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Purpose: To develop a Bayesianmodel (BM) for visual field (VF) progression accounting
for the hierarchical, censored and heteroskedastic nature of the data.

Methods: Three versions of a hierarchical BMwere developed: a simple linear (Hi-linear);
censored at 0 dB (Hi-censored); heteroskedastic censored (Hi-HSK). For the latter, we
modeled the test variability according to VF sensitivity using a large test-retest cohort
(1396 VFs, 146 eyes with glaucoma). We analyzed a large cohort of 44,371 VF tests
from 3352 eyes from five glaucoma clinics. We quantified the bias in the estimated
rate-of-progression, the detection of progression (Hit-rate [HR]), the median time-to-
progression and theprediction error of future observations (mean absolute error [MAE]).
HR and time-to-progression were compared at matched false-positive-rate (FPR),
quantified using permutations of a separate test-retest cohort (360 tests, 30 eyes with
glaucoma). BMs were compared to simple linear regression and Permutation-Analyses-
of Pointwise-Linear-Regression. Differences in time-to-progression were tested using
survival analysis.

Results: Censored models showed the smallest bias in the rate-of-progression. The
three BMs performed very similarly in terms of HR and time-to-progression and always
better than the other methods. The average reduction in time-to-progression was 37%
with the BMs (P< 0.001) at 5%FPR.MAE for predictionwas very similar amongmethods.

Conclusions: Bayesian hierarchical models improved the detection of VF progression.
Accounting for censoring improves the precision of the estimates, but minimal effect is
provided by accounting for heteroskedasticity.

Translational Relevance: These results are relevant for quantification of VF progression
in practice and for clinical trials.

Introduction

Glaucoma is a progressive optic neuropathy causing
deterioration of the visual field (VF) as a conse-
quence of the loss of retinal ganglion cells (RGCs) and
their axons. VF testing is a staple of glaucoma care
and is used both to diagnose glaucoma and monitor
its progression. In most glaucoma clinics, standard
automated perimetry is repeated at successive visits
to assess progression of VF damage both for the
whole field (global metrics) and at individual locations
(pointwise analysis). VF damage in glaucoma usually

occurs according to specific spatial patterns that reflect
the organization of RGC axon bundles within the
retina.1–3

Analysis of progression is, however, made difficult
by complex features in VF data that can compromise
their effective use in glaucoma care. A commonly used
method to assess progression is ordinary least squares
(OLS) regression, either on global or pointwise data.
Assumptions for such a method are, however, often
violated. For example, the variability of measured
sensitivity is known to increase with the level of
damage (heteroskedasticity), likely a consequence of
the changes in response profile at damaged locations.4,5
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Moreover, VF sensitivity is measured over a limited
range. On one of the most commonly used devices,
the Humphrey field analyzer (HFA; Zeiss Meditec,
Dublin, CA,USA), the scale ranges from 50 dB to 0 dB.
This scale is inversely related to the brightness of the
stimulus, with 0 dB being the brightest. Such a lower
bound on the measurement is completely arbitrary,
and different cutoff values have been proposed.6,7
Nevertheless, a limited measurement scale is bound to
produce censored data. However, values censored at
0 dB are often considered to be actual 0 dB for the
scope of analysis. This can introduce positive biases
in the measured progression rate, especially in VFs
with more advanced damage, in which a trail of 0 dB
values can arise in locations progressing beyond the
measurement limits.8,9 Finally, it is often difficult to
efficiently combine pointwise measurements to obtain
a combined, easily interpretable, progression score for
the whole VF without losing the rich information from
individual locations.

A plethora of analysis methods have been
proposed to deal with different aspects of VF data.
Heteroskedasticity has often been neglected, given the
complex nature of the relationship between response
variability and sensitivity, providing variable amounts
of improvement when incorporated in the analy-
sis.10,11 Pointwise data have been combined using
both scoring systems10,12,13 and multilevel models,14,15
almost invariably improving modeling performance.
Data censoring has been dealt with only occasionally.
Other workarounds have been proposed to deal with
the 0 dB limits, such as asymptotic modeling through
exponential decay,13,16,17 which, however, do not reflect
the underlying nature of the data.

The scope of our work was to provide a compre-
hensive model that accounts for the key features of
VF data based on our best knowledge of the under-
lying psychophysics of the test and the nature of
sensitivity measurements. We also wanted a model
whose parameters have a direct and meaningful inter-
pretation for the clinician. To this aim, we propose
a Bayesian implementation of a multilevel model
for censored regression with heteroskedastic response.
Similarly to previous Bayesianmodels,10,15 our method
also accounts for clustering of locations within the
VF according to the anatomy of RGC axon bundles.1
We measure the incremental improvement provided
by censoring and heteroskedasticity by comparing
different implementations of the model in terms of
bias in the estimated progression rate, prediction
error and clinical detection of progression using a
large longitudinal cohort of 3352 eyes (44,371 VF
tests). All these models are then benchmarked against
other commonly available methods to assess VF
progression.

Methods

Our methodology has several connecting compo-
nents. First, we describe the longitudinal VF data
extracted from clinics and two independent test-retest
data sets. Next, we outline our modeling of response
variability, using one of the test-retest data sets. Then,
we describe our new progression models along with
the other models to be used as comparators. Finally,
we outline how the models are tested and compared,
using the clinical dataset to quantify detected progres-
sion and the second test-retest dataset to assess speci-
ficity.

Datasets

Clinical Dataset
VF data were extracted from an EMR (Medis-

oft; Medisoft Ltd., Leeds, UK) from five region-
ally different National Health Service Hospital Trust
glaucoma clinics in England in November 2015 as
described elsewhere.18–20 In short, all patient data were
anonymized at the point of data extraction and subse-
quently transferred to a single secure database held at
City, University of London. Subsequent analyses of
the data were approved by a research ethics commit-
tee of City, University of London. The study adhered
to the Declaration of Helsinki and the General Data
ProtectionRegulation of the EuropeanUnion. All VFs
were recorded on the HFA using a Goldmann size III
stimulus with a 24-2 test pattern and the Swedish Inter-
active Testing Algorithms (SITA Standard or SITA
Fast). The aggregated database contained 576,615 VFs
from 71,361 people recorded between April 2000 and
March 2015. We excluded any eye for which the EMR
contained ocular surgery other than cataract removal
during the follow-up period. We also excluded VFs
with a percentage of false-positive errors ≥15%. No
exclusion criteria were applied based on fixation losses
or false-negative errors. For this study, we selected all
patients with at least 10 VFs recorded over at least four
years in one or both eyes and a mean deviation worse
than−2 dB in at least two (not necessarily consecutive)
VFs21–23 in the same eye. It seems likely that subjects
with this level of damage and frequency of VF testing
were either strong glaucoma suspects or persons with
glaucomatous optic neuropathy. Finally, only one eye
from each patient was selected, at random if both were
eligible. The final selection included 44,371 VFs from
3352 eyes. Demographic details are reported in Table 1.

Test-Retest Datasets
Two independent test-retest datasets were used in

this study. The first was the RAPID dataset.24,25 This
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Table 1. Demographic Information for the Three Datasets Used in This Study, Reported as Median [Interquartile
Range]

Clinical Dataset RAPID Dataset HALIFAX Dataset

Age (years) 68 [60, 75] 70 [64, 76] 69 [64, 70]
BCVA (logMAR) 0 [−0.1, 0.2] 0 [−0.08, 0.18] —
SE (D) — 0 [−1.35, 0.88] —
IOP (mm Hg) 16 [14, 18] 14 [12, 16] —
Average MD (dB) −6.44 [−11.06, −4.07] −3.29 [−7.76, −1.24] −2.57 [−4.36, −1.45]
Average PSD (dB) 5.68 [3.27, 9.06] 4.26 [2.16, 9.6] 3.11 [1.98, 5.39]

Average, patient-average calculations; BCVA, best corrected visual acuity; SE, spherical equivalent; D, diopters; IOP, intraoc-
ular pressure; MD, mean deviation; PSD, pattern standard deviation.

dataset was used to obtain a model linking point-
wise response variability with sensitivity (described in
the next paragraph). Data were collected from stable
eyes with primary open angle glaucoma at Moorfields
Eye Hospital (reference 13/NS/0132) upon written
informed consent. The data collection was in accor-
dance with the Declaration of Helsinki. The final
dataset used for this analysis was composed of 1396
test repeats performed in 146 eyes of 75 subjects.
The number of test repeats per eye was 10 [7, 10]
(median [95% quantiles]), with a minimum of 3 for
inclusion. All tests were performed with a HFA 24-
2 grid, SITA Standard strategy and a G-III stimulus
size over an average time period of nine (maximum
13) weeks. The second was the HALIFAX dataset,26
as provided in visualFields package27 for R (R Founda-
tion for Statistical Computing, Vienna, Austria). This
dataset is composed of 12 VF test repeats from 30
eyes of patients with glaucoma and was used to
create stable series through permutations to quantify
the false-positive discovery rate (FPR = 1 – speci-
ficity, see section on model testing). The tests were
performed with a HFA 24-2 grid, SITA Standard strat-
egy and a G-III stimulus size over a time period of 12
weeks. Demographic characteristics for both datasets
are reported in Table 1.

Modeling of Response Variability

Variability was modeled as a function of sensitiv-
ity using the RAPID test-retest dataset (see previous
paragraph). As previously mentioned, perimetric sensi-
tivity values are censored at 0 dB. This means that
thresholds lower than this limit are recorded as 0 dB.
This can affect the observed test-retest distribution for
a given location when the true sensitivity is close to this
lower limit. To minimize this issue, we assumed that
the test-retest distribution would ideally be symmetric
around the true sensitivity value if the data were not
censored. This is reasonable because perimetric strate-

gies are designed to estimate the 50% threshold of the
psychometric function.28 Then, for each location, we
defined the median of the test-retest values as the best
available estimate (BAE) of the true sensitivity for a
given location. This gives an estimate of the central
value of the test-retest of the distribution that is not
affected by censoring (as opposed to the mean). When
the median was 0 dB, we assumed that the BAE for the
underlying threshold was not available and the location
was removed from the analysis (5.1% of the tested
locations).

A censored heteroskedastic model, with a Gaussian
error distribution, was then fitted via maximum likeli-
hood using the package crch for R.29,30 The model
allows one regression equation for the mean and one
for the log(standard deviation [SD]). The mean was
not modeled because the fitting was performed by
including an offset term for each observation equal
to the corresponding BAE of the true sensitivity. The
log(SD) was modeled as a function of sensitivity. A
good fitting was obtained with a third-degree polyno-
mial. The coefficients for the polynomial model are
reported in Appendix. However, for simplicity and
speed of calculation in the implementation of our
Bayesian model, we adopted an approximation where
the relationship between log(SD) and sensitivity was
linear in log-scale, with a maximum capping value
(bilinear with one slope fixed at zero). This strategy has
been previously adopted when implementing similar
models of variability for simulation of perimetric
responses.31 To estimate the capping value, the model
for the log(SD) was a broken stick linear relationship
where the break point was varied until the slope of the
relationship for sensitivities lower than the break-point
was null (i.e., no change). The coefficients for the linear
approximation are reported in Figure 1. This relation-
ship is in good agreement with the linear relationship
described by Henson et al.4 obtained through direct
measurements of the psychometric function. Figure
1A allows a direct comparison of the polynomial and
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Figure 1. Panel A shows how the censored standard deviation for test-retest variability changes at different sensitivity levels and the
corresponding predictions from the polynomial model and the bi-linear approximation. Panel B shows the comparison between naïve and
censored standard deviation. Data-points are reported for both test-retest datasets but the models were only based on the RAPID dataset.

approximated model of variability. For reference, we
performed the calculations using the same methodol-
ogy but modeling each (rounded) sensitivity value as a
discrete factor level, so that a value of SD was calcu-
lated independently for each sensitivity value. This can
then be compared with the naïve calculation of SD,
which shows a clear bias at lower sensitivity, where the
naïve calculation underestimates variability because of
the censored values (Fig. 1B).

Progression Models

For fairness of comparison, all methods were
based on sensitivity values or their summary measure-
ments, such as the mean sensitivity (MS). This was
necessary for the correct modeling of censoring and
heteroskedasticity at the pointwise level in the Bayesian
models. These metrics, unlike the total deviation or
the mean deviation, are also obviously affected by
normal decline in visual function caused by aging. In
the Discussion, we explain why this does not detract
from the validity of the approach and how the effect of
ageing could be accounted for in the calculations.

Proposed Mixed-Effect Hierarchical Bayesian Models
All models were developed in JAGS (Just Another

Gibbs Sampler32) using rjags package for R.33 A
separate model was fitted for each eye. We developed
three versions of the hierarchical model. In its simplest
form, the model was a linear regression of pointwise
values over time (Hi-linear). The fixed effects were the
global intercept and slope for the change of sensitivity
over time. Hierarchical random effects on both inter-
cepts and slopes were then added to model the change

over time for different VF clusters (according to the
map described by Garway-Heath et al.1) and for each
location within a cluster. The prior distributions for the
fixed effects were noninformative normal. The mean
of these prior distributions and the starting points for
the Markov Chain Monte Carlo (MCMC) algorithm
were obtained from the fixed effect estimates of the
same model fitted through ML (using the package
lme4 for R34). The random effects for the intercepts
and slopes were modeled as bivariate noninformative
normal distributions with zero mean. JAGS was then
used to run the MCMC algorithm until convergence
was achieved (Gelman-Rubin35 diagnostic≤ 1.2 on two
parallel chains) to numerically estimate the posterior
distribution of the parameters. More details on the
fitting procedure can be found in Appendix.

Similarly to Betz-Stablein et al.,15 the posterior
distribution for the global slope (fixed effect) was used
to assess the global progression of the VF in each
eye. The progression score (P-score) to assess progres-
sion was obtained by taking the value of the empir-
ical cumulative distribution function of the poste-
rior distribution of the global slope at 0 dB/year
(no progression). In frequentist terms, the P-score is
similar in interpretation to a one-sided P value for the
slope: the closer to 1, the stronger the evidence for
progression; a perfectly stable series would yield a P-
score of 0.5; a P-score < 0.5 indicates a positive slope.
An example is provided in Figure 2. One advantage of
Bayesian inference over ML is that a posterior distri-
bution can be estimated also for the random effects,
making it possible to assess progression for individual
clusters and locations using the same methodology. In
other words, a P-score could be calculated in the same

Downloaded from tvst.arvojournals.org on 10/21/2021



Hierarchical Censored Analysis of Visual Field TVST | October 2021 | Vol. 10 | No. 12 | Article 4 | 5

Figure 2. The panel on the right shows an example of a visual field series, fitted with the different hierarchical models. In the superior
hemifield, it is evident how the censoredmodels are less affected by the floor effect. The borders of the subplots are color-coded to indicate
the cluster corresponding to different optic nerve head sectors (circular schematic in the blind-spot locations). The panels on the left show
the posterior distribution for the global slope from the for the same field series, with the corresponding P-score, equivalent to the shaded
area under the curve. The censored models produce less positively biased distributions, but with larger variance, reflecting the fact that
censored sensitivity values only provide partial information. Hi = Hierarchical; HSK = Heteroskedastic.

fashion using the posterior distributions of the random
effects for the slope at the cluster and location level
(see supplementary material for an example). Differ-
ent cutoffs for the P-score were explored (see paragraph
on model testing – clinical detection of progression). A
second version of the model (Hi-censored) was identi-
cal to the one described, but the error distribution was
a normal censored at 0 dB. This is similar in concept to
a Tobit regression.8 However, the hierarchical mixed-
model approach greatly overcomes the major limita-
tion of unstable fitting results when only few uncen-
sored values are available for specific locations. A third
version of the model (Hi-HSK) also used a censored
normal error distribution for sensitivity, but the SD of
the error distribution was heteroskedastic and linked
to the estimated sensitivity using the linear approxima-

tion reported in Appendix and previously described.
Variability in this model was therefore imposed as a
fixed relationship and not estimated, similarly to previ-
ous work.10

PoPLR
Permutation analyses of pointwise linear regression

(PoPLR)was used as a termof comparison for progres-
sion detection.12 The method combines the P values
for the slopes of pointwise linear regression (PLR)
equations fitted to each location into a statistic S, using
the Truncated Product Method. A customized null
hypothesis distribution is then generated by calculat-
ing the S statistics on random permutations of the VF
tests in the series and a P value for the S statistic is
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calculated. For our analysis, we used both the calcu-
lated S statistics and its P value. PoPLR only provides
statistics for global progression. We used the imple-
mentation of the method provided by the visualFields
package.27

Simple Linear Regression
Simple linear regression was also used as a term

of comparison for our analysis. Separate equations
were calculated for global progression (using the
global MS), clusters (using the cluster MS), and
pointwise sensitivity. The P value of the slopes
from these equations was used to assess progres-
sion. These can be directly compared with the P-
scores for the global slopes, the cluster slopes, and
the location slopes from the Bayesian hierarchical
models.

Model Testing

Bias of the Estimates
This analysis was only performed for the Bayesian

models. Our interest was to compare how different
models were affected by observations censored at 0 dB.
The expectation was that, as the amount of trailing 0
dB values in the series increased, the Hi-linear model
would yield more positively biased estimates for the
progression slopes compared to the implementations
of the model with a censored error distribution. To
test this, we selected a subset of VF series for which
0 dB values constituted <30% of the data points in
the series for all locations (1486 eyes). This allowed
us to have VF series relatively unaffected by censor-
ing and that could be accurately described by a simple
pointwise linear regression. Two additional artificial
series were then created by shifting all the values in
the original series down by 10 dB and 20 dB, generat-
ing artificial series with progressively lower sensitivity
values. All values that fell below 0 dBwhen shifted were
then censored. However, to obtain realistic data, we
also increased the variability of the observations using
the method described by Wu and Medeiros.36 Differ-
ently from the original method, the expected variabil-
ity for different levels of sensitivities was not based
on the empirical cumulative distribution function of
the pointwise regression residuals but on a polynomial
equation fitted to the HALIFAX test-retest database
using the same methodology used to model variability
in the RAPID dataset. This equation is also reported
in Appendix. We finally compared, for each Bayesian
model, the slopes estimated from the shifted series with
the slopes obtained from the original series. Ideally,
they should be equivalent, that is, the model least

affected by censoring should give central estimates for
the shifted series similar to the original series.

Clinical Detection of Progression

This analysis was performed to compare the clini-
cal performance of all the methods. For each method,
we gradually changed the cutoff value of the progres-
sionmetric to calculate aHit-rate (HR) curves at differ-
ent specificity levels. The HR was calculated on the
3352 VF series from the clinical database. The series
were truncated at different lengths, from 4 VFs to
10 VFs (the minimum required for inclusion). Speci-
ficity was calculated by measuring the FP rate on
stable series. The stable series were obtained as random
permutations of those in the HALIFAX test-retest
dataset. Each of the 3352 eyes in the clinical dataset
was randomly paired to one of the 30 eyes in the
HALIFAX dataset. Then, for each eye, the stable test-
retest VF series was randomly permutated, generating
3352 stable series. The first 10 VFs of each permuta-
tion series were then retained and assigned the same
time points as the real clinical series to replicate the
calculations performed for the HR. The curves were
calculated using the package pROC for R,37 up to
a minimum specificity of 90%. Confidence intervals
for the HR and the partial area under the HR curve
(pAUC) were calculated with the bootstrap procedure
implemented in the pROC package. Time to detect
progression was quantified using survival curves for
different specificity levels (97.5%, 95%, and 90%) using
the package survival for R.38 Progression was assessed
with a minimum of 4 VF tests on series truncated
at a progressively increasing number of tests, up to
a maximum of 10 tests. For each step in the series,
all models were applied, and progression was detected
on basis of the cutoff chosen for a given specificity
level. The time to progression was then recorded as
the earliest time from baseline where progression was
detected. Formal comparisons between models were
performed using aCox proportional hazardmodel with
a cluster term to account for the fact that progression
was assessed on the same eye (VF series) with multiple
methods. Note that survival analyses also account for
the different number of actually observed progression
events because eyes that did not progress within the
observation window are considered as censored data.
P values were corrected for multiple comparisons using
the Bonferroni-Holm method.39 No statistical test was
performed on the pAUCs because specificity for the
HR curves was estimated using resampled permutated
series that do not constitute an actual experimental
sample.
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Prediction Errors

One concern with hierarchical models is the shrink-
age of the random effect estimates (i.e., the cluster and
location slopes) toward the grand mean. This might
make the model “stiffer” and compromise prediction
of future values. We therefore quantified the point-
wise prediction error for each Bayesian method and
compared it to the predictions from simple PLRs. All
negative predicted values were assigned 0 dB. Predic-
tions were performed in the first 10 VFs of each series
and truncating the series at different lengths from 4
VFs to 9 VFs, predicting the rest. The mean absolute
error (MAE) for all methods was also compared with
the expected MAE for the test-retest series (from the
HALIFAX dataset) and with predictions of no change
from baseline, calculated as the average of the first two
VF tests.

Results

Bias of the Estimates

The agreement between progression slope estimates
from the downward shifted artificial VF series and the
original series is shown in Figure 3. As expected, the
Hi-censored and the Hi-HSK models were the least
affected by the 0 dB censoring, whereas a noticeable
positive bias was evident for the negative slopes in the
Hi-linear model. The average of bias is also reported
in Figure 3. Of notice, the bias affected the cluster and
location slopes, as well as the global slope. The effect
of bias is also evident when plotting the distribution
of slopes according to the intercept and when analyz-
ing the distribution of slopes according to baseline VF
damage (supplementary material).

Clinical Detection of Progression

For global progression (Fig. 4) all Bayesian models
performed very similarly and were vastly superior to
both PoPLR statistics and simple linear regression
for MS. Compared to the other hierarchical models,
the Hi-HSK model was slightly superior for shorter
series but performed slightly worse for longer series.
Of note, the S statistics from PoPLR always performed
better than the corresponding p-value statistics. PoPLR
P value was significantly different from simple linear
regression only with 8 and 10 VF tests (P < 0.001).
Complete tables with partial areas under the curve
and corresponding CIs are available as supplementary
material.

The survival analysis and the formal comparisons
mirrored the results seen for the HR curves (Fig. 4),
in that all hierarchical models performed significantly
better than the other methods (all P < 0.001) and
PoPLR performed better than simple linear regres-
sion (P < 0.001). All hierarchical models performed
very similarly and the only significant difference was
detected at 97.5% specificity for the Hi-linear when
compared to the Hi-censored (P < 0.001) and Hi-HSK
(P = 0.0261) models. Table 2 reports the results of the
survival analysis on global progression and the HR at
three specificity levels.

When applied to cluster and location progression
(Fig. 5) the Bayesian hierarchical models performed
much better than simple linear regression. The Hi-
HSK model outperformed the other two hierarchical
models for both clusters and locations. The differences
between theHi-censored and theHi-linearmodels were
minimal. Note that no formal testing was performed
for these comparisons (seeMethods), but pAUC values
and the corresponding CIs are reported as supplemen-
tary material.

Prediction Error

The MAE for predictions was generally better for
the hierarchical models compared to simple PLR and
prediction of no change (Fig. 6), with minimal differ-
ences among the three hierarchical models. Interest-
ingly, at high sensitivities, the assumption of no change
performed better than all models until 6 VFs were used
to predict the remaining four. When stratified by differ-
ence from baseline, the signed prediction error was
very similar between PLR and hierarchical models for
worsening VFs but slightly better for the hierarchical
models for improving fields (Fig. 6). Of note, large
errors for extreme deviations from baseline persisted
for all methods even when nine tests were used to
predict the tenth. This is indicative of very large
episodic deviations from linearity and might represent
untruthful test results either in the VFs used to calcu-
late the baseline or in those being predicted. TheMAEs
for different models are summarized in Table 3.

Discussion

In this work, we evaluated three implementations
of a hierarchical Bayesian model for VF progression.
We separately investigated the effect of modeling the
censored nature and the heteroskedastic behavior of
VF data. The model for heteroskedasticity was based
on a large test-retest dataset of glaucoma patients. The
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Figure 3. Comparison between the slopes estimated by the different models in the artificially shifted series and the original series. Note
that the artificial series are shifted downward towards lower values. The censoredmodels are less affected by a positive bias on the negative
slopes compare to theHi-linearmodel. The averagebias for thenegative and for thepositive slopes is reported in thefigure. Hi=Hierarchical;
HSK = Heteroskedastic.

hierarchical models were then compared to more tradi-
tional approaches using a large clinical dataset with
long VF series and permutations of stable VF series
from an independent test-retest dataset. Our results
highlight several important aspects of VF progression
analysis, that are often overlooked.

In terms of clinical performance, the largest gains
were provided by the multilevel approach combin-
ing different locations. Indeed, all three hierarchical

models performed very similarly in detecting progres-
sion. This result is useful to interpret previous findings
obtained with similar approaches. Zhu et al.10 also
used a Bayesian approach to model VF progression.
This method, called ANSWERS, was more focused on
modeling heteroskedasticity (discussed later), but the
parameter used to detect progression was a combina-
tion of the results obtained at different locations to
calculate an estimated “probability of no progression.”
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Figure 4. The top panels present the Kaplan-Meier curves for all testedmethods at different specificity levels. P in the legends indicate the
number of eyes that progressed with each method. The vertical dashed lines indicated the median time to progression (not color coded).
The bottom panels show curves of the hit-rate at different specificity levels for all the progression methods tested with the series truncated
at different lengths. Hi = Hierarchical; HSK = Heteroskedastic.

In the evaluation of the method, the differential
effect of modeling heteroskedasticity and combin-
ing locations was not quantified. Interestingly, when
compared to simple linear regression, we obtained an
improvement in performance very similar to that of
ANSWERS for all the hierarchical models tested in
our analysis, re-enforcing the idea that the strength
of these methods comes from efficient combination
of pointwise information. Importantly, we used the
same dataset as Zhu et al.10 to obtain stable VF
series to determine specificity, so our results can be
easily compared. Of note, ANSWERS did not use
a multilevel approach to obtain an estimate of the
global progression slope but rather relied on a combi-
nation of pointwise regression models fitted individ-
ually (although linked through spatial correlations).

This is similar in principle to the S statistics used by
PoPLR, which also improved the clinical performance
over simple linear regression in our dataset.

Other authors have successfully used a multilevel
approach, similar to ours, to estimate a global progres-
sion slope.14,15 Betz-Stablein et al.15 in particular used
the estimated posterior distribution on the global slope
to assess progression. In their analysis, the hierarchi-
cal model did not show a large improvement over
pointwise methods. However, they relied on clini-
cal judgment to assess specificity in their calcula-
tions instead of permutations of stable series. Their
results are therefore difficult to compare to ours.
Nevertheless, modeling the global progression rate
has additional advantages besides practical progres-
sion detection because it has a meaningful and direct
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Table 2. Median Time to Progression and Hit-Rate at Three Specificity Levels for Series Truncated at 10 Tests (the
Minimum Required for Inclusion)

Specificity

Model 97.5% 95% 90%

Median time to progression (years [95% CIs]) (10 tests)
Hi-linear 6.5 [6.2, 6.8] 5.7 [5.4, 5.9] 5.1 [4.9, 5.3]
Hi-censored 6.2 [6.0, 6.5] 5.6 [5.4, 5.9] 5.1 [4.9, 5.2]
Hi-HSK 6.3 [6.0, 6.6] 5.6 [5.3, 5.8] 5.0 [4.8, 5.2]
Simple linear 11 [10.7, 11.4] 9.3 [9.1, 9.7] 7.5 [7.2, 7.8]
PoPLR (p-value) 10.1 [9.8, 10.4] 8.6 [8.3, 8.9] 6.9 [6.7, 7.2]
PoPLR (S) 7.4 [7.1, 7.7] 6.7 [6.4, 6.9] 5.8 [5.6, 6]

Hit-rate (% [95% CIs]) (10 tests)
Hi-linear 53 [51, 53] 57 [55, 57] 61 [59, 61]
Hi-censored 54 [51, 53] 57 [55, 57] 61 [59, 61]
Hi-HSK 52 [51, 52] 55 [54, 55] 59 [57, 59]
Simple linear 32 [29, 32] 37 [35, 37] 45 [43, 45]
PoPLR (p-value) 35 [33, 36] 41 [39, 41] 50 [47, 49]
PoPLR (S) 49 [47, 49] 52 [50, 52] 56 [55, 56]
Hi = Hierarchical; HSK = Heteroskedastic.
The 95% confidence intervals (CIs) were obtained from the Kaplan Meier estimator for the median time to progression and

via bootstrap for the hit-rate.

interpretation for clinicians, and this is an additional
strength of our approach.

Another novel aspect of our approach is the
handling of the error distribution and response
variability. Similarly to ANSWERS, we based our
modeling on a test-retest dataset. In our case, however,
the dataset used to model variability and the one used
to generate permutated stable series were different,
and this adds strength to our validation. Test-retest
variability, especially at a pointwise level, is known
to increase at lower sensitivities.4,5 This relationship
is often explained with a change in the psychometric
function4,5 at more damaged locations. Although this
is certainly an incomplete characterization,5 sensitivity
has been shown to be the best predictor of variabil-
ity in glaucoma.4,5 Henson et al.4 modeled the psycho-
metric function with a cumulative Gaussian function
and reported the change of log(SD) with sensitiv-
ity, down to 10 dB. We adopted a similar modeling
approach using a large test-retest perimetric dataset.
The coefficients of our linear approximation were in
good agreement with the results from Henson et al.4
(Appendix). Importantly, our approach was meant to
model the expected variability around the predicted
sensitivity, allowing us to rely on previous knowl-
edge of the psychophysics of perimetric responses. In
contrast, ANSWERS used test-retest data to model
the variability of the observed response,10 effectively
using the estimated variability as a weighting method

for the observations. However, in our case, model-
ing heteroskedasticity only improved the results in the
detection of progression for individual clusters and
locations (Fig. 5) but did not improve the global perfor-
mance.

One important feature of our hierarchical models
is the handling of censored data. Different approaches
have been proposed to address the 0 dB floor in
perimetric measurements.9,13,16,17 However, few have
addressed the actual censored nature of the data. This
is important, because it implies that the actual sensi-
tivity could extend beyond the measurements limits.
This aspect is willingly neglected by methods adopt-
ing an asymptotic modeling of the floor effect,13,16,17
creating problems in the estimation and interpretation
of the rate of progression. These methods are partic-
ularly problematic when considering that the censor-
ing level is completely arbitrary and can be changed
without any bearing on the measurements recorded
above the chosen limit.6 This is not captured by asymp-
totic models, such as the exponential decay, in which
the estimated rate of loss is tightly linked to the relative
distance of the observations from the measurement
limit. On the other hand, considering censored values
as actual measurements of 0 dB sensitivity can intro-
duce a positive bias in the estimated rate of loss with
simple linear models. This is demonstrated by our first
experiment on artificially shifted series (Fig. 3). It is
important to notice that, at least in a dataset drawn

Downloaded from tvst.arvojournals.org on 10/21/2021



Hierarchical Censored Analysis of Visual Field TVST | October 2021 | Vol. 10 | No. 12 | Article 4 | 11

Figure 5. Curves of hit-rates at different specificities for individual visual field clusters and locations at different lengths of the series. Note
that a “hit” is progression in any cluster, or location, and the percentages are calculated over the total number of clusters (N = 20,112) and
locations (N = 174,304). Hi = Hierarchical; HSK = Heteroskedastic.

Figure 6. Average error for pointwise prediction stratified by difference from baseline (left panel) and mean absolute error stratified by
baseline VF sensitivity (right panel) for the different hierarchical models and the pointwise linear regression. The density profile in the left
panels represent the actual distribution of differences observed in the data. The diagonal dashed line represents the error resulting from
predicting no change. Hi = Hierarchical; HSK = Heteroskedastic.

from real clinics, such as the one used in this analy-
sis, such a bias had little bearing on the ability of the
models to predict future sensitivity, as demonstrated by
our quantification of theMAE for predictions (Fig. 6),
because a significant effect is only obtained when a
large number of trailing 0 dB observations accumulate

in a series (see example in Fig. 2). A similar result was
reported by Bryan et al.9

Not accounting for censoring can, however, signif-
icantly affect the accurate estimation of the rate of
loss in patients with advanced VF damage, because the
floor is likely to affect many locations earlier in the
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Table 3. Mean Absolute Error (MAE) for Prediction and the Corresponding Standard deviation (SD)

MAE (SD)

No. of Fields Hi-Linear Hi-Censored Hi-HSK Simple Linear No Change

4 5.15 (6.59) 5.25 (7.38) 5.2 (7.25) 6.5 (9.54) 4.02 (4.85)
5 4.27 (5.12) 4.33 (6.10) 4.38 (6.16) 5.12 (6.44) 4.11 (4.94)
6 3.84 (4.65) 3.88 (5.34) 3.98 (5.47) 4.38 (5.44) 4.21 (5.04)
7 3.55 (4.16) 3.55 (4.26) 3.67 (4.39) 3.92 (4.67) 4.31 (5.15)
8 3.36 (3.98) 3.35 (4.06) 3.50 (4.21) 3.62 (4.34) 4.44 (5.29)
9 3.23 (3.85) 3.21 (3.91) 3.37 (4.07) 3.41 (4.08) 4.59 (5.46)

Hi = Hierarchical; HSK = Heteroskedastic.
MAE is in dB.

VF series. Betz-Stablein et al.15 also accounted for the
censored nature of the data. In contrast, ANSWERS
used a transformation of 0 dB sensitivity because such
a value would be undefined in a Weibull error distri-
bution (the one used in their model).10 This approach
allowed modeling of the observed test-retest variabil-
ity, but would still be affected by a bias of trailing
0 dB values. However, despite reducing the estima-
tion bias, accounting for censoring did not greatly
improve the clinical performance (Fig. 4 and Fig. 5).
This result could have multiple explanations, including
the fact that our clinical dataset was mostly composed
of people with early loss (see Table 1). This is repre-
sentative of many glaucoma clinics, but in our case the
number of people with early damage could have been
inflated by our exclusion of eyes undergoing glaucoma
surgery before 10 VFs could be collected. However,
the most likely explanation is that models account-
ing for censoring correctly interpret censored obser-
vations as being less informative. This increases the
uncertainty around the final estimate of the rate of
progression, despite reducing the bias. Instead, noncen-
sored models assume that complete information can
be extracted from 0 dB measurements, leading to less
uncertainty in the estimates. This is clearly illustrated
by the example in Figure 2: both censored models
provide more negative estimates of global progression,
but the P-score is almost identical to that obtained with
the Hi-linear model on account of the greater uncer-
tainty. The comparison between the Hi-linear and the
Hi-censored model is particularly useful, because they
constitute two implementations of the samemodel that
only differ for their handling of censored data. Other
practical solutions could be applied to increase the
dynamic range of VF testing itself at the lower end,
for example, by using larger stimulus sizes for more
advanced stages of damage.40

Finally, our approach differs fromprevious attempts
in its modeling of spatial correlations within the VF.

We opted for a full hierarchical approach, in which
the VF clusters represented an intermediate level of
the hierarchy. This has some important advantages,
especially for interpretability, because the model can
provide a rate of progression for each individual
cluster. In fact, Bayesian computing allows inference
on random effects, and this is useful to assess localized
progression (Fig. 5). Moreover, the rate of progression
for clusters can be compared to structural measure-
ments on optic nerve sectors for multimodal evalua-
tions.25,41 One drawback is that clusters are modeled
as hard-edged groups instead of “smooth” correla-
tions. Therefore, proximity of locations within the
same cluster does not affect the correlation struc-
ture and adjacent locations in different clusters are
modeled as completely independent. However, this also
allowed us to avoid complex correlation structures in
the model, greatly reducing the number of parameters
and therefore improving efficiency, as opposed to previ-
ous similar attempts.10,15 Moreover, when compared
to results from ANSWERS, our discrimination perfor-
mance seems very close to those obtained with spatial
enhancement in their model. For example, with five
VF tests, they reported a 2.6-fold improvement in the
HR compared to simple linear regression at 95% speci-
ficity.10 In our analysis, the improvement was 2.8-fold
with the Hi-HSK model and 2.6 for the Hi-censored
model. Note that results with 5 VFs are only reported
here for comparison and are not part of our main
analysis. Finally, we showed that our hierarchical struc-
ture with random effects retained enough flexibility so
not to compromise its predictive ability (Fig. 6). These
observations, together with the improved interpretabil-
ity of the model, make our approach reasonable and,
to some extent, preferable. Further flexibility could be
introduced with customized structure-function cluster-
ing techniques.3,42

Other groups have proposed approximate Bayesian
computation solutions to estimate VF progression,
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such as in the work by Murata et al.43,44 Their evalu-
ation mostly focused on the improvement in predic-
tion accuracy and did not explore the effect of their
model on progression detection. Their results are diffi-
cult to compare to ours since they based their modeling
on total deviation values. Interestingly, their MAE for
prediction was similar but generally lower compared
to ours. However, this was also the case for the simple
pointwise linear regression, possibly indicative of a
difference in the composition of the datasets used
for validation, such as a larger proportion of stable
patients. One notable difference is that we calculated
the predictionMAE for all subsequentVFs and not just
the last one in the series, as in Murata et al.43,44

Limitations and Future Directions

Besides those pointed out in the previous section,
our analysis has other limitations. Our clinical dataset
recorded both actual 0 dB sensitivities and censored
observations (denoted as <0 dB on HFA printouts)
as 0. Therefore we had to assume that all 0 dB values
indicated censored data. In future analyses, this distinc-
tion could be maintained to maximize the amount of
information available to the model. However, this is
unlikely to have greatly affected our results because the
proportion of measured 0 dB is usually small compared
to censored values. Another limitation is that the eyes
included in our clinical dataset were not assigned
a clear diagnostic label of glaucoma. However, it
is reasonable to assume that people monitored in a
glaucoma clinic with aminimumof 10VFs over 4 years
would be at least glaucoma suspects. Moreover, this
limitation would only affect the amount of progress-
ing eyes in the dataset but not the relative improvement
observed between different methods.

In clinical care it is also common to select new
baselines for VF progression analyses according to
events such as a change in treatment or surgery. There-
fore our analysis of 10 VFs as a continuous series might
not capture this aspect of clinical practice. Evaluating
the effect of selecting different baselines was beyond
the scope of our model comparison. However, as for
any other trend based analysis, this is certainly possible
in practice. One final important aspect to consider is
that our estimation of progression was based on sensi-
tivity (rather than deviation) values and included both
the effect of glaucoma and of normal ageing. Although
this does not constitute a problem when comparing
methods, it can be easily accounted for in clinical
applications by changing the level of expected normal
change. In our analysis, this was set to 0 dB/year (no
change), but it could be modified to reflect the expected

normal VF decline with ageing. However, no change
is the appropriate choice when specificity is calculated
on permutated test-retest series, because any effect of
aging isminimal in these datasets, usually collected over
a short period of time and completely eliminated by
permutations.

A final obvious limitation is the long time taken
to perform Bayesian computation. A detailed report
on computation times for the different methods is
provided as supplementary material. We also provide
a comparison with the ML implementation of the Hi-
linear model, which, despite being much faster and
providing similar estimates, offered a worse clinical
performance than its Bayesian counterpart. Finally,
ML implementations of random effect models with
censored error distribution are available,45 but they still
rely on time-consuming numerical computations that
offer little advantage over Bayesian implementations.
Moreover, they do not allow for potential integration
of prior knowledge, for example from structural data.41

One important application of this class of models is
for the analysis of visual field outcomes in clinical trials
for glaucoma treatments. Primary outcomes for these
trials need to be sensitive enough to detect glaucoma
progression in the relatively short time span of the
trial. The hierarchical structure can be easily extended
so that individual subjects constitute another level in
the random effect structure while the fixed effects are
used to model the differences in the rate of progres-
sion between, for example, two arms of the trial. Such
an approach would overcome the limitations deriv-
ing from comparing survival curves of VF progression
between the two arms, efficiently exploiting the infor-
mation in the data to directly test the change in the rate
of progression. In fact, Wu et al.46 showed how hierar-
chical models were more powerful than event based
analyses, although they only analyzed the progression
of mean deviation over time. A more complex hierar-
chical structure, making full use of pointwise data, has
been used by our group in a previous analysis of trial
data.47 That application was based on aML procedure
and did not account for censoring. Although this might
be irrelevant when only people with early or no VF
loss are recruited, the floor effect could bias the results
where the focus is on more advanced visual field loss in
people with later stage glaucoma.
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Appendix: Models for Variability

Table A1 reports the coefficients for the polynomial
and linear approximation models of log(SD) of the
response used in this analysis. The equations provided
by Henson et al.4 are reported for reference. The
polynomial fit used on the HALIFAX dataset was used
to model the change in variability in the artificially
shifted series to assess bias in the estimates of the
slopes. Confidence Intervals are reported only for the
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Table A1. Coefficients and Corresponding Confidence Intervals for Different Models

Coefficients [95% Confidence Intervals]

Intercept Sensitivity Sensitivity2 Sensitivity3

Polynomial (RAPID) 1.93 0.08 −0.01 7 × 10−5

Polynomial (HALIFAX) 1.82 0.13 −0.01 0.0002
Linear approximation (optimized break-point) 3.70 [3.68, 3.72] −0.111 [−0.112, −0.109] — —
Linear approximation (break-point at 10 dB) 3.45 [3.43, 3.47] −0.101 [−0.103, −0.100] — —
Henson et al. (All subjects) 3.27 [2.98, 3.56] −0.081 [−0.091, −0.071] — —
Henson et al. (Glaucoma) 3.62 [3.24, 4.00] −0.098 [−0.112, −0.085] — —

Sensitivity is in dB. The linear approximation was capped at SD = 8.17 dB.

linear approximation for comparison with Henson’s
results. The linear approximation was also recalculated
with a break-point at 10 dB, the minimum sensitivity in
Henson et al.4 Despite the small coefficient value, the
cubic term in the polynomial fit significantly improved
the goodness of fit (P < 0.001).

Fitting of Bayesian Models

Two MCMC chains were run in parallel until
convergence was achieved, defined as a Gelman-
Rubin35 diagnostics < 1.2. We used 1000 samples for
adaptation, 5000 burn-in samples and a minimum
of 5000 samples to effectively sample the posterior
distribution (more were added until convergence was
achieved). Priors on the fixed effects (global intercept
and slope) were non-informative normal distributions
with a precision of 0.01 (Variance= 100) and the mean
determined by the results of a simple ML fit on the
same data (using the package lme434). These were also
the starting values for the MCMC.

The joint prior distribution for the random inter-
cept and slope at each hierarchical level was a bivari-
ate normal distribution with zero mean and a 2 × 2
precision matrix. The prior for the precision matrix

was a Wishart distribution with a 2 × 2 inverse
variance matrix with 0 off diagonal values and 2
degrees of freedom. Note that, in our implementation,
the estimate for the intercept and slope parameters
from the higher hierarchical level was cascaded down to
the lower level as the actual mean of the random effect
distribution.

The error distribution for the observations was a
normal with zero mean (censored at 0 dB for the
censoredmodels). For theHi-HSKmodel, the variance
of the normal error distribution was determined based
on the estimated sensitivity through the linear approxi-
mation equation presented in the previous section and
was therefore not a fitted parameter. In preliminary
evaluations of the model, this was deemed as the best
method to achieve fast and stable convergence of the
MCMCs. Tunable parameters with informative priors
and more complex relationships, such as the third
degree polynomial, generally performed worse in terms
of clinical discrimination and stability of the estimates.
When the residual variance of the observations was
not imposed by a pre-determined sensitivity-variability
relationship, it was modeled as a free precision param-
eter with a Gamma prior distribution with shape and
rate parameters set to 0.001.
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