Postoperative Nausea and Vomiting Implications in Neostigmine versus Sugammadex

Presenters: Corey Johnson, BSN, RN, SRNA, Colton James, BSN, RN, SRNA, Sarah Traughber, BSN, RN, SRNA, Charles Walker, BSN, RN, SRNA Faculty Advisor: Dr. Dwayne Accardo, DNP, APRN, CRNA College of Nursing - The University of Tennessee Health Science Center - Memphis, TN

Purpose

The purpose of this DNP project is to determine if the neuromuscular blockade (NMB) reversal agents neostigmine and sugammadex affect the incidence of postoperative nausea and vomiting (PONV).

Specific Aims

- Compare PONV rates with neostigmine versus sugarmadex
- Determine if pharmacologic decision-making can be justified for PONV prophylaxis
- Identify gaps in current literature regarding paralytic reversals' effects on PONV
- Consider confounding factors that could also contribute to PONV regardless of drug
- i.e. Female gender, non-smoking status, postoperative opioid consumption

Background

- PONV is one of the most common postoperative complaints by patients
- Current prevention of PONV revolves around premedication with antiemetics and minimizing exposure to triggers
- PONV can initiate a trend of poor outcomes when it persists, such as delaying patient discharge and increasing costs
- Pharmacologic agents commonly used in anesthesia can potentiate PONV
- Neuromuscular blockade (NMB) reversal agents, sugammadex and neostigmine, can implicate PONV
 - High-dose neostigmine, an acetylcholinesterase inhibitor, has been reported to increase PONV by stimulating muscarinic receptors and increasing acetylcholine (AcH), a known PONV trigger, at the chemoreceptor trigger zone (CTZ)
 - Sugammadex has considerable benefits by reducing adverse drug effects in comparison to neostigmine through encapsulating the paralytic agent rather than increasing AcH
- Despite an increased cost with sugammadex, it has potential to be a rationale for standardized use if PONV can be linked to neostigmine

Methods

Eligibility Criteria

General anesthesia cases with NMBD use

Full-text, English, peer-reviewed articles published between 2014-2020

Information Sources & Search

• Systematic search conducted between August 2019-November 2020 PubMed, CINAHL, MEDLINE (EBSCO), Google Scholar Search Terms: "Sugammadex Neostigmine PONV," "Neuromuscular blockers and PONV," "Paralytic reversal agents and PONV" Publication date limited to 2014-2020

Selection of Sources of Evidence

Meta-analyses, systematic reviews, randomized controlled trials, case control studies, or evidence based practice projects Explicit mention of PONV in both groups

- Abstracts excluded
- \circ >18 years of age

Data & Synthesis of Results

Charted via an electronic table

• Variables: incidence of PONV in a sugammadex group; incidence of PONV in a neostigmine group; incidence of postoperative analgesic consumption in a sugammadex group; incidence of postoperative analgesic consumption in a neostigmine group Followed PRISMA statement extension for scoping reviews

Results

Study Authors	Higher (relative) incidence of PONV		Statistically significant?
	Sugammadex	Neostigmine	
Claroni et al.		X	No
Geldner et al.	X		No
Hurford et al.		x	No
Koyuncu et al.		Х	No
Ledowski et al.		X	Yes
Paech		X	No
Tas Tuna et al.		Х	No
Yagan et al.		х	Yes

• 7 out of 8 studies showed an increased incidence of PONV in patients reversed with neostigmine over sugammadex reversal

- 2 of the 7 studies showed a statistically significant difference in PONV outcomes with neostigmine versus sugammadex Both studies found higher incidence of PONV in the neostigmine population compared to the sugammadex population
- 5 of the 7 studies that showed a difference in PONV outcomes between the two reversal agents did not yield statistically significant results • 6 of the 8 total studies reviewed did not show a statistically significant
- difference in PONV outcomes in neostigmine versus sugammadex reversal

Implications for Practice

- Sugammadex provides more effective reversal and has more favorable pharmacokinetics
- Sugammadex has less side effects than neostigmine and does not require the coadministration of an anticholinergic
- There is not sufficient data suggesting a statistically significant reduction in PONV when using sugammadex in comparison to neostigmine
- PONV alone is not a sufficient reason for the justification of using sugammadex versus neostigmine
- Several hospital pharmacies require a rationale for using sugammadex in order to reduce costs

References

- Barry, N., Uffman, J. C., Tumin, D., & Tobias, J. D. (2018). Preliminary indications for the use of sugammadex after its addition to a formulary at a tertiary care children's hospital. The Journal of Pediatric Pharmacology and Therapeutics, 23(1), 48–53. doi:10.5863/1551-6776-23.1.48
- Claroni, C., Covotta, M., Torregiani, G., Marcelli, M. E., Tuderti, G., Simone, G., Scotto di Uccio, A., Zinilli, A., & Forastiere, E. (2019). Recovery from anesthesia after robotic-assisted radical cystectomy: Two different reversals of neuromuscular blockade. Journal of Clinical Medicine, 8(11), 1-10. doi:10.3390/jcm8111774
- Gan, T. J., Belani, K. G., Bergese, S., Chung, F., Diemunsch, P., Habib, A. S., Jin, Z., Morton, Kovac, A. L., Meyer, T. A., Urman, R. D., Apfel, C. C., Ayad, S., Beagley, L., Candiotti, K., Englesakis, M., Hendrick, T., Kranke, P., Lee, S., Lipman, D., Minkowitz, H. S., Morton, J., & Phillip, B. K. (2020). Fourth consensus guidelines for the management of postoperative nausea and vomiting. Anesthesia and Analgesia, 131(2), 411–448. https://doi.org/10.1213/ANE.0000000000004833
- Geldner, G., Niskanen, M., Laurila, P., Mizikov, V., Hübler, M., Beck, G., Rietbergen, H., & Nicolayenko, E. (2016). A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia, 67(9), 991-998. doi: 10.1111/j.1365-2044.2012.07197.x
- Hurford, W. E., Eckman, M. H., & Welge, J. A. (2020). Data and meta-analysis for choosing sugammadex or neostigmine for routine reversal of rocuronium block in adult patients. Data in Brief, 32. doi:10.1016/j.dib.2020.106241
- Koyuncu, O., Turhanoglu, S., Akkurt, C. O., Karcioglu, M., Ozkan, M., Ozer, C., Sessler, D. I., & Turan, A. (2015). Comparison of sugammadex and conventional reversal on postoperative nausea and vomiting: A randomized, blinded trial. Journal of Clinical Anesthesia, 27(1), 51-56. doi:10.1016/j.jclinane.2014.08.010
- Ledowski, T., Falke, L., Johnston, F., Gillies, E., Greenaway, M., De Mel, A., Tiong, W., & Phillips, M., (2014). Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade sugammadex, neostigmine or no reversal. European Journal of Anaesthesiology, 31(8),
- Paech, M. J., Kaye, R., Baber, C., & Nathan, E. A. (2017). Recovery characteristics of patients receiving either sugammadex or neostigmine and glycopyrrolate for reversal of neuromuscular block: a randomised controlled trial. Anaesthesia, 73(3), 340–347. https://doi.org/10.1111/anae.14174
- Tas Tuna, A., Palabiyik, O., Orhan, M., Sonbahar, T., Sayhan, H., & Tomak, Y. (2017). Does sugammadex administration affect postoperative nausea and vomiting after laparoscopic cholecystectomy: A prospective, double-blind, randomized study. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 27(4), 237-240. https://doi.org/10.1097/SLE.000000000000439
- Yağan, Ö., Taş, N., Mutlu, T., & Hancı, V. (2017). Comparison of the effects of sugammadex and neostigmine on postoperative nausea and vomiting. Brazilian Journal of Anesthesiology (English Edition), 67(2), 147–152. https://doi-org.ezproxy.uthsc.edu/10.1016/j.bjane.2015.08.003

THE UNIVERSITY OF FENNESSEE HEALTH SCIENCE CENTER.

COLLEGE OF NURSING