
Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 124-130

Online ISSN 2256-070X
https://doi.org/10.17770/etr2021vol2.6629

© 2021 Timur Mironov, Lilia Motaylenko, Dmitry Andreev, Igor Antonov, Mikhail Aristov.
Published by Rezekne Academy of Technologies.

This is an open access article under the Creative Commons Attribution 4.0 International License.

124

Comparison of Object-Oriented Programming
and Data-Oriented Design for Implementing

Trading Strategies Backtester

Timur Mironov
Institute of Engineering Sciences

Pskov State University
Pskov, Russia

jarwis9812@gmail.com

Igor Antonov
Institute of Engineering Sciences

Pskov State University
Pskov, Russia

igorant63@yandex.ru

Lilia Motaylenko
Institute of Engineering Sciences

Pskov State University
Pskov, Russia
lvs@mail.ru

Mikhail Aristov
Institute of Engineering Sciences

Pskov State University
Pskov, Russia

maristov@list.ru

Dmitry Andreev
Institute of Engineering Sciences

Pskov State University
Pskov, Russia

dandreev60@mail.ru

Abstract - This research proposes a way to accelerate
backtesting of trading strategies using data-oriented design
(DOD). The research discusses the differences between DOD
and object-oriented approach (OOP), which is the most
popular at the current moment. Then, the paper proposes
efficient way to parallelize a backtesting using DOD. Finally,
this research provides a performance comparison between
DOD and OOP backtester implementations on the example
of typical technical indicators. The comparison shows that
use of DOD can speed up the process of quantitative features
calculation up to 33% and allows for parallelization scheme
that better utilizes resources in multiprocessor systems.

Keywords - algorithmic trading, data-oriented design
(DOD), high performance computing (HPC), parallel
computing

I. INTRODUCTION
Term backtest refers to testing of a trading strategy on

historical data in order to assess its effectiveness or
optimize parameters [1]. In essence, backtest is a
simulation, in which the algorithm being tested is placed in
conditions as close as possible to the real exchange trading
that took place in the past. Even though the results of such
test are hypothetical and in no case can be unambiguously
considered a reliable indicator of the strategy success on the
real market, they allow, at least, drawing conclusions about
its adequacy and obtaining an estimation of many of its
properties, such as the ratio of purchases to sales, the
number of transactions per unit of time, etc. Although

various studies indicate a high probability of overfitting
when a strategy’s model is constructed and optimized
based on the results of a backtest [2], the testing of trading
algorithms on historical data is still the main tool for trading
strategy development and can often be seen both in practice
and in academic research.

Regardless of the goals and methods of using the
backtest results, the procedure itself requires a lot of
computational power. Due to the development of trading
platforms and the growing popularity of algorithmic
trading, the amount of data that needs to be analysed and
processed is constantly growing [3]. Modern trading robots
are capable of performing hundreds of transactions per
second. To remain competitive a trading system must be
able to respond to even the smallest events. Many
exchanges, in turn, provide an opportunity to receive
sufficiently detailed data in the form of real-time
anonymous order flow. Just for single trading instrument
the number of orders, passing through the trading system
per day, can run into millions. For reliable strategy testing
all this amount of data must also flow through the
backtesting system. Of course, one strategy can work with
a large number of instruments at once, and the tested period
can be as long as several years, which only increases the
number of calculations.

This work is devoted to the computational side of
backtesting. To increase the speed of computations it is
proposed to use data-oriented design (DOD) [4]. Currently,

https://doi.org/10.17770/etr2021vol2.6629
https://creativecommons.org/licenses/by/4.0/
mailto:jarwis9812@gmail.com
mailto:igorant63@yandex.ru
mailto:_lvs_@mail.ru
mailto:maristov@list.ru
mailto:dandreev60@mail.ru

Timur Mironov., et al. Comparison of Object-Oriented Programming and Data-Oriented Design for Implementing
Trading Strategies Backtester

125

DOD is mainly used in the video game development and
serves as a tool for optimizing resource-intensive
computational tasks; it also offers techniques for
parallelizing data processing efficiently. The goal of the
research is to compare DOD with the most popular at the
moment OOP approach and evaluate performance of
backtesting software developed using both approaches.

II. MATERIALS AND METHODS
To understand the context of the study, it will be useful

to define some abstract architecture that any software for
testing trading strategies on historical data will sufficiently
implement. First of all, let’s consider the input data. Most
of modern markets are double auction markets, meaning
that buyers and sellers simultaneously offer their prices by
submitting bids to the exchange's trading system. Those
bids form an order book (table of quotes), which reflects
the current supply and demand at various prices and is
available for all bidders. If the system receives an order,
which satisfies certain conditions (usually, the condition is
that the order price is not worse than the price of one or
several opposite orders), an execution (deal or trade) occurs
at the best price for both parties. Thus, the main sources of
the data, from which a strategy generates a trading signal,
are order book and a table (list) of deals. As mentioned
above, the most detailed type of data is the flow of all
orders, entering the exchange. However, this format is not
available on certain trading platforms. Instead, an exchange
might broadcast two separate data streams: a simplified
representation of the order book, consisting of price levels
(price and quantity pairs), and trade executions with
varying degrees of detail (for example, some platforms
broadcast passive participants of transactions only or vice
versa).

Usually, data is transmitted in incremental manner -
instead of entire current state, each data packet contains
only a change of a state since previous packet (or
information about particular event in exchange's trading
system). Typically, these features are reflected both in the
market data storage system (information is stored as
incremental updates) and in the architecture of the backtest
software, which is implemented as an event-driven system.
Market trading, as a rule, isn't going on continuously.
Instead, the trading day is separated into several sessions
with short breaks between them. Similarly, backtesting is
often applied to one or more sessions. One day is often
chosen as the minimum time unit for backtesting.

Thus, the primary function of the backtester is to read
the raw data of a trading session from some source (file,
database, TCP connection, etc.) and restore the order book
and deals table - i.e., restore a structured data.

The next function of the backtester is strategies
calculation. In this paper it is understood as the
computation of a set of simple predicates that compare
certain computable features, with some threshold values.
The fixed thresholds, as well as the weights and coefficients
needed to extract the features, are called strategy
parameters. From this point of view, a strategy is, in fact, a
decision tree, the output of which is a trading signal that

tells to buy or sell certain volume of a given trading
instrument.

The next function of the backtester is to extract some
quantitative features from structured market data. By
analogy with indicators in technical analysis, in this study,
a module that calculates a certain feature, is called an
indicator. Thus, an indicator is a module that makes any
calculations based on market data of a specific financial
instrument. The main structural function of such modules
is to minimize the computation graph by reusing already
calculated features. As a rule, the indicator algorithm
depends not only on the market data, but also on additional
parameters, i.e., it implements the calculation of a whole
class of features instead of just one. Despite the apparent
simplicity, it is the effectiveness of the organization of
indicators that determines the performance of the entire
system. Since different strategies within a single backtest
session can use the same indicators, the backtester must
provide a mechanism for reusing the results of calculations.
This is important, because in the problem of parameter
optimization, in the vast majority of cases, heuristic search
techniques are used, such as a particle swarm [5, 6], genetic
algorithms [7, 8], and machine learning methods [9] - [12].
The use of such techniques implies computation of a large
number of combinations of parameters, many of which
would partially repeat each other, which would inevitably
lead to repetitive calculations.

The last and the main function of the backtester is the
simulation of executions, and the calculation of various
trading metrics, starting with simple numerical
characteristics of the strategy, such as the number of orders
sent, the maximum position size (the number of units of a
trading instrument in the portfolio) or the ratio of purchases
to sales, and ending with financial metrics for assessing
efficiency of investment portfolio (e.g., Sharpe ratio).

In addition, the backtester must provide an adequate
simulation of the conditions in which the algorithm being
tested is supposed to operate. Thus, it is necessary to
control the number of transactions and comply with the
restrictions on lot sizes or the minimum price step set on
the specific trading platform. The number of different rules
that must be checked during simulation can vary greatly
depending on the exchange, regulatory rules, or the needs
of a trader.

So, to summarize: strategy testing software performs
the following operations:

a) Reading data from a certain source and restoring
structured data necessary for calculating trading signals;

b) Extracting quantitative features from structured
data;

c) Generation of trading signals;

d) Simulation of executions and computation of
effectiveness metrics of the trading algorithms.

This study is mainly devoted to extraction of features
and generation of trading signals. Since simulation of
executions may greatly vary depending on many factors,

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 124-130

126

the process of trading simulation is not considered in this
paper.

The classic implementation of the backtester performs
all the processing steps sequentially for each individual
event. In the most common OOP paradigm different types
of indicators are represented by classes. Each instance of
such class encapsulates the thresholds, coefficients and
intermediate values required for calculations. Strategies are
implemented in a similar way. Together the instances of
these classes represent the computing core of the trading
system, for which an example of a UML class diagram is
shown in “Fig. 1”. The indicator instances implement the
calculate method in which, based on the incoming data
packet and the internal state, some features are computed.
Instances of strategies, in turn, generate trading signals,
based on values calculated by indicators. Later the signals
can go through several more stages of processing, but this
is not essential in this study.

Fig. 1. UML class diagram of backtester’s core.

It can be seen from the diagram that the main cycle of
the system looks as follows: iterate over all indicator
instances and call their calculate method, and then repeat
the same for all strategy instances. Data-Oriented Design
offers an alternative approach to computing. One of the
main principles of DOD is: "structure of arrays versus array
of structures" (SoA versus AoS). Its essence lies in the
reorganization of data in such a way that instead of
sequential placement of records corresponding to a certain
entity, individual components inherent in this entity are
sequentially located in memory. For example, if the task is
to process an array of N pixels in RGB format, the
traditional representation as a vector of N tuples of the form
(R, G, B) is replaced with a 3xN matrix, where each row
corresponds to a colour component, and the column
represents the entire pixel. This layout can significantly
improve performance due to greater data locality. Of
course, the speed gain depends on the pattern of accessing
the fields of such records. The greatest increase of
performance is achieved when the computations is done on
the individual rows of the matrix. It should be noted that
hereinafter it is assumed that matrices are implemented as
a set of separate one-dimensional arrays that makes it easy
to add or remove rows.

In the backtester, the principle of "structure of arrays
versus array of structures" finds several uses. The first
relates to the backtester's computational core. In this paper,
the following organization of computing units is proposed.
To calculate K indicators of the same type, which require
C coefficients for calculations, a matrix of parameters IP:
CxK is allocated, where a row represents separate indicator
coefficient. The module that performs calculations receives
IP and market data as an input. The calculation results are
placed in the output matrix I: LxT, where L is the number
of output values of the indicator, T is the total number of
all indicators involved in the current backtesting. Thus, in
proposed architecture each OOP instance of the indicator
class is represented by a column in the parameters matrix,
and instead of calculating each feature separately all
indicators of the same type are processed at once. At a
minimum, this allows reducing the cost of a function call
(which can be very significant in the case of using
polymorphism and virtual functions), at best, this approach
increases the locality of the instruction and data cache.

In a similar way, the instances of strategy classes are
replaced by the matrix of parameters PS. The input data for
the strategy calculation module are matrices I, PS and PM.
The essence of the PM matrix is as follows: the number of
strategies can be greater than the number of indicators,
since the calculated values of the latter can be used in the
signals generation by several different strategies.
Therefore, it is necessary to provide a way to map the index
of the strategy to the corresponding value in the matrix I,
what is accomplished with PM.

Such organization is, in fact, an implementation of the
ECS (entity-component-system) pattern, in which each
object (called an entity, according to the pattern) is
represented by a set of components that only store data or
state. All logic of a program is executed by so-called
systems that perform calculations with specific
components [13, 14]. In terms of this pattern, indicators and
strategies are systems, and their parameters are
components. In this case, the trading system itself can be
considered an ECS-entity. “Fig. 2” shows the OOP
architecture after applying proposed transformations.

Fig. 2. UML diagram of DOD backtester’s core.

The principle of "structure of arrays versus array of
structures" is well suited not only for storing intermediate
calculations during backtesting, but also for representing
input data. One of the main types of input data for a strategy

Timur Mironov., et al. Comparison of Object-Oriented Programming and Data-Oriented Design for Implementing
Trading Strategies Backtester

127

testing system is a table of deals. Minimum set of fields that
are required to represent a deal record are the following:

a. Instrument id - trading instrument identifier;
b. Timestamp - time of the transaction;
c. Price - the price of the deal;
d. Quantity - the volume of the deal;
e. Flags - a set of bits used to encode the direction of

the deal (buy or sell) and utility information.
In addition to the specified fields, for example, the

identifier of the exchange or market may be added (in case
if a backtest involves instruments on different exchanges).
Also, some trading platforms may broadcast the identifiers
of orders involved in the transaction. In general, the set of
fields can vary in different implementations depending on
the needs of the users, but one way or another, the fields
specified above should be present.

It is important to understand that, as a rule, not every
field is required for calculating indicators (basically, the
price, volume and direction of the transaction are needed).
When reading transaction records using the classical
approach of the "array of structures" a significant part of
the processor's cache lines is wasted on utility fields that
are not involved in the calculations. Organizing records as
a SoA solves this problem. In addition, such a layout makes
it possible to use SIMD instructions more efficiently due to
a more optimal "vertical" arrangement of data in memory
[15].

One of the advantages of a more vertical data
arrangement as a "structure of arrays" is the ease of
parallelization. As it was said, data processing in the
strategy testing system can be logically divided into 4
stages. These stages, in the case of an OOP system, are
sequentially executed for each packet of incoming data.
With such approach, parallelism is possible only at the level
of trading sessions and only if the strategies being tested
are designed for short-term trading and remain position-
neutral most of the time, i.e., always have empty portfolio
at the end a trading session.

To ensure efficient parallel execution, this paper
proposes to combine the stage of generating trading signals
and trading simulation in one stage. Instead of sequential
processing of data packets, it is proposed to move to
sequential processing of stages. Thus, the first stage
(responsible for reading data) prepares not just single piece
of data for the subsequent calculation of features, but
processes all incoming data at once. The results are saved
in SoA format, namely in the form of a matrix D: PxN,
where P is the number of values calculated at this stage, N
is the number of data packets. The amount of calculations
required is determined by a set of indicators. However,
there is a mandatory row which must always be present in
D - an array of time stamps of data packet arrival. Without
this array time averaging, which is often found in financial
calculations, is impossible. Time also plays an important
role in the trading simulator module for emulating delays
in sending and receiving orders and other messages. This
stage differs little from the OOP approach, because I/O
operations are performed most of the time and use
parallelism is limited by storage devices.

The next stage is the calculation of indicators. It takes
D and a matrix of parameters as an input and performs
computation of the required features. A new matrix I is
formed as the result of this stage. It should be noted that
strategies do not always generate a signal upon the arrival
of each individual packet. It is a fairly common practice in
trading systems to split a continuous data stream into
intervals within which the features are calculated. Thus, the
number of columns of I is limited by the number of packets,
and the number of rows can be infinitely large, since the
indicator can calculate more than one feature. Such
organization of computations ensures the independence of
indicators from each other, which allows them to be
processed in parallel. At this stage, almost any number of
processors can be involved, of course, within the limits of
the number of indicators.

The third stage is the calculation of strategies and
trading simulation. The strategies receive parameters
matrix and matrix I, on the basis of which trading signals
are calculated. Ultimately, the signals become trade orders
for placing or cancelling bids with certain parameters
(price, volume, etc.). Trade orders together with the data D
prepared at the first stage are sent to the trading simulation
module, where the placing of orders on the exchange and
their execution are simulated. Information about executed
orders is fed back to the strategy to update information
about the current position. Also, based on the executions,
various financial metrics of the strategies are calculated,
which are the final result of the entire system. Similarly to
indicators, each individual strategy is completely
independent and its financial metrics calculation and
trading simulation can be done in parallel.

For efficient use of resources a work-stealing task
scheduler is used in the system [16]. Also, it is necessary to
take into account the priority. It means that strategy
processing and trading simulation is of the highest priority,
since the user is interested in getting the results as early as
possible. The read data step only needs to be performed if
no other tasks are available. In addition, dynamic load
balancing is implemented. Since the number of threads, as
a rule, is less than the number of indicators and strategies,
it is necessary to group their calculations. In this way, the
grouping that provides the greatest locality of data and
instruction cache is more preferable, i.e., grouping in which
the number of ECS-systems processed by one processor is
minimal. Since the backtesting procedure assumes repeated
execution of the same algorithms, it is proposed to store
information about the time spent on a certain type of
computation at each stage with subsequent averaging over
all observations. The resulting value can be used as an
estimate of the execution time. Based on the estimate, ECS-
systems are distributed among threads, so that all of them
spend approximately the same amount of time.

III. RESULTS AND DISCUSSION
In order to demonstrate the effect of the proposed

transformation, for this study a backtesting system that
implements OOP and DOD approaches has been

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 124-130

128

developed. Several performance tests were conducted. The
first test was to calculate a simple technical indicator SMA
on simulated dataset consisting of 1 million records. In
different launches of the program, a different number of
indicators are calculated, with each launch repeated 10
times. The average time of all launches is considered to be
the result. Subsequent performance tests in this work are
carried out in a similar fashion. The results of the program
runs are shown in “Fig. 3”. The vertical axis shows the time
in milliseconds, i.e., the smaller the result, the better. The
horizontal axis shows the number of calculated indicators.
The program in this and subsequent tests is built with g++
compiler version 9.3 with O3 optimization level and is
executed on a multiprocessor server system with 120 Intel
Xeon CPU E7-8880 v2 @ 2.50GHz processors under the
Gentoo Linux operating system.

As it can be seen from the graph, in the case of a small
amount of calculations, the architecture proposed by DOD
shows the result no worse than OOP, but significantly
exceeds the performance of object-oriented approach with
an increase in the number of indicators. So for 8 indicators
the speed increase is 23%, and for 64 the acceleration
reaches 36%.

Fig. 3. Plot of execution time versus number of indicators.

The effectiveness of the proposed data organization is
demonstrated in “Fig. 4”. The graph shows the results of
calculations of the weighted average price VWAP for an
array of 10 million transactions, represented by structures
of different sizes. OOP stands for the classic AoS approach,
and DOD stands for the SoA approach. The horizontal axis
marks the size of the deal data structure.

Fig. 4. Plot of performance versus data structure size.

Assuming that 64 bits are allocated for each field of the
structure, at least 40 bytes are required for single deal
record. As it can be seen from the graph, with the DOD
approach the processing speed does not depend on the size
of the structure, and the performance gain is observed even
for 16 bytes (as if only two fields were allocated to
represent the transaction - price and volume). Speedup only
grows with and increases in memory size and for 40 bytes
the performance gain is 66%.

Also, in this study similar testing of the data structure
for order book processing was carried out. The paper [17]
is taken as a basis, in which it is proposed to use an array
of price levels in the form of pairs (p, q) where p is the price
and q is the volume. The order of such array is maintained
when inserting and removing elements. According to the
principle of "structure of arrays", this scheme is converted
into two one-dimensional arrays - separately for all prices
and all volumes. Various metrics were measured for the
new data structure:

a. The time of processing all incoming data packets
within one session;

b. The time during which the following features are
repeatedly calculated on the basis of a fixed number of the
first price levels: average price; average volume; weighted
average price; the price of a level at which the volume is
not less than a certain fixed number. The testing was carried
out on both simulated and real data for the most active
trading instruments on the MOEX exchange. None of the
designated tests found a significant difference in execution
speed between SoA and AoS.

The performance of proposed parallelization scheme
was tested using the classic MACD strategy as an example.
In the test system within one trading session 2000 different
combinations of MACD parameters are processed, for
which it is required to calculate 1000 different moving
price averages, in this test SMA was used. “Fig. 5” shows
a graph of the performance of the sequential OOP version
and the two types of proposed DOD system. In first case
DOD system is tested when the calculations are perfectly
balanced between the threads (Balanced). In second case
one of the threads performs 1.5 times more work than any
other (Unbalanced). It is worth noting that OOP, as well as
DOD, implements all the optimizations proposed. Because
the OOP version cannot be executed in parallel for one
trading session, its performance does not change on the
chart. DOD version, in turn, expectedly demonstrates a
speedup of almost N times for N threads, in the case when
computations are perfectly balanced.

Fig. 5. Plot of performance versus number of threads.

Timur Mironov., et al. Comparison of Object-Oriented Programming and Data-Oriented Design for Implementing
Trading Strategies Backtester

129

The proposed computation scheme scales better for a
large number of processors, compared to sequential
computations in the classical OOP approach. Trading
instruments also introduce an additional degree of
parallelism. In the case when the strategy operates with
several securities at once, the calculation of features for a
separate security does not depend on the others and can also
be performed in a separate thread.

Nevertheless, the proposed method for parallelizing
computations has its drawbacks. It is easy to see that the
proposed system allocates a large amount of memory.
Because the calculated values are stored for each data
packet, the upper limit of the total number of data cells is
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠 ∗ 𝑁𝑁𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 ∗ 𝑁𝑁𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠. Considering that the
number of packets is running into millions, and the number
of strategies and indicators is in thousands, the system
consumes a significant amount of RAM even for simple
backtest scenarios. Of course, this problem can be solved
by artificially reducing the size of the trading session, but
such a solution inevitably leads to additional overhead.

Another disadvantage is the bandwidth. Despite the fact
that the proposed architecture is highly scalable, under
certain conditions its performance does not exceed the one
of sequential OOP system. This situation occurs when the
number of sessions being tested equals or greater than the
number of available threads. Because a sequential system
can process individual sessions in parallel, it is capable of
performing the same amount of computation at the same
time. Considering that sequential execution does not
require a large amount of memory for intermediate
calculations, the classical system would be much more
efficient in terms of resource consumption. However, the
backtest results for each individual session would be
available much later. Thus, in the proposed and sequential
systems, the same backtesting of N sessions will be
performed in the same time T. But the time for complete
processing of single session in a sequential system will be
T, and 𝑇𝑇/𝑁𝑁 in parallel one.

IV. CONCLUSIONS
This work shows how DOD optimization techniques

can be applied to the automated trading and, in particular,
to the testing of trading strategies on historical data. The
empirical performance tests carried out show that in such a
computationally expensive task like backtesting, escaping
the traditional object-oriented approach towards organizing
data in a more vertical layout of "structure of arrays" can
give a significant increase in performance. Empirical
testing shows that use of DOD can speed up the process of
features calculation up to 33%, and that organizing data in
AoS format may additionally increases performance up to
66%. It is worth noting that the optimizations proposed,
except for parallel execution, can also be implemented in
real-time trading systems.

The proposed parallelization method, despite having
certain drawbacks, has greater scalability, which is very
important for multiprocessor systems, especially
considering how rapidly the number of cores in modern
processors is growing. It should also be said that the
proposed data organization scheme is very well compatible

with the modern machine learning tools. This is quite
useful, because artificial intelligence methods are
increasingly being used for the financial information
analysis and the development of trading strategies. Also, a
more vertical representation of data contributes to better
integration with columnar databases, which are often used
to process large amounts of data [18].

REFERENCES
[1] D. H. Bailey, J. M. Borwein, M. Lopez de Prado, and Q. J. Zhu,

“The Probability of Backtest Overfitting,” Journal of
Computational Finance, 2015. [Online serial]. Available:
http://dx.doi.org/10.2139/ssrn.2326253 [Accessed: Mar. 10, 2021].

[2] D. H. Bailey, J. M. Borwein, M. Lopez de Prado, and Q. J. Zhu,
“Pseudo-Mathematics and Financial Charlatanism: The Effects of
Backtest Overfitting on Out-of-Sample Performance,” Notices of
the American Mathematical Society, vol. 61 (5), pp. 458-471, 2014.

[3] D. Andreev, S. Lyokhin, L. Motaylenko, and S. Verteshev, “Models
and algorithms for constructing a formalized description of
production technologies,” in Environment. Technology. Resources:
Proceedings of the 12th International Scientific and Practical
Conference on Information Technologies, Rezekne, 2019, vol. II,
pp. 21-27.

[4] R. Fabian, Data-oriented design: software engineering for limited
resources and short schedules. Printed by the author, 2016.

[5] F. Wang, P. L. Yu, and D. W. Cheung, “Combining technical
trading rules using particle swarm optimization,” Expert Systems
with Applications, vol. 41, pp. 3016-3026, 2014.

[6] J. Nenortaite and R. Simutis, “Stocks’ Trading System Based on the
Particle Swarm Optimization Algorithm,” Lecture Notes in
Computer Science, vol. 3039, pp. 843-850, 2004.

[7] P. Kroha and M. Friedrich, “Comparison of Genetic Algorithms for
Trading Strategies,” Lecture Notes in Computer Science, vol. 8327,
pp. 383-394, 2014.

[8] J. Ni and C. Zhang, “An Efficient Implementation of the
Backtesting of Trading Strategies,” Lecture Notes in Computer
Science, vol. 3758, pp. 126-131, 2005.

[9] M. Lopez de Prado, Advances in Financial Machine Learning.
Wiley, 2018.

[10] M. Lopez de Prado, Machine Learning for Asset Managers
(Elements in Quantitative Finance). Cambridge University Press,
2020.

[11] M. F. Dixon, I. Halperin, and P. Bilokon. Machine Learning in
Finance: From Theory to Practice. Springer, 2018.

[12] Antonov, I. Bruttan, D. Andreev, and L. Motaylenko, “The method
of automated building of domain ontology,” in Environment.
Technology. Resources: Proceedings of the 12th International
Scientific and Practical Conference on Information Technologies,
Rezekne, 2019, vol. II, pp. 34-37.

[13] D. Andreev, S. Lyokhin, V. Nikolaev, and O. Poletaeva,
“Development of software for design ontological representations of
production technologies,” in Environment. Technology. Resources:
Proceedings of the 12th International Scientific and Practical
Conference on Information Technologies, Rezekne, 2019, vol. II,
pp. 28-33.

[14] D. Wiebusch and M. E. Latoschik, “Decoupling the entity-
component-system pattern using semantic traits for reusable
realtime interactive systems,” 2015 IEEE 8th Workshop on
Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), Arles, France, 2015, pp. 25-32.

[15] “Intel® 64 and IA-32 Architectures Optimization Reference
Manual,” 2019. [Online]. Available:
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-
32-architectures-optimization-manual.pdf [Accessed: Mar. 10,
2021].

[16] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” Journal of the ACM, vol. 46 (5),
pp. 720–748, 1999.

http://dx.doi.org/10.2139/ssrn.2326253
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

Environment. Technology. Resources. Rezekne, Latvia
Proceedings of the 13th International Scientific and Practical Conference. Volume 2, 124-130

130

[17] T. Mironov, L. Motaylenko, and D. Andreev, “Investigation of the
performance of data structures for order book processing,” in
proceedings of the international scientific and practical conference
on modern innovations in engineering and manufacturing, Pskov,
2021, pp. 144-148. (in Russian)

[18] E. V. Ivanova and L. B. Sokolinsky, “Parallel processing of very
large databases using distributed column indexes,” Programming
and Computing Software, vol. 43, pp. 131–144, 2017.

	I. Introduction
	II. Materials and methods
	III. Results and discussion
	IV. Conclusions
	References

