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Abstract 

Abstract 

ABSTRACT OF THE DISSERTATION 

Testing candidate cerebellar presymptomatic biomarkers 

for Autism Spectrum Disorder 

by 

Zoë Wilson Hawks 

Doctor of Philosophy in Psychological and Brain Sciences 

Washington University in St. Louis, 2021 

Professor Lori Markson, Chair 

Professor Desirée White, Co-Chair 

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed on 

the basis of social impairment, restricted interests, and repetitive behaviors. Contemporary 

theories posit that cerebellar-mediated error signaling impairments contribute to the causation of 

ASD. However, the relationship between infant cerebellar functional connectivity (fcMRI) and 

later ASD behaviors and outcomes has not been investigated. Such work is critical to establish 

early (presymptomatic) cerebellar correlates of ASD. Methods: Data from the Infant Brain 

Imaging Study (n=94, 68 male) were used to evaluate cerebellar fcMRI as a presymptomatic 

biomarker for ASD. Specifically, brain-behavior associations were analyzed for 6-month 

cerebellar connections in relation to later (12- and 24-month) ASD behaviors and outcomes 

using univariate tests of association, multivariate machine learning prediction, and fcMRI 

enrichment. Univariate and multivariate approaches focused on cerebellar-frontoparietal network 

(FPN is implicated in error-signaling) and cerebellar-default mode network (DMN is implicated 
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in adult studies of ASD) connections, while enrichment afforded a data-driven test of whole-

brain connectivity. Results: Univariate tests of cerebellar-FPN and cerebellar-DMN connections 

failed to implicate the cerebellum in ASD, despite > 80% power to detect medium-sized effects. 

Multivariate tests in high-risk infants using cerebellar-FPN and cerebellar-DMN connections 

similarly failed to achieve above-chance classification accuracy for ASD diagnosis, despite 

replicating procedures that achieved > 80% positive predictive value in whole-brain data. FcMRI 

enrichment identified correlates of ASD-associated behaviors in brain networks of a priori 

interest (FPN, DMN), as well as in cingulo-opercular (CO) and medial visual (mVis) networks. 

However, post-hoc tests did not support a unique role for cerebellar connectivity within these 

networks. Conclusions: Contrary to contemporary theories, we failed to observe a relationship 

between infant cerebellar fcMRI and ASD. Instead—in the first-known application of fcMRI 

enrichment to temporally lagged, early developmental brain-behavior associations—we 

identified infant control (FPN, CO), visual, and default mode correlates of later ASD behaviors. 

Future work may investigate whether connectivity involving these networks prospectively 

predicts ASD diagnosis, thereby expediting intervention and furthering etiologic understanding.   
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Chapter 1: Introduction 
Autism spectrum disorder (ASD) is a highly heterogeneous disorder diagnosed on the 

basis of (1) impaired social communication and interaction and (2) restricted interests and 

repetitive behaviors (American Psychiatric Association, 2013). However, the defining behavioral 

features of ASD are not observable during the first year of life (Ozonoff et al., 2010). During this 

presymptomatic period, researchers have argued that infant brain abnormalities may alter 

sensorimotor and attentional experiences, contributing to the emergence and consolidation of 

ASD symptoms during the second and third years of life (Piven et al., 2017). Thus, as has been 

observed in neurodegenerative conditions such as Huntington’s (Aylward et al., 2012) and 

Parkinson’s (Fearnley & Lees, 1991) diseases, early brain abnormalities may represent some of 

the earliest-emerging signals of ASD. 

1.1 Whole-brain neuroimaging data predict ASD but offer 

limited insights into pathophysiology 
Efforts to prospectively predict individual-level ASD diagnostic outcomes highlight the 

shortcomings of behavioral data and, correspondingly, the importance of infant neural 

biomarkers. Currently, there are no first-year-of-life behavioral markers that accurately and 

reliably predict ASD diagnosis (Chawarska et al., 2014; Wolff & Piven, 2020). Eye-tracking 

biomarkers show promise (Jones & Klin, 2013), but they require repeatedly-sampled 

longitudinal data, and their predictive utility within high-risk samples (i.e., families with an older 

ASD-affected sibling) remains unclear (Wolff & Piven, 2020). High-risk infants are 12-times 

more likely to develop ASD compared to low risk infants (Constantino, Zhang, Frazier, 
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Abbacchi, & Law, 2010; Ozonoff et al., 2011). As such, accurate diagnostic prediction within 

high-risk samples is critical to advance clinically-actionable ASD screening.  

 Despite limited evidence for behaviorally-based prediction, evidence for presymptomatic 

prediction using neural biomarkers is accruing (Wolff & Piven, 2020). Two recent publications 

from IBIS (Infant Brain Imaging Study) achieved highly accurate ASD diagnostic prediction in 

high-risk samples using whole-brain structural (Hazlett et al., 2017) and functional connectivity 

(Emerson et al., 2017) magnetic resonance imaging (MRI) data. Electroencephalogram (EEG) 

data have also been used to develop informative predictive models of ASD (Bosl et al., 2018; 

Dickinson et al., 2020; Gabard-Durnam et al., 2019), although EEG has not yet demonstrated 

diagnostic accuracy in high-risk samples commensurate with MRI. In all instances, predictive 

diagnostic classifiers await successful independent replication. Replication efforts are ongoing 

within IBIS. 

Although Emerson et al. (2017) achieved highly successful fcMRI-based ASD diagnostic 

prediction, their model leveraged whole-brain data (26,335 features), and features that 

contributed strongly to classification accuracy were distributed across the entire brain. Future 

specification of biologically-informed, neuroanatomically-constrained presymptomatic brain 

biomarkers holds potential to improve clinical and diagnostic services, while also advancing 

understandings of ASD etiology. In service of these goals, the present study interrogated infant 

cerebellar resting state functional connectivity (fcMRI) as a candidate presymptomatic biomarker 

of ASD using multiple analytic approaches. Support for cerebellar biomarkers would help 

establish specific neural correlates of ASD that are informed by behavioral theory, suggesting a 

relationship between early cerebellar development and later ASD diagnosis. 
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1.2 Findings from basic and clinical research implicate 

cerebellar circuitry in ASD  
Bauman and Kemper first reported cerebellar atypicalities—most notably, reduced 

Purkinje cell count—in ASD over 35 years ago (Bauman & Kemper, 1985). In the last ten years, 

interest in the cerebellum among ASD researchers has risen dramatically, with some arguing that 

cerebellar structure and function are not simply associated with ASD but instead may play a 

causal role in the development of ASD (Fatemi et al., 2012; Rogers et al., 2013; Wang et al., 

2014). This argument integrates findings from basic research, which have led to more refined 

understandings of cerebellar function and functional architecture (Buckner et al., 2011; Leggio & 

Molinari, 2015; Marek et al., 2018), with findings from clinical research, which suggest myriad 

ways in which cerebellar function may differ in individuals with ASD compared to neurotypical 

peers (Crippa et al., 2016; D’Mello & Stoodley, 2015). These findings are described in turn, 

below. 

Rapidly accruing evidence from basic neuroscience provides theoretical motivation for 

examining cerebellar connectivity as a candidate presymptomatic biomarker in ASD. 

Contextualizing and extending its long-recognized role in gross motor control, recent data 

suggest that the cerebellum may subserve additional functions: error-signaling for adaptive 

movement, cognition, and social prediction (Leggio & Molinari, 2015; Peterburs & Desmond, 

2016; Sokolov et al., 2017). This capability is thought to be instantiated through structural and 

functional cerebellar-cerebral connections (Dosenbach et al., 2006; Fiez, Petersen, Cheney, & 

Raichle, 1992), in which the function of a given cerebellar node is determined by its network 

membership. For example, a cerebellar node in the somatomotor network may subserve error-

signaling for movement (Buckner, 2013; Moberget & Ivry, 2016), whereas a cerebellar node in 
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the frontoparietal network may subserve error-signaling following expectancy violations 

(Buckner, 2013; Dosenbach et al., 2007; Marek & Dosenbach, 2018). As predicted by error-

signaling accounts of cerebellar function, injuries to the cerebellum and its circuitry are 

associated with a diverse array of sensorimotor (Marko et al., 2015), social cognitive (Hampson 

& Blatt, 2015; Hoche et al., 2016), and emotion regulation impairments (Schmahmann & 

Sherman, 1998). Heterogeneous impairments within these domains (e.g., sensory 

hypersensitivity, theory of mind, and heightened irritability) are observed in ASD, leading some 

researchers to posit that cerebellar-mediated error signaling may contribute to ASD 

symptomology (Freedman & Foxe, 2017; Sinha et al., 2014; Wang et al., 2014).  

Evidence from fcMRI studies in children and adults further supports cerebellar theories 

of ASD etiology. Atypical patterns of cerebellar-cerebral connectivity have been reported among 

individuals with ASD (Hanaie et al., 2018; Khan et al., 2015; Oldehinkel et al., 2019; Ramos et 

al., 2019; Verly et al., 2014), and atypical patterns appear to persist when ASD is measured with 

respect to severity rather than diagnosis (Jung et al., 2014; Verly et al., 2014). In a recent 

comprehensive review, D’Mello & Stoodley (2015) argued that cerebellar-cerebral circuits may 

confer direct risk for ASD. It is worth noting, however, that the directionality of cerebellar 

effects (hypo- vs. hyper-connectivity) varies across studies (Crippa et al., 2016), gross cerebellar 

injury during adulthood rarely produces classic ASD symptoms (Manto et al., 2013; Wolf et al., 

2009), and null reports (e.g., those finding no association between cerebellar connectivity and 

ASD severity) also appear in the literature (Carper et al., 2015; Khan et al., 2015; Padmanabhan 

et al., 2013). To reconcile inconsistencies, Wang et al. (2014) posited that cerebellar influences 

on ASD may be particularly important during early developmental “sensitive periods.” 
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1.3 Behavioral consequences of early developmental 

cerebellar dysfunction are unknown 
Presently, there are very few early developmental studies of the cerebellum and ASD. 

One structural imaging study of toddlers born prematurely observed clinically elevated scores on 

ASD screening checklists (Robins et al., 2001; Rutter et al., 2003) among 33-43% of participants 

with isolated cerebellar hemorrhagic injury (n =  35). In contrast, 0-3% of age-matched controls 

(n = 35) had elevated scores (Limperopoulos et al., 2007). As such, there was an approximately 

36-fold increase in elevated scores on ASD screening checklists for toddlers with cerebellar 

hemorrhagic injury (Wang et al., 2014). In addition to these findings, a diffusion tensor imaging 

study (n = 217, 54 with ASD) identified prospective associations between infant cerebellar white 

matter pathways and later sensory responsiveness in children with ASD (Wolff et al., 2017).  

Infant cerebellar fcMRI remains to be examined in relation ASD. Among studies that 

examined cerebellar fcMRI in older samples, cerebellar regions were frequently aggregated into 

a “cerebellar network,” despite evidence from basic neuroscience indicating that they participate 

in whole-brain networks (Buckner et al., 2011; Marek et al., 2018). Given the repeated 

suggestion that cerebellar pathology may play a causal role in the development of ASD—and, 

further, given that this argument hinges on evidence for early developmental “sensitive periods” 

(Wang et al., 2014)—an empirical, neurobiologically-informed test of infant cerebellar 

contributions to ASD is long overdue. 

1.4 Present study characterized the relationship between 

infant cerebellar-cortical functional connectivity and ASD  
To this end, the present study used hypothesis- and data-driven tests to evaluate 6-month 

fcMRI correlates of later (12- and 24-month) ASD risk factors, symptoms, and diagnostic 
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outcomes (Figure 1A). Analyses were performed on previously acquired data from IBIS. 

Hypothesis-driven tests of univariate brain-behavior associations (Figure 1B) focused on 

functional connections between cerebellar and cortical regions of interest (ROIs). Cortical ROIs 

were located in the frontoparietal network (FPN) or default mode network (DMN). The FPN is 

overrepresented in the cerebellum compared to the cerebral cortex (Marek et al., 2018) and 

subserves error signaling in support of cerebellar error-based learning (Dosenbach et al., 2007; 

Dosenbach et al., 2008; Marek & Dosenbach, 2018), while the DMN is frequently implicated in 

adolescent and adult studies of ASD (e.g., Jung et al., 2014; Nair et al., 2020; Padmanabhan et 

al., 2017). Thus, our decision to examine cerebellar connectivity in relation to the FPN was 

motivated by theory, affording a test of cerebellar-mediated error-signaling accounts of ASD, 

while our decision to examine cerebellar connectivity in relation to the DMN was motivated by 

prior empirical literature. 
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Figure 1. Study design. Summary of the (A) data collection timeline and (B-D) three-part analytic plan. Functional 

connectivity magnetic resonance imaging (fcMRI) data were collected at 6 months, continuous measures of ASD 

behavior were collected at 12 and 24 months, and ASD diagnostic outcomes were evaluated at 24 months. Circles 

and squares represent regions of interest (ROIs) located in the cortex and cerebellum, respectively. Colors (green, 

pink, blue, yellow) denote ROI network assignments (Nets 1 and 2 being arbitrary non-FPN, non-DMN networks). 

 

Complementing univariate tests of brain-behavior associations, we used multivariate 

predictive classification to examine whether cerebellar connections are capable of prospectively 

predicting ASD diagnosis (Figure 1C). As reviewed above, prior ASD classification efforts 

achieved highly accurate diagnostic prediction using 6-month, whole brain fcMRI data (Emerson 

et al., 2017). We aimed to replicate these results using only cerebellar-FPN and cerebellar-DMN 

functional connections. Success therein would indicate that cerebellar information is sufficient to 

prospectively predict ASD diagnosis, advancing insights into ASD neurobiology.  

Finally, to assess whether whole-brain cerebellar connectivity contributes to the 

emergence of ASD symptoms, we performed data-driven whole-brain fcMRI enrichment 
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analysis (Eggebrecht et al., 2017; Marrus et al., 2018; McKinnon et al., 2019) with post-hoc 

cerebellar randomization testing (Figure 1D). Enrichment analysis identifies clusters of strong 

brain-behavior associations located within and between functional brain networks, and 

randomization testing evaluated whether cerebellar connections contributed to clustering above-

chance.  

Support for cerebellar contributions to ASD would identify cerebellar functional 

connectivity as a promising presymptomatic biomarker of ASD, with implications for very early 

identification and intervention. Failure to observe significant cerebellar effects in the context of 

significant network enrichment results would also move the field forward, providing data-driven 

insights into other early underpinnings of ASD. 
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Chapter 2: Methods 

2.1 Participants 
This study involved secondary analyses of 6-month neuroimaging and 12- and 24-month 

behavioral data from infants who participated in IBIS at the four original network sites: 

University of North Carolina (UNC), Children’s Hospital of Philadelphia (CHOP), Washington 

University School of Medicine (WUSM), and University of Washington (UW). The LORIS data 

management platform (Das et al., 2016) served as the behavioral, clinical, and imaging hub for 

this study for data collection, curation, preparation for analysis, and archiving. All families who 

participated in IBIS provided informed consent, approved by each site’s Human Subjects Review 

Board. High-risk infants were defined as having at least one sibling with an ASD diagnosis. 

High-risk positive (HR+) infants received an ASD diagnosis (see Behavioral assessment, below) 

at 24-months of age, whereas high-risk negative (HR-) infants did not. Low-risk negative (LR-) 

infants had at least one typically developing older sibling, did not have any first or second-degree 

family members with ASD or intellectual disability, and did not receive an ASD diagnosis at 24-

months of age. Low-risk positive (LR+) infants (n = 1) were excluded from analyses. 

Genetic and family history exclusion criteria are detailed in Eggebrecht et al. (2017) and 

Estes et al. (2015). Briefly, participants were excluded for comorbid medical, genetic, or 

neurological conditions known to influence development; gestational age less than 36 weeks; 

birth weight less than 2000 grams; MRI contraindication; evidence of maternal substance abuse 

during pregnancy; or first-degree family history of major psychiatric disorder(s) such as 

psychosis, schizophrenia, and/or bipolar disorder.  
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Mann-Whitney U tests (for continuous variables) and Chi-square tests of independence 

(for categorical variables) were used to compare participants included in analyses to the full IBIS 

sample. No differences were observed with respect to behavioral scores, risk status, or diagnosis 

(ps > .05); however, the ratio of females to males was lower among participants who provided 6-

month fcMRI data compared to the full IBIS sample (p < .01). Minor effects of site were noted 

for two behaviors (joint attention and fine motor functioning; ps = .03), driven, in both cases, by 

a single significant post-hoc comparison (joint attention: WUSM > UNC; fine motor 

functioning: UW > WUSM). There were no effects of participant sex on behavior (ps > .05). 

Participant characteristics are reported in Table 1.  

Table 1. Participant characteristics. Characteristics are presented for participants with 6-month neuroimaging 

(fcMRI) data. Italics identify variables for which high scores reflect atypical behaviors; otherwise, high scores 

reflect typical behaviors. SD = standard deviation, BOLD = blood oxygen level dependent, CSBS-DP = 

Communication and Symbolic Behavior Scales Developmental Profile, IJA = initiation of joint attention, RBS-R = 
Repetitive Behavior Scale—Revised, MSEL = Mullen Scales of Early Learning, ADOS = Autism Diagnostic 

Observation Schedule, CSS = calibrated severity score, RRB = restricted interests and repetitive 

 N  % 

Sex (male)   

Male 68 72.3 

Female 26 27.7 

Diagnostic outcome group   

Low-risk negative 35 37.2 

High-risk negative 46 48.9 

High-risk positive 13 13.8 

 Mean SD 

Age at time of scan (in months) 6.51 0.59 

Number of BOLD frames (after scrubbing) 241.13 57.17 

12-month behaviors   

Age at time of assessment (in months) 12.48 0.49 

CSBS-DP IJA 1.44 1.38 

RBS-R Restricted 0.30 0.85 

RBS-R Ritualistic-Sameness 0.63 1.73 

MSEL Fine Motor (T-score) 56.21 9.59 

MSEL Gross Motor (T-score) 48.70 12.75 

24-month behaviors   

Age at time of assessment (in months) 24.57 1.09 

ADOS Total CSS 2.05 1.94 

ADOS Social Affect CSS 2.39 1.98 
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 ADOS RRB CSS 2.91 2.53 

 

2.2 Behavioral assessment 
Six-month functional connectivity was examined in relation to 12- and 24-month 

continuous behaviors (Figure 2) and 24-month diagnostic outcomes. Twelve-month behaviors 

indexed ASD risk factors, specifically: initiation of joint attention (IJA) (Dawson et al., 2004; 

Eggebrecht et al., 2017), fine and gross motor functioning (Marrus et al., 2018; May et al., 2016), 

restricted behavior (McKinnon et al., 2019), and ritualistic/sameness behavior (McKinnon et al., 

2019). Twenty-four-month behaviors indexed ASD symptoms. We will refer to 12-month risk 

factors and 24-month symptoms collectively as “ASD behaviors” (Figure 1A), acknowledging 

that 12-month risk factors measure ASD-associated behaviors, whereas 24-month symptoms are 

definitional to ASD.  

Behavioral Scores

 

Figure 2. Distributions of behavioral scores. Combined histograms and density plots for ASD behaviors at 12- 

and 24-months. Left-most distributions (enclosed by dashed box) were modeled using Poisson and negative 

binomial regression, whereas right-most distributions were modeled using linear regression. Blue density curves 
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identify variables for which high scores reflect atypical behaviors; red density curves identify variables high scores 

reflect typical behaviors. V12 = 12-month visit, V24 = 24-month visit, IJA = initiation of joint attention, Rit/Same = 

ritualistic and sameness behaviors, RRB = restricted interests and repetitive behaviors. See Methods for additional 

details about behavioral scores (plotted along the x-axis). 

 

Initiation of joint attention (IJA) was assessed at 12 months using the Communication 

and Symbolic Behavior Scales Developmental Profile (CSBS-DP) (Wetherby et al., 2002). The 

CSBS-DP is designed to elicit, over the course of six semi-structured sampling opportunities 

with an examiner, social and communicative behaviors. Consistent with Eggebrecht et al. (2017), 

IJA was operationalized as CSBS-DP item 7: the number of examiner-participant interactions, 

“used to direct another’s attention to an object, event, or topic of a communicative act.” 

(Wetherby et al., 2002). Interactions in which the child’s goal was behavioral regulation were not 

coded as IJA.  

Fine and gross motor functioning were assessed at 12 months using the Mullen Scales of 

Early Learning (MSEL) (Mullen, 1995). The MSEL is a standardized, clinician-administered test 

of developmental milestones for children 3 to 69 months of age, and it is well-validated for use 

in ASD (Bishop et al., 2011; Burns et al., 2013; Zwaigenbaum et al., 2005). MSEL items 

progress from extremely early developmental stages (e.g., “rotates head”) to more advanced 

abilities (e.g., “walks on line”). Standardized T-scores were used in analyses. 

Restricted and ritualistic/sameness behaviors were assessed at 12 months using the 

Repetitive Behavior Scale—Revised (RBS-R) (Bodfish et al., 2000). The RBS-R is a 43-item 

parent-report questionnaire validated for use in toddlers (Lam & Aman, 2007; Mirenda et al., 

2010; Wolff et al., 2014). Its six subscales measure stereotyped, self-injurious, compulsive, 

ritualistic, sameness, and restricted behaviors. Present analyses examined counts of items 

endorsed rather than severity scores because prior literature suggests that counts are less 
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susceptible to rater bias (Wolff et al., 2014). Ritualistic and sameness subscales were combined 

because they load onto a common factor (Lam & Aman, 2007; Mirenda et al., 2010), and one 

outlier falling 7.7 standard deviations from the mean was excluded from analyses. 

ASD symptom severity was assessed at 24 months using the Autism Diagnostic 

Observation Schedule (ADOS) (Lord et al., 2001). Continuous measures of severity were 

obtained by computing calibrated severity scores (CSS) across all symptoms (Gotham et al., 

2009), as well as within social affect and RRB symptom domains (Hus et al., 2014). Calibrated 

severity scores (Gotham et al., 2009; Hus et al., 2014) were shifted to set minimum values to 

zero and to eliminate discontinuities (in RRB CSS) that were engendered by the scoring 

algorithm. As detailed in prior IBIS publications (Emerson et al., 2017; Estes et al., 2015; Hazlett 

et al., 2017), the ADOS (Lord et al., 2001) was used to inform clinical best estimate ASD 

diagnoses, which were made at 24-months by experienced clinicians who applied the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 

2000) ASD checklist to all available testing and interview data.  

2.3 Image acquisition 
Data were previously collected at IBIS sites using identical, cross-site calibrated 3-T 

Siemens MAGNETOM TIM Trio scanners with standard 12-channel head coils. All sites 

followed identical protocols using gradient-echo planar image acquisition (echo time = 27 ms; 

repetition time = 2500 ms; voxel size 4 x 4 x 4 mm3). Infants were naturally sleeping during 

scanning.  
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2.4 Pre- and post-processing 
As in prior publications from our group (Eggebrecht et al., 2017; Emerson et al., 2017), 

fcMRI data were compensated for slice-dependent time shifts, head movement was quantified 

for spatial realignment within and across runs, whole brain image intensity was normalized to a 

mode value of 1,000 (Ojemann et al., 1997), and images were registered into standardized 3-mm 

isotropic atlas space through affine transformation. In addition, processing updates were 

introduced to improve image quality: atlas registration was optimized, averaged functional 

volumes were generated using all movement-censored frames, and calculated field map 

distortion correction (Gholipour et al., 2008) was implemented (https://4dfp.readthedocs.io/). 

Functional connectivity processing applied global signal regression, nuisance signal regression, 

spatial and temporal filtering, band pass filtering, and motion scrubbing at framewise 

displacement of 0.2 (Nielsen et al., 2019). All infants included in analyses provided a minimum 

of 6.25-minutes of scrubbed data. 

2.5 Definition of regions of interest and functional 

connectivity computation 
Computation of timeseries for the primary set of 230 regions of interest (ROIs; 10-mm-

diameter, spherical) are described in Pruett et al. (2015), and ROI details are provided in 

Appendix A. In addition to the five cerebellar ROIs in the primary 230-ROI set, we generated 

four new cerebellar ROIs based on their connectivity profiles with functional networks relevant 

to present hypotheses: the FPN and DMN. Cerebellar ROIs were centered on voxels that 

exhibited maximal correlations with network average timeseries for the FPN or DMN, with one 

ROI placed for each hemisphere-network pair (left/right, FPN/DMN). Additional details about 
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cerebellar ROI placement are available in Appendix B. Functional connectivity matrices for the 

final set of 234 ROIs (original 230 ROIs + 4 new cerebellar ROIs) were calculated as Pearson 

correlations between pairs of ROI time-series (Figure 3A) and Fisher r-to-Z transformed for 

analyses. Each element of the resultant 234 x 234 correlation matrix represents a single 

functional connection.  

 

Figure 3. Functional network architecture in 6-month infants. Clockwise from top left: (A) The sample-mean 

fcMRI matrix depicts the correlation structure among spherical regions of interest (ROIs; n = 234). ROIs are sorted 

by network assignment (see legend in B), and the color gradient illustrates the strength of correlations between 

ROIs. Red blocks along the matrix diagonal indicate stronger correlations within, compared to between, networks. 

(B) Functional networks are visualized on dorsal, lateral and medial surfaces of the brain. The color of an ROI 

identifies its network assignment. (C) Cerebellar ROIs, also colored by network (see legend in B), are visualized on 

a flattened cerebellar surface (Diedrichsen & Zotow, 2015). FC(r) = functional connectivity correlation value; Vis = 

visual network, mVis = medial visual network, aDMN = anterior default mode network, tDMN = temporal default 

mode network, pDMN = posterior default mode network, SM1 = somatomotor network 1, SM2 = somatomotor 

network 2, MotM = motor-mouth network, DAN = dorsal attention network, aFP = anterior frontoparietal network, 

pFP = posterior frontoparietal network, SubC = subcortical network, CO = cingulo-opercular network, pCO = 

posterior cingulo-opercular network, US = unspecified/unassigned 
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2.6 Derivation of functional networks 
To contextualize analyses, ROIs were sorted into functional brain networks using the 

Infomap community detection algorithm (Rosvall & Bergstrom, 2007). Infomap uses a random 

walk procedure to model information flow among nodes in a complex system, where paths 

between nodes (i.e., edges) may be binarized or weighted. The random walker will spend more 

time among some clusters of nodes than others, and this information is used to partition nodes 

into networks (Rosvall & Bergstrom, 2007). In present analyses, the sample-mean functional 

connectivity matrix (234 x 234) served as input to Infomap. ROIs were coded as nodes, and 

correlations between pairs of ROIs were coded as edges. Infomap requires a sparse matrix, so 

edges were thresholded at densities ranging from 2% to 10%, preserving only the strongest 

correlations (Appendix C). Thresholding was performed separately within structural components 

(cortical, subcortical, and cerebellar) rather than across the entire brain to better integrate 

subcortical and cerebellar ROIs into brain-wide networks (Marek et al., 2018). A weighted-

voting procedure was used to identify a single, consensus network structure (“network solution”) 

across the range of edge densities provided (Figure 3B; Seitzman et al., 2020). Network names 

were determined by comparing our 6-month network solution to existing toddler and adult 

solutions (Appendix D), balancing neuroanatomical considerations. ROIs unassigned to specific 

networks by Infomap (n = 4) were excluded from multivariate and enrichment analyses.  

2.7 Statistical analysis 
Univariate analyses were conducted in R Studio (version 3.5.1; R Core Team, 2018), and 

machine learning analyses were conducted in Python (version 3.8.2; Van Rossum & Drake Jr, 

1995). Packages included tidyverse (in R; Wickham et al., 2019) and scikit-learn (in Python; 
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Pedregosa et al., 2011). Enrichment analyses were implemented in Python using in-house 

software.  

2.7.1 Univariate associations 

To evaluate whether 6-month cerebellar connectivity contributes to the development of 

ASD, we first tested individual cerebellar-FPN and cerebellar-DMN connections in relation to 

ASD risk factors and symptoms. For each subject, we isolated cerebellar connections of interest 

(n = 252; 9 cerebellar ROIs x 28 FPN and DMN ROIs) from the whole-brain (234 x 234) Fisher 

Z-transformed correlation matrix. Next, we used generalized linear models to examine univariate 

associations between each cerebellar connection (modeled as Fisher Z-transformed correlation 

values) and each ASD behavior (at 12-months: IJA, fine motor functioning, gross motor 

functioning, restricted behaviors, and ritualistic-sameness behaviors; at 24-months: ASD total 

symptom severity, social symptom severity, and RRB symptom severity).  

Based on the shape of behavioral distributions (Figure 2), Poisson regression was 

determined to be appropriate for CSBS, RBS-R, and ADOS variables, whereas linear regression 

was determined to be appropriate for MSEL fine and gross motor variables. To ascertain 

robustness given intermittent evidence for over-dispersion (Gardner et al., 1995), we compared 

results from Poisson models to results from corresponding negative binomial models, looking for 

convergence. Empirical p-values were calculated using randomization testing (n = 5,000 

reshuffles). Details about randomization testing are provided in Figure 4. To balance statistical 

rigor and power considerations, false-discovery rate (FDR) correction for multiple comparisons 

was performed with respect to the number of functional connections (n = 252) but not the 
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number of behaviors (n = 8). Cerebellar-cerebral functional connections were deemed significant 

at FDR q-values < 0.05. 

A.

B.

C.

 

Figure 4. Randomization testing. Randomization testing is a permutation-based approach used to compute 

empirical p-values (Edgington, 2011; Knijnenburg et al., 2009). Our application of randomization testing proceeded 

as follows. (A) First, we computed a test statistic using experimental data (XR). For univariate analyses, test statistics 

were computed using a single functional connection. For multivariate and enrichment analyses, test statistics were 

computed using multiple functional connections. (B) Second, we randomized behaviors or diagnostic outcomes to 

break the association between dependent (behavior/diagnosis) and independent (functional connectivity) variables, 

and we computed a test statistic using  shuffled data (XS). (C) Part B was repeated many times to build a 

“randomization distribution” of test statistics from shuffled data. Empirical p-values were calculated as the 

proportion of test statistics (XS) in the randomization distribution that were as extreme or more extreme than the real 

test statistic (XR). Dx = diagnosis; FC  = functional connections; XR = test statistic obtained in real data; XS = test 

statistic(s) obtained in shuffled data; P = p-value 

2.7.2 Multivariate machine learning prediction 

Complementing univariate approaches, which are well-suited for identifying strong 

individual functional connections, multivariate machine learning approaches examine the 

collective utility of many functional connections—each of which, individually, may explain 

relatively little variance in the outcome of interest. Prior work from the IBIS Network achieved 
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highly accurate (positive and negative predictive values > 95%) diagnostic outcome prediction 

using whole-brain functional connections at 6-months (Emerson et al., 2017). To determine 

whether highly accurate 24-month diagnostic prediction is attainable using exclusively cerebellar 

predictors, we replicated Emerson and colleagues’ (2017) approach using 6-month cerebellar-

FPN and cerebellar-DMN functional connections (ROIs assigned to networks using our 6-month 

network solution).  

Detailed methods are provided in Emerson et al. (2017). Briefly, support vector machine 

(SVM) learning classifiers were trained and tested in a high-risk sample (n = 59) using nested, 

leave-one-out cross validation (LOOCV). SVM is a supervised machine learning algorithm that 

solves two-group classification problems. Nested LOOCV describes an approach for training and 

testing machine learning classifiers to obtain unbiased estimates of performance (Figure 5).  
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Use best features and 
parameters (identified in inner 
loop) to predict outer loop test 
case. Record as true positive, 

true negative, false positive, or 
false negative

A. Outer Loop (n = 5) B. Inner Loop (n = 4)

Across all folds of the inner 
loop, identify features and 

parameters that most 
accurately predict test case. 

Fold 1

Fold 2

Fold 3

Fold 4

In each fold, 
determine best 
features 
(predictors) 
and model 
parameters 
using training 
data. Evaluate 
performance in 
test case.

Outer loop 
train = inner 
loop train + test

Swap test case and 
repeat steps 1-3

Training dataTest data

Cross-validation

Nested cross-validation
 

Figure 5. Leave one out cross-validation. Schematic illustrating nested, leave one out cross-validation (LOOCV) 

in a hypothetical sample of n = 5 participants. LOOCV is a specific instantiation of k-fold cross validation in which 

the number of folds k equals the number of individuals in the sample. (A) Each individual in the sample is a test case 

in the outer loop one time, and the remaining individuals (n = 4) are used for training the outer loop. (B) Outer loop 

training data are passed to the inner loop for training and testing. Each individual is a test case in the inner loop one 

time, and the remaining individuals (n = 3) are used for training. Feature (predictor) selection and model parameter 

tuning are described in steps 1-4, below. For cross validation without nesting, the entire sample undergoes the 

procedure described by the inner loop, and performance is averaged across folds.  

We limited our sample to high-risk (HR) infants because of the present goal of 

differentiating positive ASD cases from negative controls in the context of shared familial 

liability (i.e., HR+ vs. HR-). Feature selection was based on the strength of correlations between 

functional connections and ASD behaviors (both 12- and 24-month). To be included as a feature 

in the outer cross validation loop, we required that a functional connection exhibit at last one 

nominally significant behavioral correlation (at p < .05) across all folds of the inner cross 

validation loop. Hyperparameter tuning was conducted in the inner cross validation loop over a 
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range of regularization values (C: [0.001, 10.0]) using a linear kernel (Emerson et al., 2017). 

Regularization values determine the penalty for misclassification (larger values = higher 

penalties), and kernels determines the shape of the decision function (which is the basis for 

prediction). To account for class imbalance (~3x as many HR- as HR+ infants), regularization 

values were weighted to be inversely proportion to class frequencies, thereby imposing a 

stronger misclassification penalty on minority (HR+) cases (Emerson et al., 2017; Pedregosa et 

al., 2011).  

2.7.3 fcMRI enrichment 

Whole-brain, data-driven fcMRI enrichment approaches identify functional brain 

network pairs that contain clusters of strong brain-behavior associations (Eggebrecht et al., 2017; 

Marrus et al., 2018; McKinnon et al., 2019). To assess whether cerebellar contributions to ASD 

behaviors are detectable in a larger search space, including but not limited to cerebellar 

connections with the FPN and DMN, we first identified network pairs that contained dense 

clusters of strong brain-behavior associations. These network pairs were said to be “enriched” for 

brain-behavior associations. We then performed post-hoc testing to quantify the extent to which 

cerebellar connections were overrepresented in enriched networks.  

Our approach proceeded in three steps, improving upon prior IBIS publications 

(Eggebrecht et al., 2017; Marrus et al., 2018; McKinnon et al., 2019) by accounting for 

familywise error rate with respect to the number of network pairs tested. First, the strongest 5% 

of brain-behavior associations (hereafter, hits) were identified in real and shuffled (n = 50,000) 

data using mass univariate screening (Poisson or linear regression, as described above). Second, 

for every within- and between-network pair, empirical p-values were computed as the fraction of 
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shuffled runs with at least as many hits as real data (Figure 4). Based on simulations, it was 

determined that p-values < .001 were necessary to approximate a 5% false-positive rate. To 

avoid overlooking potentially informative results, p-values < .01 were also considered significant 

if they demonstrated the capacity to significantly predict behavior in secondary validation (see 

below).  

2.7.4 Secondary enrichment validation 

Secondary validation analyses were conducted to verify that brain information from 

enriched (p < .01) networks could be leveraged to predict behaviors relevant to ASD. Though 

circular (enrichment identified networks based on behavior; enrichment-derived networks were 

used to predict behavior), this approach nonetheless provided an important test of multimethod 

convergence to corroborate the behavioral significance of enriched networks. Generalized linear 

models (poisson or linear regression, as indicated by distributions; see Methods) were used to 

predict behaviors, with principal component analysis (PCA) for feature reduction. Principal 

component analysis is a dimensionality reduction technique that summarizes data by projecting it 

onto a small number of vectors (“principal components”) (Ringnér, 2008).  

Feature reduction (n components: [1, 10]), hyperparameter tuning of regularization 

parameters (Poisson alpha: [0.0001, 3.2], logistic C: [0.0001, 10.0]), training, and testing were 

performed within five-fold cross-validation. Five-fold cross-validation proceeds by partitioning a 

sample into five, approximately equal-sized subgroups. Each subgroup serves as a test dataset 

one time, and remaining data are used for training (refer to Figure 5B for an illustration of cross-

validation). Prediction errors were averaged across test sets, providing an unbiased estimate of 
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performance, and empirical p-values were computed by comparing the mean prediction error in 

real and randomized data over n = 500 runs (Figure 4).  

2.7.5 Post-hoc randomization 

Post-hoc randomization testing (n = 10,000 reshuffles) examined whether cerebellar 

ROIs were overrepresented among the 5% strongest brain-behavior associations (hits) within a 

significantly enriched network pair. To this end, continuous behaviors were shuffled with respect 

to functional connections (Figure 4). Cerebellar involvement was quantified as the number of 

hits (nC) that included at least one cerebellar ROI. Empirical p-values were computed as the 

fraction of the randomization distribution in which nCrandom > nCreal. Significant coaggregation of 

cerebellar-cerebral functional connections in the top 5% of the randomization distribution would 

identify important cerebellar contributions to ASD, affording a whole-brain, data-driven 

counterpart to hypothesis-driven tests of the FPN and DMN. 
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Chapter 3: Results 

3.1 Univariate associations 
 Hypothesis-driven tests evaluating individual associations between 6-month cerebellar-

FPN and cerebellar-DMN functional connections (n = 252) and later ASD behaviors (at 12-

months: IJA, fine motor functioning, gross motor functioning, restricted behaviors, and 

ritualistic-sameness behaviors; at 24-months: ASD total symptom severity, social symptom 

severity, and RRB symptom severity) failed to implicate the cerebellum in ASD (Figure 6) 

despite adequate statistical power to detect medium-sized effects (Figure 7). Prior to FDR 

correction, 5.6% of univariate tests were significant at p < .05 (as would be expected by chance). 

Following FDR correction, no significant results remained at q < .05. 
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Figure 6. Univariate tests of cerebellar connections. Hypothesis-driven tests of brain-behavior associations 

between cerebellar-FPN and cerebellar-DMN connections (n = 252) and ASD behaviors (n = 8). Each dot visualizes 

the results from a single Poisson, negative binomial, or linear regression model (plotted on x-axis), with (A) 

empirical p-values and (B) FDR-corrected q-values plotted on the y-axis. Colors aid discrimination of dots, and 

vertically-oriented kernel density plots (in A) illustrate the distribution of dots across the range of p-values (n = 252 

per violin). The threshold for significance (p, q < .05) is indicated by a dotted black line. After FDR correction, no 

significant results remained at q < .05. The smallest FDR-adjusted q-value was obtained for a cerebellar-cerebral 

connection between two anterior default mode ROIs in relation to 12-month ritualistic-sameness behavior (negative 

binomial: beta = -4.49, SE = 1.27, q = 0.10; Poisson: beta = -3.98, SE = 1.01, q = 0.15). FDR = false discovery rate, 

SE = standard error, CSBS = Communication and Symbolic Behavior Scales, IJA = initiation of joint attention, 

ADOS = Autism Diagnostic Observation Schedule, CSS = calibrated severity score, RRB = restricted interests and 

repetitive behaviors, SA = social affect, RBS-R = Repetitive Behavior Scale—Revised, RitSame = ritualistic and 

sameness, MSEL = Mullen Scales of Early Learning 
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Figure 7. Statistical power. Power was calculated in R (simr package) using Monte Carlo simulation for Poisson 

and linear regression (Green & Macleod, 2016; R Core Team, 2018), with Bonferroni correction to account for the 

number of functional connections per behavior. Effect sizes for Poisson regression (CSBS, RBSR, ADOS) were 

estimated as incidence rate ratios (IRR), where 1.22, 1.86, and 3.00 represent small, medium, and large effects, 

respectively (Olivier et al., 2017). Effect sizes for linear regression (MSEL) were estimated using Cohen’s 

conventions, where 0.2, 0.5, and 0.8 represent small, medium, and large effects, respectively (Cohen, 1988). Small-

to-medium sized effects are shaded in gray. For CSBS and ADOS variables (top), we were well-powered (80%, 

indicated by red line) to detect medium effects in individual models. For RBS-R and MSEL variables (bottom), we 

were well-powered to detect at least one significant medium effect assuming multiple significant medium effects 

were present across models, as would be expected if the cerebellum were a major driver of ASD behaviors in early 

development.  CSBS = Communication and Symbolic Behavior Scales, IJA = initiation of joint attention, ADOS = 

Autism Diagnostic Observation Schedule, CSS = calibrated severity score, RRB = restricted interests and repetitive 

behaviors, SA = social affect, RBS-R = Repetitive Behavior Scale—Revised, MSEL = Mullen Scales of Early 

Learning 
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3.2 Multivariate machine learning prediction 
Multivariate machine learning analyses (SVM with nested, leave one out cross-

validation) aimed to predict ASD diagnosis (i.e., HR+ vs. HR-) using cerebellar-FPN and 

cerebellar-DMN functional connections. In the context of familial risk (~1/5 chance of 

developing ASD), a machine that exclusively predicts the minority class (HR+) will achieve 

~20% positive predictive value (PPV), providing a baseline for classifier performance 

evaluation. Our classifier failed to significantly exceed 20% PPV (observed PPV = 23%), and 

performance was similarly poor with respect to other metrics (accuracy = 66%, sensitivity = 

23%, specificity = 78%, NPV = 78%), indicating that cerebellar-FPN and cerebellar-DMN 

features are insufficient to inform diagnostic outcome prediction (cf. Emerson et al., 2017, who 

applied identical methods to whole-brain data and obtained accuracy = 97%, sensitivity = 82%, 

specificity = 100%, PPV = 100%, and NPV = 96%).  

3.3 fcMRI enrichment 
Data-driven, whole-brain fcMRI enrichment identified four 6-month network pairs that 

exhibited strong associations with later ASD behaviors (Figure 8A). In relation to 12-month 

RBS-R restricted behaviors, clustering of brain-behavior associations was observed between 

somatomotor network 1 (SM1) and the temporal default mode network (tDMN; p < .006). In 

relation to 24-month ADOS RRBs, clustering of brain-behavior associations was observed 

between the posterior frontoparietal network (pFP) and the medial visual network (mVis; p < 

.006). In relation to 12-month MSEL fine motor functioning, clustering of brain-behavior 

associations was observed between the anterior frontoparietal network (aFP) and the posterior 

default mode network (pDMN; p < .010). Finally, in relation to 12-month MSEL gross motor 
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functioning, clustering of brain-behavior associations was observed between the cingulo-

opercular network (CO) and the anterior default mode network (aDMN; p < .007). Network 

enrichment was not observed for 12-month IJA, 12-month ritualistic-sameness behavior, 24-

month ASD total symptom severity, nor 24-month ASD social symptom severity.  

 

Figure 8. fcMRI enrichment. (A) Within and between networks, clusters of brain-behavior associations were 

identified using enrichment. Lower triangles depict standardized beta coefficients. Upper triangles were generated 

by applying a 5% threshold to standardized beta coefficients. Each black dot represents a single, strong brain-

behavior association. (B) Six-month functional connections between SM1-tDMN, pFP-mVis, aFP-pDMN, and CO-

aDMN were strongly associated with 12- and 24-month motor functioning and RRBs. Within enriched network 

pairs, locations of strong brain-behavior associations are visualized on posterior, dorsal, and lateral views of the 

brain (top). Box plots (bottom) further illustrate the range of functional connectivity values in the study sample (x-

axis) that underlie each brain-behavior correlation (y-axis). Blue-pink and green-red color gradients identify 

negative and positive brain-behavior associations, respectively. Specific colors denote the sign and strength of 

functional connectivity (e.g., pale blue/green = predominantly negative connectivity; pink/red = predominantly 

positive connectivity). All network pairs except SM1-tDMN passed our secondary validation protocol.  

3.4 Secondary enrichment validation 
All four enriched (0.001 < p < 0.01) network pairs were subjected to secondary validation 

(i.e., cross-validated prediction of ASD behaviors using enriched networks). Three of four 6-

month network pairs passed secondary validation (Appendix E). These included: pFP-mVis (p = 
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0.04), aFP-pDMN (p = 0.03), and CO-aDMN (p = 0.01). Between pFP and mVis, increased 

positive functional connectivity was associated with increased 24-month RRBs (Figure 8B). 

Between aFP and pDMN, increased positive functional connectivity was associated with 

decreased 12-month fine motor functioning. Finally, between CO and aDMN, increased positive 

functional connectivity was associated with decreased 12-month gross motor functioning. SM1-

tDMN did not pass secondary validation (p = 0.15) and will not be interpreted further. 

3.5 Post-hoc randomization 
Two of three network pairs that passed secondary validation also contained cerebellar 

ROIs: CO-aDMN and pFP-mVis. Significant aggregation of cerebellar functional connections 

was not observed among hits in either network pair (ps = 0.08 and 0.49 for CO-aDMN and pFP-

mVis, respectively) (Appendix F). 



30 

 

Chapter 4: Discussion 
Contrary to contemporary hypotheses, we failed to observe a relationship between 6-

month cerebellar fcMRI and later ASD behaviors and outcomes. Univariate tests of cerebellar-

FPN and cerebellar-DMN connections were not associated with 12- or 24-month ASD behaviors, 

despite adequate statistical power (> 80%) to detect medium-sized effects. In addition, 

multivariate tests of cerebellar-FPN and cerebellar-DMN connections did not achieve above-

chance ASD diagnostic classification accuracy, despite replicating procedures that achieved > 

90% PPV in brain-wide work (cf. Emerson et al., 2017). Although data-driven fcMRI 

enrichment identified multiple infant network correlates for later ASD behaviors, post-hoc 

randomization tests did not support a unique role for infant cerebellar connectivity within 

enriched network pairs. Together, these results cast doubt on cerebellar theories of ASD etiology, 

indicating that cerebellar connectivity effects, if present, are likely small. Instead, cerebellar 

participation in network enrichment may contribute to the emergence of ASD behaviors in the 

broad context of non-cerebellar functional connections. 

4.1 fcMRI enrichment analysis identified network correlates 

of ASD behaviors 
Although cerebellar functional connections failed to predict ASD behaviors and 

outcomes, the present fcMRI enrichment results nonetheless suggest a path forward for research. 

Using enrichment, we identified three clusters of brain-behavior relationships involving infant 

frontoparietal, cingulo-opercular, and default mode networks (FPN, CO, and DMN, 

respectively). Specifically, enrichment was observed between: (1) pFP and mVis, in which more 

positive connectivity preceded increased 24-month RRBs; (2) aFP and pDMN, in which more 
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positive connectivity preceded poorer 12-month fine motor functioning; and (3) CO and aDMN, 

in which more positive connectivity preceded poorer 12-month gross motor functioning.  

This pattern of results reinforces our decision to focus hypothesis-driven tests on FPN 

(implicated in error-signaling; Dosenbach et al., 2007; Marek & Dosenbach, 2018) and DMN 

(commonly implicated in ASD; e.g., Jung et al., 2014; Nair et al., 2020; Padmanabhan et al., 

2017) connections. Although we did not make a priori hypotheses about the cingulo-opercular 

(CO) network, the CO (much like the FPN) subserves error-signaling in support of error-based 

learning (Dosenbach et al., 2008; Neta et al., 2014; Power & Petersen, 2013). Thus, FPN and CO 

representation within enriched network pairs raises the possibility that ASD behaviors may 

reflect cortically-mediated error-signaling impairments. Behavioral studies are necessary to 

directly test this hypothesis.  

DMN representation within enriched network pairs, meanwhile, supports the downward 

extension of findings from older individuals, which have commonly implicated the DMN in 

ASD (e.g., Jung et al., 2014; Nair et al., 2020; Padmanabhan et al., 2017). Despite being 

consistently implicated in ASD, patterns of DMN results (e.g., hypo- vs. hyper-connectivity) 

vary across studies (Abbott et al., 2016; Chen et al., 2017; Duan et al., 2017; Guo et al., 2019; 

Nair et al., 2020). To account for this variation, it may be important to consider potential 

moderating effects of age. Indeed, a recent study by Lawrence et al. (2019) found that DMN-

control network connectivity differed between individuals with ASD and typically developing 

individuals during late, but not early, adolescence. Accruing evidence (summarized below) 

suggests that characterizing trajectories of within- and between-DMN connectivity even earlier 
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in development (e.g., during infancy, as in the present study) may be fundamental to advancing 

understanding and assessment of presymptomatic risk for ASD.  

4.2 Early developmental connectivity between control, 

sensory, and default mode systems is altered in ASD 
We observed that more positive connectivity involving control (pFP, aFP, CO), default 

mode (pDMN, aDMN), and sensory (mVis) systems was reliably associated with atypical 

behaviors. To contextualize this observation, we reviewed all prior enrichment studies that 

examined functional connectivity in relation to ASD behaviors (Eggebrecht et al., 2017; Marrus 

et al., 2018; McKinnon et al., 2019; Wheelock et al., 2018). Results involving control, default 

mode, and sensory systems are summarized in Figure 9. Consistent with present results, more 

positive functional connectivity between default mode and control systems was associated with 

atypical behaviors. Increased connectivity between default mode and control systems has been 

reported in multiple psychiatric and neurodevelopmental disorders (Menon, 2018), including 

ASD (Mash et al., 2019), and may reflect compensatory activation (i.e., recruitment of multiple 

brain networks for processes typically performed by a single network; Grady et al., 2016; Park & 

Reuter-Lorenz, 2009) or reduced network segregation (de-differentiation; Keown et al., 2017).  
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Figure 9. Empirical context. Summary of primary results* from fcMRI enrichment studies examining functional 

connectivity (fc) among control, DMN, and sensorimotor systems in relation to ASD behaviors (Eggebrecht et al., 

2017; Marrus et al., 2018; McKinnon et al., 2019; Wheelock et al., 2018). Between networks: (A) Between 

sensorimotor and DMN systems, more positive fc was associated with typical behavior. (B) Between DMN and 

control systems, more positive fc was associated with atypical behavior. (C) Between control and sensorimotor 

systems, the relationship between fc and behavior was variable. Within networks: (D) Within the default mode 

system, the relationship between fc and behavior was variable. (E) Within the control system, more positive fc was 

associated with typical behavior. (F) With the sensorimotor system, the relationship between fc and behavior was 

variable.  Fc = functional connectivity, Bx = behavior, Dir. = higher (↑) vs. lower (↓) scores reflect typical 

behaviors; Fc-bx = sign (positive, negative, mixed) of brain-behavior association; DMN = default mode network, 

Vis = visual network, SMN = somatomotor network, CO = cingulo-opercular network, FPN = frontoparietal 

network, Sal = salience network; M = months, Y = years. *Primary results were defined as described in primary 

sources. Eggebrecht et al., 2017, Marrus et al., 2018, and McKinnon et al., 2019: network pairs were significantly 

enriched at both ages (12 and 24 months) or were significantly enriched at one age and significantly different 

between ages. Present study: network pairs passed secondary validation testing 

Whereas brain-behavior associations between default mode and control systems were 

highly consistent across studies, brain-behavior associations between sensorimotor (e.g., Vis, 

mVis) and control systems were variable (Figure 9C). This may be due to the fact that 

enrichment studies sampled brain and behavior across multiple stages of development. During 

early development, visual brain circuitry is argued to influence experience-dependent learning, 
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contributing (in some individuals) to the emergence of the ASD phenotype during the second 

year of life (Piven et al., 2017). At the same time, aspects of the control system are posited to 

flexibly modulate input from other brain systems, scaffolding age-appropriate learning and 

behavior (Werchan & Amso, 2017). Thus, connectivity between visual and control systems 

during infancy may support the acquisition of behaviors that are commonly impaired in ASD, 

including visual attention, language, and cognitive flexibility (Rosen et al., 2019). Similar 

interactions between visual and control systems during early childhood may have different 

behavioral sequelae. Together with results implicating the DMN in ASD during infancy, these 

results suggest that characterizing early developmental changes between control (FPN, CO), 

default mode, and sensorimotor systems may substantively advance understandings of when, 

where, and how brain connectivity relates to the emergence of atypical behaviors in ASD. 

4.3 Limitations 
The present work represents, to the best of our knowledge, the largest analysis of 

cerebellar functional connectivity in a prospective infant sample at risk for ASD. There were, 

however, a number of limitations. First, although simulation-based power analyses suggested 

sufficient power to detect medium-sized brain-behavior effects (Green & Macleod, 2016), 

identifying small-sized, reproducible effects may require even greater statistical power (Marek et 

al., 2020). Second, we analyzed data from nine cerebellar ROIs, and it is unclear whether results 

generalize to other regions in the cerebellum. We optimized cerebellar ROI placement to test 

hypotheses about the FPN and DMN, and future studies might instead optimize cerebellar ROI 

placement to test hypotheses about sensorimotor networks. Third, our measures of autism 

severity were developed in individuals with ASD (Gotham et al., 2009) and exhibited limited 
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variability in the study sample, possibly attenuating brain-behavior associations. To mitigate this 

limitation, we used modeling techniques well-suited for skewed data. Finally, cerebellar 

contributions to ASD may be more evident during different developmental epochs (e.g., prior to 

6 months) or using different imaging modalities (such as diffusion tensor imaging) (Wolff et al., 

2017), cautioning against over-interpretation of null results.  

4.4 Future directions 
Despite limitations, the present study provides an important set of results to counter 

strong statements that have been made about cerebellar dysfunction as a causal influence on 

ASD during early development (D’Mello & Stoodley, 2015; Fatemi et al., 2012; Wang et al., 

2014). We suggest that future research focused on the infant cerebellum should: recruit larger 

samples to enhance statistical power to detect subtle effects; densely sample multiple timepoints 

during the first few years of life to facilitate identification of developmental epochs that may be 

acutely sensitive to cerebellar disturbance (Wang et al., 2014); and examine cerebellar structure 

and function in tandem. Although post-hoc randomization testing did not support a unique role 

for infant cerebellar connectivity, it remains possible that the cerebellum may influence ASD 

behaviors in the broad context of enriched networks (that include cerebellar and non-cerebellar 

connections). A promising direction for future studies may be to investigate whether 6-month 

connectivity between enriched network pairs (aFP-pDMN, CO-aDMN, pFP-mVis) can be used 

to identify infants at elevated risk for atypical development, thereby expediting early intervention 

(Shen & Piven, 2017).  
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4.5 Conclusions 
The present study examined infant cerebellar connectivity as a presymptomatic neural 

biomarker of ASD using multiple analytic approaches. Contrary to hypotheses, we failed to 

observe strong associations between 6-month cerebellar fcMRI and later ASD behaviors and 

outcomes. Instead, fcMRI enrichment analysis identified clusters of brain-behavior relationships 

between networks implicated in error-signaling (FPN and CO; Dosenbach et al., 2007) and in 

ASD (DMN; Nair et al., 2020). These findings provide an alternative (non-cerebellar) account 

for error-based learning impairments in ASD (Sinha et al., 2014; Wang et al., 2014) and support 

the developmental extension of adult DMN findings (e.g., Jung et al., 2014; Nair et al., 2020; 

Padmanabhan et al., 2017). Future work is necessary to characterize patterns of infant 

connectivity between the FPN, CO, and DMN in relation to potential behavioral precursors (e.g., 

error-based learning, motor functioning, joint attention) of second-year-of-life ASD symptoms. 

Such efforts hold promise to improve presymptomatic detection and intervention in ASD.  
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Appendix 
Appendix A. ROI coordinates (Talairach [X, Y, Z] and MNI [X, Y, Z]) and network 

assignments across development. Networks were derived in 6-month infants (6M-Net; present 

results), 12 and 24-month toddlers (12_24M_Net; Eggebrecht et al., 2017), and adults 

(Adult_230_Net; Power et al., 2011). Cerebellar ROIs 231 and 234 were placed by reverse 

seeding the DMN in the right and left hemispheres, respectively; cerebellar ROIs 232 and 233 

were placed by reverse seeding the FPN in the right and left hemispheres, respectively (see 

Appendix B for additional details about cerebellar ROI placement). 

Key 
Talairach MNI Network Solution 

CBM_ROI 
X Y Z X Y Z 6M 12-24M Adult 

1 -23.00 -96.00 -15.00 -24.66 -97.84 -12.33 VIS DAN US 0 

2 26.00 -96.00 -15.00 26.68 -97.30 -13.49 VIS DAN US 0 

3 23.00 27.00 -12.00 23.96 31.94 -17.78 aFP aFPC US 0 

4 -53.00 -45.00 -24.00 -56.16 -44.76 -24.23 DAN DAN US 0 

5 8.00 36.00 -18.00 8.13 41.12 -24.31 aFP aFPC US 0 

6 -20.00 -24.00 -18.00 -21.38 -22.22 -19.97 mVIS pcDMN DMN 0 

7 -35.00 -30.00 -24.00 -37.26 -28.80 -25.58 DAN DAN US 0 

8 62.00 -27.00 -15.00 64.60 -24.41 -18.57 tDMN pFPC DMN 0 

9 50.00 -36.00 -24.00 51.79 -34.17 -27.23 DAN DAN US 0 

10 53.00 -33.00 -14.00 55.18 -30.80 -16.93 tDMN pFPC US 0 

11 32.00 33.00 -6.00 33.55 38.46 -12.03 aFP Sal FPC 0 

12 -8.00 -54.00 57.00 -7.12 -52.22 60.71 SM1 SMN Sal 0 

13 8.00 -6.00 45.00 9.50 -1.84 44.73 SM1 SMN Mot 0 

14 -8.00 -24.00 63.00 -6.90 -20.59 65.21 SM1 SMN Mot 0 

15 -8.00 -36.00 69.00 -6.79 -33.09 72.27 SM1 SMN Mot 0 

16 -52.00 -25.00 41.00 -53.52 -22.54 43.10 SM2 SMN2 Mot 0 

17 8.00 -48.00 69.00 9.94 -45.52 72.63 SM1 SMN Mot 0 

18 -39.00 -22.00 52.00 -39.63 -19.04 54.21 SM2 SMN Mot 0 

19 26.00 -42.00 57.00 28.54 -39.24 59.17 SM2 SMN2 Mot 0 

20 47.00 -24.00 42.00 50.24 -20.37 41.74 SM2 SMN2 Mot 0 

21 18.00 -32.00 58.00 20.21 -28.80 59.80 SM1 SMN Mot 0 

22 -29.00 -45.00 57.00 -29.10 -43.00 60.66 SM2 SMN2 Mot 0 

23 20.00 -45.00 66.00 22.45 -42.29 68.99 SM1 SMN Mot 0 

24 -44.00 -34.00 44.00 -45.10 -31.85 46.63 SM2 SMN2 DAN 0 

25 -21.00 -34.00 58.00 -20.66 -31.33 60.85 SM1 SMN Mot 0 

26 39.00 -24.00 54.00 42.14 -20.24 54.59 SM2 SMN2 Mot 0 

27 35.00 -21.00 45.00 37.74 -17.30 45.01 SM2 SMN Mot 0 

28 -48.00 -14.00 34.00 -49.47 -11.06 34.95 MotM CO MotM 0 

29 34.00 -13.00 16.00 36.04 -9.44 13.95 MotM CO MotM 0 

30 48.00 -10.00 34.00 51.14 -5.80 32.42 MotM CO MotM 0 

31 -51.00 -13.00 24.00 -52.84 -10.23 24.41 MotM CO MotM 0 
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32 62.00 -12.00 27.00 65.64 -7.88 24.83 MotM CO MotM 0 

33 -4.00 -2.00 53.00 -2.88 2.38 53.21 CO SMN Mot 0 

34 51.00 -31.00 34.00 54.22 -27.83 33.64 SM2 SMN2 CO 0 

35 17.00 -12.00 63.00 19.33 -7.71 63.88 SM1 SMN Mot 0 

36 -11.00 -6.00 42.00 -10.48 -2.10 42.02 SM1 SMN Mot 0 

37 35.00 -3.00 0.00 36.73 0.78 -3.57 CO CO Mot 0 

38 5.00 3.00 51.00 6.52 7.69 50.58 CO SMN Mot 0 

39 -43.00 -3.00 10.00 -44.76 0.10 8.83 CO CO Mot 0 

40 47.00 4.00 3.00 49.40 8.32 -1.12 CO CO Mot 0 

41 -33.00 0.00 6.00 -34.37 3.29 4.19 CO CO Mot 0 

42 -6.00 13.00 36.00 -5.33 17.80 34.41 CO SMN Sal 0 

43 34.00 6.00 5.00 35.83 10.32 1.18 CO CO Sal 0 

44 62.00 -36.00 21.00 65.43 -33.20 19.97 SM2 pCO CO 0 

45 55.00 -19.00 10.00 57.88 -15.62 7.49 pCO pCO CO 0 

46 -37.00 -35.00 16.00 -38.43 -33.34 16.98 pCO pCO CO 0 

47 -58.00 -27.00 13.00 -60.48 -25.22 13.82 pCO pCO CO 0 

48 -47.00 -28.00 5.00 -49.14 -26.30 5.18 tDMN tDMN CO 0 

49 41.00 -26.00 21.00 43.45 -22.93 19.85 SM2 pCO Mot 0 

50 -48.00 -36.00 24.00 -49.77 -34.36 25.74 SM2 pCO CO 0 

51 -51.00 -24.00 22.00 -52.92 -21.83 22.97 SM2 SMN2 Mot 0 

52 -53.00 -12.00 12.00 -55.22 -9.42 11.73 MotM CO CO 0 

53 53.00 -9.00 16.00 55.96 -5.03 13.25 MotM CO CO 0 

54 56.00 -21.00 30.00 59.40 -17.34 28.69 SM2 SMN2 Mot 0 

55 -29.00 -29.00 12.00 -30.12 -27.02 12.20 SM1 pCO SubCtx 0 

56 -39.00 -75.00 22.00 -40.50 -75.27 25.80 pDMN pcDMN DMN 0 

57 5.00 60.00 3.00 5.55 66.69 -3.55 aDMN aFPC DMN 0 

58 8.00 42.00 -9.00 8.36 47.59 -15.18 aDMN aDMN DMN 0 

59 -17.00 57.00 -3.00 -17.65 63.19 -9.17 aFP aFPC US 0 

60 -44.00 -61.00 18.00 -45.79 -60.69 20.85 tDMN tDMN DMN 0 

61 41.00 -73.00 26.00 43.43 -72.21 28.00 pDMN pcDMN DMN 0 

62 -41.00 9.00 -30.00 -43.58 11.99 -34.15 tDMN tDMN DMN 0 

63 44.00 12.00 -24.00 45.64 16.20 -30.02 tDMN tDMN DMN 0 

64 -55.00 -27.00 -14.00 -57.97 -25.69 -14.73 tDMN pFPC US 0 

65 26.00 12.00 -12.00 27.06 16.22 -16.93 aDMN aDMN DMN 0 

66 -43.00 -65.00 31.00 -44.45 -64.64 34.78 pDMN pcDMN DMN 0 

67 -7.00 -56.00 25.00 -6.84 -54.90 27.05 pDMN pcDMN DMN 0 

68 5.00 -60.00 33.00 5.91 -58.82 35.45 pDMN pcDMN DMN 0 

69 -11.00 -57.00 14.00 -11.29 -56.20 15.60 pDMN pcDMN DMN 0 

70 -3.00 -50.00 12.00 -2.94 -48.79 12.87 pDMN pcDMN DMN 0 

71 7.00 -50.00 29.00 7.94 -48.37 30.57 pDMN tDMN DMN 0 

72 14.00 -64.00 24.00 15.12 -63.09 25.98 pDMN pcDMN DMN 0 

73 -3.00 -39.00 42.00 -2.20 -36.68 43.85 pDMN pcDMN DMN 0 

74 10.00 -55.00 16.00 10.77 -53.83 17.09 pDMN pcDMN DMN 0 

75 49.00 -61.00 34.00 52.04 -59.37 35.52 tDMN pFPC DMN 0 

76 21.00 27.00 50.00 23.33 33.07 47.68 aDMN aDMN DMN 0 

77 -17.00 23.00 54.00 -16.40 28.52 53.05 aDMN aDMN DMN 0 

78 20.00 33.00 42.00 22.11 39.21 38.90 aDMN aDMN DMN 0 

79 -20.00 39.00 42.00 -19.78 45.07 39.48 aDMN aDMN DMN 0 

80 5.00 48.00 21.00 5.94 54.42 16.18 aDMN aDMN DMN 0 

81 -7.00 45.00 4.00 -7.04 50.82 -1.29 aDMN aDMN DMN 0 

82 8.00 48.00 9.00 8.80 54.23 3.45 aDMN aDMN DMN 0 

83 -3.00 39.00 -4.00 -3.06 44.41 -9.46 aDMN aDMN DMN 0 

84 7.00 37.00 0.00 7.51 42.49 -5.35 aDMN aDMN DMN 0 

85 -11.00 39.00 12.00 -11.06 44.62 7.61 aDMN aDMN DMN 0 

86 -3.00 32.00 39.00 -2.06 37.85 36.34 aDMN aDMN FPC 0 

87 -3.00 36.00 20.00 -2.50 41.70 16.05 aDMN aDMN DMN 0 
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88 -8.00 42.00 27.00 -7.55 48.08 23.18 aDMN aDMN DMN 0 

89 62.00 -15.00 -15.00 64.64 -11.80 -19.30 tDMN tDMN DMN 0 

90 -53.00 -15.00 -9.00 -55.72 -12.96 -10.24 tDMN tDMN DMN 0 

91 -55.00 -31.00 -4.00 -57.75 -29.70 -3.94 tDMN tDMN DMN 0 

92 62.00 -33.00 -6.00 64.80 -30.55 -8.70 tDMN pFPC FPC 0 

93 11.00 30.00 24.00 12.25 35.63 20.30 aDMN aDMN DMN 0 

94 50.00 -6.00 -12.00 52.16 -2.43 -16.40 tDMN tDMN DMN 0 

95 -25.00 -41.00 -8.00 -26.44 -39.95 -8.26 mVIS pcDMN DMN 0 

96 26.00 -39.00 -11.00 26.94 -37.34 -12.76 mVIS pcDMN DMN 0 

97 -32.00 -39.00 -15.00 -33.93 -38.06 -15.60 mVIS pcDMN DMN 0 

98 28.00 -76.00 -31.00 28.46 -76.56 -31.64 VIS CO DMN 1 

99 50.00 3.00 -24.00 51.90 6.81 -29.61 tDMN tDMN DMN 0 

100 -50.00 0.00 -24.00 -52.89 2.55 -27.06 tDMN tDMN DMN 0 

101 44.00 -52.00 28.00 46.68 -50.08 28.76 pDMN tDMN DMN 0 

102 -47.00 -43.00 0.00 -49.30 -42.15 0.83 tDMN tDMN DMN 0 

103 -29.00 15.00 -15.00 -30.63 18.71 -18.98 aDMN aDMN DMN 0 

104 -3.00 -37.00 30.00 -2.47 -34.80 31.07 pDMN pcDMN DMN 0 

105 -7.00 -72.00 38.00 -6.58 -71.47 41.74 pDMN pcDMN DMN 0 

106 10.00 -67.00 39.00 11.27 -66.01 42.09 pDMN pFPC DMN 0 

107 3.00 -50.00 48.00 4.20 -48.06 50.71 pDMN pcDMN DMN 0 

108 -44.00 27.00 -9.00 -46.17 31.26 -13.03 aFP Sal DMN 0 

109 47.00 30.00 -6.00 49.26 35.47 -12.20 aFP Sal DMN 0 

110 8.00 -90.00 -9.00 7.98 -91.08 -7.10 VIS DAN Vis 0 

111 17.00 -90.00 -15.00 17.27 -91.09 -13.64 VIS DAN US 0 

112 -11.00 -93.00 -15.00 -12.08 -94.56 -12.80 VIS DAN US 0 

113 17.00 -48.00 -9.00 17.53 -46.86 -9.88 mVIS Vis Vis 0 

114 38.00 -73.00 13.00 39.98 -72.49 14.36 mVIS pcDMN Vis 0 

115 8.00 -72.00 9.00 8.45 -71.84 10.79 mVIS Vis Vis 0 

116 -8.00 -80.00 5.00 -8.43 -80.50 7.44 mVIS Vis Vis 0 

117 -27.00 -79.00 16.00 -28.07 -79.45 19.43 mVIS DAN Vis 0 

118 19.00 -66.00 1.00 19.81 -65.56 1.72 mVIS Vis Vis 0 

119 -23.00 -90.00 15.00 -23.94 -90.98 18.96 mVIS DAN Vis 0 

120 26.00 -60.00 -9.00 26.93 -59.37 -9.36 mVIS DAN Vis 0 

121 -14.00 -72.00 -9.00 -15.02 -72.42 -7.68 mVIS Vis Vis 0 

122 -17.00 -68.00 3.00 -17.87 -68.03 4.81 mVIS Vis Vis 0 

123 41.00 -78.00 -12.00 42.52 -78.17 -11.78 DAN DAN Vis 0 

124 -44.00 -75.00 -12.00 -46.54 -75.95 -9.95 DAN DAN Vis 0 

125 -14.00 -90.00 27.00 -14.22 -90.66 31.40 mVIS Vis Vis 0 

126 14.00 -87.00 33.00 15.27 -87.09 36.89 mVIS Vis Vis 0 

127 27.00 -77.00 23.00 28.68 -76.62 25.42 mVIS DAN Vis 0 

128 19.00 -85.00 -4.00 19.64 -85.62 -2.39 VIS DAN Vis 0 

129 14.00 -77.00 28.00 15.18 -76.68 31.00 mVIS Vis Vis 0 

130 -15.00 -53.00 -2.00 -15.85 -52.34 -1.43 mVIS Vis Vis 0 

131 40.00 -66.00 -8.00 41.60 -65.50 -8.27 DAN DAN Vis 0 

132 23.00 -87.00 21.00 24.41 -87.21 24.01 mVIS Vis Vis 0 

133 5.00 -72.00 21.00 5.59 -71.65 23.52 mVIS Vis Vis 0 

134 -40.00 -73.00 -2.00 -42.10 -73.62 0.38 DAN DAN DAN 0 

135 25.00 -79.00 -16.00 25.66 -79.47 -15.56 mVIS DAN Vis 0 

136 -16.00 -77.00 30.00 -16.21 -76.97 33.82 mVIS Vis Vis 0 

137 -3.00 -81.00 18.00 -2.88 -81.25 21.10 mVIS Vis Vis 0 

138 -38.00 -87.00 -9.00 -40.21 -88.44 -6.19 DAN DAN Vis 0 

139 35.00 -84.00 11.00 36.76 -84.11 12.99 mVIS DAN Vis 0 

140 6.00 -81.00 4.00 6.21 -81.41 6.11 mVIS Vis Vis 0 

141 -25.00 -89.00 0.00 -26.39 -90.23 3.12 VIS DAN Vis 0 

142 -31.00 -78.00 -15.00 -33.00 -79.02 -13.24 DAN DAN Vis 0 

143 35.00 -81.00 0.00 36.51 -81.16 1.20 DAN DAN Vis 0 
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144 -43.00 -2.00 45.00 -43.93 1.80 45.70 CO SMN FPC 0 

145 45.00 19.00 30.00 47.98 24.56 26.50 aFP aFPC FPC 0 

146 -45.00 7.00 24.00 -46.50 10.85 23.04 aFP SMN2 FPC 0 

147 -51.00 -50.00 39.00 -52.60 -48.83 42.50 pFP pFPC FPC 0 

148 56.00 -54.00 -12.00 58.31 -52.79 -13.61 DAN DAN FPC 0 

149 23.00 39.00 -9.00 24.07 44.61 -15.35 aFP aFPC FPC 0 

150 32.00 48.00 -6.00 33.60 54.22 -12.95 aFP aFPC FPC 0 

151 17.00 -79.00 -34.00 16.85 -79.89 -34.36 aDMN SubCtx FPC 1 

152 34.00 -67.00 -33.00 34.72 -67.08 -34.45 aDMN SubCtx FPC 1 

153 44.00 5.00 35.00 47.01 9.93 32.66 aFP aFPC FPC 0 

154 -40.00 2.00 33.00 -41.06 5.81 32.72 aFP aFPC FPC 0 

155 -41.00 33.00 24.00 -42.23 38.21 21.35 aFP aFPC FPC 0 

156 36.00 37.00 20.00 38.37 43.18 15.06 aFP aFPC FPC 0 

157 46.00 -45.00 44.00 49.18 -42.41 45.16 pFP pFPC FPC 0 

158 -28.00 -59.00 44.00 -28.40 -57.93 47.78 pFP DAN FPC 0 

159 41.00 -55.00 45.00 43.93 -52.95 46.95 pFP pFPC FPC 0 

160 35.00 -66.00 38.00 37.45 -64.70 40.38 pFP pFPC FPC 0 

161 -41.00 -56.00 41.00 -42.09 -54.98 44.74 pFP pFPC FPC 0 

162 37.00 13.00 42.00 39.87 18.39 39.72 aFP aDMN FPC 0 

163 -33.00 49.00 9.00 -34.16 54.83 4.36 aFP aFPC FPC 0 

164 -40.00 40.00 2.00 -41.68 45.16 -2.31 aFP aFPC FPC 0 

165 31.00 -55.00 42.00 33.38 -53.12 44.02 pFP DAN FPC 0 

166 41.00 43.00 4.00 43.25 49.25 -2.31 aFP aFPC FPC 0 

167 -41.00 20.00 31.00 -42.10 24.68 29.53 aFP aFPC FPC 0 

168 -4.00 21.00 46.00 -2.98 26.41 44.42 aDMN aDMN FPC 0 

169 9.00 -41.00 48.00 10.51 -38.54 50.02 SM1 SMN Sal 0 

170 52.00 -47.00 36.00 55.27 -44.59 36.70 pFP pFPC FPC 0 

171 39.00 -5.00 48.00 42.05 -0.39 47.10 CO SMN Sal 0 

172 29.00 27.00 30.00 31.24 32.79 26.39 aFP aFPC Sal 0 

173 45.00 17.00 14.00 47.60 22.16 9.74 aFP aFPC Sal 0 

174 -34.00 16.00 3.00 -35.44 20.03 0.07 CO CO Sal 0 

175 34.00 17.00 7.00 35.91 21.91 2.62 CO CO Sal 0 

176 35.00 27.00 3.00 36.89 32.35 -2.24 CO CO Sal 0 

177 32.00 12.00 -3.00 33.56 16.45 -7.58 aDMN aDMN Sal 0 

178 -2.00 10.00 45.00 -0.94 14.86 43.99 aDMN aDMN Sal 0 

179 -27.00 46.00 25.00 -27.50 52.04 21.28 aFP aFPC Sal 0 

180 4.00 18.00 39.00 5.23 23.22 37.03 aDMN SMN Sal 0 

181 9.00 17.00 30.00 10.26 22.06 27.48 aDMN aDMN Sal 0 

182 29.00 49.00 20.00 31.07 55.71 14.49 aFP aFPC Sal 0 

183 24.00 43.00 31.00 26.07 49.56 26.58 aFP aFPC Sal 0 

184 -10.00 -21.00 8.00 -10.28 -18.48 7.04 SubC SubCtx SubCtx 0 

185 11.00 -20.00 9.00 11.75 -17.18 7.54 SubC SubCtx SubCtx 0 

186 -21.00 4.00 -2.00 -21.97 7.48 -4.78 CO SubCtx SubCtx 0 

187 29.00 -17.00 4.00 30.50 -13.92 1.65 CO SubCtx SubCtx 0 

188 22.00 6.00 5.00 23.26 10.19 1.46 CO SubCtx SubCtx 0 

189 27.00 -3.00 7.00 28.52 0.82 4.01 CO SubCtx SubCtx 0 

190 -30.00 -14.00 1.00 -31.38 -11.48 -0.30 MotM SubCtx SubCtx 0 

191 51.00 -45.00 22.00 53.90 -42.76 21.83 tDMN tDMN Van 0 

192 -54.00 -51.00 8.00 -56.47 -50.48 9.92 tDMN tDMN Van 0 

193 -53.00 -41.00 12.00 -55.30 -39.89 13.51 tDMN tDMN Van 0 

194 49.00 -35.00 9.00 51.52 -32.52 7.55 tDMN tDMN Van 0 

195 49.00 -31.00 -2.00 51.28 -28.52 -4.30 tDMN tDMN DMN 0 

196 53.00 -48.00 12.00 55.75 -46.07 11.42 tDMN tDMN Van 0 

197 50.00 27.00 6.00 52.68 32.58 0.57 aFP Sal Van 0 

198 -47.00 21.00 2.00 -49.07 25.13 -0.98 aFP Sal Van 0 

199 22.00 -58.00 -22.00 22.43 -57.55 -23.11 mVIS SubCtx US 1 
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200 1.00 -62.00 -18.00 0.51 -61.91 -18.14 SubC SubCtx US 1 

201 32.00 -15.00 -30.00 32.85 -12.41 -34.41 UNA DAN US 0 

202 -29.00 -12.00 -33.00 -31.13 -9.99 -36.32 UNA DAN US 0 

203 47.00 -6.00 -33.00 48.52 -2.85 -38.49 tDMN tDMN US 0 

204 -47.00 -9.00 -36.00 -50.06 -7.09 -39.24 tDMN tDMN US 0 

205 8.00 -63.00 57.00 9.61 -61.50 60.88 UNA SMN DAN 0 

206 -50.00 -63.00 3.00 -52.44 -63.14 5.29 tDMN DAN DAN 0 

207 -44.00 -51.00 -21.00 -46.68 -50.91 -20.91 DAN DAN DAN 0 

208 44.00 -48.00 -15.00 45.68 -46.67 -16.85 DAN DAN DAN 0 

209 44.00 -33.00 48.00 47.21 -29.75 48.70 SM2 SMN2 DAN 0 

210 20.00 -66.00 45.00 21.90 -64.74 48.12 pFP DAN DAN 0 

211 44.00 -60.00 4.00 46.09 -58.93 3.93 DAN DAN DAN 0 

212 23.00 -60.00 57.00 25.34 -58.18 60.34 SM2 DAN DAN 0 

213 -32.00 -48.00 44.00 -32.56 -46.42 47.20 DAN DAN DAN 0 

214 -26.00 -71.00 33.00 -26.60 -70.72 36.86 pFP DAN FPC 0 

215 -32.00 -5.00 53.00 -32.23 -1.08 54.06 CO SMN DAN 0 

216 -40.00 -60.00 -10.00 -42.26 -60.12 -8.85 DAN DAN DAN 0 

217 -17.00 -60.00 60.00 -16.50 -58.57 64.46 pFP DAN DAN 0 

218 26.00 -9.00 54.00 28.56 -4.62 53.99 CO SMN2 DAN 0 

219 48.00 10.00 22.00 50.91 14.99 18.54 aFP SMN2 FPC 0 

220 26.00 4.00 -4.00 27.23 7.96 -8.00 CO SubCtx SubCtx 0 

221 -8.00 -12.00 58.00 -6.98 -8.08 59.20 SM1 SMN Mot 0 

222 -9.00 10.00 10.00 -9.10 14.14 7.23 aDMN SubCtx SubCtx 0 

223 -48.00 -66.00 -8.00 -50.61 -66.47 -6.18 DAN DAN DAN 0 

224 -28.00 42.00 -8.00 -29.34 47.21 -13.27 aFP aFPC FPC 0 

225 -20.00 2.00 52.00 -19.65 6.39 52.29 aDMN SMN2 FPC 0 

226 20.00 -70.00 -9.00 20.61 -69.94 -8.61 mVIS Vis Vis 0 

227 12.00 -78.00 38.00 13.31 -77.56 41.66 UNA Vis DMN 0 

228 56.00 -8.00 -2.00 58.68 -4.28 -5.87 tDMN tDMN Van 0 

229 39.00 -39.00 -20.00 40.35 -37.36 -22.56 DAN DAN DAN 0 

230 -20.00 -22.00 64.00 -19.44 -18.61 66.42 SM1 SMN Mot 0 

231 34.00 -84.00 -39.00 34.53 -85.05 -39.74 aDMN NA NA 1 

232 31.00 -75.00 -54.00 31.06 -75.90 -56.04 CO NA NA 1 

233 -14.00 -78.00 -24.00 -15.39 -79.00 -23.14 VIS NA NA 1 

234 -35.00 -51.00 -45.00 -37.82 -51.25 -46.45 aDMN NA NA 1 
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Appendix B. Given the longitudinal nature of our research questions, average FPN and DMN 

timeseries were computed using ROIs that were reliably assigned to a single network across 

multiple stages of development (Eggebrecht et al., 2017; Power et al., 2011). Stable FPN ROIs (n 

= 12) were localized to anterior regions of the brain. Therefore, we also restricted stable DMN 

ROIs (n = 16) to anterior regions of the brain. As noted in the Methods, new cerebellar ROIs 

were centered on voxels that exhibited maximal correlations with network average timeseries for 

the FPN or DMN, with one ROI placed for each hemisphere-network pair (left/right, 

FPN/DMN). Placement was determined in an independent sample of 24-month children to avoid 

biasing results. Then, it was visually inspected in our 6-month infant sample to verify that new 

ROIs captured blood oxygen level dependent (BOLD) signal in every participant. Visual 

inspection identified 24 ROI observations with insufficient BOLD signal (low-signal ROIs), 

distributed across 21 subjects (HR+ = 1, HR- = 12, LR- = 8). In univariate analyses, low-signal 

ROIs were filtered from subject-level datasets using case-wise deletion, and regression 

coefficients were estimated using maximum likelihood. In multivariate and enrichment analyses, 

low-signal ROIs were retained to maximize sample size. Functional connectivity values derived 

from low-signal ROIs (0.2% of data) were normally distributed, with mean and standard 

deviation (mean = -0.003, sd = 0.038) comparable to high-signal ROIs (mean = 0.013, sd = 

0.023).  
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Appendix C. Spring-embedded graphs (Fruchterman & Reingold, 1992) visualize ROI network 

affiliations across a range (2%-10%) of edge densities. Cortical ROIs are spherical and cerebellar 

ROIs are square. Colors denote consensus network assignment (see Figure 2B for legend).  
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Appendix D. Histograms depict the relationship between adult and infant network assignments 

for the original set of n = 230 ROIs (cf. Eggebrecht et al., 2017). Colors reflect adult network 

assignments; panels denote infant network assignments.  
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 aDMN = anterior default mode network, aFP = anterior frontoparietal network, CO = cingulo-

opercular network, DAN = dorsal attention network, MotM = motor-mouth network, mVis = 

medial visual network, pCO = posterior cingulo-opercular network, pDMN = posterior default 

mode network, pFP = posterior frontoparietal network, SM1 = somatomotor network 1, SM2 = 

somatomotor network 2, SubCtx = subcortical network, tDMN = temporal default mode network, 

Vis = visual network, FPC = frontoparietal control network, Mot = motor, Sal = salience, VAN 

= ventral attention network, US = unspecified 
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Appendix E. Secondary validation reinforced the predictive utility of three of four enriched 

network pairs in relation to later ASD behaviors. Dotted lines indicate the mean error ( E) in real 

data, and shaded regions identify randomization runs in which Ereal > Erandom. (A) Although 

top principal components derived from functional connections between SM1 and tDMN failed to 

predict 12-month restricted behaviors (p = 0.15), top principal components derived from 

functional connections between (B) pFP-mVis, (C) aFP-pDMN, and (D) CO-aDMN all predicted 

the dimensional behaviors from which they were derived (24-month RRBs, 12-month fine motor 

functioning, and 12-month gross motor functioning, respectively) above chance (p < .05).  
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ADOS = Autism Diagnostic Observation Schedule, CSS = calibrated severity score, RRB = 

restricted interests and repetitive behaviors, RBSR = Repetitive Behavior Scale—Revised, MSEL 

= Mullen Scales of Early Learning   
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Appendix F. Cerebellar contributions to network enrichment. Dotted lines indicate the number 

of cerebellar hits (nC) in real data, and shaded regions identify randomization runs in which 

nCrandom > nCreal. (a) Between the cingulo-opercular (CO) and anterior default mode (aDMN) 

networks, 8.41% of randomization runs included at least as many cerebellar hits as were 

observed in real data; (b) between posterior frontoparietal (pFP) and medial visual (mVis) 

networks, 49.17% of randomization runs included at least as many cerebellar hits as were 

observed in the real data. These results fail to support a statistically significant role for the 

cerebellum in the emergence of 12- and 24-month ASD behaviors. 
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