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water under 0.8 sun irradiation over five consecutive cycles (each cycle for 1 hour, standard 

deviation obtained from measurements of 3 samples, error bars in (B) are smaller than the symbol 

size).  (E) XPS of FTCS-MXene/PVA/HA aerogel before and after PMD test, insets show the 

contact angles of the aerogel before and after PMD test. (F) Comparison of XPS of FTCS-

MXene/PVA/HA and MXene/PVA/HA aerogel after subjecting to 0.5 M NaCl solution for 1 week.
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Although 71% of earth surface is covered with water, more than 97% of it is saltwater, and 

freshwater is limited to only about 2.5%. The freshwater shortage has been exacerbated due to the 

environmental pollution, increased agriculture needs, socio-economic development, and 

population growth. Among various desalination technologies, membrane distillation has gained 

wide attention due to its ability to treat highly saline water utilizing waste heat from industrial 

processes. However, the implementation of conventional membrane distillation is hindered in the 

remote regions and disaster-struck communities where the low-grade thermal energy from 

industrial plants and electricity are not readily available. To address this problem, photothermal 

driven membrane distillation (PMD), where membrane distillation is integrated with photothermal 

materials that can effectively convert light to thermal energy, has been recognized as an attractive 

and sustainable technology for freshwater generation. The overall objective of this work is to 

overcome several fundamental scientific challenges in realizing efficient PMD by exploring two 

key components of photothermal membranes, namely, substrates and photothermal materials. 

In the first part of this work, we have designed and investigated environmentally benign substrates 

(hydroxyapatite (HA) nanowires) for efficient PMD. Their structure and properties of this novel 

substrate material have been systematically investigated to reveal their potential in replacing the 

widely used polymeric substrates for efficient PMD. In the second part, we have investigated high-
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performance photothermal materials (polydopamine (PDA), MXene and polypyrrole (PPy)) for 

efficient PMD. Their excellent photothermal property, abundant functional groups and facile 

processability make them highly appealing in achieving high-performance PMD membranes. 

Taken together, this work further our understanding of the structure, properties, stability and 

performance of these novel materials and open up novel avenues in designing and realizing highly 

efficient PMD systems. 
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Chapter 1: Introduction and Motivation 

1.1 Photothermal driven membrane distillation (PMD) 

The United Nations reports that 4 billion people currently lack access to freshwater at least one 

month of the year in 2019, and the water crisis has exacerbated due to the environmental pollution, 

agriculture and population growth.1, 2 Various desalination technologies have been developed to 

alleviate the stress of water scarcity.3 Reverse osmosis (RO), which doesn’t involve phase change 

process, accounts for more than 60% of global desalination.4 These thermally driven desalination 

technologies which separates water from non-volatile contaminants by phase change process, such 

as multi-effect distillation and multi-stage flash distillation, accounts for 34%.5 
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Considering that the current desalination technologies require large energy input, membrane 

distillation, which enables the treatment of high-salinity water using low-grade thermal energy, 

has gained immense attention as a potential alternate strategy.6-8 The membrane distillation can be 

performed at lower pressure compared to RO and lower temperature than conventional thermal 

distillation technology.9-11 As a thermally-driven membrane-based separation process, the hot feed 

B 

Figure 1.1. Schematic illustration of membrane distillation and PMD.  

Advantages: 
• Operation at low pressure. 

• Utilization of low-grade heat. 

Disadvantages: 
• Incapability in treating cold saline 

water. 

• Temperature polarization for reduced 
thermal efficiency. 

Advantages: 
• All advantages of membrane 

distillation. 

• Utilization of sunlight as energy input 
for treating cold saline water. 

• Surface heating by photothermal 
membrane for reduced temperature 
polarization. 
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saline water and cold distillate locate on the opposite sides of the porous hydrophobic membrane 

(Figure 1.1).12 Driven by the vapor-pressure gradient caused by the temperature difference, the 

steam, generated at the interface of membrane and hot feed water, transports across the pores 

within the hydrophobic membrane to the cold distillate side, where the condensation occurs.13 The 

merits for membrane distillation include the utilization of waste heat from industry process,14 

capability to purify high-salinity water,15 anti-fouling property16. However, the implementation of 

conventional membrane distillation is hindered in remote regions and disaster-struck communities 

where low-grade thermal energy from industrial plants and electricity are not readily available. In 

addition, the conductive heat transfer across the membrane leads to temperature polarization and 

reduces the temperature difference between the feed side and permeate side, which eventually 

lowers vapor transfer and thus impairs desalination efficiency (Figure 1.1).17, 18   

To overcome this inherent limitation, PMD, where membrane distillation integrates with 

photothermal materials to achieve local heating on the membrane surface, is proposed and 

validated (Figure 1.1).19 Upon solar irradiation, the surface heating is achieved on the photothermal 

membrane, and the vapor is generated at the interface between the feed water and the hydrophobic 

photothermal membrane. Driven by the vapor pressure caused by the temperature difference across 

the photothermal membrane, the vapor transports from the hot feed side to the cold permeate side 

of the photothermal membrane, where the vapor condenses for freshwater generation. In particular, 

harnessing the abundant sunlight as a source of thermal energy offers great potential to extend it 

to developing countries and rural communities.20 Another merit of PMD is the high thermal 

efficiency compared to the conventional membrane distillation process.21-23 For conventional 

membrane distillation, the conductive heat transfer across the membrane leads to temperature 

polarization, eventually impairing desalination efficiency.18, 24 Localized surface heating can be 

achieved on photothermal membranes,25 which remarkably alleviates the temperature polarization 
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and results in higher thermal efficiency (Figure 1.1). For all the above-mentioned reasons, PMD 

is a highly promising technology to desalinate seawater or brackish water, especially for 

developing countries and resource-limited regions, where no power infrastructure or waste heat 

from industrial plants is available (Figure 1.1).  

The thermal efficiency of photothermal membrane is determined by the ratio of heat flux required 

to generate distillate flux to the total irradiated solar flux, 𝜂 =
�̇�ℎ𝑣𝑎𝑝

𝐼
, where �̇� represents the 

distillate flux of water, ℎ𝑣𝑎𝑝  refers to the total evaporation enthalpy change, and 𝐼 is the total 

incident solar flux. For PMD, photothermal membrane should possess excellent photothermal 

property, which maximizes the heat generation under sunlight irradiation for high thermal 

efficiency.26 In addition, the photothermal membrane should be hydrophobic to avoid liquid water 

transport and porous to ensure efficient vapor transport.21 For hydrophobic microporous 

membrane, only vapor can diffuse across the membrane, whereas mass transfer in liquid phase is 

prevented.27 To facilitate the vapor transport, the membrane with interconnected porous structure 

and high porosity are highly appealing. Furthermore, the membrane should also exhibit low 

thermal conductivity, which can effectively reduce conductive heat for fast vapor transport. 

Therefore, to achieve high thermal efficiency in PMD, the photothermal membrane should 

possesses excellent photothermal performance, low resistance to vapor transport and high 

resistance to heat transfer. 

1.2 Bilayered photothermal membrane using environment friendly substrates 

Thermal management is essential for high efficiency of PMD. The vapor transport is driven by the 

pressure difference caused by the temperature difference across the membrane. The pressure 

difference across the membrane causes vapor transport from the hot top surface to the cold bottom 

layer. The larger temperature difference results in fast vapor transport. However, the conductive 
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heat loss across photothermal membrane leads to smaller temperature difference and thus increases 

resistance of the vapor transport. To achieve efficient vapor transport, bilayered photothermal 

membranes using substrates as a thermal insulation have been recognized promising to reduce 

temperature polarization.28, 29 The substrates with low thermal conductivity can effectively reduce 

the conductive heat transfer across the membrane and confines the heat to the top layer. This heat 

localization realized by the thermal insulating layer can greatly improve the vapor transport 

efficiency. Owing to the importance of thermal insulation for high thermal efficiency, exploring 

substrates with low thermal conductivity and constructing photothermal membrane with good 

thermal management structure is critical for achieving high performance of PMD.  

Most of the photothermal membranes reported to date employ synthetic polymers as substrates, 

such as polypropylene (PP),30 polytetrafluoroethylene (PTFE)31, 32 and polyvinylidene fluoride 

(PVDF),33-36 owing to their low price, scalability and low thermal conductivity. It should also be 

noted that these materials have a finite lifetime owing to pore clogging, degradation, and alteration 

of the surface properties. The disposal of these materials poses great threats on the environment 

and ecosystems, because they are not biocompatible or biodegradable.37-39 Microplastics formed 

due to the breakdown and degradation of polymeric substrates can have severely negative 

consequences on the health of ecosystems.40 Furthermore, preparation of these membranes via 

precursor polymer powders generally involves toxic organic solvents.19, 41, 42 Moreover, 

incorporation of photothermal materials on surface of these synthetic polymers is not 

straightforward. To assist the loading of the photothermal materials, the inert surfaces of polymer 

substrates have been coated with binder materials with sticky functional groups.24 These concerns 

associated with utilizing synthetic polymer-based membranes highlight the need to transition to 

environmentally-benign substrate materials and development of simple and green processes for 

PMD. 
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1.3 Novel photothermal materials for highly efficient PMD  

Photothermal materials absorb incident light and convert it to thermal energy.26 For maximum heat 

generation during solar irradiation, photothermal materials should exhibit efficient light harvesting 

and high light-to-heat conversion efficiency.43 To achieve excellent photothermal performance, 

adequate and stable deposition of photothermal materials on the supporting substrates is critical to 

construct highly efficient photothermal membrane.26 However, one of challenges is the low 

adhesion of photothermal materials to substrates materials, leading to poor mechanical stability.44 

The addition of binder materials is required,17 but it increases the difficulty of fabrication of 

photothermal materials. This problem highlights the need for exploring photothermal materials 

with high affinity to various substrates via simple and fast process. After exposing the 

photothermal membrane to water during solar-driven desalination, the photodegradation of 

photothermal materials is a concern for long-term stable performance. Various reactive oxygen 

species (ROS) present in water obtained from different natural sources (e.g., river, lake, ocean),45 

may result in the degradation of photothermal materials. Therefore, it is important understand the 

fate and transformation of photothermal materials in ROS. In addition, multifunctional 

photothermal materials that can render functionality beyond photothermal conversion are also 

highly attractive. For example, biofouling accounts for 45% of all membrane fouling and leads to 

lower water flux in membrane-based desalination.46-48 There is an immediate need for highly 

efficient and cost-effective methods that overcome biofouling on PMD. Thus, photothermal 

materials with multifunctionalities allowing excellent antibiofouling are highly attractive.  

1.4 Research Goals and Objectives 

The goal of this research effort is to design, synthesize and validate novel supporting substrate and 

photothermal materials for realizing environmentally benign and thermally engineered 

photothermally-driven membrane distillation process (Figure 1.2).  
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Objective 1:  Design and demonstrate environment-friendly substrates for thermally engineered 

photothermal membrane towards efficient PMD.  

Objective 2: Design and demonstrate novel and efficient photothermal materials for PMD with 

multifunctionalities. 

Objective 2A: Understand the photodegradation of PDA under ROS using plasmonic 

nanotransducers. 

Objective 2B: Design and demonstrate a strategy of realizing multifunctional MXene 

aerogel for highly efficient PMD with dual-mode anti-biofouling properties.   

Objective 2C: Demonstrate the universality of polypyrrole (PPy) as a photothermal 

material on various commercial polymeric substrates to achieve efficient PMD.   

B 

Figure 1.2. Illustration outlining the objectives of the overall research project. 
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1.5 Overview of the Dissertation 

The current chapter (Chapter 1) provides an overview of the research efforts and provides a brief 

background of photothermal membranes in terms of substrates and photothermal materials for 

highly efficient PMD performance.   

Chapter 2 describes a highly efficient bilayered photothermal membrane based on hydroxyapatite 

(HA) nanowires for highly efficient PMD. The abundant functional groups of HA nanowires allow 

easy and fast coating of PDA for excellent photothermal performance, and the low thermal 

conductivity of HA nanowires can effectively reduce conductive heat loss. We demonstrate that 

HA nanowires is a promising material platform to realize high-performance photothermal 

membranes for PMD, owing to the excellent biocompatibility, mechanical flexibility, low thermal 

conductivity, easy processability, and facile surface modification.  

In Chapter 3, we investigate photodegradation of PDA by probing the localized surface plasmon 

resonance (LSPR) shift of PDA-coated gold nanorods (AuNRs). The AFM results confirm the 

reliability of plasmonic nanosensor in revealing the degradation of the PDA layer. Compared to 

conventional methods such as AFM, plasmonic nanosensors enable fast and in-situ detection. 

Using the plasmonic nanotransducer, we successfully probe real-time chemical transformation of 

PDA during its dissolution and understand the photodegradation of PDA under different ROS 

condition. 

Chapter 4 describes MXene composite aerogel for highly efficient PMD with dual-mode 

antimicrobial capability. Structural and chemical optimization of the MXene composite aerogel 

rendered high porosity and low thermal conductivity material, which in turn resulted in high 

thermal efficiency and long-term chemical stability during PMD. In addition, photothermally-

driven and electric field-driven antibiofouling performance is achieved on the MXene composite 

aerogel because of excellent photothermal property and electrical conductivity of MXene. The 
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multifunctionality of MXene make it promising in realizing highly efficient, stable and biofouling-

resistant photothermal membrane for high-performance PMD. 

In Chapter 5, we introduce universal deposition of PPy on different polymeric membranes for 

efficient PMD. Using a two-step chemical vapor polymerization, PPy is deposited on different 

commercial polymer substrates for realizing excellent photothermal performance, regardless of 

surface energy and curvature of supporting substrates. The thin and conformal coating of PPy on 

the polymer substrates results in preserved interconnected porous network. In addition, the 

deposition is highly stable under vigorous mechanical agitation. We demonstrate that the universal 

PPy coating can be easily and quickly deposited on various substrates to achieve high thermal 

efficiency in PMD. 

Chapter 2: Polydopamine/Hydroxyapatite Nanowire-

based Bilayered Membrane for Photothermal Driven 

Membrane Distillation  

2.1 Abstract  

In developing countries and resource-limited regions, where no power infrastructure or waste heat 

from industrial plants is available, photothermal driven membrane distillation (PMD) has been 

recognized as an attractive and sustainable technology for freshwater generation.  PMD enables 

easy water collection, inherent fouling resistance, low-pressure operation, and high-salinity water 

treatment. Hydroxyapatite (HA) nanowires with excellent mechanical flexibility owing to their 

high aspect ratio, low thermal conductivity, easy surface modification and scalable production 

offer great potential for highly efficient membrane distillation. Herein, we demonstrate that the 

environmental-benign HA nanowires-based bilayered film offers the highest photothermal 

efficiency (62%) and water flux (0.89 kg•m-2•h-1) with 1-sun irradiation (1 kW•m-2), among the 
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exiting PMD systems without auxiliary heating or multilayer heat recovery reported so far. The 

hierarchical porous structure formed by the remarkably flexible and intertwined HA nanowires 

allows low resistance to vapor transport, which is critical for high water flux. Simultaneously, the 

low thermal conductivity of the thermal insulator layer comprised of HA nanowires prevents 

conductive heat transfer across membrane, which significantly enhances the thermal efficiency of 

the membrane. The completely biocompatible, scalable, and thermally-engineered bilayered film 

demonstrated here achieves highly efficient PMD. 

2.2 Introduction  

Although 71% of earth surface is covered with water, more than 97% of it is saltwater, and 

freshwater is limited to only about 2.5%.1 The water crisis has been exacerbated due to  

environmental pollution, increased agriculture needs, socio-economic development, and 

population growth.49, 50 Among various desalination technologies, membrane distillation has 

gained wide attention due to its ability to treat highly saline water utilizing waste heat from 

industrial processes.5-7, 14, 51, 52 The membrane distillation process can be carried out at a lower 

pressure compared to reverse osmosis (RO) and at a lower temperature than conventional thermal 

distillation technology.9-11 In membrane distillation system, the hot feed saline water and cold 

distillate are present on opposite sides of a porous hydrophobic membrane.12 Driven by the vapor-

pressure gradient caused by the temperature difference, the steam, generated at the interface of 

membrane and hot feed water, transports across the membrane to the cold distillate side, where 

condensation occurs.13 However, the implementation of conventional membrane distillation is 

hindered in remote regions and disaster-struck communities where  low-grade thermal energy from 

industrial plants and electricity are not readily available.  

To address this problem, photothermal-driven membrane distillation (PMD), where membrane 

distillation is integrated with photothermal materials that can effectively convert light to thermal 
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energy, is being proposed.19, 53-55 In particular, harnessing the abundant sunlight as a source of 

thermal energy offers great potential to propel it to developing countries and rural communities. 

Another merit for PMD is the high thermal efficiency compared to the conventional membrane 

distillation process.21-23 For conventional membrane distillation, the conductive heat transfer 

across the membrane leads to temperature polarization, eventually impairing desalination 

efficiency.18, 24 Localized surface heating can be achieved on photothermal membranes,25 which 

remarkably alleviates the temperature polarization and results in higher thermal efficiency.  

Most of the photothermal membranes reported to date employ synthetic polymers, such as 

polypropylene (PP),30 polytetrafluoroethylene (PTFE)31, 32 and polyvinylidene fluoride (PVDF),33-

36 as substrates, which are non-biocompatible and non-biodegradable. The disposal of these 

materials poses a great threat to the environment and ecosystems.37 Preparation of these 

membranes via precursor polymer powders generally involves toxic organic solvents.19, 41, 42 

Moreover, incorporation of solar absorbers on surface of these synthetic polymers is not 

straightforward. To assist the loading of the solar absorbers, the inert surfaces of polymer 

substrates have been coated with binder materials with sticky functional groups.24 These concerns 

associated with utilizing synthetic polymer-based membranes highlight the need to transition to 

environmentally-benign membrane materials and to develop simple and green processes for PMD. 

As a major inorganic mineral in bone and tooth of vertebrates, hydroxyapatite (Ca10 (PO4)6(OH)2, 

HA) is well-known for its biocompatibility, biodegradability, and abundance.56, 57 HA nanowires 

with a high aspect ratio of length to diameter (> 100) exhibit remarkable mechanical flexibility,58 

and they can be assembled into a flexible film by simple vacuum filtration. The film possesses an 

interconnected porous network and allows facile transfer of vapor across the film.59 Owing to their 

low thermal conductivity, HA nanowires-based films have been employed as thermal insulators in 

solar steam generators to enhance localized surface heating.60 Moreover, the 
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hydrophilicity/hydrophobicity of the HA nanowires can be readily tuned by harnessing hydrogen 

bonding via hydroxyl groups or electrostatic interaction via charged moieties (e.g., Ca2+ ions), 

which enable facile surface modification.61, 62 For those reasons, we posit that the biocompatibility, 

mechanical flexibility, low thermal conductivity, easy processability, and facile surface 

modification of HA nanowires make them as a promising material platform to realize high-

performance photothermal membranes for PMD.  

Herein, we introduce a highly efficient bilayered photothermal membrane based on HA nanowires 

with low resistance for vapor transport and high resistance for heat transfer. For this bilayered 

structure, the top layer comprises polydopamine (PDA)-coated HA (HA@PDA) nanowires to 

effectively convert solar energy to heat and a bottom layer comprises chitosan (CS)-bonded HA 

nanowires (HA-CS) as a thermal insulator (Figure 2.1).  The CS in the bottom layer serves as a 

bio-degradable molecular glue. The hierarchical structure formed by the highly flexible and 

intertwined HA nanowires provides a network of channels for facile vapor transport. In addition, 

the easy surface modification and large surface area of HA nanowires allow dense coating of PDA 

that is a highly biocompatible and biodegradable solar absorber.39, 63, 64 More importantly, the HA 

nanowires with low thermal conductivity can significantly reduce the conductive heat transfer 

across the membranes and increase the thermal efficiency in PMD. Although bilayered structures 

have been applied in PMD, the importance of a thermal insulator has not been well studied. Our 

work represents the first detailed study elucidating the role of thermal insulation layer in achieving 

high photothermal efficiency in PMD. This completely environmentally-friendly bilayered 

photothermal film exhibits outstanding light absorption, heat insulation, stability, and porosity, 

leading to high thermal efficiency in PMD. This work illuminates the great potential of HA 

nanowires in constructing a high-performance and environmentally-friendly photothermal 

membrane via a simple and green processing method.  
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2.3 Experimental Section  

Preparation of hydroxyapatite (HA) nanowires 

HA nanowires were synthesized by the calcium oleate precursor solvothermal method reported 

previously.62 For all experiments, unless otherwise mentioned, we have used deionized water (≥ 

18.2 MΩ-cm, Barnstead). Briefly, sodium hydroxide (NaOH, Sigma Aldrich) aqueous solution 

(1.73 M, 56.3 ml), calcium chloride (CaCl2, Sigma Aldrich) aqueous solution (250 mM, 45 ml), 

and sodium dihydrogen phosphate dihydrate (NaH2PO4•2H2O, Alfa Aesar) aqueous solution (333 

mM, 67.5 ml) were added to the mixture of H2O (50.6 ml), methanol (22.5 ml) (Sigma Aldrich), 

and oleic acid (35.1 g) (Sigma Aldrich) under stirring, respectively. Then, the mixture was 

transferred to a Teflon-lined stainless-steel autoclave (Parr Co., Moline, IL) and maintained at 

180 ˚C for 24 h. The precipitates were centrifuged at 1500 rpm for 5 min and the supernatant was 

decanted.  The collected product was dispersed in the mixture of ethanol (95%, Sigma Aldrich) 

and deionized water with volume ratio of 1 to 1. The mixture was centrifuged at 1500 rpm for 5 

min, and the supernatant was subsequently removed. This wash step was repeated for three times. 

Finally, the products were dispersed in deionized water and the supernatant was decanted after 

centrifuging at 4000 rpm for 5 min. The rinsing step was repeated for three times and the final 

products were dispersed in deionized water. To determine the HA concentration, the HA 

suspension (1 ml) was dried in the 70 °C oven for overnight, and the weight of dry HA was 

measured. 

Preparation of polydopamine (PDA)-coated HA (HA@PDA) nanowires 

To ensure the uniform dispersion of HA nanowires in solution, HA nanowires (20 mg) were 

dispersed in Tris-HCl buffer solution (10 mM, pH = 8.5, 50 ml) followed by sonication for 1 min. 

Then dopamine (20 mg, Sigma Aldrich) was added to the above suspension, followed by stirring 

for 24 h in open air to get the homogeneous PDA coating on HA nanowires. Finally, the resultant 
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products were collected, and to remove the salt and PDA nanoparticles, they were washed with 

deionized water for three times by centrifuging at 6000 rpm for 5 min.  The collected products 

were dispersed in deionized water.   

Preparation of HA-CS film, HA@PDA film, and HA@PDA/HA-CS bilayered film 

The chitosan (CS) powders (200 mg, Sigma Aldrich) were dispersed in the acetic acid (Sigma 

Aldrich) aqueous solution (1% v/v, 10 ml), and the mixture was kept in an oil bath at 60 ˚C for 2 

h under stirring to obtain a homogenous solution. CS solution (20 mg/ml, 111 μl) was added to 

HA nanowires suspension (1 mg/ml, 20 ml), and the mixture was left on a rotating mixer for 10 

min to ensure uniform coatings of CS on the HA nanowires. The mixture of CS and HA was 

homogenous, and no aggregation was observed. Then, the mixture was vacuum-filtered through 

hydrophilic polypropylene (PP) membrane (diameter = 90 mm, pore size = 0.45 μm, Cole-Parmer) 

to fabricate the HA-CS film. Once all water passed through the filter, the film was dried at 60 ˚C 

for 10 min. The HA-CS film was obtained by peeling from the membrane filter. 

The HA@PDA film was also obtained by vacuum-filtering HA@PDA nanowires suspension (20 

mg) on PP membrane. To obtain the HA@PDA/HA-CS bilayered film, the above mixture (10 ml) 

of HA nanowires and CS was vacuum-filtered on PP membrane. Once all water passed through 

the filter, the HA@PDA nanowires suspension (1 mg/ml, 10 ml) was vacuum-filtered on the top 

surface of HA-CS film. The film was dried at 60 ˚C for 10 min and finally the HA@PDA/HA-CS 

bilayered film was peeled from the membrane filter. 

In both membrane preparation, the peeling process does not affect the mechanical strength. 

Preparation of PDA hollow nanowires 

HCl solution (1M, Sigma Aldrich) was used to dissolve the HA nanowires from the core of the 

HA@PDA nanowires. After adding HCl solution to HA@PDA nanowires suspension, the mixture 
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was vortexed for 5 s and then washed with deionized water for three times by centrifuging at 6000 

rpm for 10 min. The collected the products were dispersed in deionized water. 

FTCS treatment 

To obtain the hydrophobic surface, the obtained films were treated with (tridecafluoro-1,1,2,2-

tetrahydrooctyl)-trichlorosilane (Sigma Aldrich) vapor in a sealed container at 70 ̊ C for 24 h. Then, 

to confirm the hydrophobic surface modification after FTCS treatment, water contact angle of 

films was measured using a contact angle analyzer (Phoenix 300, Surface Electro Optics Co. Ltd). 

Nano-/Micro-structure characterization 

SEM images of the surface and the cross section of the films and the nanowires were obtained 

after sputter coating the samples with gold. FEI Nova 2300 field-emission scanning electron 

microscope (SEM) was used at an acceleration voltage of 10.5 kV. The transmission electron 

microscope (TEM) images of nanowires were obtain using JEOL JEM-2100F field emission 

microscopy. Thermogravimetric analysis (TGA) was performed using TA Instruments Q5000 IR 

Thermogravimetric Analyzer in nitrogen gas flow (at rate of 10 °C•min-1). The pore size 

distribution of films was measured by a CFP-LEP-1100A capillary flow porometer. Zeta potential 

measurements were performed using a Zetasizer Nano ZS (ZEN3600) dynamic light scattering 

system (Malvern Instruments). 

Thermal conductivity measurement 

The thermal conductivities of HA-CS film and HA@PDA film were measured by monitoring the 

temperature distributions across the thickness of films that were sandwiched between two glass 

microscope slides. The bottom glass slide was in contact with a hot plate and the top glass slide 

was in contact with ice. The temperature of hot plate was increased from 70 °C to 120 °C, in steps 

of 10 °C. The vertical temperature distribution for the sandwich was monitored by a high-speed 

IR camera (Telops FAST M3k). The emissivity coefficient of a glass slide and a sample was 
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assumed to be 0.9 to obtain the temperature distribution.39 Fourier equation was used to calculate 

the thermal conductivity of each sample: 

𝑞′ = 𝐾
∆𝑇

∆𝑋
 

The heat flux (q’) was calculated by assuming the thermal conductivity (K) of 1.05 W•m-1•K-1 for 

glass slides. Because the glass slide and samples experience the same heat flux, the heat flux value 

obtained for glass slide was used to measure the thermal conductivity for HA-CS film and 

HA@PDA film samples, respectively. 

Optical properties and photothermal performance measurement 

Reflectance and transmittance spectra of films were obtained using a CRAIC micro 

spectrophotometer (QDI 302) coupled to a Leica optical microscope (DM 4000M) with 20x 

objective in the range of 450–800 nm with 10 accumulations and 100 ms exposure time in 

reflection and transmission mode, respectively. The surface temperature of films was monitored 

by an IR camera (Ti 100, FLUKE) under light illumination using a solar simulator (Newport 66921 

Arc Lamp) under both unfocused irradiation (1 sun) and focused irradiation (9 sun). 

Photothermal driven membrane distillation performance measurement 

The PMD performance was evaluated using a direct contact membrane distillation (DCMD) 

module. The PMD cell was constructed using acrylonitrile butadiene styrene (ABS) plastic by 3D 

printing. The diameter for membrane distillation cell was 1.5 cm. A Teflon substrate with thickness 

of 1 mm was placed between the feed side and distillate side to support the photothermal 

membrane. The 0.5 M NaCl aqueous solution was chosen to simulate the seawater as the feed 

water and deionized water was chosen as distillate stream at the bottom of the membrane, both of 

which were at room temperature (20 °C). The feed and distillated water were continuously 

circulated using two peristaltic pumps (Welco WPX1-F1 and Stenner 85MHP5), with a flow rate 
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of 3.6 ml•min-1 and 16.2 ml•min-1, respectively. The thickness of feed water was maintained at 8 

mm.  The collected permeate water was recorded using a weight scale (Sartorius ELT402) to 

measure the weight of the distillate reservoir every 2 min. The light illumination to DCMD was 

achieved using a solar simulator (Newport 66921 Arc Lamp) under both 1 and 9 sun illumination. 

Mechanical agitation 

The HA@PDA/HA@-CS film (1 cm x 1 cm, L x W) was placed in a 50 ml test tube filled with 

water, then it was subjected to rigorous mechanical agitation a tube rotator (VWR Multimix Tube 

Rotator Mixer 13916-822) for 2 weeks. 

Liquid entry pressure calculation 

The liquid entry pressure of HA@PDA and HA@PDA/HA-CS film was calculated based on the 

Cantor–Laplace equation.65, 66 

𝐿𝐸𝑃 =
−2𝐵𝛾𝐿𝐶𝑜𝑠𝜃

𝑟𝑚𝑎𝑥
 

where 𝐿𝐸𝑃  was the liquid entry pressure of pure water in Pa, 𝐵  represented a dimensionless 

geometrical factor that includes the irregularities of the pores (𝐵 = 1 for assumed cylindrical pores), 

𝛾𝐿  referred the liquid surface tension in N•m-1 (in this case water at 20°C, 0.07286 N•m-1), 𝜃 

represented the contact angle in degree, and 𝑟𝑚𝑎𝑥 was the maximal pore radius in m (non-closed 

pore, 𝑟𝑚𝑎𝑥 = 0.86 x 10-6 m according to the measurement of flow capillary porometry). 

2.4 Results and Discussion   

The PDA/HA nanowires bilayered film was fabricated by sequential vacuum filtration of HA-CS 

and HA@PDA nanowires (Figure 2.1). The fabrication process is fast and scalable compared to 

freeze-drying and physical/chemical vapor deposition. HA nanowires were synthesized by a 

previously reported calcium oleate precursor via hydrothermal method, and large-scale synthesis 

(with a volume up to 100 L) could be achieved using a large stainless-steel autoclave.62 HA 
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nanowires with diameter of around 20 nm and high aspect ratio (>100) exhibited remarkable 

flexibility (Figure 2.2A, B). After dispersing in water, a stable wool-like suspension was observed 

(inset of Figure 2.2A). CS, a biopolymer that enables strong interfacial interaction (e.g., hydrogen 

bonding and electrostatic interaction) with the nanowires, is added to improve the mechanical 

stability for the HA-CS film.58    

To fabricate the HA-CS film (thermal insulation layer), the mixture of HA nanowires suspension 

with 10% (w/w) CS was vacuum filtered. The as-prepared pristine HA-CS film was white (Figure 

2.2D) and the intertwined nanowires formed an interconnected porous network (Figure 2.2E). The 

pore size of HA-CS film was analyzed by flow capillary porometry and the mean diameter for 

pores was found to be around 200 nm (Figure 2.3A). Thermogravimetric analysis (TGA) showed 

that the loading of CS was around 4% (w/w) for the pristine HA-CS film (Figure 2.3B), which was 

found to be an optimal loading amount for a stable HA-CS film.  In contrast, the film fabricated 

using a mixture of HA nanowires suspension with 5% (w/w) CS could not be successfully peeled 

from the filter membrane as they broke and disintegrated during the peeling process, suggesting 

that the HA nanowires are not firmly bound together (Figure S1.1).  Higher loading of CS is also 

detrimental to the PMD performance as it compromises the porosity of the film. Therefore, the 

optimal loading of CS, which serves as the binding material, is important to ensure mechanical 

stability of the film and high PMD performance. 

In this work, photothermally-active PDA was used as the solar absorber, because of its excellent 

biocompatibility, biodegradability, broadband light absorption and high light-to-heat conversion 

efficiency.53, 67 To obtain PDA coating, HA nanowires were dispersed in the 10 mM Tris-HCl 

solution (pH = 8.5) followed by the addition of dopamine. PDA was formed via oxidative self-

polymerization of dopamine and the reaction was stopped after 24 hours. The coating resulted in 

a color change of HA nanowires suspension from white (inset of Figure 2.2A) to dark brown (inset 
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of Figure 2.2F). Transmission electron microscope (TEM) images revealed the ultrathin PDA 

coating on the HA nanowires surface, and the surface became significantly rougher (Figure 2.2G) 

than the pristine HA nanowires (Figure 2.2B). The successful coating was confirmed by the PDA 

nanotubes obtained after dissolving the HA nanowire cores by HCl, and the thickness for the PDA 

shell was found to be around 15 nm (Figure S1.2A). The isoelectric point (pHiep) of pristine HA 

nanowires was around 2.3, whereas that of HA@PDA suspension was around 4, which is similar 

to pure PDA and PDA coated surfaces,68, 69 indicating the successful coating of PDA on HA 

nanowires (Figure S1.2B).   

To validate the importance of incorporating HA-CS layer as a thermal insulator in PMD, a 

HA@PDA film with same thickness, consisting of only a solar absorber layer without a thermal 

insulating layer (HA-CS layer), was fabricated as a comparison. The HA@PDA film was obtained 

by vacuum filtering the HA@PDA nanowires. In stark contrast with the white color of pristine 

HA-CS film (Figure 2.2C), the HA@PDA film was dark brown (Figure 2.2H). The interconnected 

pores were also observed for the HA@PDA film, with mean diameter of 230 nm (Figure 2.3A). 

Based on TGA analysis, the weight percentage for PDA in the HA@PDA film was around 20% 

(Figure 2.3B), which was achieved by 24-hours oxidative self-polymerization of dopamine on HA 

nanowires. It is important to note that the PDA loading efficiency achieved here is much higher 

than reported in the case of hydrophilic PVDF film (9.7%) after seven polymerization cycles (each 

cycle for 24 hours).53 The difference is ascribed to the much larger surface area of HA nanowires 

compared to the porous PVDF membrane. HA nanowires were dispersed in the dopamine solution 

and provided a significantly larger surface for in situ PDA coating compared to PVDF membrane. 

Considering that adequate PDA loading is critical for effective light absorption and solar energy 

harvesting, HA nanowires offer a unique advantage as templates for PDA loading.   
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To obtain the bilayered HA-CS/HA@PDA film, HA@PDA nanowires were vacuum-filtered on 

the surface of HA-CS film (Figure 2.1). The color of upper layer (Figure 2.2K) and bottom layer 

(Figure 2.2L) of the as-prepared hybrid film was the same as HA@PDA film and HA-CS film, 

respectively, which confirmed the bilayered structure. Owing to the mechanical flexibility of the 

HA nanowires, HA-CS film, HA@PDA film, and the bilayered films could be easily bent without 

inducing brittle fracture (Figure 2.2D, I, M). A nacre-like multilayered structure was observed in 

the cross-section of bilayered film (Figure 2.2N-O) and HA@PDA film (Figure S1.3A-B), 

resulting from the physical and chemical interactions between the nanowires (e.g., physical 

entanglements, hydration forces, van der Waals interaction, hydrogen bonding and electrostatic 

interaction).61 These available pores and interlayer spacings in the films will provide sufficient 

channels for effective vapor transport during the PMD operation.   

Considering that the heat transfer resistance of the membrane plays a key role in the thermal 

efficiency of MD, we investigated the thermal conductivity of HA@PDA film and HA-CS film, 

which constitute the top and bottom layers of the hybrid film, respectively. The measurements 

were conducted according to our previously reported method.70 The film was sandwiched between 

two glass slides, with the top glass slide in contact with ice and the bottom one in contact with a 

hot plate, which was employed as heat source to establish heat flow (the temperature was increased 

from 70 °C to 120 °C with an interval of 10 °C). The temperature gradient along cross-section film 

was monitored by an infrared camera (insets of Figure 2.3C-D). The thermal conductivity for HA-

CS film was measured to be 0.048 W•K-1•m-1 (Figure 2.3C), which is comparable to the widely 

used thermal insulator materials for interfacial heating systems, such as polystyrene foam (0.040 

W•K-1•m-1).71 On the other hand, the HA@PDA film exhibited a thermal conductivity of 0.147 

W•K-1•m-1 (Figure 2.3D), which is three times higher than the HA-CS film. The low thermal 

conductivity of HA-CS film makes it as an excellent thermal insulator. Under light illumination, 
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the thermal energy is generated in HA@PDA layer at the top and the HA-CS film at the bottom 

reduces the conductive heat transfer across the membrane. Therefore, the enhanced heat 

localization enabled by including the thermal insulator can significantly reduce the temperature 

polarization, which offers a higher driving force for vapor transport across the membrane and 

greatly improves the thermal efficiency of the photothermal membrane. 

The hydrophobicity of membrane is critical for MD process.14, 27, 72, 73 For hydrophobic 

microporous membranes, only vapor can to diffuse across the membrane, whereas mass transfer 

of liquid phase is prevented. Although as-prepared HA nanowires are highly hydrophilic, their 

facile surface modification allows easy hydrophobization. The films were subjected to 

fluorosilanization using (tridecafluoro-1,1,2,2-tetrahydrooctyl)-trichlorosilane (FTCS) to obtain a 

hydrophobic surface.74 SEM images confirmed that the porous network was not affected by FTCS 

treatment (Figure S1.5), and contact angle measurement indicated the successful hydrophobic 

modification. The original surfaces of HA-CS film (Figure S1.4A), HA@PDA film (Figure S1.4B) 

and bilayered films (Figure S1.4C-D) were hydrophilic with water contact angles of 0°, following 

hydrophobization, the contact angles were 120°, 130°, and 126°, respectively (insets of Figure 

S1.5). 

To investigate the light absorption of and HA@PDA/HA-CS film, the optical transmittance and 

reflectance of HA-CS, HA@PDA and HA@PDA/HA-CS film after FTCS treatment are measured 

and compared (with the film thickness ~70 µm) (Figure 2.4A-B). The pristine HA-CS film 

exhibited high transmittance (~33.3%) and reflectance (~46.2%) in the visible region, implying 

relatively small light extinction (~20.5%). On the other hand, the HA@PDA film exhibited 

extremely low light transmittance (~0%) and reflectance (~2.5%), which translated into a large 

extinction (~97.5%). The difference in optical properties is associated with the presence of PDA, 

which is known to exhibit broadband light absorption. In addition, the interconnected porous 
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structure of the film causes the multiple reflection within the film, enabling high light absorption.75 

Owing to the presence the HA@PDA layer at the top, the bilayered film also displayed very low 

light transmittance (~0%) and reflectance (~2.3%), which corresponds to a high light extinction 

(~97.7%). The bilayer structure of the membrane does not affect the optical properties. Hence, the 

large optical absorption and excellent light-to-heat conversion efficiency enabled by PDA makes 

the bilayered film a promising membrane for PMD. 

Now, we turn our attention to the photothermal conversion efficiency of these films, which 

critically determines their thermal efficiency for PMD operation. The surface temperature of films 

in open air was measured using an infrared camera, under simulated solar light illumination at a 

power density of 1 kW•m-2 (1 sun) and 9 kW•m-2 (9 sun) (Figure 2.4C). After light irradiation for 

120 seconds, the surface temperature for pristine HA-CS film increased from ~25 °C to ~28 °C at 

1-sun irradiation and to ~32 °C at 9-sun irradiation, while the temperature increased to ~43 °C at 

1-sun and to ~238 °C at 9-sun illumination for HA@PDA film (Figure 2.4D-E). In the presence 

of the HA-CS as a thermal insulator layer, the surface temperature of bilayered film increased to 

~46 °C at 1-sun irradiation and ~245 °C at 9-sun irradiation. The higher surface temperatures for 

the bilayered structures, compared to the pure HA@PDA film in the open air, highlights the 

importance of integrating a thermal insulating layer into the photothermal membrane, which 

effectively mitigates the heat dissipation and enhances the localized heating at the surface.  

The PMD performance of HA@PDA/HA-CS bilayered film was evaluated in a specially designed 

direct contact membrane distillation (DCMD) module (Figure S1.6), with a HA@PDA film with 

the same thickness as a control for comparison (Figure 2.5A). The PMD setup was maintained to 

be same as our reported test condition.53 Simulated seawater, 0.5 M NaCl solution at ambient 

temperature (20 °C), was used as the feed water. Because the feed water flow rate can affect the 

water collection as we showed in our previous work,53 the flow rate was fixed at 3.6 ml•min-1, 
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based on our previous work. The distillate at room temperature with a flow rate of 16.2 ml•min-1 

was circulated on the opposite side of the membrane, and the generated freshwater was quantified 

by measuring the weight increase of the distillate as a function of irradiation time (Figure 2.5C) 

(all tests were conducted for 60 minutes). The water flux for HA@PDA film was 0.65 kg•m-2•h-1 

and 6.16 kg•m-2•h-1 under 1-sun and 9-sun illumination, respectively. On the other hand, for the 

HA@PDA/HA-CS bilayered film, the water flux was found to be 0.89 kg•m-2•h-1 and 8.28 

kg•m-2•h-1 under 1-sun and 9-sun irradiation, respectively. These results indicated that the presence 

of a thermal insulation layer led to ~27% and ~34% higher water flux compared to the HA@PDA 

film under 1-sun and 9-sun illumination, respectively.  

The thermal efficiency of HA@PDA film is 45% under 1-sun and is 46% under 9-sun irradiation.  

This efficiency is much higher than the previously reported efficiency achieved by carbon black 

nanoparticles-coated PVDF membrane (~22%). The superior performance is closely related with 

the high loading of PDA and hierarchical porous network of the membrane. The large surface area 

and facile surface modification of HA nanowires allow dense and stable coating of PDA, resulting 

in high thermal energy output from HA@PDA nanowires under light irradiation. Furthermore, the 

nanowires with high aspect ratio intertwine with each other and form the interconnected porous 

structure, which results in a low resistance for vapor transport. As for the carbon black 

nanoparticles-loaded PVDF membrane, polymeric binder is added to prevent the desorption and 

leaching of the light-absorbing nanoparticles from the porous matrix, which inevitably narrows 

the pores and reduce the mass transport.24, 76  

Under identical test conditions, we also evaluated the performance of HA@PDA/HA-CS bilayered 

film. The efficiency reached 62% and 63% under 1-sun and 9-sun irradiation, respectively, which 

is much higher than the HA@PDA film and previously reported PDA-coated PVDF membrane 

(~45%).53 This bilayered membrane represents the highest efficiency for PMD among those 
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reported so far, treating the saline water at room temperature without auxiliary heating or heat 

recovery system.24, 53 The improvement is mainly attributed to the enhanced localized heating at 

the evaporative surface owing to the presence of the HA-CS thermal insulation layer. Membranes 

with a high thermal efficiency have a relatively high resistance to conductive heat transfer as well 

as low resistance to mass transfer.77 The low thermal conductivity of HA-CS layer in the hybrid 

film significantly reduces the conductive heat dissipation across the membrane and remarkably 

impairs the temperature polarization, yielding much stronger driving force for vapor transport.   

During PMD, the thermal energy generated by the PDA leads to surface heating, so that the 

temperature of membrane surface (T1) is larger than that of feed water (Tf). The generated vapor 

on the hot surface transfers to the cold distillate side due to the temperature difference between 

two sides of the membrane (T1>T2). However, the conductive heat transfer across the membrane 

results in the temperature increase on the permeate side of membrane (Figure 2.5B). The smaller 

temperature difference across the membrane eventually lowers driving force for the vapor transfer. 

In the presence of HA-CS layer as a thermal insulator, the conductive heat from the hot surface 

(T3) to the permeate side (T4) of membrane can be greatly reduced (Figure 2.5B). Hence, more 

thermal energy is preserved on the surface for localized heating, and thus a larger temperature 

difference across the membrane is achieved with the bilayered film, ultimately resulting in higher 

solar efficiency for PMD. 

To evaluate the long-term PMD performance, the HA@PDA film and bilayered film were tested 

over 5 cycles (each cycle for 1 hour).  The average fluxes of the HA@PDA film were 0.63 kg•m-

2•h-1 and 5.83 kg•m-2•h-1, and those of HA@PDA/HA-CS film were 0.89 kg•m-2•h-1 and 8.13 kg•m-

2•h-1, under 1-sun and 9-sun illumination, respectively (Figure 2.5D). The average thermal 

efficiencies of HA@PDA film were 43% and 44%, and those of bilayered film were 61% and 62%, 

under 1-sun and 9-sun illumination, respectively (Figure 2.5E). The performance using both films 
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remained constant during the 5 cycles, and the variations in flux and thermal efficiency were less 

than 5%. As mentioned above, the anti-wetting property of membranes is critical for membrane 

distillation process. Therefore, the durability of hydrophobic modification of the membrane has 

also been investigated.  The contact angle of HA@PDA film before PMD test was 129° and it was 

125° for the bilayered film after 5-cycles testing (Figure S1.7). The negligible change (variation 

less than 5%) in the contact angle of the films indicates the durability of hydrophobic modification 

over repeated use of the membranes. Based on the Cantor–Laplace equation,65, 78 the calculated 

liquid entry pressure for HA@PDA film and bilayered film is 110 kPa and 100 kPa, respectively. 

We then evaluated the mechanical stability of the film. Even after the vigorous mechanical 

agitation for 2 weeks, the bilayered film did not display any signs of disintegration (Figure S1.8A), 

and no change in morphology and hydrophobicity was observed (Figure S1.8B, S1.8C), 

highlighting the potential for long-term PMD application. This excellent durability of the 

membrane is ascribed to the outstanding mechanical properties (e.g., high flexibility) of HA 

nanowires and the intertwined morphology of the network, which serves as mechanical interlocks. 

In fact, numerous reports in the past demonstrated that the strong interfacial interactions (e.g., 

hydrogen bonding and electrostatic interactions) of HA nanowires with materials possessing polar 

functional groups (e.g. glass fiber, cellulose fiber, and CS) provides excellent mechanical strength 

of HA nanowires-based films, which can be used as printing papers,57 separators for lithium 

battery,59 bone-fracture fixation materials,58 and fire-alarm wallpapers.56 Considering the excellent 

mechanical stability, low thermal conductivity, interconnected porous network, facile surface 

modification, scalable synthesis and environmentally-benign nature, HA nanowire-based 

membranes are highly comparable to, if not better than, conventional materials for membrane 

distillation, such as PVDF, PTFE and PP. 
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2.5 Conclusions 

Here, we have successfully designed and fabricated a biocompatible HA@PDA/HA-CS bilayered 

film membrane for highly efficient PMD. The photothermal efficiency of the PDA/HA nanowires 

film reached 62% under 1-sun illumination and represents the highest efficiency for PMD reported 

so far for treating saline water at room temperature without any auxiliary heating system or heat 

recovery system. The facile surface modification and large surface area make HA nanowires an 

outstanding template for forming a dense, stable, and efficient PDA coating, which in turn ensures 

broadband light absorption and high light-to-heat conversion. More importantly, the 

interconnected porous structure, formed by the highly flexible and intertwined nanowires, leads to 

low resistance to vapor transfer. Simultaneously, the low thermal conductivity of HA nanowires 

layer significantly reduces the conductive heat transfer from the evaporative surface to the cold 

permeate side. This further improved the localized heating and vapor transfer across the membrane. 

In the presence of HA nanowires layer as a thermal insulator, the water flux of bilayered film is 

~27% (under 1 sun) and ~34% (under 9 sun) higher than those of the HA@PDA film under 

identical test condition, respectively. Furthermore, the excellent mechanical robustness of 

bilayered film contributes to long-term and stable PMD performance, showing great potential for 

real-world application. This environmentally-benign, highly efficient and mechanically stable HA 

nanowires-based photothermal membrane is highly promising for freshwater generation in the 

remote regions and disaster-struck communities by utilizing the abundantly available sunlight and 

saline water. 

2.6 Supporting information 

Supporting Information for chapter 2 is provided in appendix 1. 
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2.7 Figures 
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Figure 2.1. Schematic illustration depicting the fabrication of HA@PDA/HA-CS bilayered 

photothermal film and PMD based on this bilayered structure. Chitosan (CS) is added to the 

HA nanowires suspension and subsequently the mixture is vacuum filtered to prepare the HA-

CS film.  HA nanowires are dispersed in the dopamine solution (pH = 8.5) to allow the PDA 

coating on the HA surface and the obtained HA@PDA nanowires were vacuum filtered onto 

the HA-CS film to prepare the bilayer photothermal film. Finally, to obtain hydrophobic 

surface, the film was fluorosilanized using (tridecafluoro-1,1,2,2-tetrahydrooctyl)-

trichlorosilane (FTCS). PMD was conducted using a direct contact membrane distillation cell 

under simulated solar irradiation. 
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Figure 2.2.  (A) SEM image of HA nanowires (inset shows the photograph of HA nanowires 

suspension). (B) TEM image of HA nanowires. Photograph of a flat (C) and deformed (D) HA-

CS film. (E) SEM image of the HA-CS film. (F) SEM image of HA@PDA nanowires (inset 

shows the photograph of HA@PDA nanowire suspension). (G) TEM image of HA@PDA 

nanowires. Photograph of a flat (H) and deformed (I) HA@PDA film. (J) SEM image of the 

HA@PDA film. Photograph of top (K), bottom (L) of HA@PDA/HA-CS film and a deformed 

bilayered film (M).  The cross-section SEM images of the HA@PDA/HA-CS film in low 

magnification (N) and high magnification (O). 
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Figure 2.3.   Characterization of HA-CS film and HA@PDA film.  Pore size distributions (A) 

and TGA analyses (B) of representative HA-CS film and HA@PDA film.  Thermal 

conductivity of HA-CS film (C) and HA@PDA film (D). Insets: representative IR images 

showing the temperature gradient along the thickness of the HA-CS film (C) and HA@PDA 

film (D).   
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Figure 2.4. Optical and photothermal properties of the membranes.  Reflectance (A) and 

transmittance spectra (B) of the HA-CS film, HA@PDA film, and HA@PDA/HA-CS film.  (C) 

IR images showing the surface temperature of the HA-CS film, HA@PDA film and 

HA@PDA/HA-CS film under 1-sun and 9-sun illumination in open air after 120 seconds.  The 

plots showing the surface temperature of the HA-CS film, HA@PDA film and HA@PDA/HA-

CS film under 1-sun (D) and 9-sun illumination (E) as a function of irradiation time. 
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Chapter 3: Investigation of the Photodegradation of 

Polydopamine under Reactive Oxygen Species Using 

Plasmonic Transducer  

3.1 Abstract  

PDA has been widely used as photothermal materials in solar-driven desalination, owing to its 

excellent photothermal property, easy synthesis and biocompatibility. Reactive oxygen species 
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Figure 2.5.  PMD performance for the HA@PDA film and HA@PDA/HA-CS film.  (A) 

Schematic illustration of photothermal direct contact membrane distillation (DCMD) using 

HA@PDA/HA-CS film with thickness of the feed water at 8 mm.  (B) Schematic illustration 

of thermal profile of DCMD using a HA@PDA film (left) and HA@PDA/HA-CS film (right) 

under solar irradiation. (C) PMD performance of HA@PDA film and HA@PDA/HA-CS film 

in purifying 0.5 M NaCl saline water under 1-sun and 9-sun illumination. Flux (D) and thermal 

efficiency (E) of the photothermal DCMD system using the HA@PDA film and 

HA@PDA/HA-CS film, with 0.5 M NaCl saline water under 1-sun and 9-sun irradiation for 

5-cycles testing (each cycle for 1 hour, standard deviation obtained from measurements of 3 

samples). 
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(ROS) lead to the degradation of PDA, resulting in compromised photothermal performance. 

However, the dissolution of PDA in ROS has not been well understood. Here, we utilize the gold-

nanorods (AuNRs) as plasmonic nanostransducer to probe the photodegradation of PDA in the 

ROS. Monitoring the localized surface plasmon resonance (LSPR) shift of PDA-coated AuNRs, 

the growing and dissolution of PDA in ROS is recorded. The atomic force microscope (AFM) 

results validate the reliability of probing photodegradation process by LSPR. Owing to the high 

sensitivity of LSPR wavelength to localized changes in dielectric medium around the AuNRs, 

small thickness change in the PDA layer can be monitored quickly with smaller stand deviation, 

offering fast and in-situ detection of PDA degradation. Furthermore, the effect of different ROS 

on the PDA dissolution is also successfully monitored using this plasmonic nanostransducer. This 

plasmonic nanotransducer probes real-time chemical transformation of PDA during its dissolution 

and the photodegradation of PDA under different ROS condition, which will be highly important 

in predicting the fate and transformation of PMD during their solar-driven desalination in aqueous 

systems.  

3.2 Introduction  

Inspired by the adhesive protein in mussels, PDA with a structure similar to eumelanin is well-

known for its versatile adhesion on almost all substrates via self-polymerization of dopamine in 

alkaline solution.53, 67 With similar structure to eumelanin, PDA also possesses excellent 

photothermal property. It can absorb 99% incident photon energy over a broad solar spectrum and 

rapidly convert it into heat within tens of picoseconds, thus offering protection to living organisms 

against ultraviolet injury.79 Compared to most other photothermal materials discussed, the 

biocompatibility, low toxicity and biodegradable nature of PDA make it an environmentally-

benign material, and its versatile adhesion enables it to be potentially deployed on large scales in 

aqueous environments with minimal effect on the ecosystem.39, 67 Because of excellent 
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photothermal property and biocompatibility, PDA has been utilized as photothermal agents in 

membrane for highly efficient PMD. PDA-coated PVDF membrane after FTCS treatment 

achieved high thermal efficiency of 45% in PMD. As an alternative to depositing a PDA layer on 

the substrate, PDA microspheres were synthesized and integrated with bacterial naocellulose 

(BNC) aerogel. The PDA/BNC bilayer structure after FTCS treatment achieved thermal efficiency 

of 68% in PMD.80  

Although photothermal membranes incorporated with PDA have been widely used in solar-driven 

desalination, their reaction with reactive oxygen species (ROS) is a concern for the long-term 

stable photothermal performance. Through the photochemical reactions, biological processes, and 

atmospheric deposition in the natural water system,81  various ROS are generated.45 For example, 

the presence of hydrogen peroxide (H2O2) was detected in tens to hundreds of nanomolar 

concentrations in surface sea waters.81 Under solar illumination, the photolysis of H2O2 results in 

the formation of hydroxyl radical (•OH), and other ROS generates following the propagation of 

photochemical reaction.82, 83 The presence of ROS may result in the degradation of photothermal 

materials. Yang and co-workers demonstrated the reduced UV-vis-NIR absorbance of PDA 

nanoparticles in the presence of hydrogen peroxide.84 The deteriorated light absorption 

accompanied with color fading rises from the degradation in the ROS. Tseng and co-workers also 

reported the hydroxyl radicals-induced degradation of PDA nanoparticles, resulting in the 

formation of 5,6-dihydroxyindole.85 However, the dissolution kinetics of PDA in ROS is not well 

understood, and effect of different ROS on the dissolution of PDA is still unknown. To predict the 

fate and transformation of photothermal materials during their PMD performance in aqueous 

systems, the chemical stability of photothermal materials under ROS should be fully investigated. 

Recently, plasmonic nanoparticles have attracted extensive attention for chemical sensing.86 The 

time-varying electric field of the electromagnetic radiation causes collective oscillation of 
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conduction electrons in metal nanoparticles with a resonance frequency, termed localized surface 

plasmon resonance (LSPR).87-89 The LSPR wavelength of metal nanostructures is sensitive to 

numerous factors, including composition, size, and shape of the nanostructures dielectric medium 

surrounding the nanostructures and proximity to other nanostructures.90 The extremely high 

sensitivity of LSPR wavelength to localized changes in dielectric medium around the 

nanostructures renders it an attractive nanotransducer for chemical and biological sensing.91 LSPR 

has been employed to probe the conformational changes of individual biomacromolecules, 

detecting single biomolecule binding events, monitoring the kinetics of catalytic activity of single 

nanoparticles and even optically detecting single electrons.92-95 Gold nanorods (AuNRs) are 

particularly attractive as plasmonic transducers owing to their facile and large tunability of the 

LSPR wavelength with aspect ratio and large refractive index sensitivity.90, 96 AuNRs-based 

nanotransducer have employed to monitor the thickness change in the deposition and swelling 

behavior of an ultrathin polymer film.97 Owing to these merits, AuNRs-based nanotransducer is a 

highly promising sensor to probe the photochemical reactions of PDA in ROS. 

Herein, we report AuNRs as plasmonic transducers to monitor the degradation of PDA in ROS. 

The shift in the LSPR wavelength of AuNRs are monitored during the polymerization of dopamine 

or exposure in ROS environment to reveal the growing and degradation kinetics of PDA. AFM is 

also utilized to analyze the morphology and thickness change in the PDA layer on the AuNRs, 

validating the reliability of results obtained by LSPR. Furthermore, the degradation of PDA in 

different ROS environment is investigated and compared. Compared with conventional 

characterization using AFM or TEM, LSPR using plasmonic nanotransducer is a fast method and 

offers comprehensive understanding of photodegradation of PDA under ROS, which will be highly 

important in predicting the fate and transformation of photothermal materials during solar-driven 

desalination in aqueous systems. 
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3.3 Experimental Section 

Synthesis of AuNRs 

AuNRs were synthesized using a seed-mediated approach.98 Seed solution was prepared by adding 

1 ml of an ice-cold solution of 10 mM sodium borohydride into 10 ml of magnetically stirred 0.1 

M cetyltrimethylammonium bromide (CTAB, Sigma Aldrich) and 2.5•10−4 M HAuCl4 (Sigma 

Aldrich) aqueous solution at room temperature. The color of the seed solution changed from 

yellow to brown. Growth solution was prepared by mixing 95 ml of 0.1 M CTAB, 0.8 ml of 10 

mM silver nitrate (Sigma Aldrich), 5 ml of 10 mM HAuCl4, and 0.55 ml of 0.1 M ascorbic acid 

(Sigma Aldrich) in the same order. The solution was homogenized by gentle stirring. To the 

resulting colorless solution, 0.12 ml of freshly prepared seed solution was added and set aside in 

the dark for 14 h. The solution turned from colorless to greenish brown, with most of the color 

change happening in the first hour. Prior to use, the AuNRs solution was centrifuged at 13 000 

rpm for 10 min to remove excess CTAB and redispersed in nanopure water (18.2 M•cm). The 

centrifugation procedure was repeated twice. 

Adsorption of AuNRs on glass surface 

The piranha cleaned glass substrates were immersed in 1% (3-mercaptopropyl) triethoxysilane 

(MPTES) solution in ethanol for 1 h and then rinsed with ethanol. The glass substrates were 

exposed with AuNRs solution for 3 h to enable uniform absorption of AuNRs on glass substrates. 

Finally, the substrate was rinsed with water to remove the loosely bound AuNRs, leaving a stably 

absorbed AuNRs on the surface. 

Fabrication of PDA coated AuNRs (AuNRs@PDA) substrates 

The AuNRs coated glass substrates were immersed in 10mM tris-buffer solution (pH = 8.5, Sigma 

Aldrich) and followed by addition of dopamine power (1 mg/ml, Sigma Aldrich) under 
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continuously shaking condition. Then as-prepared AuNRs@PDA substrates were rinsed with 

water to remove the loosely bound PDA. Finally, the substrates were blow dried with N2 gun. 

Polyelectrolyte LbL assembly 

The substrates adsorbed with AuNRs were immersed in 2% polystyrene sulfonate (PSS, Sigma 

Aldrich) in 0.1 M NaCl aqueous solution for 15 min followed by rinsing with nanopure water for 

30 s and rinsing with 0.1 M NaCl solution for an additional 30 s on each side of the glass slides. 

Then the substrates were immersed in a solution of 2% polyallylamine hydrochloride (PAH, Sigma 

Aldrich) in 0.1 M NaCl for 15 min followed by the rinsing procedure described above. 

Subsequently, the substrates were dried under a stream of N2 before acquiring extinction spectra 

with a UV−vis spectrometer. This procedure was repeated 10 times to deposit a total of 10 bilayers. 

The thickness of each polyelectrolyte bilayer was measured to be ∼2 nm.  

Photodegradation of PDA 

The AuNRs@PDA glass substrates were immersed in ROS solution under UV light irradiation. 

After certain time, the substrates were removed from the solution and wash with water. After dried 

with N2 stream, the substrates were subject for UV measurement or AFM measurement.  

Instrumentation 

TEM was recorded on a JEOL JEM-2100F field emission instrument. The sample was prepared 

by drying a drop of the solution on a carbon-coated grid, which had been previously made 

hydrophilic by glow discharge. UV–vis extinction spectra were collected in air and water using a 

Shimadzu UV-1800 UV–vis spectrometer. AFM micrographs were obtained using Bruker 

Dimension Icon AFM in scanasyst mode. The ultraviolet A (UVA, Black ray B-100A) were used 

as the light source. 
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3.4 Results and Discussion   

We have synthesized AuNRs with diameters of 16 nm and length of 57 nm, using seed-mediated 

approach (Figure 3.2A). AuNR were adsorbed on a (3-mercaptopropyl) triethoxysilane (MPTES)-

coated glass slide by exposing the glass slide to AuNRs solution, followed by extensive rinsing 

with water to remove weakly adsorbed AuNRs. The thiol (–SH) groups in MPTMS are known to 

possess high affinity to gold via Au-S covalent bonding, resulting in the strong absorption of 

AuNRs on MPTES modified glass substrates. AFM images revealed the uniform distribution of 

AuNRs on the glass substrates with no signs of aggregation or patchiness (Figure S2.2A). 

The UV−vis extinction spectra of AuNRs are characterized by two distinct bands corresponding 

to the transverse and longitudinal oscillation of the conduction electrons with incident 

electromagnetic (EM) field.97 Owing to the higher refractive index sensitivity compared to 

transverse band, the longitudinal band is routinely employed in chemical sensing.  To correlate 

LSPR wavelength shift with the thickness of PDA on AuNRs, the refractive index sensitivity and 

EM decay length of AuNRs are measured by layer-by-layer (LbL) assembly of polyelectrolyte 

multilayers (PEM).99 LbL assembly involves the alternate adsorption of oppositely charged 

polyelectrolytes, offering fined tunability of the thickness of the PEM down to ∼1 nm.100 The 

negatively charged poly(styrene sulfonate) (PSS) and positively charged poly(allyl amine 

hydrochloride) (PAH) were alternatively absorbed on the AuNRs substrates, leading to a linear 

increase of PEM film thickness with the number of bilayers.101 The extinction spectra reveal a 

progressive increase in the extinction intensity and red shift in the LSPR wavelength with the 

deposition of each bilayer due to the increase in the refractive index of the medium around the 

AuNRs (from air to polymer (Figure 3.2B)). The extinction spectrum was deconvoluted by fitting 

the band with two Gaussian peaks, from which the LSPR wavelength was obtained (Figure S2.1). 

Owing to the evanescent nature of the EM field at the surface of the plasmonic nanostructures, the 
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LSPR wavelength shift exhibits a characteristic decay with the increasing distance from the surface 

of AuNRs (Figure 3.2C), given by102 

                                               𝑅 = 𝑚∆𝜂 (1 − 𝑒𝑥𝑝 (−
2𝑑

𝑙
))                                            (2) 

where R is LSPR shift, m is the refractive index sensitivity of AuNRs, ∆η is the change in the 

refractive index in refractive index unit (RIU), d is the adsorbate layer thickness (thickness of the 

PEM in this case), and l is the EM decay length.  Assuming the refractive index of the PEM to be 

1.56 RIU, the ∆η measured in air is 0.56 RIU. Based on equation (2), the refractive index 

sensitivity (m) and EM decay length (l) of AuNRs are calculated to be 17 nm and 210 nm/RIU, 

respectively (Figure 3.2C). The thickness of PEM on AuNRs substrates after 10 bilayers 

deposition was revealed to be ~20 nm (Figure 3.2D), which closely agrees with the value reported 

previously for the PAH/PSS system.  

A thin layer of PDA coating was self-polymerized on AuNRs by exposing the AuNRs substrate to 

dopamine solution in Tris–HCl buffer solution (pH 8.5) (Figure 3.3A). Here, AuNRs serve as 

highly sensitive transducers to monitor the changes in the refractive index of the surrounding 

medium. We employed the refractive index sensitivity and EM decay length of longitudinal 

AuNRs to probe the thickness of PDA grown on AuNRs surface. The longitudinal LSPR 

wavelength of the AuNRs exhibited a progressive red shift following the self-polymerization of 

DA on AuNRs (Figure 3.3B), indicating an increase in the refractive index of medium around the 

AuNRs. To probe the growing of PDA on AuNRs, the LSPR shift following the polymerization 

of DA was fitted with equation (2) (Figure 3.3C). The calculated thickness of PDA on AuNRs 

after polymerizing for 30, 60, 90 and 120 minutes, was 2.9, 6.4, 9.4, and 12.1 nm, respectively. 

Hence, the thickness of PDA grown on AuNRs with different polymerization time was obtained 

(Figure 3.3D).  
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To confirm the thickness of PDA thin layer on AuNRs independently, AFM imaging was 

performed along the edge of an intentional scratch in AuNRs@PDA layer (Figure S2.2B-E). With 

increasing time, the surface of AuNRs were rougher and the height of AuNRs also increased, 

indicating the successful coating of PDA on AuNRs. Averaged cross-sectional height profiles (3 

samples, and 50 AuNRs@PDA for each sample) across the scratch reveal the thickness of the 

AuNRs@PDA. After analyzing the height profile of AFM images with different polymerization 

time, the height of AuNRs@PDA was obtained (Figure S2.2F). The diameter of pure AuNRs was 

measured to 16 nm. The height of AuNRs@PDA with polymerization of 30, 60, 90 and 120 

minutes, was 21, 24, 26, and 27 nm, respectively. After subtracting the height of AuNRs@PDA 

from the height of pure AuNRs, we obtained the thickness of PDA. The calculated thickness of 

PDA with polymerization time of 30, 60, 90 and 120 minutes was 5, 8, 10 and 12 nm. The results 

measured from AFM are close to the value estimated using the LSPR (Figure S2.2H). Thus, the 

independent AFM measurements unambiguously and quantitatively confirm the results obtained 

from the plasmonic nanotransducers and establish the validity of this novel approach.  

To study the photodegradation of PDA, AuNRs@PDA was exposed to H2O2 solution (0.12 %) 

under UV irradiation (365 nm) at room temperature for 10 hours. AFM images of AuNRs@PDA 

after subjecting to ROS for 2, 4, 6, 8 and 10 hours were obtained, showing a progressive decrease 

in the height and roughness of the AuNRs@PDA (Figure S2.3A-F). The morphology of 

AuNRs@PDA was found to be essentially identical to the pristine AuNRs (Figure S2.2A) after 

subjecting them to H2O2 and UV irradiation for 10 hours (Figure S2.3F), which reveals the near 

complete decomposition of PDA on AuNRs. It is worth noting that the size and shape of the 

nanotransducers are not affected by ROS, which is critical for their successful application in harsh 

environmental settings. 
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The photochemical reactions causing the slow degradation and dissolution of the PDA layer results 

in a change in the refractive index around the AuNRs that can be monitored by continuously 

measuring the LSPR wavelength of the AuNRs. The AuNRs exhibit a highly distant-dependent 

refractive index sensitivity. We noted a progressive blue shift in LSPR wavelength of 

AuNRs@PDA upon exposure to 0.12 % H2O2 under UV irradiation (Figure 3.4A). The refractive 

index sensitivity and EM decay length were also employed to estimate the change in the thickness 

of PDA undergoing photochemical reaction using the experimentally obtained LSPR shift (Figure 

3.4B). We observed an exponential decrease in the thickness of PDA layer (Figure 3.4C). The 

degradation of PDA in the presence of ROS exhibited a terminal thickness of around 0.8 nm, which 

can be ascribed to thickness of surfactant layer (hexadecyltrimethylammonium bromide (CTAB)) 

on AuNRs. The thickness measured from LSPR is consistent with the AFM results (Figure 3.4D), 

indicating the reliability of probing photodegradation with AuNRs-based nanotransducers. Most 

importantly, AuNRs-based nanostransducers are readily to probe the photodegradation in 

nanoscale with smaller standard deviation, and thickness change of PDA after small time interval 

of reaction can be obtained. Furthermore, it is a fast method. As for AFM, 3 samples are collected 

for each condition, and 50 AuNRs or AuNRs@PDA are measured for each sample, which are 

more time consuming than results obtained by LSPR.  

To gain further insights into the effect of different ROS on the degradation of PDA, we have 

exposed the AuNRs@PDA to different condition. Here, we have tested the effect of H2O2, •OH, 

•OOH and O2
- on the decomposition of PDA. Firstly, the AuNRs@PDA substrates were exposed 

to 0.12% H2O2 solution with UV light irradiation and under dark condition, respectively. Under 

UV illumination, H2O2 will be decomposed, leading to the generation of •OH.83 With propagation 

of this photochemical reaction, other ROS generates, such as •OOH and O2
-. The generation of 

ROS will be much less in dark compared to the condition with UV light irradiation, resulting in 
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presence of more H2O2. Under 0.12% H2O2 solution with UV light irradiation, a PDA layer with 

thickness of 12.9 nm (100%) was completely decomposed, after 9 hours (Figure 3.5A). However, 

PDA layer with thickness of around 2.8 nm was degraded after 11 hours under 0.12% H2O2 

solution without light, accounting for 22% PDA degradation and indicating that H2O2 plays small 

impact on the photodegradation of PDA (Figure 3.5A). Then, we investigated the effect O2
- on the 

photochemical reaction of PDA. In 0.12% H2O2 solution under UV illumination, the addition of 

superoxide ion scavenger, superoxide dismutase (SOD), can remove the O2
-. We found that the 

thickness of PDA layer reduced by 10.8 nm during the absence of O2
-, corresponding to 88% PDA 

decomposition, almost similar with the condition when there are no SOD and indicating that O2
- 

affects less on the photodegradation of PDA (Figure 3.5B). Finally, we tested the photodegradation 

of PDA after addition of both SOD and hydroxyl radical scavenger, tert-butanol (TBA). The PDA 

thickness was reduced to 4.1 nm and 67% PDA was degraded in the environment that does not 

contain hydroxyl radicals (Figure 3.5C), revealing that •OH plays a significant role on the 

photodegradation of PDA.  

3.5 Conclusions 

In summary, we have demonstrated the novel approach of detecting the photodegradation of PDA 

using AuNRs-based nanotransducer. This method is fast and offers nanoscale tracking of 

photodegradation of PDA. The results obtained by AuNRs agreed well with these obtained from 

AFM, indicating the reliability of this novel approach. By probing the LSPR shift of 

AuNRs@PDA, we demonstrate that PDA are decomposed under ROS environment. Furthermore, 

we investigate the effect of different ROS on the photodegradation of PDA using the AuNRs-

based nanotransducer. With different ROS scavengers, we found that •OH play a significant role 

on the photodegradation of PDA, whereas H2O2 and O2
- has less effect on the PDA decomposition. 
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3.6 Supporting information 

Supporting Information for chapter 2 is provided in appendix 2. 

3.7 Figures 
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Figure 3.1. Schematic illustration of using AuNRs-based plasmonic nanostransducer to monitor 

the degradation of PDA in ROS environment. 
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Figure 3.2. (A) TEM images of AuNRs. (B) UV-vis extinction of AuNRs following the 

deposition of each bi-layer polyelectrolyte showing a progressive red-shift and increase in the 

intensity of longitudinal plasmon band. (C) Plot of cumulative shift of longitudinal plasmon 

resonance wavelength with the deposition of polyelectrolyte on AuNRs. (D) AFM image along 

the edge of an intentional scratch in PEM film comprised of 10 bilayers deposited on AuNRs. 
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Figure 3.3. (A) Schematic illustration of probing polymerization of DA using LSPR. (B) UV-

vis extinction of AuNRs following polymerization of DA showing a progressive red shift. (C) 

Plot of cumulative shift of longitudinal plasmon resonance wavelength with the polymerization 

of DA on AuNRs. (D) Plot of cumulative thickness of PDA on AuNRs with different 

polymerization time, obtained from LSPR shift. 
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Figure 3.4. (A) UV-vis extinction of AuNRs@PDA following H2O2 and UV light showing a 

progressive blue shift. Plot of cumulative (B) LSPR shift and (C) thickness of PDA on AuNRs 

after exposure to 0.12% H2O2 and UV light. (D) The thickness of PDA on AuNRs after 

exposure to 0.12% H2O2 and UV light measured by AFM and LSPR.  
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Figure 3.5. (A) The thickness of PDA on AuNRs after exposure to 0.12% H2O2 under UV light 

and dark condition. (B)  The thickness of PDA on AuNRs after exposure to 0.12% H2O2 under 

UV light with and without SOD. (C) The thickness of PDA on AuNRs after exposure to 0.12% 

H2O2 with and without SOD and TBA.  
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Chapter 4: MXene Aerogel for Efficient Photothermal 

Driven Membrane Distillation with Dual-Mode 

Antimicrobial Capability 

4.1 Abstract  

Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater 

generation, has been recognized as an attractive and sustainable desalination technology to 

alleviate freshwater shortage. In particular, photothermal driven membrane distillation (PMD) is 

a highly promising solar-driven desalination technology, especially in remote regions and disaster-

struck communities, where no power infrastructure or waste heat from industrial plants is available. 

MXene, more specifically Ti3C2Tx, with excellent photothermal properties, easy processability, 

and electrical conductivity offers a great opportunity for realizing highly efficient, stable and 

multifunctional PMD membranes.  Herein, we realize a MXene composite aerogel comprised of 

hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water 

flux (0.72 kg•m-2•h-1) under 0.8 sun irradiation (0.8 kW•m-2), representing the first validation of 

highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong 

interfacial interaction (i.e., hydrogen bonding) between the building blocks, the MXene composite 

aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly 

interconnected porous network offers low resistance to vapor transport and low thermal 

conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the 

thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation 

or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in 

the real world.  
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4.2 Introduction  

To overcome the limited freshwater availability, increasing water demand and pollution caused by 

human activity, various desalination technologies have been developed to relieve the water 

scarcity, including reverse osmosis and thermal distillation.10, 54 However, they still have 

challenges to address freshwater shortage because of high energy consumption and high carbon 

footprint, especially for developing countries or rural areas where large power plants are not 

available.103 To minimize the non-renewable energy consumption and reduce the possible 

adversary impacts on the environment during freshwater generation, emerging technologies, such 

as solar steam generation, are highly promising.1, 104, 105 For solar stream generation, the advances 

in materials and the design of interfacial evaporators have prompted the thermal efficiency up to 

90%, but the difficulty associated with freshwater collection from the generated vapor has still 

hindered their application in the real world.106 For instance, the reported thermal efficiency 

decreases by 60–70% after integrating a solar steam generator with water collection system.107, 108 

To address this challenge, another solar-driven desalination technology, photothermally-driven 

membrane distillation (PMD), has been proposed, which integrates membrane distillation with 

photothermal membrane.19, 21, 67, 109 Upon solar irradiation, the surface heating is achieved on the 

photothermal membrane, and the vapor is generated at the interface between the feed water and 

the hydrophobic photothermal membrane. Driven by the vapor pressure caused by the temperature 

difference across the photothermal membrane, the vapor transports from the hot feed side to the 

cold permeate side of the photothermal membrane, where the vapor condenses for freshwater 

generation.   

As a new series of 2D materials, the MXene family is composed of early transition metal carbides 

and/or carbonitrides, with a general formula of Mn+1Xn, where M represents transition metal (e. g., 

Sc, Ti, Zr, Hf, V, Nb, Ta, Cr and Mo) and X is carbon and/or nitrogen.110 Synthesized by wet-
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chemical etching using hydrofluoric (HF) acid or HF-containing or HF-forming etchants, the 

functional groups (e.g., -OH, -O and -F) are introduced on the surface of MXene,111 and as-

synthesized MXene is represented by Mn+1XnTx, where Tx refers terminal functional groups.112 

Recently, MXene has been utilized in solar-driven desalination.113 MXene exhibits broadband 

light absorption and an outstanding (100%) internal light-to-heat conversion efficiency, enabling 

excellent photothermal performance.114 For instance, a MXene aerogel exhibited up to 96% light 

absorption.115 Another attractive property of MXene is the high hydrophilicity due to the presence 

of hydroxyl groups, which precludes the need to use organic solvents during the membrane 

fabrication. In addition, the abundant hydroxyl groups favor the interaction with other materials 

via hydrogen bonding to achieve desired structure and enhanced mechanical properties.116-118 

Owing to these appealing properties, MXene has been processed into various forms, such as 

compact/porous film,114, 119-121 microspheres122 and 3D aerogels,116, 123, 124 and has been integrated 

with different materials to achieve high-performance solar evaporation.119, 125 Wang and co-

workers have reported a compact MXene film integrated with a thermal insulator exhibited a 

thermal efficiency of 84% under 1 kW•m-2 (1 sun).114 MXene aerogel with tunable pore shape and 

size has been demonstrated for efficient solar evaporation with thermal efficiency of 87% under 1 

sun.115  Although MXene-based solar evaporators exhibit high evaporation efficiency, freshwater 

generation efficiency significantly drops after integrating water collector. Thus, utilizing MXene 

in PMD membranes would unlock the full capability of MXene for more efficient resource use 

and effective clean water generation.  

Chew and co-workers provided the first proof-of-concept of MXene in PMD and demonstrated 

that the flux of MXene-coated polyvinylidene fluoride (PVDF) membrane was 10% higher under 

solar irradiation than that in the absence of solar light, when treating preheated saline water 

(65°C).35 However, MXene-coated PVDF membrane exhibited lower flux compared to pristine 
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PVDF membrane even under 5.8 sun light illumination. Such compromised performance in the 

presence of MXene results from the compact stacking structures of MXene, which greatly 

increases vapor transfer resistance. In addition, the compact MXene film possesses high thermal 

conductivity,126, 127 which leads to large conductive heat loss across the membrane during 

membrane distillation, consequently lowing its thermal efficiency. These issues highlight the need 

for optimizing the MXene architecture for an enhanced membrane distillation performance. The 

PMD performance of MXene in treating saline water at ambient temperature (i.e., non-preheated) 

has not been investigated yet. The ability to implement PMD using non-preheated saline water is 

critical in remote regions and disaster-struck communities, where hot feed water is not readily 

available.29 Yet another consideration in the utilization of MXene as a photothermal material is 

that MXene can be easily oxidized in the presence of water and oxygen.128 Most of the previous 

reports indicate that MXene-based photothermal membranes can achieve stable evaporation 

performance, 129-131 but a recent report indicates the partial oxidation of MXene after solar steam 

generation.124 Considering that the oxidation of MXene can lead disintegration of the structures 

and deterioration of its photothermal performance, chemical stability of MXene membranes is 

highly important for its long-term stable desalination performance.  

Accounting for more than 45% of all membrane fouling, biofouling is responsible for a significant 

decline in water flux in various membrane distillation processes.50, 132, 133 The addition of 

disinfectants and biocides has been suggested to overcome biofouling, but some of these chemical 

agents are toxic and induce negative effects on the environment. Physical cleaning, such as 

ultrasonication cleaning and back flushing, increases operational costs and may cause damage to 

the membrane. Recently, photothermal effect and electric field have been proven as efficient and 

environment friendly methods to kill bacteria.50, 80, 134-137 The photothermal membrane can kill 

bacteria effectively under sunlight irradiation owing to the photothermal effect, but it is not ideal 
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when solar light is weak. As an alternative disinfection method, the electric-field potential-driven 

disinfection can be achieved on the membrane possessing electric conductivity. Therefore, the 

membrane with excellent photothermal effect and electric conductivity is highly appealing to 

achieve versatile bactericide capability.  

Herein, we introduce a highly efficient and chemically stable MXene composite aerogel for PMD 

with dual-mode anti-biofouling capability. In the MXene composite aerogel, polyvinyl alcohol 

(PVA) is used as a binder material to improve the structural stability, and hydroxyapatite (HA) 

nanowires are added to lower the thermal conductivity of the aerogel, which in turn reduces the 

conductive heat loss.29, 60, 138 MXene composite aerogel, fabricated using ice-template assisted self-

assembly, exhibits highly interconnected porous network, allowing low resistance for vapor 

transfer. The high porosity (up to 91%) and low thermal conductivity (0.12 W•m-1•K-1) of the 

composite aerogel enable high thermal efficiency, up to 61%, in treating ambient temperature 

saline feedwater under 0.8 sun illumination (0.8 kW•m-2). We also demonstrate the outstanding 

bactericidal activity of the MXene composite aerogel both under solar irradiation and under 

external electric potential, thus obviating the need for harsh chemical/physical treatments for 

bacterial lysis. This work sheds light on a great potential of MXene in realizing a highly efficient, 

stable and biofouling-resistant photothermal membrane for high-performance PMD systems.  

4.3 Experimental Section 

Synthesis of Ti3C2Tx MXene flakes 

Ti3C2Tx MXene flakes were synthesized by selectively etching the Al layer of Ti3AlC2 using 

LiF/HCl as previously reported.112 Specifically, LiF (2 g, Alfa Aesar) was added to the HCl (9M, 

40 ml, Millipore Sigma) solution under stirring in a Teflon vessel to obtain homogeneous solution. 

Then, Ti3AlC2 powder (1 g, Shanghai Chenyue Metal Co., Ltd, China) was slowly added to the 

LiF/HCl solution, and the mixture was transferred to an oil bath at 35 °C and left under stirring for 
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24 hours. The resultant suspension was centrifuged at 3500 rpm for 5 minutes. After decanting the 

supernatant, the collected product was dispersed in water. This wash step was repeated until the 

pH of suspension was ~6. Finally, the suspension was subjected to sonication for 1 hour to 

delaminate the multilayer Ti3C2Tx under Ar flow. After centrifuging at 3500 rpm for 1 hour, the 

Ti3C2Tx flakes colloid was obtained by collecting the supernatant. After bubbling Ar for 20 

minutes, the collected Ti3C2Tx colloid was stored at 4 °C in a sealed vial. 

Fabrication of MXene/PVA/HA aerogel and PVA/HA aerogel 

HA nanowires were synthesized by the calcium oleate precursor via solvothermal reaction reported 

previously.29 After dispersing the PVA powder (Mw 8,000~10,000, Millipore Sigma) in water, the 

mixture was kept in an oil bath at 60 °C for 2 hours under stirring to obtain a homogeneous solution. 

PVA solution (50 mg/ml, 0.5 ml) was added to Ti3C2Tx colloid (17 mg/ml, 0.5 ml). Then, HA 

nanowires suspension (5 mg/ml, 1 ml) was added the homogenous mixture of Ti3C2Tx and PVA. 

To fabricate PVA/HA aerogel, HA nanowires suspension (1 ml), the PVA solution (0.5 ml) and 

water (0.5 ml) were mixed homogeneously. To fabricate aerogel, the mixture was transferred to a 

petri dish with a diameter of 5.5 cm. After complete freezing at -20 °C, the mixture was freeze 

dried for 24 hours at -80 °C to obtain the aerogel.  

Hydrophobic treatment 

To convert the hydrophilic aerogel to hydrophobic aerogel, the MXene/PVA/HA aerogel was 

treated with (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (FTCS, Millipore Sigma) vapor 

in a sealed container at 70 °C for 24 hours. Water contact angle of the aerogel was measured using 

a contact angle analyzer (Phoenix 300, Surface Electro Optics Co. Ltd) to confirm the 

hydrophobicity after FTCS treatment. 

Optical properties and photothermal performance 
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Reflectance and transmittance spectra of aerogels were measured using a CRAIC micro 

spectrophotometer (QDI 302) coupled to a Leica optical microscope (DM 4000M) with a 20× 

objective in the range of 450–800 nm with 10 accumulations and 100 milliseconds exposure time 

in reflection and transmission mode, respectively. The surface temperature of aerogel with a size 

of 1 cm × 1 cm was monitored using an IR camera (FLIR E8-XT) under light illumination using 

a solar simulator (Newport 66921 Arc Lamp) with light intensity of 0.8 kW•m-2, as measured by 

a spectroradiometer (SpectriLight ILT 950). 

Thermal conductivity measurement  

The thermal conductivities of the MXene/PVA/HA aerogel were measured by monitoring the 

temperature distribution across the thickness of aerogel that were sandwiched between two glass 

microscope slides. The bottom glass slide was in contact with a hot plate and the top glass slide 

was in contact with ice. The temperature of the hot plate was increased from 70 °C to 120 °C, in 

steps of 10 °C. The vertical temperature distribution for the sandwich was monitored using a high-

speed IR camera (Telops FAST M3k). The emissivity coefficient of a glass slide and a sample was 

assumed to be 0.9 to obtain the temperature distribution.139 The Fourier equation was used to 

calculate the thermal conductivity of the aerogel: 

𝑞′ = 𝐾
∆𝑇

∆𝑋
 

The heat flux (q′) was calculated by assuming the thermal conductivity (K) of 1.05 W•m−1•K−1 for 

glass slides. Because the glass slide and samples experience the same heat flux, the heat flux value 

obtained for the glass slide was used to measure the thermal conductivity of the MXene/PVA/HA 

aerogel.  

Nano- and micro-structure characterization 
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Scanning electron microscope (SEM) images of the surface and the cross-section of the aerogel 

and the nanowires were obtained after sputter coating the samples with gold. A FEI Nova 2300 

field-emission SEM was used at an acceleration voltage of 10.5 kV. Atomic force microscopy 

(AFM) image was obtained using Dimension 3000 (Bruker) in light tapping mode. V-shaped 

silicon cantilever (Micromash) with a nominal tip radius of 8 nm were used for the imaging. The 

porosity was measured using isopropanol via previous reported solvent replacement method.80 

Chemical stability measurement 

X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe II, Ulvac-PHI with monochromatic 

Al Kα radiation) was utilized to measure the O 1s spectra of MXene to understand chemical nature 

and changes in the chemical functionality of MXene. The contact angle and XPS of FTCS-treated 

MXene/PVA/HA aerogel was monitored after 5-cycles PMD test. To investigate the effect of 

hydrophobic treatment on the long-term stability, pristine MXene/PVA/HA aerogel and FTCS-

treated MXene/PVA/HA aerogel were immersed in 0.5 M NaCl solution for 1 week, respectively, 

and their chemical functionality was monitored and compared using XPS.  

Photothermally-driven membrane distillation performance measurement 

The PMD performance was evaluated using an air gap membrane distillation (AMD) module. The 

PMD cell was constructed using acrylonitrile butadiene styrene (ABS) plastic by 3D printing. The 

diameter of the membrane distillation cell was 3 cm, while the diameter of the membrane surface 

that was exposed to sunlight was measured to be 2.8 cm. The light illumination to AMD was 

achieved using a solar simulator under 0.8 sun illumination. NaCl aqueous solution (0.5 M) was 

employed as the feed water. The ambient feed water was continuously pumped using a peristaltic 

pump (model WPX1-F1/8S4−C, Welco Co. Ltd., Tokyo), with a flow rate of 1.57 ml•min-1, 1.06 

ml•min-1 and 0.62 ml•min-1 to achieve water retention time of 2 minutes, 3 minutes and 5 minutes, 

respectively. The thickness of the feed water was maintained at 5 mm. Aluminum foil was used as 
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the condensation surface on the permeate side with a 2 mm air gap. The amount of collected water 

was recorded using a weight scale (Sartorius ELT402).  

Antibiofouling test 

To test the bactericidal activity, the E. coli (pC013, Addgene) were cultured in Luria-Bertani (LB) 

liquid broth at 37 °C. All cultures were in 500 ml sterilized shake flasks (100 ml working volume, 

shaking at 250 rpm). After 12-hours culture, E. coli (~6.4x108 live cells/ml) were harvested. A 

layer of E. coli biofilm was formed on the surface of FTCS-treated MXene/PVA/HA aerogel by 

exposing it to the feed solution comprised of LB medium with E. coli for 30 minutes. To test the 

photothermal disinfection ability, the feed solution was removed from the aerogel and followed 

by 10-minutes sunlight irradiation with a light intensity of 0.8 kW•m-2. To evaluate the bactericidal 

activity under electric potential, a two-electrode system consisting of a compact MXene film (~ 4 

μm) and a polypropylene membrane as a spacer (3501 Coated PP, Celgard LLC) was employed. 

MXene film was fabricated by vacuum filtration of MXene colloids. The conductivity of MXene 

composite aerogel was measured using a four-point conductivity cell (BT-110, Scribner 

Associates). Negative potential (- 3.0 V) was applied on the aerogel for 30 minutes. The electrical 

potential was applied with a DC power supplier (Dr. Meter DC Power Supply HY3005D). The 

biofilm on the composite aerogel was monitored using fluorescent dyes (Molecular Probes 

Live/Dead Bacterial cell viability kit, Thermo Fisher Scientific), and the fluorescence images were 

collected using confocal laser scanning microscope (20× objective, Zeiss LSM 880 Laser Scanning 

Confocal Microscope) to identify the live bacteria and dead bacteria. 

4.4 Results and Discussion   

MXene composite aerogel was fabricated by integrating MXene flakes with PVA and HA 

nanowires (Figure 4.1). Ti3C2Tx MXene flakes were synthesized by selectively etching the Al layer 

from Ti3AlC2 precursor using HCl/LiF and followed by sonication to delaminate the multilayer 
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Ti3C2Tx MXene. The MXene flakes can be stably suspended in water, and the solution appeared 

dark-green in color (Figure 4.1). Scanning electron microscope (SEM) image revealed well-

exfoliated Ti3C2Tx sheets (Figure 4.2A), and the thickness measured by atomic force microscope 

(AFM) was 2.7 nm (Figure 4.2B). The successful preparation of Ti3C2Tx was also confirmed by 

X-ray diffraction (XRD) analysis, showing the shift of the (002) peak to a lower 2θ angle, from 

the 9.5° in Ti3AlC2 to 7.1° in Ti3C2Tx, which corresponded to d-spacing shift from 9.2 Å to 12.4 

Å (Figure 4.2C).112, 140 The larger d-spacing in Ti3C2Tx is ascribed to the introduction of terminal 

functional groups (e.g. -OH, -O and -F) and incorporation of water molecules.141 To fabricate 

MXene composite aerogel, the Ti3C2Tx colloids, PVA solution (binder) and HA nanowires 

suspension were mixed. HA nanowires with outstanding flexibility were synthesized (Figure S3.1), 

by the previously report using calcium oleate precursor via a hydrothermal method.29 PVA and 

HA nanowires spontaneously absorb on the MXene flakes owing to the abundant hydroxyl groups 

on each of these components, which facilitates by hydrogen bonding. The PVA/HA-wrapped 

MXene flakes were assembled into a 3D porous aerogel structure by freezing-induced ice crystal 

templating (-20 °C) and subsequent freeze drying (Figure 4.1). 

The as-prepared black MXene/PVA/HA aerogel with a thickness of 400 µm (Figure 4.2H) 

exhibited superior mechanical flexibility (Figure 4.2D, 4.2G). SEM images (Figure 4.2E, 4.2H, 

4.2I) revealed a 3D interconnected microporous structure, and the porosity was measured to be 

91%. Such high porosity offers low resistance for water transport during PMD and contributes to 

high thermal efficiency. Another important factor determining the thermal efficiency of a PMD 

membrane is its thermal conductivity. High thermal conductivity results in conductive heat transfer 

across the membrane and reduces the temperature difference across the photothermal membrane, 

leading to high resistance for vapor transport and thus low thermal efficiency. The Ti3C2Tx has 

been reported to exhibit relatively high thermal conductivity of 55.2 ± 1.7 W•m-1•K-1.126 After 
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incorporating HA nanowires with low thermal conductivity and realizing stable aerogel structure 

with high porosity, the resultant composite aerogel exhibited low thermal conductivity, 0.12 W•m-

1•K-1 (Figure 4.3A, 4.3B). This low thermal conductivity enables efficient thermal insulation and 

high temperature difference across the aerogel during PMD, leading to high driving force for vapor 

transport.37 

To realize efficient desalination during PMD, the photothermal membrane needs to be 

hydrophobic in order to prevent liquid phase transport and to ensure that only vapor can diffuse 

across the membrane. Owing to the abundant hydroxyl groups, the composite aerogel was 

completely hydrophilic with a water contact angle of 0°. After silanization using tridecafluoro-

1,1,2,2-tetrahydrooctyl)-trichlorosilane (FTCS), the contact angle of MXene/PVA/HA aerogel 

increased to 138° (Figure 4.3C), indicating the successful surface hydrophobic functionalization. 

The SEM images indicated that the highly porous network remained after this hydrophobic 

modification (Figure S3.2A, S3.2B). 

Considering that the light absorption is critical for efficient photothermal performance, we 

investigated the light transmittance and reflectance of composite aerogel (Figure 4.3D, 4.3E). 

PVA/HA aerogel (without MXene) exhibited high transmittance (~42%) and reflectance (~39%) 

in the visible region, implying relatively small light extinction (~19%). On the other hand, the 

MXene/PVA/HA showed extremely low light transmittance (~2%) and reflectance (~1%), 

indicating a large light extinction (~97%). The large difference in the optical properties between 

PVA/HA aerogel and MXene aerogel stems from the broadband light absorption of MXene.119 In 

addition, the highly porous structure of the aerogel can result in the multiple reflection when light 

travels through these pores and allows efficient light absorption.75, 125 Without porous structure, a 

compact MXene film exhibited much higher light reflectance (~8%) (Figure S3.3A, S3.3B). 



57 
 

Next, we examined the photothermal performance of MXene/PVA/HA aerogel and compared it 

with that of PVA/HA aerogel. The surface temperature of these two aerogels in open air was 

monitored using an infrared camera, under simulated solar light illumination at a power density of 

0.8 sun (Figure 4.3F). After light irradiation for 180 seconds, the surface temperature of the 

PVA/HA aerogel increased from ∼25 °C to ∼32 °C (Figure 4.3G), whereas the temperature of 

MXene/PVA/HA aerogel increased to ∼62 °C under identical irradiation condition (Figure 4.3H). 

The higher surface temperature realized on the MXene/PVA/HA aerogel, compared to PVA/HA 

aerogel, highlights the outstanding light absorption and light-to-heat conversion enabled by 

MXene and its great potential in highly efficient PMD. 

The PMD performance of MXene/PVA/HA was tested using air gap membrane distillation (AMD) 

module (Figure S3.4A, S3.4B). The feed water was maintained to be the same as our reported test 

conditions, 0.5 M NaCl solution at ambient temperature (20°C).28, 29, 53 The feed water retention 

time can affect the PMD efficiency because of its effect on the heat transfer and temperature 

polarization on the photothermal membrane.53, 109 Hence, different water retention times were 

tested (2 minutes, 3 minutes, and 5 minutes). After transporting through the photothermal 

membrane and air gap, the generated vapor finally condenses on a cold aluminum foil surface 

(Figure 4.4A). The collected freshwater is quantified by measuring the weight increase of the 

distillate as a function of irradiation time (Figure 4.4B). To evaluate the stability of PMD 

performance, the MXene composite aerogel was tested for over 5 cycles (each cycle for 1 hour). 

Under 0.8 sun illumination, the average water flux of the MXene/PVA/HA aerogel was 0.56 

kg•m−2•h−1, 0.63 kg•m−2•h−1 and 0.72 kg•m−2•h−1 with water retention time of 2 minutes, 3 minutes, 

and 5 minutes, respectively (Figure 4.4C), and the variation in the flux within the same water 

retention time was less than 2%. The corresponding thermal efficiency of the MXene composite 

aerogel was calculated to be 48%, 54% and 61% for feed water retention time with 2 minutes, 3 
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minutes and 5 minutes, respectively (Figure 4.4D). The longer water retention time resulted in 

higher water flux and thermal efficiency. Under the same incident light, the longer retention time 

of feed water reduces the heat loss from the photothermal membrane to feed flow for more vapor 

generation,109 and a larger temperature difference can also be achieved across the membrane for 

faster vapor transfer. However, increasing the water retention time can also lead to a decline in 

water flux as the slow feed rate increases the salt fouling propensity, eventually blocking vapor 

transport channels.10, 142 Within the tested range of water retention time, high water flux can be 

obtained without salt accumulation on the composite aerogel when the water retention time of feed 

water is 5 minutes. However, further investigation needs to be conducted to determine optimal 

water retention time. 

The thermal efficiencies (48%–61%) achieved on this MXene/PVA/HA aerogel is much higher 

than the previously reported PMD thermal efficiency realized by PVDF-supported photothermal 

membrane in treating ambient saline water, including carbon black nanoparticle-coated PVDF 

membrane (∼22%)109 and polydopamine (PDA)-coated PVDF membrane (~45%)53. In addition, 

FTCS-MXene/PVA/HA aerogel is comparable to the highly efficient photothermal membranes 

reported in PMD recently (Table S3.1). The superior PMD performance stems from the high 

porosity of the composite aerogel. Because high porosity is critical for ensuring unimpeded vapor 

transfer,37 the higher porosity of MXene composite aerogel compared to previous PMD 

membranes enables the same. Specifically, the porosity of carbon black nanoparticle-coated and 

PDA-coated PVDF membrane was 65% and 75%, respectively, which are much lower than the 

porosity of the MXene composite aerogel (91%). Apart from low vapor transfer resistance, this 

MXene composite aerogel also exhibits optimal thermal management owing to its low thermal 

conductivity, which makes its overall thermal efficiency comparable to the recently reported high-

performance bilayered photothermal membrane.29, 80 Furthermore, incorporation of materials with 
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low thermal conductivity (i.e., PVA and HA nanowires) suppresses the conductive heat transfer 

during PMD, facilitating larger temperature difference across the aerogel and leading to a stronger 

driving force for fast vapor transport.  

FTCS-MXene/PVA/HA aerogel exhibited stable performance for over 5-cycles PMD test. The 

variations in the thermal efficiency were less than 2% (Figure 4.4D), and the salt rejection was 

around 99.9%. Even after vigorous mechanical agitation to for 2 weeks, the FTCS-

MXene/PVA/HA aerogel did not display any signs of disintegration (Figure S3.5A), and no 

change in morphology was observed (Figure S3.5B), highlighting the potential for long-term 

stability for PMD application. We then evaluated the chemical stability of composite aerogel. The 

contact angle of FTCS-treated MXene/PVA/HA was 138°±1° and 135°±1° before and after 5-

cycles PMD test, respectively (Figure 4.4E). The negligible change (variation less than 5%) in the 

contact angle of the aerogel indicated the robust surface modification and durable hydrophobicity 

for stable desalination. The chemical stability of MXene is important for long-term PMD 

performance. Based on previous studies, MXene can be easily oxidized into TiO2 in the presence 

of oxygen and water,129, 143 resulting in the deterioration in photothermal performance. While 

MXene-based solar evaporators have been extensively investigated,114, 115, 119, 144  chemical 

instability of MXene is still of significant concern in their translation to real-world applications. 

Thus, the chemical composition of FTCS-treated MXene before and after PMD performance was 

probed using XPS. The O 1s region revealed that the peak attributed to TiO2 at a binding energy 

of 529.9 eV145 was virtually absent before and after 5-cycles PMD test, indicating the stable 

chemical structure of MXene over the multiple cycles (Figure 4.5E). Considering the easy 

oxidation of Ti3C2Tx in the presence of water and air, we posit that the stability of Ti3C2Tx stems 

from the FTCS treatment, which can prevent the direct contacting of water with Ti3C2Tx. To 

validate this hypothesis, using O1s peak in XPS, we monitored and compared the chemical 
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composition of MXene/PVA/HA and FTCS-treated MXene/PVA/HA aerogel after subjecting 

them to 0.5 M NaCl for 1 week (Figure 4.4F). For the composite aerogel without FTCS, the oxygen 

peak associated with TiO2 was discernable (with 7% area under the peak attributed to TiO2), 

whereas no discernable TiO2-associate oxygen peak was observed in the FTCS-treated aerogel. 

The excellent chemical stability of FTCS-treated MXene/PVA/HA aerogel suggests that 

hydrophobic treatment is an effective method to prevent the oxidation of Ti3C2Tx. Current 

approaches to avoid the oxidation of Ti3C2Tx involves freeze drying or the storage of Ti3C2Tx 

colloids at low temperature (e.g., aqueous solution at 4°C) in inert atmospheres to slow down the 

oxidation process. However, these approaches are not applicable for MXene-based solar 

evaporators. For the first time, our work first demonstrates the feasibility of realizing MXene-

based 3D architectures with high chemical stability for long-term stable solar-driven desalination. 

To test the bactericidal ability, FTCS-treated MXene aerogel was exposed to E. coli in the culture 

medium to induce the formation of biofilm (Figure 4.5A1).  We have employed live/dead cell 

staining assay to quantify the bactericidal activity of the aerogel. After 30-minutes growth without 

light illumination, substantial green fluorescence was observed on the MXene composite aerogel 

(Figure 4.5A2), suggesting the accumulation of live E. coli on the aerogel, and no signal of red 

fluorescence was noted (Figure 4.5A3), indicating the absence of dead bacteria.  

To test the anti-biofouling performance, the E. coli adhered MXene composite aerogel was either 

irradiated with solar light or subjected to electric potential. First, for testing photothermally driven 

anti-biofouling, we drained the E. coli culture medium, and the composite aerogel was irradiated 

with solar light with 0.8 sun (Figure 4.5B1). Only red fluorescence was observed, while the green 

fluorescence disappeared, revealing that the solar irradiation was highly effective in killing the 

bacteria. It is known that bacteria become inactivated at temperature above 55°C after about five 

minutes.146 Under sunlight irradiation, the surface temperature of MXene composite aerogel 
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reached up to 62 °C because of the photothermal effect, leading to effective disinfection by local 

surface heating.  

To test the electric field-induced anti-biofouling, the MXene composite aerogel was integrated 

with a spacer and an electrode, as indicated in Figure 4.5C1. Then, negative voltage (- 3.0 V) was 

applied on the MXene composite aerogel covered with E. coli culture medium for 30 minutes to 

test the in-situ antibiofouling performance.  Following the application of the voltage, we noted that 

a relatively small fraction (< 1%) of the bacteria exhibited green fluorescence (Figure 4.5C2), 

indicating live bacteria, while most of the bacteria exhibited red fluorescence (Figure 4.5C3), 

corresponding to the dead bacteria.  These fluorescence images of MXene composite aerogel 

indicate that bacteria can be effectively killed when the composite aerogel is subjected to electric 

potential. MXene exhibits good conductivity,147, 148 and the electrical conductivity of FTCS-treated 

MXene composite aerogel was measured to be 7.8 μS/cm. Considering the charged surface can 

damage the cell membrane structure directly,134, 149 the MXene composite aerogel offers effective 

disinfection after being polarized with external electric potential. This capability is particularly 

important because sunlight can be intermittent. Moderate voltages required for effective 

bactericidal activity can be easily achieved by solar powered batteries, avoiding the need for 

additional energy sources. This electric field-induced antibiofouling performance serves as 

alternative method for cost-effective disinfection when solar light is not adequate. Therefore, based 

on excellent photothermal effect and electric conductivity, this MXene composite aerogel shows 

versatile bactericide capability under solar irradiation or electric potential. Compared with 

chemical treatment or physical cleaning, the built-in anti-biofouling property of the MXene 

composite aerogel obviates the need for toxic chemicals or physical processes damaging the 

membrane, making MXene aerogel highly appealing for treating bacteria-contaminated water.  
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4.5 Conclusions 

In summary, we have successfully designed and fabricated an efficient and anti-biofouling MXene 

composite aerogel for highly efficient and stable PMD. The photothermal efficiency of the 

MXene/PVA/HA aerogel reached 61% under 0.8 sun illumination. This performance is superior 

to previously reported PVDF-supported photothermal membrane and comparable to recently 

reported thermally-engineered photothermal membrane, in treating the saline water at room 

temperature without any auxiliary heating system or heat recovery system. The as-prepared 

MXene/PVA/HA aerogel exhibited excellent photothermal performance owing to the broadband 

light absorption and high light-to-heat conversion efficiency of MXene. The high porosity and 

interconnected porous network created by an ice-templating method resulted in a low resistance 

to vapor transfer. Simultaneously, the composite aerogel exhibited low thermal conductivity, 

significantly reducing the conductive heat transfer from the evaporative surface to the cold 

permeate side and facilitating fast vapor transfer. FTCS-treatment minimized oxidation of MXene, 

providing excellent chemical stability to MXene/PVA/HA aerogel even under prolonged exposure 

to saline water. Furthermore, due to the inherent photothermal properties and electrical 

conductivity, MXene composite aerogel exhibited bactericidal activity under both solar irradiation 

and external electric potential. Owing to high thermal efficiency, chemical stability and versatile 

bactericidal activity, MXene composite aerogel is highly attractive in treating ambient saline water 

by utilizing the abundant sunlight, which is highly appealing for the freshwater generation in the 

remote regions and disaster-struck communities. 

4.6 Supporting information  

Supporting Information for chapter 4 is provided in appendix 3. 



63 
 

4.7 Figures 
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Figure 4.1. Schematic illustration showing the fabrication of MXene/PVA/HA aerogel using 

ice template-mediated self-assembly method. Upon mixing with MXene flakes, PVA and HA 

nanowires spontaneously wrap around the surface of MXene flakes. After freezing drying, the 

highly porous MXene composite aerogel is obtained. 



64 
 

 

Figure 4.2. (A) SEM and (B) AFM image of MXene flakes. (C) Comparison of XRD patterns 

of Ti3AlC2 and Ti3C2Tx. Photograph of (D) as-prepared MXene/PVA/HA aerogel and (G) the 

deformed MXene composite aerogel. SEM images of the top surface of MXene composite 

aerogel in (E) low magnification and (F) high magnification. Cross-section SEM images of 

MXene composite aerogel in (H) low magnification and (I) high magnification.  
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Figure 4.3. (A) Infrared image showing the temperature gradient along the thickness of the 

composite aerogel. (B) Thermal conductivity of MXene/PVA/HA aerogel. (C) Photograph 

showing the contact angle of MXene/PVA/HA aerogel (top) and FTCS-MXene/PVA/HA 

aerogel (bottom). (D) Reflectance and (E) transmittance spectra of the PVA/HA aerogel and 

MXene/PVA/HA aerogel. (F) Plots showing the surface temperature of the PVA/HA aerogel 

and MXene/PVA/HA aerogel under simulated sunlight irradiation with a power density of 0.8 

kW•m
-2

 as a function of irradiation time. Infrared images showing the surface temperature of 

(G) the PVA/HA aerogel and (H) MXene/PVA/HA aerogel under simulated sunlight 

illumination with a power density of 0.8 kW•m
-2

 in open air after 180 seconds.  
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Figure 4.4. (A) Schematic illustration of AMD using FTCS-MXene/PVA/HA aerogel. (B) 

Collected water, (C) flux and (D) thermal efficiency of the PMD system using the FTCS-

MXene/PVA/HA aerogel with varying feed water retention time, in purifying 0.5 M NaCl 

saline water under 0.8 sun irradiation over five consecutive cycles (each cycle for 1 hour, 

standard deviation obtained from measurements of 3 samples, error bars in (B) are smaller than 

the symbol size).  (E) XPS of FTCS-MXene/PVA/HA aerogel before and after PMD test, insets 

show the contact angles of the aerogel before and after PMD test. (F) Comparison of XPS of 

FTCS-MXene/PVA/HA and MXene/PVA/HA aerogel after subjecting to 0.5 M NaCl solution 

for 1 week.  
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Figure 4.5. (A1) Schematic illustration showing the accumulation of E. coli on the surface 

FTCS-MXene/PVA/HA aerogel after exposure to the culture medium contaminated with E. 

coli for 30 minutes. Schematic illustration of antibiofouling performance enabled by FTCS-

MXene/PVA/HA aerogel (B1) under solar irradiation in open air and (C1) after polarized with 

negative potential with a water thickness of 5 mm. Fluorescence images of E. coli on the surface 

of FTCS-MXene/PVA/HA aerogel (A2-A3) in pristine condition, (B2-B3) under solar 

irradiation in open air for 10 minutes and (C2-C3) after polarized with electric potential for 30 

minutes.  
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Chapter 5: In-Situ Polymerization of Pyrrole as 

Universal Coating for Efficient Photothermal Driven 

Membrane Distillation 

5.1 Abstract  

Among current desalination technologies, photothermal driven membrane distillation (PMD) has 

been recognized as a highly promising and sustainable technology for freshwater generation. 

Polypyrrole (PPy) with easy synthesis and high stability is a highly promising photothermal 

material for PMD. Herein, we demonstrated the facile and universal PPy coating on commercial 

polymer membranes (hydrophilic polyvinylidene fluoride, hydrophobic polypropylene and 

hydrophobic polytetrafluoroethylene) for highly efficient PMD performance. Utilizing the ethanol 

as solvent, all polymer membranes could be coated with oxidizer, which initiated the growing of 

PPy via chemical vapor polymerization. The time of depositing PPy was much shorter compared 

with the time of loading polydopamine on membranes for high light absorption. In contrast with 

the poor affinity of existing photothermal materials to the substrates, this PPy coating on all 

membranes exhibited extraordinary robustness over vigorous mechanical agitation. Combined 

with preserved interconnected porous network after PPy deposition, all PPy-coated membranes 

achieved high thermal efficiency in PMD. Especially, the PPy-coated polyvinylidene fluoride 

membrane after hydrophobic treatment achieved a water flux of 2.53 kg•m-2•h-1 with a thermal 

efficiency of 72% under sunlight illumination with a power density of 2.4 kW•m-2, representing 

the highest thermal efficiency reported in treating ambient saline water in PMD. In this work, we 

first demonstrated that the universal PPy coating could be easily and quickly realized on various 

substrates, regardless of surface energy and curvature, to achieve high thermal efficiency in PMD. 
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This work sheds light on the great potential of PPy coating on other supporting substrates for high-

performance PMD in treating saline water. 

5.2 Introduction  

More than 97% of water on earth is salt water, and freshwater is less than 2.5%.54, 106 Combined 

with the exacerbated freshwater shortage by human activity, various desalination technologies 

have been developed to meet this challenge.103, 104 Converting the sunlight to heat for water 

evaporation has been proposed as a sustainable desalination technology for freshwater 

generation.50, 80, 150 Owing to the easy water collection and improved thermal efficiency, 

photothermal driven membrane distillation (PMD) is a highly promising solar-driven desalination 

technology, where membrane distillation is integrated with photothermal materials.5, 44 In PMD, 

the feed saline water and cold permeate side locate at the opposite side of photothermal membrane. 

Due to the photothermal effect, the membrane surface is heated under incidental solar light, then 

vapor is generated at the interface of feed saline water and hydrophobic photothermal membrane.19, 

151 The vapor will transport from the top hot side to the cold permeate side, driven by the pressure 

gradient resulting from the temperature difference across the membrane.80 Because of low 

temperature, the vapor condenses on the permeate side for freshwater generation. 

To construct photothermal membranes for PMD, commercial polymer membranes have been 

widely employed as supporting substrates to load photothermal materials.24, 32, 35, 44, 53, 76, 152-155 

This is due to their low price, mechanical stability, scalability and low thermal conductivity.106 

However, it’s difficult to directly deposit photothermal materials on these synthetic polymeric 

membranes, because of inert surface of polymer substrate.29, 104 The binder materials are added to 

achieve stable deposition of the photothermal materials on the polymer substrates, 24, 44, 152, 153  

which complicates the fabrication process. Apart from poor adhesion, the non-conformal and thick 

coating of photothermal materials on the curved surface blocks the pores of substrates,24, 35, 44, 76, 
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156 resulting the deteriorated the vapor transport. Porosity of photothermal membrane is critical for 

the thermal efficiency, as low porosity increases the resistance for the vapor transport.5, 10 These 

problems highlight the need to develop photothermal materials allow easy synthesis, thin and 

conformal deposition, and high adhesion on substrates with different wettability for high 

performance photothermal membranes in PMD.   

Polypyrrole (PPy) has been validated as one of promising photothermal materials, owing to its 

excellent photothermal property, easy synthesis, facile deposition, and high stability.157, 158 The 

PPy possesses high light-to-heat conversion efficiency and offers broadband light absorption.159 

Owing to the distinctive flexibility, thin layer of PPy with controlled nanostructure can be directly 

deposited on the various substrates with curved structure, ranging from 2D substrates (e.g., cotton 

fabric,160 polypropylene (PP) mesh158 and stainless-steel mesh161) to 3D substrates (e.g., latex 

foam,162 wood,163, 164 sugarcane165 and Setaria viridis spike166). The PPy coating can be facilely 

deposited via chemical vapor polymerization,167 solution-phase polymerization,158 and 

electrochemical polymerization.168 Within 12-hours polymerization, efficient loading of PPy can 

be achieved to substrate for excellent photothermal performance.158 The PPy exhibits high 

adhesion on the substrate with outstanding mechanical stability. No detachment of PPy from cotton 

fabric was observed using a tape test.160 And the PPy-coated photothermal membrane can be bent 

and folded without any detachment.169, 170  Although PPy has been extensively demonstrated as an 

excellent photothermal materials, developing simple and universal strategy for PPy deposition on 

the commercial polymeric membranes with different surface energy for PMD has not been studied 

yet. 

Here, we demonstrate, for the first time, the simple and universal PPy coating on various polymeric 

membranes with different wettability for highly efficient PMD. Instead of water, ethanol is utilized 

as the solvent to dissolve FeCl3, which allows efficient coating of oxidizer on the polymer 
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membranes with hydrophobic surface (PP and polytetrafluoroethylene (PTFE) membranes) as 

well as hydrophilic surface (polyvinylidene fluoride (PVDF) membrane). After exposing to the 

pyrrole vapor at moderate temperature for short time, efficient coating of PPy is realized on all 

polymer membranes. Via this two-step chemical vapor polymerization, all PPy-coated membranes 

possess excellent photothermal properties. Beside easy and fast deposition, the interconnected 

porous structure of polymer membranes is not affected, which allows efficient vapor transport in 

PMD. Owing to the excellent photothermal properties and preserved interconnected porous 

network, the PPy-coated polymer membranes after hydrophobic treatment achieve highly efficient 

PMD performance. The PPy-coated PVDF membrane achieves a water flux of 2.53 kg•m-2•h-1 with 

high thermal efficiency of 72% under 2.4 sun irradiation (1 sun = 1 kW•m-2), which represents the 

highest thermal efficiency reported in PMD system in treating ambient saline water. In addition, 

after subjection to vigorous mechanical agitation, no detachment of PPy from membrane is 

observed, which allows long-term stable PMD operation. We first demonstrate that the universal 

PPy coating can be easily and quickly deposited on various substrates, regardless of surface energy 

and curvature, to achieve high thermal efficiency in PMD.  

5.3 Experimental Section  

Preparation of FTCS-treated PPy-coated membranes. 

Three kinds of commercial polymeric membranes were employed as supporting substrates for 

polypyrrole (PPy) coating: (1) hydrophilic polyvinylidene fluoride (PVDF) (0.45 μm pore size, 

100 μm thickness, MilliporeSigma); (2) hydrophobic polypropylene (PP) (0.45 μm pore size, 240 

μm thickness, Cole-Parmer); (3) hydrophobic polytetrafluoroethylene (PTFE) (3 μm pore size, 

150 μm thickness, TISCH).The PPy coating on commercial polymeric membranes was achieved 

by chemical vapor polymerization of pyrrole (Sigma Aldrich). 0.5 M FeCl3 solution was obtained 

by dissolving FeCl3 (Sigma Aldrich) in ethanol (95%, Sigma Aldrich). The polymeric membranes 
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were immersed in FeCl3 solution for 10 minutes. After drying at room temperature, the FeCl3-

coated membranes were exposed to pyrrole vapor in a sealed container at 60°C for 6 hours. The 

PPy-coated membranes were subjected to ethanol solution overnight to remove the excessive 

FeCl3. After drying at 60°C for 10 minutes, the PPy-coated membranes were exposed to 

(tridecafluoro-1,1,2,2-tetrahydrooctyl)-trichlorosilane (FTCS) (Sigma Aldrich) vapor in a sealed 

container at 70 °C for 24 hours, to achieve hydrophobic treatment. Water contact angle of the 

membranes was measured using a contact angle analyzer (Phoenix 300, Surface Electro Optics Co. 

Ltd) to confirm the hydrophobicity after FTCS treatment. 

Preparation of PDA-coated membranes 

2 mg•ml-1 dopamine solution was obtained by dissolving dopamine (Sigma Aldrich) in 10 mM 

Tris-HCl buffer (pH = 8.5). Commercial polymeric membranes (PVDF, PP, PTFE) were immersed 

in in the mixture to allow the coating of polydopamine (PDA). After shaking for 24 hours (VWR 

Orbital Shaker, Model 3500), the PDA-coated membrane was washed with H2O (18.2 MΩ-cm, 

Barnstead Ultrapure water systems) and followed by drying at 60°C for 10 minutes. This self-

polymerization process was repeated for 5 days. 

Membrane characterization 

Scanning electron microscope (SEM) images of the surface and the cross-section of membranes 

were obtained after sputter coating the samples with gold. A FEI Nova 2300 field-emission SEM 

was used at an acceleration voltage of 10.5 kV. The chemical composition of PPy and FTCS on 

the PVDF were identified using X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe II, 

Ulvac-PHI. For XPS measurements, Al Kα monochromator radiation was used to measure the C 

1s, N 1s, and Si 2p spectra of pure PVDF, PVDF@PPy, and FTCS-PVDF@PPy membranes. 

Optical properties and photothermal performance measurement 
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Reflectance and transmittance spectra of membranes were obtained using a CRAIC micro 

spectrophotometer (QDI 302) coupled to a Leica optical microscope (DM 4000M) with a 20× 

objective in the range of 450–800 nm with 10 accumulations and 100 ms exposure time in 

reflection and transmission mode, respectively. The surface temperature of films was monitored 

using an IR camera (FLIR E8-XT) under light illumination using a solar simulator (Newport 66921 

Arc Lamp) under both unfocused irradiation (1 sun) and focused irradiation (2.4 sun), as measured 

by a spectroradiometer (SpectriLight ILT 950). 

Photothermal driven membrane distillation performance measurement 

PMD was carried out in a customized membrane distillation module. All components of the 

module were 3D-printed (Prusa I3 MK3). Module was composed of a chamber for feed saline 

water with a dimension of 8 cm × 5.5 cm × 3 mm (L × W × H) and a chamber for permeate vapor 

with a dimension of 8.5 cm × 5.5 cm × 3 mm (L × W × H). A transparent polyethylene terephthalate 

(PET) film was glued on the top of the feed chamber. The bottom of feed chamber and top of 

permeate chamber located at the opposite sides of the PPy-coated membrane, and the connection 

was achieved using glue. The bottom of permeate chamber was glued with a thin aluminum plate. 

Underneath the aluminum plate, the coolant chamber with a dimension of 8.5 cm × 5.5 cm × 1.3 

cm (L × W × H) was filled with circulated ambient water, so the vapor transported to the permeate 

chamber could condense on the aluminum plate. To collect the condensed water from the 

aluminum plate to a beaker, the water collector, by capillary action, a Kimwipe tissue was added 

on the aluminum plate.  

During the PMD test, a light from a solar simulator (Newport 66921 Arc Lamp, power density: 

2.4 sun) was shined onto the membrane in the vertically aligned PMD module. As feed water and 

coolant water, a 0.5 M NaCl solution at ambient temperature (~22ºC) was supplied to the feed 

chamber and coolant chamber using DC pumps. To reduce the heat loss from the photothermal 
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membrane to the feed water, the feed water in the photothermal layer was stagnant. To cool the 

aluminum plate efficiently, the water in the coolant chamber was circulated at a flow rate of 13 

ml•min-1. The collected water in the beaker was continuously weighted by a balance (Sartorius 

ELT402). 

To evaluate salt rejection rate, the sodium concentration of the feed water and the permeate were 

determined by inductively coupled plasma mass spectrometry (ICP-MS), and then we calculated 

the rejection rate by using the following equation: 

𝑅(%) =
𝐶𝑁𝑎,𝑓 − 𝐶𝑁𝑎,𝑑

𝐶𝑁𝑎,𝑓
× 100 

where 𝐶𝑁𝑎,𝑓 and 𝐶𝑁𝑎,𝑓are the concentrations of sodium ions in the feed water and the permeate, 

respectively. 

The thermal efficiency of the photothermal membrane was determined by the ratio of heat flux 

required to generate distillate flux to the total irradiated solar flux,  

𝜂 =
�̇�ℎ𝑣𝑎𝑝

𝐼
 

where 𝑚 ̇ represents the distillate flux of water, ℎ𝑣𝑎𝑝 refers to the total evaporation enthalpy change, 

and 𝐼 is the total incident solar flux. Given the water evaporation enthalpy of 2454 kJ•kg−1 (∼0.68 

kW•kg−1•h−1), the thermal efficiency was calculated based on the input solar flux and distillate 

flux.  

Mechanical agitation 

The membranes (1 cm × 1 cm) were placed in a 50 mL test tube filled with water, then it was 

subjected to sonication (Cole Parmer 8892 Ultrasonic Cleaner) for 1 hour. 

5.4. Results and Discussion 

PPy was coated on polymeric membranes via two-step chemical vapor polymerization (Figure 5.1). 

In this work, three widely used commercial polymer membranes with were tested: hydrophilic 
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PVDF, hydrophobic PP and hydrophobic PTFE membranes (Figure S4.1A-C). The porous 

membranes with different wettability are chosen to validate the universal coating of PPy for 

constructing photothermal membranes. The thickness for those three porous membranes is 

measured to be 100 nm for PVDF, 240 nm for PP and 150 nm for PTFE, respectively (Figure S4.2). 

The membranes were coated with FeCl3, which was utilized as an oxidizer to induce the 

polymerization of pyrrole monomers. When using water as solvent, FeCl3 can only be coated on 

the hydrophilic membranes, because hydrophobic membrane cannot be wetted by aqueous solution. 

UV/O2 plasma treatment or grafting hydrophilic groups are required to covert the hydrophobic 

surface to be hydrophilic to anchor FeCl3.
171-173 However, this complicates the process, and it may 

be costly and energy intensive. To allow efficient coating of FeCl3 on substrates with different 

wettability, FeCl3 was dissolved in the ethanol, because ethanol can wet hydrophilic/hydrophobic 

membranes. After immersing in the FeCl3/ethanol solution and subsequently drying naturally, the 

color of all membranes changed from white from yellow (Figure S4.3), which indicated the 

immobilization of FeCl3 on the membranes. Utilizing the ethanol as solvent obviates the need of 

pretreatment on membranes to load FeCl3.  

After exposing the FeCl3-coated membranes to the pyrrole vapor at 60°C, the color of membranes 

quickly turned to black (Figure 5.2B, 5.2D, 5.2F), which corresponded to growth of PPy on the 

membrane. Owing to the high vapor pressure, pyrrole monomers can easily transit from liquid 

phase to vapor phase at moderate heating.174, 175 After contacting FeCl3, the polymerization of 

pyrrole quickly proceeds. Through the chemical vapor polymerization, PPy can stably grow on the 

membrane surface. Although PPy can be synthesized by other polymerization methods, the 

electrochemical polymerization is limited to electric conductive substrates, and solution-phase 

polymerization leads to the excess generation and waste of PPy.158, 161 Thus, chemical vapor 

polymerization is highly appealing method to deposit PPy on the membranes. The XPS was 

conducted on the PVDF and PVDF@PPy membranes to indicate the successful loading of PPy. 

The newly appeared C 1s peaks at 286.3 eV corresponded to the N-C bond (Figure S4.4A), and 

the N 1s peak at 339.8 eV indicated the -NH group of PPy (Figure S4.4B), respectively.176-178 SEM 

images revealed a smooth surface of the pristine polymer membranes (Figure 5.2A, 5.2C, 5.2E). 

Upon growing of PPy, a dense distribution of clusters and granules formed on polymer surface 

(Figure 5.2B, 5.2D, 5.2F). Most importantly, the interconnected porous network still remains, and 

PPy coating doesn’t block the pores of polymer membranes (Figure 5.2A-F). This is because of 
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the thin and conformal deposition of PPy on the polymer fiber achieved by chemical vapor 

polymerization. After the evaporation of ethanol, FeCl3 is coated on the polymer fiber surface, and 

PPy only grows on the regions where the oxidative agent is available during the chemical vapor 

polymerization process. Pores serve pathways for vapor transport in PMD, and the porous network 

of photothermal membrane allows low resistance to vapor transport.5, 74 The conformal in-situ 

polymerization without deteriorating the porous network of membranes ensures the high thermal 

efficiency in PMD.  

To investigate the light absorption of PPy-coated membranes, the optical transmittance and 

reflectance of pristine membranes and PPy-coated membranes are measured and compared. For 

the pristine PVDF membranes, the reflectance and transmittance were 61% and 5%, respectively, 

corresponding to light extinction of 34% (Figure 5.4A-B). The reflectance and transmittance of 

pristine PP membrane were 40% and 14%, respectively, corresponding to light extinction of 46% 

(Figure 5.4D-E). The reflectance and transmittance of pristine PTFE membrane were 40% and 

29%, respectively, corresponding to light extinction of 31% (Figure 5.4G-H). After coating with 

PPy, all membranes exhibited very small reflectance (~2%) and no transmittance (Figure S4.6), 

which translated to a high light extinction (~98%). The difference in the optical properties is 

associated with presence of PPy, which is known to exhibit broadband light absorption. In addition, 

the interconnected porous structure of membranes causes the multiple reflection within the 

membrane, further enhancing the light absorption.75 

In this work, it takes only 6 hours to grow sufficient PPy on the membranes, and this process is 

much faster compared with growing polydopamine (PDA) on membranes to achieve high light 

absorption.53 As a well-known photothermal polymer, PDA is formed via oxidative self-

polymerization of dopamine and exhibits high affinity to various surface, regardless of the initial 

surface energy.67, 79 However, it requires long time to grow on substrates for high light 

absorption.53 Immersing in 2 mg•ml-1 dopamine in Tris-HCl solution (pH = 8.5), the surface of 

membranes changed from white to dark brown after the polymerization process was repeated for 

5 days (Figure S4.5A-C). Longer time polymerization of PDA resulted in smaller transmittance 

and reflectance. For the hydrophilic PVDF membranes, the transmittance of PDA-coated PVDF 

(PVDF@PDA) membranes exhibited no light transmittance after 1-day polymerization (Figure 

S4.6A), but the reflectance of PVDF@PDA was higher than PVDF@PPy membranes, even after 

5-days polymerization (Figure S4.6B). For the hydrophobic PP and PTFE membranes, the 
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transmittance of PP@PDA and PTFE@PDA membranes were 4% and 8% after 1-day 

polymerization (Figure S4.6C, S4.6E), and the reflectance of PP@PDA and PTFE@PDA 

membranes were higher than PP@PPy and PTFE@PPy membranes, even after 5-days 

polymerization of dopamine (Figure S4.6D, S4.6F). Although PDA can be easily coated on various 

substrate, the PDA-coated membranes by 5-days polymerization exhibits lower light absorption 

than the PPy-coated membranes by 6-hours polymerization, which highlights the highly efficient 

loading of PPy on substrates to fabricated high-performance photothermal membrane. 

To ensure the desalination in membrane distillation, the membrane surface is hydrophobic to allow 

only vapor transport and prevent liquid water transport.5 The PVDF@PPy membrane was 

hydrophilic with a contact angle of 0° (Figure 5.3A). To achieve hydrophobic surface, the 

PVDF@PPy membrane was grafted with fluoro- functional groups using (tridecafluoro-1,1,2,2-

tetrahydrooctyl)-trichlorosilane (FTCS). Compared with pristine PVDF and PVDF@PPy 

membrane, the newly appeared peak at 293.6 eV corresponding to the -CF3 group and the peak at 

104 eV corresponding to Si suggested the successful grafting of FTCS on the PVDF@PPy 

membrane (Figure S4.4A, S4.4C).80, 179 The contact angle of FTCS-treat PVDF@PPy (FTCS-

PVDF@PPy) membrane increased to 128° (Figure 5.3A), which indicated the successful 

hydrophobic modification. After FTCS treatment, the contact angle of PP@PPy membrane 

increased from 82° to 118° (Figure 5.3C). To precludes the effect of FTCS treatment, the 

PTFE@PPy membrane was also subjected to FTCS treatment, it possessed hydrophobic surface, 

though. The contact angle of PTFE@PPy membrane increased from 111° to 123° (Figure5. 3E). 

SEM images confirmed that the porous network of PPy-coated membranes was not affected by 

FTCS treatment (Figure 5.3B, 5.3D, 5.3F). The optical properties of PPy-coated membranes were 

also not affected by FTCS treatment. Similar with optical property of PPy-coated membranes, the 

FTCS-treated PPy-coated membranes also exhibited no transmittance (Figure 5.4A, 5.4D, 5.4G) 

and very small reflectance (~2%) (Figure 5.4B, 5.4E, 5.4H), translating into a high light extinction 

(~98%).  

To achieve good photothermal performance, the amount of PPy grew on substrates has been 

investigated. The PVDF membrane is chosen as the substrate to reveal the effect of polymerization 

time on the loading amount of PPy. Longer time of polymerization results in higher loading amount 

of PPy. The amount of PPy loaded on the PVDF substrate was 2.8%, 4.2%, 6.9%, 8.1%, and 10% 

with polymerization time of 0.5 hour (PVDF_0.5h PPy), 1 hour (PVDF_1h PPy), 3 hours 
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(PVDF_3h PPy), 6 hours (PVDF_6h PPy) and 20 hours (PVDF_20h PPy) (Figure 5.5A), 

respectively. After irradiated with simulated sunlight, the surface temperature of PVDF membrane 

loaded with different amount of PPy has been recorded and compared. After irradiated for 360 

seconds under 1 sun, the surface temperature of PVDF_0.5h PPy, PVDF_1h PPy, PVDF_3h PPy, 

PVDF_6h PPy and PVDF_20h PPy membranes increased to 60°C, 62°C, 64°C, 65°C and 66°C, 

respectively (Figure 5.5B). After irradiated for 360 seconds under 2.4 sun, the surface temperature 

of PVDF_0.5h PPy, PVDF_1h PPy, PVDF_3h PPy, PVDF_6h PPy and PVDF_20h PPy 

membranes increased to 152°C, 157°C, 154°C, 172°C and 177°C, respectively (Figure 5.5C). On 

the other hand, the surface temperatures of pristine PVDF membrane were 31°C and 35°C under 

1 sun and 2.4 sun illumination for 360 seconds, respectively (Figure 5.5B-C). The much higher 

surface temperature achieved on the PVDF@PPy membranes is attributed to the excellent 

photothermal performance of PPy. Among the PVDF@PPy membranes, the higher loading of PPy 

on PVDF membranes resulted in higher surface temperature under solar light irradiation. However, 

the surface temperature of PVDF membranes after 6-hours reaction is only slightly lower than the 

membranes with 20-hours polymerization, but the reaction time is much shorter. Considering the 

reaction time and photothermal performance, the PVDF membrane with 6-hours polymerization 

of pyrrole is chosen for PMD test.  

Next, we turn our attention to the PMD performance using the PPy-coated membranes. For all 

membranes, the polymerization time of pyrrole is 6 hours. The PMD performance of PPy-coated 

membranes were tested using air gap membrane distillation (AMD) module (Figure 5.1). 

Simulated seawater, 0.5 M NaCl solution with a thickness of 3 mm at ambient temperature (22°C), 

was used as the feed water. The air gap in the permeate side was 3 mm. After transporting through 

the photothermal membrane and air gap, the generated vapor finally condenses on a cold aluminum 

plate surface. The collected freshwater is quantified by measuring the weight increase of the 

distillate as a function of irradiation time.  Under 2.4 sun irradiation, the water flux for FTCS-

PVDF@PPy membranes was 2.65 kg•m-2•h-1 with a thermal efficiency of 75% (Figure 5.4C). 

Under identical test condition, the FTCS-PP@PPy membrane achieved a water flux of 2.01 kg•m-

2•h-1 with a thermal efficiency of 57% (Figure 5.4I), and FTCS-PTFE@PPy membrane achieved a 

water flux of 2.15 kg•m-2•h-1 with a thermal efficiency of 61% (Figure 5.4F). The variation of 

thermal efficiency for the PPy-coated membranes is attributed to the properties of membrane, such 

as the thickness, porosity and thermal conductivity.5, 29, 77 
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The thermal efficiencies achieved with the FTCS-PP@PPy and FTCS-PTFE@PPy membranes are 

comparable to that of the recently reported highly efficient photothermal membranes using 

synthetic polymer as supporting substrate (45%~64%), treating the ambient saline water without 

heat recovery system in PMD.32, 53, 152-154 For the FTCS-PVDF@PPy membrane, it achieves 

highest thermal efficiency reported in PMD in treating ambient saline water, which is much higher 

than that of the FTCS treated PDA/bacterial nanocellulose aerogel (~68%).80 The is first study 

demonstrating that the universal PPy coating on various membranes, regardless of wettability and 

surface curvature, can achieve highly efficient PMD performance. The superior performance is 

closely related to the excellent photothermal property of PPy coating and the preserved porous 

network of the membranes. The broadband light absorption and high light-to-heat conversion 

efficiency achieved by the PPy coating on membranes result in high thermal energy output under 

light irradiation. Furthermore, the interconnected porous structure is preserved after the conformal 

and thin PPy deposition, which leads to a low resistance for vapor transport.  

To evaluate the long-term PMD performance, the FTCS-PVDF@PPy membrane were tested over 

30 consecutive cycles (each cycle for 20 minutes). Over cyclic test, the salt rejection rate was 

larger than 99.9% (Figure 5.5D), indicating the stable desalination performance achieved by the 

FTCS-PVDF@PPy membrane in PMD test. The high salt rejection rate rises from the excellent 

hydrophobicity of FTCS-PVDF@PPy membrane. The average water flux was 2.53 kg•m-2•h-1 

(Figure 5.5E) and average thermal efficiency was 72% (Figure 5.5F) under 2.4 sun irradiation. The 

variation in the flux and thermal efficiency was around 1%, suggesting the long-term stable PMD 

performance achieved by the FTCS-PVDF@PPy membrane.  

The mechanical stability of PPy-coated membranes was investigated by subjecting the membranes 

in ultrasonication for 1 hour. There was no discernible detachment of PPy from the membranes 

after the mechanical agitation (Figure S4.7A-C). Such excellent robustness is attributed to the high 

adhesion of PPy on the substrate achieved by in-situ polymerization, regardless of surface energy 

and curvature. On the other hand, most photothermal materials exhibit poor affinity to the inert 

surface of polymer substrates, and the direct deposition results in instability over mechanical 

agitation. For example, the graphene particles could be quickly spray coated on the PTFE 

membrane for excellent photothermal performance. However, most of graphene particles were 

detached from the substrate after sonication for 1 hour (Figure S4.7D). To improve the loading 

stability of photothermal materials on the substrate, binder materials with sticky functional groups 
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are usually added.24, 44, 153 The graphene-loaded PTFE membrane was immersed in dopamine 

solution to grow PDA on the membrane, improving the deposition of graphene on PTFE membrane. 

Although the losing of graphene particles from the PTFE substrate was reduced (Figure S4.7E), 

the detachment was still noted even after the complicated treatment process, highlighting the 

advantage of in-situ polymerization of pyrrole coating. The robustness of the PPy-coating 

membranes enables us to reuse it multiple times without any noticeable degradation of the structure 

or PMD performance. 

5.5 Conclusions 

In summary, we have demonstrated the easy and universal PPy coating on various polymer 

membranes to construct photothermal membranes allowing highly efficient PMD performance. 

Utilizing the ethanol as a solvent, polymer substrates, regardless of surface energy and curvature, 

could be successfully coated with oxidizer, which initiates the deposition of PPy coating in the 

chemical vapor polymerization process. Unlike the long time required for depositing 

photothermally-active PDA, it only took 6 hours for PPy growing on membranes to achieve 

excellent photothermal properties without compromising the interconnected porous network. 

When treating the ambient saline water under 2.4 sun illumination, the FTCS-PP@PPy membrane 

achieves a water flux of 2.01 kg•m-2•h-1 with a thermal efficiency of 57%, and FTCS-PTFE@PPy 

membrane achieves a water flux of 2.15 kg•m-2•h-1 with a thermal efficiency of 61%. Under 

identical test condition over 30 cycles, the FTCS-PVDF@PPy membrane achieves average water 

flux of 2.53 kg•m-2•h-1 with a thermal efficiency of 72%, which represents the highest thermal 

efficiency reported in treating ambient saline water in PMD. In contrast with the poor affinity of 

existing photothermal materials to the substrates with inert surface, all PPy-coated membranes 

exhibit outstanding robustness under vigorous mechanical agitation, showing great potential for 

long-term PMD operation. The universal, highly efficient and mechanically stable PPy coating can 

be achieved on various porous substrates for freshwater generation in remote regions and disaster-

struck communities by utilizing the abundantly available sunlight and saline water. 

5.6 Supporting information 

Supporting Information for chapter 4 is provided in appendix 4. 
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5.7 Figures 

 

Figure 5.1. Schematic illustration showing the vapor-phase polymerization of pyrrole on the 

FeCl3 coated polymeric membranes. After hydrophobic treatment using FTCS, the PPy-coated 

membranes are subjected to air-gap PMD. 
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Figure 5.2. SEM images and photographs of polymeric membranes before and after PPy 

coating. SEM images of (A) PVDF, (B) PPy-coated PVDF, (C) PP, (D) PPy-coated PP, (E) 

PTEF and (F) PPy-coated PTFE membranes in low magnification and high magnification, 

insets are the corresponding photographs of membranes with a scale bar of 3 cm. 
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Figure 5.3. Photographs showing the contact angle of (A) PVDF@PPy (top) and FTCS-

PVDF@PPy (bottom), (C) PP@PPy (top) and FTCS-PP@PPy (bottom), and (E) PTFE@PPy 

(top) and FTCS-PTFE@PPy (bottom) membranes. SEM images of (B) FTCS-PVDF@PPy, (D) 

FTCS-PP@PPy, and (F) FTCS-PTFE@PPy membranes in low magnification and high 

magnification. 
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Figure 5.4. (A) Transmittance and (B) reflectance spectra of the pristine PVDF and FTCS-

PVDF@PPy membranes. (D) Transmittance and (E) reflectance spectra of the pristine PP and 

FTCS-PP@PPy membranes. (G) Transmittance and (H) reflectance spectra of the pristine 

PTFE and FTCS- PTFE@PPy membranes. (C) Collected water of the PMD system using the 

(C) FTCS-PVDF@PPy, (F) FTCS-PP@PPy, and (I) FTCS-PTFE@PPy membranes. 
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Chapter 6: Conclusions 

6.1 General conclusions 

We have addressed several fundamental challenges in realizing materials and functional solar 

desalination systems with excellent photothermal performance, low resistance to vapor transfer 

and high resistance to heat transfer. We have introduced environment-friendly substrates and novel 

photothermal materials to construct thermally-engineered photothermal membranes for highly 

efficient PMD. The thermal efficiency of PMD using the novel photothermal membranes increased 

from 20% to above 60%. This work advances our understanding of the structure, properties, 

stability and performance of these novel materials and sheds light in designing and realizing 

photothermal membranes for highly efficient PMD systems. 

Figure 5.5. (A) Weight percentage of PPy on the PVDF membrane with different time of 

polymerization. (B) Plots showing the surface temperature of the PVDF membrane loaded with 

different amount of PPy under simulated sunlight irradiation with (B) 1 sun and (C) 2.4 sun as 

a function of irradiation time. (D) Salt rejection rate, (E) flux and (F) thermal efficiency of the 

PMD system using the FTCS-PVDF@PPy membrane in purifying 0.5 M NaCl saline water 

under 2.4 sun irradiation over 30 consecutive cycles (each cycle for 20 minutes). 
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We have demonstrated HA nanowires as an outstanding substrate material for realizing thermally 

engineered and environment friendly photothermal membranes for highly efficient PMD. The 

facile surface modification and large surface area make HA nanowires an outstanding template for 

PDA coating, resulting in excellent photothermal performance. The interconnected porous 

structure, formed by the highly flexible and intertwined nanowires, leads to low resistance to vapor 

transfer. Simultaneously, the low thermal conductivity of HA nanowires layer significantly 

reduces the conductive heat loss during PMD, resulting in higher thermal efficiency.  

Apart from substrates, we have also studied the novel photothermal materials with 

multifunctionality to achieve highly efficient PMD. We have investigated their structure and 

properties and introduced structural designs of photothermal materials that overcome existing 

challenges in PMD membranes. We have investigated the photodegradation of PDA in ROS using 

plasmonic nanotransducers. Owing to the high sensitivity of LSPR wavelength to localized 

changes in dielectric medium around the AuNRs, small thickness change in the PDA layer can be 

monitored quickly by following the LSPR wavelength of AuNRs@PDA. Compared with 

conventional microscopy methods, the plasmonic nanotransducers offer fast and in-situ detection 

of PDA degradation. We found that •OH plays a significant role on the photodegradation of PDA, 

whereas H2O2 and O2
- have less effect on the PDA decomposition. 

In addition, we have demonstrated MXene as a multifunctional photothermal material in realizing 

photothermal membranes for highly efficient PMD with dual-mode antibiofouling performance. 

Through structural and chemical optimization, the MXene composite aerogel possessed high 

porosity and low thermal conductivity, resulting in high thermal efficiency in PMD. Owing to the 

excellent photothermal property and electrical conductivity, MXene aerogel enabled photothermal 

driven and electric field-induced antibiofouling performance. 
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We have also demonstrated the universal coating of PPy on different polymer membranes for 

highly efficient PMD performance. Through chemical vapor polymerization, the PPy could be 

easily and quickly coated on the polymer membranes, regardless of the wettability of the 

membrane. The PPy coating was highly stable and did not block the pores the substrates. 

Combined with the excellent photothermal performance, all PPy-coated membranes after 

hydrophobic treatment achieved highly efficient PMD performance. 

6.2 Significance and outlook 

In this study, we have demonstrated novel materials and fabrication strategies to realize high-

performance photothermal membranes towards highly efficient PMD, there are still outstanding 

challenges that need to be addressed before these materials can be widely used in the real-world 

applications. 

The average daily solar irradiance is around ∼5 kW h per m2 per day. Based the thermal efficiency 

achieved for the above photothermal membranes (>60%), the aera of photothermal membranes 

should be 0.5 m2 to generate enough drinking water for an adult daily, 2 liters. Therefore, 

scalability of photothermal membranes in PMD is one of important factors that determines their 

real-world desalination. Among materials discussed above, HA nanowires The amount of daily 

drinking water for an adult, PDA and PPy can achieve large-scale manufacturing with low cost. 

However, MXene composite aerogels involving freeze-drying are not cost-effective. The drying 

process consumes large amount of energy and increases manufacturing cost, further compromising 

their viability for real-world application. Future efforts should focus on realizing photothermal 

membrane with scalable and cost-effective processes. 

The lack of industry participation also delays the commercialization of this technique.  Researchers 

mainly focus on developing novel materials and structural designs to maximize the thermal 

efficiency and to a large extent overlook the real-world problems that confront with the 
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implementation of these technologies. Considering that great strides have been made in thermal 

efficiency through novel photothermal and support materials and novel photothermal membrane 

designs in the past few years, involving industrial partners can support fast translation of the 

technology from the current stage to real applications.   

Despite of these challenges in the transition of those photothermal membranes from laboratory 

scale to real-world implementation, the high thermal efficiency for freshwater generation makes 

them as a promising to achieve highly efficient solar-driven desalination around the world. Further 

exploration and optimization of materials chemistry, physical structure, and system designs will 

remain critical to advance those photothermal membranes to the real-world applications. 
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Figure S1.1. (A) Zeta potential of HA nanowires and HA@PDA nanowires.  (B) TEM image 

of PDA hollow tubes. 
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Figure S1.2. The cross-section SEM images of the HA@PDA film in low magnification (A) 

and high magnification (B). 
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Figure S1.3. Contact angle of representative (A) HA-CS film, (B) HA@PDA film, and (C) top 

and (D) bottom of HA@PDA/HA-CS bilayered film before FTCS treatment.  
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Figure S1.4. SEM images of representative HA-CS film (A), HA@PDA film (B), and top (C) 

and bottom (D) of HA@PDA/HA-CS bilayered film after FTCS treatment (insets are the 

contact angles for the corresponding films). 
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Figure S1.5. Photograph of a 3D-printing module of DCMD for PMD test, comprising of the 

feed tank and permeate tank. 0.5 M NaCl solution at ambient temperature (20 °C) was 

circulated at a speed of 3.6 ml•min-1 in the feed tank. During PMD test, the feed tank was 

exposure to simulated sunlight. The distillate at room temperature with a flow rate of 16.2 

ml•min-1 was circulated in the permeate tank. The photothermal membrane was placed between 

two pieces of silicone-rubber o-rings to avoid leakage, which was fixed between the feed tank 

and permeate tank, respectively. Bolts and nots were placed in the holes of the feed tank and 

permeate tank for fixing, respectively. 
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Figure S1.6. Contact angle of representative HA@PDA film before PMD test (A) and after 

(B) 5 cycles PMD test.  Contact angle of HA@PDA/HA-CS bilayered film before PMD test 

(C) and after (D) 5 cycles PMD test.   
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Figure S1.7. Photographs (A) and SEM images (B-C) of the top and bottom layer of 

HA@PDA/HA-CS film after mechanical agitation for 2 weeks (insets of SEM images are the 

contact angles for the corresponding film). The film with length of 1 cm and width of 1 cm 

was placed in a 50 ml test tube filled with water and subjected to a tube rotator for mechanical 

agitation. 
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Figure S2.1.  Representative extinction spectra of AuNRs with peak deconvolution using two 

Gaussian peaks. 
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Figure S2.2. AFM images of (A) pure AuNRs on glass substrate, AuNRs substrates after 

exposure to DA solution for (B) 30 minutes, (C) 60 minutes, (D) 90 minutes, and (E) 120 

minutes. (F) Plot of height of AuNRs@PDA and (G) the thickness of PDA on AuNRs after 

exposure of AuNRs substrates to DA solution for different time. (H) The thickness of PDA 

on AuNRs obtained from AFM and LSPR measurement. 
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Figure S2.3. AFM images of AuNRs@PDA substrates after exposing to 0.12% H2O2 under 

UV for (A) 0, (B) 2, (C) 4, (D) 6, (E) 8, and (F) 10 hours.  

2 µm 

Figure S3.1. SEM image of HA nanowires. 
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Figure S3.2. SEM images of FTCS-MXene/PVA/HA aerogel in low magnification (A) and 

high magnification. 
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Figure S3.3. (A)  Reflectance and (B) transmittance spectra of the compact MXene film (three 

different points of the sample are measured). 
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Figure S3.4. Photograph of (A) the PMD test system and (B) a 3D-printed AMD module. The 

AMD module is comprised of the feed tank and permeate tank with 2 mm air gap. Bolts and 

nuts are placed in the holes of the feed tank and permeate tank for fixing, respectively. NaCl 

solution (0.5 M) at ambient temperature is circulated at varying speeds in the feed tank. During 

PMD test, the feed tank is exposed to simulated sunlight. The photothermal membrane is fixed 

between the feed tank and permeate tank. Aluminum foil is used as the condensation surface 

on the permeate side. A 15 mL centrifuge tube, whose wall is cooled by ambient water, is 

connected to the aluminum foil to collect the condensed distillate.  
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Table S3.1. Comparison of current PMD membranes and performance. 

Membran

e 

Feed 

compositio

n 

Feed T 

(ºC) 

Water 

retentio

n time 

(min) 

MD 

type 

Irradiatio

n (kW m-

2) 

Flux (kg 

m-2 h-1) 

Efficien

cy (%) 

Dye (DR1) 

- PTFE155 

0.59 M 

NaCl 

20 0 AMD

* 

1 0.24 16 

Dye (DR1 

+ DB14) - 

PTFE180 

Artificial 

seawater 

20 0 AMD 1 0.78 53 

Carbon 

Black/PV

A-

PVDF181 

0.17 M 

NaCl 

20 0.25 DCM

D** 

0.7 0.22 21 

Figure S3.5. (A) Photographs and (B) SEM image of FTCS-MXene/PVA/HA aerogel after 

mechanical agitation for 2 weeks.    

20 um 

Vigorous 

shaking   

2 weeks 

5 mm 5 mm 

(A) (B



 

Carbon 

Black -

PVDF182 

0.17 M 

NaCl 

35 0.02 DCM

D 

1.367 0.79-1.51 40-75 

Ag NPs-

PVDF183 

0.5 M NaCl 30 NA VMD

*** 

23.2 (UV) 25.7 29 

FTCS-

PDA-

PVDF184 

0.5 M NaCl 20 4.36 DCM

D 

0.75 0.49 45 

rGO/pDA-

PTFE32 

DI water 20 0 AMD 1 0.72 49 

MXene-

PVDF185 

0.17 M 

NaCl 

65 0.06 DCM

D 

7 1 10 

Commerci

al absorber 

(cermetcoa

ted 

aluminum 

alloy 

substrate)- 

PVDF-

HFP (1 

layer) 186 

0.6 M NaCl 20 0 AMD 1 0.73 51 

FTCS-CB-

PVDF187 

Natural 

seawater 

20 0.13 DCM

D 

1 0.78 55 



 

collected 

from the 

Hainan 

Island 

PEDOT-

PSS- 

graphene–

nickel 

foam188 

Natural 

seawater 

from 

Hainan 

Island 

20 0 AMD 1 1.1 73**** 

CNT-

carbonized 

eggshell -

PVDF25 

0.6 M NaCl 20 NA DCM

D 

1 1.11 76**** 

FTCS-

PDA-

HA189 

0.5 M NaCl 20 1.57 DCM

D 

1 0.89 62***** 

PDMS/CN

T/PVDF (1 

layer) 156 

0.6 M NaCl 30-35 0 AMD 1 0.9 60 

Fe3O4/PV

DF-HFP190  

0.6 M NaCl 26 NA DCM

D 

1 0.97 53 

TiN-PVA-

PVDF191 

0.6 M NaCl 26 0 AMD 1 0.94 64**** 



 

FTCS-

PDA/BNC

80 

0.5 M NaCl 20 4.36 DCM

D 

1 1 68***** 

This work 0.5 M NaCl 20 2 AMD 0.8 0.72  61 

*AMD: air gap membrane distillation. 

**DCMD: direct contact membrane distillation. 

***VMD: vacuum membrane distillation. 

****Three references reported higher efficiencies than our work, but their water retention time 

were either zero or not specified.  

*****The thermal efficiency of our membrane is comparable with recently reported highly 

efficient photothermal membranes among PMD systems with similar irradiation, water retention 

time, and feed water temperatures.  

 

Appendix 4 

 
Figure S4.1. The water contact angle of pristine (A) PVDF, (B) PP and (C) PTFE membranes.  

(A) (B) (C) 
0° 114° 115° 



 

 

Figure S4.2. The cross-section SEM images of PVDF membranes in low magnification (A) 

and high magnification (B). The cross-section SEM images of PP membranes in low 

magnification (C) and high magnification (D). The cross-section SEM images of PTFE 

membranes in low magnification (E) and high magnification (F).   
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3 cm 3 cm 3 cm 

Figure S4.3. The photographs of FeCl3-coated (A) PVDF, (B) PP and (C) PTFE membranes.  

(A) (B) (C) 

Figure S4.4. XPS spectra of the pristine PVDF, PVDF@PPy, and FTCS-PVDF@PPy 

membranes, showing the (A) C 1s, (B) N 1s, and (C) Si 2p peaks. 

(A) (B) (C) 



 

 

Figure S4.5. Photographs of (A) PVDF, (B) PP, and (C) PTFE membranes during PDA self-

polymerization for different days. 



 

  

Figure S4.6. (A) Transmittance and (B) reflectance of PVDF@PPy and PVDF membranes after 

polymerization of dopamine for different time. (C) Transmittance and (D) reflectance of 

PP@PPy and PP membranes after polymerization of dopamine for different time. (E) 

Transmittance and (F) reflectance of PTFE@PPy and PTFE membranes after polymerization 

of dopamine for different time. 
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Figure S4.7. Stability of PPy coated membranes. Photographs of (A) PVDF@PPy, (B) 

PP@PPy, (C) PTFE@PPy, (D) PTFE@Graphene, and (E) PTFE@Graphene@PDA 

membranes before and after sonication for 1 hour.  
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