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Preface

The purpose of this book is to introduce 4th-year or senior undergraduate
students to what is known as the Standard Model of Particle Physics, the
model that presently encompasses all of our empirical knowledge about the
subject.

Particle physics was in a near-continual state of flux for several decades,
finally settling down around the mid 1990s when the mass of the Z boson had
been accurately measured, the number of light quarks and leptons had been
established, and the top quark had been discovered. The Standard Model has
since then faced pretty much every experimental challenge to its authority
with flying colors, and today it stands as the established fundamental theory
of the non-gravitational interactions, describing all known forms of subatomic
matter that we have observed.

The goal of this book is to familiarize students with the Standard Model
and in so doing, with particle physics in general. It grew out of a one-term
course I have taught at the University of Waterloo nearly every year over the
past two decades. It was an interesting course to teach because the subject
matter would change as particle physics continued to develop, with new results
coming out from LEP, Fermilab, Super-K, SNO and more on the experimental
side, and from supersymmetry, string theory, and lattice gauge theory on the
theoretical side. Students taking the course typically had taken at least one
course in quantum mechanics (in which they would have seen the solution
to the hydrogen atom from Schroedinger’s equation), one in mathematical
physics (covering vector calculus, Fourier transforms, and complex functions),
and had a solid background in special relativity (having encountered the basic
phenomena of length contraction and time dilation).

This book assumes that students have a good working knowledge of spe-
cial relativity, quantum mechanics, and electromagnetism. From this basis
students who work through the material will develop a solid command of the
subject and a good working knowledge of the basics of particle physics, in
terms of mathematical foundations, experimental methods, and basic pro-
cesses. Each chapter has a number of questions, and there is a solutions
manual available that has complete answers to all of the questions.

I have taken the approach of describing the Standard Model in terms of its
Electromagnetic, Strong, and Weak components, so that students can under-
stand the subject from the perspective of the reigning paradigm. Throughout
I have endeavored to show why this paradigm does indeed reign — in other
words, how and why the different parts of the Standard Model came to be

xiii
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what they are today, particularly pointing out and describing the experiments
that were essential in arriving at these conclusions. I have also made efforts
to show where the Model is in need of improvement and what possible physics
might lie beyond what it describes. This is particularly addressed in the last
chapter, but also appears throughout the book in a number of places. Our
understanding of particle physics is by no means a finished project, and I hope
that students will catch the excitement of the ongoing nature of research in
this subject.

Particle physics is both mathematically and conceptually challenging, and
many have thought that it can only be taught in a very superficial way at
the undergraduate level, if it is taught at all. In my 20 years of teaching this
subject I have found that students can indeed rise to the challenge, if both the
formalism and background are carefully explained to them in a manner that
allows them to connect with the physics they have already learned. I have
taken that approach in this book, beginning (after a review of relativity) with
some basic concepts in group theory and classical mechanics that lead into the
subjects of symmetries, conservation laws, and particle classification. Three
chapters following that are devoted to the experimental tools and methods,
and analysis of particle physics. The next three chapters introduce students
to Feynman diagrams, wave equations, and gauge invariance, building up to
the theory of Quantum Electrodynamics. The remainder of the book then
deals with the three pillars of the Standard Model: QED in Chapters 13 and
14, the strong interactions and QCD in Chapters 15 — 18, and Electroweak
interactions in Chapters 19 — 24, with the final chapter devoted to what might
lie beyond the Standard Model. I have also taken an historical approach to
the development of the subject wherever possible, showing how it emerged
from the physics that most students have learned about in other courses.

The book is designed to be used in a single course over one term, essentially
twelve weeks of lectures in a three-hour lecture week. Though I would typically
cover two chapters per week, there is a bit too much in the book for one term,
and so a few topics inevitably get scant attention. I suggest that students
read the first chapter on their own, and that instructors need cover only the
formalism in chapter 2 that may be unfamiliar to students. Instructors may
also wish to omit the material on the Higgs mechanism in Chapter 23, and
perhaps the material on QCD in Chapter 18 if time does not permit.

Theoretical Particle Physics rests on the foundation of Quantum Field The-
ory (QFT), that subject combining both special relativity and quantum me-
chanics into a unified whole. I have found that students can learn and make
use of the basic results of QFT — Feynman diagrams, scattering amplitudes,
antiparticles, decay processes — without having to go through a full discussion
of path integrals, Wick’s theorem, Interaction pictures, and the like. I have
avoided the use of the language of quantum fields, preferring to use the term
wavefunction so that students can make better contact with what they are fa-
miliar with. Throughout the book I acknowledge the quantum field theoretic
foundations on which the subject stands where appropriate. My goal is that
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students see both the forest and the trees, and not get too bogged down in
formalism.

That said, the subject is one requiring serious mathematical and intellec-
tual effort. I have attempted to cater to the more mathematically inclined
students by putting into appendices mathematically challenging material that
enriches but is not essential to the understanding of the material in a given
chapter. Any appendix can be avoided in a first reading of the book, and most
students will probably wish to do this. However, calculational derivations are
made explicit wherever possible, and students willing to work through the
appendices will be rewarded with an enriched understanding of the material
and a set of formidable technical skills.

It is my hope that undergraduate students reading this book or taking a
course that makes use of this book will be inspired by the subject of particle
physics. I also hope that beginning graduate students may be able to make
use of the book as preparation for more advanced courses they might take or
as a resource for basic calculations and background material. I have tended
to err on the side of completeness in my discussion to ensure that students are
able to make use of the book in as broad a range of applications as possible.

This book was written while I was at the University of Waterloo in Ontario,
Canada, and completed while I was on sabbatical at the Kavli Institute for
Theoretical Physics at the University of California, Santa Barbara, California
U.S.A., for whose hospitality I am most grateful. I am also grateful to Don
Marolf and Martin Einhorn for their efforts in ensuring that I could be hosted
there.
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Further Reading

The most importance resource in particle physics is the Review of Particle
Physics [1], published every other year since 1960 by the Particle Data Group,
or PDG, at Berkeley in the United States. This document — over 1000 pages in
length — contains all of the current empirical information that exists about the
subject, along with the most up-to-date reviews on every aspect of particle
physics relevant to the discipline. While it is not a place for beginners to
learn about particle physics, it is truly the bible of the subject insofar as
the information it contains is concerned. No student nor practitioner of the
subject should be without it. A summary version appears in booklet form, but
even that is now over 300 pages. I think a better way to access its information
is via the PDG Web site:

http://pdg.lbl.gov/

From this Web site you can obtain all known information about any particle
or process you want with only a couple of clicks of the mouse, along with any
review article you like.

If you want to read further in particle physics, I recommend the following
three books, which I have found particularly helpful in preparing this book:

A. Bettini, Introduction to Elementary Particle Physics, Cambridge Univer-
sity Press, 2008.

D. Griffiths, Introduction to Elementary Particles, 2nd edition, Wiley VCH,
2008.

D. Perkins, Introduction to High Energy Physics, 4th edition, Cambridge
University Press, 2000.

There are other particle physics books that I can recommend that are ac-
cessible to the undergraduate student. These are of varying levels of difficulty,
with some accessible to the non-specialist, and others of more difficulty. All
of them will have substantive parts that are accessible to someone in their
final year of an undergraduate physics program:

F. Close, M. Marten, and C. Sutton, The Particle Ezxplosion, Oxford Uni-
versity Press, 1987.

P. C. W. Davies and J.R. Brown, Superstrings: A Theory of Everything?,
Cambridge University Press, 1992.
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It is remarkable to realize that at the beginning of the 20th century — little
more than 100 years ago — the structure of the atom was unknown. The
electron had only been discovered a few years earlier, and its behavior and
properties were still not well understood. Nobody knew anything about nuclei,
protons, quarks, neutrinos, photons, gluons, and any of the many subatomic
particles that we know about today. Quantum mechanics and special relativity
were unknown conceptual frameworks for describing the physical world.

As the first decade of the 21st century draws to a close, the world will see
the Large Hadron Collider (or LHC) at CERN turn on*. The thousands of
scientists making use of this enormous machine — 27 kilometers in circumfer-
ence and 24 stories underground — pivot their efforts around a key goal: to
experimentally observe the Higgs particle and to measure its mass. If this
experiment is successful, then we will have full empirical confirmation of the
model — known as the Standard Model — that summarizes everything we know
about the subatomic world at this point in history. Such confirmation would
represent both a triumph of the human intellect and a gift of understand-
ing that would ennoble humankind. Yet if the Higgs particle is not found,
then the situation will be even more exciting. It will mean that something
is wrong with our current understanding of particle physics, something that
will be superseded by — it is hoped — more fundamental knowledge.

So what is particle physics? Particle physics is the study of nature at the
most reductionist level possible: it is the study of the ultimate con-
stituents of matter and the laws governing their interactions. The
idea that matter ultimately consisted of small indivisible particles is an old
idea, going back 2500 years to Democritus and Leucippus of Abdera, a town on
the seacoast of Thrace in Greece [2]. These philosophers proposed that all of
matter was made of aTouoc, or atoms (a Greek word meaning “uncuttable”)
and empty space.

This idea survived through the centuries, and was used by scientists such as
Newton, Dalton, Maxwell, and Mendeleyev to explain the behavior of gases
and chemical compounds. It grew into the subjects we now call chemistry and

*The LHC has attracted a lot of attention worldwide, in part because of the fundamental
questions it addresses and in part because of its large cost. There are many Web sites about
it with information, novels have been written in which the LHC is a principal setting, a
movie, Angels and Demons, in which the LHC plays a role, was released in May 2009, and
there is even a rap (reproduced in Appendix J) about the LHC on YouTube!
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physics, each of which has further subdivided into a variety of subdisciplines,
that in turn have a healthy synergy with one another.

Particle physics can be regarded as the subdiscipline that pushes the atomic
idea as far as possible. Simply put, it proceeds from two basic observations
about our world, common to everyday experience:

1. Things exist (i.e. there is matter)

2. Things happen  (i.e. interactions occur)

The goal of particle physics, then, is to reduce to as elementary a level as
possible our understanding of these two observations.

1.1 Methods of Study

One of things that distinguishes particle physics from most other subdisci-
plines in physics is in its approach to the natural world. In most other subdis-
ciplines — optics, condensed matter physics, acoustics, biophysics — the basic
(or effective) physical laws and constituents are known, and one works out
the consequences of these laws’. However, in particle physics the goal is to
discover what the laws and constituents are — one cannot take them as given.

So how does one study particle physics? As with all of science, research
proceeds on two fronts: experimental and theoretical. Each has a broad range
of intellectual activity, with theoretical efforts often appearing to be nothing
more than abstract mathematics, and experimental work seeming at times
indistinguishable from engineering. Don’t be fooled by superficial appearances
though! Each of these activities plays a vital role in advancing the subject,
and the two approaches have a healthy and vibrant interplay. Conceptually we
can categorize each approach, as summarized in table 1.1. The two columns
in table 1.1 form the primary conceptual categories in each area. There is a
lot of overlap both vertically down the columns and horizontally across the
rows. Let’s look briefly at each category.

1.1.1 Large Accelerators

Most of our experimental knowledge of particle physics comes from colliding
particles together at very high speeds, resulting in very energetic collisions.
For this reason, particle physics is sometimes called high energy physics. Very

TThis by no means makes such subdisciplines less intellectually challenging, less valuable,
or less important. Indeed, they have led to an understanding of many novel phenomena
and applications, including vortices, superfluids, photonic band gaps, and more.
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TABLE 1.1
Approaches to Particle Physics
Experimental Theoretical
Large Accelerators Empirical Analysis
Detectors Model Building
Precision Measurements Numerical Computation
Cosmological Data Mathematical Foundations

large machines called accelerators —kilometers in length — are needed to do
this [3]. When we wish to examine very tiny systems (i.e. very short dis-
tances and/or very short times) we must cope with limitations imposed by
the uncertainty principle :

ApAx > h= Ap>h/Az = Apis large for small Az
AENt > h= AE > h/At= AEFE is large for small At

Also, since from relativity £ = mc?, large mass particles need high energies
to be created. Hence we need accelerators that can attain very high energies
in order to study such short distance effects. In order to implement this,
the accelerators need to be quite large in size — we’ll see why in Chapter 7.
The LHC at CERN is currently the largest such machine in the world, and is
capable of accelerating particles to almost the speed of light [4].

1.1.2 Detectors

It does no good to smash particles together unless you can see what happens.
A detector is a machine designed to do just that. There are many kinds of
detectors, as we’ll see in Chapter 8, with the main job of each one being that
of measuring as much physical information about the particles emerging from
a collision as possible: their momenta, their masses, their spins, their charges,
their energies, and so on. These detectors are typically of enormous size — the
ATLAS detector at CERN is as high as a 5-story building (see figure 1.1) —
because of the large amount of sophisticated apparatus needed to ensure that
all of these measurements can take place.

However, large detectors are not the only kinds of detectors employed in
particle physics, nor are all detectors deployed in high-energy collision exper-
iments. This brings us to our next approach.

1.1.3 Precision Measurements

Not all of what we know about particle physics comes from smashing par-
ticles together. Sometimes we need to measure very subtle properties about
particles that cannot be observed in high-energy collisions. For example inter-
actions of neutrinos with other kinds matter (electrons, nuclei) do not require
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FIGURE 1.1

Installation of the beam pipe in the Atlas detector at the LHC in June 2008.
(Photograph: Maximilien Brice, copyright CERN; used with permission).

high energies. Furthermore, they are very infrequent and unlikely to occur.
Hence there is a need for sensitive detectors to pick out the signal from the
noisy background of the everyday world. The Sudbury Neutrino Observa-
tory was an example of a large-scale precision measurement facility designed
to detect the properties of solar neutrinos [5]. Other experiments — searches
for dark matter, axions, and other exotic phenomena — employ detectors of
all shapes and sizes, custom-made to seek out (or place limits on) the phe-
nomenon of interest.

1.1.4 Cosmological Data

The early universe was an environment of a hot plasma of all kinds of particles
[6]. The average temperature — and hence the average collision energy —
was very high, much higher than can be attained in controlled terrestrial
experiments. This means that observations from cosmology can provide us
with useful and important information about particle physics. An example of
this was a cosmological limit on the number of kinds of low-mass neutrinos,
which had to be less than 4 from the corroboration of Big Bang nucleosynthesis
with observation. The limit was later confirmed by experiments on the Z-
particle [7], which showed that there were only three kinds of neutrinos that
were lighter than half the mass of the Z.

It is common today for particle physicists and cosmologists to interact and
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FIGURE 1.2

View of the Sudbury Neutrino Observatory detector after installation of the
bottom photomultiplier tube panels, but before cabling (Photo courtesy of
Ernest Orlando Lawrence Berkeley National Laboratory; used with permis-
sion).
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collaborate with one another, with findings from each subdiscipline shedding
light on findings from the other. In fact, astroparticle physics has pretty much
become a separate subdiscipline of its own, with a community of theorists
and experimentalists actively seeking to further our understanding of this
interesting interdisciplinary subject [8].

1.1.5 Empirical Analysis

You might expect that a key job of a particle physicist is to analyze the data,
and you would be right. The experimentalists do this first, converting raw
data into usable information, such as measurements of the masses or lifetimes
of particles. Theorists make use of this information to seek new patterns in
the data, to critique existing analysis, and to suggest new experiments.

The analysis of the data itself makes use of a variety of mathematical tech-
niques of some sophistication, and today typically require vast amounts of
computer processing. The LHC will produce a data volume of 1 trillion bytes
per second, equivalent to 10,000 sets of an Encylopedia Brittanica each second
[4]. During its expected lifespan the LHC should produce an amount of data
equivalent in volume to that contained in all of the words ever spoken by
humankind in its existence on earth. Such an enormous volume of data per
unit time must be supplemented by a large computational infrastructure, as
well as a very sophisticated level of data processing and programming skill.

1.1.6 Model Building

A very common activity for a particle theorist is to propose a model for
how nature works at the subatomic level. This involves making a clear set of
assumptions about the particle content, the interactions between the particles,
and the basic symmetries respected by each, all with an eye toward making
a falsifiable prediction that an experimentalist could check. For example,
a theorist might suggest that electrons and muons are themselves made of
simpler particles that bind together according to some new forcet.

The difference between a theory and a model is often confusing to new-
comers to the subject. The distinction between the two is rather subtle, and
perhaps can best be understood in the following way. A theory is a basic
mathematical framework used for describing physics. Quantum mechanics,
Yang-Mills theory, and Special Relativity are all examples of these. A model
is a particularization of a theory to a specific context — it still very much has
a mathematical character, but also has a specificity designed to describe a
particular system or situation. For example the quark model is a particular

¥Such models were indeed proposed, with the constituents known by names such as preons
and rishons, and became known as substructure models [9].
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description of the underlying structure of particles such as the proton, neu-
tron, and pion (more generally of all hadrons), that makes use of quantum
mechanics, group theory, and Yang-Mills theory to elucidate its key features.

1.1.7 Numerical Computation

Computers have gone from playing a supplementary role in analyzing data
to an essential role in working out the consquences of physical theory. Many
of the problems in particle physics cannot be analyzed from a theoretical
standpoint without the use of computers. The calculations are simply too
big or too long for any person (or group of persons) to carry out in a reasonable
amount of time.

Lattice gauge theory is a good example [10]. In this approach to understand-
ing the behavior of quarks and gluons, many theorists work on attempting to
solve the basic equations of Quantum Chromodynamics (QCD) on a com-
puter, where spacetime is approximated as a lattice of discrete points. The
goal here is to solve the equations with as few approximations as possible,
something that has eluded formal theoretical analysis thus far.

1.1.8 Mathematical Foundations

This type of work involves a basic exploration of the mathematical structure
of particle physics and its models. It is highly mathematical, and involves
examining the basic foundations of current theory, as well as its proposed
extensions. Here the theorist attempts to prove/refute certain properties of
broad classes of models, with secondary regard as to their empirical content.

String theory is perhaps the best-known example of this kind of work [11].
Over the past 25 years it has given birth to new mathematical methods, new
conceptual frameworks, and new calculational techniques in particle physics,
a number of which could have interesting implications for the subject in the
years to come.

1.1.9 Units

Particle physics is commonly concerned with understanding highly energetic
processes at very short distances. This is a regime where special relativity
and quantum mechanics are both important, as noted earlier, and so both
Planck’s constant 7 and the speed of light ¢, which have the values [1]

B = 1.05457266 x 10734 Js
¢ = 2.99792458 x 10® ms™*

must be taken into account. Retention of these constants in every expression
can often be a cumbersome nuisance, so most particle physicists prefer to
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work in what are called natural units where h = % =1 and ¢ = 1. This also
allows one to set the permittivity of free space, eg = 1, provided all charges
are rescaled in units of (ﬁc)_l/ 21 will typically adopt these conventions,
except in certain cases where it is useful to illustrate the explicit units. This
will typically be when I display a result that can be directly compared to
experiment (such as a decay rate or a cross-section), in which case the factors
of A and c are useful.

With a bit of practice it is not hard to convert an expression in natural
units to one with the proper powers of i and ¢. The general prescription
for any given expression is to (a) express all velocities as a fraction of the
speed of light and all times in terms of the light-travel distance (b) convert
distances into units of inverse energy (or vice versa) as appropriate, using
the conversion factor hc = 197 MeV-fm, and (c) express charges, masses and
momenta in units of energy.

TABLE 1.2
Natural Units

Physical Quantity Notation  Units  Natural— Physical

v

velocity 1] unitless g — 2
time t h/MeV t— tfh
length d he/MeV d — d/hc
mass m MeV /c? m — mc?
momentum I MeV/c P — pc
charge q unitless q— \/%
energy E MeV

So for a given expression that depends on mass, time, momentum, energy
and charge, to convert it to standard units just apply the conversion factors
in the right-hand column of table 1.2. The resultant expression will be in
terms of physical quantities with respective units of kilograms, seconds, kg-
meters/second, Joules, and electrostatic units. There will also be a number of
factors of A ¢ that will cancel out to leave an appropriate resultant expression.

For example in natural units the Compton wavelength A = 1/m. To convert
this to physical units we set A — \/hc and m — mc?, giving A — \/hc =
1/mc? or A = h/me, which is the standard formula.
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1.2 Overview

The picture of particle physics circa 1940 was that everything in the universe
was made of 4 particles:

e the electron
P the proton

n the neutron
v the neutrino

All known chemical elements were made of the first three of these in some
combination, and it was generally believed at that time that all known ex-
traterrestrial matter — stars, planets, and interstellar dust — were made of
the same three particles. The last of these, the neutrino, was a hypothetical
particle needed to ensure that radioactive processes respected conservation of
energy and angular momentum, but had no direct observational confirmation
at that time.

The following 60 years saw a radical modification in our understanding of
the subatomic world. As experimental energies increased, hundreds of new
particles (almost all of them unstable) were discovered. For a period of time
the subject was in a considerable amount of confusion, but by the end of
the 1970s a general understanding of the situation had emerged, along with
a model — now called the Standard Model — that could describe all current
knowledge of the subject [12].

1.2.1 Bosons and Fermions

Today we know that all matter and its physical interactions can be described
in terms of two basic kinds of particles: bosons and fermions. Bosons are
particles of integer spin in units of Planck’s constant & — they are the ele-
mentary particles that govern what we describe as a force in the everyday
world. Fermions are particles of half-integer spin in the same units, and are
the elementary constituents of what we call matter.

Bosons and fermions are distinguished by their collective properties under
the interchange of two particles. Suppose we have a system consisting of two
identical particles. If we enclose the system in a box, then the probability of
finding one particle in a given position and the other in another position —
let’s call this P(1,2) — must be equal to the probability of finding the particles
interchanged in position (in other words we have P(1,2) = P(2,1)) because
they are identical and so we can’t tell them apart. Since quantum mechanics
implies that probabilities are given by square of wavefunction amplitudes, we
have

P(1,2) = P(2,1) = |¥(1,2)]* = |¥(2,1)? (1.1)
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However, this doesn’t mean that the wavefunction W(1,2) = ¥(2,1). Instead
we have the more general possibility that W(1,2) = e*¥(2, 1) where ¢ is some
phase. Applying the switch again would give ¥(1,2) = €2*¥(1,2), implying
that ¢ = +1, or

+U(2,1) boson

w(1,2) = { —U(2,1) fermion (1.2)

and we mathematically define bosons to be particles whose wavefunctions
maintain sign under particle interchange, whereas fermions are particles whose
wavefunctions flip sign under particle interchange. The spin-statistics theorem
states that all fermions have half-integer spin and all bosons have integer spin
[13]. In this text I will assume as valid the conditions that render the theorem
true’.

Note that indistinguishable means just that — two elementary particles of
the same type are perfect duplicates of one another. It is simply not possible
by any measurement we can make to tell one electron apart from another,
or put a label on one 7T to distinguish it from another 7. This property
of elementary particles is unlike anything in our everyday experience in the
macroscopic world, where we are used to things that are similar — such as
identical twins, or computers off of an assembly line — but not exactly the
same. The elementary microscopic constituents of our universe are huge in
number — about 1080 particles in all — but are of only 38 elementary types
(including antiparticles), as we shall see shortly. It could have been otherwise,
in which case it is hard to imagine how a coherent physical description of the
universe would be possible. Just imagine trying to construct a theory with
1080 different kinds of particles, each of which had its own distinct properties!

Of course the existence of these 38 elementary types is our state of knowl-
edge at the present time, and we now know that it is almost certainly incom-
plete. Over the past three decades we have discovered from observations in
cosmology and astronomy that only 4% of the total energy of the universe
is made of known matter (i.e. the matter that makes up the elements in
the periodic table). Another 23% of the this energy budget is dark matter,
whose presence is known to us only by the gravitational attraction it exerts
on galaxies and clusters of galaxies [6]. Its composition in terms of elementary
particles remains unknown to us at this point in history. The remaining part
of the energy — 73% — is called dark energy, which is even more mysterious
since it is causing the universe to accelerate in its expansion, whereas ordi-
nary mass/energy (and the dark matter) would exert a decelerating influence.
The ultimate composition of this form of energy is not at all clear, though
the simplest explanation would appear to be that it is the vacuum energy

8 A generalization of the result that all bosons have integer spin and all fermion half-integer
spin (in units of A) occurs in theories with only two space dimensions. In this case it is
possible to have particles that have any possible spin, and such particles are called “anyons.”
These kinds of wavefunctions have applications in condensed matter physics [14].
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of the universe, i.e. the ground-state energy of the aggregate of all bosons
and fermions [15]. The problem with this interpretation is that although the
cosmological vacuum energy is the largest fraction of the total energy of the
universe (about 3/4), theoretical calculations indicate that it should be much
larger than the value we observe — about 10*2° times larger!

Nobody knows how to resolve the puzzles of dark energy and dark matter,
and much effort is currently being expended by cosmologists, astronomers,
and particle physicists to find out what these things are and how they behave.
For the most part I will ignore these interesting issues thoughout most of this
textbook, concentrating on elucidating the structure of the 4% of matter that
we do know something about, and which is described by the Standard Model
of particle physics. But there is one thing that we can be fairly confident
about — whatever the dark stuff is, its elementary constituents will be bosons
and/or fermions.

1.2.2 Forces

As far as experiment has been able to tell us, all known interactions in the
world are governed by some combination of four basic forces: gravity, elec-
tromagnetism, nuclear (called the strong force), and radioactive (called the
weak force). These forces have very different properties and manifestations,
as illustrated in table 1.3.

Note that each force is associated with something called a mediator. What
does this mean? Suppose we have a source of electric charge () and we want to
know what force a small test charge ¢ experiences in its vicinity. In classical
physics the answer is well known: we express the effect of () on ¢ in terms of
something called an electric field E

F')onqzqﬁ:

4Qq 7 + - - = (monopole) + (dipole) +(quadrupole, etc.)
77

r2
which we say is due to the source Q). It is a vector, each component of which

is a continuous function of the distance r. Of course the electric field itself is
not directly observable; only the force T is.
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This classical notion of force is modified at short distances due to quantum
effects [16]. As Planck and Einstein noted in the last century, in order to
describe certain phenomena (such as blackbody radiation or the photoelectric
effect) the electromagnetic field should be “lumpy” — that is, it should come
in distinct quanta called photons. In this picture, the source @ influences ¢
by exchanging a photon with it, as shown in figure 1.3.

CI\{: 9
r IO\

FIGURE 1.3

The left side is the classical picture of forces and fields, in which an element
of charge (Q a displacement 7 away exerts a force F on a test charge q. The
right side is the quantum picture, in which the force is mediated by photons
exchanged between @ and ¢, here represented by the dashed line.

We say that the exchanged photon is wvirtual, which means that it is not
directly observed. But this means that we shouldn’t see it transmit any net
energy or momentum. In other words, the exchange of this virtual photon can
only satisfy the requirements of energy and momentum conservation provided
that the energy AE and momentum A exchanged in the process cannot be
detected. This will be true if these quantities are bounded within the limits
of what the uncertainty principle permits (so that any putative detection of
the photon is washed out by quantum uncertainty). Specifically this means
that

AEAt<h and | AP||AT|<h (1.3)

where

At = r/c = time scale for photon exchange to take place (1.4)
A7T|=r = distance scale for photon exchange to take place
| p g p

So the force experienced by ¢ due to N virtual photons each transferring
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momentum AP is

AD k/r 7
F = NTZZ = N((chif = N5 = 4§f2f (1.5)

provided we normalize N = Qq/ (4whc) — in other words, the number of
virtual photons emitted/absorbed should be proportional to the product of
the charges. In this sense the photon mediates the electromagnetic force!

This concept of a mediator is how all forces are understood in the context
of modern particle physics. The basic idea is that any two subatomic particles
exert forces on each other by exchanging other virtual quanta of subatomic
particles — the mediators.

There are 12 mediators for all the non-gravitational forces: 1 photon, 8
gluons, and 3 weak vector bosons, more commonly referred to as the W,
W~ and the Z. So far, experiment has indicated that these mediators have
helicity 1 (i.e. integer spin A). This is important, since our descriptions of
bosons entail the following properties of bosons listed in table 1.4. I'm not

TABLE 1.4
Attractive/Repulsive Character of Forces

ODD-INTEGER SPIN PARTICLES: mediate forces that are
both attractive and repulsive

EVEN-INTEGER SPIN PARTICLES: mediate forces that are
either attractive or repulsive

going to prove the results in table 1.4 here — they can be demonstrated from
some basic properties in quantum field theory. What this means is that since
all non-gravitational forces are mediated by spin-1 bosons, they all have both
an attractive and a repulsive character.

What if we include gravity? The fact that gravity is always attractive means
that it must be mediated by an even-integer spin particle; we call this particle
the graviton and it has spin-2. The Higgs boson (should it be found) has
spin-0 and so will have a purely attractive character as well. This will add
two more elementary particle types to the list, for a total of 14 out of the 38
elementary typesY.

91t could be argued that I shouldn’t include these two because, strictly speaking, we don’t
have direct observational confirmation of their existence. However, there is little doubt
that the graviton is present, and the Higgs particle is foundational to our understanding
of the Standard Model. I may be skating on thin ice with this one though: more Higgs
particles than one may be discovered at the LHC or, more radically, no Higgs particle may
be discovered.
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1.2.3 Matter

So far we have been exploring bosons: the things that mediate forces. Now
let’s look at particles: the stuff that things are made of.

All known matter (excluding dark matter and dark energy) is made of spin-
1/2 particles called fermions that have anticommuting statistics:

U(1,2) = —U(2,1)

where ¥(1,2) is the wavefunction for a system of two identical fermions. The
proton and the electron are the best known of these, with the electron being
the first fermion to be discovered (in 1897) [17]. The nucleus was discovered
by Rutherford in 1910 [18], but it was not until 1932 that the nucleus was
understood to be a composite object consisting of two kinds of fermions,
known as protons and neutrons.

Uhlenbeck and Goudsmit postulated that the electron had spin #/2 [19] in
order to properly account for the Zeeman effect [20] and the Stern-Gerlach
experiments [21]. This meant that Schroedinger’s wave equation could not
be used to describe the behavior of electrons, since it did not have take spin
into account. In 1927 Dirac wrote down a relativistic wave equation that
he required to be LINEAR in F and P (i.e. linear in the operators 9/0t
and ﬁ) This equation predicted that a charged particle of —e had spin #/2.
Remarkably, it also predicted that there was another particle of spin #/2 with
identical mass but charge +e. This particle is the antiparticle of the electron
and is called the positron. Just as remarkably, it was discovered by Anderson
in 1933.

All spin-#/2 (or spin-1/2) particles obey Dirac’s equation; you just adjust
the mass and charge in the equation to describe the particle of interest. Hence
each spin-1/2 particle has a corresponding antiparticle. This is also true for
most bosons, but for some bosons (the photon being the best known example)
the antiparticle is the particle itself Il. In general all quantum numbers of an
antiparticle are the negative of that of its corresponding particle except for
its mass, which remains unchanged.

As far as experiment has indicated, all spin-1/2 particles in the world come
in two basic types, leptons and quarks, listed in table 1.5. We can also con-
struct a table listing the basic features of each of these kinds. In table 1.6
the quantity “color” labels the three distinct kinds of strong charge that a
quark can have. These colors — called red, green and blue — have nothing
to do with actual colors we can see — instead the term “color” is shorthand
for “strong charge.” Antiquarks have strong charges antired, antigreen and
antiblue. Since the leptons do not experience the strong interactions, they
have no color charge (they are color neutral) and so that entry in table 1.6 is
blank.

[Tt is also possible for a fermion to be its own antiparticle; in this case it is called a Majorana
fermion instead of a Dirac fermion
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TABLE 1.5
The Kinds of Matter

LEPTONS particles that do not

experience strong interactions

QUARKS particles that do

experience strong interactions

TABLE 1.6
Basic Properties of Quarks and Leptons
Flavor EM Charge Color Helicity =~ Mass (MeV)

L electron e -1 LR 0.511
E (e-neutrino ue) 0 L,? <2x 1076
,? muon /4 -1 LR 106
0 p-neutrino v, 0 L,? < 0.19
N tau 7 -1 LR 1777
g T-neutrino v, 0 L,? ( < 18 )
Q <up U > +2/3 R,G,B LR 2
U down d -1/3 R,G,B L,R 5
A charm ¢ +2/3 R.,G.B LR ( 1200)
R strange s -1/3 R,G,B LR 100
K top t +2/3 R,G,B L,R 171,000
S bottom b -1/3 R,G,B LR ( 4,200 )

The quantity “flavor” is actually the charge experienced by the weak inter-
actions. We will see that a strong interaction has the effect of changing a
quark of one color (red, say) into a quark of another color (blue, say). Like-
wise, a weak interaction has the effect of changing a particle of one flavor (for
example an electron) into another flavor (its corresponding neutrino). So in
this sense flavor is to weak what electric-charge is to electromagnetism and
what color is to strong (and what mass is to gravity). Note that flavor is
the property by which we distinguish different types (or species) or particles.
This is often the source of some confusion when one first tries to learn about
the weak force, and so I have deferred the discussion of weak interactions to
appear in Chapter 20 after the electromagnetic and strong forces in order that
you can become more comfortable with a number of other concepts first. So
there are 6 flavors (or types) of leptons, plus each of their antiparticles, and
6 flavors of quarks, plus each of their antiparticles, for a total of 24 fermion
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particle types in all**. Including the 14 types of bosons, this brings the list of
elementary particle types to 38.

An additional complication in understanding particles has to do with quarks.
Despite considerable effort over the years, it has not been possible to directly
observe quarks. What we actually observe are bound states of quarks. It
is generally believed (but not yet proven!) that quarks can bind together in
only two possible ways, given in table 1.7. We call a bound state of quarks a

TABLE 1.7
Quark Bound States
BARYONS: qqq (a 3-quark bound state)

MESONS: ¢ # ¢ (a quark-antiquark bound state) } HADRONS

hadron. So far all observed hadrons have come in one of two types: baryons
(which are bound states of three quarks) and mesons (which are bound states
of a quark with some other antiquark). All hadrons are color-neutral, and
the proton is the only stable hadron known (a free neutron will decay in less
than 15 minutes). Understanding this structure will be one of our main tasks
when we come to the strong interactions beginning in Chapter 15.

Note that the masses of the particles vary quite widely and (unlike the
quantities in the rest of table 1.6) appear to have no pattern. It is generally
believed that the masses of all elementary particles are acquired through some
symmetry breaking-effect with a field called a Higgs field. The basic idea is
that the Higgs field causes a kind of “drag” on all elementary particles of
varying strength, and this drag is what we perceive as inertial mass. A
consequence of this idea is that there must exist at least one spin-0 boson,
which is called a Higgs particle. In October 2000 tantalizing evidence was
presented from LEPII at CERN that the Higgs particle has been observed
with a mass of approximately 114 GeV. However, subsequent analysis of the
data has failed to confirm this, and the best that we can say at this point
in time is that the Higgs mass is not less than 114 GeV. One of the main
purposes of the LHC is to find the Higgs particle if it indeed exists.

Finally, note that both the leptons and the quarks come in three groupings
according to mass: a light group, a medium group, and a heavy group. We
refer to these groupings as generations (or sometimes as families). The light-
est generation consists of the up and down quarks, and the electron and its
neutrino (plus all their antiparticles). As noted above, all matter in the peri-

**It might be argued that I shouldn’t count the antiparticles, since they are just like the
particles except for a reversal of the signs of all the charges. I have made the distinction
because a particle and its antiparticle counterpart are not identical — they can easily be
distinguished in experiment.
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odic table is made of combinations of these 4 particles (with the up and down
quarks combining into protons and neutrons). Each generation is identical
to the others in structure except for the differing masses. At present it is
not known why this structure exists, and why the pattern has this particular
form.

1.3 The Standard Model

The Standard Model of particle physics refers to the sum total of our knowl-
edge of all the forces and particles described above. It is a particular kind of
quantum theory, called a quantum field theory, that has a particular particle
content and a particular symmetry group. There are infinitely many other
models of the same general type that one could construct, but with different
particle content and/or symmetries, as well as different values for the pa-
rameters. The Standard Model is the one that describes what we actually
observe.

This particularity sounds reasonable — after all, isn’t it the job of physics
to describe what is observed? Furthermore, so far there are no experiments
known that disagree with the predictions of this model. However, the model
has a number of parameters that must be input from experiment before any
further predictions can be made, summarized in table 1.8.

TABLE 1.8
Standard Model Parameters

masses of all fermions
coupling constants
mixing angles

vacuum angle

Higgs mass and coupling
Vacuum Energy

—_
»—A[\DHOO»P[\D

We see from table 1.8 that there are a total of 28 parameters in all. T've
included the possibility that neutrinos have nonzero mass, though strictly
speaking the Standard Model assumes they have zero mass. I've also included
gravity (which accounts for one of the coupling constants of the four forces)
and the strength of the dark energy (the vacuum energy) as two of the pa-
rameters. Together with General Relativity, the Standard Model provides us
with 38 coupled differential equations for each of the particle types, depen-
dent on the 28 parameters above. Once these 28 parameters are given we can
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predict the outcome of any process in particle physics from this model — and
so far there are no experiments that disagree with any predictions which have
been made. Not all of these parameters have been accurately measured, and
their precise measurement is one of the current tasks of experimental particle
physics.

The origin of these parameters and their empirical values is an unexplained
mystery. It is hoped that a unified theory of physics (if one can ever be
constructed) will explain both their values and their interrelationships, and
that the set of 38 equations will actually be derived from one more unified
theoretical structure, ideally one master equation. At present we don’t know
what that might be, so we must make do with the model that we have if
we want to explain our observations of the subatomic world. You might
think that 38 equations is a bit much to deal with. It is, but in practice we
don’t have to deal with them all at once — instead we can work with subsets
of these equations, depending on the system of interest. Furthermore, the
different equations have some common (and elegant) features amongst them
due to the particular symmetries of Lorentz invariance and gauge invariance,
subjects we will explore in chapters 2 and 12 respectively.

The purpose of this book is to teach you about the Standard Model: to
fully acquaint you with its basic structure and features, to show you how
to compute simple predictions from it, and to inform you of its empirical
underpinnings. So let’s get started!
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Bosons

quarks

leptons

Higgs

FIGURE 1.4

A pictorial representation of the different particles in the Standard Model and
their interactions. A line between different shapes indicates that all particles
within a given shape interact with all others in the connected shape, except
for the photon, which does not interact with particles below the dashed lines
(i.e. the neutrinos and the Z). Lines joining a shape to itself indicate self-
interactions amongst the particles in the shape.

1.4 Questions

1. (a) It is possible to understand the strong force between a neutron and
a proton as being effectively mediated by a boson called the pion, whose
mass is 139 MeV. Use this to estimate the range of the strong force.

(b) Similarly the weak force is mediated by the W-boson, whose mass
is about 80 GeV. What range do you estimate this force has?

2. Before the neutron was discovered, beta-decay (the emission of an elec-
tron from a nucleus) seemed to support the idea that a nucleus consisted
of protons with electrons trapped inside. The atomic number of a nu-
cleus was given by the excess of protons over electrons.
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(a) Using this picture, estimate the minimum momentum that a trapped
electron must have.

(b) Use the relativistic relation E? = (pc)? + (mc?)? to estimate its
corresponding energy.

(c) How does this energy compare to that for an electron emitted in a
typical beta-decay process? Does beta-decay tend to support or refute
the trapped-electron model of the nucleus?

3. An experimentalist wants to probe distances of d < 1072° cm. How
much collision energy must the machine be able to produce? How does
this compare with the maximum energy of the LHC? If the size of the
machine scales with the energy, how large would this machine have to
be?

4. Suppose the electron had a mass 10 times its mass of 511 KeV. What
particles would you expect to populate the universe?

5. Suppose that fermions were found to have different masses from their
antiparticles. How many new parameters would there be in the Standard
Model?
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Particle physics is concerned with understanding the behavior of the natural
world in the most reductionistic manner possible. This means we need to
probe interactions over very short timescales and very tiny distances. This
in turn requires, among other things, an ability to collide particles at very
high energies, energies that are far larger than the rest mass energies of the
particles in the collision, where relativistic effects are significant.

So for particle physics an understanding of special relativity is crucial. Here
T will review the basics of special relativity [22]. You probably have seen this
material elsewhere — but what we do here might be in a repackaged notation
that you may not be familiar with [23].

2.1 Basic Review of Relativity

The basic postulates of special relativity are twofold:

1) The laws of physics are equally valid in all inertial reference systems,
where inertial means that Newton’s first law holds.

2) The speed of light is constant and of the same value in all inertial systems.

The first of these postulates is familiar from Newtonian mechanics. It
means that the laws of physics do not depend upon either the location, the
orientation, or the constant velocity of the reference frame that we use to
describe motion.

It is the second postulate that is counterintuitive, forcing a conceptual leap
in our understanding to less than familiar territory. So let’s explore this
postulate in more detail.

Suppose we have 2 inertial systems (frames) S and S’, where S'moves at
velocity ¢ with respect to S. If we orient the axes of both systems so that
they are identical at ¢ = ¢t = 0 and so that the relative motion is along the
x/x’ direction, then we know that

' =y(z — vt)
/ = 1
z, _ Z where v = —— (2.1)

V1—0v2/c?

t' = ~(t —vx/c?)

23
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a transformation known as a boost transformation. To invert this transforma-
tion (i.e. to go from S’ to S ), just change & — —7 :

x =~z + vt

y=yv

I (2.2)
t =t +va'/c?)

You can easily check that solving eq. (2.1) for 2’ and ¢’ in terms of = and ¢
results in egs. (2.2).

These transformations have several important physical consequences. Let’s
look briefly at what they are.

2.1.1 Relativity of Simultaneity

An event is defined as something that occurs at a specific place and time,
along with all necessary preconditions and unavoidable consequences. It is
something that happens in the real world, such as a supernova, an earthquake,
or the fall of a raindrop. Usually we think of events taking place in a particular
chronological order, regardless of who is observing them. The first surprise
of special relativity is that this is not the case: events occurring at the same
time in S but at different locations do NOT occur at the same time in S’.

Let’s look at this more carefully. Suppose an observer in frame S records
two events A and B located at the respective positions x4 and zg as taking
place at the same time: t4 = tg. The above transformations then give

v
=ty —t =(ta —vra/?) —y(tp —vap/c®) = Y (18 —wa) £0 (23)

and so the observer in S would record them as happening at different times.
As an example consider an event (fig. 2.1) in which lightning strikes both
ends of a moving train. There is an observer on a flatcar in the middle of
the train that is moving (Mona), and another observer (Stan) standing on the
ground beside the train as it moves by. Let F be the event “Lightning strikes
the front end,” and B be the event “Lightning strikes the back end.”

Stan receives (“sees”) the light emitted from events F and B simultaneously,
and concludes that: “since I am midway between the marks on the tracks, and
since the speed of light is a constant, then events F and B are simultaneous.”
However, Mona receives (“sees”) the light emitted from event F first, then
from B, and concludes that: “since I am midway between the marks on the
train, and since the speed of light is a constant, then events F and B are NOT
simultaneous: F occurred before B.” See fig. 2.2 for a diagram in space and
time of this event.

The reason this happens is that light has a finite speed, and so the infor-
mation conveyed in the light from the bolt in the back has to “catch up” to
Mona, who is riding in the middle of the train. Similarly Mona is “catching
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FIGURE 2.1
Lightning strikes the front and back ends of a moving train. The lightning
strikes leave marks on the train and on the tracks, and the pulse of light is
large enough to be detected by both Stan (on the ground) and Mona (on the
train). Mona sees the front signal before the back signal; Stan sees both at
the same time.

up” to the light coming toward her from the bolt at the front of the train.
Stan, on the other hand, is not moving and so sees the bolts at the same time.

As we will see, since the second postulate implies that nothing travels faster
than the speed of light, it will in turn imply that the transmission of all forms
of information cannot travel faster than light. Unlike a Newtonian universe
(in which an infinite speed of information transmission is possible in principle),
finite transmission speeds in a relativistic universe force us to abandon a notion
of universal simultaneity.

2.1.2 Length Contraction

This phenomenon refers to the fact that an object at rest in S’ is shortened
with respect to S. For example a rod of length L at rest in S’ can be positioned
so that one end is at ' = 0, the other at 2/ = L. Since it is moving in .S, we
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FIGURE 2.2

Paths of Stan (dotted), Mona and the ends of the train (dash), train tracks
(solid), and the light pulses (dot-dash) from the lightning bolts as they move
forward in time.

must record its length by measuring its ends at the same time (¢t = 0, say).
So its length in S is, using (2.1) with ¢t = 0:

1
Zone end — Tother end = ~ (xé)ne end ~ xlother end) =L/y<L (24)

So moving objects are shortened along the direction of motion.

Consider observers on a spaceship that have a poster of Einstein on the wall
of their ship. From their perspective the picture is 4 ft. x 3 ft. However, an
observer standing on an asteroid looking through the window of the ship as it
goes by at 77% of the speed of light will see that the poster is only 4 ft. x 1.5
ft., as shown in fig. 2.3.

The importance of this phenomenon in particle physics occurs in the con-
struction of accelerators — as the particles move at high velocities down an
accelerator tube the effective length of the pipe is shortened in their direction
of motion, and must be taken into account in the design parameters of the
machine.
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What observers on the ship see What observers on the asteroid see

FIGURE 2.3
Length contraction demonstrated pictorially. Apic/Hulton archive/Getty Im-
ages.

2.1.3 Time Dilation

Suppose there is a clock ticking off an interval in S’ — a consequence of rela-
tivity is that it ticks off a longer interval in S. If the clock runs from ¢ = 0
to t/ =T, then using eq. (2.2) above we have

Aty ¢ = V(A + A2 /) =AY =T > T (2.5)

FIGURE 2.4
A laser clock for measuring time dilation.
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where Az’ = 0 because the clock is always at the same location in S’. So
moving clocks run slow.

Consider a “clock” that consists of a laser capable of sending out very short
pulses and a mirror to reflect those pulses back to a detector (fig. 2.4). The
proper time will be measured by an observer at rest with respect to this
“clock.” Suppose this clock is on that same spaceship. Then an observer on
the asteroid can watch as this “clock” goes by him/her at some speed (from
his/her point of view). This observer will see the light pulse traveling a greater
distance before it returns to the detector (see fig. 2.4). Since according to
the postulates of special relativity the speed of light is the same for both
inertial observers, the observer on the asteroid will claim that the spaceship
clock is running slowly with respect to asteroid clocks. If the spaceship is
moving at 77% of the speed of light, then for every three hours of time on the
asteroid, the spaceship clocks register that only a little more than two hours
have passed.

In particle physics we see this phenomenon manifest in decay rates of un-
stable particles: they take longer to decay the faster they are moving.

2.1.4 Velocity Addition

If a particle has velocity 4’ in the 2’ direction in S/, then its velocity in S is

Az v(Az' + vAt) (i”t”,/ +v) o 4o 20
U="7= = 7 - 7 .
At y(AY +oAR/?) 1+ 55%)  1+%p

showing that velocities do not simply add. Notice, though that if the speed of
light is large compared to either of the velocities, then

uw 4+

u=———=(u +v) l—u—lv—i— ~u 4w (2.7)
=Ty s — ~ :

and we see that velocities add as they do in the non-relativistic everyday world
of experience.

This is one of the more counterintuitive things to understand about relativ-
ity, but it follows from (and is consistent with) the second postulate. To see
how, suppose the moving observer in S’ is shining a flashlight pointed in the
direction of motion. The light will leave with speed ¢ as seen by the moving
observer. This means that we must set |@'| =« = ¢. The observer in S then
measures this speed to be

. c+v o c+v
1+%

u

= = 2.8
cor = ¢ (2.8)

or in other words, the speed of the light is seen to be exactly the same, in
accord with postulate 2!
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2.2 4-Vector Notation

In the examples in section 2.1 the two frames were neatly aligned along the
direction of motion. Of course this need not be the case; in general they could
be moving in any direction relative to each other. So it’s useful to introduce
simplifying notation that unifies time and space components together.

This anticipated union suggests that vectors will have to be generalized
from their 3-component form to having 4-components: one for each spatial
direction and one for time. We call such objects 4-vectors, and can write one
of them as, say, a* = (a®,@). The Oth component is the “time” component,
and the others are the spatial (3-vector) components.

Let’s define

D =ct al=2 2=y P=z (2.9)
to be the components of a 4-vector x* that denotes the location in space
and the time elapsed at some event (relative to a fixed choice of origin).
Multiplication of the time by ¢ ensures that each coordinate has units of
length. In other words, we measure the time elapsed in terms of the light-
travel-time: how far light would travel in a given time. Since all observers
agree on what the speed of light is, the difference in ¢t as measured by various
observers is equivalent to the difference in time ¢.

Now we can write the particular Lorentz transformation given in eq. (2.1)
as a matrix equation

5 ¥ =Bv00
't = ZA” ,2” where A* |, = _57 g (1)8 (2.10)
V=0 0 0 01

1
V162
nents of the matrix A* , are zero, except for

with v = and [ =w/c. So for the transformation (2.1) all compo-

A=A, =~ A% =A')=-3y A2, =A%,=1 (2.11)

Before continuing, let’s get a few conventions straight: I will use Greek
letters to indicate spacetime indices that run over the values 0,1,2,3, and I will
use Latin letters from the middle of the alphabet (i, j, k, ...) to denote spatial
indices of the type familiar from vector calculus; these will take on the values
1,2,3. T'll also use the summation convention: repeated indices are summed
over (unless otherwise indicated). This means I can replace Zi:o A* x” with
AF ¥ in eq. (2.10) since the v index is repeated. Repeated indices almost
always occur in pairs, so it is always clear what indices to sum over — I'll
make it clear whenever this is not the case. Note that the repeated index is
arbitrary, since we are summing over all of its values; in the sum in eq. (2.10),
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instead of v we could have used p, o, ¢, or any Greek letter we wanted! We
can use the summation convention for any repeated index (Greek or Latin).
So Greek indices are summed from 0 to 4, and Latin indices from 1 to 3.

Now by postulate (2), a pulse of light emitted at ¢t = 0 and & = 0 in S
has the same velocity in S’. Hence the distance ds to the wavefront from any
point AZ in S at time At is the same as the distance ds’ measured from any
point A7’ in S’ at time At'. Using Pythagoras’ theorem we have

(cAt)® — (Ax1)2 - (Aw2)2 - (Am3)2 =ds? = ds”?
= (cAV)? — (A2")? = (A2?)” — (A®)® (2.12)

and you can easily check that (2.1) and (2.2) satisfy this relation.

The quantity is called an ¢nvariant; it has the same value in any inertial
system. Invariants are nothing new — this concept is present in non-relativistic
Newtonian mechanics. For example the length of a vector is invariant under
rotations in Newtonian mechanics. What is new in relativity is that invariants
typically involve a mixture of spatial quantities with temporal quantities.

The invariant quantity above in eq. (2.12) is a bit cumbersome, and it
would be nice to write it in the form of a sum. The problem is we have 3
minus signs. We deal with this by writing

ds? = g, A" Ar” = g, Ax'™" Az (2.13)
where g,,, is a matrix called the metric

+1

1 goo = +1
uv = -1 i.e. 9ij = —6ij (214)

which generalizes the 3-dimensional Kronecker-delta function used in vector
calculus as you can see from eq. (2.14).
Notice that, since z’# = A* z”, we have

Gt = g, (A* 2%) (A“ ﬁx5> = (gw,A“aA“ ﬁ) P (2.15)

Since this relation has to hold for all possible z% and z’#, we must have

LQLWA# (XA# Jéi = gaﬁ‘ (216)

This “boxed” relation is very important: it must be obeyed by all Lorentz
transformations A* . Alternatively, any matrix obeying this “boxed” equa-
tion is a valid Lorentz transformation. We take the boxed relation to mathe-
matically define a Lorentz transformation.

While there are infinitely many possible Lorentz transformations, it is pos-
sible (and useful) to categorize them into six kinds. Since there are three
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distinct directions (along x,y, and z ) for a moving observer to travel, three
kinds of Lorentz transformations are transformations from the stationary to
the moving observer along each of these directions. These are called boosts.

What are the other three kinds of transformations? Suppose we don’t
make any boosts. This means that A must have the form

10
woo_
A ”_<0Rij) (2.17)

where R;; is some 3 x 3 matrix. It’s easy to show from the boxed relation
that this matrix must obey Rz R;i = d;;, which in matrix form is RTR =
I. This is just the defining relation for a rotation (or rather an orthogonal
transformation, to put it in mathematical terms), and so we see that rotations
are a subset of the Lorentz transformations! It’s clear then that there are 3
kinds of rotations (about z,y and z), and putting these together with the 3
boosts makes a total of 6 kinds of continuous Lorentz transformations.

Lorentz transformations are actually the relativistic analog of rotations.
They transform 4-vectors analogous to the way that rotations transform 3-
vectors. In this sense they define for us 4-vectors (and 4-tensors — mathe-
matical objects with more than one Lorentz index) just in the same way that
rotations are used to define 3-vectors (and 3-tensors — mathematical objects
with more than one spatial index). We can make the following comparative
table:

TABLE 2.1
Rotations compared to Lorentz transformations
Rotations Lorentz Transformations
RitRji, = 0y; G A A 5 = gap
¢ (Z) = p(R™17) SCALAR ¢ (z ) = ¢((A*1)’: )
V/(#) = R/V;(R'%¥)  VECTOR  V'%(Z)=A*,Vr((A~1)" 2
Ti’j(f) = RFR!Ti(R™'%) TENSOR T'*%(%) = AO‘ Aﬂ T’“’((A 1) x”

|

2.3 Spacetime Structure

We can use the metric to define a new vector z,, from our event-vector ¥ and
vice versa:

T, = g’ and =gz, (2.18)
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where g" is the inverse of g,,,. So using this we can write (2.13) as
ds® = Az, Az* = Az, A" (2.19)

“Raised” indices are called contravariant; “lowered” indices are called covari-
ant. This distinction — unimportant in the three-dimensional flat spatial world
of vectorial quantities in Newtonian mechanics — is of crucial importance in
our description of the four-dimensional relativistic world. A given covariant
vector A, and its contravariant counterpart A" contain the same informa-
tion — it is how this information is expressed and manipulated compared to
other physical quantities that makes the covariant/contravariant distinction
important.

Here’s an example. Notice that for any 2 four-vectors A, and B,, we have

A;LB/;L _ glwA/#B/u = g (A# aAa) (A/L ,GB[})
= (gp,l/Au aAMﬁ) AQBB = gaﬂAaBﬁ - AﬁBﬁ (220)

i.e. AgB” is invariant (it is the same in any inertial frame). It is the four-
dimensional analog of a dot-product. Sometimes we will write A - B for the
dot product:

A-B=AsB’ = A)B" — A;B’ = A,B° — A- B (2.21)

where 3-vectors will always have “arrows” on top (or have Latin indices at-
tached to them) so we know that’s what they are*.
Notice that the “square” of a 4-vector need not be positive:

A2 =A A= AgAP = ApA° — A- A (2.22)

This means that our concept of magnitude needs to be extended in special
relativity. To do this we define:

A*>0 timelike
A2 =0 null or lightlike
A2 <0 spacelike

Why this terminology? It’s descriptive of how spacetime (i.e. space and time)
appear to a given observer. Consider an observer at a position z* relative to
the origin. We thus have either 22 > 0, 2 = 0, or 2 < 0. This splits
spacetime up into three regions about any given point, as illustrated in fig.
2.5. A classification is given in table 2.2.

*I will write AjB7 = ATBJ = A;B; = AIB; = A.B- these all mean the same thing for
3-vectors. Note that the quantity APBP = A9BO 4+ A7BJ is not invariant — it will look
different in different Lorentz frames.
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timelike wordline

/ lightlike RIS
wordline
elsewhere }
elsewhere RO
past
quativigtic Non-relativistic
viewpoint viewpoint

FIGURE 2.5

The diagram on the left shows the causal structure of space time in special
relativity. The light cone about a point “P” plays a fundamental role in
determining the events that can and cannot affect (or be affected by) P. The
non-relativistic version of this diagram is at the right: all events are either to
the future or past of P unless they are simultaneous with P, i.e. are in the
“now” of P.

2.4 Momentum and Energy

Because z* is a position 4-vector, it cannot remain fixed — even if the spatial
components remain constant, the time 2% must increase, since the observer
cannot remain frozen in time. In the most general situation, all the compo-
nents of z# will be changing with time. We can parametrize this change by
making each component a function of some parameter 7. As we shall see, we
are typically more interested in how these functions change as 7 changes, so
let’s define
ub = lim At _ "
AT—0 AT dr
which is the rate of change of the position 4-vector with respect to this pa-
rameter.

What is 77 If we choose it to be the time coordinate, then we would have

ut = (dfictt) , %) = (c, ‘é—f). This looks like a velocity in the spatial part, but

leaves us with a problem: which clock is measuring the time? In Newtonian

(2.23)
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TABLE 2.2
Past, Present, and Elsewhere

Future everything the observer

22> 0= |ct] > |7 {t >0 potentially will influence

t<0 Past everything that potentially
influenced the observer
2?2 < 0= |ct] < |7] Elsewhere no influence between
observer and environment
22 =0=|ct] < |7 Lightcone Boundary between elsewhere

past and future

mechanics time is absolute, but in Einsteinian mechanics, moving clocks run
slow, as we saw in section 2.1.3.

What we want is for 7 to be a time that all observers can agree on. There
is one such definition of time — namely the time measured by a clock that
is at rest with respect to the observer whose position 4-vector is z*(7). For
example, suppose the observer is on a plane. The clocks on the plane (and
everything else: the flight attendants, the heart rate of the passengers, the
movie) tick slow relative to you standing on the ground. If your clock ticks
off an interval At, the plane’s time is A7 where

AT = At/y (2.24)

Even though the clocks on the plane are moving slower, everybody will agree
on what those clocks say. So both you and observers on the plane (and
anyone else moving in some other inertial frame) will agree that the clocks on
the plane tick off an interval Ar. We call A7 the proper time of the observer.
It is the shortest time any observer can measure, and it is invariant, since all
observers (moving or not) agree with what it is.

Note that if we have a collection of N observers located at 'y, each moving
at different speeds, then each will have their own (invariant) proper time 74
(A =1,..,N). At ordinary speeds v = 1 to about 1 part in 10%°, so we
never notice this effect, and each observer perceives time as absolute. This
is why the non-relativistic picture at the right of fig. 2.5 is so useful, and so
much in accord with our everyday intuition. However, in particle accelerators
~v > 1 and these time-dilation effects are crucial. For example the lifetimes of
unstable subatomic particles can dramatically increase at very high velocities.

Since 7 is invariant, u* is covariant:

da' da't d y dx 5
:7d7'/ = 7d7‘ :E(Auyl‘ ):A#I/WZAHV’U’ (225)

/
u't
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and the components of u* are

dt d@\ dt [ dF di di
122 p— —_ o J— —_— fr AO —_— = —_— = v
Y <Cd7" dT) dr <C’ dt) 0 (C’ dt) 7 <C’ dt) 7(7)
(2.26)

We see that the spatial component of the 4-velocity is related to the usual 3-
velocity by u* = yv* ~ v*, where the approximation is good whenever |U] < c.
The magnitude of the 4-velocity is

u-u=2(2—-7-7) =P (1-7-7/32) =c? (2.27)

which is invariant!

Note that u? > 0 : the 4-velocity of a particle is always timelike. In
terms of the causal structure in figure 2.5, this means that the trajectory of
any physical object must remain within its future light cone, and must have
emerged from its past light cone at any event P. This trajectory is called the
worldline of the particle, and if the particle has mass the worldline must be
timelike as shown in figure 2.5.

Now let’s consider momentum. Since this is (mass) x (velocity) in Newtonian
mechanics, let’s define

= mut (2.28)
where we identify the constant m with the mass of the body whose 4-velocity
is u# since

p'=mu' = ymv' (~mo" for small v*) (2.29)
This seems like a reasonable definition of the spatial components of the mo-
mentum. What, then, is p°? We have

me
p’ = mu® = yme

:171)2/02
1, 1 5, 3 o
= |me + 5w +§mc—2+-~- (2.30)

upon expanding in powers of £. The 2nd term in the series is easily recognized
as the non-relativistic kinetic energy, and so we define

ch

V1—v?/c?

Remember that in non-relativistic mechanics it is only changes in energy
that are physically meaningful. However, in relativity, every body has a min-
imum constant energy mc? called its rest energy (or rest mass):

R = mc? (2.32)

p’ =FE/c where FE=vymc® = (2.31)

Note that since m is a constant it is an invariant: all observers agree on what
it is. The kinetic energy is the difference between the full energy and the rest

energy

U4

1 3
T:E—Rz(7—1)m02=§mv2+§mc—2+--- (2.33)
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which is the usual non-relativistic term plus an infinite series of speed-dependent
corrections.
What is the magnitude of p*? It’s easy to compute it:
p?=p-p=miu-u=m’c (2.34)

and so p? is an invariant. However, we also have p-p = (E/c)2 —p-p, and so

2
E? = (mé®)” +|p)® = E = \/(me2)? + 2 |p) (2.35)
which gives an expression for the energy of a particle in terms of its mass and
2
its momentum, analogous to the non-relativistic relation £ = £—.

The interesting thing about the relation (2.35) is that it holds even for a
massless object! Setting m = 0 in eq. (2.35) we find

E=plc and p?*=0 (2.36)

which means that a massless particle has a 4-momentum of zero magnitude!

mc2

V1-v?/c?
and p = \/#ﬁ because both would give zero — unless the massless body
travels at the speed of light (i.e. |#] = ¢). In this case we have a zero-over-zero
limit, and the preceding expressions become ambiguous.

Rather than work with such ambiguity, we regard equation (2.34) as being
the equation that fundamentally defines the 4-momentum of a particle of rest
mass m. This equation is valid for all m > 0, and yields equation (2.35) for
m # 0, and equation (2.36) for m = 0.

We can’t make sense out of this from our earlier expressions E =

2.5 Collisions

Energy and momentum are conserved in any process (as we'll see in Chapter
4), which is why they are useful quantities to deal with. In fact our picture of
collisions in relativity is quite similar to our non-relativistic picture! Each has
both elastic and inelastic collisions, and energy and momentum are always
conserved. The key difference between the non-relativistic and relativistic
cases has to do with the conservation of mass, something not true in relativistic
physics. Table 2.3 illustrates the parallels between the two situations.

In solving collision problems, it is generally a matter of ensuring that the
relation > pfn =3 pgut is satisfied. In principle this can be done component-
by-component. However, in practice such an approach is rather cumbersome.
A better strategy is to search for invariants, exploiting relationships between
them to simplify the situation and solve the problem. This is typically done
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TABLE 2.3
Collisions

Collisions
Non-relativistic Relativistic

Momentum is conserved
Zﬁin = Zﬁout -
Energy is conserved 2P = 2 Pout = { %%n _ %goutt
Y B => Eout in ou

4 — momentum is conserved

Mass is conserved Mass is NOT necessarily conserved
2 Miy = 2. Mout, 2 Mip # X_ Moyt
Kinetic energy may Kinetic energy may

or may not be conserved or may not be conserved

by isolating the quantities of interest in the problem, and then taking dot-
products and squares to obtain the desired answer.

Let’s look at some examples of how to use this formalism.

2.5.1 Broadside Collision

Two particles each of mass m and speed v, collide at right angles, forming a
new body of mass M. What is the mass of M?

Answer
The best way to solve this problem is to recognize that the squares of the
4-momenta of both the incoming and outgoing particles are invariants.

First conserve momentum :  p + ph' = p*
Square both sides : p? + pf +2p, - py = PP
Each of the squared momenta is the rest mass of its corresponding particle,
and so
EqE,
2

(me)® + (me)® +2 ( - P -;72> = (Mc)? (2.37)

Now we use the fact that the spatial momenta are orthogonal ( p; Lp, ) and
that the energies are related to the rest masses via Ep = v Amcz, where
A=1,2 labels which particle we are interested in. Hence

2m? (1+77.) = M®

1 2 —v?/c?
2 _ o2 o 2
= M*=2m <1+1—02/02) =2m [1—1}2/02] (2.38)
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FIGURE 2.6
A Broadside collision between two equal mass particles moving at right-angles
to each other.

Note that M > 2m. This is a sticky collision and so the mass increases
because kinetic energy is converted into rest energy.

2.5.2 Compton Scattering

A massless particle elastically collides with a massive one (mass M) at rest.
What is the final energy of the massless particle if it is scattered at an angle
07

FIGURE 2.7
Compton Scattering of a massless particle from a massive one

Answer

Setting ¢ = 1 for simplicity, as before we conserve momentum and find in-
variants. The most complicated momentum is the momentum of the massive
scattered particle, since we don’t know the angle it scatters to, nor do we
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know its final speed. So we isolate p’* and then square both sides:

First conserve momentum :  p'* = p* + k* — k'*
Isolate the most complicated
momenta and square :  p'? = (p+k — k')?
Simplify : M? = M?+ k> +k?
2p- (k- k) — k- k)
Rearrange (remember k2 =0=k"?): p-k=k - (k+p)

Now we need to insert the given information in the problem, namely that
kKt = F (1,]2:), where k is a unit vector that points along the direction of
motion of the initial massless particle. We know that this is the form k*
takes because it is null: we must have k#k, = 0. Similarly k'* = E’ (1, l%’),
where we know from the setup of the problem that k- k' = cosf. Hence we
have k' -k = EE' — EE'k - k' = EE'(1 — cosf). We also know the initial
4-momentum of the massive particle because it is at rest: pt = (M , 6)
Putting this into the above gives

Write in terms of components : ME =FE'(E+ M)—-E'E (12; : I%’)

= FEE'(1 —cosf) + ME’
ME
E(1 —cosf)+ M
E

= 2.39
1+ £(1—cos) (2.39)

Solve for the final energy : E' =

Note that the only variable in the problem is the scattering angle 8: the
energy F’ of the scattered massless particle is fully determined by this angle
and all other given variables.

2.5.3 3-Body Decay

A particle of mass M explodes into 3 identical particles each of mass m, which
move away from each other at equal angles. What speed(s) do the particles
move at?

Answer

Again, we conserve momenta. The relation is

P =pf +ph +ph (2.40)
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FIGURE 2.8
Diagram for the three-body explosion

Here we have to make clever use of the fact that all 3 particles come out at
the same angle. This means that

—

Di- P = |Pi|-| Pjlcosf foreveryi,j=1,2,3 (2.41)

In this example it is more useful to look at the components of the conservation
law. First let’s check the spatial components

Spatial momentum conservation =  pj; = —(pa + P3)
o2 o oo N .
= | p1|" = —p1- (P2 +p3) = cosO| p1| (|p2] + |P5])

Doing this for all three particles, we find

R 2 e ]
cosf = — — = —— = -
P2 + 1Ps|  [Ps] + [P1l  [Pa] + [Pl
and so we see that |p1| = |p2| = 5]

Now let’s use energy conservation. Since p* = (M c, 6>7 we have

E E E: E
Energy conservation : Mc= T me

= _37
c c c c V1—v2/c?

where each energy must be equal since the momenta and rest masses of the
final particles are all equal. Hence

v=c\/1-3(m/M)’ (2.42)
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2.6

1.

Questions

Show that the product AgBB is Lorentz-invariant but the products
APBP and AgBg are not.

Suppose we write the velocity v of a particle as v = ctanhn, where 7 is
a parameter called the rapidity.

(a) Find the form of a Lorentz transformation for a particle moving in
the x direction in terms of this rapidity parameter.

(b) Consider a succession of two boosts, both in the z direction, with
velocities v and vo. What is the value of the rapidity parameter for the
combination of these transformations in terms of the rapidity parameters
11 and 79 for each?

A particle moving at speed v collides with an identical particle at rest.
What is the center-of-mass frame speed of this particle?

The lifetime of the muon is 2.2 x 1075 seconds. Muons are produced
high in the atmosphere (10,000 meters above the surface of the earth)
from pions in cosmic rays moving at 99.9% of the speed of light. Once
produced the muons move at the same very high speed.

(a) How far will the muon travel according to non-relativistic physics?
Will it make it to the surface of the earth?

(b) How far will the muon travel according to relativistic physics? Will
it make it to the surface of the earth?

(c) The pion lifetime is 2.6 x 10~8 seconds. Is it possible for the pions
to reach the surface of the earth?

p=E

y/("/"//, '

FIGURE 2.9
Diagram for question #b5
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. (a) An 7 moving at 3/4 the speed of light decays into two photons of

equal energy F, which are each emitted at an angle 6 relative to the
direction of then’s motion. Find 4.

(b) Counsider the same process, but now with the photons emitted along
the direction of motion. What is the frequency difference between the
two photons?

. It is possible to define the force on a particle in special relativity as the

proper-time derivative of its spatial momentum

dp*
i
dr

where p* = mu*.

(a) Show that the acceleration a* = ddL: of a particle is always orthog-
onal to its 4-velocity u*.

(b) Express the relationship between the spatial acceleration @ = fl—f and

the spatial force F. Do they always have the same direction?

(c) What is the meaning of the Oth component F°?

. Neutral pions can be produced from the collision of a photon with a

proton p + v — p + 70,

(a) What is the minimum energy a photon must have for this process
to take place when the proton is at rest?

(b) The largest energy a photon in the cosmic microwave background
can have is about 1 meV. What is the minimum energy that a cosmic
ray proton must have in order to produce pions by scattering off of the
microwave background?

. A pion traveling at speed v decays into an lepton of mass my and its

correspond antineutrino 7y. Suppose the antineutrino is emitted at
right angles to the direction of motion of the pion.

(a) Find an expression for the angle that the lepton is emitted relative
to the orginal direction of motion.

(b) Suppose a pion of speed v emits a muon at angle §, and another pion
at speed v’ emits an electron at the same angle, each having emitted
the antineutrinos at right angles to the direction of motion. How much
larger or smaller is v compared to v'?

. Particle A decays into two particless A — B+ C.

(a) Find an expression for the energy of each outgoing particle in terms
of the various rest masses.

(b) Find the magnitudes of the outgoing momenta of B and C.

(c¢) Under what circumstances can your answer in part (b) equal zero?
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10.

11.

12.

13.

14.

Find the energies of the outgoing particles for the following decays

Tt —e  + 1,

K —na +x°

70 — 2y

AN—-p+n~

p— 7T+
Particle A collides into particle B, which is at rest, and three or more
particles are produced as a result: A+ B — C; +Cy+---+ Cy.

Find the threshold energy for this reaction to take place in terms of the
rest masses of the particles.

Find the threshold energies for the following reactions
p+p—pt+p+m
7 +p— K04+ X0
ptp—p+ K +5*
ptp—ptptat+a
P+p—p+tptp+p

Particle A decays into three or more particless A — B+C+ D +---

(a) Find the maximum and minimum energies that particle B can have
in terms of the rest masses of the other particles in the problem.

(b) For the decay D° — K~ + 7~ +eT + v, find the maximum and
minimum energies the e™ can have.

Consider a two-body scattering event A + B — C + D. Define the
following quantities

2 2 2
s = (pa+pB) t=(pa—pc) uw=(pa—pp)

which are a set of variables called Mandelstam variables.

(a) Show that the sum of the Mandelstam variables is a Lorentz invari-
ant quantity and compute its value.

(b) Find the energy of A in the lab frame, where particle B is at rest in
terms of the Mandelstam variables and the rest masses of the particles.

(¢) Find the center-of-mass energy of A in terms of the Mandelstam
variables and the rest masses of the particles. What is the total energy
in this frame?
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Symmetries
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One of the most fundamental notions of physics is that of symmetry: the
idea that certain systems, or properties of a system, or laws governing a
system, remain unchanged when you do something to them. For example, the
gravitational field of a homogeneous spherical object is rotationally symmetric:
it is the same no matter how you orient yourself about the sphere. Another
example is a crystal: an arrangement of atoms that looks the same if you shift
it in space in a certain direction. You can learn a lot about a physical system
(and the mathematics that describes it) just by knowing what symmetries
it has. In physical theories symmetries manifest themselves in terms of two
basic notions: invariance and covariance.

Invariance is the term used to describe properties of a system that do not
change when a symmetry transformation is performed. If a quantity is invari-
ant, all observers will agree on its value. We've already seen that the proper
time of an observer is an invariant under the Lorentz transformations: all
observers agree on what the proper time is for any given observer. Rest mass
is another such invariant.

Covariance is the term used to describe properties of a system that change
in accord with the changes induced by the symmetry transformation. For
example, if the equations of motion describing a given system have well-defined
transformation properties when a given symmetry operation is performed,
we say that these equations are covariant (i.e. they vary along, or co-vary,
with the transformation). In the above example, the equations describing
the motion of a body around a homogeneous spherical object are covariant
with respect to rotations — they will transform in a manner consistent with
rotational symmetry.

We'll see later that symmetries necessarily result in conservation laws.
These laws may be used to obtain new information about a given system,
which in turn may yield further laws. In general a given interaction respects
many conservation laws: conservation of momentum, angular momentum,
charge etc. This stringently constrains the possible mathematical description
of the interaction.

Symmetries can be either continuous or discrete. For example, time-reversal
is a discrete symmetry (all clocks either advance or retreat), whereas time-
translation is a continuous one (the zero of time is a completely arbitrary
choice). Discrete symmetries result in multiplicative conservation laws, where-
as continuous symmetries yield additive laws.

45
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3.1 Groups

Mathematically, symmetries are properly described by making use of two
concepts: that of a group and that of an algebra. Let’s look at both of these,
with some examples [24].

3.1.1 Axioms of a Group

When we think of a symmetry, we think of performing certain operations,
or transformations, on a system that leave some of its basic properties un-
changed.  We can collect all of the relevant transformations into a set,
G = {01,92,-..} (which may be infinite in size), and then ask what basic
properties the set should have in order for it to describe a symmetry. Math-
ematically the answer is given in terms of what we call a group.

A group is a set of G = {g1, g2, ...} of objects with a binary operation “” —
some operation that allows us to combine two elements in the set — that has
four properties:

TABLE 3.1
Properties of a Group
CLOSURE Ifg,0€ G=>g1092 € G (combinations
remain in the set)
IDENTITY There exists [ € G (one element
= 1 og; = g; for every g; € G does nothing)
INVERSE Every g; € G has a g; leq (combinations
such that ¢q og;l =17 can be undone)
ASSOCIATIVITY If g1,92,93 € G (combinational

= (g1092)© g3 = g1°(g2093) groupings can
be interchanged)

These properties are (in most cases) the minimum ones needed for trans-
formations to be meaningful in physics, and for the most part are motivated
by common-sense considerations. If the elements g; are transformations, then
we’d like a combination of two transformations to be the same kind of trans-
formation (closure). We also want to undo transformations (inverse), and not
do transformations (identity). Finally, we’d like our answer to be indepen-
dent of how we combine any three transformations together, provided we don’t
change their sequential order (associativity). Note the order of applying the
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“o” is relevant: in general g1 ¢ go # g2 © g1 for any two elements*.

How do we know if something is a group or not? The only sure way is to
check all four properties. Let’s look at the integers as an example, shown in
table 3.2. A simple check shows that the integers form a group under addition,

TABLE 3.2
Integers as a Group

Integers: G =272
Addition (o =+) Multiplication (¢ = x)

Closure 1+ 2y e Z v Zi1 X Zy€Z v
Inverse ZZ + (_Zi) =0 v Zz X 1/ (Zz) =1

but 1/(Z) ¢ Z  x

Associativity (Z1+ Z2) + Z3 (Z1 X Z3) x Z3
=Zv+(Za+2Zs) Vv =Zyx(ZyxZs)

but not under multiplication. However, in this latter case, if we modify the
set of integers Z to include all fractions and exclude 0, we get a group Q: the
non-zero rational numbers under multiplication.

This latter example is a common feature: if we have a set of elements that
don’t form a group under some combining operation, we can sometimes get
a group by either modifying the set, or modifying the combining operation
(or both). It is quite common in physics to have a set of transformations
(typically implied by experiment) that almost satisfies the properties of a
group, but not quite. Often it is obvious how to generalize the set so that
the group properties are satisfied, although there is no general prescription
as to how to do this. Part of the job of a theoretical particle physicist is to
make intelligent guesses as to how to find such generalizations to ensure that
a given system has a desired symmetry. This symmetry can then be exploited
to help make further predictions about the system that can then be tested
against experiment.

Table 3.3 provides an example of another kind of group. This group is
called U(1), the Unitary group of complex 1 x 1 matrices. Unlike the group

*If g1 © g2 = g2 ¢ g1 then we say that the group is abelian. Transformations that shift
location in space (translations) yield the same result no matter what order they are applied
in, and so they are abelian. Rotations in space about a fixed point are not abelian — a
rotation about the z-axis followed by one about the y axis will yield a different result than
performing these operations in the opposite order.
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TABLE 3.3
Complex Phases as a Group

Complex Phases (G =U(1) = {€"’} , o = x =multiplication; 6 € R)

Closure e x %2 ¢ U(1) v

Identity e x e = ¢i0: v
i0; o ,—i0; _ L0

Inverse eixe Wi=¢=1 v

Associativity (e x et2) x e = ¢ x (e x eif2) v

of the integers under addition, which has countably infinitely many elements,
this group has an uncountably infinite number of elements since the elements
depend continuously on a real parameter 6. As we’ll see in Chapter 12, this is
the symmetry group of the electromagnetic interactions.

3.1.2 Representations

So far we've discussed properties and examples of sets of transformations.
But how are groups of transformations used in particle physics? What is it
that the transformations act on?

In particle physics the most common thing that is transformed under a sym-
metry operation is the wavefunction of a particle or set of particles. In general
the wavefunction can be written down as a multicomponent single column
matrix with complex entries (a complex column vector) in some (abstract)
multi-dimensional spacef. The symmetries of the system are transformations
that act on the wavefunction via multiplication by complex matrices.

In (almost) all cases in particle physics, the groups we are interested in are
sets of complex matrices, and the combining operation is matrix multiplica-
tion. So what we need is a way of understanding group elements as matrices.
This leads us to the concept of representations.

If we have a symmetry group, how do we write down the elements of the
group in terms of matrices? Or alternatively, if we have a set of matrices,
how do we know that these matrices correspond to the group elements of the
symmetry that we are interested in?

It is a result of the mathematics of group theory [25] that every group G
can be represented by a set of matrices: in other words

For every g € G there is a corresponding matrix M, such that

91092 = g3 = Mg, My, = My,

which means that the matrix multiplication table of our set of matrices must
correspond to the multiplication table of the group. A set of matrices {My, }

fIn introductory quantum mechanics, the wavefunction has only a single component, i.e.,
it is one complex function. In particle physics it will commonly be necessary to generalize
it to multiple components.
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that has this property is called a representation® of the group G.

The main advantage of using a matrix representation of a symmetry is
that you can carry out explicit calculations. Since matrix multiplication is
associative, the associativity property is automatically satisfied for any rep-
resentation. Furthermore, the inverse property demands that all matrices in
a representation must be invertible, which significantly reduces the possible
forms the matrix representation of a group can have. Finally, the identity
group element is easily represented by the identity matrix.

There are several somewhat counterintuitive points about representations
that are worth noting:

e Representations are not unique. Since the only constraint on a set of
matrices to represent a group is that it reproduce the multiplication
table as described above, it is clear that a group can have many different
matrix representations, since there are many ways of doing this. In fact,
a given group G has infinitely many representations!

e Representations in general are not faithful for the same reason: typically,
more than one element of a given group is represented by one matrix.
The most extreme case of this is to represent all elements by the identity
(the n x n unit matrix)®. If the representation is 1-1 (i.e. if every group
element is represented by one and only one matrix — and vice versa)
then we say the representation is faithful’. A faithful representation
provides the maximum amount of information that we can have about
the group.

e A group of matrices is already a faithful representation of itself: this
is called the fundamental representation. In general it is possible to
use other matrices to form different representations of the same matrix
group. For example the group of 2 x 2 unitary matrices (called SU(2))
can be represented by matrices of every possible dimension: 1 x 1,2 X 2,
3x3,4x4, ..

fStrictly speaking, a d-dimensional representation is a map p (called a homomorphism)
from the group to a set of dzd matrices M = {Mgy}:

p:Gg—-M

§Note that this representation causes us to lose all information about the multiplication
properties of the group.

9So why not only use faithful representations? Why would we be interested in any rep-
resentation that was less than faithful? One reason is that we often don’t need all of the
information about the group. A good example of this is to represent every group element
by either +(Identity) or —(Identity) — this will tell us about the basic even/odd properties
of the group, and hence something about the basic physics of the system. For example, if
the group is the group of rotations, then this kind of representation tells us whether or not
we have a reflection, i.e. a transformation of odd parity.
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3.1.3 Irreducible Representations

How do we know what all the representations are for a particular group? This
is a major problem in group theory, one complicated by the fact that you can
combine old representations together to form new ones:

Suppose Mgy, My, = My, and Ny Ny, = Ng,

where {

My, is an m X m representation G
Ny, is an n x n representation

M

9gi

0 Ngi

and is an (m +n) x (m + n) representation

3

Then Ly, = < ) is also a representation: Ly, Ly, = L

This shows why a group has infinitely many representations: we can always
keep enlarging the matrices from smaller representations in this block-diagonal
way.

But this is redundant! Clearly we shouldn’t count the set {L,, } as a separate
representation, because it is a trivial combination of smaller, block-diagonal
representations. What we really want to know are the non-redundant sets
of matrices that can represent a group. We call such sets irreducible rep-
resentations. Specifically, any representation whose matrices simultaneously
cannot all be decomposed into block-diagonal form is called an irreducible
representation/l. Once the irreducible representations (irreps) are known for
a given group, then all possible representations are known, because they can
be constructed out of the irreps.

So in particle physics (and other kinds of physics), if we have a system S
that is believed to have some symmetry S, we conceptualize our treatment of
the system as follows:

1. Find the group G associated with the symmetry S.
2. Find all the irreps of the group G.

3. The wavefunctions that transform under these different irreps are the
only wavefunctions that are mathematically permitted — and hence phys-
ically realizable™ — to describe the physics of the system S.

For example, the group SU(3) is the symmetry group under which the
color charges of quarks transform (we’ll see why later). This group has
representations of dimension 3, 6,8, 10,.... Hence quark wavefunctions must
be complex column vectors with either 3,6, 8,10, etc. entries. These are the
only kinds of quark wavefunctions that can exist if SU(3) is the symmetry —

IMathematically we say that irreducible representations have no invariant subspaces.

**These wavefunctions are commonly called multiplets, where the“multi” part refers to how
many components the wavefunction has. A doublet has 2 components, a triplet 3, etc.
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the math won’t allow anything else! Likewise, bound states of quarks must
have wavefunctions that are one or more of these same dimensionalities.

How do we find (step 2) the different irreps of a given group G? This is
a major task for group theory [26], one beyond the scope of what I'm able
to present here. However, the problem has been solved (and a well-defined
procedure exists) for a certain class of groups that are of interest in particle
physics: Lie Groups!

3.1.4 Multiplication Tables

You are no doubt familiar with the multiplication table
x[1(2]3

111123
212(4|6
331619

where I've only written down the first few entries for all the natural (counting)
numbers. The table tells us to combine two numbers under multiplication to
get another number: by choosing a number z in the leftmost column and
another number y topmost row, we can find out what the answer is when we
multiply these two numbers together simply by looking at where the row that
x is in intersects the column that y is in. In a similar manner, a multiplication
table provides a straightforward way of writing down all of the information
about a given group.

For groups of very large or infinite size this is generally not very practical.
But for groups of a reasonable finite size it can provide a handy way of letting
us know what kind of information the group contains, and what kinds of
relationships exist between its various elements.

One of the interesting things to consider in a finite group is what happens
when we take a given element and keep combining it with itself. Consider the
sequence of elements obtained by taking successive “powers” of some element
x € Goforder n: =z, x> =zx0ox, x> =2x0x0ox,.. We can show that
eventually this sequence repeats itself in a cyclic manner. This is not too
hard to see. Suppose that the first repeated element in the group is zP and
that it is repeated after ¢ + 1 steps. Therefore 29! = zP for p < ¢+ 1.

Consequently

rloxMl =g logP o af=aP 1 p=1

because we can’t have zP~! appear in the sequence before 2P unless p = 1.
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3.2 Lie Groups

A Lie Group is a group in which the group elements are smooth (continuous
and differentiable) functions of some finite set of parameters 6, € R, and in
which the “¢” operation depends smoothly on those parameters. A typical
element g € G is written as

g=g(01,...,0n) = exp[if, T = exp {15 ’f‘] (3.1)

where a =1,..., N and {0,} are continuous parameters

The T%’s are mathematical objects called the generators of the group. There
are N of them — they are called generators because if you know what they are,
you can construct any element of the group that you want by exponentiating
as above — in other words, they generate the group. So the T®’s contain all
the relevant information! of the group in a very economical form!

Lie groups are important in physics because most of the symmetries we
consider are continuous symmetries. For example, rotations depend continu-
ously on parameters called angles. A given angle specifies how much rotation
has been carried out around a given axis.

Almost all of the important symmetry groups in particle physics are Lie
groups [27]. The most important of these are the UNITARY and ORTHOG-
ONAL groups. In particular, SO(3) is the group that describes rotational
symmetry, a symmetry we believe to be true of all the laws of naturett. It
is almost identical in structure to another group, SU(2), which is the most
important internal symmetry group. In general, in particle physics, we refer
to symmetries as being either spacetime symmetries (they transform space
and time co-ordinates in some way) or internal symmetries (they transform
wavefunction components and/or charges amongst themselves).

The action of any group on a wavefunction multiplet will result in a re-
arrangement of multiplet components. If the group is a symmetry, then we
mean that the physics of the system is insensitive to this rearrangement.

Lie groups have been completely classified in terms of their transformation
properties. Table 3.4 lists all the kinds and their uses in particle physics.

f Actually this is not quite true. The T%’s contain all local information about the group —
in other words, if you know all N of the T?%’s then you can construct any group element that
is continously connected to the identity element. However, other group elements — those not
continuously connected to the identity — cannot be constructed in this way. This property
is relevant in constructing the vacuum state in quantum electrodynamics as discussed in
Chapter 25.

HOf course this assertion must be tested by experiment, which so far has provided no
indication that rotational symmetry is not a symmetry of the laws of physics at their most
fundamental level.
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3.3 Algebras

Closely related to the notion of a group is that of an algebra. An algebra is a
vector space V = {v;} with a binary (combining) operation “o” such that

vlovl = ZCIJKUK =7k (3.2)
K

where the summation convention was used in the last step. This rule ensures
that when vectors in V' are combined, they always give a vector in V', which can
be expressed as a linear combination of the other vectors in V ; the C17,’s
are the coefficients of this combination, known as the structure constants.
Note that all we care about here is closure — there doesn’t have to be either
an inverse or an identity! The relation (3.2) implies that knowledge of all
possible C17,.’s is equivalent to knowledge of the combining operation “o” —
in this sense the C7/ s characterize the algebra under consideration. The
I,J in the C!7 . are not raised using the metric, but rather are placed there
for ease of notation.

A familiar example of an algebra is the vector cross-product. The set of
elements in the algebra is the set of vectors in 3-dimensional space, and the
combining operation o = X, the cross-product. Any two vectors d and b
combine under the cross-product to give a third vector @ x 5, which is also a
vector in the 3-dimensional space. In terms of the unit vectors {, 9, 2} of a
Cartesian coordinate system we have

Pxj=2 {(xi=& ixi=¢

with all other cross-products zero. In this example C'!7 x turns out to be the
Levi-Civita symbol €//% which shall be defined below.

3.3.1 Lie Algebras

Why is an algebra important? The reason is that the Taylor-series expansion
of a Lie group G gives us an algebra called a Lie Algebra (denoted &). The
demonstration of this is given in the appendix. The elements of & are the
generators T® of the Lie group, and the combining operation o = [;] is the
commutator

[T, T°] = if*?T° (3.3)

where the C%/’s are denoted by the f®®’s. The group associativity law implies
the relation

([T T, T + [[T° T, T + [[T, T, T° =0 (3.4)
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which is called the Jacobi identity. Any algebra for which (3.3) and (3.4) hold
is a Lie Algebra.

As noted previously, we can write the group elements of any Lie Group in
the form g (61, ...,0n) = exp (i0,T%) . Consequently, if we know what all of
the T%’s are, we can produce any element of the group that we want. As
stated above, we say that a Lie group is generated by the T?’s, which are called
the generators of the group. Hence we can study (most of) the symmetries
of physics simply by studying their infinitesimal structure using Lie Algebras
(28], instead of the more complicated structure of Lie Groups.

3.4 The Rotation Group SO(3)

A rotation about, say, the Z-axis is given by:

' =cosfx+sinfy ¥=z+0y=ax—(02Xx%) -1 (3.5)
Y = —sinfx+cosfy small o/ — 9ot y=y—(02x2) g '

( More generally 7' = ¥ — <§x f) where 6 =62 )

Do the set of all possible rotations form a group? It’s clear that any two
rotations yields a rotation (closure), that rotation by an angle 6§ = 0 is the
identity and that every rotation can be undone simply by performing the
same rotation by the negative of the angle. So if we use matrices to represent
the rotations, we’ll have a group (since associativity will automatically hold).
Moreover, we know that any rotation can be constructed by taking products
of matrices from the set

1 0 0 cosf, 0 —sinf, cosf, sinf, 0
R = 0 cosf, sinf, |, 0 1 0 ,| —sinf, cosf, 0
0 —sinf, cosb, sinfy 0 cosf, 0 0 1

(3.6)

and so our group G = R is the set of all matrices that are products of ma-
trices in the above set, where {6,,0,,6.} are three arbitrary parameters. A
general group element v € R will be a function of these parameters, i.e.
t = t(6,,0,,0,). This group is the orthogonal group of 3 x 3 matrices of
determinant one, so it is SO(3).

Let’s construct the Lie Algebra of SO(3). We can do this by examining the
elements of R, rewriting them in the form exp [iQ[Tq ~ T +46,T" for 9, < 1.
For example

cosf, sinf, 0 1 6,0
—sinf, cosf,0 | ~| -6, 10]|+0 (93)
0 0 1 0 01



56 An Introduction to Particle Physics and the Standard Model

100 010
=(010]+6,(-100
001 000
=1+1i6,T* (3.7)
010
which means that T? = —i | —1 00 |. This is the generator of rotations
000

about the Z-axis. Performing a similar exercise on the other two matrices, we
obtain the set of generators

000 00-1 010
(T, TV, T} ={—-il001]|,—i|000 |,—i|-100 (3.8)
0-10 10 0 000

which form the basis of the Lie algebra of SO(3), which we call so(3). We
can check the commutation relations

000\ /00-1 00-1\ /000
T*, T =(—)*001|]000 |—(=)*[000 001
0-10/ \10 0 10 0 0-10
010
=|-100]| =iT* (3.9)
000

with the rest being similar: [TY, T?] =¢T* and [T?, T*] = {TY. So altogether
we have
[T, T°] = ie®® . T (le. £, =¢* ) (3.10)

which are the commutation relations of the rotation group familiar from quan-
tum mechanics (e.g. in solving for the wavefunction of the Hydrogen atom).

The object €*Pis called the Levi-Civita symbol or (more commonly) the
epsilon tensor. We can write it in several equivalent ways: €*® = €*® = ¢4y, .
It has the following properties

0 if any of ¢, a, bare equal
_each _ 4 ccab _ _ccba switches sign under interchange
P of any pair of indices (3.11)
— +€bcg — 7€bac
1 ifa=1,b=2c=3

The epsilon tensor plays a role in the cross-product analogous to the role that
the Kronecker-delta symbol plays in dot product. We have

A B = 5947 B (4% B?)t — ¢k A BF (3.12)
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or more explicitly
A-B=A'B' + A2B2 + A3B3
= R 5 N 2
(A X B) — A2B3 _ A3B? (A x B) — A3B' — A'B3

([fx 5)3 — A'B2 _ A2B!

Just in the same way that 6% can be defined in n-dimensions (by letting
the indices i, j take on all values from 1 to n), so also can the epsilon tensor
be defined in n-dimensions, with the key distinction being that it has as many
indices as there are dimensions. So in 2 dimensions, the epsilon tensor has
two indices (¢%), in 3 dimensions three indices (¢*/*), in 4 dimensions four
indices (e"V*#) and so on. We will be making use of all of these dimensional
versions of the epsilon tensor in this text™**.

The algebra so(3) (and its Lie group SO(3)) is so commonly used in physics,
we give its generators a special notation: T® = J%, so that the set of generators
{J*,J¥,J*} obeys

[J%,J°] = et J* (3.13)
and using (3.11) it’s not hard to show that
Eabbﬁace + Ebcaedae + 6ccmebbe =0 (314)
and so from (3.13) we have
[[3%,3°], 3] + [[3°,3°),3°] + [[35,3°,3°] =0 (3.15)

which means the Jacobi identity (3.4) holds. So so(3) is indeed a Lie algebra.
As noted above, each group element of SO(3) can be written in the form

exp [zg j], which is the matrix that corresponds to a rotation of angle 5’
about the 6 direction. For example. if § = 0y:
o0 - n
> o 0JY
exp [i@ . J] = exp [i0JY] = nz:% (@ " )
100 ) nop2n (100
— 0
=(010 ]+ ( )2(|) 000 (3.16)
001/ == @0 \go1
n 00-1
+ Z 00 0
2n +1)! 10 0

*** There is an important distinction in 4 dimensions compared to 3 and 2, having to do with
the raising and lowering of the indices. In 3 spatial dimensions we have E“h =€ —¢ p .
However, it is NOT true that e#**# = ¢, vaB — ¢ 1P oc. Instead we must raise/lower
indices of e#¥*# using the metric Juv-
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—1)"(0)%" §)2ntt
L+, ()Qn()‘) 00— 04(277(—}-)1)‘
0 1 0
oo (=1)"(e)*"t! oo (=1)™(6)*"
Yto Sy 01+, S
cosf 0 —sinf

01 o0 (3.17)
sinf® 0 cos@

which is a rotation of angle # about the g—axis. From this we see that JY
generates rotations about the y-axis. Using similar methods you can show
that J* generates rotations about the z-axis and J* generates rotations about
the z-axis.

The above formalism means that we can rewrite a general element in the
set of rotational transformations (3.6) in the form

SN\ J
x, = (exp [id’- JD xj (3.18)
7
which for small angles |ai| << 1 gives
xh o~ (6/ - eijkozk) zj=x; — (A X T), (3.19)

of which eqs (3.5) are a special case.

3.5 Appendix: Lie Algebras from Lie Groups

As I noted earlier in this chapter, a Lie group, when “Taylor-series expanded,”
becomes a Lie Algebra. Here I will outline in more detail how this works.
Closure of the Lie group implies
exp (10, T%) exp (1T T) = exp (iZ:(0, T)T") (3.20)

where Z,(0, T) must be an analytic function of (0, ). Clearly =.(0,0) = O,
and Z.(0,7) = T,. In fact, = can only depend on odd powers of © and T;
otherwise =, (0, —©) won’t equal zero, which it must equal when T. = -0, .
Hence

1
=(0,T)=0.+7T, - gfaf@aTb + 00713 or ©37) +--- (3.21)
where the f%¢ are coefficients in the series expansion.
Expanding the exponentials on both sides of equation (3.20)

-\ 2
14+ (0 +Tq) T + (’2—)' (0404 + YY) TT® 4 ()20, T T*T° + - - -

: 2
= 1+i(0c+ YT — %f“f@aTbT‘ + (;)' (@4 + Ta) (O + Tp) T°T® +
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gives upon cancellation
0, ,TT® = —%@an (T°T® + T°T*) — %f“f@aTch (3.22)
= f%@an (T°T° — T°T") = féf“E’@aTbT‘ (3.23)
This must be true for any © and Y, so
[T, T°] = f*?T" (3.24)

which is (3.3).

3.6 Questions

1. Consider an equilateral triangle, with the following set of symmetry

operations

I identity
Ry Positive rotation of 2%aroumd center
R_ Negative rotation of 27” around center

A Reflection through a line joining vertex A to the midpoint of line BC
B Reflection through a line joining vertex B to the midpoint of line C'A
C Reflection through a line joining vertex C' to the midpoint of line AB

FIGURE 3.1
Diagram for question #1.
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(a) Show that these six elements form a group.

(b) Construct the multiplication table of this group.

. Find a non-trivial one-dimensional representation of the triangle group

in question #1.

. (a) Find multiplication tables for the groups Go = {I,a} and Gs =

{I,a, b} respectively consisting of two and three elements each.
(b) Are the multiplication tables unique? Why or why not?

(¢) Find a multiplication table for the group Gs = {I,a,b, ¢} consisting
of four distinct elements. Is it unique?

(d) Find the multiplication table for the group A consisting of symmetry
transformations on the equilateral triangle.

. An orthogonal matrix is defined by the relation RT R = 1, where R is

an N x N matrix, where T refers to the transpose, (RT)ij = Rj;

(a) Show that the set of all orthogonal N x N matrices forms a group.

(b) Show that the set of all orthogonal N x N matrices of determinant
1 forms a group.

. A unitary matrix is defined by the relation UTU = 1, where U is an

N x N matrix, and the { operation means take the Hermitian conjugate

(the complex-conjugate of the matrix transpose), i.e. (UT)ij =Uj.

(a) Show that the set of all unitary N x N matrices forms a group.

(b) Show that the set of all unitary N x N matrices of determinant 1
forms a group.

. A symplectic matrix is defined by the relation ST kS = &, where S is an

2N x 2N matrix and where & is a matrix of the form

o — 0 Iy
S \-Iy 0
and where Iy is an N x N identity matrix. Show that the set of all
symplectic N x N matrices forms a group.

. Consider a set of three objects {4, j, k} with the following properties

ij=k jk=i ki=j

and where i2 = j2 = k* = —1. Show that the set {1,4,j,k} forms a
group under multiplication using these rules.
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FIGURE 3.2
Diagram for question #8

8.

10.

(a) Find the general form of a Lorentz transformation for an arbitrary
velocity ¢ as shown in 3.2.

(b) From your answer in part (a), work out the general form for velocity
addition for two velocities ¢ and 4.

(¢) Under the velocity addition formula in part (b), does the set of
velocities form a group? Why or why not?

For matrices A and B, show

exp[—A]Bexp A = exp(—ada)B  where adaB =[A,B]

(a) Show that the Jacobi identity implies
FODFOC 4 FOSFON 4 feOfOl =

(b) Show that the structure constants of a Lie group generate a represen-
tation of the group, i.e. that (T“)bc = if%? generates a representation.
This is called the adjoint representation of the group.
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Conservation Laws

DOI: 10.1201/9781420083002-4

In the previous chapter I mentioned that symmetries necessarily result in con-
servation laws. In fact, it turns out that a conservation law exists for every
symmetry. This is very useful, because conservation laws are something that
can be checked experimentally. FEven better, from an experimental perspec-
tive we can turn the reasoning around, and inductively conclude that if a
conservation law is present, then the underlying theory should have a related
Symmetry.

So what is the connection between symmetries and conservation laws? Re-
call that a symmetry is an operation on a system that leaves some (or all) of
its properties unchanged. Rotations of a sphere are an excellent example, in
this case, of a symmetry of shape. A crystal forms another example, in this
case, a symmetry of structure, in which the atoms forming the crystal can be
displaced in a certain way that replicates the crystal structure.

In particle physics, fundamental symmetries are revealed not so much in
terms of shape or physical structure, or even in terms of the motions of par-
ticular objects or systems. Rather they are revealed in terms of the set of
all possible motions a system can have. In other words, symmetries are in
general manifest in the EQUATIONS OF MOTION of a system, rather than
in particular solutions to these equations®. To see how this works let’s recall
the basic formulation of the equations of motion from Lagrangian dynamics.

4.1 The Action Principle

To describe the motion of a body in classical physics, we assign it a set of
coordinates q(t), that in general are functions of time, since the body will be

*Of course it is possible for a particular solution of a given theory to have a high degree
of symmetry. But when we talk about a symmetry of nature, we are referring to general
properties of the equations and not to particular solutions.

63
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moving around’. To deduce its equations of motion we require that the action

S[q]z/dtL[q,c'l] where 3= 11020, dn} (4.1)

qi_ dt

be stationary with respect to variations of the trajectory. Conceptually, this
means that we modify the actual (and at this point unknown) path of motion
that the particle takes and change it in some small but arbitrary manner (see
fig. 4.1). This is done point-by-point along the trajectory, so we replace in the
action q(t) with q(t)+dq(t), where dq(t) is the arbitrary small change. By
demanding that the action be stationary with respect to small changes of the
trajectory, we in fact require that the action is minimized (or more generally,
extremized) with respect to these small changes. Hence we require

0= 04,5 = S[a+dq] — S[q]

tp
= / dt |:8L5q1+(%5q1:| + -
tr

9q; 9qi
e TOL d (aLﬂ oL . |'F
= dt | — — = =— )| + =g 4.2
/t, L‘)qi at \ 04, 24", (4.2)
The “+---” in eq. (4.2) means that I neglect any terms proportional to
(qu)Q. The third line follows from the second via an integration by parts,
dgi __ d

where d¢; = 0}t = 3:0q;.

To proceed further we need to incorporate additional information: namely
we assume dg; = 0 at the endpoints of all the trajectories. The reason for
this is that we want to find out what equations of motion take our body
from a given set of initial conditions to another given set of final conditions.
The only way this comparison will be meaningful is if we require that all
the trajectories in our variation have the same initial (and final) conditions,
i.e., the same endpoints. This means that §dg; = 0 at these endpoints. This
eliminates the last term in the preceding expression. Since dg; is otherwise
arbitrary, eq. (4.2) can only be satisfied if

oL d (0L

- — =0 Euler-Lagrange equations 4.3

oq i <8q1> uler-Lagrange equation (4.3)

where I have written the general name these equations get due to their special

significance. We can alternatively write them as
dpi - oL

dt N 8qi

(4.4)

TWhat we are doing here is considering the body to be a point mass. However, if we were
interested in the detailed structure of the body we could assign each of its constituents a
coordinate, idealizing each constituent as a point mass.
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FIGURE 4.1
A sample trajectory (solid), and a variation of this trajectory (dot-dash).

where
OL

A4
a quantity known as the canonical momentum p;.

So what I have shown is that solutions to the Euler-Lagrange equations
are trajectories q(t) that extremize the action. For a given set of initial
conditions, any solution q(t) to the equations (4.3) is regarded as a possible
motion of the system. Conversely, functions q(¢) that do not obey equations
(4.3) will not yield an extremal action.

The variational principle is a very powerful principle — it implies that equa-
tions of motion governing a system are determined by extremization of a
scalar functional (the action) [29]. It generalizes to quantum mechanics, gen-
eral relativity and quantum field theory. Pretty much all of the equations of
fundamental physics are founded on an action principle. The scalar character
of the action makes it ideal for introducing symmetries.

When we consider a symmetry of the system, we are contemplating a group
of transformations G = {g;} such that

Di =

¢; = gild)  where invariance = S[q'] = S[g[q]] = S|q] (4.5)

Suppose we choose to describe the motion in terms of the transformed vari-
ables @' (t'). What equations of motion will they obey? We can find them by
computing the variation

6q/ 6q/ 5q/ )
0 = bq.5la) = 5 0y (Slal) = 5 0y (Slglal) = 5 04, Sld]
= 04Sd]=0 (4.6)

where the first equality holds provided q(t) solves (4.3) and the last holds

5q;-
because rr # 0.
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Hence if q(t) solves (4.3), then the transformed quantities q'(¢') will also be
a solution to a set of equations of motion. These will not in general be identical
to the set that the q(t) obey, but they will be obtainable from this set using
the same transformations: an invariant action yields covariant equations of
motion!

In other words both ¢;(¢t) and ¢/(¢') = ¢g[a(t)] extremize the action if
Slgld]] = S|q], provided G is a group. This last requirement ensures that

dq; . . 8¢ .
det 5 # 0 (all group elements must have an inverse, ensuring s #0); were

it not to hold then we could not ensure that 64.5[d'] = 0, but only that some
linear combination of variations of S[q’] would vanish.

4.2 Noether’s Theorem

An even more general principle holds whenever we have a symmetry, namely,
For every symmetry of the action there is a conservation law

which is called Noether’s theorem, obtained by Emmy Noether in 1917.

To see why this is true, notice that for a fully arbitrary variation (one for
which neither the equations of motion (4.3) hold nor for which the endpoints
are fixed) we have

b tr [OL d (0L oL _ |'*
04,5 = dt [6,, L :/ dt {—(,)]5%4— —0q; 4.7
¢ tr 4.} tr dq;  dt \ 9¢; o4 |, (4.7)
so that oL  d /8L J
0, L = - — 0q; + — [pidq; 4.8
LT
Now let’s consider a (small) symmetry transformation, parametrized by a set
of parameters o = {1, a9, a3, ...,y } so that
4 — d4; = gilo] = gilo, q
q.
= 60.Gi =G —q; = v Scvi 4« -
(0 =q; — ¢ das |, aj +

and where we define @ = 0 to be the identity transformation (¢i[a = 0] =
9i(0,d] = ¢:).

Let’s see what happens if set 4;q; = d4,¢;, neglecting terms of order (5a)2
and higher. First we see that equation (4.8) becomes

d [ 9dq;] 0L [OL d (OL\] 9q; (4.9)
dt p’aa, N Baj 8qi dt (9q2 80@ ’
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to leading order. Next consider the action: invariance of the action means
S[q'] = Slg+6a,q] = Slq], or alternatively 6,5 = 0. This can only be true if

tp tp L
0= 60,5 = dt[éajL}:/ a5l —or (o)
tr

tr aaj

[e3

The most general condition under which this holds is

oL _d oq’
6], @

80@
provided the function G is some function of q and d,,q that vanishes at the
endpoints. This is the most general form J,, L can take that vanishes upon
integration. The function G is some function that must be calculated case-by-
case for each given symmetry.

The important thing to note here is that this equality follows because we
have a symmetry transformation. For a symmetry transformation, 6., L must
be a total time derivative, whereas for an arbitrary variation it is not in general
a total time derivative (unless the equations of motion are satisfied), as is clear
from eq. (4.8) above. We can form an object

_(, 94 oq’
Je= (pz ;. ~C (q, 5ac )., (4.12)
and easily show using (4.9) that
d d g, d
= (i ),
. d (o] o
N (90(@ 8ql dt 8(]1 (90(@ dt @a=0
- (80[3 dt )aaO
=0 (4.13)

which means that J; is conserved: it stays the same at all times, provided the
equations of motion are satisfied. Note that we impose the Euler-Lagrange
equations to get the third line; the last line follows from (4.11).

The current J is called the Noether current associated with the symmetry
a. Equation (4.13) is Noether’s theorem: the symmetry parametrized by
the a’s ensures that Jy does not change with time. In other words J; is
conserved. Noether’s theorem is very far-reaching — I’ve only proved it for
classical mechanics, but it can be shown to hold in both general relativity [30]
and quantum field theory [31]. It is a very general result that holds for any
theory of physics based on action principle.

The meaning of J; depends on what the symmetry is, or in other words,
what the o’s are. Let’s look at some examples.
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4.3 Spacetime Symmetries and Their Noether Currents

The foundational symmetries of particle physics (indeed all of physics) are
spacetime symmetries: symmetries that transform the coordinates of space
and time. Let’s find the associated Noether currents for these.

4.3.1 Spatial Translations

We expect the fundamental laws of nature to be insensitive to a special lo-
cation in space. This means that there is no special choice for the origin of
coordinates. Under a spatial translation, the choice of origin is shifted, so
this symmetry requirement means that the action should be translationally
invariant. A translationally invariant action will have

Lla+ «o,q] = L[q,q] where ¢=q+aand ¢/ =q (4.14)

where there are three symmetry parameters {ay, as, a3} that parametrize the
translation distances. Equation (4.14) implies g aL w—o = 0 and so we can set

G =0 (or a constant vector; it doesn’t matter). We also have

dq;
=4; 4.15
8ak k ( )
and so the Noether current J;"*** is
oq. oq’
Jopmtrans =y — — G y— | =pi (0x) — 0= 4.16
i P G (q 50 ) = Pi Oik) Dk (4.16)
This means that* p .
sp-trans P
—JiP =0=—=0 4.17
dtk ot (4.17)

which is the conservation of linear momentum! Hence

space translation invariance = conservation of linear momentum

4.3.2 Rotations

What happens if we insist that our system be rotationally invariant? Rota-
tional symmetries are described by the orthogonal group SO(3). In Chapter
3 we saw that these take the form

q = (exp {ié} J_])lj q; ~ (5ij - eijkozk) ¢ =qi — (@ xq), (4.18)

fNote that if G were set to be a constant vector, then this would have the effect of shifting
the definition of conserved momentum by some constant (and irrelevant) value; momentum
would still be conserved. This is why we choose G = 0.
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where the (small) symmetry parameters {a, as, as} are the angles of rotation
around each orthogonal coordinate axis, the J’s are the rotation generators
we looked at before, and {q1, ¢2, 3} are the 3 spatial coordinates. Hence

aq! " y
8a; =—¢,""qj = +¢,"7 ¢ = €ir;jq; (4.19)

Since the magnitude of a vector is invariant under rotations, a rotationally
invariant Lagrangian will only depend on the magnitude of ¢, (i.e. L =
L(|q))), so we will have L (|¢']) = L (|q]) (i.e. % wo = 0) and we can once
again choose G = 0.

The Noether current Ji** is thus

9q; . N
It =pi=— =i (€irjqj) = —€rijpiq; = — (T x @), = ((x D),  (4.20)
aOLk

and we obtain J J
— ) =0=—(q =0 4.21
~ (@) (4.21)
which is the conservation of angular momentum! Hence

rotational invariance = conservation of angular momentum

4.3.3 Time Translations

We expect that the same laws of physics were operative yesterday as they
are today, so it is reasonable to require invariance of the action under time
translations. Under a small time translation ¢’ =t + dc,

oq,
O«

daq = q(t +da) — q(t) = =G (4.22)

a=0

There is now just one symmetry parameter {a}, which parametrizes how much
the origin of time has shifted. We will also have a non-zero G because

dL oL dL
0

which tells us that G = L — Ly, where Ly is an irrelevant constant that we
can set to zero. Hence the Noether current J***=»* is

Jt-trans — 3q; — L =p,qg; — L =H (4 24)
= | p; 90 Y = Piq; = ’
dJt-trans dH
oo YH 4.25
dt = d 2

which is the conservation of energy, since H = p;¢; — L is the Hamiltonian.
Hence
time translation invariance =- conservation of energy
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Time-translation will be a symmetry of any system whose Lagrangian does
not explicitly depend on the time coordinate. After all, if the Lagrangian
did depend on the time coordinate, then the action would not be invariant
under a time translation. This is a feature of all closed systems: that there is
no possibility of the system being externally modified at some later time(s).
Consequently conservation of energy will hold for any closed system.

4.4 Symmetries and Quantum Mechanics

The preceding discussion was valid for systems of non-relativistic classical
particles. The transition to quantum mechanics changes the situation in two
ways®. First, it necessitates a reformulation of the symmetry-principle/con-
servation-law relationship. Second, it allows for a broader class of symmetries
called internal symmetries: symmetries that rearrange the charges and inter-
nal structure of wavefunctions without transforming space and time.
A physical system (or particle) in non-relativistic quantum mechanics is
represented by a wavefunction ¥ that obeys Schroedinger’s equation:
oY
ih 5 = HY(t) (4.26)
where H is a quantum operator that is constructed from the classical Hamil-
tonian H = p;¢; — L. Already we see a difference from the classical discussion
in that H (and not the Lagrangian) is now playing a fundamental role. For a
stationary state WU (t) = exp (—iEt/h) ¢ (7), the eigenvalues of H correspond
to the allowed energies (the allowed values of FE) that the system can have.
In passing from classical to quantum mechanics, we replace q(t) — ¥(¢,q),
so we expect that a symmetry operation is described as

q; = gilv,a] — ¥'(;d') = U(0)¥(t;q) (4.27)
where U(a) is a matrix that acts on the (possibly multicomponent) wavefunc-

tion ¥. Since U(a) represents a symmetry of the system, the normalization
of the wavefunction should not change and so

/dq’\I/’T(t;q’)\Il’(t;q’) =1

= [da¥ (@)U @U@ (ta) = [da¥! (ap¥ita) =1 (@129

8The transition to relativity, while preserving the basic conservation laws in section 4.3,
introduces a change of another kind that we will examine in Chapter 11.
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which means for any symmetry operation represented U(«) we must have
Uu'u=1 (4.29)

so that the normalization is preserved. Hence a symmetry in quantum me-
chanics must be represented by a unitary transformation on the wavefunction:
U(«) must be a unitary matrix.

How are conserved quantities associated with symmetries in quantum me-
chanics? Based on the classical discussion we expect that a symmetry oper-
ator U(«) corresponds to a conserved quantity w that is observable. Specifi-
cally, consider

w = /dq\IlT(t;q)U(a)\I/(t;q) (4.30)
and compute its time derivative
dw owt ov i
— = [dq | -UV+ VU | = [ dq (VTHUV - VITUHU
dt /q<at + 8t> ﬁ/q( )

7

- /dq\w [H, U] ¥ (4.31)

where equation (4.26) was used. We see that the quantum number w will
be conserved (i.e.% = 0) provided [H,U] = 0. So the quantum version of
Noether’s theorem is

Conserved quantum number < [U,H] = 0 & U is a symmetry of the system

The set of matrices {U(«;)} that form a group is called the symmetry group
of the Hamiltonian.

Note that the matrix U need not be connected with any spacetime transfor-
mation (e.g. rotations, translations) — it might simply represent a symmetry
that mixes up the wavefunction components. An example of this would be a
symmetry that rearranges the color charges of quarks. We will see later that
such internal symmetries underlie all the non-gravitational forces of nature.

Let’s look again at our spacetime symmetries in this context.

4.4.1 Spatial Translations

We expect that since the classical Noether current is p), the symmetry operator
associated with space translations is (—zﬁ) once we make the identification
7 — (—ihV) from standard quantum mechanics. This is indeed correct.
Invariance under a translation means that

a=q+a —¥(q)="Y(q) = V() =¥(q-a) (4.32)

and expanding this for small « yields

W(g) = W(gi— o) = W(g) — (- V) W(g) = (1-ia- (~iV)) ¥(g) (4.33)
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and so the symmetry operator is P = —ihV (where Planck’s constant
ensures that the units are correct on both sides of this relation). We thus
must have

[07 : 13,H} =0 (4.34)

for a translationally invariant system. This is conservation of linear momen-
tum in the direction &.

Since @ is arbitrary, we can choose it to point in any one of the three
orthogonal directions, in which case we have

[P;,H] =0 (4.35)

for any given direction. Since the various components of P commute with
each other (because V;V,; = V;V,), in a translationally invariant quantum-
mechanical system components of the linear momentum can be defined along
all of the measurement axes.

4.4.2 Rotations

Under a rotation of angle o around an axis 7 (& = an), a one-component
wavefunction ¥ transforms as

A\ j _
g = (exp [za : JD 4 =R;/q; — V'(d') = ¥(q) = ¥'(q) = ¥(R™'q)
(4.36)
and expanding this for small & gives

(q:) = W(g + (@ x @),) = W(g) + (@ x D) V) Ua)

= (1+id- (7% (=iV))) ¥(@)  (437)

<l

and so the symmetry operator associated with rotations is L =q X (—iﬁﬁ).
Note that this is equivalent to the Noether current ¢ x p once we make the
identification that 7 — (—ifiV) = P from standard quantum mechanics as
before. Hence a rotationally invariant quantum system must obey the relation

[07 : E,H} =0 (4.38)

which we recognize from 3rd year quantum mechanics as conservation of an-
gular momentum L around the axis @.

Unlike the situation for translations, the different components of L do not
commute with each other. This leads to a subtle but important distinction
from the classical case. In the classical case, we saw that ¢ x p was con-
served, and so angular momentum around any axis is classically conserved
in a rotationally invariant system. Since in quantum mechanics the different
components of L do not commute with each other (even though any specific
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component commutes with the Hamiltonian H), in a rotationally invariant
system the angular momentum can only be defined about a chosen axis. The
choice of this axis is arbitrary (reflecting the classical conservation about any
axis) but — once chosen — the remaining components are rendered inaccessible

to measurement.
Let’s look at the implications of this non-commutativity in a bit more detail.

For any function f(z,y, 2)

) B

- (v -25;) (o5 -5
(s =o5:) (155 =75,

=1 {Zy <88x28fz - aagx) +oy @2;; - ZZ)

T2 ( & 32f)

Oyozx  O0xdy
*f  Pf of | 9of
e (31/82 B 628y> Yo + may]
0 0
_ B2 =
=7 (‘”ay yax) /
— AL, f (4.39)

We can repeat this, cycling through (x,y, z) and arrive at the relation
[L®, L°] = ihe®® LS (4.40)
which is the same kind of relationship between the L’s that we had for the

J’s in Chapter 3 (see eq. (3.13)). We will make use of this in subsequent
chapters.

4.4.3 Time Translations

This is a special case in quantum mechanics, since time plays the role of an
ordering parameter. Under a time translation ¢’ = ¢ + «,

ov i

— =|14+-aH |V (441
ot ( TR ) (441)
which means that the Hamiltonian H is the symmetry operator. This triv-

ially commutes with itself, and so energy is always conserved in a quantum
mechanical theory.

V)Y =0t)=V{#t)=V(t—a)~¥(t) —«
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4.5 Summary

Under a symmetry g[a]:

INVARIANCE
of the ACTION = conservation of J; = (pi ggfe - G) .
Qp=
COMMUTATION
[U(a),H] =0 = conservation of w = [dq¥T(t;q)U¥(t;q)
Specifically, for spacetime symmetries:
Rotational Invariance = conservation of angular momentum

Space-translation Invariance = conservation of linear momentum
Time-translation Invariance = conservation of energy

4.6 Questions
1. Suppose an operator F has real expectation values, i.e., () |F| ) is real
for any wavefunction 1. Show that F' is Hermitian, i.e., that FT = F.

2. Consider the following action in classical mechanics

§— /dt Em i —V(f)]

(a) Suppose we want to make a transformation that rescales the coordi-
nates by a constant factor of o, i.e. ¥ = 0 Z. How must the time rescale
in order that the action remains invariant if the potential V(Z) = 07

7
di

(b) Under what circumstances is the action invariant under this trans-
formation if V(&) # 07 Find the general form of the potential.

(¢) Find the Noether current associated with this transformation and
show that it is conserved when the equations of motion are satisfied.



Conservation Laws 75

3. Consider a system of N particles, whose wavefunction is ¥ (q1,qz, - .., qN)-
If this system is invariant under translations, find the associated Noether
current.

4. Consider an algebra consisting of the set of operators { P, Py, P,, Ly, Ly, L.}
with the combining operator being the commutator. Does this algebra
close?

5. Show that the operators PP and L- L commute with all elements of
the algebra in question #4.

6. Consider the operator U = exp (—%é’-f’) where P = —ihV is the
momentum operator and @ is a vector displacement from the origin.
How does U act on a wavefunction ¥ (Z,t)?

7. Consider the operator U = exp (—%ﬁ . ﬂ) where L = # x (—ifiV) is the
angular momentum operator and 7 is a unit vector. How does U act on
a wavefunction U (&, ¢)?
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One of the uses of symmetries in particle physics is to classify the possible
types of particles. Intuitively we conceive of a particle as a tiny, possibly
indivisible bit of matter. However, we know from quantum mechanics that
it is described by a wavefunction, and is in a certain sense delocalized over a
region of space at any given instant.

But what kind of wavefunction should we use for a given particle? Clearly
we can’t use the same kind of wavefunction for each particle because they
have very distinct properties. Electrons have small mass and negative charge,
quarks have color and large mass, pions can be charged or neutral and have
no spin, etc. A single type of wavefunction could not properly describe these
distinct properties.

This is where symmetries come in. Symmetries provide a framework that
constrains the types of wavefunctions we can use to describe particles [32].
Intuitively, the wavefunctions that we use should covariantly transform with
respect to the fundamental symmetries of nature that we believe (on empirical
grounds) to be valid. From this perspective we then ask given a symmetry,
what particle wavefunctions can logically exist? And what are their charac-
teristics? In this chapter we will consider these issues.

5.1 General Considerations

To answer these questions, the first thing we need to specify is the system. If
we want to classify a particle, the system under consideration should be just
the particle and nothing else. This means that the action for the system is
just the kinetic energy of the particle — no other interactions or potentials are
present!

Let’s work non-relativistically to start with. In this case we have

1 14zl
Classically : S = /d3x 3m d—gtc ] = %/d?’x l#% (5.1)
V] 2
Quantum Mechanically : zﬁaa—t = f2v—m\Il(t) (5.2)

7
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for a free particle of mass m.

This system is clearly invariant under all spacetime symmetries: space
translations, time translations, and rotations. Hence we can classify a free
particle by its properties under these symmetries. Note that the particle
might be composite (e.g. the pion, the proton, the Kaon, etc.) or elemen-
tary* (e.g. electron, up quark, photon, etc.). In either case, as long as the
particle is represented non-relativistically by (5.1) or (5.2), our classification
will be valid.

Consider first translations. Invariance under spatial translations means
that the momentum of a free particle is always conserved, and invariance
under time translations means that its energy is conserved (both classically
and quantum mechanically). In the rest frame of the particle the momentum
vanishes. Hence every free particle is characterized by its energy in the rest
frame — which is its mass’. We say that the mass of the particle (by which
we mean the inertial mass) is a good quantum number of the system.

Rotations are somewhat less trivial. We've already seen that a rotation
is a transformation R for which RTR = I, ie., the group is the group of
orthogonal transformations of 3 x 3 matrices, which we call SO(3). Such
transformations preserve angles between vectors and their lengths. We saw
earlier that they can be written in the form

J

R =exp |:Z§ .ﬂ = R/ = (exp {25 j}) (5.3)

K3

where the J operators obey
[J%,J°] = e J° (5.4)

and also (as a consequence of (5.4))
[[3%,3°], 3] + [[3°,3°),3°] + [[35,3°,3°] =0 (5.5)

with a = 1,2,3. We also saw in the previous chapter that L =% x (—iAV)
L \a
satisfies the relations (5.4) — that is, setting J* = L% = (f X (—iV)) for

*By definition elementary particles are indivisible — they are not made of smaller compo-
nents. So how do we know if a particle is elementary or not? The answer is that we don’t!
What we can do theoretically is to assume a given particle is elementary and work out the
consquences. To the extent that experiment is in agreement with theory, this assumption
is valid. For example all experimental evidence to date indicates that the electron behaves
like an elementary particle for distances no smaller than 1072° cm [33]. Future experi-
ments that can probe even shorter distances might uncover evidence that the electron is
not elementary — if so, then our theory of the electron would have to be modified [34].
TSince we are working non-relativistically, we actually can’t conclude that the energy in the
rest frame is the mass. However, this result would follow were we to work relativistically
(which we’ll do later on). Note that even non-relativistically we must specify the parameter
m in order to write down the action or Hamiltonian — since m commutes with H, it can be
used to characterize (i.e. classify) the particle.
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a = 1,2,3 will satisfy (5.4), with an appropriate factor of  inserted. It is
easy to check that (5.5) is also satisfied — indeed, it must be if (5.4) holds.

The nice thing is that any set of N x N matrices J® that satisfy the relation
(5.4) can be considered as symmetry operators of SO(3) that act on some
wavefunction W. Note that this turns the problem around. We originally
began with the matrices

000 00-1 010
{T*, T, T} ={—il001]|,—i|l000 |,—i|—-100 (5.6)
0-10 10 0 000

and showed that they satisfied (5.4) by setting J* = T* Now we want to
consider (5.4) as the defining relation for rotational symmetry and find all
possible matrices — of any dimensionality — that satisfy this defining relation.

Recalling the definition from group theory, any such set will be a represen-
tation of the rotation group. We only want the irreducible representations
(the irreps). Each irrep will correspond to a possible way that a free quantum
particle can manifest rotational symmetry. Hence the irreps of the rotation
group classify free particles. Once we know these irreps, we know all the
possible physically distinct particle wavefunctions!

It’s a general problem in group theory to find these irreps, and I won’t do
that here [35]. Instead, setting i = 1, I'll just write down the most general
solution to (5.4):

— a
@)/ = (#x (=iV)) o/ + (8
=L/ + (8 (5.7)
or more succinctly, J=L+S. Non-relativistically this operator will act on
an N-component wavefunction ¥ (Z,t) = (¥ (Z,t), Uy (Z,1), -, Un (Z,1)),
where the K-th component is

i.e. the wavefunction is the product! of a spatial part ¢ (#,¢) and an N-
component spin part x. The orbital angular momentum operator L acts only
on ¢ and the spin angular momentum operator S acts only on x , i.e.

Ju= (f(p) X+¢ (gx) (5.9)
Note that rotational invariance implies via Noether’s theorem only that

[3, H} ~0 (5.10)

fRelativistically this does not hold — although it will hold in the non-relativistic limit and
in the rest frame of the particle.
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and that in general
[E,H} 40 [éH] 40 (5.11)

In other words L and S will in general not commute with the Hamiltonian,
though they commute with each other.

In the rest frame of a particle, there is no orbital angular momentum and
all eigenvalues of L vanish. However, the eigenvalues of the spin (or intrinsic)
angular momentum do not vanish. This gives us our second good quantum
number for free particles: spin.

5.2 Basic Classification

So far we’'ve seen that invariances of a free particle under time and space
translations and rotations imply that its momentum, energy, and angular
momentum are all well-defined (are “good quantum numbers”), and so can
be used to classify a particle. In the rest frame of the particle these quantities
reduce to the particle mass m, and its spin s.

The mass is specifiable simply by giving a numerical value for m in whatever
the relevant units are. We know of no principle that determines the particular
values that m might have for a given elementary particle. The best we can do
is to determine the value of m from experiment on a case-by-case (or perhaps
I should say particle-by-particle) basis and input this value into our theories.

The spin s, on the other hand, is not so freely specifiable; instead it is
determined from one of the irreducible solutions to (5.4):

[S7,8°] = ieese (5.12)

where J = S since we are in the rest frame of the particle. Any irreducible set
of 3 matrices {S*,SY,S*} that solves (5.12) determines a possible s value of
the particle. Hence knowledge of all irreps satisfying (5.12) (i.e. all possible
§’s) is equivalent to knowledge of all allowed particle spins.

As noted above, finding these irreps is a problem in group theory. Table
5.1 lists the three simplest (and most commonly used) irreps, along with the
general form.

The quantities ¢ in table 5.1 are

(0%.0,0°) = {0}, 0%, 0%} = {(‘1) (1)) , (? ‘Oi) , ((1) 01>} (5.13)

and the quantities T? in table 5.1 are

{T*,T¥, T*} = {T', T, T}
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TABLE 5.1
Irreducible Representations of Spin
Spin Irrep Terminology  Transformation (Rest Frame)
s=0 S=0 Scalar V=¢ ¢ =¢
s=1 5:%5 Spinor ¥ =1 wt’l:exp[%g'ﬁ}bwb
a,b=1,2
s=1 §=T Vector U =A4A A;:exp[i9_'~f]JAj
ij=1,2,3
i . - 5 N
s S Tensor ¥ =x Xy =exp [2’9 . S} ey

M,N=1,2,..,(2s+1)

000 00-1 010
={—ifoo1]|,—ifooo0 |,—i|-100] }G5.14)
0-10 10 0 000

which are the generators of spatial rotations of a vector that we encountered
N

in Chapter 3. The general form of (g)M is a square matrix of dimension
(25 + 1) x (2s + 1) which obeys (5.12).

Note the implications of the results listed in table 5.1: the spin of an el-
ementary particle must be either an integer or a half-integer (in units of h).
There can never be an elementary particle with s = 9/7 or s = V/3 or some
other real number that is not one of these two types — rotational symmetry
forbids this possibility®.

All representations have the following two features in common:

S2y = (§ : §) U= s(s+1)0 (5.15)
ST = 5,0 (5.16)

where s, is a number that can have any value in the set {—s,—s+ 1,—s +
2,...,s—1,s}, for a total of 2s + 1 values in all.

The s = % representation (or the spinor representation) is of significant
import in particle physics. It was found by Pauli [36], and the ¢’s are given
the name Pauli matrices. You can find out more about their properties in

§ Actually this statement depends on the number of spatial dimensions. In two spatial
dimensions spin need not come in units of /2. An particle whose spin differs from some
integer times %/2 is called an anyon, as noted in Chapter 1.
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appendix D. They obey (5.12), i.e.
Lyl o _ 73 :
{20 )50 } =50 + cyclic (5.17)

and we see that the factor of % is crucial to this endY. This factor implies
that under a 27 rotation (about, say, the z-axis) the spinor representation
transforms as

P, = exp B (2m) UZ] : Yy = exp {(m) (é _Olﬂ ab (o

. b b
e 0 -10
( 0 e_iﬂ—)awb:< 0 _1)a¢b

-, (5.18)

So the wavefunction ¢ — —1 under a 27 rotation! Notice that for the same
rotation the scalar and vector wavefunctions do not change sign (¢ — ¢
and A — ff) It is this peculiar feature of half-integer spin particles that
distinguishes them from integer-spin particles.

What does relativity do to all of this? We could repeat our analysis by
replacing R, with A,7. The preceding results do not change — the only kinds
of wavefunctions allowed are those permitted by the rotation group. Including
boosts adds nothing new to this. Instead, relativity has a different physical
implication for the allowed wavefunctions, which we’ll look at in Chapter 11.

Tables 5.2 and 5.3 summarize our current knowledge of which elementary
and composite subatomic particles have which spins. Question marks ap-
pear beside particles hypothesized to exist, but which have not actually been
observed .

9Note that [01,02} = 2i03 & cyclic. The factor of 2 is what destroys agreement with eq.
(5.12).

'You might have noticed that there are no elementary particles with spins larger than 2,
and that there appears to be no elementary particle of spin 3/2. There is a theoretical
obstruction to writing down theories describing pointlike elementary particles spins larger
than 2 — nobody knows how to get them to interact according to standard approaches in
quantum field theory. Superstring theories do not have such obstructions — see chapter 25
for more details.
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TABLE 5.2
Classification of Bosonic Particles
Spin-0 Spin-1 Spin-2
Elementary Higgs? Photon, Gluon, W, Z  Graviton?
Composite  Pseudoscalar Mesons Vector Mesons 77
TABLE 5.3
Classification of Fermionic Particles
Spin-1/2 Spin-3/2
Elementary  Quarks, Leptons Gravitino?

Composite Baryon Octet Baryon Decuplet

5.3 Spectroscopic Notation

It’s common to write the general (non-relativistic) spin-s wavefunction as x,
where

X =1|ss.) where s, =—s,...,s (5.19)
so that
S?|ss.) =s(s+1)[ss.) (5.20)
S%|ss.) = s, |s8z) (5.21)
St |ss.) = /s(s+ 1) —s.(s. £ 1) |s(s. + 1)) (5.22)

where the matrices S have been written as
St =85"4i8¥ =8 +i5? and S§* =53 (5.23)
8% = (5%)* + (8%)* + (57)? (5.24)
In addition to its mass and spin a particle (e.g. if it is composite) may
have other good quantum numbers (“good” because they are constants of the

motion and so their associated operators commute with H). For example, it
is very common that

[ﬂ : f,H} ) [§ S, H} ) (5.25)

which physically corresponds to assuming that there are no forces or inter-
actions that can change the magnitude of either the spin or orbital angular
momentum (although there may be forces or interactions that change their
directions). So more generally we write

I im) =j(j+1)|jm) (5.26)
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JZgm) =m|jm) m=—j,—7+1,...,5—1,7 (5.27)
JEIim) =i+ 1) —m(m£1)|j (m+1)) (5.28)

for a particle (composite or not) of total spin j and z-component m, with the
J’s defined analogously to the S’s. When (5.25) holds, a particle is charac-
terized by the quantum numbers given in table 5.4 in addition to the mass.

TABLE 5.4

Particle Quantum Numbers
Quantity Operator Eigenvalues
total angular momentum J-J jG+1)
total spin 5.5 s(s+1)
total orbital ang. mom. L-L (L+1)
Axial component of ang. mom. J* Jja=m

We summarize this information using spectroscopic notation[37]

25+1 L_j

for a state of total angular momentum j = J and spin s = S. The numerical
values ¢ of L are often denoted by S,P,D,F (for historical reasons**) instead
of 0,1,2,3. Note that L can have only integer (and not half-integer) values.
Hence a particle in the state 3S; has s = j = 1 and ¢ = 0; a particle in the
state Dz has s =2, j =3 and £ = 2.

5.4 Adding Angular Momenta

When particles collide they produce resonances (short-lived bound states),
which in turn decay into other particles. These resonances will have spins
that will be determined by the intrinsic spins of the colliding particles and
their relative angular momenta. For example, the vector mesons are bound
states of a quark with an antiquark in a spin-1 combination.

Consequently a key general question in particle physics (as well as in atomic
physics) is how, quantum mechanically, do we add two (or more) angular

**The letters, “S”, “P”, “D”, and “F”, for the first four values of ¢ respectively stand
for “Sharp”, “Principal”, “Diffuse”, and “Fundamental”, based on the properties of the
spectral series observed in alkali metals.
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momenta? Of course we know the answer classically: we just add the com-
ponents. Quantum mechanically this doesn’t make sense, because we can’t
measure all components of J simultaneously. A measurement of J* neces-
sarily alters JY. The best we can do is to simultaneously measure J?= J-J
(the magnitude J ) and one component of J, since each component commutes
with J2. By convention we choose this component to be J*. This is why
we often label angular momenta of wavefunctions in the form |j j,) or, more
commonly, as |jm).

So what can we do to describe how particles of different spin combine?
The answer (as you might have guessed) is also found in group theory and is
called the Clebsch-Gordon Decomposition (or CG decompositiont). Given
two particles of angular momenta |j; m1) and |j2 m2), they can combine in
the following linear combination of angular momentum states

Jitj2
[Jima) @ [j2me) = Z Cy, (J1, J2smama)[jm)
Jj=lj1 721
= Cl%2l (g — gl ma + ma)

HCI I G o 1 my 4 m) 4
FCUTER) () 4 o), my + ma)  (5.29)

where the value of m is always the sum of the incoming m’s, i.e. m = mj+mso.
The left-hand side of eq. (5.29) is the product of two spin wavefunctions
corresponding to angular momenta j; (with z-component mq) and jo (with
z-component mg). The right-hand side of eq. (5.29) is a linear combination
of all possible spin-wavefunctions that are permitted by the rules of quantum-
mechanical angular momentum conservation.

This rather formidable looking notation is more easily understood by noting
that the CG decomposition has three essential features.

1. Since we can always measure (by convention) J* unambiguously, the
z-components of angular momenta just add, as noted above, i.e. m =
mi + ma. So every wavefunction on the right-hand side of eq. (5.29)
has z-component m; + ms, as is clear from each term in the sum.

2. The magnitudes of the angular momenta do not add: the total magni-
tude depends on the relative orientation of the incoming angular mo-
menta J 1 and J5. Since this is empirically unknowable (because we can
at best measure a component of each J along only one axis), we get all
possible spin-wavefunctions in the linear combination on the right-hand
side of eq. (5.29) that are group-theoretically allowed. The biggest

Tt The coefficients are named after two German mathematicians Alfred Clebsch (1833-1872)
and Paul Gordan (1837-1912), who encountered an equivalent problem in invariant theory.
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value for J is when J; and J, are parallel (giving j = j; + j2) — both
angular momenta are aligned along the z-axis. The smallest is when Ji
and Jo are antiparallel — both are anti-aligned along the z-axis, giving
J = |j1 — j2|. All other possible values for J are given by going between
these values in integer steps

J =11 = Jel g1 —del + 1, i1 — Jo| +2,..., j1 +Jj2— 1, j1 +j2 (5.30)

3. The CJ,’s are numbers that depend on the input parameters ji, jo, m1
and msy. A book on quantum mechanics will tell you how to calculate
them [38], and the numbers are listed in tables known as Clebsch-Gordon
tables. They are included in the appendix to this chapter. Reading these
tables takes a bit of practice. The total spins being combined are given in
the upper left of one of the sub-tables. The m-values (or z-components)
of these spins are given in the lower-left boxes in a subtable, and the
possible output |jm) wavefunctions are in the upper right boxes in the
same sub-table. The CJ,’s are the square roots of the numbers in the
relevant middle boxes, where the minus sign (if there is one) goes outside
of the square root.

5.4.1 Examples
5.4.1.1 Glueballs

A bound state of two gluons is called a glueball. What possible spins can the
lowest-energy glueball states have?

Gluons have spin s = 1, so the possible total spin values range
between 1 — 1 =0 and 1 4+ 1 = 2. Since the states are of lowest
energy, the gluons must have no orbital angular momenta. Hence
the possible spins are 0,1 and 2.

5.4.1.2 Positronium

An electron and a positron can form a bound state called positronium. What
are the possible spins of a positronium “atom” if the et and e~ have relative
orbital angular momentum 17

The spin j of positronium will be given by combining the spins of

eT and e~ and their relative orbital angular momentum. Each
spin s = %7 so the combined spin (without taking orbital angular

momentum into account) is either 0 or 1. Since £ = 1 we get
j =0,1,2 if the combined spin is 1. If the combined spin is 0 we
get j=0+0=1.
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5.4.1.3 Capture

An electron is temporarily captured by an Q* particle, forming a resonance. If
the z-components of their spins are positive and equal, what is the probability
of observing this resonance to have its maximal angular momentum allowed
in a state of lowest energy? How does this answer change if the z-components
of their spins are equal and opposite?

For this problem we need the CG tables. The Q" has spin % and
the electron has spin % so we need the % ® % sub-table. Since
we are in a state of lowest energy, £ = 0 and so orbital angular
momentum makes no contribution. Since the z-components of the
spins are positive and equal, we must have m = % for each particle,
because this is the only allowed positive z-value for the electron.
Reading from the 3rd line of the lower-left box in the % ® % table,
we have /3 .

31 11

‘2 2>® 2 2> 2 21) 2‘11>
where the coefficients are found by taking square roots of the num-
bers in the central box to the right, and the wavefunction compo-
nents are found from the box above this one, column by column.
The maximal angular momentum state is therefore |2 1), i.e. j = 2.

2
The probability of observing it is (@) = 75%. If the spins are

equal and opposite we have, from the 5th line of the lower-left
boxes in the % ® % table,

31 1 1 1 1
== - ——)=—]20)— —<|10
'22>®'2 2> \/§| > \/§| >
and so the probability of observation of the |20) state is now

(%)2 — 50%.

5.5 Appendix: Tools for Angular Momenta
5.5.1 Pauli-Matrices

The 3-Pauli matrices are

o= oty = (0. (09).(15)) e

and we don’t distinguish between upper and lower indices, so that o' =

01,0% = 09,0% = 03. We have the product rule

0,05 = 5ijI + Z'EijkO'k = 51']' + ieijkcrk. (532)
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where the 2 X 2 unit matrix I is often suppressed, as in the 2nd part of the
expression above. This rule implies

(01)* = (02)* = (03)* =1
0109 = 103 and cyclic (5.33)

[0i,0;] = 2i€; 0% {0i,0;} = 26;;
and for any two vectors @ and b

(6~5)<5-5):6~5+i(6xg)~& (5.34)
We also have the exponential relation

exp [5~&’] 2@cos9+i§~&'sin0 (5.35)

where 6 = 0.

5.5.2 Clebsch-Gordon Tables

Clebsch-Gordon tables contain explicit formulae for all the CJ, (1, j2;m1 ma2)
coefficients given in eq. (5.29). I have reproduced them on the next two pages
and in appendix F.

The total spins (j1,j2) being combined are given in the upper left of one
of the sub-tables. The respective (mq,ms)-values (or z-components) of these
spins are given in the lower-left boxes in a subtable, and the possible output
|7 m) wavefunctions are in the upper right boxes in the same sub-table. The
CJ,’s are the square roots of the numbers in the relevant middle boxes, where
the minus sign (if there is one) goes outside of the square root.
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5.6

1.

Questions

(a) A AT with j, = —1/2 collides with an Q~ with j, = +1/2 temporar-
ily forming a resonance. What is the probability that the resonance is
spinless? What is the probability that the resonance has spin-27

(b) A spin-2 glueball decays into a quark-antiquark pair. What are
the possible values of the orbital angular momenta of the resultant ¢
system? What is the parity of the glueball?

A clever experimentalist figures out how to collide two € particles of
opposite charge into a resonance (i.e., a short-lived bound state) called
an omegaball.

(a) What are the possible spins of an omegaball in its lowest-energy
state?

(b) The experimentalist then figures out how to make a supply of 10,000
omegaballs of lowest energy by repeatedly colliding QO and Q™ together
with opposite spins along the z-axis. What must these spin components
be if more highest-spin omegaballs are made than any other kind? Find
approximately how many of each spin are made in the sample of 10,000.

(¢) How does your answer to (b) change if the highest-spin omegaballs
are fewest in number in the sample?

A-particles are produced by a pion beam in the reaction
7 4+p— K +A

and are observed via their decay A — 7~ +p. You are an experimentalist
trying to determine the total spin s(A) of the A. The angle of the decay
products relative to the beam axis is 6.

(a) If the A is produced exactly along the beam axis what are the possible
values of s,(A)?

(b) A trustworthy theorist tells you that s(A) can’t be larger than 3.
Given this constraint, what are the possible angular decay distributions
for the forward-produced A’s as a function of their spin?

Consider the Hamiltonian

H=Hy—¢"™23. B
h
where B is an external magnetic field, g, up are constants, and Hy com-

mutes with the angular momentum operator J. If the magnetic field is

pointing along the z-axis, find the commutator [H , j]
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. (a) Find the simplest irreducible representation of the gravitino, a spin-

3/2 particle hypothesized to exist in superstring theory.

(b) Suppose two gravitini collide to form a bound state (a gravitiball).
What possible spins could this bound state have?

(c) Suppose you had 10,000 gravitiballs of lowest energy, formed by
repeatedly colliding two gravitini together with opposite spins along
the z-axis. What must these spin components be if more highest-spin
gravitiballs are made than any other kind? Find approximately how
many of each spin are made in the sample of 10,000.

. Verify the following:

(a) exp {5 5’] =3 (0:*!) = cosf +if - 5'sin @

(b)

(01)" = (02)? = (03)* =11
0109 = i3 and cyclic

[ai,aj] = 2i€ijk0k {0'7;,O'j} = 2(5”

. In 1932 the decay of the neutron into a proton and an electron was

observed. What conservation laws did this decay violate, if any?

. Suppose an electron is in the state ¢ = « (é) + <?>

(a) What relationship must a and 3 obey in order for ¢ to be normal-
ized?

(b) What values might be obtained upon measurement of S, and what
is the probability of each?

(c) What values might be obtained upon measurement of S, and what
is the probability of each?

(d) What values might be obtained upon measurement of S,, and what
is the probability of each?
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Some symmetries in nature are not continuous, but discrete: you either per-
form them or you don’t. In other words they can’t be generated from in-
finitesimal transformations. Because of this the conservation laws associated
with such symmetries are multiplicative instead of additive. In this chapter
we will examine the notion of discrete symmetries and their implications for
particle physics.

In general, a multicomponent wavefunction ¥ will transform under a dis-
crete symmetry as

W'y (2') = (Up) ,° Up(z) where o' = (ﬁmx)u (6.1)
= Wy(z)= (Up),” ¥p(U5's) (6.2)

where Up is some matrix (acting on the components of the wave function)
that is to be determined for each discrete symmetry, and Uy is its represen-
tation when acting on the spacetime coordinates. For a continuous symmetry
U = I+e(something) where ¢ is small. This kind of Taylor-series expansion
is not possible for a discrete symmetry. The matrices Up must be fully known
in order for their action on wavefunctions to be explicitly computed.

Fortunately this is not difficult to do. I won’t deal with all possible discrete
symmetries here, but instead will concentrate on the three most important
for particle physics: parity, time-reversal, and charge conjugation. Let’s look
at each.

6.1 Parity

Parity is the act of reflecting a system in a mirror. If the mirror-system has
all the same physical properties as the original, then we say the system is
invariant under parity.

Mathematically this kind of reflection involves specifying a plane for the
mirror and then switching the signs of all the coordinates in the directions
orthogonal to this plane. An example is shown in fig. 6.1. This is generally
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quite inconvenient, so usually a parity transformation is implemented by per-
forming an inversion on the coordinates ¥ — —&: every point is carried to its
diametrically opposite location through the origin. This is a combination of a
reflection with a 180° rotation. Both transformations turn a right hand into
a left hand and vice versa. Inversions are easier to work with, since we don’t
have to choose a plane for the mirror. We shall generally refer to inversions
as parity transformations. The difference between the two is illustrated in
figures 6.1 and 6.2.

FIGURE 6.1
Reflection in the x-z plane: (x,y,z2) — (x,—y, 2)

FIGURE 6.2
Inversion: (z,y,2) — (—z,—y, —2)
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So if we call the parity operator P, we have
P:(t,x,y,2) — (t,—z,—y,—2) =P (V) =-V (6.3)

where V is any vector. Note that

P(V-W)=p(V)-P(W)=(-V)-(-W)=V-W  (64)
P(VxW)=P(V)xP(W)=(-V)x (-W)=+VxW  (65)

which we expect, since P changes right-handed coordinate systems to left-
handed ones.

So we see that there are two kinds of vectors: those that reverse sign under
P and those that do not. We call this 2nd kind of vector a pseudovector, since
it transforms under parity opposite to the way a vector transforms. Note that
if V is a vector and A is a pseudovector then

P (17 X /_1') = (—17) X <+E) = -V x A= a vector (6.6)
P (17 . ff) = (—\7) . (—i—/f) = -V .A= a pseudoscalar (6.7)

and so tensor quantities (scalars, vectors, etc.) may or may not be pseudo,
depending on how they transform under P. The various possibilities are listed
in table 6.1.

TABLE 6.1
Behavior of Scalars and
Vectors under Parity

Scalar P(s) = +s
Pseudoscalar  P(p) = —p
Vector P(V)=-V
Pseudovector P (A) = +A

If P is applied twice we must get what we had originally, and so
P? =7 (6.8)

or in other words the eigenvalues of P are 1. Scalars and pseudovectors
have eigenvalue +1, whereas pseudoscalars and vectors have eigenvalue —1.
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Note also that we can write a representation of P as a matrix when it acts on
spacetime coordinates:

0

0 -1
0 0 -1

—_
o O

0
P (t,2,9.2) = (t,~2,~y,~z) = (Ap)’, = X (6.9)

O OO

This shows that Ap is also a Lorentz transformation, since gag (Ap)®, (A]p)’i =
9uv, something easily shown by explicit calculation for each component.

So in addition to their mass and spin, wavefunctions of elementary particles
are also classified according to their parity eigenvalues. Let’s look at a simple
example.

6.1.1 Parity of the Photon

What is the parity of the photon? We can figure it out by recalling that
in the hydrogen atom the wavefunctions (or rather, the spatial part of the
wavefunctions) have the form

U(Z) =W (r,0,0) = (r)V;" (0,0) (6.10)

where the Y (6, ¢) are the spherical harmonics, given in table ??. Now note
that

P (taxyyvz) - (ta -z, =Y, _Z)

=P:(tr0,¢) — (t,r,m— 0,7+ ¢) (6.11)
= P[0 (7)) = U (-7) = p(r)V}" (n — 0,7 + ¢)
= (1) o)V (0,¢) = (-1)" ¥ (D) (6.12)

and so we see that a state with orbital angular momentum ¢ has a parity
eigenvalue of (—1)6. This means that the S,D,G,... states of the Hydrogen
atom (the ¢ =even ones) have even parity, whereas the P,F H,... states
have odd parity. In a transition where A¢ = +1, one photon is absorbed (or
emitted). Hence (since electromagnetism is parity-conserving) the photon has
negative parity.

6.1.2 Parity Conservation

We also assign positive parity to quarks and leptons (and negative parity to
their antiparticles). Of course, this is a convention, and we could have chosen
a reverse assignment; it won’t matter as long as parity is conserved*.

*Thinking ahead to when we include relativity, we will find that we need to include antipar-
ticles. It is possible to show that a fermion has a parity opposite to that of its antiparticle
whereas a boson has a parity that is the same as that of its antiparticle. This result follows
from quantum field theory, a subject beyond the scope of this text.
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To the best of our experimental knowledge, parity is conserved in strong
and electromagnetic interactions. However, it is not conserved in weak-
interactions. Weak interactions affect all known particles including a neutral
fermion of very small mass called a neutrino. All neutrinos are left-handed
(and all antineutrinos are right-handed): their spins are always antiparallel
to their momental. Figures 6.3 and 6.4 illustrate this concept. Nature is not
mirror-symmetric — parity is violated!

direction of
motion

rotation

FIGURE 6.3

A right-handed particle is one that rotates in the direction of the fingers of
the right hand while traveling in the direction of the thumb. Similarly, a
left-handed particle rotates in the opposite direction.

6.2 Time-Reversal

Macroscopic physics is generally NOT invariant under time-reversal; for ex-
ample an explosion does not look the same if a movie of it is run backwards!
This is what we refer to as the arrow of time. Unlike the spatial coordinates,
which can be traversed in any direction we like, the time coordinate seems

TThis discovery was first made in the 1950s by Wu [39] and we’ll look at it in more de-
tail when we consider weak interactions in Chapter 19. Recent observations at Super-
Kamionkande [41] and SNO [42] have revised the original understanding of neutrinos as
zero-mass particles. There is now excellent evidence that they are very light-mass particles,
in which case there are also right-handed neutrinos! Our best experimental information so
far is that the right-handed neutrinos do not experience the weak interactions.
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FIGURE 6.4

A diagram representing the relationship between momentum, spin, and hand-
edness. The thick arrow points in the direction of the spin vector. The thin
straight arrow is the momentum vector.

to be one for which only a one-way journey (from past to future) is not only
allowed, but required. Understanding why this should be the case is one of
the outstanding puzzles of modern physics [43].

At a macroscopic level the asymmetry associated with the arrow of time
is a consequence of initial conditions, which according to the laws of thermo-
dynamics always become less ordered overall as time increases (though local
regions can become more ordered as in, say, the construction of a building).
We say that a physical system in combination with its environment experi-
ences an increase in entropy.

At the microscopic level of collisions between the fundamental particles in
our example of the explosion, the situation is quite different. At this level
we might expect time reversal invariance to hold because Newton’s laws are
time-reversal invariant. From this perspective the puzzle of the arrow of time
reduces to the problem of the origin of initial conditions.

Common quantities transform under time reversal T and parity P are shown
in table 6.2.

As with parity, we can represent T as a matrix when it acts on coordinates:

-1000
0100
0010
0001

T:(t2,y,2) = (—t,2,9,2) = (M), = (6.13)

and it, too, is a Lorentz transformation: gag (Ar), (AT)[L = guw. Both

fermions and their antiparticles transform the same way under time-reversal®;
the same holds for bosons and their antiparticles.

6.2.1 Detailed Balance

Time-reversal is difficult to test — as noted above, since all physical systems
experience time to move forward, we have no way of directly forcing a system

¥This is another result from quantum field theory.
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TABLE 6.2
Transformations of Common Physical Quantites under Time-reversal and Par-

ity

Quantity T P Comments
Position 7 7 -7
Momentum p’ —p —p Polar vector
Spin § -5 g Axial vector
(like 7 x P)

Electric field E E —E E=-VV
Magnetic field B -B B like a ring current
Magnetic

dipole moment fi —Q i
Electric

dipole moment d d —d
Longitudinal

polarization §-p §-p 59 Chirality
Transverse

polarization §- (p} X pa) —8§-(p1 X p2) S+ (Pp1 X Da2)

to reverse its trajectory in the time direction (i.e., we just can’t “run the
movie backward”).

However, we can take a particular physical reaction and run it in reverse.
Consider for example the two-body scattering of a neutron off of a proton to
form a deuteron and a photon. Under time-reversal we would have

n+p—D+~y T= D+y—n+p (6.14)

T-invariance, if it held, would force the rate for both processes to be the same
for corresponding conditions of energy, momentum and angular momentum;
this is called the Principle of Detailed Balance [44]. Tt is the most direct test
of time reversal that we have.

So far all experiments have indicated that time-reversal invariance is a sym-
metry of the strong and electromagnetic interactions, with the principle of
detailed balance holding for every known case for these interactions. Un-
fortunately the places where we expect to see T-violation are in the weak
interactions: after all, this is where parity is violated (and, as we will see,
charge-conjugation invariance as well). Here the principle of detailed balance
is extremely difficult to test. For example the weak decay of the A meson is
A — p+ 7, so we would expect to test detailed balance via

A—p+rm «T=p+rm—A (6.15)
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This would in principle form a check, but in practice the pion and the proton
form many other states besides the A when they collide. This is because
the strong interaction between the pion and the proton totally dominates the
feeble weak interaction that would form the A. It is therefore pretty much
impossible in practice to pick out the time-reversed reaction on the right-hand
side of eq. (6.15).

Can we do anything about this? Yes — we can precisely measure static quan-
tities whose value should be exactly zero if T is a symmetry. Any empirical
evidence that such quantities were nonzero would therefore be firm evidence
that T is not a symmetry of nature.

One such quantity is the electric dipole moment d of an elementary particle.
If it were nonzero it would have to be either aligned or antialigned with the
spin of the particle since there is no other direction available. But from table
6.2 we see that an electric dipole moment does not change sign under time-
reversal whereas the spin does, so any nonzero-value of d would be a signature
of time-reversal violation. At present the best limits that we have are for the
electron [45] and the neutron [46]:

|d,| < 6% 1072%¢ cm de| < 1.6 x 107%"¢ cm (6.16)

setting stringent upper bounds on T-violation. We’ll look more at the situa-
tion for the neutron in Chapter 25.

6.3 Charge Conjugation

Charge conjugation, denoted by C, transforms any state into a state with the
same energy, momentum, spin and mass but with all other quantum numbers
(the “charges”) reversed. In other words, C transforms each particle into its
antiparticle, e.g.

Clp) = Ip) Clrt)y =|x") (6.17)

Obviously C? = +1 (just like T? = +1 and P? = +1), and so it also has
eigenvalues +1. However,, unlike P, most particles are not eigenstates of C,
because a particle is not the same state as its antiparticle (for example, a
positron is not an electron). Any particle that is an eigenstate of C must be
its own antiparticle, since the eigenvalue equation for C requires

C |particle) = |antiparticle) = =+ |particle) (6.18)

The photon is one such particle, and the 7°, n, ', p°, ¢, w, and J/+) mesons
are also their own antiparticles. Consequently they can be assigned definite
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charge-conjugation quantum numbers. By convention, C does not change the
mass, energy, momentum or spin of a particle.

6.3.1 Charge Conjugation of the Pion

If electromagnetic charge is reversed for all particles in a given system, then
the sign of the electromagnetic field in the system must also be reversed, and
so C=—1 for the photon. We can use this to deduce the value of C for the
pion. For the 7°, experiments have shown that

70— 2y (6.19)

which is an electromagnetic decay, because only photons are in the final state.
Hence we must have C =+ 1 for the 7° since C is conserved in electromag-
netism.

The conservation of C is therefore something we can check by searching for
the decay of the 7° into odd numbers of photons. Any positive evidence for
such a decay would indicate that something was wrong with our understanding
of electromagnetism and, by extension, the Standard Model. Perhaps our
theory of electromagnetism would need revision, or perhaps the 7° would have
a structure that is different from our current understanding. Experimentally
we have

L (7% — 3v)

— " 31x10°8 2
Tl ooy < 31X 10 (6.20)

and so we see that C is conserved in electromagnetism, to better than one
part in 10 million [47].

6.3.2 Charge Conjugation of Fermions

A fermion-antifermion bound state of orbital angular momentum ¢ and spin s
must have C = (—1)”5. This can be deduced by noting that the lowest-energy
state, which has s = ¢ = 0, can decay into two photons by energy conservation.
Since C = —1 for the photon, we must have C = (C(photon))? = +1 for this
bound state. If the bound state has s = 1, then the fermion-antifermion pair
have the same spins: a spin-flip transition to an s = 0 state results in the
emission of one photon, so C = (—1)" if £ = 0. Finally, if £ # 0, the excited
bound state can decay electromagnetically with £ — ¢ — 1 by emitting one
photon. The only consistent choice that describes these observations is to set
C = (=1)"™ for a fermion-antifermion bound state.

8Strictly speaking, the antiparticle of an electron with spin §, and momentum §'is a positron
of spin —&, and momentum —p. However, we are interested in how C changes the internal
quantum numbers of a particle — the electric charge, the quark color, etc — and so we define
C as an operator that reverses only internal quantum numbers of any given particle.
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C is not a symmetry of the weak interactions: C applied to a left-handed
neutrino gives a left-handed anti-neutrino (i.e. a neutrino with opposite “weak
charge”). But left-handed anti-neutrinos do not couple to any known parti-
clesY, so C is not conserved for weak interactions.

6.4 Positronium

An ideal place to strengthen our understanding of discrete symmetries is with
positronium. Positronium is an electromagnetically bound state of eTe™ that
can decay to photons:

ete” — 27,37,... (6.21)

It is bound together just like the Hydrogen atom, except that a positron is
responsible for the binding instead of a proton. The wavefunction is

=W (r,0,¢; ) E(s) = W (r,0,0; 1) (Y- @ ther) (6.22)

where VU is the wavefunction of the Hydrogen atom, but with reduced mass

-1
W= ( L1 ) = %me. Its energy levels will be given by the Bohr formula

Me Me
E, = 7“121202 for n = 1,2,3,... where a = 476726 ~ ﬁ is a dimensionless
quantity called the fine-structure constant.

The wavefunction ¥ provides information about the relative spatial rela-
tionship between any two particles regardless of their structure. The object
Z(s) = (Yo+r @ 1.—) is the spin part of the wavefunction, composed of the
spins of the electron and positron. Since each of these are spin-1/2, they can
only combine to give a total spin of 0 or 1. Using the Clebsch-Gordon tables
77, we have

2(1,1) =9 ¢!,
1

= 1 (1] 11 triplet S =1

=(1,0)= 7 d’e-‘”ef +f”e-we+) ORTHOPOSITRONTUM (0-23)
E(la _1) = ¢e—¢e+

- 1 Tl Lo singlet S =0

20,0 =75 (olvie —vivl) PARAPOSITRONTUM (¢-24)

Now recall that charge-conjugation changes a spin-up (which I'll write as
spin-1) e~ into a spin-1 e™. Hence under C:

C[E(1,1)]=C [u»;w;] =¢lpl = —vl vl =-21,1) (625

91t was once thought that they didn’t exist, but experiments at the Sudbury Neutrino
Observatory [42] strongly imply that neutrinos have mass, which means that both right-
handed and left-handed neutrinos and antineutrinos exist. We will consider this subject in
Chapter 25.
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where the 2nd from last step follows because fermion wavefunctions anticom-
mute due to the Pauli principle. Hence

which you can easily check. Recalling that the photon is negative under C,
we consequently find that

oPARA
ORTHO

— 2y 4+ 4y +6y+--- (6.27)
— 3y +5y+ Ty 4 (6.28)

or in other words, PARA can only decay into even numbers of photons, and
ORTHO only into odd numbers of photonsl. A 2-Body decay process is
“easier” to go to than a 3-Body one — the phase space is larger for decay
into smaller numbers of objects — so we expect PARA to decay faster than
ORTHO. Also, the amplitude for emission of one photon is proportional to
the charge e of the electron. This means that the probability for PARA to
decay will be proportional to |e?|? ~ a?. Since ORTHO decays by emitting 3
photons instead of 2, we expect its decay rate to be smaller than PARA’s by
a factor of a.

Note that positronium decay depends on the electron and positron annihi-
lating each other, a situation that can only occur if they are in the same place
at the same time. Hence the decay rate must be proportional to [¥ (0)°, i.e.
the square of the wavefunction at the origin, which is where the electron and
positron “collide.” From atomic physics we know that

1 al
U(0))= — =
2 (0)] wa®  8mrd

(6.29)

where a = %;; is the Bohr radius of the positronium atom and r, = —=— is

the classical electron radius. The actual theoretical calculations give [48, 49]

F(PAIM%—»27)::4wﬁm€\@(0ﬂ2::w%62a5::(L252x]D’“%)_1
= 8.00 (nsec) " (6.30)
F(ORITH)—»37)=:$%(w2—4n7n4¥a6::(L374x]ﬂ—7@’1
= 7.21 (usec) " (6.31)

for the decay of the ground states.

IThe 2-photon and 3-photon decays are the dominant processes; decays into more photons
are higher-order corrections.
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6.4.1 A Puzzle with ORTHO

Until very recently more accurate calculations yielded a puzzle. While the
agreement between theory and experiment for PARA was always in good
shape, there existed a discrepancy between theory and experiment for ORTHO
that went unexplained for decades. Experiments as recently as 1990 differed
by at least 6 standard deviations from the theoretical calculation. This led
theorists to propose that all kinds of exotic hypotheses that were sometimes
rather bizarre extensions of the Standard model. These ideas included axions,
C-odd bosons, millicharged particles, forbidden numbers of gamma rays, and
even a mirror universe!

v -Detector (12.5 cm) P

vr_\H ,JJ
ﬂ_LL\q J.fr‘
Lens ﬂleL . Py
| o]
. S Sc
€ I N 2 1.5 cm
 /
Porous ¢
— Film E
<
]
v -Detector (1 of 4)
FIGURE 6.5

A schematic of the cavity used in the new precision orthopositronium de-
cay rate measurement. Positrons are focused through two apertures of an
aluminum cavity onto an porous silica film. The emitted thermal positron-
ium decays in vacuum. Reprinted figure with permission from R. S. Vallery,
P.W. Zitzewitz, and D.W. Gidley, Phys. Rev. Lett. 90 203402 (2003) [50].
Copyright (2003) by the American Physical Society.

However, in May 2003, R.S. Vallery and colleagues published a paper [50]
describing the results of a more careful experiment on orthopositronium. They
created orthopositronium by firing a low-energy positron beam into a spe-
cial micron-thick nanoporous silica film; orthopositronium formed from the
slowed-down positrons as they captured electrons. Vallery and collaborators
were able to measure how long this took by detecting the gamma rays after
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annihilation in a scintillator. This set-up, illustrated in fig. 6.5, overcame
problems encountered in previous experiments to measure decay rates, which
sometimes measured energetic positronium annihilating on the cavity walls
of the detector. In the Vallery experiment, only positrons that annihilated
their bound electrons were detected. They measured a lifetime for ORTHO
in agreement with the current QED calculation that differed by only about
0.014% from the theoretical value!

The moral? Sometime a simple explanation — in this case, that something
was wrong with the experiments — is the right one.

Theory Experiment
I'(PARA)  7.9852 4 .010 (nsec) ' [48] 7.994 + 011 (nsec) " [51]
7.0516 %+ .0013 (usec) ' [52]
1
I (ORTHO) 7.039979 + 000011 (jisec) " [49] { (09140014 (usec) — (53]
7.0482 + .0016 (usec) ™ [54]
7.0404 + .0018 (psec) " [50]
6.4.2 Testing Fermion-Antifermion Parity
Consider next the parity of positronium. For PARA we have

where the first minus sign is due to the opposite parity of the electron and
positron, and the (—1)13 comes from the parity of the spatial wavefunction.
Since ¢ = 0 for the ground state, the final state for the 2 emitted photons

from PARA must have negative parity.
/ —) 7

PARA in Ground State rf%
FIGURE 6.6

Schematic diagram of Positronium decay.

In the rest frame of PARA the 3-momenta of the photons must be kand —k
as shown in figure 6.6. The initial state has no angular momentum (J = 0).
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The final state wavefunction |y;72) can only depend on the photon momenta
and polarizations, and must also have J = 0 by angular momentum conser-
vation. Therefore it must be a scalar function of the momenta and polariza-
tions. Furthermore, since photons are bosons, we must have |y1v2) = + |y271).
Hence .

|’}/1’72> =Aéy -6+ B(él X ég) -k (633)
where A and B are scalar functions of the momentum and polarizations. Now
by conservation of parity we must have P|y;v2) = — |1172). Hence

Imye) = B(é1 x é2) - k (6.34)

sinceP (&, x é3) -k = — (&1 x &) -k but Péy-éy = é1 - é&;. The amplitude
(PARA |y17y2) is largest for é; L é5.

FIGURE 6.7
Schematic diagram of test of parity conservation in positronium decay. The
polarization angle ¢ corresponds to a rotation perpendicular to the page.

If one emitted photon exhibits an X-polarization, the other always shows
a Y-polarization, i.e., the planes of their polarizations must be perpendic-
ular to each other. This may be confirmed experimentally by utilizing the
feature that Compton-scattering cross sections for polarized photons are sig-
nificantly greater for scattering into the plane at right angles to the E-vector
of the incident photon, i.e., 90° to the direction of polarization. The setup
is schematically shown in figure 6.7. The optical analog of the scattering
material is the polarizing filter. The Klein-Nishina formula [56] shows the
scattering cross section o is proportional to:

ko k
o= — 4+~ —2sin?f cos® ¢ (6.35)
ko kK
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with kg and k representing the momenta of the incident and the scattered
photons respectively, 6 the angle of scattering, and ¢ the angle between the
plane of scattering and the é-vector of the incident photons.

This experiment was first done by Wu and Shaknov [57] with 54Cu as the
source. At § = 90°, annihilation radiation scattering turns out (for the ener-
gies relevant to the source %*Cu) to be two times stronger for ¢ = 90° (when
é1 L é9) than for ¢ = 0° (when é; || é3), thus providing an effective y-ray
polarization analyzer. They observed

Rate(¢ = 90°)

S = ) 9,04 40. .
Rate(d = 0°) 04 +0.08 (6.36)

in agreement with the expected value of 2.00. We can regard this experiment
as demonstrating that electrons and positrons have opposite parity.

6.5 The CPT Theorem

Strong and electromagnetic interactions are observed to separately conserve
C, P and T and our present theories of these interactions (QCD and QED)
are constructed so that these symmetries are preserved**.

Weak interactions, however, violate C and P separately. Parity-violation in
[-decay was first observed by Wu et al. [39] and has been seen directly in
nuclear reactions [40] such as

160 12 4 10
JP_o — p_ o+ +'He I'=(1.0+03)x 10710  (6.37)

Weak interactions also violate C-invariance: no left-handed antineutrinos have
ever been observed. And finally, Kaon decays violate both C and P. We’ll
look at all of these processes in subsequent chapters.

There is a theorem by Schwinger, Liiders and Pauli [58] called the CPT-
theorem which states that:

ANY Lorentz-invariant Hermitian Lagrangian is invariant under
CPT provided

1. The ground state is invariant.

2. The theory is local (i.e. has no action at a distance).

**There is actually a subtle exception to this for the strong interactions that we will look
at in Chapter 25.
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A given theory might violate any of C, P or T separately, but it must respect
the combined operation CPT if these two conditions hold. Experimentally this
means

1. Particles and antiparticles must have the same mass
2. Particles and antiparticles must have the same lifetimes
3. Particles and antiparticles must have the same magnetic moments

Any discrepancy in such experiments would signal a breakdown of quan-
tum mechanics! Hawking and Penrose have each separately suggested that
quantum gravity forces such a breakdown [59]. For example, the presence of
black holes might imply that pure states evolve into mixed states (something
that can’t happen in quantum mechanics) because part of the wavefunction
is “absorbed” by the black hole is therefore irretrievably lost if the black hole
evaporates in a purely thermal fashionft.

Table 6.3 summarizes the results of a few key experiments that test the
CPT theorem. So far CPT violation has not been observed — yet!

TABLE 6.3

Sample Tests of CPT
Lifetime Tyt /Ty~ = 1.00002 £ .00008
Mass |mK0 — mf(o| /maverage < 10_18

Magnetic Moment  jio+ /pro— < 10711

6.6 Questions

1. Are any of these processes allowed? Why or why not?

(@) p°— 7" T (b) 7" — 5y
(c) p° — 3x° (d) n° —at+7 +7°

2. According to the Standard Model, which of the following reactions are
allowed and which are forbidden? State the reasons why if not. If
allowed, state what interaction is responsible for the process.

1 This is because no information is contained in the outgoing thermal radiation.
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(a) i —p+et +v ®) v+ 2° — v +7°
() wr+1" —y+v+y d) 2° — v+,
(e) D° — K~ +p* (f) e +v—1t+b

3. Consider the non-relativistic Schroedinger equation with the Hamilto-
nian

g= v

2m
satisfied by the wavefunction ¥ (Z). Under what circumstances will
U (—Z) satisfy the Schroedinger equation?

4. The deuteron is a 3S; bound state of a neutron and a proton, and
must have a wavefunction that is antisymmetric under proton-neutron
interchange. What is the parity of the deuteron?

5. Show that Maxwell’s equations are invariant under time-reversal.

6. Suppose the expectation value of J-P were found to be nonzero in
some process.
(a) What would this imply about parity conservation?
(b) What would this imply about time-reversal invariance?

7. Time reversal interchanges initial and final states, so that if T'|x) = |x)*
then

T ({9 [x) =* (9 [0)* = (x [9) = (9 [x))"

where the first equality is due to interchange of initial and final states
and the second equality is the property of quantum-mechanical ampli-
tudes.

(a) Show that the above relation implies Tc = ¢*T where c¢ is any com-
plex number.

(b) Given that TJ = —JT where J is the angular momentum operator,
show that

1 1 11
=-T|=-,—= =T|-,=
X1) ‘Za 2> and  [x2) ‘272>

form a spin-1/2 in the time-reversed system.

(c) What is T? for a state |¢) with an odd number of spin-1/2 particles?
What is T? for a state |¢) with an even number of spin-1/2 particles?

(d) Suppose the state |¢) in (c) is an eigenstate of the Hamiltonian.
What is the degree of the degeneracy of this state? (i.e. how many
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distinct states are there at a given energy level?) This degeneracy is
called Kramer’s degeneracy.

(e) Is Kramer’s degeneracy preserved in an electric field? Is it preserved
in a magnetic field?
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Accelerators
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Experimental information in high-energy physics has historically most “com-
monly” been obtained from accelerators: machines that accelerate charged
particles to very high speeds and then let them collide with other particles.
They are very expensive to build and maintain, and they have a limited use
in terms of the fundamental physics that they can reveal. Yet they provide us
with a kind of information about the subatomic world that cannot be obtained
in any other way.

Accelerators basically do two things. First, they provide us with informa-
tion about the detailed structure of subatomic systems. They produce new
interactions and/or bound states of known particles, whose characteristics
provide us with further information about the laws of nature and the struc-
ture of matter. Second, they produce new particles. This is why they cost so
much money — in order to produce a new particle you need at least as much
energy as the rest mass of the particle. This might not sound like much at the
subatomic level, but there is a lost of energy “wasted” in a collision process
because we can’t directly control the products of the collision that emerge nor
the loss of energy due to other effects.

Accelerators have played an essential role in particle physics. Without them
it would simply not be possible to check in any detailed way whether or not
our theories were correct. They have led to the discovery of particles and
interactions that nobody anticipated, and have provided us with a picture of
the subatomic world that no one imagined as recently as a century ago. They
probe the shortest distances humankind has ever measured by manipulating
beams of particles traversing millions of kilometers in a few seconds to micron
precision. They have been compared to the great cathedrals of Europe by
Robert R. Wilson because of their immense size, intricate complexity, and
symbolic representation of the human intellect [62].

The first accelerators that were constructed in the 1930s had particle beams
whose energies were a few hundred keV. Seventy years later, in the first decade
of the 21st century, the Large Hadron Collider will generate particle beams
with energies of nearly 10'3eV — a factor 100 million times greater! The
effective energy available to study new physics is even larger, about 10'8eV,
since the LHC arranges for two beams of similar energy to collide. This will
allow us to probe distances shorter than 10~ '8cm, yielding the world’s most
powerful microscope.

Accelerators have grown out of their core purpose of providing experimen-
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tal information for particle physics, and today are used in condensed mat-
ter physics, biomedical technologies, geophysics, electronics, food processing,
and many other areas. Accelerator science has become a separate intellec-
tual subdiscipline with both pure and applied aspects, providing yet another
illustration of how basic research can foster positive economic and social de-
velopment.

This chapter will provide a brief overview of accelerator physics. Following
an historical path, we shall begin with the earliest machines, sketching the
emergence of the more complex technologies as they developed over the past
70 years.

7.1 DC Voltage Machines

The simplest way to accelerate charged particles is with a high voltage DC
source [61]. Such machines today can at best achieve beam energies of 20
MeV. For nuclear physics experiments this is useful, but for particle physics
this is too low an energy. A picture is given in figure 7.1.

FIGURE 7.1
Prototype of the simplest accelerator.

A particle of charge ¢ is generated by a source of ions. It is then accelerated
in an electric field E, which means it experiences a force F', and consequently
gains energy £ as it travels a distance d

F=qE=&=|F|ld=q|E|d=qV (7.1)

where V' = ‘E ‘ d is the voltage of the machine. The system must also be

in as high a vacuum as is manageable — otherwise the accelerating particle
will lose most of its energy in collisions with air molecules in the accelerator.
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These elements — particle source, accelerating structure, and vacuum pump —
appear in every accelerator.

FIGURE 7.2
A Cockcroft-Walton Accelerator. Diagram courtesy of the Contemporary
Physics Education Project (used with permission).

The earliest such machine of this type is called a Cockroft-Walton accelera-
tor [63], shown in fig. 7.2. The ion source was hydrogen gas, and the original
machine developed by John Cockroft and Ernest Walton was able to acceler-
ate protons to 400 keV. Such machines today can reach a maximum voltage
of 1 MeV due to voltage breakdown and discharge. These machines are often
used as the first step of a multistage process that accelerates particles to much
higher energies in more powerful accelerators.

A more sophisticated DC machine is a Van de Graff accelerator [64], in
which a conveyor belt carries positive charge (in the form of ions that are
sprayed onto the belt) to a collector which in turn transfers the positive charge
to the dome. The principle at play here is that charge on any conductor
resides on its outermost surface. If a conductor that is carrying charge touches
another conductor whose surface surrounds it, then the charge on the first
conductor will be transferred to the second one. Hence, as Robert van de
Graff realized, one can “pile up” charge on a conductor to increase voltage by
continually transferring charge to it via a conveyor belt, as shown in fig. 7.3.

This technique can yield voltages of up to 12 MeV. Positive charge (obtained
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FIGURE 7.3

A diagram of a Van de Graff accelerator.

from gas ionized at high voltage) is sprayed or brushed onto a conducting
conveyer belt, which continually rotates about two drums (somewhat like the
fan belt in a car). One end of the belt is inside of a conducting dome. A wire
brush is attached to the sphere and brushes against the belt. The charge on
the belt will then travel through the brush and spread out on the sphere. The
motors turning the drum provide the work needed to carry out this process.
The points at which the charges are sprayed onto the belt are called corona
points.

To complete the accelerator an ion source must be placed within the con-
ducting dome near an evacuated tube. This tube leaves the dome and provides
a conduit for the accelerated particles to eventually hit a target. If positive
ions are emitted from the source, they will be accelerated away from the
positively charged dome down the tube and toward the target. The tube is
constructed with equipotential metallic rings, embedded within an insulating
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tube, and the entire structure is contained within a pressurized chamber of
gas (typically SFg) of about 15 atm. The energy limit that the machine can
reach is constrained by the voltage at which the gas discharges.

Higher energies can be attained through the following trick. If negative ions
are emitted from a source at one end of an acclerating tube that is outside of
the dome, they will be attracted to it. A stripper inside the dome can remove
some of their electrons and make them positive. These ions again accelerate
down another tube, away from the terminal and toward a target. In this
manner the maximal energy can be doubled to about 25 — 40 MeV. Such a
machine is called a Tandem Van de Graff [65].

DC machines cannot achieve the requisite energies of modern particle physics.
However, they have a high beam intensity (up to 100 microamperes) and a
stable beam energy, and so are useful in nuclear physics research and (more
recently) in solid state physics, where these machines are used to implant ions
into materials to achieve a desired doping.

7.2 Linacs

Linear accelerators (LINACS) attempt to overcome the aforementioned limi-
tation by giving the charged particle a series of “kicks” using an AC source.
The basic idea is to repeatedly accelerate the particle many times over. A
LINAC does this via a series of cylindrical tubes (called drift tubes), each of
which is connected to a high-frequency oscillator. The succesive tubes are
arranged to have opposite polarity. Inside the tubes the electric field is zero,
but in the gaps in between, the electric field alternates with the generator
frequency.

Suppose a particle of charge e enters this setup. The electric field at the first
gap is set so that it attracts the particle, accelerating it to the first tube. The
length of this tube is arranged so that when the particle arrives at the next
gap the relative voltages of the tubes have flipped so as to provide another
accelerating field in the gap. This further accelerates the particle and the
process is repeated up to the tolerance voltages of the device, as illustrated in
fig. 7.4. Fach tube must increase in length because the speed of the electron
rapidly increases as it moves down the tube. The length L of the tube must
equal %UT, where T is the period of the oscillation and v is the speed of the
particle.

Typically such machines gain a few MeV per meter in beam energy. Proton
linacs typically reach about 50 MeV; the best in the world is the meson factory
at Los Alamos that can reach 800 MeV. Electron linacs can reach much higher
energies (~ 25 GeV maximum) since the electron is much lighter. The largest
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FIGURE 7.4
A schematic drawing of a linac.

electron linac in the world is at Stanford. It is 3 km long and has a 25 GeV
electron beam which pulses 60 times per second.

7.2.1 Focusing the Beam

One of the problems with such big machines is in keeping the beam well-
collimated. Light from a flashlight, say, will spread out, and the same kind
of thing will happen with a particle beam. And, just as the spreading light
can be refocused with lenses, the same sort of thing can be done for particle
beams by using magnets*. The Lorentz force equation describes the motion
of a particle of charge ¢ in an electromagnetic field:

F=q(E+ xB)=%%xB (7.2)
C C

where ¥ is the velocity of the particle and we have set E = 0. For 7B, the

particle will experience a centripetal force ‘13 ‘ = % normal to both of these
directions, and so
2
muv q
=-vB=r= =— 7.3
r c qB qB (7:3)

is the radius of curvature r through which the particle bends as it goes through
the magnetic field.

To get an idea of how big the magnetic fields are that are required for focus-
ing, consider an electron whose kinetic energy &gy, is 1 MeV. Its momentum

*Electric fields could also be used, but the field strength required for focusing high-energy
particle beams is impractically large.
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FIGURE 7.5
A schematic diagram of a quadrupole magnet.

is therefore given by solving

Erin = \/ (p¢)* + (mc2)® —me? = pe = 1.42 MeV = 1.42 x 10%V  (7.4)

since the mass of the electron is 0.511 MeV. Because the charge of the electron
is 1.60217733 x 10712 Coulombs = 3 x 10%su, we find from eq.(7.3)

pc 142X 108

Br="=%
" q 3 x 109

= 4.73 x 10® Gauss-cm (7.5)

Unfortunately a magnet can bend particles only in one plane, and so can
focus only in this plane, unlike an optical lens that can focus in more than
one plane. How can a magnetic field be used to focus in two planes? The
solution to this problem was found in 1950 by Christofilos [66] (and again in-
dependently in 1952 by Courant, Livingston and Snyder [67]): the quadrupole
magnet! This magnet focuses in one plane, and defocuses in the orthogonal
plane — see figure 7.5 for a conceptual representation of how this works. In the
diagram, particles in the horizontal plane are deflected inward, while those in
the vertical plane are deflected outward. Rotate this magnet by 90° and the
opposite effect occurs: particles in the horizontal plane are deflected outward,
and those in the vertical plane are deflected inward. Consequently two such
magnets rotated 90° to one another around the beam axis behave as an op-
tical lens, and a net focusing occurs. A picture of a quadrupole magnet that
was used for PEP (Positron-Electron Project) at SLAC is shown in 7.6.

Fig. 7.7 is a diagram of the SLAC linac, which is the world’s highest energy
LINAC.

LINACs can achieve arbitrarily high energies in principle. However, the
greater the desired energy, the larger the cost — a 500 GeV accelerator would
have to be 75km long! This is prohibitively expensive and environmentally
costly. A new solution for achieving higher energies is required.
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Prototypes of the magnots used in the
synchrotron storage ring. The large
yollow one forces electrons to turn a
comer, creating high intensity light.

The smaller green and rod magnets help
focus and steer tho eloctrons.

FIGURE 7.6

A quadrupole magnet once used in the storage ring at the Australian Syn-
chrotron, Clayton, Victoria, Australia. Photo by John O’Neill; used with
permission.
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A diagram of the LINAC at SLAC. Image courtesy of SLAC National Accel-
erator Laboratory.

7.3 Synchrotrons

The idea of the synchrotron is to use one voltage source to repeatedly acceler-
ate the particle instead of many sources as in the linac. Instead of the particles
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moving in a straight line, they move around in a circle, their motion synchro-
nized with a changing voltage source and magnetic field that increases their
energy. This idea of circularly accelerating particles was proposed in 1930 by
Lawrence [68], and such machines were called cyclotrons.

A cyclotron consists of two hollowed out metal vaccum chambers, each in
the shape of the letter D. These are placed side-by-side along their straight
edges with a gap, and each is connected to an alternating high voltage source.
This entire setup is then placed inside a magnetic field that is perpendicular
to the D-shaped chambers. The high-voltage source produces an electric field
only in the gap between the D’s because the metal chambers shield the in-
sides, where only the magnetic field pervades. If an ion source is placed in the
gap, the electric field will accelerate ions toward one of the D-chambers. The
magnetic field meanwhile causes the ion to move in circular motion. By ap-
propriately setting the alternating frequency of the voltage source, the ion, as
it leaves the first D-chamber, will be accelerated toward the second one. This
process can be repeated many times, with the ion being accelerated across
the gap each time it leaves a D-chamber. Its speed and its radial orbit will
continue to get larger until one wishes to extract it (say by turning off the
magnetic field) to have it impact upon a target.

A fixed-frequency cyclotron cannot accelerate particles to high energies,
where relativistic effects must be taken into account. The maximum energy
a proton cyclotron can obtain is 20 MeV. A more sophisticated machine is
needed to attain higher energies. These machines are called synchrotrons.

A synchrotron consists of straight segments in accelerating cavities com-
bined with circular segments that cause the particle to repeatedly traverse
the same trajectory. The charged particles are first linearly accelerated into
the ring, and then traverse a vacuum tube in a torus. A magnetic field keeps
the particles moving in a circle. The straight segments have a RF field that
turns on as the particles enter the cavity, accelerating them to higher speeds.

For a particle injected into a ring of radius R at speed v, the time for one
full turn is

2rR  27R
T="2_ (7.6)
v pe
since p = myv and £ = myc?. Hence the circular frequency is
2t pc?
== === 7.7
T €&R (.7)
and the acceleration of the particle is
dp g _
— ==-UXx B 7.8
it ' (78)
where the magnetic field is orthogonal to the direction of motion. Recalling
that ¥ = v@ for circular motion, we have ¥ x B = —vB7. Similarly, we have

dp dp, dO dp, v
@ TP T @t PR (7.9)
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which for constant p = |p] yields

v

P = —%va. (7.10)

or alternatively
pc
B=—
qR
Of course p is not constant: once per revolution, the particles are accel-
erated to increase v. Obviously B must increase in a synchronized manner
(otherwise the particles will crash into the walls of the tube) — hence the name
synchrotron. As the particles are accelerated by an RF generator of frequency
w, they will gain energy and momentum. The frequency w must be an integer
multiple of 2 to keep the beam within the tube. As the energy increases, we

have pc — E and so

(7.11)

2 g
w=kO =2 ¢ and p_re ¢

_ < 12
SRR IR

since pc — &£ at high energies. The magnetic field and the RF are increased
from their initial values to final values chosen in such a manner as to always
maintain the above relations. Clearly the limitation on the beam energy is B.
The best superconducting magnets currently furnish magnetic fields slightly
larger than 5 Tesla (50 kilogauss).

A notable feature of large acclerators is that the particles cannot be accel-
erated from zero (or small) velocity into the machines — the range over which
the RF and magnetic fields would have to operate is too big. Consequently
such machines are built in stages, with smaller machines pre-acclerating the
particles to speeds that the larger machines can handle. The Large Hadron
Collider (LHC) at CERN is an excellent example of a machine that makes use
of smaller linacs and synchrotrons to achieve high energies, as shown in fig.
7.8.

7.3.1 Focusing Beams at Synchrotrons

Particle beams in general do not consist of streams of charged particles. In-
stead, they occur in clusters, or bunches. The reason for this is that there is
always some finite spread in the time of arrival of the particles as they enter
an acceleration region. Consider a cyclotron. Particles arriving “on time”
will experience just the right electric field to keep them moving in the correct
orbit in the D-chambers. A particle arriving earlier will experience a stronger
electric field, causing it to traverse an orbit of larger radius. This in turn
causes it to return to the gap at a later time, closer to the return time of the
original “on time” particles. A particle arriving later will experience a weaker
electric field and thus traverse an orbit of smaller radius, causing it to return
to the gap earlier, which again is closer to the return time of the original “on
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time” particles. The second time around, the advanced particles will arrive
less early and so be accelerated less, whereas the delayed particles will arrive
less late and so be accelerated more. This continues for each orbit, resulting
in the bunching of particles about the synchronous orbit. This bunching is
the “RF structure” present in all such acclerators.

Ideally, the particle bunches would move uniformly, all accelerate in step,
and hit the target precisely. In practice, small misalignments of the beam,
magnet inhomogeneities, etc. cause the beam (or rather the bunches) to wan-
der. Deviations from the ideal circular path are called betatron oscillations.
With appropriate focusing using quadrupole magnet pairs (quadrupole dou-
blets) as discussed above, these can be made quite small compared to the
beam radius R. Longitudinal oscillations of a bunch are called synchrotron
oscillations. Appropriate RF “kicking” stabilizes these bunches, which oscil-
late in size around the ideal equilibrium position. A typical beam thickness is
~ 1 mm. The concept of stabilizing the bunches via corrective field methods
was developed independently by Vladimir Veksler [69] in 1944 and by Edwin
McMillan [70] in 1945.

Proton synchrotrons operate by first accelerating the protons in a Cockroft-
Walton machine to about 1 MeV, after which they are further accelerated into
a linac before injection into the synchrotron, typically at an energy of several
hundred MeV. The magnets are positioned in a ring along the circular path
of the beam line. The world’s largest proton synchrotron beam is the LHC at
CERN.

Since electrons are lighter and so much easier to accelerate, why not build
electron synchrotrons? This can be done, but there is a significant cost because
all charged particles radiate energy as they accelerate. Circularly moving
particles at higher and higher speeds accelerate more and more, losing energy
AFE with each revolution:

A g2 33~4 A o2 E 4
AE:%“]%V —>ng (mc2> as v —c¢ (7.13)

where the formula for energy loss is given in Jackson (eq. (14.31)) [71]. Hence
the energy loss varies inversely with the fourth power of the mass, and so

4

(AE)glectron _ { ™proton ~ 1013 714

(AE) - = (7.14)
proton

which is a huge energy loss: at 20 GeV beam energy it is 16 MeV per turn.
This makes electron synchrotrons a very expensive but excellent source of
intense short-wavelength light, called synchrotron radiation. This emitted
radiation permits unique research in a variety of scientific fields in physics
chemistry and biology. The Canadian Light Source in Saskatoon, Canada, is
a good example of a state-of-the-art machine of this type. However, for the
purposes of particle physics, proton accelerators provide much more energy
per unit cost.

Melectron
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7.4 Colliders

All of the aforementioned machines are fized-target machines: the particle
beam, after reaching its optimum energy, hits some target. Nearby detectors
then measure what happens. This used to be the way that all high energy
experiments were carried out. In the last 30 years, a new type of machine
called a collider has become important. Here 2 beams are smashed into each
other, with nearby detectors monitoring the collision.

Why is this better than a fixed-target machine? Consider 2 particles with
4 momenta p. and p! for the beam and target respectively. The total 4-
momentum p* is, by momentum conservation

2
Pt =pl+p = p* = (p. +p)
= p* =pi+p+2p D
= p?c? =m2ct +m?ct +2(E.E, — P, - p.c?)  (7.15)

where m,, and m, are the masses of the beam and target particles respectively.

The center of momentum system (CMS) is defined to be that system in
which p" = (Fi,0). If the target is at rest, then g, = 0 and so

E? = mgc4 +mict + 2E,m . — o =~ /2E,m,c? (7.16)

for beam energies E, > m,c?, m.c?. However, if both the beam and the target
are moving toward each other so that p, + pi, = 0, then

B2 =m2c +m2ct + 2(B,E, + |p.]> &) — B ~ 2E, (7.17)
for beam energies E, ~ E, > m,c?, m.c?. Hence in fixed target machines,
the total energy increases as the square root of the beam energy, whereas for
colliders it increases linearly with the beam energy. Clearly much more total
energy is available for particle creation in colliders!

Colliders have several disadvantages. The particles in the beam must be
stable, unlike the previous machines we have considered, which can be used
to produce secondary beams of unstable particles. Hence only protons, an-
tiprotons, electrons and positrons can be used in colliders. The other (more
serious) disadvantage is that the collision rate is low. The relationship between
the rate R and the other parameters of the beam is:

NNy

R=0cL with L=1fn
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where the quantities associated with the luminosity £ are

f = frequency of revolution of bunches
n = number of bunches per beam
N1, Ny = number of particles per bunch in beams 1,2
A = area of beam
o = cross-section for interaction
(computed from underlying theory)

For colliders, £ is typically ~ 103! /em? /s, whereas in fixed target machines
L ~ 103" /cm?/s. This is a necessary trade-off between the two kinds of
machine — attaining higher energies comes at the cost of reduced luminosity.

FIGURE 7.9

Schematic diagram of stochastic cooling. A pickup coil delivers a signal de-
pending on deviation from the antiprotons from the ideal orbit, and this acti-
vates a kicker which deflects them toward the ideal orbit as they come around
the ring. After the bunch is cooled, it is kicked into the inner half of the
chamber and stacked together with previous bunches.

The cross-section, denoted by o, is a quantity that is characteristic of the
fundamental physics governing the interaction, and can be thought of as the
effective area that one particle presents to another. We shall defer a discussion
of its properties until chapter 9.

Non particle-antiparticle machines (e.g. ep or pp) need 2 separate beam
pipes and 2 sets of magnets. Particle-antiparticle machines (eTe™ or pp) need
only one pipe and set of magnets. pp machines pose unique problems in that
obtaining a beam of antiprotons is much harder than obtaining a positron
beam. Antiprotons are produced from fixed target proton-nucleus collisions:
these have a low yield and give a hot gas of antiprotons.

To cool this gas a technique called stochastic cooling was developed by
Simon van der Meer, illustrated in fig. 7.9. The antiprotons are placed in a
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FIGURE 7.10

A diagram of the facilities at the Fermilab Tevatron. Image courtesy of Fer-
milab National Accelerator.

ring. A sensitive pickup coil in one part of the ring senses the deviation from
an ideal path and sends a signal to a kicker in another part of the ring to
deflect them to an ideal orbit. It takes about 2 seconds of circulation to cool
the injected beam.

After cooling, the injected bunch is put into a stacking ring in the same
tube. After a day or so about a trillion antiprotons exist in the beam and
can be used for experimentation. This method was used in the CERN SPS
collider to obtain proton-antiproton collisions which led to the discovery of
the W and Z bosons [73].

The highest-energy machine currently operative is the Tevatron at Fermilab.
A schematic illustration of the setup at Fermilab is shown in fig. 7.10. The
TEVATRON at Fermilab is 1 km in radius and can achieve a beam energy
of 1000 GeV = 1 TeV (tera electron volt). It is a pp machine, which uses a
Cockroft-Walton, a Linac and a booster ring in order to get the protons to
sufficiently high energy before they enter the main ring.

One machine that played a very important role in experimental particle
physics in the 1990s was called LEP (for Large Electron-Positron machine).
This machine was designed to run at collision energies (about 90-100 GeV)
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that would allow the Z-boson to be produced in large numbers. This worked
very well, and an enormous amount of empirical information was obtained
about the Standard Model from the experiments done at this facility. In
April 2000 the energy of LEP’s particle beams was boosted to be as high as
possible — up to 209 GeV, well beyond the original design energy. Significant
experimental data was accumulated at a center-of-mass energy in excess of
206 GeV, and a number of events compatible with a Higgs boson production
with mass around 114-115 GeV were reported in the combined results of the
four LEP experiments, ALEPH, DELPHI, L3 and OPAL. Unfortunately the
topology of these events is also compatible with those originating from other
known Standard Model processes, and so it is at present impossible either to
rule out or confirm the existence of a 114-115 GeV Higgs boson [74]. LEP
was shut down several years ago so that its facilities could be renovated to
convert it to the LHC.

Low B (pp)
High Luminosity

RF
& Future Expt

Cleaning

Octant 3

Low B (pp)
High Luminosity

FIGURE 7.11

The four main experiments and the two ring structure of the LHC (copyright
CERN; used with permission).

Higgs bosons of such a light mass are expected to be copiously produced
at the LHC, the centerpiece of the future scientific program at CERN. The
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LHC is housed in a circular tunnel 27 km in circumference, buried at a depth
of 50 to 175 m underground on the Swiss/French border on the outskirts of
Geneva, with a planned start-up in 2008. This machine will achieve energies
of 7 TeV+7 TeV for a proton-proton beam (the highest ever attained), and
luminosities of 1037 /cm?/s. For most of the ring, the beams travel in two sep-
arate vacuum pipes in opposite directions, but at four points they collide in the
hearts of the main experiments, known by their acronyms: ALICE (designed
to see if it is possible to make and detect a quark-gluon plasma), ATLAS
(whose purpose is to find the Higgs), CMS (which will look for evidence of
supersymmetry), and LHCb (whose purpose is to make precise measurements
of CP-violation in the b-quark sector). A conceptual diagram of the LHC at
complex appears in fig. 7.11, and the tables 7.1, 7.2, and 7.3 should help you
to keep all the acronyms straight.

TABLE 7.1

Accelerator Acronyms
AAC Antiproton Accumulator Complex (LHC)
AGS Alternating Gradient Synchrotron (Brookhaven)
CESR Cornell Electron Storage Ring
CLIC Compact LInear Collider (proposed CERN)
DAFNE/DAPHNE Double Annular Factory for Nice Experiments
EPA CERN’s Electron Positron Accumulator
FMI Fermilab Main Injector
FNAL Fermi National Accelerator Laboratory
HERA Hadron-Electron Ring Accelerator (DESY)
KEK B-Factory CP-violation in the B meson (KEK)
LEAR/LEIR Low Energy Ion Ring
LEP Large Electron Positron collider
LHC Large Hadron Collider
LIL Lep Injector Linac
PEP Positron Electron Project (SLAC)
PSB Proton Synchrotron Booster (CERN)
PS Proton Synchrotron (CERN)
RHIC Relativistic Heavy Ion Collider (Brookhaven)
SLAC Stanford Linear Acclerator
SPEAR Stanford Positron Electron Accelerating Ring
SPS Super Proton Synchrotron

Tevatron Fermilab’s 2-TeV proton-antiproton accelerator
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TABLE 7.2
LaboratoryAcronyms
ANL Argonne National Laboratory, (Argonne, Illinois, USA)
BNL Brookhaven National Laboratory (Upton, Long Island, USA)
CERN Originally “Conseil Europenne pour Recherches Nuclaires”
now European Laboratory for Particle Physics (Geneva, Switzerland)
CLS Canadian Light Source (Saskatoon, Saskatchewan, Canada)
DESY Deutches Elektronen SYnchrotron laboratory (Hamburg, Germany)
FNAL Fermi National Accelerator Laboratory (Batavia, Illinois, USA)
KEK Koo Energy Ken (Tsukuba, Japan)
LNF Laboratori Nazionali di Frascati (Rome, Italy)
SLAC Stanford Linear Accelerator Center (Palo Alto, California)
SNO Sudbury Neutrino Observatory (Sudbury, Ontario, Canada)

TRIUMF TRI-University Meson Facility (Vancouver, British Columbia, Canada)
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FIGURE 7.12
The proposed CLIC facility (copyright CERN; used with permission).

7.5 The Future of Accelerators

The most important parameters of any accelerator are its final energy and its
beam intensity. The energy is proportional to the magnetic field for a given
radius of curvature, and so our ability to generate strong magnetic fields is
a limiting factor here. With a typical iron magnet the field achieved can be
about 20 kG (or 2 Tesla), whereas a superconducting magnet can achieve
fields of 50kG (5 Tesla). These are now being used at Fermilab and the LHC.
As far as bean intensity is concerned, stochastic cooling techniques can be
used to ensure that this is under control.

However, neither is enough to go much beyond the energies of the LHC.
The key reason is cost, which runs into the 10s of billions of dollars. New tech-
nologies must therefore be explored that will raise the energy threshold, and
this is currently under study. One example is the Compact LInear Collider,
or CLIC facility (see fig. 7.12). The basic idea of CLIC is to point two linacs
toward each other, and to increase the beam energy to 1-3 TeV in each beam
using an RF source of 30 GHz, for a total CMS energy of 2-5 TeV. If this
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could be implemented, it would be the highest-energy particle acclerator in
the world [75].

7.6 Questions

1. Plans are made to upgrade TRIUMF in Vancouver so that it will be
a 60GeV synchrotron with a high intensity (200 pA) beam of protons
that can be used to produce several new kinds of subatomic particle
beams (e.g. K7s, 7r,s, n’s etc.). However, these beams are difficult
to focus: the number of betatron oscillations Av varies as N/ (6273)
where 8 and v are the relativistic speed and energy parameters and N
is the accelerable charge per pulse. A typical 60 GeV synchrotron has
an injection energy of 300 MeV in its first stages.

(a) How much greater must the injection energy be to increase the use-
able beam current by a factor of 10 without defocusing?

(b) How does this answer change if a 5% increase in defocusing can be
tolerated?

2. In the LHC two beams of protons will collide head on, each with energies
of 7 TeV.

(a) How does this energy compare to that of a typical cosmic-ray proton?

(b) How much energy must a single proton beam have to yield the same
CM energy on a fixed target of hydrogen?

3. (a) A proton beam of kinetic energy 20 MeV enters a dipole magnet 2m
in length. How strong must the field be to deflect the beam by 10°?

(b) Suppose now the beam has 200 GeV of kinetic energy. How much
deflection will be induced by a magnetic field of 25 kG?

4. What is the minimum energy needed to produce antiprotons from the
collision of two protons? Remember that conservation laws must be
respected in the production process.

5. (a) Two proton storage rings with a beam currents of 20 A each are
directed to collide into each other. The interaction region has an area
of 1 cm? and is 5 cm long. The relative velocity of the two beams is
approximately the speed of light. How many collisions take place per
second?

(b) Now consider a proton beam colliding with a fixed target of liquid
hydrogen that is 5 cm long and 1 ¢cm? in area. How much current would
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have to be in the beam for it to have the same collision rate as in part
(a)?

6. The largest magnetic field possible in a superconducting magnet is about
30 Tesla. What is the largest energy that protons can be accelerated to,
in an accelerator that circles the Earth’s equator?

7. What would the energy loss per turn be for the acclerator in question

467
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Detectors

DOI: 10.1201/9781420083002-8

In a number of ways detectors are more fundamental in expanding our knowl-
edge of particle physics than accelerators are [76]. Without particle acclera-
tors we would still be able to learn much about particle physics by making
detectors sensitive enough to probe naturally occuring cosmic rays, neutrinos,
photons, and other subatomic particles. Of course an accelerator gives us
crucial control over the energy of a given experiment, and its importance to
particle physics cannot be understated. Yet without the proper accompanying
detectors, accelerators are useless.

After the collision of a particle beam with some target (or another beam)
detection of what happens becomes the key task. In order to do this, the
particle must leave some imprint of its presence, which is made possible by
the fact that particles ultimately transfer energy to the medium they are
traversing — if not, we’d never observe them! The construction and design of
detectors depends on exploiting this property of energy transfer. There are
many ways that this can happen, and we will begin by looking at the various
possibilities.

8.1 Energy Transfer and Deposition
8.1.1 Charged Particles

When a charged particle moves through a medium it will interact with the
fundamental constituents of that medium: its nuclei and electrons. It can lose
energy via three basic means: ionization, coulomb scattering, and radiation.
Its primary interactions are with the atomic electrons of the medium, and
this forms the dominant mode of energy loss*. The reason for this is that
scattering from nuclei causes large changes in the momentum of the incoming
particle but relatively small changes in its energy, whereas scattering from
atomic electrons (or ionization of nuclei) is an inelastic process that entails

*The incoming particle can also have a direct collision with a nucleus, but this is an ex-
tremely rare process, and so can be neglected.
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substantively more energy transfer. At very high energies, the dominant mode
of energy loss is radiation if the incoming particle is an electron or a positron;
for more massive particles this process is negligible.

As a charged particle moves through a medium, we expect it lose energy
through its interaction with the medium. The key quantity of interest is the
rate (%) of energy loss per unit path length that the particle traverses whilst
in the medium, a quantity called the stopping power of the medium. Once we
know what it is, we can compute the range R, that any particle will have in

the medium: " 5 .
B\
R:/ dx :/ <d> dFE (8.1)
0 0 dﬂ:

The stopping power can be calculated for the different ways that the particle
can lose energy. Let’s look at these.

8.1.1.1 Ionization Loss

At relativistic speeds v = (¢, with Lorentz factor vy = (1 - 52) 71/2, the energy
loss of a charged particle as a function of distance can be reliably calculated
from our knowledge of electromagnetism, and the formulat

dE ArNa(ze)?e? (Z 2m.c? 3
(Clx) N = —7m602ﬂ2 Z In 47 ,72 _ /82 (8.2)

has been verified experimentally over a wide range of energies for different
kinds of particles and media. This formula was derived by Hans Bethe and
Felix Bloch [77], and describes the mean rate of energy loss of a particle of
charge ¢ = ze due to ionization of a medium with ionization potential I,
atomic number Z and nucleon number A. Here e is the charge on the electron
(mass m.) and N4 =10%3mol1~! is Avagadro’s number. Most of the energy
loss is due to formation of ion pairs, either by the particle itself, or by the
electrons in the ion pairs causing further ionization. The total number of ion
pairs is proportional to the energy loss of the incident particle.

The energy loss most strongly depends on the incident velocity 8 and so
can be used to evaluate this quantity. For small § we have

2,2 2132
aE L ArNa(ze) e (23 ) (2mect (8.3)
dm ionization Me 02/32 A I

and we see that IE
a7 (M/p)® (8.4)

where M is the mass of the incident particle (to see this, recall that p =
M~v = Mcfy); particles of the same momenta but different mass will have

TDerivation of this formula is beyond the scope of this text [78]. I have included it here to
impress upon you that this energy loss can be quantitatively computed.
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different energy loss. The energy loss decreases with increasing particle ve-
locity, reaching a minimum value before growing as In(y?). Note that at very
low energies the stopping power becomes negative. This unphysical value in-
dicates a breakdown in the above formula, since a low-energy incident particle
can now capture electrons from the medium and form its own atomic systems.
Other approximations can be made at lower and higher energies that provide a
good description of the stopping power over a very wide range of momentum,
as illustrated in figure 8.1.

At high energies eventually long-range interatomic screening effects (ignored
in (8.2)) make ‘2—5 approach a constant value, and it becomes impossible to
distinguish particle types based on ionization loss. For solid media the increase
is very slight, but for gaseous media there is a rapid increase due to relativistic
effects before the plateau is reached. For about 2 orders of magnitude above

the ionization minimum, % is about the same for all materials, having a value

dE )
— ~ —2pMeV/g/cm (8.5)
de )
ionization
where p is the density of the absorber.
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FIGURE 8.1

Diagram of the stopping power for —dE/dx antimuons in copper as a function
of momentum, plotted in terms of