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ABSTRACT OF THE DISSERTATION 

Regulation of Transcription Factor Binding Specificity: from Binding Motifs to DNA Context 

by 

Jiayue Liu 

Doctor of Philosophy in Biology and Biomedical Sciences 
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Washington University in St. Louis, 2021 

Robi Mitra, Chair 

Regulation of transcription factor (TF) binding specificity lies at the heart of transcriptional control 

which governs how cells divide, differentiate, and respond to their environments. TFs are known 

to bind to DNA in a sequence specific manner, and such short sequence is known as transcription 

factor binding site (TFBS).  However, the in vivo TF bound regions do not always contain a TFBS, 

and additionally, there are often excessive non-functional TFBSs with binding potential in the 

regulatory regions that are unbound for a given TF. This dissertation focuses on understanding the 

principles of TF binding specificity and is divided into two chapters: 1) developing a novel high 

throughput method that would facilitate the study of TF binding regulations and the resulting 

functional output; 2) analyzing the roles of local DNA context around TFBS in specifying TF 

localization.   

In the first chapter of this dissertation, we report a tool, Calling Cards Reporter Arrays (CCRA), 

that measures transcription factor (TF) binding and the consequences on gene expression for 

hundreds of synthetic promoters in yeast. Using Cbf1p and MAX, we demonstrate that the 

CCRA method is able to detect small changes in binding free energy with a sensitivity 

comparable to in vitro methods, enabling the measurement of energy landscapes in vivo. We then 
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demonstrate the quantitative analysis of cooperative interactions by measuring Cbf1p binding at 

synthetic promoters with multiple sites. We find that the cooperativity between Cbf1p dimers 

varies sinusoidally with a period of 10.65 bp and energetic cost of 1.37 KBT for sites that are 

positioned “out of phase”. Finally, we characterize the binding and expression of a group of TFs, 

Tye7p, Gcr1p, and Gcr2p, that act together as a “TF collective”, an important but poorly 

characterized model of TF cooperativity. We demonstrate that Tye7p often binds promoters 

without its recognition site because it is recruited by other collective members, whereas these 

other members require their recognition sites, suggesting a hierarchy where these factors recruit 

Tye7p but not vice versa. Our experiments establish CCRA as a useful tool for quantitative 

investigations into TF binding and function. 

In the second chapter of this dissertation, we seek out to investigate if predictive information is 

embedded in local DNA context (LDC) on a large collection of TFs in Saccharomyces 

cerevisiae. We identify there is a general preference for TFs to bind at CG rich sequences; we 

then analyze whether such preference is linked to intrinsic nucleosome binding preference and 

found the CG preference in LDC for TF binding was independent of nucleosome regulation. We 

next examine the possible mechanism by which LDC influence TFs binding site selection, 

through recruiting ‘licensing’ factors or kinetically assisting TF search for a target site. We show 

high CG LDC is preferred by TFs in vitro condition, which suggests such preference only 

involves TFs and DNA and directs us to TF search kinetics mechanism. CG rich feature in LDC 

may act as an energetical funnel to facilitate TF recognizing a target binding site, and we verify 

the theoretical validity of this hypothesis with Gillespie simulation. In the end, we reveal CG 

preference was also present in a large group of human TFs, indicating the usage of LDC is a 

general mechanism for TF binding specificity.    
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Chapter 1. Quantitative Analysis of 
Transcription Factor Binding and 
Expression Using Calling Cards Reporter 
Arrays 
 

 

1.1 Introduction 
Transcription factors (TFs) recognize and bind to specific sequences in regulatory DNA, called 

TF binding sites (TFBSs), and these events ultimately define the transcriptional programs that 

cells execute as they proliferate, develop, and respond to their environments (Accili & Arden, 

2004; Simon, 2001; Vaquerizas, 2009). The principles that govern how TFs select functional 

binding sites in vivo are not well understood. For example, the in vivo occupancies of TFs cannot 

be predicted solely from their DNA binding preferences measured in vitro.  Many TFs bind to 

only a small fraction of high-scoring TFBS in the genome, and, conversely, TF binding is often 

observed at loci without a nearby TFBS (Inukai, 2017; Villa, 2016; Yang, 1995). Explaining the 

binding of paralogous TFs is a related outstanding problem, as such factors often have nearly 

identical in vitro DNA binding preferences but regulate diverse sets of target genes and perform 

different cellular functions, even when expressed at the same time and in the same cell (Meyer, 

2008; Dang, 2012; Shen, 2018). Finally, the relationship between TF binding and the resulting 

transcriptional consequences is also unclear, as it is difficult to predict whether a TF binding 

event will have any effect on the expression of a nearby gene or the directionality of such a 

change. Part of the reason for these difficulties is that TFs appear to act in a highly complex 
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manner. Many TFs bind cooperatively (De Val, 2008; Fong, 2015; Frey, 2016; Hollenhorst, 

2009; Zhou X., 2011; Wu, 1996), and we are far from having a complete description of which 

TFs interact with one another, or how they select their binding sites when they do interact. Even 

TFs that bind DNA independently may recruit transcriptional machinery in a combinatorial 

fashion after they bind to influence gene expression (Ong, 2011). Therefore, we need new 

experimental tools to study gene regulation that are quantitative, allow for the rapid analysis of 

many user-specified regulatory sequences, and can be easily multiplexed to study a number of 

different TFs.  

High throughput methods such as Sort-Seq (Kinney, 2010; Sharon, 2012) and Massively Parallel 

Reporter Assays (MPRAs) (Maricque, 2017; White M. A., 2013) have emerged as important 

tools for investigations into the regulatory code, but these methods measure gene expression 

only, making it difficult to directly study the impact of TF binding on transcriptional regulation. 

Recent studies have performed ChIP-based binding measurements on libraries of promoter 

elements (Grossman, 2017; Zeigler, 2014); however, these studies were unable to quantitatively 

measure binding energies or analyze cooperative interactions, features which are critical for 

dissecting TF function. To study the complex nature of TF binding in a quantitative manner and 

correlate this binding with gene expression, we have developed Calling Cards Reporter Arrays 

(CCRA), a novel tool that builds on the previously reported Calling Card method (Wang H. J., 

2007; Wang H. M., 2011; Shively, 2019). CCRA measures TF binding and the transcriptional 

consequences of this binding for hundreds of synthetic DNA sequences in the yeast, 

Saccharomyces cerevisiae. We first demonstrate that CCRA measures TF binding at synthetic 

promoters and gene expression from a downstream reporter in a sensitive, accurate, and 

reproducible manner. We then apply CCRA to study TF-DNA interactions and show that the 
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CCRA method is able to detect single nucleotide difference in the free energy of binding with a 

sensitivity that is comparable to in vitro methods. We then use CCRA to study how cooperativity 

dictates TFs binding in vivo, by analyzing the binding of the bHLH factor Cbf1p. We find that 

the cooperativity between Cbf1p dimers varies sinusoidally as the distance between two Cbf1p 

binding sites is changed, with an observed period of 10.65 base pairs. The helical phase of 

binding sites plays a major role in the cooperative binding of this factor, as “out of phase” sites 

incur an energetic cost of 3.40 kJ/mol (1.37 KBT) relative to in-phase sites. Finally, we 

characterize the binding of a group of TFs that are thought to act together as a “TF collective”, a 

recently proposed model of cooperative binding (Junion, 2012; Spitz, 2012). Consistent with 

previous work (Shively, 2019), we find that one member of the group, Tye7p, is able to bind at 

promoters that do not encode its recognition sequence. Surprisingly however, the binding of 

other collective members, Gcr1p and Gcr2p, requires only their recognition sites, suggesting a 

hierarchy where these factors can recruit Tye7p but not vice versa. We further demonstrate that 

the expression of a reporter gene regulated by this collective can be best explained by 

considering the occupancy of all members of this complex. Together, these results establish 

CCRA as a useful tool for quantitative investigations into TF binding and function.   

 

1.2 Results 

1.2.1 Overview of Calling Cards Reporter Arrays (CCRA) 

The CCRA method is designed to measure both TF binding and gene expression in parallel for 

hundreds of uniquely barcoded synthetic promoter sequences. To perform CCRA, the TF of 

interest is C-terminally fused to a short protein tag, so that the TF directs insertion of Ty5 
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retrotransposons (or “calling cards”) (Wang H. M., 2011; Wang H. J., 2007) near its binding 

sites (Fig 1.1 upper and bottom panel). For each CCRA assay, TF-directed insertions into the 

designed promoter library are recovered from yeast cells and the insertion locations and 

promoter sequence identities are determined via second-generation sequencing (Fig 1.1 bottom 

panel). Each plasmid molecule in a CCRA library has a “library barcode” corresponding to a 

unique promoter sequence (Fig 1.1 upper panel), as well as a unique molecular identifier 

(UMI). The library barcode allows each transposon calling card to be assigned to the correct 

synthetic promoter sequence, and the UMI enables us to determine when multiple transposition 

have inserted into the same location in distinct copies of the same synthetic promoter sequence. 

By determining the number of independent transpositions inserted into each synthetic promoter 

and then normalizing by the promoter’s abundance in the library, we generate a normalized 

binding score (NBS), which is a quantitative measure of TF binding (Fig 1.1 bottom panel). 

Because the CCRA library is cloned upstream of a yellow fluorescence protein (YFP) reporter 

gene, it is also possible to measure the transcriptional output of each synthetic promoter in the 

library using Sort-Seq (Kinney, 2010; Sharon, 2012) (Fig 1.1 middle panel). To do so, the 

CCRA library is sorted by flow cytometry into subpopulations according to the ratio of YFP 

fluorescence to mCherry fluorescence. The mCherry gene is regulated by a constitutive 

promoter, allowing for normalization of the YFP signal to account for variation due to plasmid 

copy number, cell size, and other sources of extrinsic expression noise. Next, the sorted 

subpopulations of yeast cells are sequenced to quantify the abundance of each barcoded 

sequence in each subpopulation. Relative expression is then calculated by the proportion of each 

sequence in every binned library as per the standard Sort-Seq protocol (Kinney, 2010; Sharon, 

2012). By combining aspects of both Calling Cards assay and Sort-Seq, CCRA allows us to 
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quantitatively measure the binding of a TF to a library of regulatory sequences, and 

simultaneously measure the effect of that binding on gene expression.  
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Figure 1.1 Illustrations of CCRA experimental steps and binding results recovery. a)  CCRA library 
sequences are synthesized on a microarray and cloned into plasmid and transformed into S. cerevisiae. 
The transformed cells are divided into two subpopulations for either binding measurements by Calling 
Cards method or expression measurements by Sort-Seq method. b) Because the promoter library is cloned 
upstream of YFP reporter gene, and the mCherry reporter is constantly expressed from the same vector 
for internal control, cells are sorted based on the ratio of YFP and mCherry fluorescence to estimate the 
relative strength of the library promoter sequences. c)  Each element in the library is designed to contain a 
sub-library index that allows the user to assay a sub-population of the library, a unique barcode for 
identity, and a 4 bp randomized UMI to increase binding measurement capacity. TF-directed 
transpositions into barcoded library are fully recovered by four PCRs to account for insertions in either 
orientation and the relative position to barcode and UMI. PCR products are sequenced, and each library 
element is identified by barcode. Each dot represents a TF-directed transposition. The relative position of 
the insertion in the library sequence of each transposition is shown as X-axis. Multiple transpositions at 
the same position are distinguished by UMI. Raw number of transpositions are further normalized into a 
binding score (NBS) by correcting for the relative abundance of each element in the library as well as the 
total number of transpositions in one experiment to make accurate comparisons across experiments.  

 

1.2.2 Binding and Expression Measurements are Sensitive, Accurate and 
Reproducible 

To determine if CCRA can accurately and reproducibly measure TF binding in parallel, we first 

analyzed the binding of Cbf1p, a well-studied bHLH protein whose motif is strongly predictive 

of its in vivo binding pattern (Shively, 2019). To evaluate the sensitivity of the method for the 

detection of TF binding at weak sites, we created a library of 40 different sequences consisting of 

10 synthetic promoters, each with 4 unique barcodes for replicates. Three of these sequences 

were taken from different endogenous yeast promoters previously shown to be bound by Cbf1p 

at a single recognition site (Shively, 2019). We also designed two synthetic promoters with 

nucleosome disfavoring sequences (Raveh-Sadka, 2012) that flanked a single Cbf1p consensus 

motif. As negative controls, we included five matched promoters with mutated Cbf1p binding 

sites. The binding of Cbf1p to a representative promoter, OYE3/DAP1, and its matched control is 

shown in Fig 1.2. Each symbol on the graph represents an independent calling card insertion. 

Cbf1p-directed transpositions appear to fit a Gaussian distribution centered at Cbf1p motif. 

Interestingly, the region directly over the motif contains few insertions, likely due to Cbf1p’s 
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footprint as binds to its recognition sequence. The wild-type OYE3/DAP1 promoter is bound 

tightly by Cbf1p (70.1 NBS), but when the Cbf1p binding site is mutated, binding is greatly 

reduced (7.7 NBS, Fig 1.2 bottom panel). Cbf1p’s binding to all five pairs of promoters is 

summarized in Fig 1.3. In all instances, Cbf1p’s binding was significantly stronger at promoters 

with intact Cbf1p sites than at the mutated promoters, demonstrating that the CCRA method can 

reliably detect TF binding even at relatively weak sites containing single motifs. It is interesting 

to note that although Cbf1p binding was significant at all five promoters with intact Cbf1p 

motifs, the binding was significantly stronger at the two promoters in which the Cbf1p binding 

sites were flanked by nucleosome disfavoring sequences. 
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Figure 1.2 CCRA binding measurement on a Cbf1p target promoter. Cbf1p directed transpositions into 
the OYE3_DAP1 intergenic region where only one E-Box motif is present. Each dot represents a unique 
TF-directed transposition along the sequence. The x-axis specifies the sequence coordinate to which a 
calling card insertion was mapped, whereas the y-axis specifies the number of independent insertions at 
each position. Transpositions at the same position are distinguished by a UMI. In general, transpositions 
follow a gaussian distribution center at the transcription factor binding site.  

 

We next investigated the dynamic range of the CCRA assay. Since Cbf1p binding at regulatory 

elements is known to strongly depend on the number of Cbf1p sites present (Shively, 2019), we 

designed 183 synthetic promoters containing 0 to 6 sites and measured the binding of Cbf1p to 

this library. We observed a strong non-linear relationship between the normalized binding score 

(NBS), and the number of sites present in a given promoter (Fig 1.4). Importantly, we were able 

to measure Cbf1p binding across 3 orders of magnitude. These data demonstrate that CCRA 

technology can accurately measure TF binding across a large range of binding strengths.     

 

Figure 1.3 Binding measurement on five pairs of one motif containing promoters. Cbf1p binding 
measurements on three pairs of promoter regions and two pairs of synthetic sequences with one 
motif flanked by NDS. Blue bars represent sequences containing a motif, and gray bars represent 
the paired sequences with a mutated motif. The significance of binding detection on one motif is 
indicated by the number of stars. Three stars indicate a p-value of less than 0.0001 by paired t-test 
with four replicates, two stars, a p-value less than 0.001, and one star, a p-value less than 0.05.  
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Figure 1.4 CCRA can measure TF binding with high dynamic range. Quantitative Cbf1p binding 
measurements on 183 sequences containing 0 to 6 motifs. Mean and standard deviation are indicated by 
the lines in each boxplot. The dynamic range spans over 3 orders of magnitudes. 

 

Because the oligonucleotides used to create the synthetic promoters for CCRA are typically 

170bp in length, we next sought to determine if TFs still bind in vivo with the same specificity as 

they do in their native genomic context. Therefore, we designed a 344-element library of 

genomic promoters derived from endogenous Gcn4p and Gal4p target promoters and used 

CCRA to measure the binding of these two TFs. We found that Gcn4p directed transpositions 

almost exclusively to synthetic promoters derived from Gcn4p targets whereas Gal4p directed 

transpositions to Gal4p targets (Fig 1.5), with each TF showing little non-specific binding to the 

other TF’s set of target sequences. These results indicate that truncated genomic sequences in a 

plasmid-based system still retain their specificities and are not aberrantly bound by other TFs.  
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Figure 1.5 CCRAs measures binding with high specificity. Gcn4p and Gal4p were tested on a 344 
elements library derived from Gcn4p or Gal4p naturally bound promoters. The library is categorized into 
three groups: sequences containing at least one Gcn4p site, sequences containing one Gal4p site and 
sequences containing no site. Most Gcn4p and Gal4p directed transpositions go to sequences containing 
at least one of either motif respectively, suggesting CCRA performs accurate binding measurement with 
little false positive. 
 

Having established that the CCRA assay measures TF binding with high sensitivity and 

specificity, we next sought to benchmark the method’s reproducibility. To do so, we performed 

replicate CCRA experiments using a 531-element synthetic promoter library and found that the 

NBS measured for each library member was highly reproducible (Pearson r = 0.92, p-value = 

4.23e-216, Spearman r = 0.63, p-value = 3.21e-59. Fig 1.6).  
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Figure 1.6 CCRA measures binding with high reproductivity. Showing binding reproducibility from two 
binding experiments with Cbf1p on 531-element library. Pearson r = 0.92, p-value = 4.23e-216; 
Spearman r = 0.63, p-value = 3.21e-59.  

 

We next sought to establish that the CCRA method could accurately and reproducibly measure 

expression of the YFP reporter driven by a synthetic promoter library. To determine accuracy, 

we performed Sort-Seq to measure reporter expression for each member of a library containing 

sequences derived from Gcn4p and Gal4p promoters. We then cloned 24 of these library 

members and individually measured their expression levels by flow cytometry. We observed 

excellent agreement between the two measurements; the Pearson correlation coefficient was 0.95 

(Pearson p-value = 6.59e-13, Spearman r = 0.96 and p-value = 7.91e-14), indicating that CCRA 

methodology accurately measures promoter activities from a library of synthetic sequences (Fig 

1.7). To further investigate the accuracy of the method using a functional approach, we evaluated 

reporter expression as a function of the number of TF recognition sites for Gcn4p in an amino 

acid starvation growth condition and for Gal4p in galactose (Yan, 2018; Klar, 1974; Griggs, 

1991; Hinnebusch A. G., 2002; Hinnebusch A. G., 1990). For both factors, reporter expression 

increased with the number of motifs, as expected from the known mechanism of action for these 
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TFs (Appendix 1.2). Finally, we also showed that expression measurements are highly 

reproducible between two biological replicates (Pearson r = 0.97 and p-value = 1.51e-228, 

Spearman r =0.95 and p-value = 1.29e-177 Fig 1.8). 

 

Figure 1.7 Expression measurement is highly accurate. 24 clones were measured by Flow cytometry 
individually and compared to the expression measured by Sort-Seq with Pearson correlation coefficient of 
0.95. Pearson p-value = 6.59e-13; Spearman r = 0.96 and p-value = 7.91e-14. 

 

 

Figure 1.8 Expression measurement is reproducible. Showing expression reproducibility on a 344-
element library derived from Gcn4p and Gal4p binding targets. Pearson r = 0.97 and p-value = 1.51e-228, 
Spearman r =0.95 and p-value = 1.29e-177. 
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The CCRA assay requires that the TF of interest be fused to a fragment of the Sir4p protein. This 

can be achieved by tagging the TF at its endogenous locus or by expressing the fusion from a 

plasmid, which is more convenient for many experiments. To investigate whether TF fusions 

expressed from plasmids binds to CCRA libraries in a similar manner as TF fusions expressed at 

their endogenous loci, we measured the binding for each using the same 531 synthetic promoter 

library and observed a high concordance (r=0.84, Appendix 1.1). We also confirmed that 

transcription factors tagged with the Sir4p fragment do not influence Sort-Seq expression 

measurements as they are highly correlated with measurements made using untagged proteins (r 

= 0.94 for Gal4p, r = 0.99 for Gcn4p, Appendix 1.3 A, B). Tagging TFs with Sir4p also does not 

appear to affect their functions (Appendix 1.3 C-F). Taken together, these results demonstrate 

that the CCRA method accurately and reproducibly measures the TF binding and expression 

consequences to a library of synthetic promoters. 

 

1.2.3 Quantitative and High-throughput Measurement of the Binding 
Energy Landscapes of Transcription Factors in Vivo  

Quantitative measurement of TF binding affinities to different DNA sequences is critical for 

understanding how TFs function in vivo.  Because several studies have shown that minute 

variation in binding site affinity can specify alternative transcriptional or functional programs 

(Tanay, 2006; Bradley, 2010), it is important to be able to determine not only a TF’s consensus 

binding sequence, but also its binding energy landscape (i.e. the TF’s affinity for alternative 

binding sites). There are several methods that measure binding energy landscapes in vitro, such 

as MITOMI, PBM, Spec-seq, HT-SELEX, Bind-n-Seq, SPR, CSI and EMSA (Fordyce, 2010; 

Maerkl, 2007; Geertz, 2010; Stormo, Zuo, & Chang, 2015; Majka, 2007; Carlson CD, 2010; 
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Zhao, 2009; Garner, 1981), and these have proven invaluable for understanding TF-DNA 

interactions. However, there is currently no method to accurately discriminate the small changes 

in free energy needed to generate binding energy landscapes in vivo. Such landscapes may differ 

from those measured in vitro due to the effects of nucleosomes and other chromatin-associated 

proteins on DNA shape and binding site accessibility. Therefore, we sought to determine 

whether CCRA could measure binding energy landscapes in vivo.  

 

 

Figure 1.9 Binding energy on alternative motif measurements scheme. A CCRA library was designed 
containing all possible alternative E-box motifs that are one base away from the consensus sequence and 
flanked with a nucleosome disfavoring site and analyzed for Cbf1p binding. Cbf1p directed transpositions 
were further processed using an expectation maximization algorithm. The change of free energy was then 
calculated using the binding occupancy of the alternative motif and the consensus. 
 

We measured the binding of two basic helix loop helix (bHLH) factors, Cbf1p and MAX, to their 

consensus motifs and all sequences that differ by one base pair from the consensus (Fig 1.9). The 

TF binding sites were flanked by two intrinsic nucleosome disfavoring sequences to facilitate 

comparison to the in vitro binding landscapes previously determined (Raveh-Sadka, 2012). In 

order to accurately measure small changes in TF affinity, we used an expectation maximization 

algorithm to distinguish TF-directed transpositions from background insertions by assuming that 
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TF-directed transpositions follow a Gaussian distribution centered at the consensus motif 

whereas non-specific transpositions follow a uniform distribution across the full synthetic 

promoter (see Methods). Cbf1p and MAX occupancies at their consensus binding sites and at all 

possible one base substitution are shown in Figure 1.10 and 1.12 respectively. As expected, both 

factors bound most strongly to their consensus sites.  The changes in occupancies at non-

consensus sites were strongly dependent on the position of the alteration and the identity of the 

substituted nucleotide. Some positions are crucial, such as the first position of core E-box motif, 

in the sense that any alternation resulted in completely abolished binding, whereas some 

positions such as flanking bases next to the core motif are more flexible when changed into other 

nucleotides. In general, Cbf1p binding appeared to be less tolerant to substitutions in its 

consensus motif than MAX, in agreement with previous in vitro measurements (Maerkl, 2007). 

We calculated the change of binding energy (∆∆𝐺) from consensus site to the alternative site as 

follows (see Methods for a detailed derivation):   

∆∆𝐺 = ∆𝐺(𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) − ∆𝐺(𝑆𝑚𝑢𝑡𝑎𝑛𝑡) = -RTln ( !""($%&'()')
!""($"+),-),&,)

)    (1.6) 

 

 



16 
 

 

Figure 1.10 Cbf1p binding measurement on all alternative E-Box motif with four replicates. Standard 
deviation is indicated by the error bar.    
 

To determine whether the measurements performed by CCRA are concordant with the binding 

energy landscapes of Cbf1p and MAX as measured by well-established in vitro methods, we 

compared our results to MITOMI and PBM (Fig 1.11 and Fig 1.13). Both methods generated 

energy landscapes that were highly correlated to our CCRA measurements (For Cbf1p the 

correlation between CCRA and MITOMI:  Pearson r of 0.75 and p-value = 1.90 e-5, Spearman r 

of 0.70 and p-value = 9.40e-5; the correlation between CCRA and PBM: Pearson r of 0.72 and p-

value = 5.29e-5, Spearman r of 0.73 and p-value =3.97e-5. For MAX the correlation between 

CCRA and MITOMI: Pearson r of 0.72 and p-value = 1.42e-4, Spearman r of 0.74 and p-value = 

9.06e-5; the correlation between CCRA and PBM:  Pearson r of 0.80 and p-value =7.24e-6, 

Spearman r of 0.77 and p-value = 2.36e-5).  Since the correlations between the measurements 

made by the two in vitro methods are similar in magnitude (For Cbf1p, the correlation between 

MITOMI and PBM:  Pearson r = 0.73 and p-value of 3.35e-5, Spearman r = 0.78 and p-value = 

4.57e-6. For MAX, the correlation between MITOMI and PBM: Pearson r of 0.79 and p-value = 

1.28e-5, Spearman r = 0.79 and p-value = 1.25e-5 Appendix 1.4), these results demonstrate 
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CCRA measures binding energy landscapes in vivo with an accuracy comparable to in vitro 

methods.  

 

 

Figure 1.11 The measured change of free energy for each alternative TF motif for Cbf1p compared to the 
measurement by MITOMI and PBM. Pearson r of 0.75 and p-value = 1.90 e-5, Spearman r of 0.70 and p-
value = 9.40e-5 for MITOMI comparison. Pearson r of 0.72 and p-value = 5.29e-5, Spearman r of 0.73 
and p-value =3.97e-5 for PBM comparison. 

 

The reported binding constant (K) for Cbf1p and MAX is (6.2 ± 1.4) × 107 M−1 at 20 °C (Kd = 1.6 

nM) and (7.8 ± 2.6) ×106 M−1 (Kd = 130 nM) respectively (Park S. C., 2004; Kanaya, 1999), and 

therefore the binding energy  ∆𝐺 for Cbf1p is about -45 kJ/mol (-18 KBT) and -39 KJ/mol (-16 

KBT) for MAX. Given the largest ∆∆𝐺 calculated from the consensus to the mutant motif, Cbf1p 

loses .
/
 of its binding energy with one nucleotide difference (e.g. ∆∆𝐺 is 9.6 KJ/mol from 

GTCACGTG to GTCACGTA) and therefore the Kd on the mutated motif GTCACGTA becomes 

71 nM, a 40 fold increase relative to the consensus motif. MAX loses .
.0

 of its binding energy 
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with one nucleotide difference in vivo (e.g. ∆∆𝐺 is 3.4 KJ/mol from CACGTG to CACTTG), and 

therefore the Kd on the mutant motif is 500 nM.   

 

 

Figure 1.12 Cbf1p binding measurement on all alternative E-Box motif with four replicates. Standard 
deviation is indicated by the error bar.    

 

 

 

Figure 1.13 The measured change of free energy for each alternative TF motif for MAX compared to the 
measurement by MITOMI and PBM. Pearson r of 0.72 and p-value = 1.42e-4, Spearman r of 0.74 and p-
value = 9.06e-5 for MITOMI comparison. Pearson r of 0.80 and p-value =7.24e-6, Spearman r of 0.77 
and p-value = 2.36e-5 for PBM comparison. 
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1.2.4 Quantitative Measurement of the Cooperative Binding of Cbf1p 

Understanding the mechanisms by which TFs select their targets in vivo will likely require more 

than just a characterization of their cognate DNA binding preferences, since it has been shown 

that many TFs achieve binding specificity through cooperative interactions with other DNA-

binding proteins (De Val, 2008; Fong, 2015; Frey, 2016; Hollenhorst, 2009; Zhou X., 2011). 

Investigations into the cooperative interactions that occur between TFs are usually performed in 

vitro, under conditions that may not reflect the actual cellular environment (e.g. the lack of 

histones). In vivo investigations, which are less common, typically involve genome editing 

followed by quantitative binding measurement in vivo, which is experimentally challenging and 

time consuming (Shively, 2019; Kim, 2017; Wakabayashi, 2016). Given that CCRA is able to 

measure small changes in the free energy of TF binding, we sought to extend this approach to 

analyze TF-TF cooperativity. We focused on a pair of paralogous bHLH proteins, Cbf1p and 

Tye7p, both of which recognize the E-box motif CACGTG in vitro but bind to two distinct sets 

of target genes through different types of cooperative interactions. 

We first set out to investigate Cbf1p, which has been shown to bind with homotypic 

cooperativity when two or more sites are present (Shively, 2019). This cooperativity was 

demonstrated by analyzing Cbf1p binding at mutated versions of the IDH1_NCE103 divergent 

promoter, which normally contains three Cbf1p binding sites. This study showed that Cbf1p 

occupancy at the wild-type promoter was much stronger than the sum of the binding occupancies 

at three mutated promoters, each containing only a single Cbf1p binding site, demonstrating that 

Cbf1p binding is not additive but instead cooperative at this locus. However, in this study, 
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Cbf1p’s cooperativity was investigated at only a single promoter, so it is unclear to what extent 

this result can be generalized. We therefore sought to use CCRA to determine if this 

phenomenon occurs at other loci. We selected seven promoters with two or three Cbf1p sites 

including IDH1_NCE103_pr and designed a CCRA library in which these promoter sequences 

contained either zero, one, or two mutated Cbf1p sites. If Cbf1p binds cooperatively at these loci, 

we expect that, for each series of synthetic promoters, the sum of the binding scores from 

sequences with single Cbf1p sites will be significantly less than the binding at the “wild type” 

promoter sequence with multiple Cbf1p sites. In all seven cases, we found that Cbf1p binding at 

the wild type promoter was significantly higher than would be expected under an additive 

binding model (Fig 1.14), suggesting that Cbf1p binds cooperatively at all target promoters that 

contain multiple recognition sites. 

 

 

Figure 1.14 Experimental strategy to test if cooperativity exists between Cbf1p molecules when bind to 
sequences with multiple sites. Higher binding occupancy is expected than the sum of single site 
occupancy if cooperativity exists. Right Panel: Seven wild type promoters with either two or three motifs 
that are bound by Cbf1p were mutated such that only one motif was left. Binding on mutated sequences 
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was combined and then compared to the binding on the wild type sequence to verify the existence of 
cooperativity between two Cbf1p molecules. The light blue bar represents the sum of the binding from 
individual motif, and the dark blue bar represents the observed binding on the wild type sequence. Error 
bar is the standard deviation across three biological replicates. One star indicates p-value less than 0.05, 
two stars indicate p-value less than 0.01 and three stars indicate p-value less than 0.001 by T-test.  

 

We next sought to characterize the relationship between the strength of Cbf1p cooperative 

binding and the distance between binding sites. Because the DNA double helix is thought to be 

rigid over length scale less than ~140 bp due to vertical base-stacking interactions and intra-helix 

phosphate charge repulsion (Mills, 2004; Wang J. C., 1979), one might expect that Cbf1p dimers 

would be unable to bind cooperatively at promoters with two recognition sites in close 

proximity. However, Cbf1p has been shown to sharply bend DNA upon binding (Palmieri, 1999; 

Shultzaberger, 2007; Harteis, 2014), and, furthermore, DNA is clearly malleable to some 

proteins, as it is tightly wrapped around nucleosomes and can be twisted and untwisted during 

replication and transcription (Allemand, 1998; Dickerson, 1989; Ussery, 2002). To investigate 

the relationship between Cbf1p cooperativity and the distance between recognition sites, we 

designed synthetic promoters where we varied the distance between two Cbf1p consensus motifs 

from 9 base pairs (bp) to 41 base pairs with two bp intervals. We used CCRA to measure Cbf1p 

binding on these synthetic sequences and plotted binding occupancy as a function of the distance 

between two sites. We found that the strength of Cbf1p binding at these synthetic promoters 

varied periodically with the distance between the binding sites (Fig 1.15). We observed strong 

binding at the shortest distance of 11 bp, and we observed additional peaks at 22 bp, 32 bp and 

41bp apart. These distances are all shorter than the persistence length of DNA, and at the longest 

distance investigated, 41bp, the binding sites are separated by more than 65 Å, so it seems 

unlikely that the interaction between Cbf1p dimers could be explained by protein domain 
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flexibility. Therefore, these results suggest that Cbf1p’s ability to bend DNA allows the two 

dimers to interact with one another. We next hypothesized that the observed periodicity could be 

explained by the fact that Cbf1p makes its base pair contacts in the major groove of DNA so that 

at some motif distances, contact between Cbf1p dimers would require the rotation of the major 

groove around the axis of the double helix, incurring an energetic penalty. To test this, we fitted 

the binding to a cosine function. The calculated period was 10.65 bp, almost exactly the number 

of base pairs required for DNA to make one complete helical turn about its axis. We evaluated 

the fit of this model using Analysis of variance (ANOVA) and obtained a p-value 1.4e-6, 

indicating that the data follows the assumed model significantly better than expected by chance. 

This result suggested to us Cbf1p dimers that are not bound on the same side of the DNA helix 

must twist the DNA and incur an energetic cost. In contrast, two Cbf1p molecules on the same 

face of the helix are able to achieve the optimal cooperative binding efficiency. We next sought 

to compute the free energy cost associated with twisting the DNA double helix. Since we 

observed a 3.8-fold difference between the highest and the lowest occupancy, we calculated that 

the free energy lost due to twisting is 3.40 kJ/mol (1.37 KBT). Compared to ∆∆𝐺𝑠 calculated for 

the consensus to mutant motif from the previous section, the energic cost of DNA twisting is 

comparably to a mild nucleotide change in the E-box motif (e.g. from GTCACGTG to 

GTCTCGTG). Interestingly, over the distance range examined in this experiment, the amplitude 

of the periodic function did not change appreciably, suggesting that, in contrast to twisting, 

Cbf1p bends DNA efficiently, with little energetic cost. 
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Figure 1.15 Cbf1p binding measured for two Cbf1p motifs were positioned from 9 bp to 41 bp apart in 2 
bp intervals with four replicates. A trigonometric function model was used to fit the observed data, and 
the period obtained was 10.65 bp. An ANOVA test was performed to assess the learned parameter with a 
p-value of 1.4e-6.  

 

We next asked if the phase of Cbf1p binding sites influenced the binding of this transcription 

factor at native genomic loci. We took published genome wide Cbf1p Calling Cards data 

(Shively, 2019) and grouped all intergenic regions with two Cbf1p binding sites within 100 bp 

according to the relative phase of the two sites.  We found that promoters containing two Cbf1p 

binding sites separated by a multiple of 10.5 bp (i.e. with major grooves on the same side of the 

DNA helix) were bound significantly more tightly by Cbf1p than promoters with binding sites 

whose major grooves were on opposite sides of the DNA helix (Figure 1.16 , p = 0.007).  This 

result demonstrates that the periodicity in cooperative binding that we observed in our CCRA 

experiments also influences Cbf1p binding in the yeast genome. 
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Figure 1.16 Cbf1p cooperativity on genomic regions. Genomic loci with two Cbf1p sites within 100 bp of 
each other were grouped according to whether they occur on the same side or opposite sides of the DNA 
helix (i.e. either separated by a multiple of 10.5 bp or by a multiple of 15.5bp). Genomic Calling Cards 
score was compared between two groups, and a T-test was performed with p-value of 0.007.  

 

1.2.5 The Binding Logic of the Tye7p/Gcr1p/Gcr2p/Rap1p TF Collective  

Unlike Cbf1p, many of the promoters bound by Tye7p do not encode an E-box, this factor’s 

preferred binding motif (Shively, 2019). It has previously been shown that Tye7p binds 

cooperatively with the Gcr1p/Gcr2p/Rap1p complex and that by taking into account the DNA 

binding preferences of these proteins, the in vivo binding of Tye7p can be more accurately 

predicted (Shively, 2019). However, the biophysical principles that govern the binding of this 

complex are still unclear. For example, the binding of this complex does not appear to follow 

either of the two most well-studied models for TF binding, the Enhancesome model or the 

Billboard model (Panne, 2007; Kulkarni, 2003), because these models both posit a one-to-one 

correspondence between the binding of a TF and the presence of its recognition site. Instead, 
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Tye7p binding appears to be consistent with the recently described TF collective model, in which 

a group of TFs bind together, but the motif positioning and composition at target sites is flexible 

(Junion, 2012; Spitz, 2012). However, the TF collective model is ambiguous with regard to the 

mechanistic details of binding, so important questions about the function of the 

Tye7p/Rap1p/Gcr1p/Gcr2p collective remain.  

 

Figure 1.17 Tye7p is able to bind without its motif through protein-protein interactions with Gcr1/2p and 
Rap1p. To test if Tye7p is able to bind through other helpers, the Cbf1p motifs on the Oye3_Dap1 and 
Rpl1_Rho3 intergenic regions were mutated and two Gcr1p and two Rap1p motifs from TDH3 promoter 
were added. Binding measurements were performed on the wild type and reprogrammed sequences for 
Tye7p, Gcr1p and Cbf1p. Tye7p bound to both reprogrammed promoters at significantly higher levels 
than the wild type Oye3_Dap1 and Rpl1_Rho3 sequences, as did Gcr1p. Cbf1p binding was abolished on 
these regions after mutation. T test was performed to assess the significance, and two stars indicate p-
value less than 0.01 and three stars indicate p-value less than 0.001.  

 

We first assessed the predictive power of the collective model by attempting to reprogram yeast 

promoters that normally bind Cbf1p, a Tye7p paralog, into promoters that bind Tye7p. To do so, 

we took two promoters, OYE3_DAP1_pr and RPL1_RHO3_pr, that are normally bound by 

Cbf1p, and removed their E-boxes (i.e. Cbf1p/Tye7p binding sites), and added Gcr1/2p and 

Rap1p sites with a design based on the TDH3 promoter, which is bound by Tye7p. We then 

assessed the binding of Tye7p to these reprogrammed promoters using CCRA. Both showed 
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significant decreases in Cbf1p binding (6.1-fold and 2.4-fold respectively) and significant 

increases in Tye7p (3.3-fold and 2.4-fold respectively) (Fig 1.17). We also observed an increase 

in Gcr1p binding at these reprogrammed promoters. Since neither of these reprogrammed 

promoters contain a consensus Tye7p binding site, we conclude that Tye7p binding is consistent 

with the collective model and that this TF can be recruited to promoters via cooperative 

interactions with Gcr1/2p and Rap1p. 

Next, we wanted to better understand the molecular logic by which this collective binds. While 

Tye7p clearly does not require its motif to be present at a regulatory target, is this true for other 

members of the collective? When more than one binding site is present for a single TF, do the 

additional sites contribute to complex stability, or is one site sufficient and the others redundant? 

How is transcriptional output correlated with binding of each TF member? To answer these 

questions, we took a Tye7p bound promoter, BMH1_pr, which contains one Tye7p site, three 

Gcr1/2p sites and one Rap1p site, made every possible combination of mutated sites, and 

measured Tye7p binding using CCRA. Since Tye7 does not require its recognition sequence for 

binding, we first wanted to know if its motif made any energetic contribution to stabilize this 

factor. We divided the mutated sequences into two categories, those with and without a Tye7p 

motif. Sequences without a recognition site were still significantly bound by Tye7p (Fig 1.18, 

middle group), consistent with previous observations, but Tye7p binding at the wild-type 

BMH1_pr is reduced by 45% when the Tye7p recognition site is mutated (p-value = 0.012). 

Furthermore, when the 16 pairs of BMH1_pr mutants are compared across groups, we observe a 

significant reduction in Tye7p when the recognition motif is mutated (p-value =0.010). These 

results demonstrate that while the Tye7p motif is not required for Tye7p binding, it makes an 

energetic contribution when present. Notably, the positional distributions of Tye7p insertions 
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across the BMH1_pr were essentially unaffected by the presence or absence of its cognate motif 

(Appendix 1.6), suggesting that the recruitment of Tye7p may be largely mediated by Gcr1/2p 

and Rap1p, even though the presence of a Tye7p binding site clearly makes an energetic 

contribution. Consistent with this hypothesis, we found that Tye7p binding is strongly dependent 

on Gcr1/2p and Rap1p sites (Fig 1.18 middle group). In general, we observed a gradual 

decrease in binding as more collective sites are mutated, and we did not observe large decrease 

in binding (>2 fold) upon the removal of any one site, suggesting that no single binding site is 

necessary for Tye7p binding at this promoter, but instead that all sites contribute to the binding 

affinity of this TF. Based on this observation, we reasoned that Tye7p binding might be 

predicted by the total free energy from all sites combined on a promoter. Therefore, we 

performed a regression analysis to understand how well the total sites information explains 

Tye7p binding (Fig 1.18 right group). Given that PWM scores reflect the binding energy of TF 

to specific DNA sequences, we used the sum of PWM scores for all sites present on the 

promoters for the analysis and we found that the combined sites information correlates well with 

Tye7p binding (Pearson r = 0.69 and p-value = 1.07e-5, Spearman r = 0.63 and p-value = 1.04e-

4).   

 

Figure 1.18 Tye7p binding measured at BMH1 promoter. Left) The BMH1 promoter, bound by Tye7p, 
contains one Tye7p motif, three Gcr1/2p motif and one Rap1p motif; a CCRA library was created in 
which all combinations of sites were mutated to create 32 sequences, including the wild-type sequence. 
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Middle) Tye7p binding was measured on these sequences and plotted. Intact sites are indicated as the x-
axis label. All 32 sequences were classified into two sections, those with and without the Tye7p motif. 
Error bars represents the variation between four biological replicates. Right) The total binding free energy 
on each sequence based on the PWM score of the remaining sites was correlated with Tye7p binding 
result, and the total free energy of binding to DNA for the binding collective predicts Tye7p binding with 
R2 = 0.48, Pearson r = 0.69 and p-value = 1.07e-5, Spearman r = 0.63 and p-value = 1.04e-4.  

 

We then measured Gcr1p and Gcr2p occupancy on this promoter library. As before, we divided 

the mutated promoters into two categories based on whether they contained a Gcr1/2p motif. In 

contrast to what was observed for Tye7p, we found that neither Gcr1p nor Gcr2p was able to 

bind at any promoters without their shared recognition site (Fig 1.19 & Appendix 1.7 A), 

suggesting that these factors bind independently from the rest of the collective. To confirm this, 

we regressed Gcr1p and Gcr1p binding against the free energy of binding of Gcr1/2p or the full 

collective. We found that only Gcr1p/2p sites are required to explain Gcr1p and Gcr2p binding 

and that incorporating information from the other TF in the collective weakens the predictive 

power (Fig 1.20 & Appendix 1.7 D for Gcr1p and Appendix 1.7 B & Appendix 1.7 C for 

Gcr2p). Thus, the binding of the Gcr1/2p complex appears to be solely dependent on the 

presence and the number of Gcr1/2p sites. Furthermore, Gcr1/2p binding appears to saturate at 

two sites. Our Gcr2p binding measurements were more variable and weaker than our Gcr1p 

measurement, especially at sequences with only one Gcr1/2p motif, which might be due to the 

fact that Gcr2p is known to bind DNA indirectly through Gcr1p and depends on Gcr1p to 

function (Uemura, 1992; Baker, 1991).  



29 
 

 

Figure 1.19 Gcr1p binding measured at BMH1 promoter. The same as Figure 1.18 (middle group) but 
with Gcr1p, and these 32 sequences are classified into with and without any Gcr1/2p motif. 

 

We next sought to investigate the relationship between the binding of the Tye7p collective and 

its transcriptional output. To do so, we performed Sort-Seq to measure the reporter gene 

expression from this library. We regressed reporter gene expression against the sum of the free 

energies of the binding sites (Appendix 1.7 E). We observed a good correlation, and we found 

that expression level correlated with the combined TF occupancy (Fig 1.21, Pearson r = 0.70 and 

p-value = 8.34e-6, Spearman r = 0.67 and p-value = 2.95e-9), suggesting that transcriptional 

output is determined by the whole complex. Similar analysis was done for TDH3 promoter 

containing two Gcr1/2p sites and two Rap1p sites but no Tye7p site, and again the combined 

Tye7p, Gcr1p and Gcr2p occupancy correlated well with the expression (Appendix 1.7 F & 

Appendix 1.7G).  
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Figure 1.20 Correlation between Gcr1p binding and site score on BMH1 promoter. PWM score of 
Gcr1/2p sites remained on the sequences was correlated with Gcr1p binding result, and Gcr1/2p sites 
alone predicts Gcr1p binding with R2 of 0.69, Pearson r = 0.83 and p-value = 3.15e-9, Spearman r = 0.83 
and p-value = 3.59e-9.  

 

Rap1p binding was not measured in this study due to its inability to be tagged by Sir4p. 

However, Rap1p has been shown to interact with Gcr1p and Gcr2p as an activating complex 

(Menon, 2005; Tornow, 1993). With expression we measured on both BMH1 and TDH3 

promoters, we compared sequence pairs that are with and without Rap1p site (Appendix 1.7 H). 

We performed a paired T-test on these sequence in terms of expression, and the p-value is 0.018, 

indicating Rap1p motif is contributing the genetic regulation.    
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Figure 1.21 Correlation expression and site score on BMH1 promoter. Expression was measured for all 
mutated sequences derived from BMH1 promoter and was correlated with the summation of Gcr1/2p and 
Tye7p binding results. The binding of three factors from the collective predicts the expression with R2 of 
0.49, Pearson r = 0.70 and p-value = 8.34e-6, Spearman r = 0.67 and Spearman p-value = 2.95e-5.   

 

Taken together, our experiments suggest that Tye7p is recruited to promoters by 

Gcr1p/Gcr2p/Rap1p complex and that Tye7p binding often occurs in the absence of its 

recognition site. However, it appears that Tye7p binding is stabilized by the presence of its motif. 

In contrast, the Gcr1/2p recognition site is necessary and sufficient for the binding of these 

proteins, suggesting a hierarchy in which these factors can recruit Tye7p but not vice versa (Fig 

1.22). The transcriptional output at promoters bound by this complex correlates with the 

combined occupancy of all TFs, suggesting that each TF in the collective aides in the recruitment 

of the RNA Polymerase II holoenzyme. 
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Figure 1.22 The suggested model for Tye7p/Gcr1p/Gcr2p/Rap1p binding collective. i) Tye7p is recruited 
to promoters by Gcr1/2p and the Tye7p motif, and the expression output is the strongest when all sites are 
available; ii) Tye7p can be recruited in the absence of a Tye7p motif via a protein-protein interaction with 
Gcr1/2p, but Tye7p binding occupancy is lowered and the overall expression output is lowered as well; 
iii) Gcr1/2p occupancy and Tye7p occupancy are lowered with fewer Gcr1/2p motifs, and the overall 
expression output is further reduced.  

 

 

 

1.3 Discussion  

In this study, we demonstrated that the CCRA method is a useful tool to study many different 

aspects of TF binding in vivo. Using CCRA, we first measured the DNA binding energy 

landscapes for Cbf1p and MAX, and we showed that the free energy differences measured by 

CCRA are strongly correlated with those measured by PBM and MITOMI, suggesting CCRA is 

a quantitative measure of equilibrium binding. This is likely because the rate of transposon 

insertion is slow relative to the typical on rates and off rates for TF binding to DNA; in contrast, 

crosslinking based methods may capture transient TF-DNA binding events as TFs sample weak 

binding sites (Park P. , 2009), and thus the measured occupancies may reflect a combination of 

on-rate and equilibrium binding. Next, we set out to understand TF cooperativity by studying a 

pair of paralogues bHLH TFs, Cbf1p and Tye7p; we observed that Cbf1p binding occupancy is 

dependent on the DNA helix turn, revealing the biophysical relations between DNA structure 
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and a homotypic cooperative TF; Finally, we characterized the molecular binding logic of 

Tye7p, which is Tye7p finds its targets via protein-protein interaction with Gcr1/2p and Rap1p 

without requiring its own motif, further delineating the collective binding model.  

Transcription factors orchestrate the gene expression changes that lie at the heart of most 

biological processes; however, the principles by which TFs locate their target genes and the 

functional consequences of binding are not well understood. Detailed investigations into the 

molecular mechanisms that govern TF binding have traditionally used in vitro methods (Maerkl, 

2007; Fordyce, 2010; Bulyk, 2007; Berger M. F., 2009; Berger M. F., 2006; Stormo, Zuo, & 

Chang, 2015; Zhao, 2009; Zykovich A, 2009; Majka, 2007; Warren, 2006), which provide 

limited insights into TF binding in vivo, or employ genome editing (Shively, 2019; Kim, 2017; 

Wakabayashi, 2016), which is slow and costly. Due to these difficulties, many studies that have 

tried to understand the rules of TFs binding and function have focused on a finite set of loci and 

a limited number of genetic alternations (Shively, 2019; Kim, 2017; Wakabayashi, 2016). 

Recently, powerful high-throughput methods, such as Sort-Seq (Kinney, 2010; Sharon, 2012) 

and barcoded MPRAs (Maricque, 2017; White M. A., 2013), have been developed to allow more 

comprehensive investigations into the regulatory code, but these rely solely on reporter gene 

expression and must indirectly infer TF binding and its impact on gene expression. Two recent 

studies have coupled ChIP-based binding measurement with parallel reporter assays to reveal the 

correlations between chromatin marks and TF binding (Grossman, 2017) and to examine the 

predictive power of thermodynamically motivated models of gene expression (Zeigler, 2014). 

These studies demonstrated the parallel measurement of TF binding on synthetic promoters and 

represent an important advance; however, neither demonstrated the ability to quantitatively 

measure binding energies or to analyze cooperative interactions, which are critical measurements 
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for understanding how TFs function. Methods in which TFs direct transposon insertion (Wang 

H. M., "Calling cards" for DNA-binding proteins in mammalian cells. , 2012; Wang H. M., 

2011; Kaya-Okur, 2019; Wang H. J., 2007) or the enzymatic cleavage of DNA (Skene, 2017; 

Zentner, 2015) show promise for going beyond a qualitative description of TF binding.  Here we 

demonstrate that CCRA is able to quantitatively measure TF binding and reporter gene 

expression on synthetic sequences in a high-throughput manner. It is a sensitive and accurate 

method that is amenable to the analysis of complexes of TFs. Therefore, CCRA should be a 

useful tool to better understand the regulatory principles of TFs localization and functionality.  

When designing a CCRA library, certain considerations should be accounted for in order to 

ensure the accurate quantification of TF binding. It is important to collect enough transpositions 

events in each experiment relative to the size of the CCRA library. Although chip-based 

oligonucleotide synthesis allows for very large libraries (up to 244,000 unique oligos) to be 

synthesized in a cost-effective manner, we have found that it is advantageous to design the 

library so that smaller subsets (e.g. 100-1000 sequences) can be amplified with unique primer 

pairs.  Since we typically collect 10,000-50,000 transpositions for each CCRA experiment (using 

10 yeast plates), limiting the sub-libraries to this size ensures high statistical power for each 

experiment, while still allowing for the analysis of different TFs or the testing of different 

hypotheses in a single experiment. The optimal number of transpositions for a particular CCRA 

experiment will also depend on the transcription factors to be analyzed and the specifics of the 

library design (e.g. a library consisting of many high affinity sequences may yield more 

transpositions than library consisting of many low affinity sequences). In our experience, CCRA 

libraries with 500 or fewer unique sequences yield high-quality binding results, but this could be 

easily scaled by using more plates or through future improvements to the method. In the future, it 



35 
 

should be possible to analyze multiple TFs simultaneously with CCRA technology by adding 

different TF barcodes during the first amplifying step and then transforming the barcoded 

libraries into different yeast strains, each containing a different TF-Sir4p fragment fusion.    

The CCRA method is able to analyze a number of user-defined sequences in parallel, providing 

quantitative and well-controlled measurements that would be difficult to obtain using genome-

wide methods.  For example, the free energy binding landscape we described for Cbf1p was 

generated by analyzing all 1bp substitutions to this factor’s consensus motif in exactly the same 

sequence context, a design which enabled the detection of small free energy changes.  In 

contrast, small changes in binding energy cannot be inferred from genome-wide calling card 

measurements of Cbf1 (Appendix 1.5), although the broad trends are generally the same.  This is 

likely due to the fact that while all 1bp substitutions to Cbf1p’s consensus binding sequence are 

indeed present in the genome, they exist in different local sequence contexts, so the 

measurements are not well controlled.  For example, in the yeast genome, one Cbf1p binding site 

might compete with a nucleosome, while another binding site may not, so the different local 

contexts confound the accurate measurement of binding energies.  Indeed, we observed in our 

CCRA experiments that when a Cbf1p binding site is flanked with a nucleosome disfavoring 

sequence, Cbf1p binding consistently increases (Fig 1.3). The ability to make well-controlled 

measurements likely also contributed to our ability to detect the periodic phase dependence of 

Cbf1p’s cooperativity. This phase dependence is an interesting phenomenon, and to our 

knowledge cooperative binding of a transcription factor complex has not been previously shown 

to be influenced by helical phase.  However, an important related result was found by Kosuri and 

colleagues where they found that the expression output of a reporter gene depended on the 
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helical phase between the transcription start site and the binding site of a transcriptional activator 

(Davis, 2019). 

We envision CCRA will be broadly applied to study three different aspects of TF binding: 1) 

quantitative investigations into TF-DNA interactions in the native cellular environment; for 

example, mapping TF binding energy landscapes in vivo or evaluating the effect of flanking 

sequences on motif recognition; 2) studies into the mechanisms by which TFs bind 

cooperatively; for example, evaluating the energetic contributions of different TF binding sites to 

the binding of a TF complex; 3) dissection of the relationship between TF occupancy and 

transcriptional output. Furthermore, it is likely that CCRA can be extended to multicellular 

eukaryotic systems in the future using the appropriate transposon machinery. The Calling Card 

method has been applied to study mammalian TFs such as SP1 and BAP1 with PiggyBac 

transposon (Wang H. M., "Calling cards" for DNA-binding proteins in mammalian cells. , 2012; 

Yen, 2018), so this transposon system is an excellent candidate for performing CCRA in 

mammalian cells. Such investigations should ultimately lead to a better understanding of the 

roles that TFs play in orchestrating the transcriptional networks that allow cells to carry out their 

diverse functions. 
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1.4 Materials and Methods 

1.4.1 Library Design and Amplification 

CCRA libraries are created by array-based oligonucleotide synthesis (Agilent).  Each element of 

the library is a distinct 230 bp oligonucleotide comprised of 5 different sequence regions. The 

first region is a 20 bp constant sequence that is homologous to the backbone plasmid to support 

Gibson cloning. The next (downstream) 11 bp sequence is unique to each sub-library to enable 

the amplification of subsets of the library elements that are synthesized in each batch. This 

allows for the analysis of different TFs or the testing of different hypotheses using a single 

oligonucleotide synthesis. The third region is the 170 bp user-defined variable synthetic 

promoter sequence. This region is followed by 12 bp “promoter” barcode that identifies the 

corresponding promoter sequence at Illumina sequencing step. Each promoter barcode is 

designed to be at least 3 bp different than all other barcodes to control for synthesis, PCR and 

sequencing errors. The last region of each library element is a constant 17 bp sequence used for 

PCR amplification. The library pool was synthesized by Agilent as 10 pmol of lyophilized 

nucleic acid. To amplify the library, we used 0.15 ng of library DNA template in a final 50 µL 

PCR reaction. In each 50 µL reaction, we used 0.2 mM dNTP mix, 0.5 µM forward primer, 0.5 

µM reverse primer, 1X Herculase II reaction buffer, 1M Betaine, 0.15 ng DNA template in 

water, 1 µL of Herculase II polymerase (Agilent).  The PCR reaction was cycled as follows: 95 

degrees for 1 min, 16 cycles of 95 degrees for 30 secs and 58 degrees for 2.5 mins and then 72 

degrees for 4 mins. PCR products were purified by AMPure XP beads from Beckman coulter 

with 1:1.6 of PCR sample to magnetic particles ratio according to manufacturer’s instructions. 

Typically, we obtained 5 to 10 ng/µL of DNA in a final volume of 15 µL.  
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1.4.2 CCRA Library Construction  

Plasmid pRS414 was used as the backbone to create library plasmid pRM1806. To clone library 

sequences into the pRM1806 backbone, we linearized the plasmid with high fidelity KpnI and 

SacI (NEB), and then performed gel extraction using the Qiagen DNA extraction kit. We used 

0.03 pmol of the linearized plasmid and 0.12 pmol of purified PCR product in a Gibson assembly 

reaction (NEB), following the manufacturer’s instructions. Nitrocellulose membrane (0.025 µm) 

was used to filter Gibson assembly product by drop dialysis following the Millipore Sigma 

protocol. The library was electroporated into 10G SUPREME Electrocompetent cells (Lucigen) 

using 0.1 cm cuvette and cells were plated on to Kanamycin containing LB plates after 1-hour 

recovery in SOC. After 16 hours of growth, over 50,000 colonies were scraped, and the plasmid 

DNA was extracted using Qiagen Miniprep Kit.  

 

1.4.3 Calling Cards Induction and Promoter Library Recovery 

The yeast strain used in this study was yRM1004, which is derived from matA_deltaSir4, and 

has the following genotype: his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δsir4::KanMx Δtrp1::HygMx. 

Induction of TF directed transposition was performed using a modified calling cards protocol 

(Wang H. J., 2007; Wang H. M., 2011). Briefly, plasmid containing a Sir4p (amino acids 951-

1200) tagged TF driven by ADH1 promoter with LEU2 auxotrophic marker was transformed into 

yeast cells (yRM1004) together with the plasmid pRM1804 which contains the URA3 marker 

and a galactose inducible Ty5 transposon with an artificial intron inside of His3 gene that is 

inside of Ty5 gene body for the purpose of selecting transposition positive cells in the next step 

(Zou, 1996). After transformation, cells were plated onto a Glu-Ura-Leu plate to select for cells 
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carrying both the TF-sir4p fusion plasmid and Ty5 transposon plasmid. Next, a single colony 

was picked for library plasmid transformation. The library plasmid pRM1806 carries the TRP 

auxotrophic selection marker, so after the yeast cells were transformed with the library plasmid, 

they were plated onto a Glu-Ura-Leu-Trp plate to select for all three plasmids. Multiple parallel 

transformations were performed to obtain a diverse population of library sequences. We typically 

obtained over 10,000 colonies for each sub library. All colonies were pooled and plated to Gal-

Ura-Leu-Trp to induce Ty5 transposition on 10 plates to increase the number of transpositions. 

Cells were allowed to grow on galactose plates for four days at room temperature. After 

galactose induction, we replica plated cells to Glu-His-Trp to select for yeast with Ty5 

transpositions and that carry the library plasmid. After 2-3 days, colonies were scraped, and 

plasmid extraction was performed using the Yeast Plasmid Mini Kit (Omega).  

 

1.4.4 Preparation of Illumina Libraries for Calling Cards Mapping 

We performed four independent PCRs to recover transpositions that were inserted into synthetic 

promoters in either of two possible orientations and upstream or downstream of the barcodes and 

UMI.  We performed an additional PCR to measure the relative abundance of elements in the 

library for normalization. For these four PCRs, one primer of each pair is specific to either 3’ 

LTR of Ty5 transposon sequence or 5’ LTR of Ty5 transposon sequence, and the other primer is 

specific to a constant region either upstream or downstream of the inserted library sequence on 

the plasmid. For the additional PCR, one primer is specific to an upstream constant region of the 

inserted library sequence on the plasmid, and the other primer is for the downstream constant 

region. All 5 PCR products were pooled together for sequencing. 
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In each PCR reaction, we used 1X RedTaq buffer, 0.2 mM dNTP mix, 1M Betaine, 0.5 µM 

forward primer, 0.5 µM reverse primer, 4 µL RedTag DNA polymerase (Sigma-Aldrich), 1 µg of 

the purified plasmid DNA and the corresponding amount of water to reach a final volume of 50 

µL. The PCR parameters were set to be 93 degrees for 2 mins, 24~28 cycles of 93 degrees for 30 

secs and 62 degrees for 6 mins, and 62 degrees for 6 mins. The PCR products were then purified 

with Qiagen PCR purification kit before sequencing.  

 

 

 

1.4.5 Measuring Reporter Expression in CCRA Libraries by Sort-Seq 

After transforming the library plasmid into yeast, we divided the cells for either Calling cards or 

Sort-Seq. For expression measurement, we followed the experimental procedures as well as 

promoter expression calculation described in (Kinney, 2010; Sharon, 2012). We sorted cells into 

8 bins of 100,000 cells each, and then added yeast culture media to grow the cells for 16 hours. 

Cells from each bin were then pelleted separately and the plasmids were extracted with Yeast 

Plasmid Mini Kit (Omega) for sequencing. 

Next, we performed a separate PCR reaction for each sorted bin. The primer sequences are listed 

in supplemental table 1, and they target the constant regions upstream and downstream of the 

CCRA library. In each of the 8 PCR reactions, the reverse primer was indexed with unique 

barcode to allow the reactions to be sequenced together. The PCR amplification conditions used 

were identical to those used for calling cards recovery. 
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1.4.6 Analysis of Sequencing Reads for Quantification of TF Binding 

To quantify TF binding to CCRA libraries, we analyze Illumina paired end sequencing reads to 

count all unique insertions into each library member.  A transposition is unique if it can be 

distinguished by its insertion coordinate relative to the library reference or contains a unique 

UMI in instances where multiple insertions have landed at the same position across four 

independent PCRs. To identify unique insertions from the sequencing data, we first filter for 

reads containing the appropriate 12 bp library barcode and 6 bp TF barcode. Filtered reads are 

then divided into five categories: reads from synthetic promoters where the Ty5 transposon 

inserted in the forward direction upstream of the promoter barcodes, reads where Ty5 inserted in 

reverse direction upstream of barcodes, reads where the Ty5 inserted in forward direction 

downstream of barcodes, reads where the Ty5 inserted in reverse direction downstream of 

barcodes, and reads from synthetic promoters without insertion. This categorization is achieved 

by analyzing the first 20bp of read 1 and read 2. The next 12 bp are used to map the precise 

location of the transposon insertion into the synthetic sequence.  We used the 4 bp UMI to 

resolve events when multiple calling cards are deposited at the same base pair in a given 

synthetic sequence.  Finally, we use the number of full-length sequences recovered for each 

library element as a normalization factor to control for the variation in abundance between 

library members. The total number of independent insertions for each library member is 

normalized by the relative abundance of each element in the library to compute a normalized 

binding score (NBS) of TF binding to each synthetic sequence.  
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1.4.7 Using an Expectation Maximum Algorithm to Distinguish TF-
directed Insertions from Background 

For experiments in which changes in binding energies are measured, it is important to measure 

TF binding strength as accurately as possible. Therefore, we used an expectation maximization 

algorithm to resolve TF-directed transpositions which occur near TF recognition sites from 

background transpositions which occur uniformly across the synthetic promoter. Since the 

distribution of TF directed insertions is approximately Gaussian with the distribution centered at 

the TF recognition site, we assumed that TF directed insertions can be modelled with this 

distribution while background insertions follow a uniform distribution. We then used an 

expectation maximum algorithm to estimate, for each synthetic promoter, the variance of the 

Gaussian distribution (the mean value is determined by the location of the TF recognition 

sequence) and the fraction of insertions that were the result of a TF-directed or background 

transposition. For each library element, we iterate each independent insertion for maximum of 

1000 times or until the parameters no longer change. The estimated fraction of TF-directed 

insertions is used to multiply the raw number of insertions at each promoter to remove insertions 

due to non-specific transposition. This background correction step removes 0~20% of non-

specific insertions, which is important for calculating small changes in binding energy; however, 

incorporating this step does not impact other analysis is not used for sequences where the 

Gaussian assumption is not appropriate (e.g. for sequences with multiple TF sites or for TFs 

whose recognition sequence is not well-characterized). Therefore, we performed this background 

correction only for the generation of binding energy landscapes. 
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1.4.8 Binding Energy Difference Calculation  

To quantitatively compare CCRA with PBM and MITOMI in terms of binding affinity, we 

calculated the change of binding energy (∆∆𝐺) from consensus site to the alternative site as 

follows:   

Under binding equilibrium, [TF] and [sequence] associate at the same rate that the bound 

complex [TFS] disassociates:  

[TF] + [S]  <->  [TFS]  (1.1)            

The Gibbs free energy ∆𝐺 is related to the binding constant K as follows:  

K(S) = [23][$]
[23$]

	= 𝑒∆6/82          												  (1.2)        

∆𝐺 = RTln(K(S))                                  (1.3)      

The binding occupancy on a sequence is defined as the fraction of bound sequence to the total 

sequence in solution. Replace [TFS] with [TF][S]/K according to 2a, and by approximation that 

K(S) is much greater than [TF] as the affinity of these sequences are high, we get:    

Occ(S) = [23$]
[23$]9[$]

= [23]
[23]9:($)

≈ [23]
:($)

                            (1.4)       

K(S) = [23]
!""($)

  (1.5)       

Therefore, the change of binding energy equals: 

∆∆𝐺 = ∆𝐺(𝑆𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) − ∆𝐺(𝑆𝑚𝑢𝑡𝑎𝑛𝑡) = -RTln ( !""($%&'()')
!""($"+),-),&,)

)     (1.6) 
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1.4.9 Test for Binding Cooperativity 

To determine if Cbf1p binds cooperativity at various synthetic promoters, we compared the 

observed occupancy to expected occupancy assuming independent binding, and we derived this 

test by the following:  

[Cbf1p] + [DNA with two free sites] 
;.
↔ [Cbf1p-DNA with one free site] + [Cbf1p] 

;0
↔ [2*Cbf1p-

DNA with both sites occupied] 

To simplify: [P]+[S] 
;.
↔ [PS]+[M] 

;0
↔ [P2S]                          (1.7) 

Occ(P) = 0∗:.∗=90∗:.∗:0∗=
!

.90∗:.∗=9:.∗:0∗=!
                                (1.8) 

If Cbf2 binds additively, then K1 = K2 = K; 

Occ(P) = 0∗:∗=90∗;
!∗=!

.90∗:∗=9;!∗=!
=0∗:∗=(.9:∗=)

(.9:∗=)!
= 2* ( :∗=

.9:∗=
)                      (1.9) 

And so, the null expectation for binding occupancy is simple twice the observed binding to a 

single recognition site. 

 

1.4.10 TF Motifs and NDS Definition  

For yeast TF motifs, we used the recommended PWMs compiled by Spivak and Stormo in the 

ScerTF database(stormo.wustl.edu/ScerTF). The ScerTF recommended PWM cutoff scores were 

used to define the presence or absence of TF sites on DNA sequences. The binding motif of 

MAX, the human bHLH factor, was obtained from factorbook 
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(v1.factorbook.org/mediawiki/index.php/MAX). The NDS sequences used for this study were 

taken from a study by Raveh-Sadka (Raveh-Sadka, 2012); the NDS1 and NDS2 sequences in 

this work correspond to the v1 and v37 sequences from that study, respectively.  

 

1.4.11 Processing PBM and MITOMI Data  

Cbf1p PBM data was obtained from UniProbe database, and we used dataset UP00397 for 

calculating free energy changes. We searched for each motif variant in PBM data, all the 

sequences that contains the same motif variant are grouped together, and the average PBM score 

was used to reflect the binding affinity for that variant. MITOMI data was obtained from the 

study by Maerkl (Maerkl, 2007) and the Kd for each relevant variant reported in the original 

publication was used for the calculation directly. 
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Chapter 2:  CG Rich Sequences Act as a 
Kinetic Funnel to Specify Transcription 
Factor Binding 

 
2.1 Introduction  
 

Transcription factors (TFs) are critical elements in determining various cellular regulations, and 

they function by binding to regulatory DNA, called TF binding sites (TFBSs) to either activate or 

repress expression (Stormo G. , 2000; Accili & Arden, 2004; Vaquerizas, 2009; Simon, 2001). 

TFBS are generally short DNA sequences ranging from 5bp to 15bp long; and TFs often can 

tolerant a few mismatches to the consensus TFBS, both of which in turn result in excessive non-

functional TFBSs with binding potential in the regulatory regions that are unbound for a given 

TF. The principle that TFs follows in selecting the actual functional TFBSs accurately is an 

intriguing problem (Slattery, 2014). Most efforts in studying the regulations of TF binding can be 

categorized into trans-factor related such as cooperativity with other co-factors and competition 

with nucleosomes (Liu X. L., 2006; Zhou X. &., Integrated approaches reveal determinants of 

genome-wide binding and function of the transcription factor Pho4., 2011; Mirny, 2009) and cis-

factor related such as the affinity and structural features of the TFBS (Tanay, 2006; Bradley, 

2010; Fordyce, 2010; Bulyk, 2007; Berger M. F., 2009; Berger M. F., 2006; Stormo, Zuo, & 

Chang, 2015; Warren, 2006).   

Attempts to predict TF binding in the aspect of cis-factor have focused on almost exclusively on 

nucleotide sequences at, or immediately flanking (2-4bp) TF binding sites (Zhou T. S., 2015; 
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Mathelier, 2016; Zeiske, 2018). However, it has recently become appreciated that, in some 

instances, the local DNA context (LDC) in which a TF binding motif resides (the flanking 50-

200 bp) can have an influence on TF binding. One possible explanation is the ability of these 

flanking sequences to recruit or exclude nucleosomes (Struhl, 2013; Raveh-Sadka, 2012; Levo, 

2015), but in some instances, the effect appears to be independent of nucleosome occupancy. For 

example, White and colleagues used a plasmid based massively parallel reporter array system to 

show that only 84bp of DNA flanking high scoring CRX motifs determined whether a binding 

stie was transcriptionally active or not (White M. A., 2013). Similarly, Hartl and colleagues 

found that flanking sequences enhanced the probability that an enhancer was active and 

increased the probability of TF binding (Hartl D, 2019). Moreover, a study that examined both in 

vivo and in vitro binding data showed that distinct sequence composition and the similarity to the 

core binding motif on the environment DNA for TF bound regions (Dror, 2015).  

These studies and others (White M. A., 2013; Hartl D, 2019; Dror, 2015) highlight the important 

role local sequence context plays in specifying TF function. However, many unanswered 

questions remain about this phenomenon: do flanking sequences influence the binding of all TFs, 

or just a select few? Are different TFs influenced by different flanking sequences, or are there 

universal sequences that affect all TFs? How strong is the influence of flanking bases on TF 

binding relative to better-characterized factors such as motif strength or nucleosome occupancy? 

Most importantly, what is the mechanism by which flanking bases influence TF binding?  

In this study, we sought out to answer these questions by investigating if predictive information 

is embedded on local DNA sequence on various TFs in Saccharomyces cerevisiae. We 

discovered there was a general preference for TFs to bind at CG rich sequences; we then 

analyzed whether such preference was linked to intrinsic nucleosome binding preference and 
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found the CG preference in LDC for TF binding was independent of nucleosome regulation. We 

next examined the possible mechanism by which LDC influence TFs binding site selection, 

through recruiting ‘licensing’ factors or kinetically assisting TF search for a target site. We 

showed high CG LDC was preferred by TFs in vitro condition, which suggested such preference 

only involves TFs and DNA and pointed us to TF search kinetics. CG rich feature in LDC may 

act as an energetical funnel to facilitate TF recognizing a target binding site, and we verified the 

theoretical validity of this hypothesis with simulation with Gillespie algorithm. In the end, we 

revealed CG preference was also present in a large group of human TFs, indicating the usage of 

LDC is a general mechanism for TF binding specificity.     

 

 

2.2 Results 
 

2.2.1 Local Sequence Context Predicts Motif Binding for Yeast TFs 

Extensive research has been focused on TF-DNA interactions at the binding motif and bases 

immediately flanking the motif (Berger M. F., 2009; Berger M. F., 2006; Fordyce, 2010; Stormo 

G. , 2000; Tanay, 2006; Zhou T. S., 2015). The subtle variation within the motif and the flanking 

sequences alters the affinity of TF binding, which changes the strength or the residence time of 

the binding. The affinity of DNA sequence is of great importance for TF-DNA interaction and 

ultimately determines the binding potential of a site. However, there are many high binding 

potential DNA sequences on the genome that are not bound by TFs (See Appendix 2.1 for 

intersection between binding peaks and motifs). In this study, we define TFBS as any DNA 

sequences with binding potential according to the score calculated based on position weight 
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matrix (PWM). TF binding motifs are considerably short with regard to the genome size; and it 

is reasonable to anticipate that many other larger scale factors may contribute to the specificity of 

TF localizing in addition to TF binding motif. It has been suggested that chromatin structure, 

histone regulations and nucleosome occupancy can influence TF localization (Wang J. Z., 2012; 

Shai R Joseph, 2017; Zhou X., 2011; Liu X. L., 2006). In this study, we focus on the connection 

of local DNA sequence in the process of TF in searching for target binding sites. It has been 

proposed that the LDC can influence TF binding in relation to the intrinsic regulations of 

nucleosome occupancy (i.e., nucleosome disfavoring sequences) (Raveh-Sadka, 2012) and motif 

combinations of trans-factor (Liu J. S., 2020; Shively, 2019; Panne, 2007; Junion, 2012) 

however, limited investigation has been done to understand, on pure cis regulation level, if LDC 

contributes to TF localizing target binding sites and how strong is such impact.  

 

 

Figure 2.1 The flowchart for modelling LDC for TF binding prediction. The total TFBS on intergenic 
regions were intersected with binding peaks and were divided into bound and unbound sets. 125bp 
flanking DNA of either side of TFBS from the bound and unbound set was modeled by first order 
Markov Chain with 5-fold cross validation and applied to test sequences to generate a log-odds score for 
estimating the likelihood of being bound for the given TF.  The binding prediction was evaluated with 
ROC curve and the results for all TFs with well-defined motifs were summarized into a bar chart shown 
in the right panel.  
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First, we decided to test if flanking sequences contain predictive information for TF binding. For 

each TF with a well-defined motif, we searched for all binding motifs that are present on 

intergenic regions and divided these motifs into bound and unbound set according the TF binding 

data by either Calling Cards or ChIP-exo method (Shively, 2019; Wang H. M., 2011; Rhee, 

2011). For both sets, we took 125 bp upstream and downstream as LDC for analysis with the 

motif itself and 5bp immediately flanking the motif removed to exclude the motif strength and 

DNA shape effect on TF binding. To understand if these local DNA sequences alone can 

distinguish bound TFBS from unbound TFBS, we performed supervised learning on these two 

sets using first order Markov Chain model to preserve the sequential nucleotide information in a 

parsimonious way. With 5-fold cross validation, we showed that modelling the local DNA 

sequences can improve binding prediction for all TFs with area under the receiver operator curve 

(AUROC) from 60% - 90% (Fig 2.1), suggesting local DNA sequences alone contain predictive 

information for TF binding.  

 

Figure 2.2 The overlap between ChIP-exo peaks and total Phd1p TFBS on intergenic regions. Phd1p 
TFBS was searched on yeast intergenic regions with one log score lower than the recommended PWM 
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score from ScerTF database and the coordinates of TFBS were intersected with all ChIP-exo binding 
peaks.  

 

 

Figure 2.3 Dinucleotide fold change in LDC between Phd1p TFBS bound and unbound sets. All possible 
dinucleotides were counted in LDC on Phd1p TFBS bound and unbound sets and compared in terms of 
fold change. The standard deviation across all sequences were shown as error bars.  
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Figure 2.4 LDC modeled by first order Markov Chain can improve Phd1p binding prediction. Left) ROC 
curve using the calculated log odds score for each Phd1p TFBS containing sequence. Right) Histogram 
view of the calculated LDC score for Phd1p TFBS bound and unbound sets.  

 

 

Taken Phd1p and Gcr1p as examples, there are five folds more unbound motifs than bound ones 

(Fig 2.2 & Fig 2.5). To have a general view of the DNA characteristics of the flanking 

sequences, we took LDC from both bound motifs and unbound motifs and counted all possible 

dinucleotide in both sets and plotted the frequency fold change (Fig 2.3& Fig 2.6). CG 

preference on the LDC between bound set and unbound set was shown for both TFs significantly 

in Figure 2.3 and Figure 2.6, and the CG rich feature was observed for all other 14 TFs 

analyzed. With 5-fold cross validation, we compressed the local DNA information from training 

data into first order Markov Chain model, and we evaluated the model prediction performance 

with testing data by receiver operator curve (ROC). The area under the curve (AUC) was 0.801 

for Phd1p and 0.723 for Gcr1p with Mann Whitney statistical test p-value 0 and 2.05e-9 

respectively (Fig 2.4 Left& Fig 2.7 Left), and we used histogram to show the model 

performance in distinguishing bound and unbound sequences (Fig 2.4 Right & Fig 2.7 Right).     
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Figure 2.5 The overlap between Calling Cards peaks and total Gcr1p TFBS on intergenic regions. The 
same as Figure 2.2, Gcr1p TFBS was searched on yeast intergenic regions with one log score lower than 
the recommended PWM score from ScerTF database and the coordinates of TFBS were intersected with 
all Calling Cards binding peaks.  

 

 

Figure 2.6 Dinucleotide fold change in LDC between Gcr1p TFBS bound and unbound sets. The same as 
Figure 2.3, all possible dinucleotides were counted in LDC on Gcr1p TFBS bound and unbound sets and 
compared in terms of fold change. The standard deviation across all sequences were shown as error bars.  
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Figure 2.7 LDC modeled by first order Markov Chain can improve Gcr1p binding prediction. Left) ROC 
curve using the calculated log odds score for each Gcr1p TFBS containing sequence. Right) Histogram 
view of the calculated LDC score for Gcr1p TFBS bound and unbound sets.  

 

2.2.2 A Universal Dinucleotide Signature in Flanking Bases Predicts TF 
Binding for TFs with Motif and for TFs without Well-defined Motif 

From the analysis in the previous section, we noticed the characteristics of the dinucleotide 

frequency are very similar across all the TFs with well-defined motifs (i.e., higher CG content 

and lower AT content), which made us wonder if the preferred features on local DNA are shared 

across TFs. For each TF, we trained the Markov Chain model with LDC from all other TFs (i.e., 

all TFBS containing LDC from other 15 TFs with well-defined motifs categorized into bound 

and unbound set by TF binding data), and we compared the prediction result of using the model 

trained using other TFs to the result of using their own LDC as training and found that 

improvement of binding prediction in AUC for every tested TF remained to a similar level 

(Appendix 2.2 A). Moreover, with combining all TFs, we showed dinucleotides that both 

nucleotides are C or G are significantly enriched and dinucleotides that are A or T are 

significantly depleted (Appendix 2.2 B). Both evidence suggested to us the high CG feature is a 
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general pattern shared by all analyzed TFs that facilitate TF binding, and therefore, we 

constructed a Universal Markov Chain model using all local sequences from these 16 TFs (See 

Appendix 2.2 C & D for the full model).  

 

   

 

Figure 2.8 Universal LDC model predicts binding for TFs without well-defined motifs. LDC from bound 
and unbound TFBS for all TFs were combined and made into the Universal Markov Chain model to make 
binding predictions for TFs without specific motifs. As no TFBS information can be used for these TFs, 
all bound regions were treated as positive set and all unbound intergenic regions were treated as negative 
set. The ROC curve for Sef1p binding prediction was shown on the right. 

 

There are many TFs lacking specific and informative motifs or may not yet have established 

binding motifs, which creates the difficulty in identifying possible TF binding locations in the 

genome. Therefore, we considered all intergenic regions with binding potential, and categorized 

all yeast intergenic regions into bound and unbound regions given TF binding peaks by either 

Calling Cards or ChIP-exo method. With the Universal Markov Chain model, we can now test 

on TF without specific motifs if the preferred local DNA feature is the same on TFs with well-

defined motifs. Specifically, for each TF, we took their bound peaks and all other intergenic 

regions and asked whether this Universal model was able to classify them apart using ROC as 
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prediction evaluation (Fig 2.8, binding prediction for Sef1p was shown). To our surprise, we 

were able to obtain AUROC from 65% to 90% for all 18 TFs with significant Mann-Whitney p 

values (Fig 2.10), suggesting there is a general preference on the LDC that facilitate TF binding. 

Given the fact the ROC compares all possible intergenic regions and true binding regions with 

one Universal model, the improvement in binding prediction for all TFs indicates potentially ‘hot 

spot’ and inactive regions for TF regulations.  Furthermore, consistent with improvement on 

binding prediction, the dinucleotide features also remained similar as was observed for TFs with 

specific motifs, significantly higher CG content and lower AT content (Fig 2.9).  

 

 

Figure 2.9 Overall dinucleotide fold change for TFs without specific motifs between binding peaks and 
unbound intergenic regions. All possible dinucleotides were counted in LDC bound and unbound sets for 
all TFs combined and compared in terms of fold change. The standard deviation across all sequences 
were shown as error bars.  
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Figure 2.10 Binding prediction AUROC using universal LDC model for all TFs without known motifs. 
Dark blue bar represents TF binding data collected by Calling Cards method and light blue bar represents 
TF binding data measured by ChIP-exo.  

 

 

2.2.3 Local Sequence Context Provides Information Independent of 
Nucleosome Occupancy 

Nucleosome occupancy has been linked to TF binding regulation (Liu X. L., 2006; Zhou X., 

2011); it has been observed that nucleosome can compete with TFs for binding sites and as a 

result exclude TFs to bind at the potential motif. It is reasonable to question if this high CG 

observation feature that improves TF binding prediction is simply a result of intrinsic 

nucleosome disfavoring characteristic. To test if this hypothesis is true, we identified binding 

motifs that are free of nucleosome, and divided them into bound and unbound sets for every TF 

with a well-defined motif. If it is true that the Universal Markov Chain model which we 

constructed in the previous section merely captures intrinsic nucleosome free sequence feature, 

the binding prediction improvement would be lost by comparing the bound and unbound that are 

both at nucleosome free regions (Fig 2.11).  
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Figure 2.11 Flowchart of assessing if the predictive information in LDC is related intrinsic nucleosome 
disfavoring sequences. To understand if the bound TFBS region share the same feature of nucleosome 
free region, we compared flanking DNA sequences from bound TFBS to unbound TFBS that both locate 
at nucleosome free regions. If the LDC of bound TFBS is the same as intrinsic nucleosome disfavoring, 
the predictive power would be lost when we compare both sets at nucleosome free regions.  

 

By applying the Universal model to the local DNA sequences, we evaluated the binding 

prediction with ROC, and we showed that the improvement in terms of AUC for differentiating 

TF bound motifs and unbound motifs both on nucleosome free regions remained to a similar 

level (Fig 2.12) and even higher for some TFs when we do not limit LDC to nucleosome free 

regions. Moreover, for TFs lacking specific motifs, we intersected the peak center with 

nucleosome free regions to identify bound regions that are free of nucleosome; and we compared 

those bound and nucleosome free regions to all other intergenic regions that are free of 

nucleosome. Similarly, the AUROC improvement was the about the same as the previous section 

(Fig 2.13). These results demonstrated that the intrinsic nucleosome preference if there is any 

does not reflect the predictive power on the local DNA sequences on TF binding specificity in 

vivo.  
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Figure 2.12 AUC comparison between using all LDC or LDC at nucleosome free regions for prediction 
for TFs with specific TFBS.  Binding prediction were performed on bound and unbound TFBS sequences 
that are filtered based on nucleosome occupancy (only nucleosome free regions used) for all TFs and the 
AUC was compared to binding prediction with using all sequences for each TF.   
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Figure 2.13 AUC comparison between using all LDC or LDC at nucleosome free regions for prediction 
for TFs without specific TFBS.  Binding prediction were performed on bound and unbound sequences 
that are filtered based on nucleosome occupancy (only nucleosome free regions used) for all TFs and the 
AUC was compared to binding prediction with using all sequences for each TF.   

 

 

2.2.4 A Universal Dinucleotide Signature can be Combined with Motif 
Information to Improve TF Binding Prediction  

TF binding motif that is stored in the format of position weight matrix (PWM) has been the most 

common and informative predictor for TF binding (Stormo G. , 2000). As we have shown that 

the universal dinucleotide signature can help classifying TF bound and unbound regions, we 

further investigated if we could incorporate the LDC preference with the motif information in the 

PWM format to improve TF binding prediction. To have a relative estimation of the extent of 

improvement in prediction, we compared the incorporation of LDC to the incorporation of 

nucleosome occupancy which has been studied more extensively and shown to influence TF 

binding (Liu X. L., 2006).  
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Figure 2.14 Flowchart of incorporating LDC score with PWM score to improve binding prediction. All 
intergenic regions in S. cerevisiae were included and searched for TFBS with requiring the minimal 
affinity for the given TF (i.e.  PWM score of zero and above). The highest PWM scored TFBS were used 
to represent the PWM score of each intergenic region and the coordinates of such TFBS were intersected 
with nucleosome occupancy information for obtaining the NuOc score at the site. The LDC score was 
calculated using 125bp flanking DNA either side of the TFBS. Logistic regression was performed on 
either the combination of PWM score and LDC score or the combination of PWM score and NuOc value, 
and the prediction results were evaluated using PRC and ROC.   

 

For every TF with a well-defined motif, we searched for every intergenic region with PWM 

score at threshold of zero, affinity higher than random sequences, to include all possible binding 

sites, and we used the highest score being the motif predictor of this promoter. Next, for every 

intergenic region, we obtained a LDC score (i.e., the log odds given the universal bound and 

unbound state model) with the range of LDC defined as 125bp up and downstream of the highest 

scored motif. Similarly, we obtained a nucleosome occupancy (NuOc) value using the 

summation of the normalized nucleosome occupancy surrounding the highest scored motif (Fig 

2.14).  
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Figure 2.15 AUPRC comparison between using PWM score alone and using PWM score together with 
LDC score or Nucleosome occupancy (NuOc) score, with red marker representing LDC incorporating to 
the model and gray marker representing NuOc score incorporating to the model. 

 

To have a generalized model, we performed a simple logistic regression with PWM score 

together with either the LDC score or NuOc value with 5-fold cross validation. We evaluated the 

prediction performance with Precision Recall Curve (PRC) and Receiver Operator Curve (ROC), 

and we compared the results of using both predictors to the results of using the highest PWM 

alone as predictor in understand how much the improvement is with additional information. With 

the incorporation of LDC score feature, we showed that binding predictions assessed by both 

PRC and ROC are better for most of these TFs with improvement ranging from 5% - 160% for 

PRC and 1%-15% for ROC (except for Sip4p; we reasoned the worse prediction result with 

including additional LDC score is due to the limited number of true binding targets in this data 

set which results in weakened model for prediction). The incorporation of LDC produced higher 

prediction improvement than incorporating additional NuOc value in the model, suggesting a 

greater in vivo contribution of TF binding specificity (Fig 2.15 & Fig 2.16).  
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Figure 2.16 AUROC comparison between using PWM score alone and using PWM score together with 
LDC score or Nucleosome occupancy (NuOc) score, with red marker representing LDC incorporating to 
the model and gray marker representing NuOc score incorporating to the model. 

 

2.2.5 Local Sequence Context Influences in vitro TF Binding 

Next, we wanted to understand the mechanism by which LDC influences TF binding. There are a 

number of possible mechanisms – one or more “licensing” factors that bind at flanking 

sequences and recruit TFs or influence DNA structure so as to enable TF binding, flanking 

sequences recruit loci to transcription factories, or it could be that the local flanking sequences 

aid in TF search kinetics. These hypotheses can be distinguished by determining whether local 

sequence context has an influence on motif utilization in vitro. Therefore, we decided to analyze 

Dip-ChIP binding data where only the pure protein and naked DNA are present. The advantage 

of using Dip-ChIP data is that 1) the naked DNA come from the actual genomic sequences 

whereas other in vitro analysis such as PBM utilizes universal artificial DNA sequences that 

aims to identify short binding motif (Philippakis, 2008); 2) the average length of DNA sequence 
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is about 600bp in Dip-ChIP (Rhee, 2011), which is much longer than common in vitro methods, 

and therefore the results of Dip-ChIP experiments are more suitable for the purpose of studying 

LDC of binding. 

 

 

Figure 2.18 The contribution of LDC to TF binding prediction is present in vitro condition. The Universal 
Markov Chain model was applied to make binding prediction for Dip-ChIP data, and the prediction 
results were summarized in terms of AUC shown on the right.  

 

We revealed that the CG preference is also present in Dip-ChIP data; the dinucleotide frequency 

characteristics of bound regions remains in vitro (Fig 2.19), and the Universal Markov Chain 

model from previous sections learnt from in vivo data is also predictive for these in vitro TF 

binding data with AUC ranging from 0.6 to 0.85 (Fig 2.18). Moreover, three TFs in this analysis 

coincided with our in vivo analysis in Fig 2.1, and all of them showed similar level of 

improvement in binding prediction, suggesting consistency of local DNA preference in both 

conditions, and thus, we believe the CG rich sequence is preferred by TFs through purely 
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biophysical protein-DNA interaction and such preference in LDC facilitates TF searching 

kinetics.  

 

Figure 2.19 The overall dinucleotide signature in LDC for in vitro binding assay. All possible 
dinucleotides were counted in LDC of Dip-ChIP bound regions and unbound TFBS containing regions 
for all TFs combined and compared in terms of fold change. The standard deviation across all sequences 
were shown as error bars.  

 

 

2.2.6 LDC Serves as a Kinetic Funnel for TF Binding 

The genome size is considerably large with respect to the size of a TF; however, TF can rapidly 

locate its binding target with high accuracy. Facilitated diffusion (FD) by Berg and Von Hippel 

was proposed to explain the fast target search process (Berg OG, 1981); in FD, TFs can switch 

between two modes to search for a binding site while sliding on the DNA chain. This process 

was further characterized by Slutsky and Mirny; the TF-DNA complex undergoes confirmational 

changes to switch between two modes, a highly specific recognition mode and a weakly specific 
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search mode, for fast and stable DNA exploration (Slutsky & Mirny, 2004). One important 

implication of the FD mechanism is that the local DNA environment may affect the kinetics in 

the searching process.  

 

 

Figure 2.20 The FD kinetics of TF target search process. A graphical example of the binding energy for 
TF-DNA exploration in two modes, recognition mode colored in red and search mode colored in blue. 
The rate equations that characterize the two modes searching process shown on the right.   

 

Following the FD hypothesis, we assumed two modes of exploration in TF searching process; in 

the recognition mode, TFs associate DNA tightly with the binding energy dependent on the 

preferred specific motif signature descried by PWM; in the search mode, TFs weakly bind to 

DNA with a combination of unspecific electrostatic attraction (Gerland, 2002; Halford, 2004) 

and sequence-dependent weak interaction (Slutsky & Mirny, 2004). The model and kinetics rates 

for the searching process is depicted in Figure 2.20. 
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Figure 2.21 Two possible mechanisms, motif bias and CG bias, for TF search mode binding. No 
correlation was found between the CG content in TF motif and improvement in binding prediction with 
LDC information, suggesting the improvement in binding prediction with using LDC is not related to 
motif bias at searching step. 

 

A study by Cencini showed the AT rich landscape at target binding site serves as energic funnel 

in E.coli (Cencini, 2018), and such funnel can increase the probability of TF binding to the 

target. In that study, the sequence-dependent contribution at search mode was assumed to be 

proportional to the specific binding at recognition mode. As TFs in E.coli are prone to bind at 

AT rich sequences, it is reasonable to model the energetic funnel relative to the AT bias within 

the TF motif. However, the underlying mechanism is not necessarily linked to the bias within the 

TF motif preference but is a rather general pattern for a large group of TFs at search process.  

In our study, we showed CG richness preferred in LDC by TF binding in eukaryotic organism S. 

cerevisiae., and this phenomenon holds true both in vivo and in vitro conditions. To examine if 

this CG preference is a result of CG bias in the TF motif, we compared the binding prediction 

improvement with LDC information alone and the CG content within TF motif, and no 

correlation is found (Fig 2.21). Therefore, we concluded the energetic funnel in S. cerevisiae is 
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not proportional to the TF motif bias at search mode as observed in (Cencini, 2018). Moreover, 

we compared the CG frequency bias landscape of the bound set to the unbound set for TFs with 

well-defined motifs, and we saw a general CG bias (see reference (Cencini, 2018) for the 

detailed b(r) calculation) with a funnel shape peaked at the target motif (Fig 2.22). Thus, we 

reformed the two modes FD model with the binding energy at searching mode as the CG content 

in a window size of the length for a given TF motif instead of letting search mode binding energy 

being a fraction of recognition mode binding energy. 

 

Figure 2.22 CG bias in LDC between TFBS bound and unbound sets. The CG bias around TFBS was 
approximated for overall bound and unbound sets with all TFs with well-defined motifs, and a funnel 
shaped CG bias was observed for the TFBS bound set. 

 

We further simulated the two modes FD process with Gillespie algorithm (Gillespie, 1976) in 

order to verify the relationship between the CG bias in LDC and TF binding. For every 

simulation, we took 500bp native genomic region upstream and downstream of the target TFBS 
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as the LDC, and we placed the TF within 250bp either side of the target site randomly to initiate 

the search process. The success rate is approximated with 100 simulations for every sequence, 

and the LDC score is calculated using the Universal Markov Chain model constructed in the 

previous section, and a significant positive correlation with r equals to 0.51 is shown (Fig 2.23), 

suggesting the CG bias in LDC can lead to higher probability to locate a TFBS.  

 

Figure 2.23 Correlation between LDC score and the success rate of TF finding a target TFBS simulated 
by Gillespie algorithm. Gillespie simulation was performed on TFBS containing sequences to verify the 
relationship between the LDC score of the flanking DNA sequences around TFBS from the Universal 
Markov Chain model and the success rate of TF locating the target binding site with the proposed FD 
mechanism. The test sequences were sampled from TFs with well-defined motifs with equal 
representation from all TFs.  

 

2.2.7 LDC Improves Binding Prediction for Human TFs  

All previous analysis was performed on TF binding data in S. cerevisiae, a simple unicellular 

eukaryotes organism, which only involves a small set of TFs for cellular regulations. To 
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appreciate roles of LDC in a more complex environment, we expand our LDC analysis to human 

cells. From ENCODE consortium, we acquired 258 ChIP-seq data in K562 condition, and we 

further divided them into TFs with DNA binding motifs and TFs without known motifs 

according to CIS-BP database (Fig 2.24) 

 

Figure 2.24 The overview of ENCODD human ChIP-seq analysis. 258 K562 ChIP-seq data were divided 
into TFs with motif information and TFs without known binding motif according to CIS-BP database.  

 

 

To examine whether the LDC of TFBS in human can predict TF binding, we processed them the 

same way as was done for Figure 2.1 for TFs with well-defined motifs, where the presence and  

coordinates were identified and 125bp upstream and downstream LDC was taken for analysis. 

To obtain appropriate searching space for negative set, 2000bp upstream of coding genes were 

defined as promoter regions and searched with given motif information and took 125bp either 

side of TFBS for negative LDC.  5-folds cross validation was performed and evaluated with 

AUROC; a various level of improvement in binding prediction was observed for these TFs 

ranging from little advance to AUC of 0.9. For detecting the signature of LDC, we determined 

the dinucleotide fold change between the TF bound set and unbound set. CG rich feature of LDC 

is favored by most TFs; interestingly however, we also noticed there are some TFs prefer the 

opposite LDC feature, CG depleted and AT rich sequences. To understand the relationship of 
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LDC signature and binding prediction, the correlation between CG dinucleotide fold change and 

the AUC results from 5-fold cross validation was plotted (Fig 2.25); the more extreme of CG 

fold change in either direction was correlated with higher improvement in AUC.  For TFs 

without known motif information, the centered 250bp binding peaks from ChIP-seq were treated 

as the positive dataset, and a random sampling of 250bp sequences from all promoter regions in 

human were treated as negative dataset. The same comparison for CG fold change in LDC and 

prediction results in AUC was shown for TFs without known motif information (Fig 2.26), and 

the results resembled the results for TFs with specific motifs, suggesting a diverse bias towards 

LDC for human TFs.  

 

 

Figure 2.25 Comparison between CG dinucleotide fold change in LDC and AUC for binding prediction. 
For all ChIP-seq data with DNA binding motifs information, the TFBS were searched in the binding 
peaks and 125bp flanking DNA upstream and downstream of the site were taken as positive dataset for 
LDC analysis. TFBS for the given TF were also search in all promoter regions and the flanking DNA 
either side of the site were used as negative dataset. 5-fold cross validation were performed for 
constructing the Markov Chain model and binding prediction; the AUC result was compared to the CG 
dinucleotide fold change in LDC shown on the right.   
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Figure 2.26 Comparison between CG dinucleotide fold change in LDC and AUC for binding prediction 
for TFs without DNA binding motifs. For all ChIP-seq data without DNA binding motifs information, the 
center 250bp binding peaks were treated as positive dataset for LDC analysis. A random sampling of 
equal sized promoter regions for the given TF were used as negative dataset. 5-fold cross validation were 
performed for constructing the Markov Chain model and binding prediction; the AUC result was 
compared to the CG dinucleotide fold change in LDC shown on the right.   

 

We summarized the analysis for individual TF into three categories, TFs favoring CG rich LDC 

(168 TFs), TFs favoring CG depleted LDC (40 TFs), TFs with unclear LDC preference (50 TFs). 

The signature of LDC for TFs in these groups in the view of dinucleotide fold change between 

bound and unbound were shown (Fig 2.27 & Appendix 2.3). With grouping these TFs according 

their LDC preference, we made CG rich and CG depleted Universal Markov Chain model with 

combining all TFs in each category.  We demonstrated the Universal models improve binding 

prediction with comparative level as single model made from individual TF, suggesting general 

LDC preference across TFs within groups (Appendix 2.4), with a few outliers which could be a 

result of misclassification for the TF. 
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Figure 2.27 The overall dinucleotide fold change for the grouped TFs with opposite LDC preference.  
Left) Overall dinucleotide fold change between bound and unbound sets for TFs prefer high CG in LDC. 
Right) Overall dinucleotide fold change for TFs that prefer low CG in LDC. 

 

 

2.3 Discussion  
 

The direct and specific interaction between TF and the short DNA motif has been the focus of 

understanding TF binding specificity; in this study we revealed the local DNA environment can 

also contribute to the regulations of TF binding in the way of helping TF locate its target binding 

sites during searching process. In the beginning of the study, we first demonstrated the presence 

of predictive information embedded in LDC for TF binding. Such predictive information exists 

and the signature of LDC is coherent and independent of intrinsic nucleosome characteristics 

among all analyzed TFs. We showed the binding prediction with TFBS score can be further 

improved by incorporation with LDC score. To understand the role of LDC in TF binding 

mechanism, we investigated in vitro binding data and found the preference of the same LDC 

signature in purely protein-DNA interaction. Furthermore, we related the CG richness around 
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TFBS in LDC to energetic funnel in the TF search process and showed the CG richness can 

theoretically enhances the probability of TF recognizing a target site. Lastly, we expand our 

analysis to a large collection of human TFs and identified similar preferred LDC for most human 

TFs.  

The connection of local DNA to regulations of TF binding has been discussed in some studies. 

For example, nucleosome disfavoring sequence in close relation to the functional TF binding site 

was implicated to increase TF occupancy (Segal, 2006; Raveh-Sadka, 2012; Levo, 2015). 

Moreover, the presence of additional TF motif, of the same kind or from other TFs, can enhance 

or alter the binding outcomes (Shively, 2019; Liu J. S., 2020; Panne, 2007; Levo, 2015). These 

examples conveyed the intricate the complex regulations of TF binding that involves DNA as the 

intermediate platform for protein-protein interactions. Nevertheless, we extend the scope of LDC 

in the mechanism of TF binding; the surrounding DNA environment can directly influence TF 

binding without recruiting trans-factors, but through the kinetics effect while TF searches for a 

target motif to bind. In our model, the gradient of CG content around the binding sites 

contributes to the weak sequence-dependent interaction with TFs at searching step; it serves as 

energetic funnel to guide TF in recognizing a functional motif by retaining the TF on DNA 

strand for longer residence time.  

From study by Pal et al, where at the last cycle of HT-SELEX experiment (i.e., highest affinity 

oligos remain), there exists promiscuous ‘shapemers’ that are generally enriched across TFs 

regardless of TF families, which implicates the possibility of non-motif specific background 

binding (Soumitra, Jan, & Teresa, 2019). This finding aligns with our hypothesis that LDC 

facilitates TF binding by energetic funnel effect and reducing the chances of TF falling off the 

DNA strand. We analyzed those promiscuous ‘shapemers’ in terms of the CG content and we 
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found those top promiscuous ‘shapemers’ have higher CG content compared to non-enriched 

‘shapemers’ (Appendix 2.5). Additionally, the observation made by (Hartl D, 2019) suggested 

CpG island enhances TF binding independent of methylation, which is consistent with our study 

and extend the perspective of CpG island usage in TF binding.   

There is some discrepancy in terms of the underlying mechanism that environment DNA utilize 

to help TFs locating their target sites between our study and other related studies (Dror, 2015; 

Cencini, 2018). The studies by Dror et al and Cencini et al showed nucleotide bias correlations 

between the core binding motif and the flanking DNA; however, we did not find this correlation. 

In our yeast TF analysis, there is a flat relationship between the nucleotide composition in the 

core motif and the increase of predictive power in LDC (Figure 2.21); and similarly, in our 

ENCODE ChIP-seq analysis, no correlation was found between the nucleotide composition in 

the human core binding motif and the predictive power in LDC or the CG dinucleotide fold 

change, a comparable parameter to the CG content in LDC (Appendix 2.6).  This discrepancy 

could be a result of TF sampling between ours and others, yet a well-controlled experiment 

should be performed to dissect the relationship between the core motif and LDC usage. A 

distinctive result would be meaningful to understand the molecular basis of the kinetic 

mechanism at TF searching process. Specifically, interaction involving DNA binding domain 

can be inferred in the case of LDC nucleotide bias is correlated with core motif bias, whereas in 

the case of no such correlation is found would indicate other protein domain related mechanism. 

Intrinsic disordered domain (IDR) has been linked with many TF regulation processes (Erik W. 

Martin, 2020; Sabari, 2018) and TF binding specificity (Brodsky, 2020), and could be a possible 

protein domain that TFs employ while exploring LDC for target binding sites.  
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In the last section of the study, we investigated a large collection of human TFs, where we 

discovered that most TFs tend to bind CG rich sequences, yet there is also a group of TFs prefers 

to bind at CG depleted sequences, and such unique nucleotide composition preference is not 

directly linked to TF families or the similarity of the DNA binding domain in our analysis. This 

diverse observation raises a possible mechanism that there may be several regimes in terms of 

the preferred signature of LDC. TFs that share similar LDC preference are more likely to bind 

cooperatively and function together. We believe this discovery opens a new venue to identify 

groups of TFs that tend to bind in proximity.  

 

 

 

2.4 Materials and Methods  
 

2.4.1 Binding Data Collection and Preprocess 

In vivo binding data for S. cerevisiae. The in vivo binding data in this study comprises of 15 

TFs from Calling Cards method (Wang H. M., Calling Cards enable multiplexed identification of 

the genomic targets of DNA-binding proteins, 2011; Shively, 2019) and 19 TFs from ChIP – exo 

method (Rhee, 2011); more detailed information is summarized in Figure 2.28. The data choice 

is on the basis of a study by Kang, et.al (Kang, 2020); according to the study, the binding data 

from both methods have higher correspondence to perturbation-response data than ChIP-chip 

binding data. The position weight matrices (PWM) for all TFs were obtained from ScerTF 

database complied by Spivak and Stormo (Spivak AT, 2012). One natural log below the ScerTF 
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recommended PWM cutoff scores were used throughout this study to define the presence or 

absence of TF sites on DNA sequences.   

Both Calling Cards data and ChIP-exo data were obtained directly from original publications in 

the format of genomic coordinates of binding events. For Calling Cards data, we applied 

Blockify (Moudgil, et al., 2020), a peak caller designed for Calling Cards experiments, to call 

binding peaks with default parameter setting. For ChIP-exo experiments, we merged significant 

binding locations within distance of 20 bp with bedtools (Quinlan & Hall, 2010) as a single 

binding peak in the analysis. For DNA sequence of S. cerevisiae, we used S288C reference in 

2015 version downloaded from SGD (Cherry, 2012). All processed binding peaks for Calling 

Cards and ChIP-exo data are provided in the supplemental data.  

We classified 34 TFs into two categories: 1) TFs with well-defined motifs and 2) TFs lack of 

specific motifs. To ensure the motif is informative and specific, we required the PWM for such 

motif to have information content greater than 8 and p-value less than 10e-5 from ScerTF 

database (Spivak AT, 2012) (See Fig 2.28).  

 

 TFs with well-defined 

motifs 

TFs lack of specific motifs Publications 

Calling 

Cards 

Cbf1p, Leu3p, Gcr1p, 

Gcr2p, Gcn4p, Gal4p, 

Tye7p 

Cst6p, Kar4p, Lee1p, 

Rgm1p, Rpi1p, Sef1p, 

Sfg1p, Yrm1p 

Rhee and Pugh 

2011 
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ChIP-exo Abf1p, Hap1p, Ino2p, 

Mcm1p, Phd1p, Rap1p, 

Sip4p, Stb5p 

Cat8p, Ert1p, Hap4p, 

Ino4p, Oaf1p, Pip2p, 

Reb1p, Rds2p, Rgt1p, 

Rtg3p   

Wang et al. 2011; 

Shively et al. 2019  

 

Figure 2.28. TF binding data categories and sources. The detailed information for the collection of TF 
binding data in this study. 

 

In vitro binding data for S. cerevisiae. We analyzed in vitro binding data by Dip-chip method 

from (Noam Kaplan, 2009), and included Cbf1p, Leu3p, Pho4p, Rap1p and Swi5p in our data 

analysis, with Pho2p and Rox1p excluded from this study as these two factors do not contain 

specific motifs by our requirement.  

To obtain binding peaks from Dip-chip data, we first took entries with binding signal two 

standard deviation higher than the mean, and we then merged those entries within 20bp distance 

with applying sum operation for binding signals from merged entries by bedtools. Finally, we 

kept merged coordinates with summed binding signals two standard deviation than median as the 

binding peaks for later analysis. The processed binding peaks are provided in the supplemental 

data.  

Nucleosome occupancy data for S. cerevisiae. The nucleosome occupancy was attained from 

(Segal, 2006) which was measured by Mnase assay and reported as normalized values. To 

categorize genomic regions into nucleosome occupied and nucleosome free, we processed the 

data so that regions with consecutive negative nucleosome occupancy value were defined as 
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nucleosome free regions, whereas regions with consecutive positive values were defined as 

nucleosome occupied regions. In Figure 2.15& Figure 2.16 where we wanted to know whether a 

TF motif is occupied by nucleosome, we identified the genomic coordinates of the TF motif and 

took the sum of the nucleosome occupancy value over the entire motif.  

ChIP-seq data for Human TFs. Human TF ChIP-seq data were obtained directly from 

ENCODE (The ENCODE Project Consortium, 2012) in the format of bed narrowPeak. All 

ChIP-seq data were experimented on K562 cell line and assembled with hg19. All human TF 

motifs were acquired from CIS-BP database (Weirauch, 2014).  

 

2.4.2 Local DNA Sequence Context Definition  

For TFs with well-defined motifs, we searched for all binding motifs that are present on the 

intergenic regions of S. cerevisiae with requiring the motifs are at least one natural log below the 

recommended score provided by ScerTF. The local DNA context (LDC) is defined as 125 bp 

upstream and downstream of the motif; and to avoid any confounding effect such as DNA 

structural shape flanking the motif may have on TF binding, we further removed the motif itself 

with 5bp flanking on both sides. For all motifs of each TF, we divided them into TFBS that are 

bound and unbound by whether the motif is within the binding peaks by either Calling Cards 

assay or ChIP-exo assay. 

For TFs without well-defined motifs, as there is no other known and predictive DNA feature to 

categorize intergenic regions into TF regulated regions or unregulated regions, we took the entire 

binding peaks as positive LDC, and the rest of all other intergenic regions as negative LDC. To 



80 
 

obtain equivalent sets, we down sampled the negative sets to the same size of binding peaks. To 

make fair comparison to the group of TFs with well-defined motifs, only the 250 bp center for 

both positive binding peaks and negative intergenic regions were used for LDC score calculation.  

 

2.4.3 Construction and Application of Markov Chain Model  

To preserve the information embedded in the DNA context in a parsimonious way, we employed 

first order Markov Chain model. We calculated the transition frequency of every possible pair of 

nucleotides from the local DNA sequences defined at the previous section for both positive and 

negative datasets and constructed four by four matrices as the first order Markov Chain model. 

For a given unseen sequence with length(L), we can therefore calculate a relative likelihood of 

the given the sequence coming from the positive model, which is the sum of log odds for every 

consecutive dinucleotide (axi-1xi) between the positive and the negative Markov Chain model, 

with the higher value indicating higher probability (1).   

S(x) = log=(>|@+A-B
")

=(>|	@+A-B#)
 = ∑ 𝑙𝑜𝑔 ($%#&$%

"

($%#&$%
#

D
EFG                                                         

In Figure 2.1 and Figure 2.25 where we wanted to understand whether predictive information is 

in LDC, we performed 5-fold cross validation so that the Markov Chain model was made from 

training data and the model was evaluated using the unseen testing data. For the rest of the 

analysis, the LDC score was calculated from the Universal model that was constructed with all 

LDC combined from TFs with well-defined motifs in Figure 2.1 (see supplemental figures for 

the actual models).  
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2.4.4 ROC and PRC for Model Evaluation  

To evaluate the performance of the Markov Chain model, standard receiver operator curve 

(ROC) which compares the ranking of the sequences from positive and negative datasets based 

on LDC score obtained from the Markov Chain model was used throughout the study, and 

Mann-Whiney test was performed to measure the significance of the prediction improvement. 

Both ROC and Precision recall curve (PRC) were applied for Figure 2.15 and Figure 2.16 which 

compares the probability of being bound returned by the logistical regression (LR). Sklearn 

python package was utilized for ROC and PRC calculation.  

 

2.4.5 Incorporating LDC Score with PWM Score into Logistical Regression 

(LR) Model 

In Figure 2.15 and Figure 2.16, the learning problem was defined to predict whether an 

intergenic region is bound by a TF or not, and we used LR algorithm for this classification 

problem with LDC score/Nucleosome occupancy (NuOc) and PWM score as predictors in the 

model. The detailed feature generation procedure is as follows: 1) for every intergenic region, we 

searched for all possible TFBS with PWM score of zero and above and took the highest score as 

the value for PWM score feature; 2) for LDC score, we identified the coordinates of the highest 

PWM, and then we applied the Universal Markov Chain model to 125bp upstream and 

downstream of the TFBS with 5bp directly flanking the motif removed to calculate LDC score; 

3) for NuOc value, we summed over the normalized nucleosome occupancy from (Segal, 2006) 
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for the highest scored TFBS on the intergenic region. Binding peaks from either Calling Cards or 

ChIP-exo were used to label each intergenic region as bound or unbound.  

For this supervised learning problem, we performed 5-fold cross validation with LR algorithm to 

estimate the likelihood of a given intergenic region been bound or not, and we then used ROC 

and PRC that compares the probability of been bound produced by LR for model evaluation.  

 

2.4.6 Kinetic Funnel Model and Gillespie Simulation 

In the process of TF searching for a target site, we followed the facilitated diffusion (FD) 

hypothesis proposed by (Slutsky & Mirny, 2004; Berg OG, 1981) and assumed that TF can 

switch between recognition mode and search mode, and such switch is a result of conformational 

changes in TF-DNA complex. For rates equations, we maintained the fundamental structure and 

parameter setting of (Cencini, 2018) (equations 2.1 - 2.5). The change we made is the energy 

contribution in the search state; instead of letting the motif preference contributing proportional 

to sequence-dependent binding energy, we modulate the CG preference on LDC as the sequence-

dependent contribution at search state (equation 2.6).  

𝐾$9  = D 𝑒[H'(>)IH'(>9.)]/0                       (2.1) 

𝐾$I  = D 𝑒[H'(>)IH'(>I.)]/0                       (2.2)                

𝐾$8= 𝛾 𝑒
()'($)#),($)-

! I∆6                            (2.3) 

𝐾8$= 𝛾 𝑒
(),($)#)'($)-

!                                  (2.4) 
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𝐾A  = 𝛿𝑒H'                                                 (2.5) 

 

𝐸$(𝑥) = 		𝜌𝐸J6(𝑥) − 	Δ𝐺      (2.6) 

                

To approximate the rate of a TF recognizes a TFBS, we simulated this stochastic process using 

Gillespie algorithm (Gillespie, 1976). The target TFBS is centered with the native LDC of length 

500bp either side. For each realization, the TF is initialized at search state and placed with uniform 

distribution in a region [-250, 250] with respect to the target site. The success of finding a target 

is defined as a TF switches to recognition mode at the target TFBS, and 100 simulations was done 

for estimating the success rate of each sequence. 320 sequences were sampled from 16 TFs with 

specific TFBS in Figure 2.23.  
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Appendix 
 

 

Appendix 1.1 Binding of Cbf1-Sir4p expressed from a plasmid is well-correlated with binding of Cbf1-
Sir4p expressed from the native locus. The CCRA library used here was identical to the one used in 
Figure 1.6 .  

 

 

 

Appendix 1.2 Expression measurements were performed for a library consisting of synthetic promoters 
derived from Gal4p- and Gcn4p-regulated promoters. The number of corresponding motifs for each TF 
was varied in the library. A) reporter gene expression increases as the number of Gal4p motifs increases 
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under galactose condition. B) reporter gene expression increases as the number of Gcn4p motifs increases 
under amino acid starvation condition.  

 

 

 

 

 

Appendix 1.3 Comparison of Sir4p tagged and untagged transcription factors. To determine if Sir4p 
tagged TFs produce the same Sort-Seq measurements of gene expression, we took the Gcn4p and Gal4p 
CCRA library and performed Sort-Seq in an untagged w.t. background and compared the results to those 
obtained with the tagged TFs. Expression measurements for wild-type and Sir4p-tagged A) Gcn4p, and 
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B) Gal4p were highly correlated; To determine whether the Sir4p affects TF function, we analyzed four 
different Sir4p-tagged TFs to see if they could rescue growth in a deletion strain grown under conditions 
where the TF is required.  C) Gcr1p tagged with Sir4p is viable in yeast grown in SC; D) Gcn4p tagged 
with Sir4p is viable under amino acid starvation condition; E) Cbf1p tagged with Sir4p expressed from 
plasmid can rescue Cbf1p deletion strain under MET and CYS deficient condition; F) Gal4p tagged with 
Sir4p recovers the normal growth of yeast under galactose condition.   

 

 

 
Appendix 1.4 A) Comparison of the change of binding energy measured by PBM and MITOMI for 
Cbf1p. B) The same as panel A, but with MAX transcription factor.  
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Appendix 1.5 Average in vivo genomic Cbf1p Calling Cards binding score on all alternative E-box motif. 
As expected from our CCRA binding energy landscape, mutations to the core CACGTG had a larger 
impact on Cbf1p binding than non-core motifs, but the effect was exacerbated in vivo, perhaps because of 
competition with nucleosomes.  It is important to note that it would be impossible to generate accurate 
Cbf1p binding energies (benchmarked against in vitro measurements) solely from the in vivo binding 
data. This is because in the yeast genome, Cbf1p binding sites (and 1bp mutant sites) occur in a variety of 
different sequence contexts, whereas in the CCRA experiments, the Cbf1p sites were analyzed in 
precisely the same sequence context.   
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Appendix 1.6 Tye7p transposition distribution on A) w.t. BHM1_pr promoter and B) Tye7p motif 
mutated BHM1_pr promoter.  
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Appendix 1.7 A) The same as in Figure 1.19 but with Gcr2p. B) The same as in Figure 1.20 but with 
Gcr2p. C) Gcr2p binding was compared to the total PWM scores from all remaining sites, which has 
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weaker correlation than comparing to the total PWM scores from Gcr1/2p sites alone. D) The same as in 
C) but with Gcr1p. E) Expression was regressed against the PWM scores from the remaining sites on 
BMH1 promoter. F) We mutated TDH3 promoter the same as we did for BMH1 promoter, and expression 
was regressed against site score on TDH3 promoter. G) Gcr1p, Gcr2p and Tye7p binding were also 
measured for TDH3 promoter, and we regressed the expression against the sum of all binding. H) 
Expression for sequences from BMH1 and TDH3 promoters is divided pairs that is either with or without 
any Rap1p motif. The red line is a 1:1 diagonal line for clear visualization purpose. The expression for 
sequences with Rap1p motif is generally higher than those without any Rap1p motif. Paired T test was 
performed, and the p-value is 0.018. 

 

 

 

 

 

Appendix 2.1 Intersection between TF binding peaks and TF motifs. (A) Blue circle represents the total 
number of TF binding motifs on intergenic regions from seven TFs, and red circle represents the total 
number TF bound peaks from these seven TFs by Calling Cards method. (B) The same as (A), but with 
nine TFs measured by ChIP-exo method. 
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Appendix 2.2 (A) AUC for TF binding prediction. LDC from all other TFs was used to prediction for 
each TF. (B) Overall dinucleotide fold change in LDC from all 16 TFs combined. (C) The positive 
universal model (i.e., First order Markov Chain transition matrix). (D) The negative universal model.  
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Appendix 2.3 Overall dinucleotide fold change between bound and unbound sets for TFs with unclear 
preference in LDC.  

 

 

 

 

Appendix 2.4 ENCODE TFs AUC comparison between using LDC from individual TF and all TF 
combined by CG rich and CG depleted groups. Binding predictions with 5-fold cross validation on 
individual TF were compared to binding predictions with Universal model constructed from combined 
TFs with similar LDC preference.   
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Appendix 2.5 CG content fold change on promiscuous enriched ‘shapemers’ from HT-SELEX data. The 
CG content of top promiscuous ‘shapemers’ were compared to bottom ‘shapemers’, the fold change for 
each TF is shown.  

 

 

 
Appendix 2.6 A) Comparison of nucleotide bias in motif and prediction for human TFs with well-defined 
motifs. B) Comparison of nucleotide bias in motif and CG dinucleotide fold change between bound and 
unbound TFBS in local DNA.  
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