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1Department of Mathematics and Computer Science, Freie Universität Berlin, Germany
2Zuse Institute Berlin, Germany

Abstract

Reaction coordinates are indicators of hidden, low-dimensional mechanisms that govern
the long-term behavior of high-dimensional stochastic systems. We present a novel, very
general characterization of these coordinates and provide conditions for their existence. We
show that these conditions are fulfilled for slow-fast systems, metastable systems, and other
systems with known good reaction coordinates. Further, we formulate these conditions as
a variational principle, i.e., define a loss function whose minimizers are optimal reaction
coordinates. Remarkably, the numerical effort required to evaluate the loss function scales
only with the complexity of the underlying, low-dimensional mechanism, and not with that of
the full system. In summary, we provide the theoretical foundation for an efficient computation
of reaction coordinates via modern machine learning techniques.

1. Introduction

We consider high-dimensional, time- and space-continuous Markov processes. Such processes
are used to model molecular dynamical systems, general interacting particle systems, and other
systems that consist of many coupled but memory-free degrees of freedom. The reason researchers
are interested in such systems is however often not so much the microscopic dynamics itself, but
rather the phenomenon that, over long time scales, the system often exhibits much more regularity
and much less complexity than the sheer number of degrees of freedom would actually allow for.
An example for such a phenomenon is the famous Levianthal paradoxon for protein folding [50]:
reaching the correct native state of an average-sized protein by randomly jumping between all
combinatorically possible conformations (as determined by the number of backbone bond angles)
would take until the heat death of the universe. In reality, however, the native state is typically
reached within milliseconds. The explanation is that naturally-occurring proteins possess local
(side chain) interactions that greatly restrict the backbone movement and guide the folding along
low-dimensional “trenches” or “funnels”. The long-term behavior is therefore determined by a
latent, low-dimensional mechanism that is the result from certain restrictions of the microscopic
dynamics.

This article is dedicated to the analysis of these restrictions, and to their systematic exploitation
in order to identify the latent mechanism. More specifically, we will identify so-called reaction
coordinates, that is, a low-dimensional observable of the full system that acts as a proxy for the
latent mechanism. In a first step, we characterize the type of system that possesses such reaction
coordinates, i.e., we identify sufficient restrictions on the microscopic dynamics. These restrictions
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will turn out to be a generalization of the well-known lumpability condition that is required for
the successful aggregation of discrete Markov chains [22]. Moreover, we will see that several types
of systems for which a well-known slow mechanism exists, such as slow-fast systems or systems
with a generator spectral gap, exhibit our condition.

We then present a systematic approach to identify the reaction coordinates in a bottom-up
manner, assuming only knowledge about the microscopic dynamics that can be obtained by short
numerical simulations. We formulate our search for optimal reaction coordinates in a variational
manner, by defining a loss functional whose global minima are reaction coordinates that allow the
reproduction of the system’s rate-limiting sub-processes with minimal error. This loss function
also can be seen as a “quality measure” for arbitrary reaction coordinates, which can be useful
when comparing heuristically-defined reaction coordinates.

Finally, we show how mere knowledge of the existence of a good reaction coordinate reduces
the data requirement for its numerical computation. The intuitive reason is that systems with
a strong latent mechanism (of which we require no further regularity, such as linearity) express
less “dynamical variety” than an arbirtrarily complex system, so less sampling data is required
to “capture” this variety. To take advantage of that idea, we will derive a re-formulation of the
aforementioned loss function that can be approximated by randomly choosing starting points and
computing short “bursts” of numerical trajectories. For one, this yields a dimension-independent
convergence rate, due to the Monte Carlo nature of this scheme. For the other, we will see that
the more dominant the underlying mechanism, the smaller the prefactor of the rate.

In order to apply our proposed approach to truly high-dimensional, realistic problems, certain
numerical challenges have yet to be overcome, which will be be discussed in the appropriate
sections. To demonstrate our variational principle, we therefore limit ourselves to the examination
of a two and three-dimensional academical slow-fast-system with one-dimensional fast component,
as well as a two-dimensional metastable system. We demonstrate that the effort required to
approximate the loss function indeed scales with the degree of lumpability, and that the effort is
not directly connected to the dimensionality of the system.

This article is structured as follows: Section 2 compares our approach to related work. Sec-
tion 3 introduces our characterization of systems with good reaction coordinates, and confirms the
compatibility of that characterization with established concepts. Section 4 derives a variational
principle for reaction coordinates in form of a loss function whose minimizer yields (almost) opti-
mal reaction coordinates. Section 5 shows that approximating this loss function via a Monte Carlo
method requires less dynamical samples if the system indeed possesses good reaction coordinates.
Section 6 demonstrates the variational principle and approximation of the loss function by two
synthetic examples. Section 7 contains the conclusions, and an outlook on future work.

2. Related work

Characterization of reaction coordinates

Existing definitions of “good” reaction coordinates were mostly derived with applications in com-
putational physics and chemistry in mind. In that domain, one of the most popular reaction
coordinate with a general dynamical interpretation is the committor function, which for some
reactant and some product state indicates the probability to hit the latter before hitting the for-
mer [13, 29]. However, the committor can only be expected to describe the system’s rate-limiting
processes well for sensible choices of the reactant and product (which obviously requires a priori
macro-scale knowledge of the system).

The dominant eigenfunctions of a Markovian system’s transfer operator (or equivalently its
Fokker Planck operator) decompose the system into linearly independent sub-processes, which
equilibrate with a rate determined by the associated eigenvalue [44]. Hence, the dominant eigen-
functions have been used as reaction coordinates [31]. It has however been demonstrated that the
dominant eigenfunctions themselves can be reduced further, if the associated sub-processes are in
some way “nonlinearly dependent” [4]. An example of this situation will be given later in the text.
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A reaction coordinate composed of dominant eigenfunctions is therefore in general not optimal in
terms of its dimensionality.

The TICA (time-lagged independent component analysis) method constructs reaction coordi-
nates as those linear combinations of the original degrees of freedom with the highest autocorre-
lation [33, 37]. Assuming the system is reversible, the TICA coordinates are the aforementioned
eigenfunctions of the transfer operator projected onto the linear basis functions ψi(x) = xi [25].
They therefore suffer from the same non-optimality as the eigenfunction reaction coordinates, and
in addition from non-optimality due to the overhead of linear approximation.

The most frequently analyzed special case of timescale-separated systems are slow-fast systems
(see [36] for a text book introduction). They are characterized by the existence of a coordinate
transformation such that the new coordinates can be subdivided into one quickly and one slowly
moving part, and the two parts are approximately decoupled. The slow coordinates, which form a
parametrization of the system’s slow manifold [48], can be considered, and has been used as a good
reaction coordinate of the system [46, 16]. We will see later that our characterization encompasses
that of slow variables.

The reaction coordinates conceptually most alike to the definition presented in this article are
the transition manifold reaction coordinates, proposed by some of the authors in [4] and further
refined in [5]. These works characterize good reaction coordinates as a parametrization of a low-
dimensional manifold in a certain function space, around which the system’s transition densities
cluster with progressing equilibration.

Computational strategies

In their respective original publications, most of the aforementioned reaction coordinates come
with a proposed numerical scheme for their computation. The committor function, which satisfies
a backward Kolmogorov equation [13], can be computed using numerical PDE solvers (although
this was never proposed as a practical scheme and a vastly more efficient scheme was proposed
soon-after [29]). Reaction coordinates based on transfer operator eigenfunctions (including TICA)
can be computed by an eigendecomposition of a suitable discretization of that operator [9, 43,
11, 37]. Approaches that characterize reaction coordinates as parmetrization of some manifold
use unsupervised manifold learning methods such as diffusion maps to learn the variables in an
equation-free manner [46, 16, 4, 3].

Over time, deep-rooted relationships between the different reaction coordinates, as well as exten-
sions and generalizations were discovered (see [24] for a partial overview), which led to alternative
and more efficient schemes for their computation. While a comprehensive listing would go be-
yond the scope of this article, we would like to point out an emerging trend in this development,
namely the formulation of a variational principle for the respective reaction coordinate. There now
exist variational approaches for the committor function [23], the TICA coordinate [49], and the
transfer operator eigenfunctions [30]. The driving force behind this trend is of course the desire
to profit from the spectacular performance that modern deep learning and neural network-based
methods have demonstrated with regard to their generalization power, robustness to overfitting
and seeming immunity to the curse of dimensionality [1].

Notably missing from the above list is however a variational principle for manifold-based reac-
tion coordinates. As mentioned before, the characterization presented in this article generalizes
the transition manifold, which in turn generalizes the slow manifold, so it can be seen as a com-
pletion in that regard. The variational approach then offers the additional advantage of yielding a
closed form of the reaction coordinate (in some finite-dimensional ansatz space), unlike the afore-
mentioned geometric manifold learning algorithms, which output only discrete point-evaluations
of the reaction coordinate.

Dynamical sampling

Our specific strategy to approximate the loss function from random “bursts” [15] of the dynamics
shows parallels to several other computational techniques that implicitly exploit some form of
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hidden regularity of the problem.
In a recent publication [6], some of the authors applied a discrete version of that strategy to time-

and space-discrete Markov chains. There it was postulated that the long-term behavior of a large
(i.e., many-state) Markov chain is essentially determined by transitions between certain aggregates
of these states. We were able to show that the aggregates and the transition probabilities between
them could be discovered from a vastly undersampled version of the transition matrix of the
original chain (again obtained through random simulation bursts).

The fundamental idea behind both our discrete and continuous strategies is heavily inspired by
the field of compressive sensing, see [14] for an introduction. The impressive feat of compressive
sensing is its ability re-construct a signal (a high-dimensional vector) from far less samples than the
Nyquist–Shannon sampling theorem would actually demand, i.e., to solve vastly underdetermined
linear equations. The necessary assumption here is that the system is sparse in some domain (for
example the frequency domain), though the location or precise number of the sparse entries does
not need to be known. In a way, the dominance of a Markov process by a single low-dimensional
mechanism can be interpreted as a sort of “non-linear dynamical sparsity”, as there are infinitely
many other mechanisms that could, but do not, influence the process.

Finally we would like to point out that the apparent similarity of our sampling strategy to
randomized matrix low-rank approximation techniques [19] like the Nyström method [12] or ran-
domized feature approximation [38] is rather superficial. While for these techniques a (nearly)
low-rank structure of the target matrix is necessary to achieve low approximation error, they do
not interpret this low rank as an underlying structure “generating” the matrix. Indeed, in [47]
it has been argued that an (approximate) low rank is a generic property of large data matrices,
and that the attribution of that rank to some “physical reason” is in general not possible. Con-
sequently, while low-rank matrix approximation techniques offer substantial data reduction for
generic large-scale data matrices, they cannot match the performance of subsampling techniques
that exploit specific generating structures.

3. Characterization of good reaction coordinates

3.1. Definition of the dynamics and fundamental assumptions

Let X ⊂ Rn be a Lebesgue-measurable set (the state space) and (Xt)t∈R+ , or short (Xt), be a
time- and space-continuous Markov process on X. Let P t : X ×B → [0, 1] denote the transition
probability function of (Xt), where B is the Borel σ-algebra on X, i.e.,

P t[x,B] = Prob[Xt0+t ∈ B | Xt0 = x] for all t0 ≥ 0.

For any t > 0 and x ∈ X, P t(x, ·) is a probability measure on B, and P t(·, B) is a B-measurable
function for any B ∈ B [40]. Moreover, let the process be ergodic, such that a unique stationary
measure µ : B → R+

0 exists. We require µ to be absolutely continuous with respect to the Lebesgue
measure, i.e., there exists a density π : X→ R+ such that

µ(B) =

∫
B

π(x)dx.

Moreover, we require that π is continuous and strictly positive.
We also require the P t(x, ·) to be absolutely continuous with respect to the Lebesgue measure.

Thus, we may assume that there exists a family of functions pt : X× X→ R+ such that

P t(x,B) =

∫
B

pt(x, y)dy for all τ > 0, x ∈ X, B ∈ B. (1)

Many classes of Markov processes are absolutely continuous, including Itô diffusions with smooth
coefficients [26]. Also, we assume that the system is reversible with respect to π, i.e., the detailed
balance equation holds:

pt(x, y)π(x) = pt(y, x)π(y) for all x, y ∈ X, t ∈ R+. (2)
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The existence of good reaction coordinates will be determined by specific properties of the
function pt, hence we now examine its nature more closely. As a function of the second argument,
pt(x, ·) ∈ L1 is the time-t transition density function of (Xt), i.e.

pt(x, ·) = Law
(
Xt0+t

∣∣ Xt0 = x
)

for all t0 ≥ 0.

On the other hand, pt(·, y) as a function of the first argument is harder to interpret, and discussed
less in the literature of stochastic processes. Let L1

µ(X) be the space equipped with the norm

‖f‖L1
µ

:=

∫
X
f(x)dµ(x).

We then have pt(·, y) ∈ L1
µ, since, by reversibility of Xt,∫

X
pt(x, y)π(x)dx =

∫
X
pt(y, x)π(y)dx ≤ ‖π‖∞ ‖pt(y, ·)‖L1 <∞.

To distinguish it from the transition density, we call pt(·, y) the time-t transition observable of y.
As a function of two arguments, we call pt : X×X→ R the time-t transition kernel of (Xt). It

can be interpreted as an element of the space of functions L1
µ×λ(X2), where µ× λ is the product

measure on the space X2 given by the invariant measure µ and the Lebesgue measure λ on X. For
simplicity, we use the shorthand notation

K := L1
µ×λ(X2).

Note that by Fubini–Tonelli, we have

‖p(∗, ·)‖K :=
∥∥ ‖p(∗, ·)‖L1(X)

∥∥
L1
µ(X)

(3)

as the norm on K, where in (3) the inner norm applies to the argument “·”, and the outer norm
applies to the argument “∗” (this will be a convention from now on).

3.2. Lumpability and deflatability

We will now introduce two seemingly different conditions for a system/reaction coordinate pair.
Each condition may individually be taken as a definition for what a good reaction coordinate is. It
will turn out, however, that the two conditions are equivalent to each other for reversible systems,
so a good reaction coordinate with respect to one condition is a good reaction coordinate with
respect to the other.

Let r < n, and Z ⊂ Rr a domain. Any function ξ ∈ C(X,Z) is called a reaction coordinate. We
denote the z-level set of ξ by

Σξ(z) := {x ∈ X | ξ(x) = z}.
Further, for later use, we denote the µz the marginal stationary measure on Σξ(z), defined by∫

Σξ(z)

f(x)dµz(x) =

∫
Σξ(z)

f(x)π(x) det
(
∇ξ(x)ᵀ∇ξ(x)

)−1/2
dHn−r(x),

where Hd denotes the d-dimensional Hausdorff measure. By |Z|, we denote the Lebesgue-measure
of Z.

Lumpability

The first condition is as follows:
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Definition 3.1 (Lumpability). If there exists a domain Z ⊂ Rr, a continuous function ξ : X→ Z,
and a family of time-parametrized functions ptL : Z× X→ R+ and a lag time τ > 0 such that

1

|Z|
∥∥pt(∗, ·)− ptL(ξ(∗), ·)

∥∥
K ≤ ε (L)

is fulfilled for t ≥ τ , we say the system is ε-lumpable with respect to ξ.

In words, lumpability means that for sufficiently large t, the transition densities pt(x, ·), i.e.,
the probabilities to transition out of x, depend essentially only on the value ξ(x) of the reaction
coordinate at x, and not on the precise location of x on the ξ(x)-level set of ξ. Again, this is a
reasonable property for a reaction coordinate that is supposed to describe the effective dynamics
of Xt.

Remark 3.2. Our definition of lumpability can be seen as a continuous version of the lumpability
condition for discrete Markov chains, originally formulated by Kemeny and Snell [22]. There it has
been shown that the discrete version of lumpability is a necessary and sufficient condition for the
Markov chain to be “compressible” into a Markov chain between certain aggregates of the original
chain. In general, this compression however leads to a loss of information, i.e., restoration of the
original chain is in general not possible under the lumpability assumption alone.

Deflatability

The second condition we want to discuss is:

Definition 3.3 (Deflatability). If there exists a domain Z ⊂ Rr, a continuous function ξ : X→ Z,
a family of time-parametrized functions ptD : X× Z→ R+ and a lag time τ > 0 such that

1

|Z|
∥∥pt(∗, ·)− ptD(∗, ξ(·))π(·)

∥∥
K ≤ ε (D)

is fulfilled for t ≥ τ , we say the system is ε-deflatable with respect to ξ.

Here the intuition is that for t large enough, the transition observable pt(∗, y), i.e., the probabil-
ities to transition to y, is effectively defined by 1) the term ptD(∗, ξ(y)), i.e. the probability density
to transition to the ξ(y)-level set of ξ, and 2) the value π(y), which crucially does not depend on
the starting point.

Remark 3.4. The above notion of deflatability also has a time- and space-discrete equivalent
for discrete Markov chains, which was defined by some of the authors in [6]. There it was shown
that for Markov chains fulfilling both the lumpability and deflatability condition, a “compressed”
Markov chain between certain aggregates of the original states exists, and that the full Markov
chain can be (approximately) restored from the compressed chain.

Remark 3.5. It should be noted that, for large enough lag time, every uniformly ergodic system
is trivially lumpable and deflatable since

sup
x∈X

∥∥P t(x, ·)− µ(·)
∥∥
TV

= sup
x∈X

1

2

∥∥pt(x, ·)− π(·)
∥∥
L1 → 0 (4)

as t → 0 (see for example [39, Section 3.3 together with Proposition 3(f)]. Hence, choosing
ptL(z, ·) = π and ptD(z, ·) = 1 in the above definitions will give lumpability and deflatability with
respect to any constant reaction coordinate since then ptL and ptD are independent of x. Likewise,
every system is trivially lumpable and deflatable, for any tolerance and lag time, with respect
to the trivial n-dimensional reaction coordinate ξ(x) = x, since choosing ptL(x, ·) = pt(x, ·) and
ptD(·, y) = pt(·, y)/π(y) fulfils (L) and (D) with tolerance zero. We emphasize that in this paper
we specifically care about systems which are lumpable/deflatable with respect to intermediate lag

6



times τ that are much smaller than the equilibration time scale of the system, as well as small
dimensions r and tolerances ε.

Moreover, a system may be lumpable/deflatable with respect to more than one non-trivial
combination of ε, τ and r. In cases where no clear time scale separation exists in the full system,
a balance has to be struck between the achievable approximation error of a reduced model built
using ξ (acceptable ε), the time scale above which the reduced model is valid (choice of τ), and
the dimension of the reduced model (choice of r).

Optimizing the choice of r and τ are however not subject of this paper. We will later consider
r and τ to be fixed, and search for corresponding “optimal” reaction coordinates, i.e. an r-
dimensional ξ for which (L) and/or (D) are fulfilled for the smallest possible ε (more on that in
Section 4).

Connection to Reversibility

As mentioned above, the two conditions (L) and (D) are equivalent in reversible systems:

Proposition 3.6. Let the system be reversible, i.e., let (2) hold. Then the system is ε-lumpable
if and only if it is ε-deflatable.

Proof. Let (L) hold for some family of functions ptL : Z × X → R. Define the family of functions
ptD : X× Z→ R by

ptD(x, z) :=
ptL(z, x)

π(x)
.

Then

‖pτD(x, ξ(·))π(·)− pτ (x, ·)‖L1 = ‖pτL(ξ(·), x)
π(·)
π(x)

− pτ (x, ·)‖L1

(2)
= ‖pτL(ξ(·), x)

π(·)
π(x)

− pτ (x, ·) π(·)
π(x)

‖L1

= ‖pτL(ξ(x), ·)− pτ (x, ·)‖L1
µ
π(x)−1.

Hence, with this ptD, it holds

1

|Z|
∥∥pτ (∗, ·)− pτD(∗, ξ(·))π(·)

∥∥
K =

1

|Z|

∫
X

∥∥pτ (x, ·)− pτD(x, ξ(·))π(·)
∥∥
L1 dµ(x)

=
1

|Z|

∫
X

∥∥pτL(ξ(x), ·)− pτ (x, ·)
∥∥
L1
µ
π(x)−1dµ(x)

=
1

|Z|
∥∥pτL(ξ(∗), ·)− pτ (∗, ·)

∥∥
K ≤ ε.

For the reverse direction, let (D) hold for some family of functions ptD : X× Z→ R and define
ptL : Z× X→ R by

ptL(z, y) := ptD(y, z)π(y).

We then obtain ε-lumpability with this ptL by performing the above transformations in reverse.

Remark 3.7. Proposition 3.6 implies that, whenever a system is ε-lumpable or ε-deflatable, there
exists a reduced transition kernel p̃t : Z× Z→ R+, such that∥∥pt(∗, ·)− p̃t(ξ(∗), ξ(·))π(·)

∥∥
K ≤ ε

for t ≥ τ . Under this condition, knowing the triple (ξ, p̃t, π) allows us to effectively re-construct
the long-term dynamics of the full system. This specifies our understanding of a good reaction
coordinate. Furthermore, we call a system for which such a good reaction coordiante exists, a
reducible system.
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3.3. Examples of reducible systems

While the conditions defined in Section 3.2 certainly can be seen as a sensible quality measure for
reaction coordinates, an obvious question is whether they are consistent with established concepts
of reducible systems. We hence now present several systems with known good reaction coordinates
and show that they are indeed either lumpable or deflatable.

3.3.1. Existence of a transition manifold

Lumpability is strongly connected to the concept of the so-called transition manifold, which was
introduced a few years ago by some of the authors in order to formulate a geometrical approach
to the computation of optimal reaction coordinates [4].

Definition 3.8 (Reducibility and Transition Manifold). For ε > 0, r ≤ n, τ ∈ R+
0 , we call the

system (ε, r, τ)-reducible if there exists an r-dimensionally parametrizable manifold M ⊂ Pτ so
that for all x ∈ X ∥∥Q (pτ (x, ·))− pτ (x, ·)

∥∥
L2

1/π

≤ ε, (5)

where Q : Pτ →M is the nearest point projection onto M,

Q (pτ (x′, ·)) := arg min
p∈M

∥∥pτ (x, ·)− p
∥∥
L2

1/π

.

We call any M that fulfills (5) a transition manifold of the system.

The intuition behind (7) is that the set of all transition densities Pτ clusters ε-closely around an
r-dimensional manifold M with respect to the L2

1/π norm. Let E : M→ Rr be any parametrization
of M. It can be shown that the transition manifold reaction coordinate

ξ(x) := E (Q(pτ (x, ·))) (6)

is a good reaction coordinate, in the sense that the projection error of the leading transfer operator
eigenfunctions onto ξ is at most ε [4].

The computational strategy behind the transition manifold approach now is to sample the set
{pt(x, ·), x ∈ X} (for example by randomly selecting starting points xm ∈ X, m = 1, 2, . . . and
estimating the pτ (xm, ·) by parallel simulation), and applying an unsupervised manifold learning
method (such as diffusion maps [8]) to the samples. This strategy has been successfully applied
to multiple high-dimensional molecular systems and was confirmed to produce physically inter-
pretable reaction coordinates [2, 3].

The concept of the transition manifold was recently re-visited and extended to a broader class of
dynamical systems [5] (the central object now being called weak transition manifold), by requiring
the “closeness” to the manifold now only averaged over the level sets of Q:

Definition 3.9 (Weak reducibility and weak transition manifold). For ε > 0, r ≤ n, τ ∈ R+
0 , we

call the system weakly (ε, r, τ)-reducible if there exists an r-dimensionally parametrizable mani-
fold M ⊂ Pτ so that for all x ∈ X∫

ΣQ(Q(x))

∥∥Q (pτ (x′, ·))− pτ (x′, ·)
∥∥
L2

1/π

dµQ(x)(x
′) ≤ ε, (7)

where Q : Pτ →M is the nearest point projection onto M,

Q (pτ (x′, ·)) := arg min
p∈M

∥∥pτ (x, ·)− p
∥∥
L2

1/π

,

and ΣQ(q) is the q-level set of Q,

ΣQ(p) = {p ∈ Pτ | Q(p) = q} .

We call any manifold M that fulfills (7) a weak transition manifold.
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It is easy to confirm that every reducible system is weakly reducible.
The careful reader might have noticed that the closeness condition for the weak transition

manifold (7) resembles the lumpability condition (L). Indeed, we will now show that a system
which is weakly (ε, r, τ)-reducible is ε-lumpable with respect to the transition manifold reaction
coordinate ξ.

Proposition 3.10. Let the system be weakly (ε, r, τ)-reducible. Then there exists a domain Z ⊂
Rr, and a family of functions ptL : Z× X→ R+ such that (L) is fulfilled with respect to ξ defined
by (6).

Proof. Let E : M → Rr be any parametrization of the transition manifold M and let Z := E(M).
Note that E : M → Z is one-to-one. Define the reaction coordinate ξ by (6) and the reduced
density pτL by

pτL(z, ·) := E−1(z).

Then for any z ∈ Z there exists a x ∈ X such that z = E
(
Q(x)

)
and hence, due to E being

one-to-one, Σξ(z) = ΣQ
(
Q(x)

)
. For this x it holds∫

Σξ(z)

∥∥pτL(z, ·)− pτ (x′, ·)
∥∥
L1 dµz(x

′) =

∫
ΣQ(Q(x))

∥∥pτL(E(Q(x)), ·)− pτ (x′, ·)
∥∥
L1 dµQ(x)(x

′)

=

∫
ΣQ(Q(x))

∥∥E−1
(
E(Q(x))

)
− pτ (x′, ·)

∥∥
L1 dµQ(x)(x

′)

=

∫
ΣQ(Q(x))

∥∥Q(x)− pτ (x′, ·)
∥∥
L1 dµQ(x)(x

′).

Finally, with ‖f‖L1 = ‖f/π‖L1
µ
≤ ‖f/π‖L2

µ
= ‖f‖L2

1/π
, we get

1

|Z|

∫
Z

∫
Σξ(z)

∥∥pτL(z, ·)− pτ (x′, ·)
∥∥
L1 dµz(x

′)dz ≤ 1

|Z|

∫
Z

∫
ΣQ(Q(x))

∥∥Q(x)− pτ (x′, ·)
∥∥
L2

1/π

dµQ(x)(x
′)dz

≤ sup
z∈Z

∫
ΣQ(Q(x))

∥∥Q(x)− pτ (x′, ·)
∥∥
L2

1/π

dµQ(x)(x
′)

(7)

≤ ε.

3.3.2. Slow- and fast components

Next, we show that a process defined by an SDE with slow and fast components is deflatable with
respect to the slow component.

We utilize a multiscale decomposition of the corresponding infinitesimal generator, together with
a multiscale ansatz for the transition densities pt(x, ·). In that we utilize well-known averaging
and homogenization techniques from [36].

It will prove advantageous to consider the transition densities pt(x, ·) as densities qt(x, ·) with
respect to the stationary density π. That is, we define for each x ∈ X qt(x, ·) by

pt(x, ·) = qt(x, ·)π(·).

Let the components of (Xt) be dividable into two processes (Yt) on Y, (Zt) on Z, such that
X = Y⊕ Z,

(Xt) =

(
Yt
Zt

)
,

and the components fulfil the system of SDEs

εdYt = −∇yV (Yt, Zt)dt+
√
εσdWY

t

dZt = −∇zV (Yt, Zt)dt+ σdWZ
t ,

(8)
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with potential V : X → R, scalar diffusion parameter σ > 0 and (WY
t ), (WZ

t ) standard Wiener
processes on Y and Z, respectively. A timescale separation parameter 0 < ε� 1 ensures that (Yt)
evolves “fast” compared to (Zt).

The evolution of qt under (Xt) is now governed by the Fokker Planck equation

∂tq
t(x, ·) = Lεqt(x, ·), q0(x, ·) = δx(·),

where the infinitesimal generator Lε has the multiscale structure

Lε =
1

ε
Lz + Ly, (9)

with the two compontents

Lz =
σ2

2
∆y −∇yV · ∇y,

Ly =
σ2

2
∆z −∇zV · ∇z.

We want to investigate to what extent qt(x, ·), and by extension pt(x, ·), can be approximated
by an “essential transition density” that depends only on the slow variable z in the situation t� ε.
To this end, we make the multiscale ansatz for qt

qt(x, ·) = qt0(x, ·) + εqt1(x, ·) +O(ε2). (10)

Inserting (10) into (9) gives

∂tq
t
0(x, ·) + ε∂tq

t
1(x, ·) +O(ε2) =

1

ε
Lzqt0(x, ·) + Lzqt1(x, ·) + Lyqt0(x, ·) +O(ε). (11)

Comparing the terms of order ε−1 gives

Lzqt0(x, ·) = 0.

By [36, Sec. 10.4], this implies that for each fixed z, Lz has a one-dimensional null space, namely
the constant functions in y. Hence, qt0(x, ·) is independent of y in its second argument, and so

qt ((y, z), (y′, z′)) = qt0 ((y, z), z′) +O(ε).

Therefore, for t = O(1), the transition density pt(x, ·) takes the form

pt ((y, z), (y′, z′)) = qt0((y, z), z′)π ((y′, z′)) + g ((y, z), (y′, z′)) π ((y′, z′)) .

for some function g ∈ O(ε). Applying the ‖ · ‖K-norm, it follows that the system is deflatable with
respect to the reaction coordinate ξ(x) = z, i.e.,

1

|Z|
∥∥qt0(∗, ξ(·))π(·)− pt(∗, ·)

∥∥
K = O(ε).

Remark 3.11. While not necessarily in the scope of this paper, we can continue the multiscale
analysis in order to derive an evolution equation for qt0. See Appendix A for details.

3.3.3. Generator spectral gap

Finally, we show that systems whose infinitesimal generator exhibits a spectral gap of sufficient size,
such as metastable systems, are deflatable with respect to some non-trivial reaction coordinate.

Consider again the transition densities qt with respect to the stationary measure, and its Fokker
Planck equation

∂tq
t(x, ·) = Lqt(x, ·), q0(x, ·) = δx(·).

10



We assume that the spectrum of the generator L is real, non-positive and discrete, and denote the
eigenvalues of L in descending order:

0 = θ0 > θ1 ≥ θ2 ≥ . . . ,

repeated by geometric multiplicity. Let furthermore ϕi denote the eigenfunction belonging to θi.
The ϕi then form an orthonormal basis of L2

µ(X) [35]. As qt(x, ·) ∈ L1
µ(X) ∩ L∞µ (X) for any x,

qt(x, ·) ∈ L2
µ(X). We can then describe the evolution of the density qt(x, ·) by

qt(x, ·) =

∞∑
i=0

eθitci(x)ϕi(·) (12)

where ci : X→ R are some functions that do not depend on the θi.
Now, we additionally assume that the eigenvalues can be separated into a dominant and a

non-dominant part. Specifically, we assume there exists an index K > 0, so that the ratio

ρ :=
θK
θK+1

(13)

is small. This situation for example occurs if the system is metastable, i.e., there exists a partition
X = X1∪. . .∪XK of state space into disjoint regions, and the system is almost invariant on each Xi
on relatively long time scales. Each For a precise introduction of metastability and its connection
to the dominant spectrum see [44].

Now suppose that there exists an integer r ≤ K and a reaction coordinate ξ : X→ Rr such that
ξ parametrizes the dominant ϕi, i.e., there exist some functions ϕ̃i : Rr → R such that

ϕi = ϕ̃i ◦ ξ i = 1, . . . ,K. (14)

Such a ξ always exists, as one can always choose

r := K, ξi := ϕi and ϕ̃i(z) := zi.

Often, however, the dominant eigenfunctions possess some common lower-dimensional, non-linear
parametrization. For metastable systems, this is for example the case if the metastable sets
X1, . . . ,XK are connected by just a small number of transition pathways. An example system
with five metastable sets, but one common transition pathway, hence a one-dimensional reaction
coordinate, can be found in Section 6.2.

Let ε > 0 be some small constant. We now show that, if t = t(ε) is large enough, and the
metastability ratio ρ = ρ(ε) is small enough, then the system is ε-deflatable with respect to any ξ
fulfilling (14). To see this, split the right hand side of (12) into the dominant and the non-dominant
part:

qt(x, ·) =

K∑
i=0

eθitci(x)ϕi(·) +

∞∑
i=K+1

eθitci(x)ϕi(·).

Due to (14), the first summand depends only on ξ:

K∑
i=0

eθitci(x)ϕi(·) =

K∑
i=0

eθitci(x)ϕ̃i (ξ(·))︸ ︷︷ ︸
=:ptD(x,ξ(·))

.

The system hence is ε-deflatable with respect to ξ and ptD, if

1

|Z|

∥∥∥∥∥
∞∑

i=K+1

eθitci(∗)ϕi(·)π(·)
∥∥∥∥∥
K

≤ ε. (15)

11



Since the θi are decreasing, it holds∥∥∥∥∥
∞∑

i=K+1

eθitci(∗)ϕi(·)π(·)
∥∥∥∥∥
K

≤ eθK+1t

∥∥∥∥∥
∞∑

i=K+1

ci(∗)ϕi(·)π(·)
∥∥∥∥∥
K

,

and further

≤ eθK+1t


∥∥∥∥∥
K∑
i=0

ci(∗)ϕi(·)π(·)
∥∥∥∥∥
K︸ ︷︷ ︸

=:C̃

+

∥∥∥∥∥
∞∑
i=0

ci(∗)ϕi(·)π(·)
∥∥∥∥∥
K

 .

The first summand, denoted C̃, is finite as a finite sum. As

pt(∗, ·) = qt(∗, ·)π(·) =

∞∑
i=0

eθitci(∗)ϕi(·)π(·),

and 1 = eθi0, the second summand can be interpreted as the K-norm of pt
∣∣
t=0

:∥∥∥∥∥
∞∑
i=0

ci(∗)ϕi(·)π(·)
∥∥∥∥∥
K

= lim
t→0

∥∥pt(∗, ·)∥∥K .
By writing out the K-norm, it can easily be seen that ‖pt(∗, ·)‖K = 1 for all t > 0, and thus

lim
t→0

∥∥pt(∗, ·)∥∥K = 1.

With C := C̃ + 1, we therefore get

1

|Z|

∥∥∥∥∥
∞∑

i=K+1

eθitci(∗)ϕi(·)π(·)
∥∥∥∥∥
K

≤ C

|Z|e
θK+1t.

Hence, in the for us relevant situation ε < C
|Z| , if we choose

t ≥ t(ε) :=
1

θK+1
log

( |Z|
C
ε

)
,

then (15) is fulfilled, and the system is ε-deflatable.
Now, of course, every system is arbitrarily deflatable if only the lag time is chosen large enough

(see Remark 3.5). In order to claim non-trivial deflatability for the lag time t(ε), we have to
ensure that ptD(x, ·) is not close to the identity, i.e., the factors eθit(ε), i = 1, . . . ,K, do not decay
for ε→ 0. This is indeed the case if the metastability ratio ρ = ρ(ε) is sufficiently small, since

eθit(ε) = e
θi

θK+1
log( |Z|

C ε)

≥ e
θK
θK+1

log( |Z|
C ε)

for i = 1, . . . ,K.

Hence, for

θK
θK+1

= ρ(ε) = O
(

log

( |Z|
C
ε

)−1
)

(ε→ 0),

we have

eθit(ε) = O(1) (ε→ 0),

and thus also, for all x ∈ X,

p
t(ε)
D (x, ·) = O(1) (ε→ 0).

In words: if the metastability ratio falls as O
(

log
(
|Z|
C ε
)−1

)
as ε → 0, then the slow modes

have not yet decayed on timescales t ≈ t(ε), and the effective density ptD describes their further
evolution.
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4. A variational principle for optimal reaction coordinates

From here on, we consider the reduced dimension r ≤ n as well the lag time τ to be predetermined
and fixed. For simplicity of notation, we will omit the lag time as parameter for the transition
kernel, i.e., define p(·, ·) := pτ (·, ·), pL(·, ·) := pτL(·, ·), pD(·, ·) := pτD(·, ·).

Our goal is now to find an optimal reaction coordinate, i.e., a function ξ : X → Z ⊂ Rr
that fulfills (L) or equivalently (D) for the smallest possible ε ≥ 0. Hence formally, we seek the
minimizers of the following loss functions:

Definition 4.1 (Lumpability and deflatability loss function). The nonlinear functional LL :
C(X,Z)→ R+, defined by

LL(ϑ) :=
1

|Z| min
pL:Z×X→R+

‖p(∗, ·)− pL(ϑ(∗), ·)‖K (16)

is called the lumpability loss function of the system.
The nonlinear functional LD : C(X,Z)→ R+, defined by

LD(ϑ) :=
1

|Z| min
pD:X×Z→R+

‖p(∗, ·)− pD(∗, ϑ(·))π(·)‖K (17)

is called the deflatability loss function of the system.

From the equivalence of lumpability and deflatability (Proposition 3.6) it follows that for every
ϑ ∈ C(X,Z) holds

LL(ϑ) = LD(ϑ), (18)

hence we can find the optimal reaction coordinate with respect to both (L) and (D) by solving

ξ := arg min
ϑ∈C(X,Z)

LL(ϑ), (19)

at least in theory. Evaluating, let alone minimizing LL (or LD) would however prove difficult,
due to the minimization over an infinite-dimensional function space involved in its definition (the
search for the functions pL or pD in every step). In the following section, we therefore derive
essentially equivalent reformulations of LL and LD that do not involve this minimization.

4.1. Differential formulation of lumpability and deflatability

The condition (L) can be interpreted as the closeness of the transition densities p(x, ·) to some
reduced reference density pL(ξ(x), ·). This implies that all densities p(x, ·) whose starting points x
lie on one level set of ξ are close to each other. Likewise, condition (D) can be seen as the closeness
of the transition observables p(·, y) to some reduced reference observable pD(·, ξ(y)), which implies
that all observables p(·, y) whose end points y lie on one level set of ξ are close to each other. This
observation motivates the following “differential” characterization of lumpability and deflatability:

Definition 4.2 (Differential lumpability). If there exists a domain Z ⊂ Rr and a continuous
function ξ : X→ Z such that

1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥∥p(x(1), ·)− p(x(2), ·)
∥∥∥
L1
dµz

(
x(1)

)
dµz

(
x(2)

)
dz ≤ ε (L’)

is fulfilled, we say the system is differentially ε-lumpable with respect to ξ.

Definition 4.3 (Differential deflatability). If there exists a domain Z ⊂ Rr and a continuous
function ξ : X→ Z such that

1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥∥p(·, y(1))/π(y(1))− p(·, y(2))/π(y(2))
∥∥∥
L1
µ

dµz
(
x(1)

)
dµz

(
x(2)

)
dz ≤ ε. (D’)

is fulfilled, we say the system is differentially ε deflatable with respect to ξ.
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As one easily sees using a triangle inequality argument, the differential conditions imply the
original conditions, and the original conditions almost imply the differential conditions:

Lemma 4.4. If the system is ε-lumpable with respect to ξ, then the system is differentially 2ε-
lumpable with respect to ξ.

Conversely, if the system is differentially ε-lumpable with respect to ξ, then the system is ε-
lumpable with respect to ξ.

Proof. Assume that the system is ε-lumpable, i.e., (L) holds for some function pL. Then we have

1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥∥p(x(1), ·)− p(x(2), ·)
∥∥∥
L1
dµz

(
x(1)

)
dµz

(
x(2)

)
dz

=
1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥p(x(1), ·)− pL(z, ·)︸ ︷︷ ︸
=pL(ξ(x(1)),·)

+ pL(z, ·)︸ ︷︷ ︸
=pL(ξ(x(2)),·)

−p(x(2)), ·)
∥∥∥
L1
dµz

(
x(1)

)
dµz

(
x(2)

)
dz

≤ 1

|Z|

∫
Z

∫
Σξ(z)

∥∥p(x(1), ·)− pL(ξ(x(1)), ·)
∥∥
L1 dµz(x

(1))dz +
1

|Z|

∫
Z

∫
Σξ(z)

∥∥p(x(2), ·)− pL(ξ(x(2)), ·)
∥∥
L1 dµz(x

(2))dz

≤ 2ε.

For the reverse statement, assume that (L’) holds. Define

pL(z, ·) :=

∫
Σξ(z)

p(x′, ·)dµz(x′).

This pL exists because p(·, y) ∈ L1
µ for all y ∈ X.

Recall that all µz are probability measures on the respective Σξ(z). Then

1

|Z|

∫
Z

∫
Σξ(z)

∥∥pL(z, ·)− p(x, ·)
∥∥
L1 dµz(x)dz

=
1

|Z|

∫
Z

∫
Σξ(z)

∥∥∥∫
Σξ(z)

p(x′, y)− p(x, y)dµz(x
′)
∥∥∥
L1
dµz(x)dz

≤ 1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥p(x′, ·)− p(x, ·)∥∥
L1 dµz(x

′)dµz(x)dz

(L’)

≤ ε.

Lemma 4.5. If the system is ε-deflatable with respect to ξ, then the system is differentially 2ε-
deflatable with respect to ξ.

Conversely, if the system is differentially 2ε-deflatable with respect to ξ, then the system is
ε-deflatable with respect to ξ.
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Proof. Assume that the system is ε-deflatable, i.e., (D) holds for some function pD. Then we have

1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥∥p(·, y(1))/π(y(1))− p(·, y(2))/π(y(2))
∥∥∥
L1
µ

dµz
(
y(1)

)
dµz

(
y(2)

)
dz

=
1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥∥p(·, y(1))/π(y(1))− pD(·, z) + pD(·, z)− p(·, y(2))/π(y(2))
∥∥∥
L1
µ

dµz
(
y(1)

)
dµz

(
y(2)

)
dz

≤ 1

|Z|

∫
Z

∫
Σξ(z)

∥∥∥p(·, y(1))/π(y(1))− pD(·, ξ(y(1)))
∥∥∥
L1
µ

dµz
(
y(1)

)
dz

+
1

|Z|

∫
Z

∫
Σξ(z)

∥∥∥p(·, y(2))/π(y(2))− pD(·, ξ(y(2)))
∥∥∥
L1
µ

dµz
(
y(2)

)
dz

=
2

|Z|

∫
X
‖p(·, y)− pD(·, ξ(y))π(y)‖L1

µ
dy

=
2

|Z|
∥∥‖p(∗, ·)− pD(∗, ·)π(·)‖L1

∥∥
L1
µ

(D)

≤ 2ε.

For the reverse statement, define

pD(·, z) :=

∫
Σξ(z)

p(·, y′)/π(y′)dµz(y
′).

This pD exists because p(x, ·) ∈ L1 for all x ∈ X. Then

1

|Z|
∥∥p(∗, ·)− pD(∗, ξ(·))π(·)

∥∥
K =

1

|Z|
∥∥‖p(∗, ·)− pD(∗, ξ(·))π(·)‖L1

∥∥
L1
µ

=
1

|Z|

∫
Z

∫
Σξ(z)

∥∥∥pD(·, z)− p(·, y)/π(y)
∥∥∥
L1
µ

dµz(y)dz

=
1

|Z|

∫
Z

∫
Σξ(z)

∫
X

∣∣∣ ∫
Σξ(z)

p(x, y′)/π(y′)− p(x, y)/π(y)dµz(y
′)
∣∣∣dµ(x)dµz(y)dz

≤ 1

|Z|

∫
Z

∫
Σξ(z)

∫
Σξ(z)

∥∥p(·, y′)/π(y′)− p(·, y)/π(y)
∥∥
L1
µ
dµz(y

′)dµz(y)dz

(D’)

≤ ε.

4.2. Differential loss functions

We can now define differential versions of the loss functions LL and LD in which the hard-to-
identify terms pL and pD no longer appear:

Definition 4.6 (differential lumpability and differential deflatability loss function). The nonlinear

functional L̃L : C(X,Z)→ R+, defined by

L̃L(ϑ) :=
1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∥∥∥p(x(1),·)− p(x(2), ·)
∥∥∥
L1
dµz

(
x(1)

)
dµz

(
x(2)

)
dz (20)

is called the differential lumpability loss function of the system.

The nonlinear functional L̃D : C(X,Z)→ R+, defined by

L̃D(ϑ) :=
1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∥∥∥p(·, y(1))/π(y(1))− p(·, y(2))/π(y(2))
∥∥∥
L1
µ

dµz
(
x(1)

)
dµz

(
x(2)

)
dz

(21)
is called the differential deflatability loss function of the system.
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Note that, unlike LL and LD, L̃L and L̃D are in general neither identical to each other, nor to
LL. The following result characterizes the relationship between the different loss functions:

Corollary 4.7. For any ϑ ∈ C(X,Z) holds

LL(ϑ) ≤ L̃L(ϑ) ≤ 2LL(ϑ),

and

LL(ϑ) ≤ L̃D(ϑ) ≤ 2LL(ϑ).

Proof. The first pair of inequalities follows directly from Lemma 4.4. The second pair of inequal-
ities follows from Lemma 4.5 and (18).

Hence, for arbitrary (non-optimal) reaction coordinates ϑ, we cannot expect L̃L(ϑ) or L̃D(ϑ)
to be similar to LL(ϑ). However, under the assumption that the system is indeed ε-lumpable for
small ε, we can expect their minima to be similar:

Corollary 4.8. Let ξ be an optimal reaction coordinate, defined by (19), and set ε := LL(ξ). Let

ξL and ξD be minimizers of L̃L and L̃D, respectively. Then

L̃L(ξ) ≤ 2ε and L̃D(ξ) ≤ 2ε.

Moreover,

LL(ξL) ≤ 2ε and LL(ξD) ≤ 2ε.

Proof. We show the assertions for L̃L. For L̃D, the proof is identical.
The first inequality follows from applying Corollary 4.7 to ϑ = ξ. The second inequality then

follows from

LL(ξL)
Cor. 4.7
≤ L̃L(ξL)

Def. ξL
≤ L̃L(ξ) ≤ 2ε.

Remark 4.9. The above variational principle implies that a minimizer η to L̃L or L̃D is not
necessarily a strict minimizer of LL. However, the difference between the minima will be at most
ε. In other words, the system will be 2ε-lumpable and -deflatable with respect to η. Thus, for
practical purposes, we can expect

ξL := arg min
ϑ∈C(X,Z)

L̃L(ϑ) (22)

and

ξD := arg min
ϑ∈C(X,Z)

L̃D(ϑ) (23)

to be “quasi-optimal” reaction coordinates.

5. Numerical approximation of the loss function

In order to solve the above optimization problems, the loss functions L̃L and L̃D, and, depending
on the optimization scheme, also their gradients, need to be evaluated numerically for candidate
reaction coordinates ϑ. The presumed high dimension n of the state space however presents several
challenges, which are discussed in the following.
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5.1. Sampling requirements of the deflatability loss function

Note that at the heart of both L̃L and L̃D stands the evaluation of the transition density pt

at certain points. The function pt is however not known analytically in practice, and must be
estimated empirically by simulations of the dynamics. A critical question is thus how many of

these estimates are required in order to approximate L̃L or L̃D up to a given tolerance. In
particular, an exponential dependency of that number on the dimension n would be fatal. We will
now show that, if the system is indeed highly lumpable with respect to some reaction coordinate ξ
(which in general is different from the candidate reaction coordinate ϑ), the differential deflatability

loss function L̃D can be approximated very efficiently. Crucially, ξ does not have to be known, its
implied existence is sufficient to guarantee the efficiency.

By expanding the ‖ · ‖L1
µ

norm in (21), we can write L̃D as

L̃D(ϑ) =
1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∫
X

∣∣∣∣p(x, y(1))

π(y(1))
− p(x, y(2))

π(y(2))

∣∣∣∣π(x)dxdµz(y
(1))dµz(y

(2))dz. (24)

or, by changing the integration order, as

=
1

|Z|

∫
X

(∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣∣p(x, y(1))

π(y(1))
− p(x, y(2))

π(y(2))

∣∣∣∣ dµz(y(1))dµz(y
(2))dz

)
π(x)dx. (25)

Exact evaluation of the outermost integral in (25) would require analytical knowledge of the
transition kernel p. Specifically, it would require knowledge of all transition densities, i.e., of
p(x, ·) for all starting points x ∈ X, which we cannot assume in practice. We can however
assume that a sufficiently precise approximation of a certain limited number of transition densities
p(x(k), ·), k = 1, . . . ,M can be obtained. This approximation would typically be realized by
parallel simulation of the stochastic dynamics starting from x(k), thus creating a point cloud that
is distributed according to p(x(k), ·). We can then apply density estimation techniques such as
kernel- or spectral density estimation. In any realistic scenario, we would however not to be able
to approximate p(x(k), ·) for a uniform covering of X by a sufficient amount of points, due to the
typically high dimension of X. For example, a regular grid-based covering of the unit cube [0, 1]n

with spacing δ > 0 would require M =
(

1
δ

)n
grid points. This exponential dependence of M

on the dimension renders classical numerical quadrature schemes infeasible, leaving Monte Carlo
(MC) quadrature as the only viable option for solving the integral over X.

To quantify the MC error in M for this integral, define

f(x) :=
1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣∣p(x, y(1))

π(y(1))
− p(x, y(2))

π(y(2))

∣∣∣∣ dµz(y(1))dµz(y
(2))dz, (26)

I(f) :=

∫
X
f(x)dµ(x), (27)

IM (f) :=
1

M

M∑
i=1

f(x(k)), x(k) ∼ µ i.i.d.. (28)

For the expected approximation error then holds [21, Chap. 4]

E [|I(f)− IM (f)|] =
Varµ(f)√

M
, (29)

where Varµ(f) denotes the variance of f with respect to µ, defined by

Varµ(f) = Eµ
[
f2
]
− (Eµ[f ])

2
.

The independence of the convergence rate 1/
√
M from the dimension is what gives MC methods

an edge above conventional methods, at least in theory. However, the effective convergence speed,
and hence the required number of start points x(k), is highly influenced by the prefactor Varµ(f).
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We will show now that for highly lumpable systems, Varµ(f) tends to be substantially smaller
than for non-lumpable systems. The intuitive explanation is that, for systems that are lumpable
with respect to some reaction coordinate ξ, f is essentially constant along every level set of ξ, hence
only the variation of f along ξ contributes to Varµ(f). This holds even in the candidate reaction
coordinate ϑ that appears in the definition of f is not close to ξ. The intuition is formalized by
the following theorem:

Theorem 5.1. Assume that the system is ε-lumpable with respect to ξ : X→ Z and the effective
density pL : Z× X→ R. Define fL : Z→ R by

fL(z) :=
1

|Z|

∫
Z

∫
Σϑ(z′)

∫
Σϑ(z′)

∣∣∣∣pL(z, y(1))

π(y(1))
− pL(z, y(2))

π(y(2))

∣∣∣∣ dµz(y(1))dµz(y
(2))dz′. (30)

Furthermore, define the effective invariant density by

π̄(z) :=

∫
Σξ(z)

π(x)dσz(x) (31)

where σz denotes the surface measure on Σξ(z). Then there exists a constant C > 0 such that

|Varµ(f)−Varµ(fL ◦ ξ)| ≤ 2(1 + C2)‖fL ◦ ξ‖L1
µ
‖π̄‖∞ε+O(ε2).

In words, the variance of f is ε-close to the variance of fL ◦ ξ. Also, the variance of fL ◦ ξ is
equal to the variance of fL:

Lemma 5.2. Assume that the system is pointwise ε-lumpable with effective density pL, and let
fL and µ̄ be defined as in Lemma 5.1. Then

Varµ(fL ◦ ξ) = Varµ̄(fL).

The proof of Theorem 5.1 and Lemma 5.2 can be found in Appendix B.

Remark 5.3. To summarize, the variance of f is ε-close to the variance of fL. As fL is defined
on Z, the variance of f cannot depend on the full phase space dimension n through the dimension
of its argument.

Looking at the definition of fL, it is clear (and also intutitive) that the variance of the effective
transition density pL(z, y) in its first argument influences Varµ̄(fL). Note, however, that the
dimension n also indirectly appears in the definition of fL, through the integrations over the
(n − r)-dimensional level sets Σϑ(z). As the candidate reaction coordinate ϑ can be arbitrarily
complex, it is very hard to give any general estimates on the influence of ϑ and n on Varµ̄(fL).
However, we found no argument why Varµ̄(fL) should increase with increasing n in general.
Indeed, in Section 6.1, we present an example system for which Varµ̄(fL) is inversely correlated
to n. There, we also numerically confirm the predicted dependence of the Monte Carlo error on
Varµ(f), and the predicted dependence of Varµ(f) on ε.

5.2. Further numerical challenges

In order to solve the optimization problem (23) in practice, several more numerical challenges will
need to be overcome. These challenges do however not involve the collection of dynamical data,
i.e., the expensive realization of the dynamical system, and hence can be considered peripheral.
We will therefore only briefly sketch possible solutions to these challenges, and leave the exact
elaboration to future work.

Discretization of the solution space

The solution space C(X,Z) for ξD in (22) needs to be replaced by a finite-dimensional para-
metric ansatz space. While in principle classical approaches like Galerkin or grid-based finite
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element discretization methods could be explored, these methods suffer heavily from the curse of
dimensionality, that is, the exponential dependence of the number of parameters on the system
dimension [34].

Due to its prevalence in scientific computing, many approaches have been suggested to tackle the
curse of dimensionality, including sparse grids [18], mesh-free methods [17], and non-parametric
approaches [42]. All of these methods are in principle compatible with the task of evaluating

L̃D(ϑ), provided the level sets Σϑ(z) can be sampled for the discretized ϑ.
However, one particular discretization method practically suggests itself for our overall task

of finding the minimizer of L̃D, and that is the representation of ξD via a multilayer neural
network [28]. These models have demonstrated impressive performance for problems of high input
dimensions, such as image recognition [27], protein structure prediction [45] or, quite relevant to our
task, Markov model construction via the approximation of transfer operator eigenfunctions [30].

Minimization of the loss function L̃D can then be accomplished by gradient descent methods, of
which there exist numerous efficient variants and implementations [41].

Level set integrals

Besides the integral over X, computation of L̃D(ϑ) requires the numerical solution of an integral
over Z and, for each z ∈ Z, two surface integrals over the z-level set Σϑ(z) of ϑ, see (25).As the
dimension r of Z was assumed to be small, classical grid-based quadrature methods are sufficient
for the former. The level sets Σϑ(z), however, are n − r dimensional nonlinear sub-manifolds of
X, and thus too high-dimensional for grid based methods.

The canonical approach would be again to use Monte Carlo quadrature, like for the integral over
X. This approach was used for the low-dimensional examples presented in Section 6. Sampling of
the surface measure µz can be accomplished by restricted simulation of the dynamics, for which
numerical schemes were suggested in [7]. Moreover, if ϑ is modeled by a neural network, sampling
Σϑ(z) could be alternated with the optimization step, leading to an optimization scheme similar
to stochastic gradient descent.

6. Numerical examples

6.1. Timescale-separated Brownian motion

We consider a process (Xt) = (X
(1)
t , . . . , X

(n)
t ) on the n-dimensional torus Tn := [−π, π]n for

n ≥ 2 with slow diffusion in the first coordinate direction (standard Brownian motion) and instan-
taneous and pairwise independent equilibrations to the uniform distribution in the n−1 remaining
coordinate components, i.e.,

dX
(1)
t = dWt,

X
(i)
t ∼ U([−π, π]), 2 ≤ i ≤ n,

such that

X
(i)
t1 ⊥ X

(i)
t2 , 1 ≤ i ≤ n, t1 6= t2,

X
(i)
t1 ⊥ X

(j)
t2 1 ≤ i 6= j ≤ n, ∀t1, t2,

with a standard Brownian motion Wt. We introduce a second process (X̃t) on Tn which is
parametrized by a variance σ2 > 0 by the global diffusion

dX̃
(1)
t = dW̃

(1)
t

dX̃
(i)
t = σdW̃

(i)
t , 2 ≤ i ≤ n,

where the W̃
(i)
t , 1 ≤ i ≤ n are pairwise independent standard Brownian motions.
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6.1.1. Transition densities

The transition densities of (Xt) and (X̃t) can be conveniently described in terms of the one-
dimensional wrapped normal distribution [20] on the circle [−π, π] with variance σ2 ≥ 0, which is
defined by the density gσ : [−π, π]× [−π, π]→ R+ given by

gσ(x, y) :=
1

2π

(
1 + 2

∞∑
k=1

ρk
2

cos(k(y − x))

)
, where ρ = exp(−σ2/2).

In particular, for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Tn we straightforwardly obtain the transition
density of (Xt) as

pτ,∞(x, y) :=
1

(2π)n−1
gτ (x1, y1)

as well as the transition density of (X̃t) as

pτ,σ(x, y) := gτ (x(1), y(1))

n∏
i=2

gτσ(xi, yi). (32)

The transition densities are illustrated in Figure 1 for the case n = 2.
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Figure 1.: Illustration of transition densities pτ,σ(0, ·) for different lag times τ and standard
deviations σ in the case n = 2. The top row illustrates how the transition densities pτ,σ(x, ·)
approximate pτ,∞(x, ·) for an increasing standard deviation σ when τ is fixed. Note that for fixed
x1 coordinates, the limiting density pτ,∞(x, ·) is constant along the x2-coordinate. The bottom
row illustrates the larger degree of global dispersion for inceasing lag times when σ is fixed.

6.1.2. Lumpability

As σ increases, the transition density pτ,σ(x, y) uniformly approximates pτ,∞(x, y), we may there-

fore understand (Xt) as the limiting process of (X̃t) for large variances. Because the transition
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density of pτ,∞(x, y) only depends on the first coordinate components x1, y1, we can verify lumpa-

bility of (X̃t) for large enough σ, as we will briefly illustrate now.
Consider the reaction coordinate ξ : [−π, π]n → [−π, π] given by the orthogonal projection onto

the first coordinate component ξ((x1, x2, . . . , xn) = x1. We call ξ the optimal reaction coordinate.
With the effective transition density

pτL(z, y) :=
1

(2π)n−1
gτ (z, y1),

one can then show that ∥∥pτ,σ(∗, ·)− pτL(ξ(∗), ·)
∥∥
K = O

(
exp(−(τσ)2/2)

)
. (33)

which for increasing σ or τ becomes arbitrarily small. The derivation of (33) can be found
in Appendix C. In particular, for any lag time τ > 0, we will find a σ for which the system
becomes arbitrarily lumpable, while in the limit σ →∞, the system is “perfectly” lumpable (i.e.,∥∥pτ,σ(∗, ·) − pτL(ξ(∗), ·)

∥∥
K = 0) for every τ > 0. Note that ε-lumpability of (X̃t) also implies

ε-deflatability due to Proposition 3.6.
As our estimates of the distance

∥∥pτ,σ(∗, ·) − pτL(ξ(∗), ·)
∥∥
K in Appendix C are asymptotic in

nature, we can give no precise formula for the dependence of the minimal ε in (L) on σ. In
particular, we cannot predict the dependence of ε on the system dimension n. Nevertheless,
when computing the distance numerically, its dependence on n appears to be moderate, and
seems to diminish with growing n (Figure 2). Hence, we can expect a high degree of lumpability
for moderately large σ and moderately high dimensions. Also, the computations confirm the
convergence rate predicted in (33).
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n = 3
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n = 5

O(exp(−σ2

2
))

Figure 2.: K-distance of the transition density pτ,σ to the effective transition density pτL, indicating
the degree of lumpability. We observe the predicted decay in the diffusion constant σ, as well as
a relative insensitivity to the system dimension n.

6.1.3. Loss function illustration

Next, we investigate the dependence of the loss function L̃D on the reaction coordinate, for the
two-dimensional process (one slow and one fast component). To be precise, we investigate the

dependence of L̃D(ϑα) on the parameter α of the family of “test” reaction coordiantes

ϑα(x) :=
1

π(cos |α|+ sin |α|)
(
cosα sinα

)
·
(
x1

x2

)
, α ∈ (−π, π). (34)

for different values of the diffusion constant σ. The level sets of ϑα are one-dimensional hyperplanes
that intersect the x1-axis with angle π/2−α. The prefactor in (34) ensures that Z = range(ϑα) =
[−1, 1] for all α. Figure 3 illustrates ϑα and its level sets.
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Figure 3.: The linear reaction coordinate ϑα for two different values of α.
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Figure 4.: The differential deflatability loss function of the reaction coordinate ϑα for α ∈
(−π/2, π/2) and different values of σ.

We use a combination of symbolic computation and numerical quadrature techniques for com-

puting L̃D(ϑα), using Mathematica and Matlab. In particular, for sampling points on the level
sets Σϑα(z), required for numerically computing the two innermost integrals in (25), we uti-
lized the Matlab function randFixedLinearCombination, written by John D’Errico and provided
through MatlabCentral [10]. The scripts containing our computations are provided in the SI.

We do however not suggest to use these scripts for the computation and minimization of L̃D in
real-world systems, as in particular the integration over the (n− r)-dimensional level sets quickly
become infeasible. See the discussion in Section 5.2 for a first outlook on how we plan to solve the
optimization problem in practice.

The differential deflatability loss function L̃D(ϑα) in dependence of α is shown in Figure 4. We

observe that, for σ = 2 and σ = ∞, L̃D(ϑα) indeed takes its unique global minimum for α = 0,
i.e., the optimal reaction coordinate ϑ0(x) = ξ(x) = x1. We also observe that for σ = 2, the
minimum value is not zero, as the system is not “perfectly lumpable” with respect to ϑ0, whereas
for σ =∞ it is. Further, the “worst” reaction coordinates ϑ±π/2(x) = ±x2, which project onto the
system’s fast instead of its slow coordinate, correctly get assigned the global maximum value. For
α = 1, on the other hand, the diffusion is isotropic, and hence the “slow directions” coincide with
the directions of largest extent, which are the diagonals of the domain [−π, π]2. Consequently,

L̃D(ϑα) becomes minimal for α = ±π/4, for which ϑα projects onto the diagonals {x1 = ±x2}.
The behavior of L̃D is therefore perfectly consistent with our intuition, and we can expect to

identify the optimal reaction coordinate by minimizing L̃D.
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Figure 5.: The function f , i.e., the integrand of the integral over X in L̃D(ϑ) for ϑ(x) = x1 + x2

and different values of σ.

6.1.4. Loss function Monte Carlo error

Finally we investigate the Monte Carlo quadrature error for the integral over X in L̃D. As discussed
in Section 5.1, this error is, besides the number of sample points M , determined by the variance
of the integrand f , which for the current system takes the form

f(x) =
(2π)n

|ϑmax − ϑmin|

∫ ϑmax

ϑmin

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣pτ,σ(x, y(1))− pτ,σ(x, y(2))
∣∣∣ dσz(y(1))dσz(y

(2))dz,

where ϑmax and ϑmin describe the maximum and minimum of ϑ. We point out in particular that
f depends on the diffusion coefficient σ and, through the reaction coordinate ϑ, on the system
dimension n. The influence of these two parameters on the Monte Carlo error is the primary
subject of investigation for this section.

We consider in dimension 2 and 3, respectively, the test reaction coordinates

ϑ2(x) = x1 + x2, ϑ3(x) = x1 + x2 + x3.

Figure 5 shows f for the reaction coordinate ϑ2 and different values of σ. We observe that with
increasing σ, f indeed becomes increasingly constant on the level sets {x1 = z} of the optimal
reaction coordinate ξ. This behavior was predicted in Section 5.1.

Figure 6 illustrates the variance of f . We first note that the variance indeed decreases for
increasing σ, and converges towards the variance of the process with instantaneously equilibrating
components x2, . . . , xn (equivalent to choosing “σ =∞”). Moreover, we observe that the variance
of the three-dimensional process is substantially smaller compared to the two-dimensional process.
This observation still holds when considering the relative variance Var[f ]/E[f ]. This demonstrates
that higher-dimensional function do not per se possess higher variance. In fact, Var[f ] appears to
be more dependent on the choice of the particular reaction coordinate ϑ than on n, although, to
avoid digression, we will refrain from detailed analysis.

Finally, we estimate the relative expected MC error

E [|I(f)− IM (f)|]
I(f)

where I(f) and IM (f) are the exact integral and Monte Carlo integral with M samples of f defined
in (27) and (28). In practice, this error indicates how many “dynamical samples” pτ,σ(x(k), ·) need

to be created by numerical simulation in order to approximate L̃D(ϑ) up to a given accuracy. In
the present example, however, pτ,σ is known analytically by (32).

Figure 7 shows the relative error in dependence on the sample size M for ϑ2 and ϑ2, each for
a finite value of σ as well as σ = ∞. In all four cases we observe the expected Monte Carlo
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Figure 6.: (Relative) variance of f associated in dimensions 2 and 3 for various σ. We observe
convergence of Var[f ] with variable σ towards Var[f ] associated with the σ-independent limit
process Xt.
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Figure 7.: The relative Monte Carlo quadrature error for the integral over X in L̃D(ϑw) for
different dimensions n and different diffusion coefficients σ.

convergence rate of O(1/
√
M). Moreover, the error is significantly smaller for higher σ, i.e., the

more lumpable system. Finally, the expected error for the higher dimensional system is slightly
smaller. All these phenomena are perfectly consistent with the preceding analysis of Var[f ].

We conclude from this example that for lumpable systems, we can expect to find the optimal

reaction coordinate by minimising L̃D, that the Monte Carlo approximation to L̃D(ϑ) requires
only few dynamical samples for highly lumpable systems, and that a high dimension of the base
system has no negative impact on the performance.

6.2. Metastable circular system

To demonstrate the behavior of the loss function for nonlinear optimal reaction coordinates, we
consider as a second example a two-dimensional system governed by the overdamped Langevin
dynamics

dXt = −∇V (Xt) +
√

2β−1dWt, (35)

where V : R2 → R is the potential energy surface and β > 0 is the inverse temperature determining
the strength of the Brownian motion Wt. Informally, movement of this system can be described
as a random walk within the energy landscape, aiming in the direction of steepest descent of V
but being disturbed by temperature-scaled white noise.
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radial part of the polar coordinates, respectively. Center & right: The circular potential and its
components for different values of σ. The dashed white line indicates the unit circle, i.e., the
minimal energy pathway connecting the local minima.

In particular, we here consider the family of potentials

Vσ(x) = cos (5ϕ(x)) + σ (r(x)− 1)
2
, σ > 0,

where (ϕ(x), r(x)) describe the polar coordinates of x, i.e.,

ϕ(x) = atan2(x), r(x) = ‖x‖2.

The potential consists of two components: a cosine term in the angular coordinate with five local
minima of equal depth, and a quadratic term in the radial coordinate with a single minimum at
r = 1. The full potential, shown in Figure 8, therefore possesses five local minima arranged along
the unit circle. The two components ϕ and r as functions on X are shown in Figure 10 (left).

6.2.1. Metastability analysis

At moderate temperatures, the five local minima of V induce metastability in the system. This
means that a typical trajectory will vibrate around a minimum for a long time, until suddenly,
induced by sufficiently strong stochastic excitation, undergo a rapid transition to another local
minimum. If additionally the equilibration in the radial direction is sufficiently fast, i.e., the
parameter σ is sufficiently large, then these rare transitions will be the slowest sub-processes of
the system. To confirm this, we compute the leading eigenvalues and associated eigenfunctions of
the system’s transfer operator Pt : L2(X)→ L2(X), which is defined by

Ptf(x) =

∫
X
f(y)pt(y, x)dy.

Going back to the late 90s, spectral analysis of the transfer operator, or its adjoint, the Koopman
operator, forms the basis of many model reduction methods that aim to preserve the system’s long
timescales, for an overview see [24].

The eigenvalues of Pt for t = 0.1 and various values of σ are shown in Figure 9. We see that
for σ = 10 and σ = 100, there is a significant spectral gap after λ5, indicating a significant time
scale separation between the associated sub-processes. Analysing the sign structure of the associ-
ated eigenfunctions confirms that the slowest processes are indeed associated with the transitions
between the metastable sets (see the SI).

For small σ, on the other hand, no spectral gap can be observed, hence the metastable transitions
are not considerably slower than the remaining processes. Indeed, sign analysis of the sixth
eigenfunction for σ = 1 shows that the corresponding sub-process describes the equilibration in
the radial direction (see the SI). As λ6 is not significantly separated from λ5, the radial equilibration
occurs on roughly the same timescale as the metastable transitions.
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Figure 9.: Leading eigenvalues of the circular system’s transfer operator for different values of
σ. For larger σ, we observe a spectral gap, which indicates that the equilibration times of the
metastable transitions are much slower than that of other sub-processes in the system.

6.2.2. Lossfunction computation

The preceding analysis confirms that, for high enough σ, a good reaction coordinate should resolve
the transitions between the metastable sets. As these transitions occur predominantly within
certain “transition channels” that surround the minimum energy pathways (MEPs) [32], and as in
our system the MEPs between two neighbouring minima are segments of the unit circle, we would
expect the angular component ϕ(x) of the polar coordinates of x to be a good reaction coordinate.
Conversely, we would expect the radial component r(x) to be a bad reaction coordinate, especially
for high values of σ.

To test this hypothesis, we now compute the differential lumpability loss function L̃D for both ϕ

and r. For the lag time parameter in L̃D, we use τ = 0.1, as the observed spectral gap for this time
indicates that the time scale separation between the slow and fast processes has already manifested
itself. We again solve the various integrals in (25) by Monte Carlo quadrature. One complication
over the simple slow-fast system is that the transition density functions pτ (x, ·) are not known
analytically, so they have to be approximated empirically. For that, we first draw an empirical
sample of pt(x, ·) by simulating many trajectories with starting point x, and then apply the kernel
density estimation algorithm to the end points. For details on the numerical implementation see
the SI.

Figure 10 (right) shows the loss function for the two reaction coordinates in dependendce of σ.

We see that, indeed, L̃D(ϕ) < L̃D(r) for all values of σ, hence ϕ is the better reaction coordinate.

Moreover, for increasing σ, L̃D(ϕ) continually decreases1, whereas L̃D(r) increases. This agrees
well with our intuitive understanding of the role of σ: with increasing σ, the radial component r
equilibrates more quickly, so the long-term future evolution of Xt depends more and more only
on ϕ(Xt) (i.e., the degree of lumpability with respect to ϕ increases), and less and less on r(Xt)
(i.e., the degree of lumpability with respect to r decreases).

7. Discussion and outlook

In this paper, we formally characterized optimal reaction coordinates in continuous Markovian
systems, that is, observables that optimally describe latent long-term mechanisms of the dynamics.
We have seen, by both theoretical analysis (Section 3.3) and numerical examples (Section 6),
that our definition is applicable to several common types of multiscale systems, such as slow-fast
systems and metastable systems. To add further interpretability to our definition, it would be
desireable to draw a formal connection to the well-established transition path theory [13, 32], which

1Note that the flattening of L̃D(ϕ) towards the right side of the plot is a numerical artefact. For high degrees of
lumpability, miniscule differences between transition densities need to be quantified, which presents a challenge
to our fixed-bandwidth kernel density estimator.
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Figure 10.: Left: the two components ϕ and r as functions on X. Right: Loss function L̃D for
ϕ and r interpreted as reaction coordinates.

characterizes reaction coordinates in terms of committor functions and minimum energy pathways
on the potential energy surface. In [2], a connection between the transition manifold approach (a
predecessor to the present characterization) and transition path theory has been discussed rather
informally, but a rigorous investigation is still outstanding.

We then presented a variational formulation of this characterization as a computational strategy
for the discovery of optimal reaction coordinates. In particular, that variational formulation pro-
vides a leverage point for modern machine learning methods, such as deep learning and stochastic
gradient descent. The implementation of these methods and their demonstration of efficiency are
subject of ongoing work. The reduced data requirement for the optimization problem that was
demonstrated in this paper raises confidence that we will be able to apply our method to high
dimensional problems such as the identification of reaction coordinates in large molecular systems.
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[24] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé. Data-Driven
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A. Extended multiscale expansion of slow-fast systems

In this section, we continue the multiscale analysis for the slow-fast system from Section 3.3.2.
That is, we derive an evolution equation for the dominant component qt0 of the transition density.
Comparing the terms of order ε0 in (11) yields

∂tq
t
0(x, ·) = Lzqt1(x, ·) + Lyqt0(x, ·). (36)

The middle term is zero, which can be seen as follows: Let the averaging operator Π : L1
µ(X) →

L1
µ̄(Z) be defined by

Πg(z) =

∫
Y g(y, z)π(y, z)dy

π̄(z)
where π̄(z) =

∫
Y
π(y, z)dy (37)

and µ̄ is the measure induced by π̄. As qt0(x, ·) is independent of y in its first argument, we have

∂tq
t
0(x, ·) =

1

π̄(z)
Π∂tq

t
0(x, ·) and Lyqt0(x, ·) =

1

π̄(z)
ΠLyqt0(x, ·).

Furthermore, ΠLz = 0. It follows that Lzqt1(x, ·) = 0.
Therefore, applying Π to (36) gives

∂tΠq
t
0(x, ·) = ΠLyqt0(x, ·).

30



As both qt0(x, ·) and Lyg (for all g) are independent of y, we finally get for the evolution equation
for qt0

∂tq
t
0(x, ·) = Lyqt0.

Hence, with L := ΠLyΠ, the evolution equation of qt0(x, ·) up to order ε becomes

∂tq
t
0(x, ·) = Lqt0(x, ·) +O(ε) for all x ∈ X.

B. Proof of Theorem 5.1

The proof of consists of simple integral and norm estimations. The main argument, used multiple
times in the final proof, is formulated in the following lemma:

Lemma B.1. Assume that the system is ε-lumpable with respect to ξ : X → Z and the effective
density pL : Z× X→ R. Let fL and Varπ be defined as in Theorem 5.1. Then

‖f − fL ◦ ξ‖L1
µ
≤ ‖π̄‖∞ ε. (38)

Proof. Writing out the left hand side of (38), we get

‖f − fL ◦ ξ‖L1
µ

=

∫
X

∣∣∣∣∣
(

1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣p(x, y(1))

π(y(1))
− p(x, y(2))

π(y(2))

∣∣∣dµz(y(1))dµz(y
(2))dz

)

−
(

1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣pL(ξ(x), y(1))

π(y(1))
− pL(ξ(x), y(2))

π(y(2))

∣∣∣dµz(y(1))dµz(y
(2))dz

)∣∣∣∣∣dµ(x).

Applying the reverse triangle inequality, this becomes

‖f − fL ◦ ξ‖L1
µ
≤
∫
X

1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣∣p(x, y(1))

π(y(1))
− p(x, y(2))

π(y(2))

− pL(ξ(x), y(1))

π(y(1))
+
pL(ξ(x), y(2))

π(y(2))

∣∣∣∣dµz(y(1))dµz(y
(2)) dµ(x)dz

≤
∫
X

1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣∣p(x, y(1))

π(y(1))
− pL(ξ(x), y(1))

π(y(1))

∣∣∣∣dµz(y(1))dµz(y
(2))dzdµ(x)

+

∫
X

1

|Z|

∫
Z

∫
Σϑ(z)

∫
Σϑ(z)

∣∣∣∣p(x, y(2))

π(y(2))
− pL(ξ(x), y(2))

π(y(2))

∣∣∣∣dµz(y(1))dµz(y
(2))dzdµ(x).

In each of the two summands, the ingrand is independent of y(2) and y(1), respectively, hence one
integral over Σϑ(z) becomes the factor π̄(z):

‖f − fL ◦ ξ‖L1
µ
≤ 2

∫
X

1

|Z|

∫
Z

∫
Σϑ(z)

|p(x, y)− pL(ξ(x), y)| π̄(z)dσz(y)dzdµ(x)

≤ 2 ‖π̄‖∞
∫
X

1

|Z|

∫
Z

∫
Σϑ(z)

|p(x, y)− pL(ξ(x), y)| dσz(y)dzdµ(x)

By the coarea formula, the inner two integrals simply describe the integration over X with respect
to the Lebesgue measure, i.e.,

‖f − fL ◦ ξ‖L1
µ
≤ 2 ‖π̄‖∞

1

|Z|

∫
X
‖p(x, ·)− pL(ξ(x), ·)‖L1 dµ(x).

The integral over X is the L1
µ norm, so the overall expression is the K-norm (see (3)):

‖f − fL ◦ ξ‖L1
µ
≤ 2 ‖π̄‖∞

1

|Z| ‖p(∗, ·)− pL(ξ(∗), ·)‖K
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which by the ε-lumpability assumption (L) is

≤ 2 ‖π̄‖∞ ε.

The proof of the main result now consists only of reducing the difference of the variances to the
expression ‖f − fL ◦ ξ‖L1

µ
.

Proof of Theorem 5.1. We have

|Varµ(f)−Varµ(fL ◦ ξ)| =
∣∣Eµ [f2 − (fL ◦ ξ)2

]
−
(
Eµ[f ]2 − Eµ[fL ◦ ξ]2

)∣∣
≤
∣∣Eµ [f2 − (fL ◦ ξ)2

]∣∣︸ ︷︷ ︸
=:(?)

+
∣∣Eµ[f ]2 − Eµ[fL ◦ ξ]2

∣∣︸ ︷︷ ︸
=:(??)

.

For the first summand, we get

(?) =
∥∥f2 − (fL ◦ ξ)2

∥∥
L1
µ

= ‖(f − fL ◦ ξ)(f + fL ◦ ξ)‖L1
µ

≤ ‖f − fL ◦ ξ‖L2
µ
‖f + fL ◦ ξ‖L2

µ
.

As µ is a finite measure on X, we have L2
µ(X) ⊂ L1

µ(X), hence there exists a C > 0 such that

(?) ≤ C2 ‖f − fL ◦ ξ‖L1
µ
‖f + fL ◦ ξ‖L1

µ
,

which by Lemma B.1 can be estimated as

≤ C2‖π̄‖∞ε ‖f + fL ◦ ξ‖L1
µ
.

Using the inverse triangle inequality, the remaining factor ‖f + fL ◦ ξ‖L1
µ

can be estimated as

‖f + fL ◦ ξ‖L1
µ
≤ ‖f − fL ◦ ξ‖L1

µ
+ 2 ‖fL ◦ ξ‖L1

µ

≤ ‖π̄‖∞ε+ 2 ‖fL ◦ ξ‖L1
µ
.

Overall, we get for the first summand

(?) ≤ 2C2‖fL ◦ ξ‖L1
µ
‖π̄‖∞ε+ C2‖π̄‖2∞ε2

For the second summand, we get

(??) = |(Eµ[f ] + Eµ[fL ◦ ξ]) (Eµ[f ]− Eµ[fL ◦ ξ])|
≤ ‖f + fL ◦ ξ‖L1

µ
‖f − fL ◦ ξ‖L1

µ
.

By using Lemma B.1, and the same estimation of ‖f + fL ◦ ξ‖L1
µ

as above, this becomes

(??) ≤ 2‖fL ◦ ξ‖L1
µ
‖π̄‖∞ε+ ‖π̄‖2∞ε2

Overall, we receive

|Varµ(f)−Varµ(fL ◦ ξ)| ≤ 2(1 + C2)‖fL ◦ ξ‖L1
µ
‖π̄‖∞ε+ (1 + C2)‖π̄‖2∞ε2.

Finally, we show Lemma 5.2:

Proof of Lemma 5.2. We have

Varµ(fL ◦ ξ) = Eµ[(fL ◦ ξ)2]− (Eµ[fL])
2

=

∫
X

(fL(ξ(x)))
2
π(x)dx−

(∫
X
fL(ξ(x))π(x)dx

)2

.
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Using the coarea formula, this becomes

=

∫
Z
f2
L(z)

∫
Σξ(z)

π(x)dσz(x)dz +

(∫
Z
fL(z)

∫
Σξ(z)

π(x)dσz(x)dz

)2

=

∫
Z
f2
L(z)π̄(z)dz +

(∫
Z
fL(z)π̄(z)dz

)2

= Varµ̄(fL).

C. Lumpability of Example 6.1

For x, y ∈ T, we define the shorthand notation hσ(x, y) :=
(

1 + 2
∑∞
k=1 ρ

k2 cos(k(y − x))
)

, where

ρ = exp(−σ2/2). Note that since gσ(x, y) = hσ(x, y)/(2π) is a density, the function h is cleary
nonnegative. For all x, y ∈ Tn, we have

|pτ,∞(x, y)− pτ,σ(x, y)| =
∣∣∣∣∣ hτ (x(1), y(1))

(2π)n

(
1−

n∏
i=2

hτσ(x(i), y(i))

)∣∣∣∣∣
≤ C(τ)

(2π)d
max

{
max
x,y∈Tn

∣∣∣∣∣1−
n∏
i=2

hτσ(x(i), y(i))

∣∣∣∣∣ , min
x,y∈Tn

∣∣∣∣∣1−
n∏
i=2

hτσ(x(i), y(i))

∣∣∣∣∣
}

=
C(τ)

(2π)n
max


∣∣∣∣∣∣1−

(
1 + 2

∞∑
k=1

(±1)kρk
2

)n−1
∣∣∣∣∣∣
 (39)

with the constant C(τ) := maxx(1),y(1)∈T h
τ (x(1), y(1)). Here, we use the fact that for all τ, σ > 0,

the maximum of
∏n
i=2 h

τσ(x(i), y(i)) is attained at x(i) = y(i) and its minimum at
∣∣x(i) − y(i)

∣∣ = π.
When we apply the binomial theorem to the right hand side of (39), we obtain∣∣∣∣∣∣1−

(
1 + 2

∞∑
k=1

(±1)kρk
2

)n−1
∣∣∣∣∣∣ =

∣∣∣∣∣∣
n−1∑
i=1

(
n− 1

i

)(
2

∞∑
k=1

(±1)kρk
2

)i∣∣∣∣∣∣
= 2(n− 1)

( ∞∑
k=1

ρk
2

)
+O

( ∞∑
k=1

ρk
2

)2
 . (40)

We now neglect the higher order terms in (40). Whenever σ is large enough such that ρ < 1, we
have by the limit of the geometric series( ∞∑

k=1

ρk
2

)
≤
( ∞∑
k=1

ρk

)
=

1

1− ρ − 1 = O(ρ) = O
(
exp(−(τσ)2/2)

)
.

Hence, we have shown

max
x,y∈Tn

|pτ,∞(x, y)− pτ,σ(x, y)| =
(
exp(−(τσ)2/2)

)
.

As such, bounding both integrals in the norms in the lumpability condition (L) by the maximum
above, we obtain the assertion (33).

Note that by neglecting the higher order terms in (40), we essentially ignore the impact of the
prefactor depending on n in terms of the binomial coefficient, constituting the unknown dependence
of the error for flexible n as mentioned in Section 6.1.2.
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