

νf + e− → νf + e− (25.16)

which is sensitive to all neutrino flavors. However, this reaction can only
proceed via Z-exchange for f = µ, τ , whereas it proceeds via both W and
Z-exchange for electron neutrinos. Since the latter reaction has a cross-
section six times that of the former, it is possible to check if the flux of
solar neutrinos is purely νe – a diminished cross-section is indicative of a νµ
and/or ντ flux component. The measured flux [250] – confirmed by super-
Kamiokande (super-K), its successor – was found to be half the expected
value. In particular

Φ =
{

(2.35± 0.02± 0.08)× 106 /cm2/s (exp’t)
(5.69± 0.91 )× 106 /cm2/s (SSM)

(25.17)

Super-K was able to measure the direction of motion of the final state electron,
and one could infer from this that the flux of neutrinos was definitely from
the sun (and not some other source) [251].

Two other experiments were developed to measure the low-energy neutrino
flux due to the pp reactions: SAGE in Russia [252] and GALLEX (later
upgraded to GNO) in Italy [253]. These experiments respectively used 60 and
30 tonnes of gallium, which was used to measure the rate of the reaction

νe +71 Ga→ e− +71 Ge (25.18)
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at a threshold energy of 233 KeV. SAGE is still running, but in 2003 the
GALLEX/GNO experiment ended. The results were

Γ
(
νe +71 Ga→ e− +71 Ge

)
=

 69.3± 4.1± 3.6 SNU (GALLEX/GNO)
70.8± 5.3± 3.7 SNU (SAGE)
126± 10 SNU (SSM)

(25.19)
again indicating a clear discrepancy between theory and experiment.

Could the SSM be wrong? This question troubled theorists and experi-
mentalists alike for many years until 1995, when the GALLEX experiments
reached sufficient precision to almost certainly rule this option out. By then
the super-K experiments had measured the flux due to the Boron neutrinos
and the flux inferred from solar luminosity due to the dominant pp contribu-
tion was well known. The sum of these was greater than the flux GALLEX
had measured. But since the GALLEX experiment is sensitive to not only
these two sources of neutrino flux but also to the Beryllium neutrinos, there is
no reasonable way to modify the SSM because the Boron nucleus is a product
of the Beryllium reaction.

Something was causing a large fraction of electron neutrinos to vanish on
their way from the sun to the earth. The Sudbury Neutrino Observatory
(SNO) was designed to see if neutrino physics was the cause. This experi-
ment uses 1000 tons of heavy water (D2O) located 2000 meters deep in the
Creighton mine near Sudbury, Ontario. It began in 1999 and continued until
2002.

SNO measured the flux of solar neutrinos from the decay of 8B via the
charged current (CC) reaction on deuterium

νe +D → p+ p+ e− (25.20)

mediated by W bosons and sensitive exclusively to νe’s, as well as the neutral
current (NC) reaction

νf +D → p+ n+ νf (25.21)

mediated by the Z boson and sensitive to all flavors. SNO also measured the
elastic scattering of all neutrino flavors νf with electrons [254].

Since the CC rate directly gives the νe flux and the NC rate gives the sum
of all three fluxes (with all being equal according to the Standard Model), it
is possible to infer the flux Φµτ that is due to the other two flavors. In 2002
SNO confirmed that this flux was significant, as illustrated in fig. 25.3. The
latest results from SNO in 2008 yielded [255]

ΦNC = 5.54± 0.33± 0.34× 106/cm2/s (25.22)

ΦCC = 1.67± 0.05± 0.08× 106/cm2/s (25.23)

ΦES = 1.77± 0.24± 0.10× 106/cm2/s (25.24)
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for the flux rates for all three processes. SNO has also precisely measured
the total flux of Boron neutrinos from the sun independently from previous
methods and finds agreement with SSM calculations, further indicating that
new physics in the neutrino sector is responsible for the solar neutrino deficit.

FIGURE 25.3
Fluxes of Boron neutrinos deduced from SNO data [42]. The bands represent
uncertainties of 1 standard deviation. Image reprinted from Q.R. Ahmad et
al. Phys. Rev. Lett. 89, 011301 (2002); used with permission from the
Sudbury Neutrino Observatory; copyright (2002) American Physical Society.

25.2.2 Atmospheric Neutrinos

Cosmic rays contain a large number of pions which (as we saw in Chapter
21) preferentially decay into muons and their associated (anti)neutrinos. The
muons in turn decay into electrons (or positrons for the antimuon) and their
associated antineutrinos (neutrinos). Hence one expects to see a flux of νµ
that is twice that of νe. However, the observed ratio of fluxes is only 60% of
the expected amount.
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Atmospheric neutrino oscillations were first discovered at Super-K in 1998
[256]. This experiment consists of 22,500 tons (fiducial mass) of water in the
Kamioka underground observatory. The water is used as a Cerenkov detector,
which is sensitive to the processes

νµ +N → µ− +N ′ νe +N → e− +N ′ (25.25)

where N is the nucleus of either hydrogen or oxygen in the water. The elec-
trons and muons each leave a single Cherenkov ring on the detector. These
rings provide important information: the ring produced by a muon is ex-
pected to have a sharp shape, whereas the electron shape is fuzzy due to an
electromagnetic shower resulting from interactions the electron has with the
water in the detector. Fully contained muons and electrons are identified by a
pattern recognition algorithm exploiting the maximum likelihood method to
compare the measured distribution of hits with the expected shapes. Some-
times a particle is not fully contained but exits the central volume into the
outer detector – in this case it is identified as a muon since only muons have
such great penetrating power.

The neutrino energies range from a few hundred MeV to several GeV. The
cross-sections are strongly forward-peaked at these energies, and so the direc-
tion of the outgoing electron or muon (which can determined from the direc-
tion of the ring ) is strongly correlated with the direction of the neutrino. The
amount of Cherenkov light is a measure of the energy of the lepton, which in
turn is correlated with the energy of the neutrino.

This information is enough to determine the distance the neutrino has trav-
eled from its production point in the atmosphere. The flight length can vary
from about 10 km (if they are produced in the atmosphere above Japan, where
the zenith angle ϑ = 0) to 12,000 km (if they are produced on the other side
of the earth, where ϑ = π).

Events are divided into low-energy (less than 1 GeV) and high-energy (up
to several GeV) types, and are also divided into e-type and µ-type events.
Both “fully contained” (FC) events – when all of the visible energy is con-
tained within the inner detector and “partially contained” (PC) events – when
particles deposit visible energy in the outer detector were considered. The νe
data show no indication of oscillation whereas the low-energy νµ data show
a flux deficit that increases with increasing zenith angle [257], which is the
same as increasing distance from the detector. The high-energy νµ have no
deficit for small zenith angles but beyond a certain zenith angle the flux be-
comes about half of its expected value. These results are illustrated in fig.
25.4. Experiments at the Gran Sasso lab in Italy and SOUDAN2 in the
USA confirmed the νµ flux deficit seen at super-K [258]. Since only the νµ
flux is affected, this is almost certainly indicative of νµ/ντ oscillations. In the
context of the 2-flavor model described above, the value of the distance can
be used to determine ∆m2 and the value of about 1

2 in the flux reduction
suggests that ϑ23 ' π

4 .
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FIGURE 25.4
Zenith angle distributions for: (a) FC electron-like events, (b) FC muon-like
and PC events, (c) FC muon-like events and (d) PC events. Down-going is
when the cosine equals 1. The histograms with the shaded error bars show
the Monte Carlo predictions with their statistical uncertainties [257]. Image
reprinted from Y. Fukuda et al. Study of the atmospheric neutrino flux in
the multi-GeV energy range Phys. Lett. B436, 33 (1998) fig. 5; Copyright
(1998), with permission from Elsevier.

25.2.3 Laboratory Neutrinos

Another way to search for neutrino oscillations is by producing a source of
neutrinos and then see if they disappear somewhere further along their tra-
jectory away from the source. Disappearance experiments for νµ were carried
out in both Japan at the KEK laboratory in Tsukuba and at Fermilab in the
USA. In each case two detectors were used, one near the source to measure
the initial flux and energy, and the other far away to measure the surviving
flux. In Japan the far detector was super-K at 250 km away. In the USA
MINOS was the far detector at 735 km from the source. These experiments
also found a νµ flux deficit consistent with super-K.
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The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) ex-
periment provided important confirmation for the SNO experiments. This
experiment used several Japanese nuclear power plants as a source for elec-
tron antineutrinos. Each source had a different power and was at a different
distance (typically about 180 km) from the KamLAND detector. This detec-
tor, an ulta-pure scintillation detector, could accurately detect and measure
the energy of recoil electrons from elastic scattering with the antineutrinos.
This information can be used to infer the electron antineutrino flux and energy
spectrum, which was found to be 0.658 ± 044(stat) ±047 (syst) of the value
expected if no electron antineutrinos had disappeared. Plotting the ratio of
the observed spectrum to the no-oscillation spectrum as a function of 1/E,
KamLAND found that there was flux oscillation consistent with the sinusoidal
L/E dependence that is characteristic of neutrino oscillation [259].

In 1995 the Liquid Scintillator Neutrino Detector (LSND) group at Los
Alamos presented evidence that muon antineutrinos could change into elec-
tron antineutrinos [260]. The LSND detector consists of an approximately
cylindrical tank 8.3 m long by 5.7 m in diameter, whose center is 30 m from
the neutrino source. The tank is filled with 167 metric tons of liquid scintilla-
tor consisting of mineral oil and 0.031 g/l of b-PBD, which affords detection
of both Cerenkov light and scintillation light. The Cerenkov cone and the
time distribution of the light give excellent particle identification. Cosmic ray
muons going through the detector are tagged by a veto shield surrounding it.

The experiment searches for the reaction

p+ ν̄e− > e+ + n (25.26)

followed by n+ p− > D + γ(2.2 MeV). The 2.2 MeV photon γ is determined
to be correlated with a positron (or not) using a likelihood ratio that depends
on the number of hit phototubes for the photon, the reconstructed distance
between the positron and the photon, and the relative time between their
production. The experiment found a total excess of 51.0± 20.2± 8.0 events,
which (if due to neutrino oscillations) corresponds to an oscillation probability
of (0.31± 0.12± 0.05)%.

This experiment, while intriguing, has yet to be confirmed. The related
KArlsruhe Rutherford Medium Energy Neutrino (KARMEN) experiment sear-
ched for such an effect but saw no oscillation [261]. However,, this experiment
differed from LSND in that the neutrinos travel a distance of 18m at KAR-
MEN but 30m at LSND. The KARMEN results do not cover the full region
of parameters that LSND does, and so it is possible that both experiments
are correct.

While atmospheric experiments all suggest that νµ’s predominantly decay
into ντ ’s there is as yet no direct test of this expectation. The CNGS ex-
periment (for CERN Neutrinos to Gran Sasso) is a proposal to make such
a test [262]. In this experiment a νµ beam from the CERN SPS machine is
aimed through the earth’s crust to the OPERA detector at the Gran Sasso
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laboratory 737 km away. This detector is sensitive to the reaction

ντ +N → τ− +N ′ (25.27)

which is achieved as follows. The neutrino energy must be above 10 GeV to
ensure that the above reaction is above threshold. However, this means the
flight length is small compared to the oscillation length, and so only a small
number of ντ ’s are expected, which in turn means a small number of τ−

events. This means the OPERA detector must have a large mass (to maximize
cross section) and a high resolution (to distinguish the decay products of the
τ−). Using a combination of emulsion and electronic techniques, OPERA
will achieve micrometer scale resolution with a mass of 2000 tons.

25.3 Neutrino Masses and Mixing Angles

From a particle physics viewpoint, there are two possible explanations for
neutrino oscillations. The most favored is that neutrinos have mass. A flux of
electron neutrinos produced inside the sun could, if sufficiently massive, oscil-
late into muon neutrinos which would go undetected in the experiments which
have been carried out to date. In 1985 Mikayhev and Smirnov [263], building
off work done by Wolfenstein [264], showed that this neutrino oscillation pro-
cess could be greatly enhanced inside the core of the sun because of the high
density of nucleons there. This effect remains the favored mechanism for ex-
plaining solar neutrino oscillations because it enhances only electron neutrino
oscillations into the other two flavors.

Another possibility is that gravity is responsible [265]. Neutrinos, instead
of being massive, might couple differently to gravity relative to the manner in
which baryons couple to gravity. According to the equivalence principle, all
forms of mass-energy couple in the same way to gravity, so one is postulating
here that the equivalence principle is violated in (at least) the neutrino sector
of the Standard Model. If so, then there is a discrepancy between the weak
eigenstates and the gravitational eigenstates of neutrinos, permitting neutrino
oscillations.

These two mechanisms can be distinguished from one another: the mass-
mechanism has an oscillation probability which varies inversely with energy,
whereas for the gravitational one the probability is proportional to the energy.
So neutrino oscillation experiments act as a test of the equivalence principle
[266]. The data from K2K have indicated that in the νν–ντ sector mass
oscillations appear to be the dominant mechanism [267], though both could
be operative – perhaps neutrinos are massive particles that couple unequally
to gravity!
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Today all world experiments indicate the following for the neutrino mix-
ing matrix, which has come to be called the Maki-Nakagawa-Sakata or MNS
matrix [268]. It relates the mass eigenstates (labeled 1,2,3) to the weak
eigenstates  |νe〉|νµ〉

|ντ 〉

 ≡
 Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 |ν1〉
|ν2〉
|ν3〉

 (25.28)

The MNS matrix has the same form as the CKM matrix (21.55), but with an
additional feature. Writing cosϑij = cij and sinϑij = sij the MNS matrix
is Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 (25.29)

=

 c12c13 −s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 eiα1 0 0
0 eiα2 0
0 0 1


and we see that there is an additional diagonal phase matrix on the right.
For quarks this phase matrix can be absorbed into redefinitions of the quark
wavefunctions. However, it is possible that neutrinos are identical to their
own antiparticles, in which case we call them Majorana particles. We have
already observed antiquarks to be distinct particles from quarks, but we have
no corresponding evidence that the same situation is true for neutrinos and
antineutrinos.

If neutrinos are their own antiparticles then the eiαk phases cannot be
absorbed into a redefinition of neutrino wavefunctions. These phases influence
neutrinoless double beta decay and other processes, but do not affect flavor
oscillation of neutrinos. Each of α1, α2, and δ contribute to CP violation – at
present we have no empirical information as to the values of these parameters.
Note that the size of CP violation in neutrino oscillation will depend on s13,
since δ always occurs in combination with this parameter.

We’ve seen above that the characteristic time (or length) for conversion
from one flavor into another in a 2-flavor model is inversely proportional to(
∆mc2

)2. In a full 3-flavor model the same kind of relationship would hold,
but with ∆mc2 replaced with much more complicated expression depending
on the neutrino masses. However, the atmospheric neutrino data are are very
well described by the hypothesis that the oscillation is purely a 2-flavor one
between νµ and ντ . Furthermore, the empirical value of ϑ23 suggests that
these are maximally mixed, i.e. the conversion between the two flavors is as
large as possible. This greatly simplifies the interpretation of the data. The
SNO and KamLAND data, in conjunction with atmospheric and reactor data,
suggest that two neutrino mass eigenstates are significantly involved in solar
neutrino evolution. SNO and KamLAND also establish that the mixing angle
for this process is large. Finally, bounds on the short-distance oscillation of
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reactor electron-antineutrinos imply that |Ve3|2 < 0.032, which in turn means
that s2

13 < 0.032.
If we put together all current experimental information on neutrino oscilla-

tions we find the following experimental values [1]

ϑ12 ≈ ϑ� = 33.9o +2.4o

−2.2o ϑ23 ≈ ϑatm = 45o ± 8o ϑ13 < 3.2o (25.30)

∆m2
21 ≈ ∆m2

� = 8.01+0.6
−0.4 × 10−5 eV2 (25.31)

∆m2
32 ≈ ∆m2

31 ≈ ∆m2
atm = 2.4+0.6

−0.5 × 10−3 eV2 (25.32)

I’ve used the convention here that the numbers 1,2,3 represent the order of
decreasing νe content, and used notation to take into account that observed
results indicate that essentially ϑ12 is the “solar mixing angle” and ϑ23 is the
“atmospheric mixing angle.”

The current situation is depicted in 25.5. This picture shows that two of

FIGURE 25.5
The currently understood possibilities for the mass spectrum of the weak
neutrino eigenstates. Notice that the standard weak-flavor combinations sig-
nificantly mix together for each mass eigenstate.

the three mass eigenstates are close together in mass, and that there is a 3rd
mass eigenstate that is somewhat heavier – or lighter! At this point in time
we don’t know which is the case. Unlike the quarks, each mass eigenstate has
lots of mixing between the different flavors of neutrinos. For example, the
middle-mass eigenstate on the left (or the top one on the right) is an almost
equal superposition of all three neutrino flavors.

There is another intriguing possibility suggested by the KARMEN/LSND
results. If both of these experiments are correct then the best fit to the data
implies that

0.2 eV2 < ∆m2
LSND < 1 eV2 (25.33)
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which is a huge mass splitting compared to the solar and atmospheric cases.
However, if there are only three mass eigenstates we must have

∆m2
21 + ∆m2

32 + ∆m2
13 = 0 (25.34)

and it is not possible for ∆m2
LSND,∆m

2
�, and ∆m2

atm to satisfy this equation.
So if all experiments so far are yielding reliable results, there must be at least
one more flavor of neutrino! Confirming this would definitely indicate that
there is a lot of new physics beyond the Standard Model.

Neutrino physics should yield some of the most interesting information
about what lies beyond the Standard Model over the next few years. As
experiments (such as LSND/KARMEN) are refined and as new observatories
(such as SNOlab, the successor to SNO) collect data, we should learn much
more about the behavior of the neutrino sector of the Standard Model.

25.4 Axions and the Neutron Electric Dipole Moment

Another possibility for finding new physics beyond the Standard Model con-
sists of investigating the structure of the neutron. Recall from Chapter 6 that
under time-reversal T, the magnetic dipole moment ~µ of a particle changes
sign, but the electric dipole moment ~d does not. Since the only direction that
a subatomic particle at rest “picks out” is the one given by its spin, dipole
moments must either be aligned or antialigned with the spin direction. But
under T the spin flips sign but ~d doesn’t, violating time-reversal. Assum-
ing that CPT is a symmetry, then this means that CP is violated for any
elementary particle having a nonzero electric dipole moment, or EDM.

If an elementary fermion had an electric dipole moment then there would
be an additional vertex in the Standard Model as illustrated in fig. 25.6 where
Σµν = i

4 ([γµ, γν ]) and the constant gd is a coupling constant (having units
of charge times length) parametrizing the strength of the EDM. Except for
the factor of γ5, this vertex looks just like that for the anomalous magnetic
moment interaction induced by loop corrections in QED.

This vertex violates both T and P and so it does not exist in QED. Purcell
and Ramsey in 1950 [269] considered a rather unconventional model in which
the EDM of the neutron respected P, which was thought to be a symmetry of
the world at that time. They obtained the limit

gneutron
d < 10−13 e-cm (25.35)

for the neutron. Once parity was found to be violated by the weak interactions
it was still thought that the EDM of the neutron (if it had one) was T-invariant
and thus also CPT-invariant by virtue of the CPT-theorem. However, when
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FIGURE 25.6
Vertex for a fermion with an electric dipole moment.

CP-violation was observed in 1964, the subject of the EDM of the neutron
became of particular importance in physics, since it afforded a new test of CP
physics.

QED is invariant under each of C, P, and T and as a consequence treats both
right-handed and left-handed quarks on the same footing. It was originally
thought that QCD respected the same symmetries since gluons coupled with
the same strength to both right-handed and left-handed quarks. However, in
the 1970s a subtlety in QCD was discovered that indicated it did not satisfy
CP symmetry. The reason for this has to do with the vacuum (or ground
state) structure of a non-abelian gauge theory.

A gauge particle (like a photon or gluon) that is in a configuration that has
vanishing field strength at large distance must be a pure gauge artifact. For
the photon this just means that its wavefunction is Aµ → ∂µα, where α is
some function that vanishes sufficiently rapidly at large distance. Another
gauge transformation can be made to set Aµ = 0 everywhere. This is clearly
the lowest energy state of the photon, and is regarded as the vacuum state of
QED.

However, for gluons the situation is different. There are distinct non-
vanishing configurations of the gluon wavefunction that are pure gauge at
large distance. These configurations all have vanishing field strength at large
distance but cannot be set to zero (or equal to each other) by another gauge
transformation. Since each of these distinct configurations has a field strength
that vanishes at large distance, each can be regarded as a possible vacuum
state of QCD.

What distinguishes these configurations? The answer has to do with their
topology. Two field configurations of a gauge particle are said to be topolog-
ically equivalent if there is a mathematical transformation that continuously
changes one into the other without making the energy infinite in the process.
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For example, suppose there were a theory in which there were two poten-
tial energy minima for two different types of field strengths. If the barrier
between these minima were infinite then there is no continuous transforma-
tion we could make to change a field configuration whose energy was in one
minimum to that in another minimum. In this case we would say the two
configurations were topologically inequivalent, even though their minimum
energy was the same.

A helpful analogy consists of considering a rubber band. Suppose we have
a pole of finite length. We could either wrap the rubber band once around the
pole or not. Suppose the band is wrapped around the pole once. Since the pole
is of finite length we can easily remove the band from the pole by lifting it off
of one end. This is a continuous set of operations (a continuous mathematical
transformation) and so the configuration with the band wrapped around the
finite pole is topologically equivalent to the one where it is not around the
pole. We can do this for any configuration of the band: whether it is wrapped
once, twice, or many times (as long as the rubber can be stretched).

Now suppose the pole has infinite length. A rubber band that is not
wrapped around this pole is topologically distinct from one that is wrapped
once around this pole, since the latter cannot be taken off of the pole by any
continuous transformation. Since the pole is infinite we can’t lift the band
off. We could of course break the band and then glue it back together away
from the pole, but this is not a continuous transformation since the band is
no longer a band for part of this procedure. So we say in this case that
the two configurations are topologically distinct. In fact, any configuration
in which the band is wrapped around the pole a given number of times will
be distinct from one where it is wrapped a different number of times. If we
imagine having a band that won’t break no matter how much it is twisted,
then there will be a countably infinite number of different configurations that
are topologically distinct. We can label these by the number of times the band
is wrapped around the infinite pole – a quantity called the winding number.

The situation with gluons in QCD is similar to that of the rubber band
and the infinite pole. In QCD the gauge group is SU(3) and the gluon can
be in a configuration that at large distance has vanishing field strength and
so approaches a pure SU(3) gauge transformation. However, this transfor-
mation can’t be set to zero the way that we can for QED because the gauge
configuration is “wrapped around” all of space analogous to the way that
the rubber band is wrapped around the infinite pole. The configuration can
be unwrapped (zero gluon field strength everywhere), wrapped once, twice,
or many times around all of space‡. The different configurations are distin-

‡These wrappings are described mathematically by something called a homotopy group.
The homotopy group in this case is π3 (SU(3)) = Z, which means that there are countably
infinitely many topologically distinct maps from the group SU(3) to the three-dimensional
sphere, each map labeled by an integer. These distinct maps are what I am calling “wrap-
pings”.
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guished by a winding number. Since each of these “wrapped” configurations
has vanishing field strength at infinity, they qualify as possible vacuum states
(or ground states) of QCD. These configurations all violate CP, except for the
configuration where the winding number is zero.

Which one of these is the “correct” ground state? You might think that we
should just choose the one with zero winding number, but this is wrong be-
cause of a subtle non-perturbative quantum effect. Here is where the quarks
enter the picture. Recall that in order to get sensible quark masses, we had to
separately transform the set of right-handed and left-handed quark wavefunc-
tions to ensure that the Yukawa coupling matrix to the Higgs wavefunction
was diagonal with all elements real. This can be done, of course, but one
transformation required to ensure this involves simultaneously transforming
all left-handed quark wavefunctions with one phase and all right-handed quark
wavefunctions with the opposite phase:

ψ′L = eiχψL ψ′R = e−iχψR (25.36)

There is a non-perturbative quantum effect that induces from this transforma-
tion one of the wrapped configurations of the gluon vacuum that has nonzero
winding number. So even if we started with a vacuum of zero winding num-
ber, this quantum effect would give us a vacuum that had a non-zero winding
number once we made the above transformation. There is a non-zero proba-
bility to tunnel from a vacuum with zero winding number to one with nonzero
winding number.

So why not include all the winding numbers, and say that the actual vac-
uum of QCD is some linear combination of them all? In fact, this is what is
(and should be) done. Since each wrapping is labeled by a winding number
n, its quantum state can be denoted by |n〉. Each vacuum state is separated
from those with a different winding numbers by an energy barrier. Using
methods beyond the scope of this text [270], it is possible to show that quan-
tum mechanical transitions can take place between these different vacua, with
amplitudes

〈m| e−iHt |n〉 ∝ exp

(
−8π (m− n)2

gs

)
(25.37)

which is a non-perturbative effect (there is no good series expansion of the
right-hand side of eq. (25.37) for small gs). The amplitude is small for small
strong coupling gs, and large for large gs. Since we have tunneling between
the different vacua, the true vacuum state must be a linear superposition of
all of them. As with periodic potentials in quantum mechanics (whose true
ground state is the Bloch wave), we define the true vacuum to be

|θ〉 =
∑
n

e−inθ |n〉 (25.38)

and it is possible to show that this vacuum is invariant under all possible
SU(3) gauge transformations. However, it is not CP-invariant.
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The parameter θ labels the different possible physically inequivalent sectors
of QCD. We could choose any value of θ that we want and compute physical
processes in a gauge–invariant manner. Unlike the vacuum states |n〉, which
can interact with one another via quantum tunneling, each |θ〉-world cannot
communicate with any other |θ〉-world. Consequently θ becomes another con-
stant of nature (telling us what vacuum we live in), one of the undetermined
parameters of the Standard Model.

Can we determine θ by experiment? Yes – this is again where the quarks
come in. We can make another transformation of the form in eq. (25.36)
on the quark wavefunctions to eliminate θ entirely, setting it equal to zero.
This sounds good, except that now our quark mass terms have a complex
phase that induces the CP-violating vertex shown in fig. 25.6. We can further
redefine the phases of all of the quark wavefunctions to get rid of this phase
everywhere in the equations of motion except for the mass term of one quark,
which we might as well take to be the up quark (though any quark would
do). This phase is of the form exp (iθ/Nf ) where Nf is the number of quark
flavors. Hence if one quark mass were zero, there would be no CP-violation
of this type in QCD.

However, experiment tells us that all quark masses appear to be nonzero.
The net effect of this phase is to induce the vertex shown in fig. 25.6 for the
up quark only. We could go to some trouble to compute the amplitude for
the neutron, by constructing an effective neutron vertex for the electric dipole
moment, but we don’t need to in order to estimate how large this effect is.
The coupling gd must be proportional to |θ| and the mass mu and charge
of the up-quark. This has units of (charge)×(mass), but on dimensional
grounds the dipole moment must have units of charge times length, which
is the same as charge/mass, since the Compton wavelength of a particle is
inversely proportional to its mass. Hence we need to divide by the square of
a mass. The only mass scale for the neutron is the mass of the neutron mn,
so on dimensional grounds

gneutron
d ∼ |θ| emu

m2
n

= 10−16 |θ| e-cm (25.39)

a result that is supported by more detailed calculations. The best experi-
mental limits today imply [1]

|gneutron
d | < 10−25 e-cm (25.40)

which is very tiny, and sets a bound of |θ| < 10−9.
This suggests that perhaps θ = 0, and that the actual vacuum of our world

really does conserve CP after all. The problem with this is that we have
no mechanism within the Standard Model for setting θ = 0 any more than
we have a mechanism for setting one of the parameters of the CKM matrix
to a particular value. However, the near-vanishing value of θ is suggestive
that perhaps some dynamical mechanism is at work to naturally make θ = 0.
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Peccei and Quinn in 1977 proposed such a mechanism [271] in which θ became
a dynamical variable that relaxed to the minimum of an effective potential
where C and P were both conserved. This mechanism requires the existence
of a new pseudoscalar particle called the axion.

The original axion from the Peccei-Quinn model was ruled out by exper-
iment, but new versions of the model appeared in which the axion couples
weakly enough to ordinary matter to have thus far escaped detection [272].
The common feature of all such models is that there is some U(1) symmetry
that is spontaneously broken at some high energy and is slightly broken by
the non-trivial QCD vacuum, providing a small mass for the axion.

If there is an axion, it will most likely be observed as result of its interactions
with the light quarks, or in other words with the low-mass hadrons. However,
because axions couple to gluons, they indirectly couple to pions. The most
general model for coupling the axion to up and down quarks leads to a theory
(that I won’t go into detail about here) that describes interaction of the axion
with pions. To leading order in the pion decay constant fπ, this theory leads
to the result [273]

maxion =
fπ
fa

√
mumd

(mu +md)
mπ =

6× 10−3 (MeV)2

fa
(25.41)

where fa is the “axion decay constant” with units of energy that parametrizes
the energy scale of the spontaneous breaking of the U(1) symmetry.

The interactions that axions can have with fermions would modify predicted
cross-sections for a whole range of accelerator and reactor experiments. By
setting fa to be large enough we can easily make these modifications tiny
enough to have escaped detection so far. Since axions couple to pions they
also couple to photons. Stars can therefore “cool off” by emitting axions,
and limits on the rate of stellar cooling of red giant stars force fa > 107GeV.
A stronger limit [274] comes from the supernova SN 1987A: the observed
neutrino pulse from confirmed the theoretically expected cooling speed young
neutron stars to be a few seconds, which means that excessive cooling by
axions cannot take place, forcing fa > 1010GeV.

This last limit means that axions are very light – about 6× 10−3 eV. You
might imagine that searching for such a low mass particle in the lab would be
very challenging. The most promising approaches exploit the fact that axions
and photons will convert into each other in the presence of an external electric
or magnetic field. An external magnetic field will cause axion–photon oscil-
lation in a manner similar to neutrino-flavor oscillations, whereas the electric
field due to a charged particle (like a nucleus) will make the conversion an
effective scattering process of the form γ+Ze→ a+Ze, a phenomenon called
the Primakoff effect [275]. If a photon is moving in a direction perpendicular
to an external magnetic field it will convert into axions moving in the same
direction as the beam [276]. This phenomenon can be searched for by sending
a laser beam down the bore of a two long superconducting dipole magnets
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(like the bending magnets in high-energy accelerators). Axions will be gener-
ated in the first magnet provided the oscillation length is comparable to the
length of the magnet. Putting a barrier to the laser beam in between the two
magnets will cause only axions (if there are any) to move through the second
magnet, which will convert them to photons that can then be detected. So far
such searches have yielded null results [277], and have not yet placed limits on
axion couplings that are better than what we have from stellar observations.

It is also possible to get an upper bound on fa from cosmological consid-
erations [278]. Axions will be produced in the early universe, contributing to
the overall energy density of the universe. However, the axion energy den-
sity doesn’t rapidly dissipate into other particles because axions couple very
weakly to known matter. This “invisible” energy density will exceed the
amount that would cause the universe to be closed (contrary to observation)
unless fa < 1012GeV. So perhaps there really are axions out there!

25.5 Frontiers

Neutrino physics and axions represent only a small portion of the effort being
expended today to understand what lies beyond the Standard Model. In
the remaining part of this chapter I will sketch out a few of the many other
approaches being taken to extend the frontiers of our knowledge.

25.5.1 Dark Matter

Axions and neutrinos both form examples of what might be called “dark
matter” – matter that interacts so feebly with known matter that its presence
in the universe on cosmological scales can almost certainly be detected only
via its gravitational interactions with known matter. The latter half of the
20th century led to the construction of a standard cosomological model of the
universe that describes all known cosmological data in a single framework.
The total mass-energy of the universe is now known to be within about 1%
of the critical value needed for the universe to be closed and finite (the so-
called critical density) [1]. Within the context of this model it is known that
only 4% of this consists of known matter, which is inferred from the relative
abundance of hydrogen, helium, and other light nuclei. Most of this – 3.6%
of the total – is in the form of interstellar gas, with the remaining 0.4% in the
form of stars and planets.

Another 23% of the energy density is dark matter – a form of mass-energy
whose presence is known only via its gravitational attraction to other luminous
(and known) matter. This kind of matter neither emits nor absorbs photons
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(or if it does, it does so at a rate so feeble as to have so far escaped detection).
The composition of this matter is an outstanding puzzle for both particle
physics and cosmology. It was once thought that neutrinos could be the dark
matter, but it is now known that they contribute at best 1% to this amount.
It is generally thought that dark matter is some new kind of particle not
described by the Standard Model. In view of the limits above, axions are a
viable candidate today, but there are several other possibilities. A new kind
of “sterile neutrino” – one that can convert into known neutrinos but does not
participate in the weak interactions – is another possibility. Yet another is
a WIMP, short for Weakly Interacting Massive Particle. WIMPs experience
weak interactions, but have escaped detection in accelerator experiments so
far due to their presumed large mass, which is perhaps 10s or 100s of GeV.
Supersymmetry (see below) provides a theoretical framework for describing
such particles [280].

Trillions of WIMPs must be passing through the Earth each second if they
indeed exist. Experimental searches for WIMPs are ongoing. Some attempt
to directly detect them with a laboratory detector, whereas other experiments
search for indirectly for WIMPs via the products of their decays and anni-
hilations. Some experiments have claimed detection (for example EGRET
[281], CDMS [282] and DAMA/NaI [283]) but without confirmation, and oth-
ers have found only null results. A number of experiments are currently in
progress, and still others are in development. The LHC counts as one of these
– it could detect WIMPs as a form of missing energy and momentum provided
their coupling to ordinary matter were sufficiently strong and their masses not
too large [284].

25.5.2 Dark Energy

Normal matter – including dark matter – is gravitationally attractive. It there-
fore imposes a deceleration on the expansion of the universe, slowing down the
expansion in a manner analogous to the way the earth’s gravity slows down
a projectile launched from its surface. An outstanding goal in cosmology for
a number of years was to measure the amount of this deceleration. In 1999
this goal was achieved by looking at supernova data. Supernovae of type 1a
can be used as reliable distance indicators (standard candles) in astronomy
because their absolute luminosity is known. They are visible at very large
distances, and so can be used to infer the deceleration rate. Distant super-
novae should appear brighter and closer than their redshifts would otherwise
suggest.

When the measurements were completed, most supernovae were found
to be dimmer and further away than expected. In other words instead of
decelerating, the universe was accelerating in its expansion! This means that
there must be some other form of matter with a kind of gravitationally repul-
sive character, and it must be in enough abundance to overcome the attractive
decelerating effects of the known and dark matter. Further measurements in-
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dicate that the remaining 73% of the energy density of the universe is of this
type: it is a very peculiar form of matter that has negative pressure.

The simplest explanation of this form of matter is that it is a relic vacuum
energy, parameterized by what is called a cosmological constant [285]. This
means that the dark energy is the same at all times and places. This introduces
yet another parameter into the Standard Model as noted earlier. However, this
parameter is very problematic for physics. All subatomic particles contribute
to the vacuum energy density, and an estimate based on known methods
from quantum field theory estimate a value for this vacuum energy density
that is 10120 times the amount that is observed. This is perhaps the largest
discrepancy between theory and experiment known in science [15].

As you might have guessed, many physicists have attempted to provide some
other explanation for dark energy by making it depend on space and time in
some way. These approaches typically suggest the existence of new particles.
Others have attempted to modify General Relativity, our established theory of
gravity, at large distances and/or over long cosmological times. On general
grounds there is no reason at this point in time to prefer a cosmological
constant over any of these other models, and the question of the composition
of dark energy is wide open [8]. At present, cosmologists and astronomers
are in the process of mapping out the historical development of our universe
to see if the dark energy is indeed constant by measuring thousands of more
supernovae and the distribution of mass on very large scales.

25.5.3 Grand Unification

The fact that weak and electromagnetic interactions can be unified into a sin-
gle theory suggests that the strong interactions should somehow be included
as well. Such theories were called “Grand Unified Theories”, or GUTs, since
they would unify all non-gravitational forces into one grand theoretical frame-
work, with one coupling constant governing them all.

How might this work? We’ve seen in chapters 14, 18 and 23 that each of
the coupling constants is a function of energy. The electromagnetic coupling
ge grows as a function of energy whereas the other two decrease. So it is
not unreasonable to imagine that they might all have the same value at some
energy. A rough estimate puts this energy scale at 1016 GeV – the grand
unification scale.

The simplest GUT was a model with SU(5) as the gauge symmetry group
[286]. It’s simplest in the sense that this is the group with the smallest num-
ber of generators that can include the groups of the strong and electroweak
theories. All of the quarks and leptons in a given generation were assigned to
be in irreps of this group. There are fifteen such particles: the right- and left-
handed electron, the electron-neutrino, and up and down quarks of 3 colors
each, each right and left handed. The smallest two irreps – the quintet and
the decuplet of SU(5) – were used: three left-handed charge-conjugate down
quarks, the left handed electron and the electron-neutrino were placed in the
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quintet – so they would be regarded as one kind of “particle,” and the rest
(charge-conjugated as needed) were placed in the decuplet, the other kind of
“particle.” That all the particles did not fit into a single irrep was regarded
as somewhat unattractive, and a different GUT, based on the group SO(10)
allows all known particles (plus the right-handed neutrino) to fit into a single
irrep, the 16, of this group.

Some kind of Higgs mechanism is presumed to break the SU(5) symmetry
down into the SU(3)×SU(2)×U(1) symmetry of the Standard Model (with
the SU(2) × U(1) in turn broken by the Higgs mechanism we looked at in
chapters 22 and 23). But in the absence of symmetry breaking all the leptons
and quarks in a given generation have the same mass, and interact identically,
attracting/repelling one another under a single force, which in SU(5) would
be governed by the exchange of what are called leptoquark bosons, a general-
ization of gluons. There are 24 of them. Twelve are really just the photon,
W±, Z and gluons in disguise; the rest are new bosons that change leptons
into (anti)quarks and vice versa – hence the name, analogous to the way that
a W boson changes an electron into its neutrino partner, or a gluon changes
a blue quark into a green one. Leptoquark bosons come in two types (X with
charge + 4

3 and Y with charge + 1
3 , along with their antiparticles) and couple

antiquarks to leptons and quarks to antiquarks; some examples of vertices
in the SU(5) model appear in figure 25.7. Under symmetry breaking these
leptoquark bosons become very massive, about 1015 GeV.

This is very heavy – but not infinitely heavy. Every now and then a down
quark could emit one of these objects and change into a positron. The lep-
toquark boson can then collide with one of the remaining up quarks in the
proton, changing it into an anti-up quark. This in turn binds with the other
up quark to produce a π0. These kinds of theories therefore predict that
baryons are unstable, and that the proton can decay via the process

p→ e+ + π0 (25.42)

as shown in figure 25.8, albeit very slowly since the leptoquark boson is so
heavy.

The original estimates for this process put a bound on the range of lifetime
of the proton [287] as 1031 > τp > 1030 years, twenty orders of magnitude
longer than the age of the universe! This sounds nigh impossible to detect,
but if a sufficiently large number of protons are collected together – say about
1030, roughly the amount in a swimming pool of water – then about 1 per
year should decay. Since the decay channel (25.42) is so unique, there is a
chance of actually observing this process.

Well, people looked hard and carefully over a series of increasingly precise
searches, but didn’t see any evidence for proton instability [288]. The current
lower bound is [1]

τp > 1033years (25.43)

ruling out the original SU(5) model and putting constraints on all GUTs.
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FIGURE 25.7
Examples of leptoquark boson vertices in SU(5). The vertex rules carry with
them appropriate combinations of color to ensure color conservation.

The reluctance of the proton to decay as hoped for put a damper on GUT
models. To make matters worse, the three coupling constant were also found
to not actually coalesce at a single value of the energy. This was due to pre-
cision measurements at LEP. Prior to these measurements there was enough
uncertainity in the values of the constants that within limits of error they all
had the same value at an energy of 6× 1014 GeV (which led to the prediction
in eq. (25.42) for the proton lifetime). However, it is now known that the
three constants do not meet at a single point in the original SU(5) model
[289] – see figure 25.10.

So if there is to be a Grand Unified Theory, it must include some kind of
new physics beyond the leptoquark bosons that must appear in such a scheme.
Either there must be new (unstable) particles with masses in between the
GUT-scale of 1016 GeV and the electroweak scale of 100 GeV, or new gravity
effects, or new energy scales less than the GUT scale at which the GUT
symmetry (whatever it is) is broken.

25.5.4 Supersymmetry and Superstrings

A vexing problem of the Standard Model (known as the hierarchy problem)
is connected with the Higgs particle. The mass of any subatomic particle will
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FIGURE 25.8
A possible means for the proton decay process in eq. (25.42) to take place in
SU(5).

be corrected by loops that consist of the fermions and gauge bosons from the
Standard Model that couple to that particle. These corrections are generally
under control for pretty much all of the particles in the Standard Model
except for the Higgs particle, where the loop corrections to the mass tend to
induce corrections that are about 1016GeV in the context of any Grand Unified
Theory. It’s possible to adjust parameters to get this value to be between 100
and 250 GeV, but only by a very delicate cancellation to 13 decimal place
precision, and this is just at one loop order. A two-loop correction to the
Higgs mass would entail cancellation to 26 decimal place precision. What
would cause such cancellations?

One possible explanation – favored by a very large number of theorists – is
that supersymmetry is responsible [290]. Recall that fermion loops contribute
a minus sign whenever they appear. A loop with bosons contributes positively.
This suggests that we could impose a new symmetry on a given theory, one
in which every fermion loop is cancelled by a corresponding boson loop. This
will only work if the boson in the loop has exactly the same properties as
the fermion except for spin. A supersymmetric theory is one in which each
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fermion has a corresponding boson partner with identical properties (mass,
charge, etc.) except for spin. It is possible to formally transform the fermion
wavefunction into its boson partner and vice versa – such a transformation is
called a supersymmetry transformation. From the perspective of supersym-
metry, these fermion and boson particles are really just two different states of
one “superparticle,” analogous to the way that the electron and its neutrino
are different states of one weak doublet.

Superstring theories go a step further [11]. In such theories particles are
regarded not as pointlike, but as line-like, or as a string. The string can be
open – like a shoelace – or closed, like a rubber band, as illustrated in figure
25.9. The idea is that the most fundamental elementary particle in nature
is a string, and the known particles we see – the quarks, the leptons, the
photon, the weak bosons, the gluon, even the graviton – are different kinds
of vibrations of this fundamental object. It can be shown that these kinds of
theories predict states of every possible allowed spin. One of these is a spin
3/2 particle, referred to as the gravitino since it transforms with the graviton
under supersymmetry. Many theorists view the string approach as attractive
because it incorporates gravity into the theoretical scheme that describes the
interactions of all of the other particles. String theory is presumed to be

FIGURE 25.9
In string theory, point particles are large-distance approximations to strings.

valid at very high energies, energies at which quantum gravity is expected
to become important. This is higher than the GUT scale, so high that the
the Compton wavelength of a particle of mass M becomes comparable to its
Schwarzschild radius 2GM/c2, the radius of a black hole of the same mass.
This energy scale is called the Planck scale, the scale at which all particle
interactions are effectively indistinguishable from one another, and at which
perhaps even our standard concepts of time and space break down. Some



Beyond the Standard Model 513

kind of symmetry breaking mechanism is presumed to take place that reduces
the theory to general relativity and a Grand Unified Theory of some kind at
lower energies.

It is clear that none of the known particles in the Standard Model can be
the superpartners of any other particle since their properties are all so very
different. Hence if supersymmetry is valid there must be at least twice as many
particles as observed, since each known particle will have a superpartner. For
example the electron will have a partner called the “selectron” that will have
the same charge and mass as the electron but zero spin. This symmetry
will ensure that the corrections to the Higgs mass are zero, since every loop
contributing positively from a boson will be cancelled by one from its fermion
superpartner.

So where are these superpartners? None have yet been observed, and it
is easy to see why. If a selectron really existed with the above properties
it would bind to nuclei to form atoms. Since the selectron is a boson, the
Pauli principle is not operative – many selectrons would Bose-condense in
atoms, causing normal matter to implode. Supersymmetry therefore must be
a broken symmetry if it is to play a role in the description of particle physics.
A symmetry-breaking mechanism must be in place that ensures all unobserved
superpartners gain masses that are too large to have been detected so far. This
effect will spoil the perfect loop cancellations that correct the Higgs mass, but
if the symmetry breaking scale is small enough (say about 1 TeV) then the
imbalance between the boson and fermion loops can be kept small enough to
ensure the corrections to the mass of the Higgs are not too large.

This leads to a very attractive feature of supersymmetry – it restores the
unification of the forces at high energy! Provided supersymmetry is broken
at about 1 TeV, all three coupling constants become the same at GUT scale
energies. The actual calculations from the running coupling constants in the
minimal supersymmetric extension of the Standard Model give [289]

MSUSY = 103.4±1.3GeV
MGUT = 1015.8±0.4GeV (25.44)
α−1

GUT = 26.3± 2.9

in order to ensure unification, as illustrated in figure 25.10. The coupling
constants are

α1 =
5
3

e2

4π~c
α2 = αW =

(gW)2

4π~c
α3 = αs =

g2
s

4π~c

where the factor of 5/3 in the electromagnetic case is a convention chosen to
normalize its generator relative to those of the strong and electroweak gauge
groups.

The numbers in eq. (25.45) are tantalizing, given that the LHC will ex-
plore the TeV energy scale. Yet the mechanism for supersymmetry breaking
is an outstanding problem. The simplest supersymmetric generalization to
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FIGURE 25.10
Running of the electromagnetic, weak, and strong coupling constants in the
Standard Model (left), and in its minimal Supersymmetric (SUSY) extension
(right). The thickness of the lines is indicative of the errors.

the Standard Model has over 125 adjustable parameters, and there is neither
a compelling approach to breaking supersymmetry nor a clear way to pre-
dict these parameters. However, all supersymmetric theories have the feature
that the superpartners cannot all decay into known particles. There must
be a lightest supersymmetric particle (LSP) whose presence has so far gone
undetected. This particle could perhaps be a dark matter WIMP referred to
above.

One of the major hopes of the LHC is to find some of these superpartners. If
none are seen, new bounds on supersymmetry breaking and its role in physics
will be established. Conversely, if definitive evidence for superpartners is
obtained then our picture of particle physics will be revolutionized.

25.6 Summing Up

There are many new ideas for extensions to the Standard Model that are being
explored in various laboratories around the world, and I have mentioned only
a few of the most popular ideas here. Keep in mind that there are lots of other
ideas out there for both theoretical generalizations and experimental study,
and there is a need to generate more of each. Perhaps you will someday
contribute in the quest to find the fundamental theory of physics.
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25.7 Questions

1. (a) Consider neutrino oscillations in the full 3-flavor case. Show that
the probability for a neutrino flavor να to change into a flavor νβ in time
t is given by

P (να → νβ) =

∣∣∣∣∣∑
I

VαIV
∗
βI exp

(
−im

2
It

2E

)∣∣∣∣∣
using the same approximations as for the 2-flavor case, where E is energy
of the neutrino.

(b) Suppose now that we assume ∆m2
21 � ∆m2

23 ' ∆m2
31. Show that

P (νe → νµ) = sin2 ϑ23 sin2 2ϑ13 sin2

(
∆m2

23t

2E

)
P (νe → ντ ) = cos2 ϑ23 sin2 2ϑ13 sin2

(
∆m2

23t

2E

)
P (νµ → ντ ) = cos2 ϑ13 sin2 2ϑ13 sin2

(
∆m2

23t

2E

)
where the ϑij are the parameters of the MNS matrix.

2. Assuming ϑ13 is small, find P (νe → νe).

3. Consider writing the CKM matrix in the same form as the MNS matrix:Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

 c12c13 −s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


as in eq. (21.55).

Off-diagonal elements of the CKM matrix become increasingly smaller
as the generation number increases. Suppose we define

s12 = λ s23 = Aλ2 s13e
−iδ = Aλ3 (ρ− iη)

and consider λ to be a small parameter.

(a) Find the approximate form of the CKM matrix, retaining in each
entry the relevant power of λ.

(b) Why isn’t this approximation valid for the MNS matrix?
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4. A “large” gauge transformation U acts on the vacuum |n〉 as follows

U |n〉 = |n+ 1〉

Show that the |θ〉-vacuum is eigenstate of U .

5. Show that the |θ〉-vacuum is unique. In other words, show that the
amplitude for a transition from |θ〉 to |θ′〉 is zero unless θ = θ′, where
H is the Hamiltonian of the system.

6. Find two other diagrams that can yield the decay process

p→ e+ + π0

in SU(5).

7. Find the energy at which the Compton wavelength of a particle of mass
M is equal to its Schwarzschild radius. How much larger is it than the
GUT scale? How large is it in kilograms? Convert it to units of time
(called the Planck time) and distance (called the Planck length).



A

Notation and Conventions

A.1 Natural Units

The fundamental constants of nature that appear in all studies of particle
physics are Planck’s constant } and the speed of light c. These have values

} = 1.05457266× 10−34 Js (A.1)
c = 2.99792458× 108 ms−1 (A.2)

which are rather cumbersome to use. It is much more convenient to work in
natural units∗ where } = h

2π = 1 and c = 1. This also allows one to set the
permittivity of free space, ε0 = 1, provided all charges are rescaled in units of
(}c)−1/2. I will typically adopt these conventions, except on occasions where
it is useful to illustrate the explicit units. This will typically be when I display
a result that can be directly compared to experiment (such as a decay rate or
a cross-section), in which case the factors of ~ and c are useful.

The easiest way to work with this in particle physics is to (a) express all
velocities as a fraction of the speed of light and all times in terms of the
light-travel distance (b) convert distances into units of inverse energy (or vice
versa) as appropriate, using the conversion factor }c = 197 MeV-fm, and (c)
express charges, masses and momenta in units of energy.

So we use the following prescriptions:

Physical Quantity Notation Units Natural→ Physical
velocity ~β unitless ~β → ~v/c

time t ~/MeV t→ t/~
length d ~c/MeV d→ d/}c
mass m MeV/c2 m→ mc2

momentum ~p MeV/c ~p→ ~pc

charge q unitless q → q/
√

}c
energy E MeV

∗The reason why they are called natural units is because their definition is a consquence
of the properties of nature rather than any human construct. It is common to include
Newton’s constant of gravity G, setting G = 1 in which case natural units are often called
Planck units.
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So in other words, if we see a given expression that depends on mass, time,
momentum and energy, to convert it to standard units we apply the conversion
factors in the right-hand column. I have given a set of examples in table A.1.

Units of charge follow differing conventions. Particle physicists like to use
Heaviside-Lorentz units, and I shall adopt these here. This means that the
fine-structure constant is

α =
e2

4π~c
though I will typically use natural units and set ~ = c = 1.

Coulomb’s Law System Units

F = q1q2
4πε0r2

SI Coulombs

F = q1q2
r2 Gaussian Electrostatic units (esu)

F = q1q2
4πr2 Heaviside-Lorentz 1√

4π
Electrostatic units (esu)

A.2 Relativistic Notation

A 4-vector aµ will generally be noted in component form as aµ = (a0,−→a ),
where −→a is a 3-vector. Repeated indices are almost always summed over all
of their values – when this is not the case it will be explicitly indicated. So
for example

Aµ ·Bµ ≡
3∑

µ=0

(Aµ ·Bµ) = A0B
0 +A1B

1 +A2B
2 +A3B

3

The reason for this convention is that the cumbersome summation symbols can
be suppressed in writing expressions and doing calculations. I will use Greek
letters (α, β, γ, . . .) to denote the components of 4-vectors (and 4-tensors), and
Latin letters (a, b, c, ...) to denote components of 3-vectors.

A.2.1 Metric

A very important quantity is the metric gµν , which has the associated line
element (or interval)

ds2 = gµνdx
µdxν =

(
dx0
)2 − d~x · d~x =

(
dx0
)2 − (dx1

)2 − (dx2
)2 − (dx3

)2
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where in matrix form the metric is

gµν =


+1
−1
−1
−1


and its inverse is

gµν =


+1
−1
−1
−1


which means that

gµνg
µσ = gνµg

σµ = δσν =


1

1
1

1


and δσν is the relativistic Kronecker-delta function. From this perspective, the
metric generalizes the notion of the 3-dimensional Kronecker-delta function
δij to special relativity. It is the object that tells us how to measure distances
and time intervals, and takes the dot-product between vectors. For any 4-
vector we define

aµ : covariant aµ : contravariant (A.3)
aµ = gµνaν = (a0,−−→a )⇐⇒ aµ = (a0,−→a ) = gµνa

ν (A.4)

and the relativistic version of the dot-product is

a · b = gµνa
µbν = aµbµ = aµb

µ = gµνaµbν = a0b0 −−→a ·~b

In general the magnitude of a 4-vector is the dot-product of the vector
with itself

(4-vector)2 = (timepart)2 − (3-vector)2 (A.5)

a2 = aµaµ = a2
0 − |−→a |

2 (A.6)

The negative sign means that a given 4-vector can be one of three possible
types:

Spacelike a2 < 0
Timelike a2 > 0
Null a2 = 0
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A.2.2 Momentum and Energy

The most important 4-vector we will be using is the 4-Momentum pµ =
(E,−→p ), which has the following property

p · p ≡ gµνpµ pν = E2 −−→p · −→p = m2 (where m is a constant) (A.7)

or E2 = |−→p |2 +m2 (or, converting to standard (A.8)

notation, E2 = |−→p |2 c2 + (mc2)2 )

where we interpret E = p0 as the energy of a particle with 4-momentum pµ
and mass m. Depending on the physical situation, a 4-momentum in a given
process can have any one of the possible norms:

Spacelike p2 < 0 (e.g. for a mediator in a scattering process)
Timelike p2 > 0 (e.g. (rest mass)2 of a physical particle)
Null p2 = 0 (e.g. a physical photon)

A.2.3 Lorentz Transformations

A Lorentz-transformation is

a′µ = Λ ν
µ aν a′µ = Λµ νa

ν (A.9)

a′µ · b′ µ = aµ · bµ ⇐⇒ gαβΛ µ
α Λ ν

β = gµν ⇐⇒ Λσ µΛ ν
σ = δνµ = Λ ν

σ Λσ µ

The matrix Λ performs rotations and boosts:

(1) Boosts (γ = 1/
√

1− β2)

along x-axis: Λµ ν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 =⇒


E′ = γ(E − βpx)
p′x = γ(px − βE)

p′y = py
p′z = pz

along y-axis: Λµ ν =


γ 0 0 0
0 1 −βγ 0
0 −βγ γ 0
0 0 0 1

 =⇒


E′ = γ(E − βpz)

p′x = px
p′y = γ(py − βE)

p′y = py

along z-axis: Λµ ν =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

 =⇒


E′ = γ(E − βpz)

p′x = px
p′y = py

p′z = γ(pz − βE)

(2) Rotations

about x-axis: Λµ ν =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

 =⇒


E′ = E
p′x = px

p′y = cos θ py + sin θ pz
p′z = − sin θ py + cos θ pz
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about y-axis: Λµ ν =


1 0 0 0
0 cos θ 0 − sin θ
0 0 1 0
0 sin θ 0 cos θ

 =⇒


E′ = E

p′x = cos θ px − sin θ pz
p′y = py

p′z = sin θ px + cos θ pz

about z-axis: Λµ ν =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 =⇒


E′ = E

p′x = cos θ px + sin θ py
p′y = − sin θ px + cos θ py

p′z = pz

From the above, we see that Λ is the generalization of a rotation matrix to
special relativity. It obeys the following properties

(a) gαβΛαµΛβ ν = gµν
(b) |det Λ| = 1
(c) (Λ1)αµ (Λ2)µ β = (Λ12)α β (2 Lorentz-tmfs → Lorentz tmf)

(d)
∣∣∣(Λ)0

0

∣∣∣ ≥ 1

A.3 Greek Alphabet

TABLE A.2

Greek Alphabet
alpha α A nu ν N
beta β B omicron o O
gamma γ Γ xi ξ X
delta δ ∆ pi π Π
epsilon ε, ε E rho ρ, % P
zeta ζ Z sigma σ, ς Σ
eta η H tau τ T
theta θ, ϑ Θ upsilon υ Υ
iota ι I phi φ, ϕ Φ
kappa κ,κ K chi χ Ξ
lambda λ Λ psi ψ Ψ
mu µ M omega ω,$ Ω



B

Kronecker Delta and Levi-Civita Symbols

B.1 Kronecker Delta

The identity matrix in any N -dimensional space is denoted in index form as
δJI , where I, J,= 1, . . . , N . It is defined as

δJI =
{

0 I 6= J
1 I = J

= diag(1, 1, 1, . . . , 1)

or in other words as a matrix with 1’s along the diagonal and zeroes everywhere
else. The trace of an N ×N matrix AIJ is

Tr[A] = AIJδ
IJ = AIJδIJ = AJI δ

I
J

The indices on δJI can be raised or lowered without penalty except in the
case of relativistic spacetime, where the metric raises and lowers indices. In
general, the indices in the Kronecker delta function take on the values and
notation of the indices in the space under consideration.

For example, in spacetime the indices of the Kronecker-delta function would
be Greek indices running over the values 0, 1, 2, 3, and we have

δσν = gµνg
µσ = gνµg

σµ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Here only δσν has meaning; the quantities δνσ and δνσ are meaningless.

In three-dimensional space the Kronecker-delta function is denoted δij where

δij = δij = δij =

1 0 0
0 1 0
0 0 1


and here the indices can be raised lowered as is convenient.

In the two-dimensional space of Pauli matrices

δab = δab = δab =
(

1 0
0 1

)
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where a, b have the values 1, 2.
In the four-dimensional space of Dirac matrices

δab = δab = δab =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


where a, b have the values 1, 2, 3, 4. The range and labeling of the indices is
context-dependent.

B.2 Levi-Civita Symbol

The N -dimensional Levi-Civita symbol (or epsilon-tensor) is denoted εJ1···JN ,
where J1, J2, . . . JN = 1, . . . , N . It has as many indices as the dimension of
the space in which it is defined, and is defined by

εJ1···JN =

+1 if J1, . . . , JN is an even permutation of 1, 2, 3, . . . , N
−1 if J1, . . . , JN is an odd permutation of 1, 2, 3, . . . , N
0 otherwise (when any two indices are equal)

or in other words the εJ1···JN symbol vanishes unless all indices are differ-
ent and is otherwise ±1 depending on the permutation of the indices. The
determinant of an N ×N matrix AIJ is

det[A] = AI1J1AI2J2 · · ·AINJN εI1···IN εJ1···JN (B.1)
= AI1J1AI2J2 · · ·AINJN εI1···IN εJ1···JN (B.2)
= AJ1

I1
AJ2
I2
· · ·AJNIN ε

I1···IN εJ1···JN (B.3)
= A11A22A33 · · ·ANN −A12A21A33 · · ·ANN + · · · (B.4)

The ordering of the indices of εJ1···JN matters but (as with the Kronecker
delta) they can be raised or lowered without penalty except in the case
where the space under consideration is spacetime, in which case the metric
raises/lowers indices. In general, the indices in the Levi-Civita symbol take
on the values and notation of the indices in the space under consideration.

For example, in spacetime the indices of the Levi-Civita symbol would be
Greek indices running over the values 0, 1, 2, 3, and we have

εµναβ = gµρgνλgασgβτερλστ (B.5)

εµναβ =
{
−1 (if µναβ is an even permutation of 0123)
+1 (if µναβ is an odd permutation of 0123) (B.6)

ε0123 = −1 ε0123 = +1

εµναβ =
{

+1 (if µναβ is an even permutation of 0123)
−1 (if µναβ is an odd permutation of 0123) (B.7)
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The following identities hold in spacetime:

εµναβεµρτκ = −δνρδατ δβκ − δαρ δβτ δνκ − δβρ δντ δακ
+δνρδ

β
τ δ

α
κ + δβρ δ

α
τ δ

ν
κ + δαρ δ

ν
τ δ
β
κ (B.8)

εµναβεµντκ = −2
(
δατ δ

β
κ − δακδβτ

)
(B.9)

εµναβεµνακ = −6δβκ (B.10)
εµναβεµναβ = −24 (B.11)

In three dimensions

εijk = εijk =
{

+1 (if ijk is an even permutation of 123)
−1 (if ijk is an odd permutation of 123) (B.12)

ε123 = ε123 = +1 (B.13)

In two dimensions

εij = εij =
{

+1 (if ij is an even permutation of 12)
−1 (if ijk is an odd permutation of 12) (B.14)

=
(

0 1
−1 0

)
(B.15)

ε12 = ε12 = +1 (B.16)





C

Dirac Delta-Functions

The Dirac δ-function is defined as

δ(x) =


0 x 6= 0∫∞

−∞ dxδ(x) = 1

and is mathematically a distribution, since it is undefined at x = 0. It is kind
of a functional generalization of the Kronecker-delta.

Any continuous function f(x) obeys the rule

f(x)δ(x) = f(0)δ(x)

since δ(x) vanishes when x 6= 0. This means that in general∫ ∞
−∞

dxf(x)δ(x− a) = f(a)

which can easily be shown by writing x′ = x− a in the above integral.
More generally ∫ ∞

−∞
dxf(x)δ(g(x)) =

n∑
i=1

f(xi)
|g′(xi)|

with g′(xi) = dg
dx

∣∣
x=xi

, where

g(xi) = 0 i = 1, . . . n

are the places where the function g(x) vanishes. This is straightforwardly
shown by letting y = g(x), so that dx = dy

g′(x) and y = 0 when x = xi. The
range of integration flips sign if g′(xi) < 0, which gives a negative value for
the answer in all such cases, hence leading to the absolute-value |g′(xi)| in the
denominator.

The notation δ(n) refers to a product over n variables:

δ(n)(x) = δ(x1)δ(x2) · · · δ(xn)

so that

δ(4)(p− p′) = δ((p− p′)1)δ((p− p′)2)δ((p− p′)3)δ((p− p′)4)
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The δ-function can also be understood as the derivative of the Heaviside
step function Θ(x):

Θ(x) =

 0 x < 0

1 x > 0

We can see this as follows. Instead of integrating the δ-function over all values
of x, integrate it up to an arbitrary value of x. This gives

∫ x

−∞
dyδ(y) =

0 x < 0

1 x > 0

because clearly if x < 0 then the δ-function vanishes everywhere in the range
of integration, and if x > 0 we have included the singular point x = 0, and so
we can continue to integrate out to x =∞ (since δ(x) = 0 for x > 0), yielding
a value of 1 for the integral. Consequently∫ x

−∞
dyδ(y) = Θ(x) ⇒ dΘ(x)

dx
= δ(x)



D

Pauli and Dirac Matrices

D.1 Pauli Matrices

The 3-Pauli matrices are Hermitian, unitary, traceless 2× 2 matrices:

{σx, σy, σz} =
{
σ1, σ2, σ3

}
=
{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
We don’t distinguish between upper and lower indices, so that

σ1 = σ1, σ
2 = σ2, σ

3 = σ3

We have the product rule

σiσj = δijI + iεijkσk = δij + iεijkσk

where the 2× 2 unit matrix I is often suppressed, as in the second part of the
expression above. This rule implies

(σ1)2 = (σ2)2 = (σ3)2 = 1
σ1σ2 = iσ3 and cyclic (D.1)

[σi, σj ] = 2iεijkσk {σi, σj} = 2δij

and for any two vectors ~a and ~b :

(~a · ~σ)
(
~b · ~σ

)
= ~a ·~b+ i

(
~a×~b

)
· ~σ

We also have the exponential relation

exp
[
~θ · ~σ

]
=
∞∑
n=0

(
~θ · ~σ

)n
n!

= cos θ + iθ̂ · ~σ sin θ

where ~θ = θθ̂.
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D.2 Dirac Matrices

The Dirac γ-matrices are four unitary traceless 4× 4 matrices defined by the
relation

{γµ, γν} = 2gµν

and are most commonly represented in the form

γ0 =
(
I 0
0 −I

)
γi =

(
0 σi

−σi 0

)
where I is the 2× 2 identity matrix and the σi are the Pauli matrices.

The indices of the Dirac matrices are raised/lowered using the metric

γµ = gµνγ
ν ⇒ γ0 = γ0 γi = −γi

For any 4-vector aµ we have

/a = aµγµ = aµγ
µ

and the “bar” of any 4× 4 matrix M is

M̄ = γ0M†γ0

From the Dirac matrices the additional matrices

γ5 = iγ0γ1γ2γ3 =
(

0 I
I 0

)
(D.2)

Σµν =
i

4
([γµ, γν ]) (D.3)

Σ0i = − i
2

(
0 σi

σi 0

)
Σij =

1
2
εijk

(
σk 0
0 σk

)
(D.4)

are in common usage, γ5 for parity transformations and helicity projections
and Σµν for Lorentz transformations. We also have{

γµ, γ5
}

= 0

D.3 Identities and Trace Theorems

The Dirac matrices obey the following useful identities
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γ0
)† = γ0

(
γi
)† = −γi γµ = γµ(

γ0
)2 = I

(
γi
)2 = −I γαγ

α = 4

γαγ
νγα = −2γν γα/aγ

α = −2/a

γαγ
µγνγα = 4gµν γα/a/bγ

α = 4a · b

γαγ
µγνγλγα = −2γλγµγν γα/a/b/cγ

α = −2/c/a/b

where the bar of a matrix Γ is Γ = γ0Γ†γ0. These can be used to prove the
following trace theorems

Tr [I] = 4 Tr [odd # of γ-matrices] = 0

Tr [γµγν ] = 4gµν Tr
[
/a/b
]

= 4a · b

Tr
[
γµγνγαγβ

]
= 4

(
gµνgαβ − gµαgνβ + gµβgνα

)
Tr
[
/a/b/c/d

]
= 4 (a · b c · d− a · c b · d+ a · d b · c)

Tr
[
γ5
]

= 0 Tr
[
γ5γµγν

]
= 0

Tr
[
γ5γµγνγαγβ

]
= 4iεµναβ Tr

[
γ5/a/b/c/d

]
= 4iεµναβaµbνcαdβ





E

Cross-Sections and Decay Rates

E.1 Decays

For a single particle of 4-momentum pµ decaying intom particles of 4-momenta
p′µ1 · · · p′µm via the process

1→ 1′ + 2′ + · · ·m′

the decay rate is

dΓ =
Sc2

2}E

[
m∏
i=1

c (∆p′i)
3

2E′i (2π)3

]
|〈p′1 · · · p′m |M| p〉|

2 (2π)4
δ(4)

(
m∑
i=1

p′i − p

)
where E is the energy of the decaying particle . If this particle is at rest and
has mass M then E = Mc2. The quantity S is a statistical factor – it equals
1/n! for each group of n identical particles in the final state.

If m = 2 then there are only 2 particles in the final state, in which case the
decay rate simplifies to

Γ2-Body =
S |~p ′| c

8π} (Mc)2 |M|
2

when the initially decaying particle is at rest, and where ~p ′ is the momentum
of either of the outgoing momenta in the final state, with 〈p′1 · · · p′m |M| p〉 =M

|~p ′| =
c
√
M4 +m4

1′ +m4
2′ − 2m2

1′m
2
2′ − 2M2m2

2′ − 2M2m2
1′

2M
and S = 1/2! if the outgoing particles are identical.

E.2 Cross-Sections

For two particles of 4-momenta pµ1 and pµ2 that collide and produce m particles
of 4-momenta p′µ1 · · · p′µm via the process

1 + 2→ 1′ + 2′ + · · ·m′
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the cross-section is

dσ =
}2S

4
√

(p1 · p2)2 − p2
1p

2
2

[
m∏
i=1

c (∆p′i)
3

2E′i (2π)3

]
|〈p′1 · · · p′m |M| p1p2〉|

2 (E.1)

× (2π)4
δ(4)

(
m∑
i=1

p′i − p2 − p1

)
(E.2)

where now 〈p′1 · · · p′m |M| p1p2〉 =M and as before S is a statistical factor that
equals 1/n! for each group of n identical particles in the final state.

E.2.1 2-Body CMS

If m = 2 then there are only 2 particles in the final state, and in a reference
frame where the spatial momenta of the colliding particles are equal and
opposite (the CMS, or center-of-momentum system) so that ~p1 = −~p2, the
cross-section simplifies to(

dσ

dΩ

)
2-Body CMS

=
(

}c
8π

)2 S |M|2

(E1 + E2)2

|~p ′|
|~p|

where the outgoing momenta obey the relation

~p ′1 = −~p ′2 = ~p ′

and where √
(p1 · p2)2 − p2

1p
2
2 = (E1 + E2) |~p1| /c

E.2.2 2-Body Lab Frame

By definition the lab frame is the frame where one particle is at rest, which
can be taken to be particle # 2 so that ~p2 = 0 and so E2 = M2c

2.
In general, the formula is messy, even if there are only two particles in the

final state. However, if the two outgoing particles are massless (M1′ = M2′ =
0) then the cross-section simplifies to(

dσ

dΩ

)
2-Body inelastic-LAB

=
(

}
8π

)2 S |M|2 |~p ′1 |
M2 |~p1| [(E1 +M2c2)− |~p1| c cos θ]

If the particles scatter elastically, so that the outgoing particles are the same
as the two particles in the initial state (1 + 2 −→ 1 + 2) then the differential
cross section simplifies to(

dσ

dΩ

)
2-Body elastic-LAB

=
(

}
8π

)2 S |M|2 |~p ′1 |
2

M2 |~p1| [|~p ′1 | (E1 +M2c2)− |~p1|E′1 cos θ]



Notation and Conventions 535

If M1 = 0 (so that the incoming particle is massless) then this formula
further simplifies to(

dσ

dΩ

)
2-Body elastic-LAB

=
(

}E′1
8πM2cE1

)2

|M|2

Alternatively, if M2c
2 >> E1 (when the target recoil can be neglected), it

simplifies to (
dσ

dΩ

)
2-Body elastic-LAB

=
(

}
8πM2c

)2

|M|2

and in both cases S = 1 because the two particles in the final state cannot be
identical.

In all of these cases √
(p1 · p2)2 − p2

1p
2
2 = M2c |~p1|





F

Clebsch-Gordon Coefficients

Clebsch-Gordon tables, reproduced here from the Particle Data Book [1],
contain explicit formulae for all the Cjm ( j1, j2;m1m2) coefficients given in
eq. (5.29). The total spins (j1, j2) being combined are given in the upper left
of one of the sub-tables. The respective (m1,m2)-values (or z-components)
of these spins are given in the lower-left boxes in a subtable, and the possible
output |j m〉 wavefunctions are in the upper right boxes in the same sub-
table. The Cjm ’s are the square roots of the numbers in the relevant middle
boxes, where the minus sign (if there is one) goes outside of the square root.
Additional formulae are for lowest order spherical harmonics.
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G

Fundamental Constants

The constants of nature are taken from CODATA (Committee on Data for
Science and Technology), and current values can be found at

http://physics.nist.gov/cuu/Constants/index.html

and from the Particle Data Group, where current values are at

http://pdglive.lbl.gov/listings1.brl?exp=Y
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H

Properties of Elementary Particles

The following tables list some basic properties of the elementary particles –
the gauge bosons, leptons, and quarks – as well as of some of the properties
of the lowest-energy quark bound states (mesons and baryons).
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The Large Hadron Rap

Lyrics by Kate McAlpine; used with permission

Twenty-seven kilometers of tunnel under ground
Designed with mind to send protons around
A circle that crosses through Switzerland and France
Sixty nations contribute to scientific advance
Two beams of protons swing round, through the ring they ride
’Til in the hearts of the detectors, they’re made to collide
And all that energy packed in such a tiny bit of room
Becomes mass, particles created from the vacuum
And then

LHCb sees where the antimatter’s gone
ALICE looks at collisions of lead ions
CMS and ATLAS are two of a kind
They’re looking for whatever new particles they can find.
The LHC accelerates the protons and the lead
And the things that it discovers will rock you in the head.

We see asteroids and planets, stars galore
We know a black hole resides at each galaxy’s core
But even all that matter cannot explain
What holds all these stars together something else remains
This dark matter interacts only through gravity
And how do you catch a particle there’s no way to see?
Take it back to the conservation of energy
And the particles appear, clear as can be

You see particles flying, in jets they spray
But you notice there ain’t nothin’, goin’ the other way
You say, “My law has just been violated – it don’t make sense!
There’s gotta be another particle to make this balance.”
And it might be dark matter, and for first
Time we catch a glimpse of what must fill most of the known ’Verse.
Because
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LHCb sees where the antimatter’s gone
ALICE looks at collisions of lead ions
CMS and ATLAS are two of a kind
They’re looking for whatever new particles they can find.

Antimatter is sort of like matter’s evil twin
Because except for charge and handedness of spin
They’re the same for a particle and its anti-self
But you can’t store an antiparticle on any shelf
Cuz when it meets its normal twin, they both annihilate
Matter turns to energy and then it dissipates.

When matter is created from energy
Which is exactly what they’ll do in the LHC
You get matter and antimatter in equal parts
And they try to take that back to when the universe starts
The Big Bang back when the matter all exploded
But the amount of antimatter was somehow eroded
Because when we look around we see that matter abounds
But antimatter’s nowhere to be found.
That’s why

LHCb sees where the antimatter’s gone
ALICE looks at collisions of lead ions
CMS and ATLAS are two of a kind
They’re looking for whatever new particles they can find.
The LHC accelerates the protons and the lead
And the things that it discovers will rock you in the head.

The Higgs Boson – that’s the one that everybody talks about.
And the one sure thing that this machine will sort out
If the Higgs exists, they ought to see it right away
And if it doesn’t, then the scientists will finally say
“There is no Higgs! We need new physics to account for why
Things have mass. Something in our Standard Model went awry.”

But the Higgs I still haven’t said just what it does
They suppose that particles have mass because
There is this Higgs field that extends through all space
And some particles slow down while other particles race
Straight through like the photon it has no mass
But something heavy like the top quark, it’s draggin’ its ***
And the Higgs is a boson that carries a force
And makes particles take orders from the field that is its source.
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They’ll detect it.

LHCb sees where the antimatter’s gone
ALICE looks at collisions of lead ions
CMS and ATLAS are two of a kind
They’re looking for whatever new particles they can find.

Now some of you may think that gravity is strong
Cuz when you fall off your bicycle it don’t take long
Until you hit the earth, and you say, “Dang, that hurt!”
But if you think that force is powerful, you’re wrong.
You see, gravity – it’s weaker than Weak
And the reason why is something many scientists seek
They think about dimensions we just live in three
But maybe there are some others that are too small to see
It’s into these dimensions that gravity extends
Which makes it seem weaker, here on our end.
And these dimensions are “rolled up” curled so tight
That they don’t affect you in your day to day life
But if you were as tiny as a graviton
You could enter these dimensions and go wandering on
And they’d find you...

When LHCb sees where the antimatter’s gone
ALICE looks at collisions of lead ions
CMS and ATLAS are two of a kind
They’re looking for whatever new particles they can find.
The LHC accelerates the protons and the lead
And the things that it discovers will rock you in the head.
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[56] O. Klein and Y. Nishina Zeit. fur f. Phys. 52, 853 (1929).

[57] C. S. Wu and I. Shaknov, Phys. Rev. 77, 136 (1950).

[58] J. Schwinger, Phys. Rev. 82 (1951) 914; G. Lüders, Det. Kong. Danske
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