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KERNEL AUTOCOVARIANCE OPERATORS OF STATIONARY
PROCESSES: ESTIMATION AND CONVERGENCE

MATTES MOLLENHAUER, STEFAN KLUS, CHRISTOF SCHUTTE, AND PETER KOLTAI

ABSTRACT. We consider autocovariance operators of a stationary stochastic
process on a Polish space that is embedded into a reproducing kernel Hilbert
space. We investigate how empirical estimates of these operators converge
along realizations of the process under various conditions. In particular, we
examine ergodic and strongly mixing processes and prove several asymptotic
results as well as finite sample error bounds with a detailed analysis for the
Gaussian kernel. We provide applications of our theory in terms of consis-
tency results for kernel PCA with dependent data and the conditional mean
embedding of transition probabilities. Finally, we use our approach to exam-
ine the nonparametric estimation of Markov transition operators and highlight
how our theory can give a consistency analysis for a large family of spectral
analysis methods including kernel-based dynamic mode decomposition.

1. INTRODUCTION

The kernel mean embedding (i.e., the embedding of a probability distribution into
a reproducing kernel Hilbert space, see Berlinet and Thomas-Agnan 2004; Smola
et al. 2007) and the theory of kernel (cross-)covariance operators have spawned a
vast variety of nonparametric models and statistical tests over the last years (for an
overview of the kernel embedding theory, we refer the reader to the survey by Muan-
det et al. 2017 and references therein). However, consistency results for empirical
kernel mean embedding methods are almost exclusively based on the assumption
that the underlying data is independent and identically distributed.

Kernel covariance operators serve as the theoretical foundation of several spec-
tral analysis and component decomposition techniques including kernel principal
component analysis, kernel independent component analysis and kernel canonical
correlation analysis. Consistency results and the statistical analysis of these meth-
ods can therefore be directly based on the estimation of kernel covariance oper-
ators (Zwald and Blanchard, 2006; Fukumizu et al., 2007; Rosasco et al., 2010).
Moreover, kernel covariance operators and their connection to LP-space integral op-
erators and random matrices are a fundamental concept used to formalize statistical
learning (Smale and Zhou, 2007; Rosasco et al., 2010).

In this paper, we extend the statistical theory of kernel covariance operators from

the independent scenario to kernel autocovariance operators of a stochastic process

(that is, kernel cross-covariance operators with respect to a time-lagged version of

the process). Recently, several applications for dependent data, sequence modeling,

and time series analysis based on kernel mean embeddings have emerged. Popu-

lar approaches include state space models (Song et al., 2009), filtering (Fukumizu
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et al., 2013; Gebhardt et al., 2019), transition models (Sun et al., 2019; Griilnewélder
et al., 2012b) and reinforcement learning (van Hoof et al., 2015; Lever et al., 2016;
van Hoof et al., 2017; Stafford and Shawe-Taylor, 2018; Gebhardt et al., 2018). A
theoretical tool to understand these concepts is the kernel autocovariance operator,
as its plays a role in the RKHS-based approximation of transition probabilities.
This concept has been introduced in an operator-theoretic sense under the name
conditional mean embedding by Song et al. (2009) under strong technical require-
ments (see also Klebanov et al., 2019). These requirements have later been relaxed
by developing the theory in a vector-valued regression scenario (Griinewélder et al.,
2012a; Park and Muandet, 2020). Although time series are one of the primary fields
of application, consistency results for the conditional mean embedding have been
limited to the case of independent data until now. As an application of the results
of this paper, we prove standard consistency statements for dependent data.

Recent results (Klus et al., 2018a, 2019) show that eigenfunctions of Markov tran-
sition operators can be approximated based on conditional mean embeddings and
corresponding autocovariance operators. Moreover, it was also discovered in this
work that a large family of kernel-based spectral analysis and model order reduc-
tion techniques for stochastic processes and dynamical systems (see Kutz et al.,
2016; Klus et al., 2018b; Wu and Noé, 2019, for an overview) implicitly approxi-
mates the spectral decomposition of an RKHS Markov transition operator which is
expressed in terms of kernel autocovariance operators. Different versions of these
methods are popular in fluid dynamics (Schmid, 2010; Tu et al., 2014; Williams
et al., 2015a,b), signal processing (Molgedey and Schuster, 1994), machine learn-
ing (Harmeling et al., 2003; Kawahara, 2016; Hua et al., 2017), and molecular
dynamics (Pérez-Herndndez et al., 2013; Schwantes and Pande, 2015) under the
names dynamic mode decomposition and time-lagged independent component anal-
ysis. Until now, a full statistical convergence analysis of these techniques has not
been conducted to the best of our knowledge. A theoretical examination of kernel
autocovariance operators contributes significantly to the understanding of kernel-
based versions of the aforementioned approaches.

The theory of weakly dependent random processes taking values in infinite-dimensional
Banach or Hilbert spaces has become increasingly important especially due to ap-
plications in the field of functional data analysis (Hormann and Kokoszka, 2010;
Horvéth and Kokoszka, 2012; Hsing and Eubank, 2015). In infinite-dimensional
statistics, the estimation of covariance and cross-covariance operators (Baker, 1970,
1973) is a fundamental concept. Under parametric model assumptions about the
process, the estimation of covariance and autocovariance operators has been ex-
amined in various scenarios. For autoregressive (AR) processes in Banach and
Hilbert spaces, weak convergence and asymptotic normality has been established
(Bosq, 2000, 2002; Mas, 2002; Dehling and Sharipov, 2005; Mas, 2006). Soltani
and Hashemi (2011) add the assumption of periodic correlation for AR processes
in Hilbert spaces. Allam and Mourid (2014, 2019) provide rates for almost sure
convergence of covariance operators in Hilbert—Schmidt norm for an AR process
with random coefficients.

For processes in an L? function space, the weak convergence of covariance opera-
tors has been examined by Kokoszka and Reimherr (2013) under the assumption
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of L*m approzimability (a concept generalizing m-dependence which includes cer-
tain autoregressive and nonlinear models, see Hormann and Kokoszka, 2010) in the
context of functional principal component analysis. The importance of autocovari-
ance operators of stationary processes in the L? space context is underlined by the
concepts of spectral density operators (Panaretos and Tavakoli, 2013b,a) as well as
dynamic functional principal components analysis (Hormann et al., 2015).

In contrast to the previously mentioned work on processes taking values in Banach
and Hilbert spaces, we will consider a stationary process (Xi):cz taking values
in a Polish space E. We consider autocovariance operators of the corresponding
embedded Hilbert space process

(@(Xt))tezv

where p: E — S is the feature map of a reproducing kernel Hilbert space (RKHS)
A (see Section 2.2 for details). This scenario directly falls in line with the classic
setting in learning theory, which has led to celebrated results and numerous ap-
plications in case of independent and identically distributed data (see for example
Cucker and Smale, 2002; Steinwart and Christmann, 2008).

To show consistency of any empirical statistic of the process (¢(X¢)),cz, we face the
challenge that properties of the E-valued process (X;)iez must transfer accordingly
to the embedded version of the process in the Hilbert space. In this situation, it
is unlikely that we can transfer parametric properties of (X;)iez to the nonlinearly
embedded process (p(X:))iez without additional assumptions about the feature
map . In contrast to the previously mentioned literature, we will consider a
more general setting without a parametric model assumption about the underlying
process (X¢)tez.

Recently, Blanchard and Zadorozhnyi (2019) derived a Bernstein-type inequality for
Hilbert space processes for a class of mixing properties called C-mixing (Maume-
Deschamps, 2006). As a special case, the authors show that under restrictive Lip-
schitz conditions on the feature map ¢, this mixing property is preserved under
the RKHS embedding of a so-called 7-mixing process. The derived inequality is
then used to obtain concentration bounds for the context of RKHS learning the-
ory, including covariance operator estimation without a time lag. To the best of
our knowledge, this is the first time that RKHS covariance operator estimation is
addressed in the context of weakly dependent data. As described for example by
Hang and Steinwart (2017), the class of C-mixing coefficients is only partly related
to the classical strong mixing coefficients found in the literature (Doukhan, 1994;
Bradley, 2005), which we will consider in this paper, in particular the concept of
Q-MITING.

The contributions of this paper are:

(1) A mathematical framework for kernel autocovariance operators of a sta-
tionary discrete-time process (X;):ez taking values in an abstract Polish
space.

(2) An investigation of ergodicity and strong mixing in the context of the
RKHS-embedded process (¢(X¢))tez under minimal requirements on the
RKHS feature map . In particular, our assumptions are easily justifiable
for further application in work on RKHS time series.
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(3) An asymptotic and nonasymptotic estimation error analysis for empirical
kernel autocovariance operators based on single trajectories of the process
(Xt)tez in a form that is accessible for work on related topics.

(4) Applications of our results to
(a) consistency of kernel PCA with dependent data;

(b) consistency of the conditional mean embedding of transition probabil-
ities under the typical technical assumptions; and

(c) the estimation of Markov transition operators and their role in a family
of spectral analysis methods for dynamical systems.

This paper is structured as follows. In Section 2 we recall the required preliminaries
from spectral theory, Bochner integration, and reproducing kernel Hilbert spaces
and formulate our working assumptions. Section 3 addresses the strong law of
large numbers of empirical kernel autocovariance operators under an ergodicity
hypothesis. We introduce strong mixing and derive standard probabilistic limit
results including the central limit theorem in Section 4. General concentration
bounds for the estimation error with mixing processes can be found in Section 5,
while an extension of these results to the special case of Gaussian kernels is given
in Section 6. Based on these results, we highlight applications to kernel PCA from
dependent data (Section 7), the conditional mean embedding (Section 8) and the
approximation of Markov transition operators (Section 9). We conclude our work
in Section 10.

2. PRELIMINARIES

2.1. General notation. We give an overview of our notation and collect well-
known facts from operator theory and probability theory. For details, we refer
the reader to Reed and Simon (1980) and Kallenberg (2002). In what follows,
we write B for a separable real Banach space with norm ||-|| 5, and H for a sepa-
rable real Hilbert space with inner product (-, -),. L(B) stands for the Banach
space of bounded linear operators on B equipped with the operator norm |||
The expression H ® H denotes the tensor product space: H ® H is the Hilbert
space completion of the algebraic tensor product with respect to the inner product
(ra @ w1, 25 @ 1)) yog = (v1, 1)y (T2, 24) 5. For x1,22 € H, we interpret the
element 2o ® x1 € H ® H as the linear rank-one operator 2o ® x1: H — H defined
by x — (z, 1)y 2. Whenever (e;)icr is a complete orthonormal system (CONS)
in H, (e; ® ;)i jer is a CONS in H ® H. Thus, when H is separable, H ® H is
separable.

Every compact operator A on H admits a singular value decomposition, that is,
there exist orthonormal systems {u;};cs and {v;}ics in H such that

(2.1) A= "0i(A)u; @ v,

icJ
where (0;(A))ics are the strictly positive and nonincreasingly ordered (including
multiplicities) singular values of A with an appropriate (either countably infinite or
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finite) index set J. The convergence in (2.1) is meant with respect to the operator
norm. The rank of A is defined as the cardinality of J.

For 1 < p < o0, the p-Schatten class S,(H) consists of all compact operators A on
H such that the norm HAHSP(H) = ||(ai(A))l-€JH€p is finite. Here ||(O'»L'(A))iej|‘ép
denotes the £, sequence space norm of the sequence of singular values. The spaces
Sp(H) are two-sided ideals in L(H). Moreover ||A|| < [[Allg, ) < [[Alls, (s holds
for p < g, ie., Sp(H) C Sy(H). For p = 2, we obtain the Hilbert space of
Hilbert-Schmidt operators on H equipped with the inner product (44, A2>s2( ) =
Tr (A7 As). For p = 1, we obtain the Banach algebra of trace class operators. For
p = oo, we obtain the Banach algebra of compact operators equipped with the
operator norm [|A| = [|Afls__ - The Schatten classes are the completion of finite-
rank operators (i.e., operators in span{z ® =’ | z,2’ € H}) with respect to the
corresponding norm.

We will make frequent use of the fact that the tensor product space H ® H can
be isometrically identified with the space of Hilbert—Schmidt operators on H, i.e.,
we have So(H) ~ H ® H. For elements xy,2],22,25, € H, we have the rela-
tion (z2 @21, Ty ® @) oy = (T2 ® T1, TH @ @)g, ), where the tensors are in-
terpreted as rank-one operators as described above. This property extends to
span{zx ® o’ | x,2’ € H} by linearity and defines a linear isometric isomorphism
between H ® H and S2(H), which can be seen by considering Hilbert—Schmidt
operators in terms of their singular value decompositions.

For any topological space E, we will write Fg = B(FE) for its associated Borel field.
For any collection of sets M, o(M) denotes the intersection of all o-fields containing
M. For any o-field F and countable index set I, we write F®! as the product o-
field (i.e., the smallest o-field with respect to which all coordinate projections on
ET are measurable). Note that when E is Polish (i.e., separable and completely
metrizable), we have B(E!) = B(E)®!, i.e. the Borel field on the product space
generated by the product topology and the product of the individual Borel fields
are equal. Put differently, the Borel field operator and the product field operator
are compatible with respect to product spaces (Dudley, 2002, Proposition 4.1.17).
Moreover, E1 equipped with the product topology is Polish.

In this paper, we will consider a stochastic process (X;):cz on a probability space
(Q, F,P) with values in the observation space (E,Fg), which we assume to be
Polish. We will also assume without loss of generality that (€2, F,P) is rich enough
to support all performed operations in this paper. For a finite number of random
variables &1, ..., &, defined on (Q, F,P) with values in E, we write £(&1,...,&,) for
the finite-dimensional law, i.e., pushforward measure on (E™,B(E™))) induced by

617"'7571'

Assumption 1 (Stationarity). We assume that the process (Xi)iez is stationary
in the sense that all finite-dimensional laws are identical, that is, L(Xy,, ..., X)) =
L(Xt,4ns--s Xtpqn) for all ty,... t, € Z, r € N, and time lags n € N.

For any separable Banach space B, let LP(Q), F,P; B) denote the space of strongly
F — Fp measurable and Bochner p-integrable functions f: 2 — B for 1 < p <
oo (see for example Diestel and Uhl, 1977). In the case of B = R, we simply write
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LP(Q, F,P;R) = LP(P) for the standard space of real-valued Lebesgue p-integrable
functions.

2.2. Reproducing kernel Hilbert spaces. We will briefly introduce the concept
of reproducing kernel Hilbert spaces. For a detailed discussion of this topic, we
refer the reader to Berlinet and Thomas-Agnan (2004), Steinwart and Christmann
(2008) and Saitoh and Sawano (2016). To distinguish standard Hilbert spaces
from reproducing kernel Hilbert spaces, we will use the script letter ¢ for the
latter.

Definition 2.1 (Reproducing kernel Hilbert space). Let E be a set and € a space
of functions from E to R. Then F is called a reproducing kernel Hilbert space
(RKHS) with corresponding inner product (-, -) . if there exists function k: ExE —
R such that

(1) (f, k(x,-)),p = f(x) for all f € H (reproducing property), and

(i) A = span{k(z,-) |z € E}, where the completion is with respect to the
RKHS norm.

We call k the reproducing kernel of 7.

It follows in particular that k(x,2’) = (k(z,-), k(2/,-)),,. The canonical fea-
ture map @: E — S is given by p(z) = k(x,-). Thus, we obtain k(x,z') =
(p(x), p()) ,,. Every RKHS has a unique symmetric and positive semi-definite
kernel k with the reproducing property. Conversely, every symmetric positive semi-
definite kernel k£ induces a unique RKHS with £ as its reproducing kernel. In what
follows, we will use the term kernel synonymously for reproducing kernel/symmetric
positive semi-definite kernel for brevity.

We now impose a few restrictions on the considered RKHS, which we assume to be
fulfilled for the remainder of this paper.

Assumption 2 (Separability). The RKHS S is separable. Note that for a Polish
space E, the RKHSs induced by a continuous kernel k: E x E — R is always
separable (see Steinwart and Christmann, 2008, Lemma 4.33). For a more general
treatment of conditions implying separability, see Owhadi and Scovel (2017).

Assumption 3 (Measurability). The canonical feature map ¢: E — € is Fg —
Fe measurable. This is the case when k(z,-): E — R is Fg — Fr measurable
for all x € E. If this condition holds, then additionally all functions f € 4 are
Fg — Fr measurable and k: E x E — R 1is .7-?2 — Fr measurable (see Steinwart
and Christmann, 2008, Lemmas 4.24 and 4.25).

Assumption 4 (Existence of second moments). We have ¢(Xo) € L*(Q, F,P, ).
Note that this is trivially the case whenever sup,¢p k(z,z) < co.

2.3. Kernel mean embeddings & kernel covariance operators. We now in-
troduce kernel mean embeddings and kernel covariance operators, which are simply
the Bochner expectations and covariance operators of RKHS-embedded random
variables.
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For a random variable X on E satisfying ¢(X) € LY(Q, F,P; 5#), we call
px = pex) = Elp(X)] € A

the kernel mean embedding or simply mean embedding (Berlinet and Thomas-
Agnan, 2004; Smola et al., 2007; Muandet et al., 2017) of X. For every f € 42, the
mean embedding satisfies E[f(X)] = (f, 1x) -

Definition 2.2 (Kernel (cross-)covariance operator). For two random wvariables
X,Y on E satisfying o(X),p(Y) € L*(Q, F,P; 5#), we call the trace class operator
Cyx: H — I defined by

Cyx =E[(p(Y) — py) @ (p(X) — px)]

the kernel cross-covariance operator of X and Y. We call Cxx the kernel covari-
ance operator of X.

For all f,g € S, we have Cov[f(X),g(Y)] = (g, Cyx [f) ,» as well as Cyx = Cxy-.
As a consequence, Cx x is self-adjoint, positive semi-definite and trace class. For ad-
ditional information about (cross-)covariance operators of Hilbertian random vari-
ables, see for example Parthasarathy (1967), Baker (1970), and Baker (1973).

In the literature, the covariance operator is sometimes used as a generalization of the
uncentered second moment and therefore defined without centering of the random
variables ¢(X) and ¢(Y) (Prokhorov, 1956; Parthasarathy, 1967; Bharucha-Reid,
1972; Fukumizu et al., 2013).

Definition 2.3 (Kernel autocovariance operator). Let (X¢)iez be a stationary sto-
chastic process with values on E such that p(Xo) € L?(Q,F,P; ). Let n € N.
We call C(n) := Cx,x, = Cx,,,x, ¥t € Z the kernel autocovariance operator of
the process (Xi)iez with respect to the time lag 7.

2.4. Product kernels and Hilbert—Schmidt operators. The tensor product
space H QA ~ So(H) is itself an RKHS with the corresponding canonical feature
map ¢ @ p: E X E — 7 ® # given by ¢ ® ¢ (x1,72) = p(r1) @ p(z2) (Steinwart
and Christmann, 2008, Lemma 4.6). The corresponding kernel of 5 ® 5 is the
product kernel k - k: E? x E?2 = R.

The estimation of the uncentered kernel autocovariance operator can therefore be
interpreted as the estimation of a kernel mean on the product RKHS J# @ 5. In
particular, we can write C(n) as the kernel mean embedding of the joint distribution
L(X;,Xo) on the measurable space (E x E,Fr ® Fg) using the product feature
map ¢ ® ¢. That is, we have

Be(x,.Xo) = Elp(Xy) @ ¢(Xo)],

which is exactly the uncentered kernel autocovariance operator of X.

Thus, the analysis of the estimation of the uncentered autocovariance operator cov-
ers the problem of estimating the kernel mean jiz(x,) of the marginal £(Xo). In
fact, by considering kernels on the product space E x E instead of E, we need
to account for the challenge that appropriate statistical properties of the process
(Xt)tez (such as ergodicity, mixing, or decay of correlations) have to transfer to
the product process (Xiin, Xt)tcz on E X E in order to provide results. We may
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therefore concentrate directly on the estimation of uncentered autocovariance op-
erators based on F x E instead on the estimation of kernel mean embeddings on
E. We emphasize that all of our results directly transfer to the much simpler case
of estimating the kernel mean p,(x,) from dependent data by simply replacing the
product space E x E with E and the product feature map ¢ ® ¢ with ¢ in what
follows.

Based on this consideration, we make a centering assumption.

Assumption 5 (Centered process). Without loss of generality, we assume that the
embedded process is centered, i.e., ux = E[p(Xo)] = 0. In this case, the centered
and the uncentered autocovariance operator coincide:

C(n) = Elp(Xy) @ p(Xo)].

Whenever ¢(Xp) is not centered, the centered autocovariance operator can be com-
puted by using the centered feature map ¢(-) — piz(x,), which is usually replaced
with an empirical centering in practical applications.

In what follows, we will repeatedly use the shorthand

1 n
Crn(n) = - Z P(Xity) ® 0(Xy)
t=1
for the empirical estimate of C'(n) based on n + 7 consecutive time steps of the
process (X¢)iez.

3. STRONG LAW OF LARGE NUMBERS

We now address the strong law of large numbers for the estimator Cy,(n). To this
end, we briefly introduce the concept of measure-preserving dynamical systems and
ergodicity. For details, the reader may refer for example to Petersen (1983). We
assume without loss of generality that the underlying probability space (2, F,P)
describing (X;)sez is the canonical probability space, i.e., Q = EZ and F = ]_—gzl
In this case, we express the process as the family of coordinate projections on §2:
for w = (wi)iez € Q, we can write X¢(w) = wy = Xo(T'w) for all ¢ € Z, where
T is the left-shift operator on Q defined by (Tw); = w;y1 for all i € Z. Note
that by stationarity of (X¢)ez, the shift T is measure preserving in the sense that
P[T~1M] = P[M] for all M € F&”. We call (X;)cz ergodic whenever T is ergodic in
the measure theoretical sense i.e., for all sets M € ]—'L@Z, we have that T7'M = M
implies either P[M] = 0 or P[M] = 1.

We show that for any fixed time lag n € N, the kernel autocovariance operator
C(n) can be estimated almost surely from realizations of (X;)icz whenever the

process is ergodic on (2, F,P) as a consequence of the following generalized version
of Birkhoff’s ergodic theorem.

Theorem 3.1 (Beck and Schwartz (1957), Theorem 6.). Let B be a reflexive Ba-
nach space and T an ergodic measure-preserving transformation on (Q, F,P). Then

for each f € LY (), F,P; B),

Jim T3 f(Tw) = Elf),
=1
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where the convergence holds P-a.e. with respect to ||-|| 5.

We can directly apply this result to obtain almost sure convergence of the empirical
estimate of C(n) in the case that (X;):ez is ergodic.

Corollary 3.2 (Strong consistency). Let (X¢)iez be a stationary and ergodic pro-
cess defined on (0, F,P) with values in a Polish space E. Then

Jim Cyu(n) = C(n),

where the convergence is P-a.e. with respect to ||-[|s, )-

Proof. The time-lagged product process (X, X¢4n)tcz on E X E can be expressed
via the projection tuple (X, X¢4y)(w) = (Xo, X,))(T'w). By construction, (Xo, X,;)
is P — Fg ® Fg measurable. Note that because of Assumption 3 and Assump-
tion 4 the product feature map ¢ ® ¢ given by (x,y) — ¢(y) ® ¢(x) is an ele-
ment of L'(E x E, Fg @ Fg, L(Xo, Xy); S2(H)), where So(H#) is clearly reflexive.
Therefore, it holds that the composition ¢ ® ¢ o (Xo, X,): Q — So(5€) given by
w = (Xo, Xy)(w) = 9(X,)) @ p(X;)(w) is an element of L' (2, F,P; So ().

The statement follows immediately from the fact that we choose ¢ ® ¢ o (Xo, X))
as the observable f in Theorem 3.1 and obtain
N N
Ji 2 e @@ (Xo, Xy o T = lin 23 ¢(Xira) @ 9(X0) = Clo,

t=1 t=1

where the convergence is P-a.e. in Sy(5). |

Remark 3.3 (Convergence in Schatten norms). Corollary 3.2 also yields P-a.e.
convergence Cy,(n) — C(n) in Sp(H°) for all p > 2. Note that S;(s€) is reflex-
ive if and only if J# is finite-dimensional (see for example Simon, 2005, Theorem
3.2). However, in the finite-dimensional case, all Schatten classes coincide and the
question for convergence in Schatten norms becomes trivial. In the general case,
it is not clear whether the reflexivity assumption in Theorem 3.1 is not only suffi-
cient but also necessary for a convergence to hold. To the best of our knowledge,
no stronger generalization results of Birkhoff’s ergodic theorem for Banach-valued
random variables exist.

4. ASYMPTOTIC ERROR BEHAVIOR

In order to prove standard results for the asymptotic statistical behavior of C,,(n),
we first recall the basic notions of strong mixing in statistics (see for example
Bradley, 2005). Note that we directly formulate the definition below for stationary
processes, while mixing can also be defined for nonstationary processes.
Definition 4.1 (a-mixing). For o-fields Fi, Fo C F, we define

a(F1,F2):= sup |P[ANB]-P[A|P[B]|.
A€eFi1,BeEF,

For a stationary process (Xi)tez, we furthermore define

a(n) == a((Xi)ez,n) == oz(fgoo,}"go) n € Z,
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where F|" 1= 0(X;,l <t < m) denotes the o-field generated by the process (X¢)iez
for time horizons —oo <1 < m < oo.

The process is called a-mizing or strongly mizing, when a(n) — 0 as n — oco. In
this case, the convergence rate of a(n) is called the mizing rate of the associated
process. In this paper, we will not focus on the various alternative strong mixing
coefficients which are frequently used in statistics (Doukhan, 1994; Bradley, 2005),
since a-mixing is the weakest concept among the strong mixing coeflicients and
covers a wide range of processes in practice.

Remark 4.2 (Terminology). The concept of strong mizing coefficients is typically
much stronger than the strong mizing considered in ergodic theory (Petersen, 1983).
Also note that we define the a-mixing coefficient for stationary processes. It can
also be defined for nonstationary processes, while mixing in the ergodic theoretical
sense typically arises from dynamical systems induced by measure-preserving trans-
formations and is therefore primarily used in the context of stationary stochastic
processes.

Example 4.3 (Mixing processes). A wide range of mixing processes can be found
in Doukhan (1994) and Bradley (2005). We list some important examples here.

(1) Irreducible and aperiodic stationary Markov processes are a-mixing (in fact,
a stronger mixing property called -mizing or absolute reqularity holds, see
for example Bradley (2005, Corollary 2.6)).

(2) Stationary Markov processes satisfying geometric ergodicity (for details
see Meyn and Tweedie, 2012, Chapter 15) are a-mixing with a(n) =
O(exp(—cn)) for some ¢ > 0, see Bradley (2005, Theorem 2.7).

(3) Some stochastically perturbed dynamical systems can be written as sta-
tionary Markov processes (Kallenberg, 2002, Proposition 7.6). Therefore
(1) and (2) apply in this case. Conditions on the dynamical system under
which the induced Markov process is geometrically ergodic (i.e., geometri-
cally a-mixing in the sense of (2)) are given by Doukhan (1994, Section
2.4)

(4) One can show that a time-discretized version of a diffusion process ex-
pressed as a stochastic differential equation results in a geometrically er-
godic Markov process (Lacour, 2008).

(5) Under some requirements, commonly used linear and nonlinear process
models on finite-dimensional vector spaces including AR, ARMA, ARCH,
and GARCH are a-mixing with a(n) = O(exp(—cn)) for some ¢ > 0,
see Doukhan (1994, Section 2.4) and Fan and Yao (2003, Section 2.6.1).

We make use of the following classical lemma which we prove for completeness.
It ensures that measurable transformations of a finite number of components of
a mixing process preserve mixing rates. It is of crucial importance to us since it
guarantees that RKHS-embedded versions of mixing processes are again mixing
with the same rates.

Lemma 4.4 (Transformed processes are mixing). Let (Xi)iez defined on (2, F,P)
be a stationary process with values in a Polish space E equipped with its Borel o-field
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Fg. Let F be another Polish space equipped with its Borel o-field Fr. Let k € N
and h: EF = F be ]_—gk — Fr measurable. Then for the process (Hy)iez given by

H; = h(Xt7k+1; Xt7k+25 s 7Xt)
for all t € Z, we have
(41) Oé((Ht)tGZ,TL) S O[((Xt)tez,n —k + 1)

for allm € Z. In particular, if (Xi)iez is a-mizing, then (Hy)iez is a-mizing with
the same mizing rate as (X¢)iez.

Proof. Let H" := o(H,l <t < m) C F be the o-field generated by (H;)iez. By
construction, we have H° , C F°_ as well as H;° C Fp° ., for all n € N. The
assertion (4.1) follows from Definition 4.1. [ |

Corollary 4.5 (Mixing process in product RKHS).

(a) Let (Xi)iez be a stationary a-mizing process with values in a Polish space
E equipped with Borel o-field Fr. Let n € N be a fived time lag. Then the
E x E-valued time-lagged product process (X¢, Xi4n)icz is a-mizing.

(b) Under Assumptions 2 and 3, the So(F€)-valued embedded process (p(Xitn)®
©(Xt))tez is also a-mixing.

In both cases, the convergence rates of the corresponding mizing coefficients are
preserved.

Proof. We use the preceding Lemma 4.4 and set h: E¥ — E? to be the map
(Xt—k+17 Xt—k+27 e 7Xt) — (Xt—777 Xt)u

where 1 := k—1. Note that this map is fgk _]_—gz measurable by construction, thus
(a) follows. For (b), we set h to be the product feature map ¢ ®¢: EXE — Q7
and apply (a). [ |

We can now justify the embedded RKHS process (p(Xitn) @ ©(X¢))iez as an a-
mixing process and apply the asymptotic theory of mixing processes to show how
kernel autocovariance operators can be estimated from realizations of (X})¢ez.

For brevity, we will introduce the shorthand

(4.2) & = (¢(Xiqn) @ o(X1)) — C(n)

for t € Z and fixed n € N. Then (& )¢cz is a stationary and centered S (#)-valued
process which is mixing with the same rates as (X¢)ez by Corollary 4.5. Note that
with this notation, we have Cy,(n) — C(n) = L 31" | &.

We will frequently make use of the fact that whenever sup,cp k(z,z) = ¢ < oo,
then we have PP-a.e.
[€ells, ey <2 sup (@) lo(z2)l 2

z1,22€FE
(4.3) =2 sup k(zy,21)"? k(za,22)"/?
x1,22€FE
=2c
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for all t € Z. Several properties of the estimation error Cy,(n) — C(n) can be proven
by applying results from the asymptotic theory of weakly dependent Banach- and
Hilbert space valued processes. We begin with one of the strongest results of this
type which is an approximation of n(Cy,(n) — C(n)) by a Gaussian process. To this
end, let L(n) := max(logn, 1) for n € N.

Theorem 4.6 (Almost sure invariance principle). Let (X;)iez be stationary and
a-mizing s.t. Y, a(t) < oo and let sup,cpk(z,2) < oo. Then the operator
T: So(H) — So(H) defined by

(4.4) T:=Elf @&+ Y Ello®&]+ Y El& ® &

t=1 t=1

is trace class. Furthermore, there exists a Gaussian measure N'(0,T) on So(5) and
a sequence of i.i.d. So(F)-valued Gaussian random variables (Zi)iez ~ N(0,T)
defined on (Q, F,P) such that we have P-a.e.

- o( nL(L(n))) :

Sa2(H)

Proof. The assumptions ensure that (& )z is P-a.e. bounded and has summable
mixing coefficients by Corollary 4.5. We can directly apply the almost sure invari-
ance principle from Dedecker and Merlévede (2010, Corollary 1) to (& )tez, which
yields the assertion. |

A strongly related statement is a standard central limit theorem for weakly depen-
dent sequences which ensures asymptotic normality in the space So(57).

Theorem 4.7 (Central limit theorem). Under the assumptions of Theorem 4.6,
the laws of the sequence v/n(Cy(n) — C(n)) converge weakly to a Gaussian measure
N(0,T) on So(5#) with covariance operator T defined by (4.4).

Proof. By our previous analysis, the process (&;):cz satisfies all assumptions of the
central limit theorem by Merlevede et al. (1997, Corollary 1). The above assertions
follow directly. ]

The next result is a compact law of the iterated logarithm. It ensures that an appro-
priately rescaled version of the estimation error approximates a compact limiting
set almost surely. Additionally, it characterizes this set as the accumulation points
of the estimation error sequence and gives a norm bound in S2(.##°) depending on
the mixing rate. We define the shorthand a, := \/2L(L(n)). Let furthermore
acc(zn) € X denote the set of all accumulation points of a sequence (2, )nen in a
topological space X.

Theorem 4.8 (Compact law of the iterated logarithm). Let (X;)iez be stationary
and a-mizing s.t. Y ., a(t) < oo and let sup,cpk(x,2) = ¢ < co. Then there
exists a compact, convex and symmetric set K C So(5), such that P-a.e.

(4.5) lim dist <\/ﬁ(c"(”> — O(”)>,K) =0

n—00 A,
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as well as P-a.e.

(4.6)

ace (x/ﬁ(Cn(n) — C(n))) K

an
Moreover, whenever > ;= a(t —n) = M < co, we have

(4.7) sup [|Allg, ) = (4¢® +32¢°M)"/2.
AeK

For the proof Theorem 4.8, see Appendix A.

Remark 4.9 (Optimality of mixing rate assumptions). Slightly more general quan-
tile function conditions under which the original results for the derivation of our
Theorem 4.7 were shown by (Merlevede et al., 1997, Theorem 4) are known to be
necessary for a central limit theorem to hold. For additional information about
the special case of real-valued random variables, see Doukhan et al. (1994, Section
4). For bounded random variables, the summability of the mixing coefficients is
equivalent to the quantile condition used by Merlevede et al. (1997), see (Rio, 1995,
Application 1). From this, similar optimality results can be derived for the law of
the iterated logarithm in the real case (see also Rio, 1995).

5. CONCENTRATION BOUNDS

In addition to the previous asymptotic results, concentration properties for the esti-
mation error can be derived by using concentration properties of mixing Hilbertian
processes.

Theorem 5.1 (Error bound). Let (X:):cz be stationary and a-mizing with coeffi-
cient (a(t))iez. Let sup,cpk(x,x) = ¢ < oo. Then for every e >0, v € N, n < 2
andq=1,...,|n/2] and § € (0,1), we have

P[IC0 ) = COlls, o > ] < avesp (- L2201

8¢ 1/2
1
+33 > A
j>v

where A; € R are the eigenvalues of the covariance operator I': So(J€) — So(H)
defined by

(5.1)  T:=E|[((p(Xs) @ 0(X0) = C) & ((0(Xn) @ 0(X0)) = COm)) |,
which we assume to be ordered nonincreasingly with their multiplicities.
Proof. As previously noted, the process (& )icz as given by (4.2) is stationary, cen-

tered, and a-mixing in S(#°). We can therefore apply the concentration bound
given by Bosq (2000, Theorem 2.12) to the process (&)iez. |
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The above bound requires an optimal trade-off between v, ¢, and §. Note that
> j>p Aj < 00 for every v € N, since I is trace class. Knowledge of the mixing rate
(a(t))i>1 and the decay of the eigenvalues (\;);>1 of I' allow to drastically simplify
the bound and derive P-a.e. convergence rates. Whenever (A;);>1 and (a(t))i>1
decay exponentially, a straightforward application of Bosq (2000, Corollary 2.4)
can be used to obtain a sharper bound and P-a.e. convergence rates. We will state
this result here for completeness and show how the decay of (A;);>1 can be precisely
bounded for the special case of the Gaussian kernel in the next section.

Theorem 5.2 (Error bound & P-a.e. convergence rate). Let (X;)iez be stationary
and a-mizing with coefficient (a(t))icz. Let sup,cp k(x, x) = ¢ < co. Additionally,
let (A\j)j>0 be the nonincreasingly ordered eigenvalues (counted with multiplicities)

of the covariance operator I': So(H) — So(H) defined by (5.1).
If there exist constants r € (0,1) and a > 0 such that
at) < ar' and \; < ar’

for all t,j € N, then for every e > 0, there exist positive constants k1 and ks
independent from n, such that

B{Con) = Cn)ls, ) > €] < b exp(—kan'/?).

In addition we have the convergence rate

logn)3/?
1Culn) = COllgyey = O (%) P-a.e.

6. CONVERGENCE FOR THE (GAUSSIAN KERNEL

Theorem 5.1 and Theorem 5.2 show that the two main quantities of fundamental
interest for a bound of the estimation error ||Cy(n) — C(n)|ls, () are the mixing
rate of (X;)icz as well as the covariance of the law £(¢(X,,)®¢(Xo)) on the product
RKHS S3(4#), which is given in terms of the eigenvalues of the covariance operator
T acting on So () defined by (5.1).

While mixing rates can be assessed by imposing structural assumptions on (X;):ez,
the analysis of I' seems to be more intricate. We will now show that for the case
that 7 is induced by a Gaussian kernel, decay rates of the eigenvalues of I" can be
obtained.

Theorem 6.1. (Eigenvalue decay of T') Let E C R% and 2# be the RKHS induced

by the Gaussian kernel
— || =z ||2
k N _ H R4
(x,2") = exp <7202

for some bandwidth ¢ > 0. Let (\j);>1 be the nonincreasingly ordered eigenvalues
(counted with multiplicities) of the covariance operator T' on So(J) defined by (5.1).
Then the following decay rates hold.

(1) When E is compact, then (\j)j>1 = O(exp(—cjlogj)) for some constant
c>0.
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(2) For arbitrary E, if L(Xo,X,) is absolutely continuous with respect to the
Lebesque measure on E X E with joint density p(x,y): Ex E — R satisfying
p(z,y) < Bexp(— H(I,y)”ném) for some constant B > 0, then (X\j)j>1 =
O(exp(—cj)) for some constant ¢ > 0.

(3) In any case, without additional assumptions about E and L(Xo, Xy) it holds
(A\j)j>1 = O(exp(—cj*/ D)) for some constant ¢ > 0.

For the proof of Theorem 6.1, see Appendix A. In total, our previous argumentation
shows that we can assess the eigenvalue decay of I' when we consider the case
that k£ is the Gaussian kernel. We can now obtain P-a.e. convergence rates and
error bounds for the estimator C,(n) when properties of (X;)iez are known. In
combination with knowledge about mixing rates (see Example 4.3), statements like
the following are the immediate consequence.

Example 6.2 (Markov process on compact domain in R%). Let E C R be compact
and S be the RKHS induced by the Gaussian kernel on E x E for some bandwidth
o > 0. Let (Xi):ez be a stationary, geometrically ergodic Markov process on E,
then the conclusions of Theorem 5.2 hold.

7. CONSISTENCY OF WEAKLY DEPENDENT KERNEL PCA

By considering the kernel covariance operator C' := C(0), we can easily obtain
consistency results for kernel PCA (Scholkopf et al., 1998) for the case that the
data is dependent. It is well known that kernel PCA approximates the spectral
decomposition of C (see for example Blanchard et al., 2007), as we will briefly
explain in Section 7.2. Consistency results for kernel PCA from independent data
have been obtained by considering the spectral perturbation of covariance operators
of Hilbertian random variables (Mas and Menneteau, 2003; Blanchard et al., 2007;
Mas and Ruymgaart, 2015; Koltchinskii and Lounici, 2016, 2017; Reil and Wahl,
2020). Various approaches exist in this context and we do not aim to provide a
full overview here. Instead, we will show how our previous results lead to some
elementary consistency statements for dependent data. By applying techniques
from the previously mentioned literature, these results may be refined and extended
accordingly.

We note that convergence in measure and weak convergence of standard linear
Hilbertian PCA for L?([0,1])-valued stochastic processes was previously investi-
gated by Kokoszka and Reimherr (2013) under the assumption of L*-m approxima-
bility.

7.1. Notation. For a compact self-adjoint positive-semidefinite operator C' on 52,
let (A;(C));er denote the nonzero eigenvalues of C' ordered nonincreasingly repeated
with their multiplicities for the index set I = {1,2,...}. Then C admits the spectral
decomposition

iel
where the v; are the orthonormal eigenfunctions of C. In addition, let (1;(C));es
denote the distinct eigenvalues of C for J = {1,2,...} with A;(C) := {i € I |
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Ai(C) = p;} as well as the multiplicity m;(C) := |A;(C)|. Note that C can also be
written as

(7.2) C=> u(C)P(C
jeJ

were P;(C) is the orthogonal spectral projector onto the eigenspace correspond-
ing to p;(C) and the convergence is with respect to the operator norm. We will
additionally consider the spectral gap

p1(C) — p2(C), Jj=1,
min{u;—1(C) — ;i (C), 13 (C) — pj+1(C)}, j=>2.

Note that g;(C) # 0 by construction.

(7.3) 9;(C) = {

7.2. Operator interpretation of Kernel PCA. Kernel PCA approximates a
finite-rank truncation of the Karhunen—Loéve transformation of the embedded ran-
dom variable ¢(X() by approximating the spectral decomposition of the kernel
covariance operator C' = E[p(Xo) ® ¢(Xo)] (see for example Blanchard et al.,
2007).

Consider the spectral decomposition (7.1) of C. Let {9;};>1 be an extension of the
eigenfunctions {v;}ier of C to a complete orthonormal system in S (that is, the
addition of an appropriate ONS spanning the null space of C') By expanding the
random variable ¢(Xo) in terms of {7;};>1, we get the Karhunen-Logve transfor-
mation

(7.4) P(Xo) = 3 (p(Xo), =Yz,
el el

where Z; := (¢p(Xo), 03) 5 = 0i(Xo) are real-valued random variables and conver-
gence in (7.4) is with respect to the norm of .7#°. Note that we have

COV[Zi, ZJ] = COV[(’Ei(XQ), ’17]‘ (Xo)] = <’l~}i, C’INJJ>% = )\1(0)5”,

where we extend the set of eigenvalues to the null space, e.g., we set \;(C) := 0 for
i # I. In practice, the data is usually projected onto the first » dominant eigen-
functions in order to obtain an optimal low-dimensional approximation of ¢(Xj).
In particular, for all 7 € I, the projector P<, := Y., v; ® v; minimizes the recon-
struction error

(7.5) R(T) :=E |[(Xo) — T(Xo)%

over all operators T in the set of r-dimensional orthogonal projectors on #. By per-
forming a spectral decomposition of the empirical kernel covariance operator

1 n
—Zg@ X:) ® o(Xy),
t=1

3

kernel PCA aims to approximate (7.4) (or P<, respectively). We are therefore
interested in how well the spectral decomposition of the empirical operator C,
approximates the spectral decomposition of C.
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7.3. Consistency results. We can now combine typical results from spectral per-
turbation theory with our previous error analysis for C),, to obtain consistency
statements. Note that we do not aim to provide a full analysis but rather illus-
trate how our results can be used to assess the error of kernel PCA with weakly
dependent data. In the independent case, stronger results have been obtained for
example by Koltchinskii and Lounici (2016, 2017), Milbradt and Wahl (2020) and
Reifl and Wahl (2020) by directly considering (7.5).

Remark 7.1 (Measurability of spectral properties). As for example shown by Daux-
ois et al. (1982), the eigenvalues and corresponding eigenprojection operators of C
and C), are measurable and therefore random variables on (2, F,P).

Theorem 7.2 (Spectral perturbation bounds). With the notation of Section 7.1,
it holds that

(7.6) sup | A (C) = N(Cn)| < |IC = Cy||  P-ae.
i>1
as well as
4[|C = Cull
7.7 P:(C) - P;(Cp)|| £ ——— DP-a.c.
(17) IR - BiCll < s
forall j € J.

See Gohberg and Krein (1969, Corollary 2.3) and Koltchinskii and Lounici (2016,
Lemma 1) for proofs of these statements.

The above bounds combined with the strong law of large numbers from Corol-
lary 3.2 for ||C' — C,,|| yield consistency results of kernel PCA with weakly depen-
dent data.

Corollary 7.3 (Spectral consistency & convergence rate). Let (Xi)icz be station-
ary and ergodic. Then we have sup;~; |\(C) — \i(Cy)| — 0 P-a.e. as well as
| P;(Cy) — P;j(C)|| = 0 P-a.e. for all j > 1. In both cases, convergence takes place
with the same rate as the convergence C,, — C' in operator norm.

Remark 7.4. The preservation of convergence rates in Corollary 7.3 is particularly
relevant whenever the assumptions of Theorem 5.1 hold, as is the case in Exam-
ple 6.2. In this situation, the spectral convergence rate is given by Corollary 7.3.
We note that these results are by no means optimal, as they do not consider the full
reconstruction error of a finite-rank truncation of (7.4), like for example Reifl and
Wahl (2020) in the independent case. Stronger results can be obtained by accessing
deeper perturbation results (see for example Jirak and Wahl, 2020) and are not in
the scope of this work.

Whenever the estimation error ||C' — Cy,|| can be bounded in probability (for ex-
ample by applying Theorems 5.1 & 5.2), corresponding statements hold for the
eigenvalues and spectral projectors as a result of Theorem 7.2.

Corollary 7.5 (Spectral concentration). Let P[||C,,(0) — C(0)|| > €] < f(e,n) for
some function f:Rso X N —= R>q. Then we have

(1) P [sup;zy [Xi(C) = Xi(Cn)| = €] < f(e,n) and
(2) P[|IP(C) — Py(Co)| = ] < f(£¢,n) for all j.
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Remark 7.6. We note that in the case of weakly dependent data, the represen-
tation (7.4) might not always be a desirable model since time-related information
in the realization of the process (¢(X¢)iez) is discarded. As such, kernel PCA
decomposes the RKHS only with respect to the covariance of L(p(Xy)) instead
of using autocovariance information from L(p(Xt,), (Xt,), ©(Xts),...). If one is
interested in performing a decomposition that captures the dynamic behavior in-
stead of only the asymptotic spatial behavior, different approaches are needed. In
the context of functional data analysis, the concept of harmonic PCA or dynamic
PCA (Panaretos and Tavakoli, 2013a; Hérmann et al., 2015) yields optimal filter
functions to reduce the dimensionality of a (weakly) stationary stochastic process.
We will address alternative time-based decomposition approaches in Section 9.

8. CONDITIONAL MEAN EMBEDDING OF STATIONARY TIME SERIES

We will now show how the previous theoretical results can be used to obtain con-
sistency results for a large family of nonparametric time series models. A wide
variety of kernel techniques for sequential data rely on the RKHS embedding of the
conditional n-time step transition probability

(8.1) PXi1, € A| Xy], A€ Fg,

which is modeled in terms of the conditional mean embedding (Song et al., 2009).
In what follows, we will briefly outline the different derivations of the conditional
mean embedding.

Applications of the conditional mean embedding in the context of sequential data
include, among others, state-space models and filtering (Song et al., 2009; Fukumizu
et al., 2013; Gebhardt et al., 2019), the embedding of transition probability mod-
els (Song et al., 2010; Griinewiélder et al., 2012b; Nishiyama et al., 2012; Sun et al.,
2019), predictive state representations (Boots et al., 2013), and reinforcement learn-
ing models (van Hoof et al., 2015, 2017; Stafford and Shawe-Taylor, 2018; Gebhardt
et al., 2018).

8.1. Operator-theoretic conditional mean embedding. In order to express
the transition probability (8.1) in terms of the RKHS J#, one is interested in a
conditional mean operator U: 7 D dom(U) — # which satisfies

(8.2) (£, Up(@)) p = E[f (Xty) | Xe = 2], feH.

Note that the action of U on ¢(z) € 5 is interpreted as conditioning on the
event {X; = z}, while evaluations of functions f € J# with Up(z) under the in-
ner product can be interpreted as a conditional expectation operator in a weak
sense. It is important to note that such an operator U does not exist in gen-
eral. By using properties of the kernel covariance operators, it can be shown that
U := C(n)C(0) satisfies (8.2) under strong technical assumptions, see Klebanov
et al. (2019) for details! We call U the conditional mean operator and Up(z) the

1 Klebanov et al. (2019) also propose the operator U := (C/(0)1 C(n)*)*, which does not coincide
with U in general. However, we will work with the operator U = C(17)C(0)T as given in the main
text, since this is the originally proposed version by Song et al. (2009). Additionally, emprical
estimates have only been derived for U and therefore this is the version which is commonly used
in practical applications.
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conditional mean embedding of the transition probability P[X;1, € A | X; = z].
Here, C(0)': range(C(0)) @ range(C(0))+ — # is the Moore-Penrose pseudoin-
verse of the operator C(0) (see for example Engl et al., 1996). Note that U is in
general not globally defined and bounded, i.e., range(C(0)) @ range(C(0))+ # 7,
since range(C(0)) is generally not closed. Song et al. (2009) propose the regularized
conditional mean operator

(8.3) U = Cn) (C(0) +1w) ",

with empirical estimate UL := Cn (1) (Co(0) +~1)"". Here, I, denotes the
identity operator on . and v > 0 is a regularization parameter. Note that U(") as
well as U,({Y) are always well-defined as Hilbert—Schmidt operators on 2. Song et al.
(2009), Fukumizu et al. (2013), and Fukumizu (2017) examine convergence of this
estimate for the case of independent data pairs from the joint distribution of X,
and X;y, and show weak consistency with different rates under various technical

assumptions. We extend these results to the case of dependent data.

Since the assumptions for this operator-theoretic framework and especially the an-
alytical existence of U are hard to verify, different interpretations have emerged.
In settings where (8.2) does not have an analytical solution, the regularized es-

timate Ur(ﬂ) minimizes an empirical risk functional, which we will briefly outline
below (Griinewiélder et al., 2012a; Park and Muandet, 2020).

8.2. Least-squares conditional mean embedding. In cases when U is not glob-
ally defined and bounded, it is natural to approximate a smooth solution to (8.2)
by minimizing the risk functional R’ : S3(#) — R given by

(84) Ri(A):= sup E[(E[f(Xern) | Xi] = (. Ap(X0))0)?] + 7 A2, e -

£l sp=1

where v > 0 is a regularization parameter. As shown by Griinewélder et al. (2012a),
R!(A) can be bounded from above by the surrogate risk

(8.5) Ry(A) := E[[lp(Xe1n) — Ap(X)[5] + 7 Al 5, ) -

The corresponding empirical surrogate risk
" 1 & 2
(8.6) R(4) =~ > le(Xern) — Ae(X0) | + 7 1 AlS, e
t=1

has the minimizer Ufﬁ), which is a result of vector-valued regression theory (Capon-
netto and De Vito, 2007). For the case of a finite-dimensional RKHS .77, Griinewéalder
et al. (2012a) use this setting to provide risk-based consistency results that do not
rely on the fact that U is generally not well-defined as an element in the hypoth-
esis space Sa(¢). A modified approach by Park and Muandet (2020) avoids the
operator-based formulation, but derives a similar empirical surrogate risk from
a measure-theoretic perspective. Interestingly, both Griinewilder et al. (2012a)
and Park and Muandet (2020) do not derive a closed form solution to the risk (8.5).
In particular, the object (8.3) is not considered in their analysis and consistency
results are formulated in terms of risk bounds without an analytical regularized
solution.
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Remark 8.1 (Operator CME versus least-squares CME). From a statistical learn-
ing point of view, the operator-theoretic setting describes the well-specified case
that the conditional mean operator exists in the hypothesis space So(.#7), which is
tied to strong assumptions. In this case, only a sample error needs to be consid-
ered and a model error does not exist. The regression viewpoint of Griinewalder
et al. (2012a) allows to consider the misspecified case that U does not exist in the
hypothesis space. An approximation error between the best approximation of U in
the hypothesis space S2(.#°) and U needs to be considered in this case. However,
Griinewélder et al. (2012a) do not provide a closed form for the analytical solu-
tion of the minimizer of the risk (8.5) — only a solution for the empirical risk (8.6).
Moreover, the derived rates are severely limited by the assumption that J# is finite-
dimensional. The more general version by Park and Muandet (2020) gives superior
convergence results without an analytical operator interpretation. However, even
in the operator-free interpretation by Park and Muandet (2020), the operator Ur(ﬂ)
is implicitly learned (see also Carmeli et al., 2010, Example 3.3(i)). We note that
although the operator-based interpretation of the CME is inferior to the regres-
sion standpoint by Park and Muandet (2020) from a theoretical perspective, its
connection to Markov transition operators highlighted in Section 9 is of great in-
terest in the scenario of dependent data. We expect that additional results based
on the derivation of Griinewilder et al. (2012a) could fill this gap and provide a
missing analytical solution to the operator-regression problem. We will focus on
the well-specified case for simplicity and postpone the approximation analysis in
the misspecified case with dependent data to future work. We refer the reader
to Klebanov et al. (2019) and Park and Muandet (2020) for a comparison of both
cases.

8.3. Kernel sum rule. In the well-specified operator-theoretic setting, Fukumizu
et al. (2013, Theorem 2) show that the conditional mean operator U satisfies the
more general so-called kernel sum rule, which is widely used in nonparametric
Bayesian models, especially time series filtering. That is, for a prior measure z
on (E, Fg) satisfying the integrability [, [|¢(Z)]| ,, dz(Z) < oo with a kernel mean
embedding p. = [¢(Z)dz(Z) sucht that . € dom(C(0)"), we have

(8.7) (f, Upiz) = /E Ef(Xein) | Xo = a]da(a), [ 2.

Note that the conditional mean property (8.2) is in fact a special case of the kernel
sum rule when z is the Dirac measure at x, i.e., u, = ¢(z). In applications, the
embedded prior u, is usually estimated empirically by sampling from z. When [i,
is any kind of consistent estimate of y,, we obtain the plug-in estimator U,(ﬂ)ﬁz for

Uw,.

8.4. Consistency results. We now outline how our previous results allow to for-
mulate consistency results for the kernel sum rule for dependent data. Prior con-
sistency results for the operator-based setting of the conditional mean embedding
and the kernel sum rule are limited to independent data pairs. Note again that a
drawback of our approach is the typical assumption that the analytic expression
Up, (and in particular Uep(x)) exists in S (see Klebanov et al., 2019), while a
focus on the minimization properties allows to relax this assumption and consider
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convergence to a best approximation under the corresponding risk. We start by
giving a generic error decomposition for the kernel sum rule in a form that admits
the immediate application of our previous results.

Theorem 8.2 (Kernel sum rule error). Let z be a prior finite measure on (E, Fg)
and a kernel k: E x E — R with sup,cp k(z,2) = ¢ < oo such that the kernel sum
rule (8.7) applies (in particular, p, € dom(C(0)")). Then the empirical estimate

Uﬁ)ﬁz admits the total error bound

(8.8) UM, —Up.

w S eS(MZ7 ﬁ27 n, ’7) + er(Mz, 7) ]P)-a/.e.

with the worst-case stochastic estimation error
R c c3/2 cl/2
es(fzs fzy M, ) 1= 5 172 — pall o + e [Cn(0) = CO)]| + - [Crn(n) —C(n)|

and the deterministic regularization error

er(ﬂZvV) =c H(C(O) +/YI%’)71MZ - C(O)TMZH%” :

The proof for Theorem 8.2 can be found in Appendix A.

Remark 8.3 (Kernel sum rule error). The error decomposition (8.8) leads to the
following insights:

(1) The deterministic regularization error e,(u.,7) captures the analytic na-
ture of the inverse problem described by C(0)u = u, for u € S. As such,
it is not affected by any estimation. Note that as v — 0, it holds that
er(piz,y) — 0 for every p, € dom(C(0)"). For details, we refer the reader
to Engl et al. (1996). In practice, regularization is needed since for esti-
mated right-hand sides Ji,, the condition fi, € dom(C(0)") is in general not
true — even if u, € dom(C(0)"). The convergence rate of e, (j1,,7) depends
on the eigendecomposition of C(0) and can be assessed under additional
assumptions about the decay rate of the eigenvalues. However, in general
the convergence of the regularization error can be arbitrarily slow without
additional assumptions, see Schock (1984).

(2) When p, = ¢(x), we obtain an error decomposition for the standard condi-
tional mean embedding. In this case, we do not need the empirical estimate
11, as a proxy for u,, since p, can be evaluated directly. In this case, we

can drop the term £ ||fiz — p:l| ;- from the estimation error and obtain

3/2 c1/2 .
€s(n,7) i= £5 [ Ca(0) = C(0)]| + &2 () — Cl)| instead.

(3) For convergence of the total error (8.8), we need the two simultaneous
conditions es(uz, f1.,n,y) — 0 and e.(uz,vy) = 0 as n — oo, ¥ = 0 and
1, — . The typical trade-off between regularization error and estimation
error is reflected in this fact.

Our previous convergence results for the individual estimation errors of
C,(0) and Cy(n) allow to bound es(pz, fi-,n,7y) and derive regularization
schemes v := 7(n, u, fi.) depending on the trajectory length n and the
quality of the prior estimate fi,. Informally speaking, the individual es-
timation errors must tend to 0 faster than the regularization term, so ~
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should not be allowed to converge “too fast” with respect to the rate of
increasing sample size n — this is the typical setting in the theory of inverse
problems and regularization.

By incorporating additional knowledge about the convergence behavior of C,,(0)
and Cy,(n) from our previous results, Theorem 8.2 yields convergence rates of the
estimation error e as well as admissible regularization schemes. We give an example
below. For simplicity, we assume that C,,(0) and C,,(n) are estimated independently,
which would of course require two realizations of length n of (X;)iez. In addition,
we require fi, to converge with standard rate of —n'/2, which we tie to the number of
samples available for the estimation of C, (0) and C),(n) in order to avoid additional
symbols for different samples.

Example 8.4 (Kernel sum rule consistency). Let C,(0) and C(n) be estimated
independently from X7, ..., X,. Assume that P-a.e., we have the prior convergence
rate [|p. — fis|| , = O(—n'/?). Under the conditions of Theorem 5.2 (for instance
when (X¢):tez is the Markov process from Example 6.2), we have P-a.e.

N (log n)3/2
S zZ9 zZ b) .
e (M Hzy T ’7) C ( TL1/2’}/2

In particular, for every regularization scheme v = (n) such that
(logn)*/?
v(n) — 0 as well as /2 ()2 —

(n))

for n — oo, we have overall strong consistency Ur(ﬂ iz — Up, in the norm of

.

9. NONPARAMETRIC ESTIMATION OF MARKOV TRANSITION OPERATORS

As the last application of our theory, we will briefly show how the risk func-
tional (8.4) yields a nonparametric model for the estimation of Markov transition
operators. Moreover, we elaborate on the recent discovery that this model is actu-
ally the theoretical foundation of a well-known family of several data-driven meth-
ods for the analysis of dynamical systems (Klus et al., 2019). We only highlight
immediate consequences of this approach and emphasize that several theoretical
questions need to be answered separately in the vector-valued learning context
of Griinewélder et al. (2012a), Griinewélder et al. (2013) and Park and Muandet
(2020). The aim of this section is to draw attention to the fact that statistical
tools like strong mixing coeflicients can be used to show consistency for a range of
numerical methods used in other scientific disciplines.

In what follows, we assume that (X;);cz is a Markov process, i.e., it holds that
E[f(Xs) | FL ] =E[f(Xs) | 0(X¢)] for all bounded measurable functions f: E —
R and times s > t.
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For a fixed time lag n € Nxq, the transition operator, (backward) transfer operator?
or (stochastic) Koopman operator K is defined by the relation

(9.1) (K (@) = E[f (Xeyn) | Xe = 2]
for all functions f in some set F' consisting of real (or complex) valued functions

defined on the state space E. The Koopman operator describes the propagation of
observable functions in F' by the time step 7.

By simply switching to the adjoint of A in the expression for R (A) defined in (8.4)
and using the reproducing property of 7, we have

(9.2) R (A):= sup E[(BLf Xy | X0)] = (A1) +7 1475, 00 -
11l =1
As a result, we can immediately interpret the adjoint of the conditional mean
operator
U = (C(0) + L) Cn)’
as a smooth approximation of the transition operator I on the class of RKHS
functions F' = 7 with empirical estimate

U = (Co(0) + 7Le) ™" Culm)".

Note that all of our consistency results for kernel autocovariance operators and
the conditional mean embedding transfer directly to this setting, as operator norm
error bounds for the estimate of U(Y) are also valid for its adjoint.

We will now briefly show the connection of the conditional mean operator and its
adjoint to a range of data-driven analysis techniques developed in the dynamical
systems community.

9.1. Dynamic mode decomposition. The idea of approximating the Markov
transition operator K via U™* can be connected to data-driven spectral analy-
sis and model reduction techniques used in engineering, fluid dynamics, molecular
dynamics, and atmospheric sciences. Data-driven approximations of the Koop-
man operator are frequently used to perform analysis, forecasting, model reduction,
and control of dynamical systems in various scientific disciplines (Rowley et al.,
2009; Brunton et al., 2016; Giannakis, 2019). For an overview of numerical Koop-
man approximation methods in the context of spectral analysis, see Klus et al.
(2016, 2018b). One of the most widely used Koopman spectral analysis and model
reduction methods is extended dynamic mode decomposition (EDMD) (Williams
et al., 2015a). EDMD computes an approximation of the Koopman operator eigen-
decomposition via a Galerkin-approximation based on a finite set of basis func-
tions in /. When F' is chosen to be the RKHS 7, one obtains so-called kernel
EDMD (Williams et al., 2015b) as a special nonparametric version of EDMD. It was
shown by Klus et al. (2019) that (regularized) kernel EDMD actually computes the
eigendecomposition of U,(ﬂ)*. This new nonparametric asymptotic perspective of
kernel EDMD allows to formulate new convergence results of kernel EDMD based
on previous results. In contrast to previous results that rely on ergodicity of the un-
derlying system (Klus et al., 2016; Korda and Mezié¢, 2018; Giannakis et al., 2018),

2The name backward transfer operator is classically used in the context of continuous-time
processes, where it is used to describe the solution to the backwards Kolmogorov equation. In the
theory of dynamical systems, the term Koopman operator is commonly used.
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we are able to give a refined convergence analysis by using mixing properties of the
underlying system. However, we note that the operator U(")* is in general not self-
adjoint and a dedicated analysis of spectral properties and convergence is subject
to future work.

9.2. Time-based independent component analysis. It is known that the the
Koopman operator and its adjoint, the Perron—Frobenius operator, can be con-
nected to the solution of the so-called blind source separation problem (Klus et al.,
2018b, 2019) In fact, eigenfunctions of compositions of empirical autocovariance
operators (and their pseudoinverses) are used as projection coordinates in a kernel-
based variant of independent component analysis (Harmeling et al., 2003; Schwantes
and Pande, 2015). As such, consistency results for the Koopman operator can be
used to prove convergence for these approaches.

To the best of our knowledge, prior consistency results for EDMD only cover con-
vergence in strong operator topology (i.e., pointwise convergence) for parametric
models, i.e. on fixed finite-dimensional subspaces spanned by a dictionary of ba-
sis functions. Furthermore, they mostly aim towards deterministic dynamical sys-
tems (Korda and Mezié, 2018).

Remark 9.1 (Model error). Note that analytically, Kf is not necessarily an el-
ement of 7 for all f € 5, hence the kernel Koopman operator needs to be
considered on the domain dom(K) := {f € 4 | E[f (Xiyy) | Xe =] € #} C .
Therefore, the kernel Koopman operator is in general not a globally defined and
bounded operator, which is also reflected in the theory of the conditional mean em-
bedding (see Song et al., 2009). The model error, i.e., how well the kernel Koopman
operator K approximates the original Koopman operator in (9.1) for some other
function class F' is not in the scope of this paper. Klus et al. (2019) investigate
this problem for F' = L (FE, Fg,m;R). It is likely that this problem can be tack-
led from a vector-valued statistical learning standpoint (Park and Muandet, 2020)
by introducing suitable source conditions and exploiting the approximation theory
of universal vector-valued kernels (Carmeli et al., 2010).

10. CONCLUSION

In this paper, we provided a mathematically rigorous analysis of kernel autocovari-
ance operators and established classical limit theorems as well as nonasymptotic
error bounds under classical ergodic and mixing assumptions. The results were
mostly derived from theoretical work on discrete-time processes in Banach and
Hilbert spaces and are presented in a form such that they can be easily applied
in the context of RKHS-based time series models and frequency domain analysis.
We highlighted high-level applications for kernel PCA, the conditional mean em-
bedding, and the nonparametric estimation of Markov transition operators. The
theory of vector-valued statistical learning from dependent data may be connected
to our considerations in future work. In the context of learning Markov transi-
tion operators, the kernel autocovariance operator may lead to an inverse problem
that describes the analytical minimizer of an autoregression risk in an operator
space.
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APPENDIX A. PROOFS

Proof of Theorem 4.8. We apply Merlevede (2008, Theorem 2) to the process (£):ecz
and immediately obtain the existence of a compact set K with the desired properties
such that both (4.5) and (4.6) hold. It now remains to show the norm bound (4.7)
for K. The set K is the unit ball of the Hilbert space H, which is given by the
completion of the range of T'/? (where T is given by (4.4) and T'/? denotes its
operator square root) with respect to the inner product, defined by

(A.1) <T1/2A, T1/23>H = (A, Blg, ) A B ESa(H),

also called Cameron—Martin space or abstract Wiener space (for details, we refer
the reader to Bogachev, 1998, Chapter 2). For a technical construction of H and
the limit set K in the law of the iterated logarithm in Banach spaces, we refer the
reader to Kuelbs (1976, Section 2) as well as Goodman et al. (1981, Section 2). Note
that these references elaborate on the i.i.d. case. However, for the construction of
H and K only an abstract limiting probability measure is needed, which is given
by the Gaussian measure obtained from Theorem 4.7 and its covariance operator
T defined by (4.4), just as shown in the proof of Merlevede (2008, Theorem 2). We
can therefore analyze properties of K by considering the Cameron-Martin space of
the centered Gaussian measure induced by 7', which is examined in the previously
mentioned literature. The identity (A.1) can be verified by translating the abstract
Banach space definition of (Kuelbs, 1976, Equation (2.3)) to our scenario of the sep-
arable Hilbert space So(#7) as, for example, described by Bogachev (1998, Remark
2.3.3).

From (A.1), we obtain

(A.2) Mlls, o < 72| N4l A€ B

Since K = {A € H | [|A|ly < 1}, a bound for ||T%/2|| = HTHl/2 depending on the
mixing rate of (& ):cz is sufficient in order to provide a bound for elements of K in
the norm of Sy (7).

We now give a norm bound for T' = E[£o @ &o] + 2,21 E[&o @ &] + 2,21 E[&: @ &l
We clearly have

IE[go @ &l < 4¢?,
since & is almost surely bounded by 2¢ by (4.3).
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Let a(n) be the mixing coefficients of (X;)icz. We now note that by (4.1), we have
a((&)iez,n) < a(n —n) for all n € N. This allows to give a bound for the two
remaining summands of T":

> Elé @&
t=1

< 3B @ &l
t=1

o0

=Y sup [E[(&, B) (&, A)|

t—1 I Allsy ) =1
I1Blis, (o) =1

o0

<> sup 4a(0(é),0(0)) 1 B po e I1E0s Al o iy

t—1 I Allsy ) =1
I1Blis, (o) =1

Zch ot —n) =16 M,

where we use Ibraglmov s covariance inequality for strongly mixing and bounded
random variables (Ibragimov, 1962, Lemma 1.2) in the third step (note that (&;, B)
and (&, A) are centered real-valued random variables which are P-a.e. bounded by
2¢ because of (4.3)). By symmetry, we obtain the same bound for ||Y°,° | E[§y ® &]||
and we end up with the total norm bound

(A.3) IT| < 4c® +32*M,

which proves the claim in combination with (A.2). |

Proof of Theorem 6.1. The key idea for this proof is to make use of the fact that
the product RKHS So(7) ~ # ® S is isometrically isomorphic to a Gaussian
RKHS. This allows to interpret I" as a (centered) convolution operator in order to
apply classical results from the theory of integral equations.

Let ¢ denote the RKHS induced by the Gaussian kernel ¢: E? x E? — R,

U(2,2") = exp 7~ IRz [ ZIH]%M
b 20_2 9

where ||-[|gzq is the Euclidean norm on E?. Let 1: E? — ¢ be the feature map
corresponding to ¢. Then the pointwise defined map

vV QA Y
o(z) @ p(y) = P((z,y))

is an isometry, which can be seen by expressing the respective inner products
in terms of the corresponding kernels and using the fact that k(z,z')k(y,y’) =
((x,y), (¢',y")). Extending v to linear combinations gives a bijective isometry
from the dense subset span{p(z) ® p(z’) | x,2’ € E} of S ® S to the dense
subset span{y((z,2")) | (z,2') € E*} of 4. Finally, extending v continuously to
the respective completions yields an isometric isomorphism from 7 ® 5 to 4.

We now decompose I' = I'1 =Ty, where I'y := E [(¢(X,;) ® ¢(X0)) @ (¢(X;;) ® ¢(Xo))]
and I'y := C(n) ® C(n). Since I'y is a rank-one operator, I has the same asymp-
totic eigenvalue behavior as I';y (Gohberg and Krein, 1969, Corollary 2.1). It is
therefore sufficient to only consider the eigenvalue decay of I';. The isomorphism v
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constructed above allows to interpret I'; as an integral operator with respect to the
Gaussian kernel ¢, which makes the application of classical results from the theory
of integral equations possible. For every operator A € So(5) ~ H# @ H and all
r,x' € E, we write A(z,2") = (A, ¢(2) @ p(2')) 4pq.» Where we identify A with its
representation in S ® S via its singular decomposition. We get the representation

(FlA)(y,y’) = ("4, p(x)® 80(17/»%@%

— [ (0(X0) © (X, 0l0) © 0l0)) s ALK, Xo) AP
- / K(X1)k(Xo. ') A(X,, Xo) dP
- / (X, Xo), (1. 5)) A(X,, Xo) AP

_ /E 0z, ) A(2) AL(X,, Xo)(2)

for all y,y' € E, where z := (z,2’) and 2’ := (y,y’). We can therefore consider the
eigenvalue problem

(A.4) (T A)(2) = /Ef(z, 2') A(z) dL(X,), Xo)(2) = AA(2'),

where A is interpreted as a real-valued function on E2. The solution of integral
equations of the form (A.4) for A € L?(E? Fg?, L£(X,, Xo);R) is well examined.
Let ()Aj)j>0 denote the eigenvalues of I'y. When E is a compact domain, the
eigenvalues have a super exponential decay of the form O(exp(—cjlogj)) for some
constant ¢ > 0. When no assumptions about the domain F are made, exponential
decay of the Lebesgue density of £(X,,Xy) on E? leads to an exponential eigen-
value decay in terms of O(exp(—cj)), which is a special case of results by Widom
(1963) (see for example Bach and Jordan, 2002, Appendix C.2 for the specific cases
considered in this context). Without any additional assumptions about the domain
or the underlying distribution, a nearly exponential decay of eigenvalues of the form
O(exp(—cj/??) is always guaranteed (Belkin, 2018, Theorem 5).

Note that when we interpret (A.4) as an operator on product RKHS functions in
S ® I instead of L2(E2,]-'§2, L(X,,Xo);R), the resulting operator I'; has the
same eigenvalues as its L%-analogue (Rosasco et al., 2010, Proposition 8), which
proves all assertions of the theorem. |

Proof of Theorem 8.2. Note that since sup, ¢y k(z,z) = ¢ < oo, we have the P-a.e.
bounds ||, < c'/? as well as ||C(n)|| < ¢ for all € N. Additionally, the
regularized inverse can be bounded as ||(C(0) + yLy) || < %, which is easy to see
from the corresponding spectral decomposition. These bounds hold analogously
for the empirical versions of all above objects® All following bounds below will be
understood in the P-a.e. sense for the remainder of this proof.

We now successively insert appropriate zero-sum terms into the total error and
apply the triangle inequality multiple times to obtain the worst-case estimation

3For fi., estimators of the form fi, := > Biw(x;) with coefficients }~, |8;] = 1 naturally satisfy
the bound.
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error. We have the overall decomposition

A5 UG, —U ZH < HU(V)AZ_U(W) ZH HU(V) L —Up,
(A.5) nhe = Ups|| < |\UpVie = UnVps|| 4+ || Un s = Unz||

I IT
For these two error components, we get thi} )individual bounds .
(D) < ICaII(CO) + L) B = 1) < = Iz = el
as well as
IT) < || Cu(m)(Cn(0) + yLee )~z = Cr()(C(0) + 7L ) iz,
()
+ [|Cu(m)(C(0) + 7L )™ e = C()C(0) 2|, -
(%)

For (x), we give a bound by

(%) < ICu ()]l || + L)t = (C(0) + ”YI%)%H |zl
3/2
< T [Cn(0) = CO)],

where we use the identity A=* — B~1 = A=Y(B — A)B~! for invertible operators A
and B. To obtain a bound for (%), we again insert a zero-sum:

*x) < HCn(ﬁ)(O(O) +9ZL) " e = C()(C(0) + 'YI%)ilﬂ»ZH%
+ HC ( ) +'7ny)71 Mz — C(W)O(O)T/LZHK%&

<|[|Cn(n || |(C +WI%)_1|| ll1221] 5
+lCn H H 0) + L) e — C(0) e,
1 2
< 22 Cutn) — O + e [[(CO0) +T) " e — CO) e,

The sum of the bounds (I), (%), and (xx) yields the total bound as given in (8.8)
after rearranging. |

FREIE UNIVERSITAT BERLIN
E-mail address: mattes.mollenhauer@fu-berlin.de

FREIE UNIVERSITAT BERLIN

E-mail address: stefan.klus@fu-berlin.de

ZUSE INTITUTE BERLIN & FREIE UNIVERSITAT BERLIN

E-mail address: schuette@zib.de

FREIE UNIVERSITAT BERLIN

E-mail address: peter.koltai@fu-berlin.de



	1. Introduction
	2. Preliminaries
	2.1. General notation
	2.2. Reproducing kernel Hilbert spaces
	2.3. Kernel mean embeddings & kernel covariance operators
	2.4. Product kernels and Hilbert–Schmidt operators

	3. Strong law of large numbers
	4. Asymptotic error behavior
	5. Concentration bounds
	6. Convergence for the Gaussian kernel
	7. Consistency of weakly dependent kernel PCA
	7.1. Notation
	7.2. Operator interpretation of Kernel PCA
	7.3. Consistency results

	8. Conditional mean embedding of stationary time series
	8.1. Operator-theoretic conditional mean embedding
	8.2. Least-squares conditional mean embedding.
	8.3. Kernel sum rule
	8.4. Consistency results

	9. Nonparametric estimation of Markov transition operators
	9.1. Dynamic mode decomposition
	9.2. Time-based independent component analysis

	10. Conclusion
	Acknowledgements
	References
	Appendix A. Proofs

