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ABSTRACT  
 
An analysis of navigational accuracy when influenced by 
ground vehicle dynamics is presented.  Tests beds 
outfitted with various sensor suites were used to collect 
data when normal and extreme driving maneuvers are 
executed.  The data was run through an extended Kalman 
filter to produce a navigation solution.  The Kalman filter 
inputs varied on each test bed, using both automotive and 
tactical grade Inertial Measurement Units (IMU).  The 
position, velocity, and course measurements were 
obtained from a DGPS unit mounted on the vehicles and 
used as a truth measurement when exploring dead 
reckoning error.  Additional measurements, such as wheel 
speed, radar speed, and magnetometer heading, were 
added to improve the robustness and reliability of the 
solution.  The results of the work show the effect of both 
longitudinal and lateral vehicle slip on the navigation 
solution.  In addition, the attempt of the various sensors to 
correct the errors is investigated. 
 
INTRODUCTION  
 
Accurate ground vehicle navigation is in an ever 
increasing demand as the market for autonomous 
capability continues to grow.  Control of an autonomous 
ground vehicle (AGV) requires precise navigation 
information.  An increase in the precision of the 

navigation solution can directly lead to a better and more 
robust vehicle controller. 
 
Position information is important to both navigation 
experts and vehicle dynamicists.  Sometimes, AGV 
navigation uses a vehicle model that neglects or 
constrains key states present in the actual dynamics of the 
ground vehicle at normal operating speeds [1], [2].  
Vehicle dynamic models, however, can be excessively 
complicated for navigational use and can require 
parameters that are expensive or hard to measure.  There 
exists a tradeoff in that some of these states need to be 
taken into account for accurate AGV navigation, vehicle 
platooning, and for the next generation of control systems 
in automobiles [3], [4], [5].  Active control systems that 
steer the vehicle away from an impending accident will 
generate large amounts of vehicle slip in order to 
maximize the force at the ground to quickly alter the 
vehicle’s path and minimize the chance of a collision. 
 
The focus of this work is to show how vehicle slip 
induces errors in the navigation solution both when GPS 
is available and when dead reckoning through a GPS 
outage.  The drawbacks of typical navigation sensors 
when lateral or longitudinal slip occurs are detailed, 
showing that sensor errors can be a function of the 
environment and/or vehicle dynamics. 
 
TEST BED 
 
Two test beds were used for this research.  The first was 
an Infiniti G35 sedan, donated by Nissan.  It was outfitted 
with a Crossbow VG400 automotive grade inertial 
measurement unit (IMU), Navcom Starfire DGPS, and a 
Dickey John Doppler radar.  Wheel speed from each 
wheel was taken from the vehicle’s Control Area Network 
(CAN). 
 
The second test bed for this research was an All-Terrain 
Vehicle (ATV) converted into an AGV used to participate 
in the DARPA Grand Challenge (DGC).  It was outfitted 
with a Navcom Starfire DGPS unit, a Rockwell Collins 
GIC-100 tactical grade IMU, a Peiseler high resolution 
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wheel encoder, a Microstrain 3DM-GX1 IMU with 
magnetometer, and a second magnetometer. 
 
NAVIGATION ALGORITHM 
 
An extended Kalman filter (EKF) was used due to the 
nonlinearities in the system model.  The filter used is a 
continuous-discrete hybrid filter formally known as an 
extended Kalman-Bucy filter.  This is a widely used 
estimator when dealing with sampled data measurements 
of a continuous process.  This method and the following 
equations are described in more detail in [6]. 
 
State Estimate Continuous Propagation 
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Covariance Estimate Continuous Propagation 
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Kalman Filter Gain Calculation 
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State Estimate Discrete Update 
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Covariance Estimate Discrete Update 

[ ] )()()()( −+ −= kkkk tPtCtLItP  (5) 
 
A specific kinematic system model was derived for each 
vehicle.  The G35 model only estimates necessary to 
produce a navigation solution.  The system model for the 
AGV is a prototype of the one being used in the actual 
DGC, and is more complex and contains more states.  
Both contain the following states required for navigation: 
position, velocity, and yaw.  States specific to each test 
bed are listed in Equations (6) and (7) and are detailed in 
the appendix.  Inputs for the G35 are the longitudinal 
acceleration and yaw rate, with scale factors removed.  
The AGV adds pitch rate and roll rate inputs. 
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The Jacobian for each system used in the continuous 
propagation of the covariance estimate is listed in 

equations 8 and 9.  The matrices are 8 x 8 for the G35 and 
16 x 16 for the AGV, and are zero except where noted. 
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Measurements on the G35 include velocity, course, north, 
and east from GPS, and a wheel speed velocity from the 
CAN.  The wheel speed velocity was translated to the CG.  
The measurement matrix is a 6 x 8 zero matrix except as 
noted below: 
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The AGV used GPS measurements of velocity, course, 
north, east, and pitch plus road grade; magnetometer 
measurements of heading, roll, and pitch; a wheel speed 
velocity; and a roll “measurement” calculated using 
Equation (11).  These measurements result in a 
measurement matrix for the AGV that is 13 x 16 and is 
zero except where noted. 
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The statistical properties of the noise were found by 
performing static tests and calculating the mean and 
variance of each sensor.  The biases are modeled as 
slowly varying using the process noise matrix to dissuade 
the filter from “going to sleep.” 
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VEHICLE SLIP 
 
The tire is the vehicle’s interface with the road.  It is the 
component responsible for transferring the drive force to 
the ground and for generating the necessary lateral forces 
to turn the vehicle.  Using a similar explanation as [7], 
parts of the tire tread are either adhered to the road or they 
are sliding.  When a force from the vehicle is applied to 
the tire/road interface, the coefficients of friction are 
exceeded in local areas on the tread.  Those areas begin to 
slide which generates a force to propel the vehicle.  The 
force generated increases fairly linearly with slip until the 
tire becomes saturated, after which the force stays 
constant.  The saturation limit of the tire is often defined 
by its effective stiffness.  The cornering stiffness (Cα) and 
tractive stiffness (Cx) are functions of numerous 
parameters such as normal force, camber, toe, road 
conditions, materials, and so forth, but are not exactly 
known due to the high nonlinearities in tire behavior.  
Often empirical lookup tables or empirical models such as 
Pacejka’s Magic Model are used to model the tire.  
Ultimately, vehicle drive forces are a function of the tire 
stiffness and lateral and longitudinal slip (α and s, 
respectively) at the tire in the linear region.  In Equations 
(13) and (14), s is the slip due to the difference in wheel 
speed and vehicle speed, and α is the slip due to the 
difference in the tire pointing direction and the direction 
of travel. 
 

sCF xx =  (13) 
 

ααCFy =  (14) 
 
These slip angles, in reality, are translated to the center of 
gravity of the vehicle to produce an overall vehicle slip 
angle.  In practice, it is easier to measure or estimate this 
slip angle and translate it back to the individual tires for 
analysis or to gather other information [7], [8], [9], [10]. 
  
Vehicles are sometimes modeled kinematically with 
assumptions of zero lateral velocity, no wheel slip, and 
the existence of a direct relationship between steer angle 
and yaw rate.  At low speeds, these assumptions may be 
valid.  At higher speeds or on varying terrains, these 
assumptions quickly break down resulting in undesired 
performance from navigation and/or control algorithms.  
Lateral velocities are generated and the vehicle sideslip 
becomes large enough to impact the system.  Vehicle 
sideslip is formally defined as the angle between the 
vehicle’s heading vector and the vector that denotes the 
vehicle’s actual path of travel.  (the angle β in Figure 1).  
High speed is also a term that is particular to each vehicle 
and the ground it is traversing.  For example, 10 mph is 
fairly low speed in the sedan but fast enough to create 
sizeable slip angles in the AGV.  Terrain is a critical 

factor that drastically changes the available peak forces of 
the tire, which are located in the nonlinear region of the 
tire curve.   This too, can change the relative meaning of 
the term high speed.  While 10 mph is certainly low speed 
on level pavement, it would not be under certain icy 
conditions and the vehicle would generate much larger 
slip angles and saturate the tires faster.  Figure 1 is a 
simple four wheel vehicle model that depicts the noted 
parameters that induce errors in control and navigation 
systems.  The variable descriptions are offered in the 
appendix.   
 

 
Figure 1: A simple four wheel vehicle model. 
 
A broad range of sensors are available to measure most, if 
not all, of the parameters shown.  Encoders and 
potentiometers are effective when measuring steer angle, 
an IMU will provide yaw rate, strain gauges will measure 
the forces generated, and magnetometers provide heading.  
GPS has proven to be an effective, economical tool to 
directly measure or to aid in estimating many vehicle 
parameters.  A single antenna unit can give information 
such as precise velocity, position, and course 
measurements, while a multiple antenna unit provides 
more attitude information such as heading, roll, and pitch.  
Course is the angle between north and the direction of 
travel of the vehicle, and heading is the angle between 
north and the direction the vehicle is pointing.  With a 
combination of a single and multi-antenna unit, sideslip 
can be directly measured.  Wheel slip can also be 
measured by comparing GPS velocity to a wheel speed 
sensor. 
 
Problems arise in the absence of GPS.  The navigation 
system loses its “truth” measurement creating states that 
are undetectable and unobservable in some situations.  
Additionally, the estimator loses the ability to estimate 
states such as wheel slip.  Biases inherent to most sensors 
are often unobservable during an outage, which increases 
dead reckoning error.  These sensor errors can also be a 
function of the environment and/or vehicle dynamics.  
Terrain can cause significant changes in biases as well.  A 
changing road grade will alter the accelerometer readings 
and appear as a large bias.  The Doppler radar is affected 
when the vehicle rolls or pitches due to acceleration or 
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road grade because the distance and angle of the unit 
relative to the ground changes (the radar provides a speed 
measurement that is a function of the sensor’s distance 
and angle relative to the ground).  Changing from a loose 
surface to a hard surface affects the amount of wheel slip, 
which can be modeled as a bias in the longitudinal 
direction.  Surface conditions also impact the Doppler 
radar output because the height and texture of different 
terrains alter the reflectivity of the microwave signal.  
Hard accelerations, braking, or cornering also inject errors 
because slip is generated longitudinally or laterally.  A 
wheel speed sensor obviously has shortcomings in this 
scenario.  Yaw errors are also present without a course 
measurement because integration of a yaw rate gyro is 
used to produce the heading state.  Additionally, the 
navigation algorithm is incorrect in its estimation of the 
vehicle’s direction of travel if sideslip is present because 
the yaw gyro integration yields heading, not course.  If 
these biases or conditions perceived as sensor bias remain 
constant during an outage, the states they are linked to 
generally provide adequate solutions.  A changing bias or 
terrain, however, will induce large errors that quickly 
increase the position errors. 
 
EFFECTS OF LATERAL SLIP 
 
A series of maneuvers were executed on Auburn 
University’s 1.7 mile oval test track using the Infiniti G35 
to generate varying amounts of sideslip.  Small slip angles 
were generated going around the eight degree banked 
turn, while large amounts were generated in a slalom 
maneuver on the straight section as shown in Figure 2. 
The 180 degree turns are clearly visible on the east and 
west ends of the track. The vehicle’s speed was 
approximately 15.6 meters per second (35 mph) in the 
corners and 20.1 m/s (45 mph) on the straight sections. 
 

 
Figure 2: Overview of driving maneuvers on test track. 
 
Figure 3 shows a zoomed in view of the southern straight 
away where the aggressive slalom maneuver was 
performed.  The EKF navigation solution is denoted by 

the blue line, while the GPS waypoints are shown as red 
dots.   
 

 
Figure 3: Close up of hard slalom maneuver on south 
straight section. 
 
First, the EKF output when GPS was available was 
studied.  Figure 4 displays the vehicle’s course and the 
EKF output during the slalom.  The vehicle’s direction of 
travel is correctly estimated during the straight driving, 
but discrepancies exist during the slalom maneuver. 
 

 
Figure 4: Vehicle yaw. 
 
In order to understand the disagreement between the 
measurement and the estimate, the yaw rate gyro bias was 
examined.  As seen in Figure 5, the bias estimate 
absorbed some of the generated sideslip.  However, this 
phenomenon did not correct the error in the estimate.  The 
level of filtering can be adjusted in the Kalman filter to let 
the estimate converge to the course measurement, but the 
bias estimate becomes increasingly incorrect.  In other 
words, there exists a tradeoff between the performance of 
the EKF yaw state and yaw gyro bias state, which directly 
influences the dead reckoning estimation during a GPS 
outage. 
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Figure 5: Estimate of the yaw gyro bias. 
 
Position errors were larger than expected, especially on 
the 180 degree turns.  This is due to the sideslip generated 
during each maneuver.  Some systems will accept the 
level of error shown in Figure 6 (~40cm), but this is 
enough to exceed the tolerance of other systems.  The 
small sideslip observed going around the 180 degree turn 
leads to a 40cm position error over 30 seconds.  The sharp 
cornering leads to 30cm in less than a second.  If this 
level of sideslip (~4 degrees) continued for an extended 
period of time or was larger, the position error would 
quickly exceed the tolerance of nearly any system. 
 

 
Figure 6: Position error due to lateral slip. 
 
The next step in the investigation artificially removed 
GPS at two points in the run to demonstrate the influence 
of sideslip during an outage.  GPS was removed just 
before entering turn one but after the EKF had settled.  
The yaw bias freezes (Figure 7) because it becomes 
unobservable when GPS is lost. 
 

 
Figure 7: Yaw gyro bias during a GPS outage. 
 
The navigation solution now contains two sources of error 
due to the inability to estimate the yaw gyro bias: random 
bias walk and vehicle sideslip.  The effects of the error 
seem low when looking at the vehicle yaw estimate 
(Figure 8) but lead to unacceptable levels of position error 
(Figure 9). 
 

 
Figure 8: Yaw error due to sideslip and random bias walk 
during a GPS outage. 
 
 
The green lines in Figure 9 outline the GPS outage.  Error 
is approximately 5 meters after 20 seconds and 10 meters 
after 40 seconds.  The DGC defines a 10 meter corridor 
the vehicle must travel through.  A 20 second outage is all 
a vehicle with this sensor suite traveling at this speed 
could handle and still stay in contention.  A highway 
vehicle has much more strict limitations because the 
corridor defined by the lane width is narrower.  A 5 
second outage is the maximum in a highway vehicle.  
Both scenarios assume the vehicle is traveling in the 
center of the corridor before the outage. 
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Figure 9: Position error due to random bias walk and 
sideslip. 
 
Next, GPS was removed during times when the vehicle is 
producing large amounts of sideslip.  This is the worst 
case scenario test but unfortunately is very plausible.  
Again, the yaw bias estimate freezes when GPS is lost 
(Figure 10).  As shown previously when GPS was 
available, the yaw gyro bias estimate absorbs some 
vehicle sideslip.  This causes the yaw gyro estimate to be 
incorrect when a GPS outage occurs during periods where 
vehicle sideslip is present. 
 

 
Figure 10: Yaw gyro bias estimate during a GPS outage. 
 
The incorrect bias estimate turns into a linear error in the 
yaw estimate as seen in Figure 11, which is much larger 
than the previous scenario shown in Figure 8.  The error 
sources of yaw now include sideslip, the inability to 
estimate a bias walk, and a bias offset due to slip. 

 
Figure 11: Yaw estimate during a GPS outage when 
sideslip is present. 
 
Figure 12 shows the positional error during the simulated 
outage.  The culmination of errors in the yaw gyro 
estimate propagates through the Kalman filter to almost 
instantly produce an unacceptable position estimate.   
 

 
Figure 12: Large position error due to incorrect yaw gyro 
estimate during a GPS outage. 
 
The AGV’s sensor suite contained two magnetometers 
and a tactical grade IMU.  The magnetometers were used 
as additional measurements in the Kalman filter, and the 
tactical IMU replaced the Crossbow’s inputs.  Figure 13 
shows the output of all yaw sensors with the 16 state 
Kalman filter estimate of yaw during a 70 degree 
cornering maneuver that generated sideslip.  The 
Microstrain magnetometer (denoted by Mag2) is very 
clean, but is heavily biased.  The second magnetometer is 
noisy, but has a lower bias and substantially lower bias 
walk. 
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state KF. 
 
Magnetometers are useful when initializing a vehicle’s 
yaw orientation.  However, they provide a measurement 
of heading, not course, and therefore the difference is 
absorbed in their bias estimates when GPS velocity 
measurements are used to calibrate the magnetometer.  
The effects seen in the Kalman filter during a GPS outage 
are similar to the integration of a yaw rate gyro during an 
outage.  Figure 14 shows the GPS course, the output of 
the 16 state KF, and the output of the 16 state KF with the 
magnetometers turned off.  A GPS outage was simulated 
starting at 75 seconds.  The two Kalman filter outputs 
virtually lie on top of one another, but there is still a 
discrepancy between the estimated course and GPS 
course due to sideslip.  Since the change in position 
depends on the direction of travel of the vehicle (course), 
this leads to a positional error.  Additionally, this 
demonstrates the potential for large errors when more 
sideslip is generated or when slip occurs more frequently.  
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Figure 14:  Estimator outputs with and without 
magnetometer measurements during an outage. 
 
 

EFFECTS OF LONGITUDINAL SLIP AND 
TERRAIN 
 
Wheel slip in the longitudinal direction can also be 
devastating to the accuracy of the navigation solution 
when using a wheel speed sensor as a redundant 
measurement of velocity.  Figure 15 displays the 
corrupted navigation solution when wheel slip is not 
accounted for in the estimator while GPS is available. 
 

 
Figure 15: Corrupted velocity estimate due to wheel slip. 
 
The slip can be modeled as a bias to remove its undesired 
effects when GPS is available, but during a GPS outage 
the velocity estimate can degrade to unacceptable 
performance levels if the amount of slip changes.  Figure 
16 shows the velocity when wheel slip is modeled as a 
bias.  A GPS outage was simulated starting at 4 seconds.  
Until the outage, the estimator performs well and lines up 
with GPS velocity.  After the outage, the amount of slip 
varies and the bias estimate shown in Figure 17 is 
incorrect.  This leads to an incorrect velocity estimate.  
The EKF still attempts to estimate the wheel speed bias 
using the longitudinal accelerometer for a few iterations 
after the outage but eventually settles out and goes to 
sleep.  This area requires further investigation to see why 
the bias is still detectable during the initial part of the 
outage. 
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Figure 16:  Velocity taking wheel slip into account and 
simulating an outage. 
 

 
Figure 17:  Wheel speed bias showing slip and during an 
outage. 
 
A Doppler radar is a common speed sensor and can be 
helpful on some terrains because it is insensitive to slip.  
A drawback to using radar is the bias is terrain dependent.  
The effect is similar to what happens when using a wheel 
speed sensor during moments of tire spin, except it can be 
more predictable and perhaps even given to the estimator 
as a priori knowledge.  The G35 was driven on the paved 
track and on gravel to measure speed on two different 
terrains.  The estimator was used to calculate the bias of 
the radar and is shown in Figure 18.  In the constant speed 
section of the graph (25 to 60 seconds) the average bias 
difference from gravel to pavement is approximately 30 
cm/s.  This would induce a 3 meter error after 10 seconds 
of a GPS outage if a transition from one type of terrain to 
another type occurs.  This plot also shows the radar’s 
susceptibility to vehicle pitch.  The test run on the 
pavement started with a period of hard acceleration.  The 
vehicle pitch changes the height and angle of the sensor 
and induced a bias into the measurement.  This quickly 
changing bias would produce large position errors in the 
event of a GPS outage.  Uneven terrain would mimic this 

scenario by stimulating the cars suspension or providing 
an inconsistent height and angle of the radar relative to 
the ground.  
 

 
Figure 18: Radar bias when pitching and on different 
terrain. 
  
After studying the major limitations of both the wheel 
speed sensor and the radar, a redundant Kalman filter was 
used to compare the error during an outage using each 
sensor alone and a combination of the sensors.  The 
navigation algorithm estimated wheel speed bias and 
radar bias, and used the same run shown in Figure 16 
which had moderate amounts of wheel slip.  As expected, 
the EKF using only wheel speed generated the largest 
position error because of the large bias inaccuracy.  The 
EKF using only the radar was more accurate than the 
previous scenario because the terrain remained fairly 
constant and the vehicle experienced minimal pitch.  The 
last EFK utilizing both measurements provided the most 
accurate solution for the duration of the outage.  The 
redundancy averages some of the errors to provide a 
better solution. 
 

Figure 19:  Position error using one additional 
measurement and using both measurements. 
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CONCLUSIONS 
 
Several scenarios were presented where lateral vehicle 
slip produced position errors in the navigation solution 
with and without GPS.  When GPS was available, the 
introduced errors were small and manageable by most 
systems.  However, the errors were significant when an 
outage occurred, especially when the outage occurred 
while slip was generated.  A magnetometer was used as a 
supplemental measurement, but was found to be 
ineffective when trying to reduce the error due to slip 
because it provides a measurement of heading, not course. 
 
Additional sensors can be used to obtain the course 
measurement during an outage, but can become quite 
costly.  Optical sensors will provide velocities in the x 
and y direction (in the vehicle frame), and some radar 
speed sensors are sensitive enough to measure lateral 
velocity.  Previous work has shown a Lidar can be used to 
measure lateral error and slip [11].  Another possible 
solution is to use a model based estimator to estimate the 
sideslip as shown in [12], but this method requires 
accurate knowledge of some vehicle parameters which are 
often difficult to obtain.  When GPS is available, a multi-
antenna receiver can measure sideslip to further increase 
the accuracy of the estimate. 
 
In the longitudinal direction, scenarios were presented 
that expose the shortcomings of typical dead reckoning 
sensors.  A wheel speed sensor can aid in estimating 
velocity when the wheel slip is taken into account, and 
can handle GPS outages well if slip remains constant.  
When slip varies, the bias estimate becomes corrupted 
and increases the position error.  Similarly, a Doppler 
radar can provide adequate ground speed measurements 
during a GPS outage unless the terrain on which the 
vehicle is traveling changes.  The radar speed bias is a 
function of terrain, and is not observable during an 
outage. 
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APPENDIX 
 
Fx - Longitudinal force r – Yaw rate 
Fy - Lateral force δ – Steer angle 
IF/R – Inner front/rear Α – Tire slip angle 
OF/R – Outer front/rear Β – Sideslip 
T – Track width V – Velocity 
a/b – Distance from the 
front/rear axle to CG 

 

  
bax – Longitudinal 
accelerometer bias 

bMψ/φ/θ – Magnetometer 
yaw/roll/pitch bias 

bdop – Doppler radar bias bws – Wheel speed bias 
2 – Microstrain 
magnetometer 

φ – Vehicle roll + lateral 
accelerometer bias 

Ψ – Vehicle yaw θrg – Road grade 
θp – Vehicle pitch + 
longitudinal accelerometer 
bias 

br – Yaw gyro bias 

bφ – Roll gyro bias bθ – Pitch gyro bias 
N – North position E – East position 
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