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ABSTRACT OF THE DISSERTATION

A Neuromorphic Machine Learning Framework based on the Growth Transform Dynamical

System

by

Ahana Gangopadhyay

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2021

Professor Shantanu Chakrabartty, Chair

As computation increasingly moves from the cloud to the source of data collection, there

is a growing demand for specialized machine learning algorithms that can perform learning

and inference at the edge in energy and resource-constrained environments. In this regard,

we can take inspiration from small biological systems like insect brains that exhibit high

energy-efficiency within a small form-factor, and show superior cognitive performance using

fewer, coarser neural operations (action potentials or spikes) than the high-precision floating-

point operations used in deep learning platforms. Attempts at bridging this gap using

neuromorphic hardware has produced silicon brains that are orders of magnitude inefficient

in energy dissipation as well as performance. This is because neuromorphic machine learning

(ML) algorithms are traditionally built bottom-up, starting with neuron models that mimic

the response of biological neurons and connecting them together to form a network. Neural

responses and weight parameters are therefore not optimized w.r.t. any system objective,

and it is not evident how individual spikes and the associated population dynamics are

xi



related to a network objective. On the other hand, conventional ML algorithms follow a top-

down synthesis approach, starting from a system objective (that usually only models task

efficiency), and reducing the problem to the model of a non-spiking neuron with non-local

updates and little or no control over the population dynamics. I propose that a reconciliation

of the two approaches may be key to designing scalable spiking neural networks that optimize

for both energy and task efficiency under realistic physical constraints, while enabling spike-

based encoding and learning based on local updates in an energy-based framework like

traditional ML models.

To this end, I first present a neuron model implementing a mapping based on polynomial

growth transforms, which allows for independent control over spike forms and transient fir-

ing statistics. I show how spike responses are generated as a result of constraint violation

while minimizing a physically plausible energy functional involving a continuous-valued neu-

ral variable, that represents the local power dissipation in a neuron. I then show how the

framework could be extended to coupled neurons in a network by remapping synaptic inter-

actions in a standard spiking network. I show how the network could be designed to perform

a limited amount of learning in an energy-efficient manner even without synaptic adaptation

by appropriate choices of network structure and parameters - through spiking SVMs that

learn to allocate switching energy to neurons that are more important for classification and

through spiking associative memory networks that learn to modulate their responses based

on global activity. Lastly, I describe a backpropagation-less learning framework for synaptic

adaptation where weight parameters are optimized w.r.t. a network-level loss function that

represents spiking activity across the network, but which produces updates that are local.

I show how the approach can be used for unsupervised and supervised learning such that

minimizing a training error is equivalent to minimizing the network-level spiking activity. I

xii



build upon this framework to introduce end-to-end spiking neural network (SNN) architec-

tures and demonstrate their applicability for energy and resource-efficient learning using a

benchmark dataset.
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Chapter 1

Introduction

With the proliferation of miniaturized, portable and battery-powered sensors and devices,

computation is increasingly moving from the cloud to the source of data collection. With

it, there is a growing demand for specialized algorithms, hardware and software - collec-

tively termed as tinyML systems - that can perform learning and inference at the edge under

energy and resource-constrained environments [1, 2]. The design space and constraints for

such systems are fundamentally different from classical machine learning and deep learning

approaches, which typically improve performance by making use of more compute power and

data, such that task efficiency improves at the expense of energy and resource efficiency. Ma-

chine learning systems at the edge however, need to do more with less, where energy-efficiency

and resource-efficiency are equally important considerations aside from task-efficiency.

Small biological networks like insect brains on the other hand are perfect examples of tinyML

systems, where neural codes and processing have evolved over ages to optimize for the tri-

fecta of task-efficiency, energy-efficiency and resource-efficiency [3, 4]. Consider the brain

of a fruit-fly (Drosophila melanogaster). It supports a wide range of complex behaviors,

including multi-sensory integration, navigation and learning (task-efficiency); can learn over

the duration of its life adaptively and using limited training data (resource-efficiency); and
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Figure 1.1: The neuron-to-network energy gap in biological versus artificial systems

achieves all of these using only ≈ 135, 000 neurons and by expending only ≈ 10−7 watts of

power [5]. Neuromorphic systems that derive inspiration from such biological networks are

quickly becoming popular for edge processing applications like smart sensing and adaptive,

on-chip learning [6, 7].

1.1 The neuron-to-network energy-gap

In order to understand where the energy-efficiency of biological networks derives from, it is

important to consider whether this energy-efficiency is present at the fundamental (cellular)

level or only at the system-level. It turns out that a single biological neuron is not very

optimized for energy, and consumes ≈ 10−11 watts of power [5,8]. This is orders of magnitude

2



higher than the power consumed by the highly optimized floating-point operations/second in

GPUs/TPUs used in modern deep learning, which are the fundamental units of operation for

artificial systems. Yet at the system-level, biological networks are highly energy-optimized, as

illustrated in Figure 1.1. A population of coupled neurons in the fruit-fly brain, using a power

equivalent of only ≈ 104 coarse, neural operations, show superior cognitive performance than

deep learning platforms like GPUs or TPUs that use a power equivalent of Peta FLOPs or

more.

A number of neuromorphic chips like IBM TrueNorth [9] (1 million neurons) and Intel

Loihi [10] (≈ 130, 000 neurons) emulating biological networks have been developed over the

last decade that aim at reducing this gap using asynchronous event-driven communication

with spikes. Neuromorphic algorithms running on such specialized hardware have been shown

to outperform their classical counterparts running on traditional hardware in energy costs

by orders of magnitude in benchmarking tests across applications like keyword spotting [11],

simultaneous localization and mapping (SLAM) [12], image processing [13,14], etc. However,

almost all of these advantages in energy-efficiency were demonstrated only during inference,

and moreover for specific applications. If we consider energy costs during training and for

networks capable of performing a wide range of tasks (functional diversity), the neuron-to-

network energy gap between biological systems and classical/neuromorphic systems would

be much wider than shown in Figure 1.1.

1.2 Research hypothesis

One possible hypothesis to explain this remarkably small energy-gap from the neuron to the

network is that all functions in biological systems, from signal representation to information

3



processing and learning, could be derived from an underlying network-level energy optimiza-

tion process. Neural responses and weight parameters in such networks would therefore be

optimized w.r.t. one or more energy functions that represent actual energy metrics that are

important for the system and contribute significantly to metabolic costs. In contrast, let

us consider how energy-efficiency is currently achieved in classical as well as neuromorphic

machine learning algorithms.

1.2.1 Related work

Over the last few years, there has been a growing interest in improving the energy-efficiency

of machine learning models so that they can be directly deployed on edge devices. Efforts at

reducing the energy requirements of classical machine learning algorithms (and in particular,

artificial neural networks) broadly take one of two following approaches [1, 15, 16]:

� Model compression: Model compression techniques aim to reduce the computa-

tional requirements of machine learning models without significantly degrading model

performance. These techniques include among others pruning redundant connections

using various strategies during or after regular network training [17,18]; weight-sharing

where network connections are arranged in groups that are assigned a single weight

value [19,20]; knowledge distillation where knowledge is transferred from a larger model

(or an ensemble of models) to a much smaller model [21, 22]; and parameter quanti-

zation by reducing the number of bits needed to represent inputs, weights and acti-

vations [23–25] in order to reduce energy and memory footprints. An extreme form
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of the latter approach assumes binary/ternary weights in conjunction with binary in-

puts and/or activations, essentially reducing deep neural networks (DNNs) to logic

circuits [26,27].

� Model selection: Model selection techniques include neural architecture search (NAS)

[28–30] which use reinforcement learning, evolutionary algorithms or surrogate model-

based optimization techniques to explore a predefined search space in order to generate

an optimal network architecture that achieves the best trade-off between model accu-

racy and model complexity (energy/runtime).

In a similar vein, energy-efficiency in neuromorphic ML is achieved through external con-

straints on network connectivity [31] and/or quantization level of its neurons/synapses

[32–34], or through additional penalty terms that favor sparser solutions or lower activa-

tions across the network [35,36].

1.2.2 Proposed approach

For all of the approaches outlined above, the problem of energy-efficiency is disconnected

from the training problem itself, and aimed more at efficient inference so that they can be

deployed on embedded systems. This is fundamentally different from the way biology works.

Biological networks use the same hardware and energy resources during training as well

as during inference, suggesting that energy-optimization is built into the training process,

which inherently figures out how to tune the precision level of individual neurons in order to

optimize for both energy and performance.
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This work explores an unified neuromorphic machine learning framework where spike re-

sponses as well as weight parameters are optimized w.r.t energy metrics that are important

in the context of spiking neural networks. In order to achieve this, I will first introduce a

spiking neuron and network model which derives its responses by minimizing the local power

dissipation at each neuron and explore how spike generation occurs in the context of such

energy optimization. This would necessitate abstracting out the essential aspects of spike

generation and transmission to replicate neural dynamics in an energy-based model. I will

then design a learning framework for the proposed model where learning optimal parameters

for a given task minimizes a second energy metric for the system - the sum-total of spiking

activity across the network - arguably the biggest energy sink in neuromorphic [36] as well

as in biological systems [107,108].

1.3 Organization of this dissertation

The remaining chapters in this dissertation are organized as follows:

Chapter 2 presents the Growth Transform spiking neuron model. It shows the derivation

of the energy function for minimizing the local power dissipation in a generic neuron model

under realistic physical constraints, and shows how spike generation can be viewed as a

constraint violation in such a network. It also gives an overview of the Baum-Eagon Growth

Transforms along with its various extensions, including the derivation of the continuous-time

Growth Transform dynamical system, and shows how the latter can be used to optimize the

energy function under the specified constraints. It also shows how we can replicate different

known single-neuron dynamics by modulating the neural trajectory towards this optimal
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solution using a modulation function. Most of the results presented in this chapter are based

on [37,38].

Chapter 3 presents how the proposed model can be extended to coupled neurons in a

network by remapping synaptic interactions in a simple spike response model and derives

the corresponding distributed energy functional for a coupled network. It also shows that

under conditions of symmetry, the neurons minimize a network energy functional and the

network response and trajectories have a geometric interpretation. It also shows how the

modulation function can be made a function of different global variables like network energy

so that the network can encode different population dynamics under the same energy contour.

The results in this chapter are based on [38].

Chapter 4 presents a number of ways in which we can perform a limited amount of learning

even without synaptic adaptation by using short-term network dynamics, including using re-

currently connected networks of GT neurons to learn better feature representations that can

be combined with external classifiers, or by defining synaptic weights and inputs according

to a given supervised learning problem such that the population dynamics can be used for

solving a certain task. It also shows how we can exploit the network structure and state of

convergence to learn more energy-efficient stimulus encodings. The results in this chapter

are based on [38–40].

Chapter 5 presents a sparsity-driven learning framework for synaptic adaptation in a net-

work of GT neurons to reshape the energy landscape optimally for solving standard machine

learning tasks. It shows how we can exploit the inherent dynamics of GT neurons to design

networks where learning the optimal parameters for a learning task simultaneously mini-

mizes an important energy metric for the system - the sum-total of spiking activity across

the network. It also shows how we can solve different types of unsupervised and supervised
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learning problems by configuring the network in different ways while always optimizing for

sparsity. The results in this chapter are based on [37].

Chapter 6 builds up on the previous chapter to construct end-to-end spiking neural net-

works for solving more complex non-linearly separable classification problems. It shows three

different network architectures with progressively increasing flexibility in training - and con-

sequently, sparsity. It also shows how sparsity constraints on the network’s spiking activity

allows it to generalize better than standard approaches from very few training data points,

and how GTNN can be used as a recurrent network for processing dynamic information.

The results in this chapter are based on [37].

Chapter 7 presents a summary of this research, along with key contributions of this disser-

tation and potential directions for future research.

1.4 Notations

For the remainder of this dissertation, we will follow the mathematical notations as summa-

rized below. Also unless otherwise specified, all quantities considered will be unit-less or in

the form of ratios.
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Table 1.1: Notations

x Real scalar variable

x Real-valued vector with xi as its i-th element

X Real-valued matrix with Xij as the element at the i-th row and the j-th column

xn Real scalar variable at the nth discrete time-step

xi,n i-th element of real-valued vector x at the nth discrete time-step

x[n] a sequence of the scalar variable xp where p = n, n− 1, ..

EN
(
x[n]

)
Empirical expectation of a sequence x[n] estimated over a window of size N ,

i.e., 1
N

n∑
p=n−N+1

xp

x̄[n] Empirical expectation estimated over an asymptotically infinite window,

i.e., lim
N→∞

EN
(
x[n]

)
x̄[n] Real-valued vector with x̄i[n] as its i-th element

x(t) Real scalar variable at time t

xi(t) i-th element of real-valued vector x at time t

ET [x(t)] Empirical expectation of x(t) over a time-interval [t− T, t], i.e., 1
T

∫ t
t−T x(t′)dt′

x̄ Empirical expectation of x(t) estimated over an asymptotically infinite window,

i.e., limT→∞
1
T

∫ t
t−T x(t′)dt′

x̄ Real-valued vector with x̄i as its i-th element

RM Vector space spanned by M -dimensional real vectors

|x| Absolute value of a scalar

xk k-th real-valued vector

||x||p lp-norm of an M -dimensional vector x, defined as (
M∑
i=1
|xi|p)1/p

xT Transpose of the vector x

x.y Inner product between the vectors x and y

H(.) Scalar-valued function of a vector

∂H
∂x Gradient vector [ ∂H∂x1

, ∂H∂x2
, ..., ∂H

∂xM
]T
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Chapter 2

Growth Transform neuron model

In this chapter, I derive the energy function for minimizing the average power dissipation

in a generic neuron model under specified constraints, and show how spike generation can

be framed as a constraint violation in the equivalent optimization problem. I then briefly

review Baum-Eagon Growth Transforms and their extensions, and introduce a discrete-time

dynamical system model based on these Growth Transforms that evolves the network towards

the minimum-energy state corresponding to the optimization problem while ensuring that the

constraints are always satisfied. I then use the properties of Growth Transforms to generalize

the model to a continuous-time dynamical system that will allow for modulating the transient

firing statistics without affecting convergence towards the steady-state attractor, enabling

us to reproduce different single-neuron response characteristics that are seen in biological

neurons.
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Figure 2.1: (a) Circuit model for a single neuron with external current input. (b) The form
of Ψ(.) used in this work, and its corresponding integral.

2.1 Local power dissipation in a generic neuron model

Let us begin with a generic circuit model for a single neuron as shown in Figure 2.1(a), which

is a simple node for integrating an external current input b. We assume that the node is

associated with a voltage or membrane potential v ∈ R and a leakage conductance Q ∈ R+.

Then, the average power P ∈ R dissipated by the neuron is given by

P =
1

2
Qv2 − bv, (2.1)

where the first term in (2.1) denotes the power dissipation due to leakage and the second

term denotes the power injected or extracted as a result of external stimulation. Let us

impose biophysical constraints that the membrane potential v be bounded as

−vc ≤ v ≤ 0, (2.2)
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where vc > 0 is a constant potential acting as a lower-bound, and 0 is a reference potential

acting as a threshold voltage. Note that in biological neurons, the membrane potentials are

bounded as well [41]. Minimizing the average power dissipation of the neuron under the

bound constraint in (2.2) is equivalent to solving the following optimization problem

min
−vc≤v≤0

P = min
−vc≤v≤0

1

2
Qv2 − bv. (2.3)

Let Ψ ≥ 0 be the KKT (Karush-Kuhn-Tucker) multiplier corresponding to the inequality

constraint v ≤ 0, then the optimization in (2.3) is equivalent to

min
|v|≤vc,Ψ

H
(
v
)

= min
|v|≤vc,Ψ

1

2
Qv2 − bv + Ψv (2.4)

where Ψ ≥ 0, and Ψv∗ = 0 satisfy the KKT complementary slackness criterion for the

optimal solution v∗ [42]. The solution to the optimization problem in (2.4) satisfies the

following first-order condition

Ψ = −Qv∗ + b

Ψv∗ = 0; Ψ ≥ 0; |v∗| ≤ vc. (2.5)

The first-order condition in (2.5) could be extended to time-varying input b(t) where (2.5)

can be expressed in terms of the temporal expectation (defined in the Notations table) of

the optimization variables as

Ψ̄ ≈ −Qv̄ + b̄ (2.6)

Ψv = 0; Ψ ≥ 0; |v| ≤ vc. (2.7)
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Note that here the KKT constraints Ψv = 0; Ψ ≥ 0 need to be satisfied for all instantaneous

values and at all times. Thus Ψ resembles a spiking function which results from the violation

of the constraint v ≤ 0. In the next section, I show that a dynamical system with a specific

form of Ψ(.) naturally defines the process of spike-generation.

2.2 Spike generation viewed as a constraint violation

One way to satisfy the first-order conditions (2.6) using a dynamical systems approach would

be to define Ψ as a barrier function

Ψ(v) =


IΨ ; v > 0

0 ; v ≤ 0


. (2.8)

where IΨ ≥ 0 denotes a hyperpolarization parameter. Such a barrier function ensures that

the complementary slackness condition holds at all times, and as shown later in Section 2.4.2,

ensures that the temporal expectation Ψ̄ → Ψ in the limit as Q → 0. For the form of the

spike function in (2.8), we can write

Ψv =

v∫
−∞

Ψ(η)dη. (2.9)

Thus the optimization problem in (2.4) can be rewritten as

min
|v|≤vc

H
(
v
)

= min
|v|≤vc

1

2
Qv2 − bv +

v∫
−∞

Ψ(η)dη. (2.10)
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In the next section, I present a dynamical system based on Growth Transforms that can

minimize the cost function in (2.10) under the specified bound constraints, such that its

first-order condition is satisfied on a temporal expectation, as in (2.6).

2.3 Neuron model using Growth Transform updates

In order to solve the energy minimization problem given in (2.10) under the constraints given

in (2.7), I propose a dynamical system based on polynomial Growth Transforms and show

how the dynamical system evolves over time to satisfy (2.6) as a first-order condition.

2.3.1 Baum-Eagon Growth Transforms

In this work, I will use a class of multiplicative updates based on polynomial Growth

Transforms. These non-linear transforms, derived from the well-known Baum-Eagon in-

equality [43], were originally proposed for maximizing homogeneous polynomial functions

with non-negative coefficients over a probabilistic domain. Growth Transform mappings are

iterative updates inherently capable of handling conservation manifolds like a domain of

probability measures, and as such were widely used in speech processing for estimating the

parameters of Hidden Markov Models [44]. Formally, a Growth Transform-based mapping,

as defined in [45], is given below.

Growth Transformations. For a continuous function H defined on a C∞-manifold D, a

Growth Transformation is a continuous mapping σ : D → D such that

H(v) ≤ H(σ(v)) ∀v ∈ D. (2.11)
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Additionally, the mapping σ(.) is called a proper growth transformation if H is a C2 function

for which (2.11) holds, and equality in (2.11) implies that v is a critical point of H, i.e.

∇H = 0 at v.

Further, a growth transformation σ on H is said to increase homotopically if in addition to

(2.11), the following condition holds

H(v) ≤ H
(
ασ(v) + (1− α)v

)
, 0 ≤ α ≤ 1, v ∈ D. (2.12)

This essentially implies that every point on the straight line joining v and σ(v) is a growth

transformation for H.

This work focuses on a special class of Growth Transforms based on an extension of the

Baum-Eagon inequality [45], which were originally defined for maximizing homogeneous

polynomials with non-negative coefficients and are given below.

Baum-Eagon Growth Transforms. Let D∪ ∂D denote the manifold with boundary given by

v = (vik) where

{vik : vik ≥ 0 and

qi∑
k=1

vik = 1, i = 1, ...,M}, (2.13)

where q1, ..., qM is a set of non-negative integers denoting the number of linear constraints

in D. For a homogeneous polynomial H(vik) with non-negative coefficients, a continuous

mapping σ : D → D ∪D of the form

σ(vik) =
vik

∂H
∂vik

qi∑
k=1

vik
∂H
∂vik

(2.14)
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would ensure that

H(vik) ≤ H
(
αiσ(vik) + (1− αi)vik

)
, 0 ≤ αi ≤ 1 ∀i = 1, ...,M, v ∈ D. (2.15)

The formulation was later extended to the optimization of non-homogeneous polynomials

with arbitrary coefficients [45], to the optimization of rational functions [46] and to the

optimization of analytic functions [47]. More recently, the applicability of Growth Transforms

was extended in [48] to the domain of real variables with bound constraints for optimizing

the dual cost function of a generic support vector machine (SVM) and in [49] to the domain

of Lipschitz continuous functions that are differentiable almost everywhere.

In general, if H(vik) be a Lipschitz continuous objective function that is constrained over a

domain D defined by

{vik : vik ≥ 0 and

qi∑
k=1

vik = vc, i = 1, ...,M}, (2.16)

there exists a growth transformation σ(.) such that

H
(
σ(vik)

)
≤ H

(
vik
)
∀vik ∈ D. (2.17)

This transformation takes the following form

σ(vik,n) = vik,n+1 ← vc
Gik(vn, λ)

Gi(vn, λ)
, i = 1, ...,M, (2.18)
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where

Gik(vn, λ) = vik,n
(
− ∂H
∂vik,n

+ λ
)
, and (2.19)

Gi(vn, λ) =

qi∑
k=1

Gik(vn, λ). (2.20)

An admissible value for the constant λ is such that for any vik,n ∈ D, Gik(vn, λ) ≥ 0 and

Gi(vn, λ) > 0 [46].

2.3.2 Discrete-time Growth Transform dynamical system

In this section, I present a discrete-time Growth Transform dynamical system that evolves

over time to minimize Lipschitz continuous cost functions under bound constraints as in

(2.2). The summary of the proposed dynamical system is presented in Algorithm 1 and the

detailed derivation is provided below.

Algorithm 1 Discrete-time Growth Transform dynamical system

Proposition I. Let H
(
vi
)

: RM → R be a function of vi, i = 1, ...,M, with bounded
partial derivatives, and let λ > | ∂H

∂vi,n
| ∀i, n, be a parameter. Then for |vi,0| ≤ vc ∀i, the

discrete-time dynamical system

vi,n+1 ← vc
− ∂H
∂vi,n

vc + λvi,n

− ∂H
∂vi,n

vi,n + λvc
, i = 1, ...,M (2.21)

satisfies the following criteria for all time-indices n:

(a) |vi,n| ≤ vc ∀i; (2.22)

(b) H
(
vi,n+1

)
≤ H

(
vi,n
)

in domains where
∂H
∂vi,n

is continuous; and (2.23)

(c) lim
N→∞

(
EN
(
zi[n]

))
→ 0 ∀i, n; where zi,n = (v2

c − vi,nvi,n+1)
∂H
∂vi,n

. (2.24)
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Proof of Proposition I: We can decompose the scalar variable vi,n as vi,n = v+
i,n − v−i,n, where

v+
i,n, v

−
i,n ≥ 0. The following additional constraint

v+
i,n + v−i,n = vc, i = 1, ...,M, (2.25)

imposed on the variables v+
i,n and v−i,n would then always ensure that (2.22) is satisfied. Then

we can write

arg min
|vi|≤vc

H
(
vi
)
≡ arg min

v+i +v−i =vc; v+i ,v
−
i ≥0

H
(
v+
i − v−i

)
. (2.26)

The new optimization problem is therefore constrained on a domain equivalent to D as

defined in (2.16), where q1 = q2 = ... = qM = 2, and v+
i + v−i = vc, i = 1, ...,M , are the M

linear constraints. Considering v+
i = vi1 and v−i = vi2, we can rewrite the update equations

in (2.18) in terms of the new optimization variables corresponding to (2.26) to obtain the

following discrete-time updates

v+
i,n+1 = vc

v+
i,n

µi,n
(− ∂H
∂v+

i,n

+ λ) (2.27)

v−i,n+1 = vc
v−i,n
µi,n

(− ∂H
∂v−i,n

+ λ), (2.28)

where

µi,n = G+
i (vn, λ) +G−i (vn, λ)

= v+
i,n(− ∂H

∂v+
i,n

+ λ) + v−i,n(− ∂H
∂v−i,n

+ λ) (2.29)

is a normalization factor that ensures v+
i,n+1 + v−i,n+1 = vc. Here, λ would be admissible iff

λ > | ∂H
∂vi,n
| ∀i, n, which will ensure Gγ

i (vn, λ) ≥ 0, γ = +,−, and µi,n > 0 ∀i. From (2.27)
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and (2.28), using vi,n = v+
i,n − v−i,n and (2.25), it can be easily shown that

vi,n+1 = vc
− ∂H
∂vi,n

vc + λvi,n

− ∂H
∂vi,n

vi,n + λvc
, (2.30)

where I have used the relation ∂H
∂vi

= ∂H
∂v+i

= − ∂H
∂v−i

. This dynamical system model, derived

from the Growth Transform updates outlined in (2.27) and (2.28), ensures that (2.23) holds,

with equality being satisfied iff vi,n is a critical point of H.

Rearranging the terms in (2.30), we get

(v2
c − vi,nvi,n+1)

∂H
∂vi,n

+ λvc(vi,n+1 − vi,n) = 0. (2.31)

Rewriting 2.31 for a sequence of time-indices p = n−N + 1, n−N + 2, ..., n, of size N , we

get

(v2
c − vi,n−N+1vi,n−N+2)

∂H
∂vi,n−N+1

+ λvc(vi,n−N+2 − vi,n−N+1) = 0

(v2
c − vi,n−N+2vi,n−N+3)

∂H
∂vi,n−N+2

+ λvc(vi,n−N+3 − vi,n−N+2) = 0

.

.

(v2
c − vi,nvi,n+1)

∂H
∂vi,n

+ λvc(vi,n+1 − vi,n) = 0

Summing over the time-steps and dividing by the total number of time-steps, we get

EN
(
zi[n]

)
+

1

N
λvc(vi,n+1 − vi,n−N+1) = 0 (2.32)
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where zi,n = (v2
c − vi,nvi,n+1) ∂H

∂vi,n
. As N →∞, since vi,n are bounded ∀i, n, we have for the

n-th time-window

lim
N→∞

(
EN
(
zi[n]

))
→ 0. (2.33)

2.3.3 Growth Transform spiking neuron model

Considering the n-th iteration of the update equation in (2.21) as the n-th time-step for the

single neuron model presented in Section 2.1, we can rewrite (2.21) in terms of the objective

function for the neuron model presented in (2.10), as given below

vn+1 ← vc
− ∂H
∂vn

vc + λvn

− ∂H
∂vn

vn + λvc
, (2.34)

where

∂H
∂vn

= Qvn − bn + Ψ(vn). (2.35)

I first show the dynamics resulting from (2.34) in absence of the barrier function, i.e. when

Ψ(.) = 0. Since H(.) is a smooth function in this case, the neural variable vn converges to a

local minimum, such that

lim
n→∞

vn = v∗. (2.36)

Therefore, (2.39) can be written as

(v2
c − v∗2)

∂H
∂vn

∣∣∣
v∗
→ 0. (2.37)

Thus as long as |v∗| < vc, the gradient term goes to zero, ensuring that the dynamical system

converges to the optimal solution within the domain defined by the bound constraints. The
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dynamical system presented in (2.21) ensures that the steady-state neural responses |v∗| ≤ vc.

In the absence of the barrier term, the membrane potentials can converge to any value

between −vc and +vc based on the effective inputs to individual neurons, as illustrated by

Figure 2.2(a). When there is no external stimulus, the neuron response converges to v = 0.

When a positive stimulus b is applied, v∗ shifts above the threshold to a level that is a

function of the stimulus magnitude, and v converges to v∗.

We can now extend this framework to a spiking neuron model in the presence of a barrier

function of the form given in (2.8). When there is no external stimulus b, the neuron response

converges to v∗ = 0 as in the non-spiking case, as illustrated in Figure 2.2(b). When a positive

stimulus b is applied, v∗ shifts above the threshold as before to a level that is a function of the

stimulus magnitude, also shown in Figure 2.2(b). However, the integral term
∫

Ψ(.)dη works

as a barrier function, penalizing the energy functional whenever v exceeds the threshold in

an attempt to reach v∗, thereby forcing v to reset below the threshold. The stimulus and

the barrier function therefore introduce opposing tendencies, making v oscillate back and

forth around the discontinuity (which, in our case, coincides with the threshold) as long

as the stimulus is present. Thus because of the term Ψ(.), the potential vn switches when

Ψ(vn) > 0 A or only when vn > 0 V . However, the dynamics of vn remains unaffected for

vn < 0 V . During the brief period when vn > 0 V , we assume that the neuron enters into

a runaway state leading to a voltage spike. The composite spike signal sn, shown in Figure

2.2(c), is then treated as a combination of the sub-threshold and supra-threshold responses

and is given by

sn = vn + CΨ(vn), (2.38)

where the trans-impedance parameter C > 0 determines the magnitude of the spike. Note

that the proposed framework does not explicitly model the runaway process that leads to
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the spike, unlike other neuron models [50–52]. However, it does incorporate the hyper-

polarization (reset) part of the spike as a result of v oscillating around the gradient discon-

tinuity. Thus a refractory period is automatically incorporated in between two spikes. The

discrete-time GT spiking neuron model has been summarized in Algorithm 2.

Asymptotic encoding for a non-saturating GT neuron: From (2.24) we have

lim
N→∞

(
EN
(
z[n]

))
→ 0 ∀n, (2.39)

where zn = (v2
c − vnvn+1) ∂H

∂vn
. For a neuron with response vn > −vc ∀n (which includes

spiking neurons as well as non-spiking neurons that do not cross the threshold), we define

αn = (v2
c − vnvn+1). Since |vn| < vc ∀n, αn > 0 ∀n. We can sum the criterion (2.31) for

time-steps p = n−N + 1, n−N + 2, ..., n, to write

n∑
p=n−N+1

αpgp = λvc(vn−N+1 − vn+1), (2.40)

where gp = ∂H
∂vp

. For p = n − N + 1, n − N + 2, ..., n, we can decompose the instantaneous

gradient term gp as follows

gp = EN
(
g[n]

)
+ ∆gp, (2.41)
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where ∆gp is a zero-mean sequence such that EN
(
∆g[n]

)
= 0. Then combining (2.40) and

(2.41),

n∑
p=n−N+1

αpEN
(
g[n]

)
+

n∑
p=n−N+1

αp∆gp = λvc(vn−N+1 − vn+1)

EN
(
g[n]

) n∑
p=n−N+1

αp = −
n∑

p=n−N+1

αp∆gp + λvc(vn−N+1 − vn+1)

EN
(
g[n]

)
= −

n∑
p=n−N+1

αp∆gp

n∑
p=n−N+1

αp

+
λvc(vn−N+1 − vn)

n∑
p=n−N+1

αp

Since αn > 0 ∀n,
n∑

p=n−N+1

αp →∞ as N →∞. Also, |vn| < vc ∀n leads to

lim
N→∞

(
EN
(
g[n]

))
= lim

N→∞

(
−

n∑
p=n−N+1

αp∆gp

n∑
p=n−N+1

αp

)
= 0. (2.42)

The last result uses the non-pathological case that due to the bounded property of ∆gp, the

sequence αp∆gp does not grow as fast as the denominator sequence αp.

Thus for a non-saturating neuron or for a neuron whose membrane potential vn > −vc ∀n,

we have

lim
N→∞

(
EN
(
∂H
∂v

[
n
]))

= 0 (2.43)

This implies that asymptotically the network exhibits limit-cycles about a single attractor

or a fixed-point such that the time-expectations of its state variables encode this optimal

solution. A similar stochastic first-order framework was used in [53] to derive a dynamical
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system corresponding to Σ∆ modulation for tracking low-dimensional manifolds embedded

in high-dimensional analog signal spaces. Combining (2.35) and (2.43), we have

Qv̄[n]− b̄[n] + Ψ̄[n] = 0, (2.44)

where Ψ̄[n] = lim
N→∞

1
N

n∑
p=n−N+1

Ψ(vp).

The penalty function R(v) =
v∫
−∞

Ψ(η)dη in the energy functional in effect models the power

dissipation due to spiking activity. For the form of R(.) chosen in this work, the power

dissipation due to spiking is taken to be zero below the threshold, and increases linearly

above threshold. A plot of the composite spike signal for a ramp input for the spiking neuron

model is presented in Figure 2.2(d). As v exceeds the threshold for a positive stimulus, the

neuron enters a spiking regime and the firing rate increases with the input, whereas the

sub-threshold response is similar to the non-spiking case.

2.4 Complete continuous-time model

Single neurons show a vast repertoire of response characteristics and dynamical properties

that lend richness to their computational properties at the network level. Izhikevich in [54]

provides an extensive review of different spiking neuron models and their ability to produce

the different dynamics observed in biology. In this section, I extend the proposed model

into a continuous-time dynamical system, which enables us to reproduce a vast majority of

such dynamics and also allows us to explore interesting properties in coupled networks in

the following chapters. The complete neuron model is summarized in Algorithm 3 and the

derivation is given below.

25



Algorithm 2 Discrete-time GT spiking neuron model

For a neuron with state variable v ∈ R, whose leakage conductance is denoted by Q ∈ R
and the external stimulus vector is denoted by b ∈ R, the time-evolution of the neuron
under bound constraints on the state variables |vn| ≤ vc for all time-indices n, is governed
by the following discrete-time updates:

vn+1 ← vc
− ∂H
∂vn

vc + λvn

− ∂H
∂vn

vn + λvc
, (2.45)

where
∂H
∂vn

= Qvn − bn + Ψ(vn);

Ψ(vn) =

 IΨ ; vn > 0

0 ; vn ≤ 0

;

λ is a fixed current parameter such that λ > | ∂H
∂vn
| ∀n.

The composite spike response of the neuron at time-step n is given by

sn = vn + CΨ(vn),

where the trans-impedance parameter C > 0 determines the magnitude of each spike.
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Algorithm 3 Complete continuous-time GT spiking neuron model

For a neuron with state variable v ∈ R, whose leakage conductance is denoted by Q ∈ R
and the external stimulus vector is denoted by b ∈ R, the time-evolution of the neural
response under bound constraints on the state variables v(t) ≤ vc ∀t, is governed by the
following continuous-time dynamical system:

τ(t)
dv(t)

dt
+ v(t) = vc

− ∂H
∂v(t)

vc + λv(t)

− ∂H
∂v(t)

v(t) + λvc
, (2.46)

where
∂H
∂v(t)

= Qv(t)− b(t) + Ψ(v(t));

Ψ(v(t)) =

 IΨ ; v(t) > 0

0 ; v(t) ≤ 0

;

λ is a fixed current parameter such that λ > | ∂H
∂v(t)
| ∀t;

0 ≤ τ(t, v, v̇,H, Ḣ) < ∞ is a modulation function that can be tuned individually
for each neuron to encode different trajectories and different steady-state spiking dynamics
corresponding to the optimal solution.

The composite spike response of the neuron at time t is given by

s(t) = v(t) + CΨ(v(t)), (2.47)

where the trans-impedance parameter C > 0 determines the magnitude of each spike.
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2.4.1 Continuous-time Growth Transform dynamical system

In order to derive the complete dynamical system model for the Growth Transform neuron,

I apply a useful property of Growth Transforms, as mentioned in (2.12). The Growth Trans-

form mapping σ(.) homotopically minimizes the value of the cost function H(.) [45] as shown

below

H
(

(1− fn)vζn + fnσ(vζn)
)
≤ H

(
vζn

)
, ζ = +,−; (2.48)

where 0 < fn ≤ 1. This leads to the following updated discrete-time equations corresponding

to (2.27)-(2.28) for minimizing H(.)

v+
n+1 = (1− fn)v+

n + fnvc
v+
n

µn
(− ∂H
∂v+

n

+ λ) (2.49)

v−n+1 = (1− fn)v−n + fnvc
v−n
µn

(− ∂H
∂v−n

+ λ). (2.50)

From (2.30), (2.49) and (2.50), we have

vn+1 = (1− fn)vn + fnvc
− ∂H
∂vn

vc + λvn

− ∂H
∂vn

vn + λvc
. (2.51)

Let ∆t is the time-increment in seconds between two discrete time-steps, such that vn ≡

v
(
n∆t

)
and vn+1 ≡ v

(
(n + 1)∆t

)
. Let us also define τn = ∆t(1/fn − 1). Then since

0 < fn ≤ 1, we have τn ∈ [0,∞) s. τn can be considered to be the time-constant for the

neuron at the n-th time-step, and the discrete-time dynamical systems model in (2.51) can

be written as

(τn + ∆t)

(
vn+1 − vn

∆t

)
+ vn = vc

− ∂H
∂vn

vc + λvn

− ∂H
∂vn

vn + λvc
. (2.52)
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Since the n-th time-step corresponds to time t = n∆t, vn ≡ v(n∆t) and (2.52) can be

rewritten as

(τ(t) + ∆t)

(
v(t+ ∆t)− v(t)

∆t

)
+ v(t) = vc

− ∂H
∂v(t)

vc + λv(t)

− ∂H
∂v(t)

v(t) + λvc
(2.53)

In the limiting case when ∆t→ 0 s, this reduces to the following continuous-time dynamical

system model [49]

τ(t)
dv(t)

dt
+ v(t) = vc

− ∂H
∂v(t)

vc + λv(t)

− ∂H
∂v(t)

v(t) + λvc
. (2.54)

The operation of the proposed neuron model is therefore governed by two sets of dynamics:

(a) minimization of the energy functional H(.); (b) modulation of the trajectory using a

time-constant τ(t), also referred to as modulation function in this work. Fortunately, the

evolution of τ(t) can be made as complex as possible without affecting the asymptotic fixed-

point solution of the optimization process. It can be a made a function of local variables

like v and v̇ or a function of global/network variables like H and Ḣ. Different choices of the

modulation function can lead to different trajectories followed by the neural variables under

the same energy contour. Later in this section, I show how different forms of τ(t) produce

different sets of neuronal dynamics consistent with the dynamics that have been reported in

neurobiology.

2.4.2 Orthogonal, mixed-signal and ReLU encoding of a single GT

neuron

As explained previously, the penalty term R(v) of the form presented above works analogous

to a barrier function, penalizing the energy functional whenever v exceeds the threshold.
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Figure 2.3: (a) Plot of Ψ̄ versus b̄, for two different values of Q. (b) Error introduced as a
result of approximating Ψ by Ψ̄ for different values of Q and two different current inputs.

This transforms the time-evolution of v into a spiking mode above the threshold, while

keeping the sub-threshold dynamics similar to the non-spiking case. The GT neuron model

satisfies the following first order condition

Ψ̄ = −Qv̄ + b̄

Ψv = 0; Ψ ≥ 0; |v| ≤ vc. (2.55)

Then as Q→ 0,

Ψ̄→ ReLU
(
b̄
)
, (2.56)

where

ReLU(z) =


z ; z > 0

0 ; z ≤ 0


. (2.57)
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Figure 2.3(a) demonstrates (2.56) for two different values of Q. Since IΨ also controls the

refractory period of the GT neuron and the temporal expectation is computed over a fi-

nite time window, there exists an upper-bound on the maximum firing rate as shown in

Figure 2.3(a). Note that Ψ̄ corresponds to an averaging over discrete events, thus the re-

sult (2.56) exhibits quantization effects. But in the limit Q → 0, Ψ̄ converges towards the

floating-point solution Ψ in (2.5). This is demonstrated in Figure 2.3(b) which plots the

absolute difference between Ψ and Ψ̄ (normalized by IΨ) for different values of the leakage

impedance. Note that the quantization step of 0.001 in this plot arises due to a finite number

of spikes that can occur within a finite window size (1000 time-steps for the plot shown).

This quantization error could be further reduced by considering a larger window size. For

the rest of this work, I will use the variables Ψ, v and their temporal expectation

Ψ̄, v̄ interchangeably with the understanding that they converge towards each

other in the limit Q→ 0.

An interesting observation about the response of a single GT neuron from the first-order

condition in (2.55) is

Ψ +Qv = b (2.58)

Ψv = 0. (2.59)

Thus, all GT neurons are encoding the input stimuli as two orthogonal components, one

being the discrete (or digital) above-threshold response Ψ and the other being the analog

sub-threshold response v, thereby producing a mixed-signal encoding. I will extend this

concept in Chapter 5 to a network of ON-OFF neurons that can produce coupled orthogonal

trajectories, in order to design a sparsity-driven learning framework.
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2.5 Single-neuron dynamics

Here I show how we can reproduce a number of single-neuron response characteristics by

changing the modulation function τ(t) in the neuron model. I will extend these dynamics

in subsequent chapters to build coupled networks with interesting properties like memory

and global adaptation for energy-efficient neural representation. The results reported here

are representative of the types of dynamical properties the proposed model can exhibit,

but are not exhaustive. The accompanying software (MATLAB©) implementation of the

Growth Transform neuron model [55] would enable users to visualize the effects of different

modulation functions and other parameters on the neural dynamics.

Standard tonic-spiking response

When stimulated with a constant current stimulus b, a vast majority of neurons fire single,

repetitive action potentials for the duration of the stimulus, with or without adaptation

[56–58]. The proposed model shows tonic spiking without adaptation when the modulation

function τ(t) = τ , where τ > 0. A simulation of tonic spiking response using the neuron

model is given in Figure 2.4(a).

Bursting response

Bursting neurons fire discrete groups of spikes interspersed with periods of silence in response

to a constant stimulus [56,57,59,60]. Bursting arises from an interplay of fast ionic currents

responsible for spiking, and slower intrinsic membrane currents that modulate the spiking

activity, causing the neuron to alternate between activity and quiescence. Bursting response
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(a)  Tonic spiking (b)  Bursting (d) Integration(c) Spike-frequency adaptation

Figure 2.4: Simulations demonstrating different single-neuron responses obtained using the
GT neuron model: (a) Tonic spiking, (b) Bursting response, (c) Spike-frequency adaptation
and (d) Integrator response.

can be simulated in the proposed model by modulating τ(t) at a slower rate compared to

the generation of action potentials, in the following way

τ(t) =


τ1 , c(t) < B

τ2 , c(t) ≥ B

(2.60)

where τ1 > τ2 > 0, B is a parameter and the count variable c(t) is updated according to

c(t) =


lim

∆t→0
c(t−∆t) + I[v(t) > 0]) , lim

∆t→0
c(t−∆t) < B

0 , lim
∆t→0

c(t−∆t) ≥ B

, (2.61)

I[.] being an indicator function. Simulation of a bursting neuron in response to a step input

is given in Figure 2.4(b).

Spike-frequency adaptation

When presented with a prolonged stimulus of constant amplitude, many cortical cells initially

respond with a high-frequency spiking that decays to a lower steady-state frequency [61].

33



This adaptation in the firing rate is caused by a negative feedback to the cell excitability

due to the gradual inactivation of depolarizing currents or activation of slow hyperpolariz-

ing currents upon depolarization, and occur at a time-scale slower than the rate of action

potential generation. Spike-frequency adaptation can be modeled in GT neuron by varying

the modulation function according to

τ(t) = τ − 2φ
(
h(t) ∗Ψ(v(t))

)
(2.62)

where h(t)∗Ψ(v)(t) is a convolution operation between a continuous-time first-order smooth-

ing filter h(t) and the spiking function Ψ(v(t)), and

φ(x) = τ
( 1

1 + exp(x)

)
(2.63)

is a compressive function that ensures 0 ≤ τ(t) ≤ τ . The parameter τ determines the steady-

state firing rate for a particular stimulus. A tonic-spiking response with spike-frequency

adaptation is shown in Figure 2.4(c).

Integrator response

When the baseline input is set slightly negative so that the fixed point is below the threshold,

the neuron works like a leaky integrator as shown in Figure 2.4(d), preferentially spiking

to high-frequency or closely-spaced input pulses that are more likely to make v cross the

threshold.
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2.6 Discussions

I introduced a spiking neuron model based on the Growth Transform dynamical system whose

responses are optimized w.r.t. an energy function that models the local power dissipation at

a neuron. I also discussed how we can replicate single-neuron response characteristics similar

to biological neurons by choosing different forms of the modulation function τ(t). The GT

neuron model abstracts out the essential aspects of spike generation and spike transmission

to replicate neural dynamics in an energy-based machine learning framework, where neural

responses are optimized w.r.t. a relevant energy metric for the neuron. Spike generation

in the GT neuron occurs as a consequence of a constraint violation where the spike-rates

correspond to the Lagrangian for the constraint. In this manner, the GT neuron model

connects key optimization concepts with neurally inspired dynamics and neural variables.
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Chapter 3

Extension to coupled neurons in a

network

In this chapter, I present how the proposed model can be extended to coupled neurons in a

network by remapping synaptic interactions in a simple spike response model and show the

distributed energy functional for a coupled network. I also show that under conditions of

symmetry, the neurons minimize a network energy functional and the network response and

trajectories can be visualized using energy contours and offer a geometric interpretation. The

chapter ends with how the modulation function can be made a function of different global

variables like network energy so that the network can encode different population dynamics

under the same energy contour.
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Figure 3.1: (a) Simple but general model of a spiking neural network; (b) Compartmental
network model obtained after remapping.

3.1 Growth Transform neural network model

3.1.1 Remapping synaptic interactions in a standard network

In generalized threshold models like the Spike Response Model [62], the membrane voltage

is given using response kernels that accurately model the post-synaptic responses due to

pre-synaptic input spikes, external driving currents and the shape of the spike - the latter

term being also used to model refractoriness. However, in simpler adaptations of spiking

neuron models, the spike shape is often disregarded, and the membrane potentials are written

as simple linear post-synaptic integrations of input spikes and external currents [10, 63].

We consider a similar model where vi ∈ R represents an inter-cellular membrane potential

corresponding to neuron i in a network of M neurons. The i-th neuron receives spikes from

the j-th neuron that are modulated by a synapse whose strength or weight is denoted by

Wij ∈ R. Assuming that the synaptic weights are constant, the following discrete-time

temporal equation governs the membrane potential dynamics [64,65]

vi,n+1 = γvi,n +
M∑
j=1

WijΨ(vj,n) + yi,n, ∀i = 1, ...,M, (3.1)
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where vi,n ≡ vi(n∆t) and vi,n+1 ≡ vi
(
(n+ 1)∆t

)
, ∆t being the time increment between two

time-steps. yi,n represents the depolarization due to an external stimulus that can be viewed

as yi,n = RmiIi,n, where Ii,n ∈ R is the current stimulus at the n-th time-step and Rmi ∈ R

is the membrane resistance of the i-th neuron. Here, 0 ≤ γ ≤ 1 denotes the leakage factor

and Ψ(.) could denote the same simple spiking function as in Chapter 2 that is positive only

when the voltage vj,n exceeds a threshold and 0 otherwise. Note that in (3.1), the filter

Ψ(.) implicitly depends on the pre-synaptic spike-times through the pre-synaptic membrane

voltage vj,n. Such a spiking neural network model is shown in Figure 3.1(a). As before, let

us enforce that all membrane potentials are bounded by vc as

|vi,n| ≤ vc, ∀i = 1, ...,M, ∀n. (3.2)

If Ψ(.) was a smooth function of the membrane potential, vi,n would track the net input at

every instant. For a non-smooth Ψ(.), however, let us make the additional assumption that

the temporal expectation of vi,n encodes the net input over a sufficiently large time-window.

We can rewrite (3.1) for a sequence
(
vi,n−N+1, vi,n−N+2, ..., vi,n

)
of size N to obtain

vi,n−N+2 = vi,n−N+1 + (γ − 1)vi,n−N+1 +
M∑
j=1

WijΨ(vj,n−N+1) + yi,n−N+1

vi,n−N+3 = vi,n−N+2 + (γ − 1)vi,n−N+2 +
M∑
j=1

WijΨ(vj,n−N+2) + yi,n−N+2

.

.

vi,n+1 = vi,n + (γ − 1)vi,n +
M∑
j=1

WijΨ(vj,n) + yi,n
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Summing over the time-steps and dividing by the total number of time-steps, we get

(1− γ)EN
(
vi[n]

)
+

1

N

(
vi,n+1 − vi,n−N+1

)
=

M∑
j=1

WijEN
(

Ψj[n]
)

+ EN
(
yi[n]

)
, (3.3)

where EN
(

Ψj[n]
)

= 1
N

n∑
p=n−N+1

Ψ(vj,p). Since the neural responses are assumed to be

bounded at all times, as N → ∞, the second term in (3.3) approaches zero, so that we

can rewrite (3.3) as

(1− γ)v̄i[n] =
M∑
j=1

WijΨ̄j[n] + ȳi[n], (3.4)

where Ψ̄j[n] = lim
N→∞

n∑
p=n−N+1

Ψ(vj,p).

To reduce notational clutter, let us re-write (3.4) in a matrix form as

(1− γ)v̄[n] = WΨ̄[n] + ȳ[n], (3.5)

where v̄[n] ∈ RM is the vector of mean membrane potentials for a network of M neurons,

W ∈ RM × RM is the synaptic weight matrix for the network, ȳ[n] ∈ RM is the vector of

mean external inputs for the n-th time-window and Ψ̄[n] =
[
Ψ̄1[n], Ψ̄2[n], ..., Ψ̄M [n]

]T
is the

vector of mean spike currents. As Ψ(.) is a non-linear function of the membrane potential,

it is difficult to derive an exact network energy functional corresponding to (3.5). However,

if we assume that the synaptic weight matrix W is invertible, we can re-write Eq. (3.5) as

Ψ̄[n] = (1− γ)W−1v̄[n]−W−1ȳ[n], or (3.6)

Ψ̄[n] = −Qv̄[n] + b̄[n], (3.7)
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where Q = −(1 − γ)W−1, and b̄[n] = −W−1ȳ[n] is the effective external current stimulus.

Note that in case W is not invertible, W−1 could represent a pseudo-inverse. For the i-th

neuron, (3.7) is equivalent to

Ψ̄i[n] = −
M∑
j=1

Qij v̄j[n] + b̄i[n], i = 1, ...,M, (3.8)

subject to the bound constraint |vi,n| ≤ vc ∀i, n.

3.1.2 Network model using the Growth Transform dynamical sys-

tem

Equation (3.8) can be rewritten as

Ψ̄i[n] = −Qiiv̄i[n] +
(
b̄i[n]−

∑
j 6=i

Qij v̄j[n]
)

= −Qiiv̄i[n] + b̄′i[n]. (3.9)

This represents the same first-order condition as in (2.44) for the GT neuron model with

leakage transconductance Qii and a modified input b′i that comprises the external input bi

and inputs from other neurons in the network. As such, this first-order condition can be

satisfied using the same discrete-time Growth Transform updates as in Algorithm 2. The

corresponding distributed energy functional across the network is given by

H(vi) =
M∑
i=1

(1

2
Qiiv

2
i − b′ivi +

vi∫
−∞

Ψ(η)dη
)
, (3.10)
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where b′i = bi −
∑
j 6=i

Qijvj. The summary of the discrete-time GT spiking neural network

model is presented in Algorithm 4.

Algorithm 4 Discrete-time GT spiking neural network model

For a network of M neurons with state variables v = {vi} ∈ RM , where the trans-
conductance coupling matrix is denoted by Q = {Qij} ∈ RM × RM and the external
stimulus vector is denoted by b = {bi} ∈ RM , the time-evolution of the network under
bound constraints on the state variables |vi,n| ≤ vc for all time-indices n, is governed by
the following discrete-time updates:

vi,n+1 ← vc
− ∂H
∂vi,n

vc + λvi,n

− ∂H
∂vi,n

vi,n + λvc
, i = 1, ...,M, (3.11)

where

∂H
∂vi,n

=
M∑
j=1

Qijvj,n − bi,n + Ψ(vi,n);

Ψ(vi,n) =

 IΨ A ; vi,n > 0 V

0 A ; vi,n ≤ 0 V

;

λ is a fixed current parameter such that λ > | ∂H
∂vi,n
| ∀i, n.

The composite spike response of the i-th neuron at time-step n is given by

si,n = vi,n + CΨ(vi,n),

where the trans-impedance parameter C > 0 determines the magnitude of each spike.

3.1.3 Complete continuous-time GT spiking neural network model

As before, we can exploit the homotopic property of Growth Transforms to derive continuous-

time updates for the network model, which has been summarized in Algorithm 5.
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Algorithm 5 Complete continuous-time GT spiking neural network model

For a network of M neurons with state variables v = {vi} ∈ RM , where the trans-
conductance coupling matrix is denoted by Q = {Qij} ∈ RM × RM and the external
stimulus vector is denoted by b = {bi} ∈ RM , the time-evolution of the network un-
der bound constraints on the state variables vi(t) ≤ vc ∀t, is governed by the following
continuous-time dynamical system:

τi(t)
dvi(t)

dt
+ vi(t) = vc

− ∂H
∂vi(t)

vc + λvi(t)

− ∂H
∂vi(t)

vi(t) + λvc
, (3.12)

where

∂H
∂vi(t)

=
M∑
j=1

Qijvj(t)− bi(t) + Ψ(vi(t));

Ψ(vi(t)) =

 IΨ A ; vi(t) > 0 V

0 A ; vi(t) ≤ 0 V

;

λ is a fixed current parameter such that λ > | ∂H
∂vi(t)
| ∀i, t;

0 ≤ τi(t, vi, v̇i,H, Ḣ) <∞ is a modulation function that can be tuned individually
for each neuron to encode different trajectories and different steady-state spiking dynamics
corresponding to the optimal solution.

The composite spike response of the i-th neuron at time t is given by

si(t) = vi(t) + CΨ(vi(t)), (3.13)

where the trans-impedance parameter C > 0 W determines the magnitude of each spike.
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3.2 Network energy function under symmetry condi-

tions

Under conditions of symmetry, (3.8) can be viewed as the first-order condition of the following

network objective function or energy functional

H
(
vi
)

=
1

2

M∑
i=1

M∑
j=1

Qijvjvi −
M∑
i=1

bivi +
M∑
i=1

vi∫
−∞

Ψ(v)dv. (3.14)

The network energy functional H(.) in (3.14) also admits a physical interpretation, as shown

in Figure 3.1(b). Each neuron i receives a voltage input from the neuron j through a synapse

that can be modeled by a trans-conductance Qij. The neuron i also receives an electrical cur-

rent stimulus bi and exchanges a voltage-dependent ionic-current with its medium, denoted

by Ψ(vi). Then, the function H(.) in (3.14) represents the extrinsic (or metabolic) power

supplied to the network, comprising the following three components: (a) Power dissipation

due to coupling between neurons; (b) Power injected to or extracted from the system as a

result of external stimulation; and (c) Power dissipated due to neural responses.

3.2.1 Visualizing network solution using energy contours

For a symmetric network, we can visualize how network trajectories evolve over time to

encode the optimal solution using energy contours, as illustrated in Figure 3.2 for a 2-neuron

network where Q is an identity matrix. For the sake of simplicity, I have considered the

membrane potentials to be normalized in all experiments reported in this work (i.e., vc = 1).

When the barrier function R(.) is not present, the membrane potentials can converge to
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Figure 3.2: (a) Bounded dynamics in a 2-neuron network in absence of the barrier function.
(b) Corresponding contour plot showing convergence of the membrane potentials when the
external stimulus is applied. (c) Bounded and spiking dynamics in the same 2-neuron network
in presence of the barrier function. (d) Corresponding contour plot showing steady-state
dynamics of the membrane potentials in the presence of external stimulus.
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Figure 3.3: Decoupling of network solution, spike shape and response trajectory using the
proposed model. Different modulation functions lead to different steady-state spiking dy-
namics under the same energy contour.

any value between −1 and +1, as shown in Figure 3.2(a). Here v∗1 is hyperpolarized due to

a negative stimulus, and v∗2 is depolarized beyond the threshold. Figure 2.2(b) shows the

corresponding energy contours, where the steady-state neural responses encode the optimal

solution of the energy function. In order to show the effect of Ψ(.) on the nature of the

solution, the neural responses and contour plots for the 2-neuron network are plotted in

Figures 2.2(c) and (d) for the same set of inputs as in Figures 2.2(a) and (b), when the

barrier function is present. The penalty function produces a barrier at the thresholds for

both neurons, which are indicated by red dashed lines, transforming the time-evolution of

s2 into a digital, spiking mode, where the firing rate is determined by the extent to which

the neuron is depolarized.

The proposed model enables us to decouple the three following aspects of the spiking neural

network, as shown in Figure 3.3 and given below:

(a) Fixed points of the network energy functional, which depend on the network con-

figuration and external inputs;
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(b) Nature and shape of neural responses, without affecting the network minimum;

and

(c) Spiking statistics and transient neural dynamics at the cellular level, without af-

fecting the network minimum or spike shapes.

This makes it possible to independently control and optimize each of these neuro-dynamical

properties without affecting the others. The first two aspects arise directly from an appropri-

ate selection of the energy functional. The modulation function, in essence, loosely models

cell excitability, and can be varied to tune transient firing statistics based on local and/or

global variables. This allows us to encode the same optimal solution using widely different

firing patterns across the network.

3.2.2 Geometric interpretation of network dynamics

The remapping from standard coupled conditions of a spiking neural network to the proposed

formulation admits a geometric interpretation of neural dynamics. In this section, I show

how the activity of individual neurons in a network can be visualized with respect to a

network hyper-plane. This geometric interpretation can then be used to understand network

dynamics in response to different stimuli.

Like a Hessian, if we assume that the matrix Q is positive-definite about a local attractor,

there exists a set of vectors xi ∈ RD, i = 1, ...,M such that each of the elements Qij can

be written as an inner product between two vectors as Qij = xi.xj, 1 ≤ i, j ≤ M . This

is similar to kernel methods that compute similarity functions between pairs of vectors in

the context of support vector machines [66]. This associates the i-th neuron in the network
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with a vector xi, mapping it onto an abstract metric space RD and essentially providing an

alternate geometric representation of the neural network. From (2.44), the average spiking

activity of the i-th neuron for the n-th time-window can then be represented as

Ψi = −
M∑
j=1

Qijvj + bi

=
M∑
j=1

−(xi.xj)vj + bi

= w.xi + bi, (3.15)

where

w = −
M∑
j=1

xjvj. (3.16)

Ψi therefore represents the distance of the vector xi from a network hyperplane in the D-

dimensional vector space, which is parameterized by the weight vector w and offset bi. When

a stimulus bi is applied, the hyperplane shifts, leading to a stimulus-specific value of this

distance for each neuron that is also dependent on the network configuration Q. Hence, Ψ(.)

is denoted as a ‘network variable’, that signifies how the response of each neuron is connected

to the rest of the network. Note that we can also write the synaptic weight elements in a

kernelized form as Qij = K(xi).K(xj), where K(.) is a nonlinear transformation function,

defining a non-linear boundary for each neuron. This idea of a dynamic and stimulus-specific

hyperplane can offer intuitive interpretations about several population dynamics reported in

literature and have been elaborated on in the following subsections.
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Figure 3.4: (a) Contour plot of spiking activity corresponding to a particular stimulus vector.
Neurons are colored according to their mean firing rate (normalized w.r.t. the maximum
firing rate) during the stimulus period. The white dashed line is the contour corresponding
to Ψ = 0. (b) Spike raster for all neurons for the input in (a). (c) The mean firing rate and
(d) time-to-first spike as a function of the distance d for each neuron in the network.
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3.2.3 Network response and network trajectories

In order to outline the premises of the next few experiments on population dynamics using

the geometric interpretation outlined in Section 3.2.2, let us consider a small network of

neurons on a two-dimensional co-ordinate space, and assign arbitrary inputs to the neurons.

A Gaussian kernel is chosen for the coupling matrix Q as follows

Qij = exp(−γ||xi − xj||22). (3.17)

This essentially clusters neurons with stronger couplings between them closer to each other

on the co-ordinate space, while placing neurons with weaker couplings far away from each

other. A network consisting of 20 neurons is shown in Figure 3.4(a), which also shows

how the spiking activity changes as a function of the location for the particular network

configuration and input stimulus vector. Each neuron is color coded based on the mean

firing rate (normalized w.r.t. the maximum mean firing rate) with which it responds when

the stimulus is on. Figure 3.4(b) shows the spike raster for the entire network. We see

that the responsiveness of the neurons to a particular stimulus increases with the distance

at which it is located from the hypothetical hyperplane in the high-dimensional space to

which the neurons are mapped through kernel transformation. It is shown below how this

geometric representation can provide insights on population-level dynamics in the network

considered.

Rate and temporal coding

The Growth Transform neural network inherently shows a number of encoding properties

that are commonly observed in biological neural networks [62, 67]. For example, the firing
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rate averaged over a time window is a popular rate coding technique that claims that the

spiking frequency or rate increases with stimulus intensity [68]. A temporal code like the

time-to-first-spike posits that a stronger stimulus brings a neuron to the spiking threshold

faster, generating a spike, and hence relative spike arrival times contain critical information

about the stimulus [69].

These coding schemes can be interpreted under the umbrella of network coding using the

same geometric representation as considered above. Here, the responsiveness of a neuron is

closely related to its proximity to the hyperplane. The neurons which exhibit more spiking

are located at a greater distance from the hyperplane. We see from Figures 3.4(c) and

(d) that as this value increases, the average firing rate of a neuron (number of spikes in

a fixed number of time-steps or iterations) increases, and the time-to-first spike becomes

progressively smaller. Neurons with a distance value below a certain threshold do not spike

at all during the stimulus period, and therefore have a mean firing rate of zero and time-

to-spike at infinity. Therefore, based on how the network is configured in terms of synaptic

inputs and connection strengths, the spiking pattern of individual neurons conveys critical

information about the boundary and their placement with respect to it.

Network coding and neural population trajectories

The encoding of a stimulus in the spatiotemporal evolution of activity in a large population

of neurons is often represented in neurobiological literature by a unique trajectory in a high-

dimensional space, where each dimension accounts for the time-binned spiking activity of

a single neuron. Projection of the high-dimensional activity to two or three critical dimen-

sions using dimensionality reduction techniques like Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA) have been widely used across organisms and brain
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Figure 3.5: (a) and (b) Perturbation of the stimulus vector in different directions for the
same network produces two different contours. (c) Corresponding population activities trace
different trajectories in the neural subspace.

regions to shed light on how neural population response evolves when a stimulus is deliv-

ered [70, 71]. For example in identity coding, trajectories corresponding to different stimuli

evolve towards different regions in the reduced neural subspace, that often become more

discriminable with time and are stable over repeated presentations of a particular stimu-

lus [70–72]. I show how this can be explained in the context of the geometric interpretation.

For the same network as above, let us start with the simplest possible experiment, starting

from the same baseline, and perturbing the stimulus vector in two different directions. This

pushes the boundary in two different directions, exciting different subsets of neurons, as

illustrated in Figures 3.5(a) and (b). A similar dimensionality reduction to three principal

components in Figure 3.5(c) shows the neural activity unfolding in distinct stimulus-specific

areas of the neural subspace. The two contour plots also show that some neurons may

spike for both the inputs, while some spike selectively for one of them. Yet others may not

show any spiking for either stimulus, but may spike for some other stimulus vector and the

corresponding stimulus-specific boundary.
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3.2.4 Relation with other models

The network energy functional in (3.14) bears similarity with the Ising Hamiltonians used

in Hopfield networks [73], Boltzmann machines [74] or spin-glass models [75], but contains

an additional integral term
∫

Ψ(.)dη, similar to continuous-time Hopfield networks with

graded neurons [76]. However, unlike in continuous-time Hopfield networks where Ψ−1(.) is

assumed to be a saturation/squashing function of a rate-based representation, the role of Ψ(.)

in the proposed model is to implement a barrier or a penalty, such that the neural responses

can produce spiking dynamics. This enables us to obtain neural responses at the level of

individual spikes instead of average rate-based responses; and allows for a more fine-grained

control over the spiking responses of the network. The saturation (squashing) function, on

the other hand, is implemented by the bound constraints on the Growth Transform updates,

and hence the network is not limited to choosing a specific form of saturation non-linearity

(e.g. sigmoid).

As discussed before for a single neuron, for the form of Ψ(.) considered in 2.8, the barrier

function can be rewritten as
vi∫
−∞

Ψ(v)dv = Ψivi, where Ψi = 0 A if vi ≤ 0 V and Ψi = IΨ A

if vi > 0 V . For a continuous-time implementation (discrete-time step that is sufficiently

small), vi(t) will be reset as soon as it reaches the threshold (0 V ), and will not exceed the

threshold. In this case, we can write Ψi(t) ≥ 0 and Ψi(t)vi(t) = 0 ∀t. This is equivalent to

Karush-Kuhn-Tucker (KKT) conditions. Thus the spike events Ψi(t), i = 1, ...,M , act as the

KKT multipliers corresponding to the M inequality constraints vi(t) ≤ 0, i = 1, ...,M [42],

encoding the sensitivity of the i-th neuron to the inequality constraint.
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Also, if we consider the spike response as a displacement current, we can write

oi = Cout
dvi
dt
, (3.18)

where Cout is the membrane capacitance. Note that oi is the analog spike response current

output and is different from Ψ(vi), which is the binary spike event. Then the membrane po-

tential for the continuous-time Growth Transform neuron model in Table 3 can be rewritten

as

vi(t) =
1

Cout

t∫
−∞

oi(t
′)dt′. (3.19)

Thus according to this interpretation, the communication between neurons takes place using

current waveforms, similar to integrate-and-fire models, and the current waveforms can be

integrated at the post-synaptic neuron to recover the membrane potential. The remapping

between W and Q (described in Section 3.1.1) would still hold in this case, since we are

transmitting analog spike current waveforms, and not post-synaptic current waveforms such

as exponentially decaying functions, α-functions or simplified current pulses (digital bits)

used in integrate-and-fire models [77,78].

3.3 Coupled spiking network with pre-synaptic adap-

tation

We can extend the proposed framework to a network model where the neurons, apart from

external stimuli, receive inputs from other neurons in the network. We begin by considering

Q to be a positive-definite matrix, which gives a unique solution of (3.14). Although elements

53



of the coupling matrix Q already capture the interactions among neurons in a coupled

network, we can further define the modulation function as follows to make the proposed

model behave as a standard spiking network

τi(t) = φ

(
h(t) ∗

M∑
j=1

QijΨ(vj(t))

)
(3.20)

with the compressive-function φ(.) given by (2.63). (3.20) ensures that Qij > 0 corresponds

to an excitatory coupling from the pre-synaptic neuron j, and Qij < 0 corresponds to an

inhibitory coupling, as demonstrated in Figure 3.6(a). Note that irrespective of whether

such a pre-synaptic adaptation is implemented or not, the neurons under the same energy

landscape would converge to the same sub-domain, albeit with different response trajectories

and steady-state limit-cycles. This is illustrated in Figure 3.6(b) which plots the energy con-

tours for a two-neuron network corresponding to a Q matrix with excitatory and inhibitory

connections and a fixed stimulus vector b. Figure 3.6(b) also shows the responses of the two

neurons starting from the same initial conditions, with and without pre-synaptic adaptation

(where the latter corresponds to the case where the only coupling between the two neurons

is through the coupling matrix Q, but there is no pre-synaptic spike-time dependent adapta-

tion). Because the energy landscape is the same in both cases, the neurons converge to the

same sub-domain, but with widely varying trajectories and steady-state response patterns.
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Ψ(.)dv and firing patterns in response to a step input without and with global adaptation
respectively.
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3.4 Coupled network with pre-synaptic and global adap-

tation

Apart from the pre-synaptic adaptation that changes individual firing rates based on the

input spikes received by each neuron, neurons in the coupled network can be made to adapt

according to the global dynamics by changing the modulation function as follows

τi(t) = φ

(
h(t) ∗

( M∑
j=1

QijΨ(vj(t))−F(H, Ḣ)
))

(3.21)

with the compressive-function φ(.) given by (2.63). The new function F(.) is used to capture

the dynamics of the network cost-function. As the network starts to stabilize and converge

to a fixed-point, the function τi(.) adapts to reduce the spiking rate of the neuron without

affecting the steady-state solution. Figures 3.6(c) and (d) shows the time-evolution of the

spiking energy
∫

Ψ(.)dv and the spike-trains for a two-neuron network without global adap-

tation and with global adaptation respectively, using the following form for the adaptation

term

F(H, Ḣ) =


F0 , ET (Ḣ) ≈ 0

0 , otherwise.

(3.22)

where F0 > 0 is a tunable parameter. This feature is important in designing energy-efficient

spiking networks where energy is only dissipated during transients.
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3.5 Discussions

In this section, I derived the first-order condition for a coupled network of neurons by remap-

ping synaptic interactions in a simple spike response model, and showed how the same dy-

namical system based on Growth Transforms introduced in Chapter 2 can be used to satisfy

this. I derived the equivalent network energy functional for a symmetric network, and in-

troduced a geometric interpretation for neural responses and network trajectories to explain

different biologically relevant neural and population dynamics. Finally, I showed how the

modulation function in the proposed model can be made a function of global variables like

network energy so that the network can encode different population dynamics under the

same energy contour.
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Chapter 4

Learning using short-term dynamics

In this chapter, I will present three different ways in which we can perform a limited amount of

learning even without synaptic adaptation by using short-term network dynamics. The first

of these approaches involves using a recurrently connected network of GT neurons to learn

better feature representations that can be combined with external classifiers for supervised

learning. The last two approaches involve defining synaptic weights and inputs according

to a given supervised learning problem, such that the population dynamics can be used for

solving a certain task. For the last two approaches, I will also show how we can exploit the

network structure and state of convergence to learn energy-efficient neural encodings.

4.1 Using population dynamics to learn feature repre-

sentations

A recurrently connected network of GT neurons can be used to learn relevant feature rep-

resentations in its spiking statistics, which could then be combined with external classifiers
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Figure 4.1: Signal-flow showing the feature extraction procedure for a speaker recognition
task.

for supervised learning. I demonstrate this for a speaker recognition task on the benchmark

YOHO database where GTNN is used for auditory feature extraction from speech signals.

4.1.1 Auditory Feature Extraction

The feature extraction algorithm proposed in this work is summarized in Figure 4.1. Gam-

matone filterbanks [79] simulating cochlear filtering in the auditory system produce outputs

that track the energy in different frequency bands over the entire bandwidth. Each filter-

bank output xi is rectified, low-pass filtered, scaled to [0, 1] and presented to a GT neuron as

external input bi, i = 1, ..., N , N being the filterbank size. The Growth Transform neurons

track the energy in individual filterbank outputs, thus performing a basic decoding of speech

signals in terms of frequency, intensity and duration. The proposed network outlines an

approach where the early stages of acoustic information processing, which is analogous to

the functionality of cochlear nuclei, can be connected to a network-level objective function,

and the spiking dynamics produced is the direct derivative of a continuous optimization of

the network cost as it processes a continually varying input signal in real-time.
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Figure 4.2: (a) A typical example of a speech signal corresponding to the utterance “one”.
(b) The corresponding spectrogram with frame size = 150.

In the next two subsections, I explore how spike-encoded features can be extracted from

speech signals with uncoupled and coupled GT networks. For this, we use a sample speech

signal corresponding to the utterance “one”. Figures 4.2(a) and (b) show the speech signal

and its corresponding spectrogram. For this work, three different sets of features were

considered - the mean firing rate of neurons over a moving window, the mean inter-spike

interval of neurons over a moving window and a moving average over the entire spike-train

that included both spikes and the sub-threshold membrane potentials.

Uncoupled GT Neural Network Features

Let us first consider an uncoupled network, where the synaptic weight matrix Q is diagonal.

Each neuron therefore independently processes each filterbank output without contributions

from the other neurons. For the speech signal in Figure 4.2(a), the spike raster produced

by a GT neural network with 20 neurons, each processing a single output channel from a

filterbank of size 20, is presented in Figure 4.3(a). Figures 4.3(b), (c) and (d) show colormaps

for the three feature sets.
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Figure 4.3: (a) Spike raster produced by the uncoupled network of GT neurons. (b)-(d)
Colormaps depicting feature sets with rate, spike-timing and mean membrane potential-
based encoding of the speech signal in 4.2(a) respectively.

Coupled GT Neural Network Features

Next, we explore how different network connectivity patterns affect the network representa-

tion of input stimuli. For this, I considered three coupled networks with excitatory connec-

tions, inhibitory connections, and with both excitatory and inhibitory connections. For the

last network, neurons were randomly chosen to be either excitatory or inhibitory in nature.

The corresponding spike rasters and feature colormaps are shown in Figures 4.4, 4.5 and 4.6

respectively. It is seen that different types of coupling affect the spike-patterns and encoding

in markedly different ways. As expected, the average firing rate for a coupled network with

inhibitory connections is much lower than the uncoupled network.
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Figure 4.4: (a) Spike raster produced by the coupled GTNN with sparse random excitatory
connections. (b)-(d) Colormaps depicting feature sets with rate, spike-timing and mean
membrane potential-based encoding of the speech signal in 4.2(a) respectively.
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Figure 4.5: (a) Spike raster produced by the coupled growth transform neural network with
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respectively.
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Figure 4.6: (a) Spike raster produced by the coupled growth transform neural network with
sparse random excitatory as well as inhibitory connections. (b)-(d) Colormaps depicting
feature sets with rate, spike-timing and mean membrane potential-based encoding of the
speech signal in 4.2(a) respectively.

4.1.2 Speaker Recognition Experiments

A speaker identification task utilizing the feature extraction algorithm outlined in Section

4.1.1 was evaluated against the YOHO database, available through the Linguistic Data

Consortium [80]. This corpus is a collection of combination lock phrases (e.g. 26 – 81 – 56,

pronounced twenty-six eighty-one fifty-six) for 138 subjects collected across a three month

period. The data of interest are limited to the four enrollment sessions, with 24 utterances

per session, collected in an office environment at an 8 kHz sampling rate with 3.8 kHz analog

bandwidth. The first session is used for training, the second session for cross-validation, and

the remaining third and fourth sessions were applied as a test set to evaluate the performance

of the speaker identification system. There is a nominal time interval of three days between

the sessions in YOHO. The data of each utterance in a session was initially normalized to the
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maximum response in the utterance before being passed through a second order gammatone

filterbank with a quality factor of seven. Center frequencies of the filters in the filterbank

were equally spaced according to the mel-scale up to 4 kHz, where the filterbank size is 20

for all the experiments reported. The envelopes of the rectified filterbank outputs were fed

into GTNN as external stimuli. The spike-train statistics produced by the network were

smoothed out using a moving window average and used as inputs to a Gini support vector

machine (Gini-SVM) [66] which does the task of identification. The performance metrics

reported in this work are the average across all considered speakers’ probability of detection

(PD) and the equal error rate (EER), which is the point at which the false rejection and false

acceptance rates are equivalent. In general, a higher PD or lower EER would be indicative

of better performance.

First, the feature set was evaluated using a baseline recognition system without any spiking

neurons. The purpose of this evaluation was to determine the upper-limit of recognition that

can be achieved by the gammatone filterbank auditory front-end. Then, each feature set was

tested for four cases: (a) an uncoupled network, (b) a coupled network with sparse random

inhibitory connections, (c) a coupled network with sparse random excitatory connections,

and (d) a coupled network where neurons were randomly chosen to be either excitatory or

inhibitory with random synaptic weights. For both uncoupled and coupled networks, DCT

was applied as a post-processing step to decorrelate the features, and the DC component

was dropped to get 19 usable filter outputs. ∆ features (i.e. the first derivative or velocity)

were concatenated to the limit-cycle statistics extracted from the spike-trains. To reduce the

effort required by the Gini-SVM, only a subsample of the feature vector (taken at uniform

intervals) was fed into the system, for the YOHO utterances that last a couple of seconds,

the resulting feature vector length can be several tens of thousands, while the subsampled

version might be only a couple hundred.
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Results for all the experiments over the entire database are given in Table 4.1. We see

that while the performance of the uncoupled network is similar to the baseline, introducing

random couplings between neurons do not degrade the classification performance, especially

when inter-spike intervals are used as features. This enables us to explore network connec-

tivities that might lead to a more energy-efficient representation of external stimuli. For

example, the coupled network with only inhibitory connections, is seen to reduce the overall

firing rate of the network by an average of 5% per utterance, while still being able to extract

relevant features for encoding of auditory data. Moreover, inclusion of subthreshold activity

is seen to result in a finer discrimination in comparison to rate-encoding in almost all the

cases.

In order to test how the GT neural network performs with different values for the modulation

function, the same set of experiments were conducted, but with different τi, i = 1, ...,M,

chosen randomly for each neuron. The rate of sampling of the input signal was the same as

the no-delay case. We see that even with different values of the modulation function, the

classification accuracy using the spike-encoded features does not degrade, even though there

is a mismatch between the rates at which different neurons encode the auditory information.

4.2 Exploiting network structure for energy-efficiency

Here I present another way to solve learning tasks using short-term network dynamics in the

context of a support vector network, by defining the synaptic connections as kernelized dot

products of pairs of feature vectors and the external stimuli as functions of class labels. The

network of GT neurons is able to solve binary classification tasks while producing unique
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Table 4.1: Speaker recognition results on the YOHO database using GT neural network.

Description Network Features EER (%) PD (%)

Baseline No-spikes Filterbank outputs 2.91 97.69

GTNN

Uncoupled

Spike-rates 4.32 95.64

Inter-spike interval 2.15 99.02

Avg. mem. potential 2.81 98.35

Excitatory
connections

Spike-rates 5.08 93.58

Inter-spike interval 3.66 96.65

Avg. mem. potential 3.89 96.33

Inhibitory
connections

Spike-rates 4.67 94.49

Inter-spike interval 3.56 96.97

Avg. mem. potential 3.82 96.75

Excitatory and

inhibitory
connections

Spike-rates 4.32 94.90

Inter-spike interval 3.83 96.30

Avg. mem. potential 2.22 97.5

GTNN
with

random τi

Uncoupled

Spike-rates 4.10 95.96

Inter-spike interval 2.18 99.08

Avg. mem. potential 3.02 98.04

Excitatory
connections

Spike-rates 6.09 91.50

Inter-spike interval 3.84 96.63

Avg. mem. potential 4.15 95.79

Inhibitory
connections

Spike-rates 4.98 94.08

Inter-spike interval 3.71 96.63

Avg. mem. potential 5.27 93.33

Excitatory and

inhibitory
connections

Spike-rates 4.95 94.25

Inter-spike interval 3.54 97.12

Avg. mem. potential 3.96 95.00
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but interpretable neural dynamics like spiking and noise-shaping, and different statistical

properties of the GT neurons encode the classification properties of the network which include

classification margin.

4.2.1 Mathematical formulation for GT spiking SVMs

For mapping GTNN into a support vector network, I will follow the framework previously re-

ported in [66] for solving probability regression problems. We can decompose the response of

the i-th neuron in the network and the corresponding bias bi into two differential components

vi = vi1 − vi2, and (4.1)

bi = bi1 − bi2, (4.2)

where vi1 and vi2 satisfy the following constraints

vi1 + vi2 = 1 (4.3)

vi1, vi2 ≥ 0. (4.4)

such that |vi| ≤ 1 ∀i. Then, the first-order condition for a coupled network of GT neurons

can be rewritten as

Ψ(vi1 − vi2) = −
M∑
j=1

Qij(vj1 − vj2) + (bi1 − bi2). (4.5)
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For this work, I define the spike function Ψ(.) in a slightly different way as follows

Ψ(vi) =


2 ; vi > 0

−2 ; vi ≤ 0


, (4.6)

which allows us to rewrite (4.5) as

θ(vi1)− θ(vi2) = −
M∑
j=1

Qij(vj1 − vj2) + (bi1 − bi2), (4.7)

where

θ(vik) =


1 ; vik > 0.5

−1 ; vik ≤ 0.5


. (4.8)

Introducing variables yjk, (4.7) can be expressed as

θ(vik) = −
M∑
j=1

Qij(vjk − yjk), (4.9)

where bik satisfies the relation

bik =
M∑
j=1

Qijyjk, k = 1, 2, (4.10)

under the assumption that Q−1 exists. Equation (4.9) along with the constraints given by

(4.3) and (4.4) can be viewed as a first-order condition for minimizing the following energy
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functional

Hsvm(vik) =
2∑

k=1

[ M∑
i=1

M∑
j=1

Qij(vjk − yjk)(vik − yik) +
M∑
i=1

∫
θ(vik)dvik

]
(4.11)

=
2∑

k=1

[ M∑
i=1

M∑
j=1

Qij(vjk − yjk)(vik − yik) +
M∑
i=1

Φ(vik)
]
, (4.12)

where the piece-wise integral for θ(.) is given by

Φ(vik) =

∫
θ(vik)dvik = |vik − 0.5|. (4.13)

Φ(.) is referred to as the potential function in this work.

If we assume that the matrix Q is positive-definite, the first part of the optimization function

in (4.12) is equivalent to minimizing a quadratic distance between the responses vik and the

variables yik [66]. The second part of the optimization function is equivalent to minimizing a

cumulative potential function Φ(.) corresponding to each neuron. The responses vik unfold

over a probability manifold and can be considered analogous to class probabilities for a

binary classification problem.

To show the framework’s connection with SVMs, we will derive a primal cost function that

can be used to visualize the response of the network when the trajectory of the neuron

evolves according to Ψ(.). We introduce a network variable zik given by

zik =
M∑
j=1

Qijvjk − bik (4.14)
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such that equation (4.9) can be rewritten as

θ(vik) = −zik. (4.15)

Since the interconnection matrix Q is assumed to be positive-definite, each of its elements Qij

can be written as an inner-product between two vectors as Qij = xi.xj, xi ∈ RD, similar to

that of a kernel matrix used in SVMs. Thus, each neuron i in the network can be associated

with a vector xi which enables the neuron to be mapped onto a metric space RD, providing

an alternate geometric representation of the neural network. Thus

zik =
(∑

j

xjvjk
)
.xi − bik (4.16)

= wk.xi − bik (4.17)

represents the distance of the vector xi from a hyper-plane in the co-ordinate space param-

eterized by a weight vector wk and offset bik where

wk =
∑
j

xjvjk =
∑
j

xjθ
−1(zjk). (4.18)

Equations (4.17) and (4.18) can be considered to be the first order condition for minimizing

a primal cost function P with respect to the vector wk, where P is given by

P =
1

2

2∑
k=1

||wk||2 −
M∑
i=1

2∑
k=1

∫
θ−1(zik)dzik

=
2∑

k=1

1

2
||wk||2 +

M∑
i=1

2∑
k=1

g(zik) (4.19)
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where

g(zik) = −
∫
θ−1(zik)dzik. (4.20)

g(.) signifies a network loss-function as a function of the neuron’s classification margin zik

or the distance of the neuron (represented as a vector in some metric space) from the clas-

sification boundary.

The mapping between the response of the neuron (vik) to the response of the network g(zik)

according to

Φ(vik)
∫
dvik←−−− θ(vik)←→ θ−1(zik)

∫
dzik−−−→ g(zik) (4.21)

will be useful for visualizing the nature of the solution and the network’s dynamical re-

sponse, as demonstrated next using a specific example of a probabilistic GiniSVM which

was presented in [66].

For a GiniSVM, the potential function is given by Φ(vi1) = (vi1− 1/2)2. The corresponding

loss-function g(.) is obtained by integrating the inverse of θ(.) in accordance with (4.21) and is

also illustrated in Figure 4.7(a). If the variables yik represent the binary labels that categorize

the vectors xi (and hence the ith neuron) into one of two possible classes k = 1, 2, the variable

zi1 then corresponds to the distance of the vector xi from a classification hyperplane given by

equation (4.17) [66]. The hyperplane is illustrated in Figure 4.7(b) which shows the location

of the vectors A,B and C in the feature space and their respective mappings according to

equation (4.21) is shown in Figure 4.7(a). In [66], this visualization was used to understand

the sparsity of an SVM solution or to determine the location of the support vectors. In this

work, the visualization tool is used to understand the dynamics of the optimization process

as the dual cost function is optimized. This is illustrated in Figure 4.7(c) where one of the
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neurons traverses the trajectory C → B → A in the primal and dual space. Accordingly,

the classification hyperplane also optimizes itself as shown in Figure 4.7(c).

4.2.2 Spiking SVMs based on Growth Transforms

One possible approach to implement a dynamic model of a neuron is to update the variables

vik, k = 1, 2, such that the dual cost function Hsvm(.) is optimized over a manifold D defined

by:

D = {vik : vik ≥ 0 and vi1 + vi2 = 1}. (4.22)

This is a probability manifold similar to (2.16) and as such the evolution process can be

implemented using polynomial growth transform [45]. For the cost function Hsvm(vik) in

(4.12), the Growth Transform updates for vik are

vik ← σ(vik) =
1

µi
vik(−

∂Hsvm(vik)

∂vik
+Ki)

=
1

µi
vik(−

M∑
j=1

Qijvjk − bik + θ(vik) +Ki), k = 1, 2, (4.23)

where

µi = vi1
(∂Hsvm(vi1)

−∂vi1
+Ki

)
+ vi2

(
− ∂Hsvm(vi2)

∂vi2
+Ki

)
(4.24)

is a normalization factor that ensures vi1 + vi2 = 1. K = {Ki}, i = 1, ...,M , is a constant

vector of non-negative elements, which is admissible if vik(
∂Hsvm(vik)

∂vik
+Ki) ≥ 0 ∀vik ∈ H and

2∑
k=1

vik(
∂Hsvm(vik)

∂vik
+Ki) > 0 ∀i [46].
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If Φ′(.) (or θ(.)) is a continuous function, Growth Transform ensures that

Hsvm(σ(vik)) ≤ Hsvm(vik), (4.25)

with equality only if vik is a critical point ofHsvm. However if as in (4.8), Φ′(.) is discontinuous

over a sub-domain X ∈ D, the critical point is not reachable by the Growth Transform

updates in (4.23), some of the variables vik exhibit limit-cycles about the sub-domain X .

Consider the potential function given by Φ(vik) = |vik − 1
2
| and shown in Figure 4.8(a).

The gradient of the function Φ(.) now has a discontinuity at vik = 1/2, k = 1, 2, ∀i. The

corresponding primal loss-function for a binary classification task can be obtained using
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the geometric approach described by equation (4.21) and is illustrated in Figure 4.8(a).

The primal loss-function exhibits a piece-wise linear response where the slope of the loss-

function changes at classification margins (or errors) that are symmetric about the separating

hyperplane. For the piece-wise linear potential function, the response of the ith neuron is

given by

θ(vik) = Φ′(vik) = sgn(vik − 0.5) (4.26)

and represents a binary output that switches between two values +1 and −1. However, not

all neurons exhibit a switching behavior, as can be inferred from the geometric visualization

of the primal-dual formulation shown in Figure 4.8(a). Only the neurons whose classification

margins are located about B in Figure 4.8(a) (where the gradient of Φ(.) is discontinuous),

can transition between C and A. Note that in the dual-optimization space (as shown in

Figure 4.8(a)), this corresponds to vik ≈ 0.5. Classification boundaries are plotted on a

two-dimensional feature space in Figures 4.8(b) and (c) for a simple linear and a non-linear

classification task respectively. For all classification contour plots, black and white circles

have been used to differentiate between data points corresponding to the two classes. The

neurons exhibiting switching behavior are marked by solid circles in these plots. We can see

that only the neurons close to the separating hyper-plane, i.e. the ‘support vector’ neurons,

exhibit a switching behavior. Moreover, the spiking SVM model encodes the classification

margin in the spiking dynamics of its support vector neurons, which exhibit a modulation

in their spiking behavior in the rate of spikes as well as time-to-first spike (TTFS). The

stimuli in this case are the binary labels assigned to the neurons which determine the network

configuration for a given classification problem, and the classification hyperplane corresponds

with the gradient discontinuity in the potential function for the neurons. Thus as the margin

of separation z from the hyperplane decreases, the spiking rate for a support vector neuron

increases and it starts spiking earlier in the convergence process. This fact is illustrated in
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Figures 4.9(a) and (b) which show that the firing rate (number of spikes per 1000 iterations)

decreases and the time (iteration count) for the first spike increases with the margin of

separation for the linearly separable problem in Figure 4.8(b). Figures 4.9(c)-(d) show the

corresponding plots for the non-linearly separable problem in Figure 4.8(c), where the firing

rate drops and TTFS increases away from the classification boundary on both sides of the

classification hyperplane. The spikes are thus a manifestation of the process of convergence,

and are directly related to the learning behavior of the dynamical system through the support

vector neurons (i.e. the ones that are the most important in learning the classification

boundary), and the network learns to allocate its switching energy based on the significance

of the neuron.

In addition to encoding the classification margin, the dynamics of the network also exhibits

noise-shaping properties similar to that of a Σ∆ modulator. Noise-shaping refers to the

mechanism of shifting the energy contained in quantization noise and interference out of

the spectral regions where the desired information is present [81]. Using the mechanism

of noise-shaping, Σ∆ modulators [82] and biological neuronal networks [83] can achieve

encoding that can track the input stimuli with very high-fidelity. Previous attempts towards

connecting principles of noise-shaping with learning resulted in networks with relatively

simple feedforward topologies [53], to ensure network stability. However, by construction,

the dynamics of the proposed Growth Transform neural network is always stable irrespective

of the choice of the positive-definite interconnection matrix Q. Figure 4.10 shows the noise-

shaping characteristics corresponding to neurons (labeled 1-8) located at different margins

with respect to the classification boundary. The noise-shaping plots were obtained by first

extracting a segment of the neuron outputs sik (using a Hanning window) and then applying

a 4096-point fast-Fourier transform (FFT) to an extracted segment. The FFT magnitudes

were then averaged over multiple time segments to obtain the final noise-shaping response.
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Figure 4.10: Plot showing the emergent noise-shaping behavior corresponding to eight dif-
ferent neurons located at different margins with respect to the classification boundary. The
frequency bands from where quantization noise has been shaped out are shaded by light gray
for each neuron.
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It is seen that the dynamics of the support vectors exhibit a noise-shaping characteristic

similar to that of a Σ∆ modulator, where energy is shifted out of the signal frequency

band. This result can be explained from the observation that the output of the neuron

encodes the margin of classification, i.e. the distance of the neuron from the classification

boundary, which is a DC quantity. The ‘support vector’ neurons therefore learn to shape

the quantization noise out of the frequency bands near DC. For the neurons located away

from the classification boundary, the degree of noise-shaping becomes less pronounced with

the noise floor gradually flattening out.

Table 4.2: Classification results on benchmark datasets with spiking support vector networks

Dataset Train accuracy (%) Test accuracy (%)

Adult a3a (3185, 123) 93.41 83.47

Heart (303, 13) 86.01 85.00

The dual cost function (4.12) was optimized with the potential function Φ(.) in (4.13) using

Growth Transform updates in (4.23) to solve binary classification problems within the SVM

framework. Binary labels yik ∈ {0, 1} were associated with the training samples xi, i =

1, ...,M such that yi1 + yi2 = 1 ∀i. For each classification task, a training sample was

assigned to each neuron. The synaptic weight matrix, in this work, was considered to be the

Gaussian radial basis function

Qij = exp
(
− ‖ xi − xj ‖2

2σ2

)
(4.27)

with the variance σ optimized for different datasets. Growth transform updates were then

applied until the network converged to steady-state, which in this case is determined by

checking when the relative change in the absolute value of the system objective function

falls below a tolerance limit. The margins of separation for the support vector neurons were
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calculated using (4.17). While most of the results presented till now have been demonstrated

for simple two-dimensional synthetic problems (for the ease of visualization), the results also

hold for larger and more complex tasks. In order to illustrate this, Table 4.2 summarizes the

classification results of the spiking SVM, trained and evaluated on the benchmark ‘Adult

(a3a)’ and ‘Heart’ datasets [84]. Each dataset has been labeled with (M, D), where M denotes

the size of the dataset (which is also the network size in this case) and D denotes feature

dimensionality. For ‘Adult’, the training (3185 instances) and testing (29376 instances)

datasets provided on the LIBSVM website [85] were used, while for ‘Heart’, 80% of the data

points were randomly selected for training and the remainder were used for testing. It can

be seen that the classification accuracy produced by the spiking SVM is comparable to what

has been reported in literature for these datasets.

4.3 Exploiting state of convergence of network for energy-

efficiency

4.3.1 Spiking associative memory networks

Associative memories are neural networks which can store memory patterns in the activity

of neurons in a network through a Hebbian modification of their synaptic weights; and

recall a stored pattern when stimulated with a partial fragment or a noisy version of the

pattern [86]. Various works have studied associative memories using networks of spiking

neuron models having different degrees of abstraction and architectural complexities [87,88].

Here, I demonstrate using an associative memory network of Growth Transform neurons
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Figure 4.11: (a)-(b) Spike rasters for the 10 stored patterns without and with global adap-
tation respectively; (c)-(d) Spike rasters for the 10 recall cases without and with global
adaptation respectively.
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how we can use network trajectories to recall stored patterns, and moreover, use global

adaptation to do so using very few spikes and high recall accuracy.

4.3.2 Pattern completion using global adaptation

Our network comprises M = 100 neurons, out of which a randomly selected subset m = 10

are active for any stored memory pattern. The elements of the transconductance coupling

matrix are set according to the following standard Hebbian learning rule

Qij =
1

k

S∑
s=1

tsi t
s
j , (4.28)

where k is a scaling factor and ts ∈ {0, 1}M , s = 1, ..., S, are the binary patterns stored in

the network. During the recall phase, only half of the cells active in the original memory are

stimulated with a steady depolarizing input, and the spiking pattern across the network is

recorded. Instead of determining the active neurons during recall through thresholding and

directly comparing with the stored binary pattern, the recall performance of the network

is quantitatively measured by computing the mean distance between each pair of original-

recall network trajectories as they unfold over time. This ensures that we not only take into

account the firing of the neurons that belong to the pattern albeit are not directly stimulated,

but also enables us to exploit any contributions from the rest of the neurons in making the

spiking dynamics more dissimilar in comparison to recalls for other patterns.

When the network is made to globally adapt according to the system dynamics, the steady-

state trajectories can be encoded using very few spikes. Figures 4.11 (a) and (b) show the

raster plots for the stored patterns without and with global adaptation respectively when

S = 10; and Figures 4.11 (c) and (d) are the corresponding plots during recall. For each
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Figure 4.12: (a)-(b) Similarity matrices between storage and recall with a rate-based decod-
ing metric; (c)-(d) Similarity matrices with a decoding metric that also includes spike-times
and changes in mean firing rate.
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recall pattern, spike patterns for the directly stimulated neurons are plotted first, followed

by the other 5 neurons that are not directly stimulated but belong to the pattern; and

finally the rest of the neurons in random order. The ordering of neurons is kept the same

for plotting spike rasters for the stored patterns. During decoding, a straightforward metric

using the average distance between time-binned mean firing rates for the original and recall

trajectories produces similarity matrices presented in Figures 4.12(a) and (b), where we see

that global adaptation does not perform as well. However, the information in this case also

lies in the spike-times and changes in firing rate over time for each neuron. Including these

features in the decoding vectors for stored and recalled patterns, we get clean recalls in both

cases as shown in Figures 4.12(c) and (d). The decoding vector for the n-th time-bin in this

case is given by

dn =



rn

∆tΨn

∆rn


, (4.29)

where rn, ∆tΨn and ∆rn are the vectors of mean firing rates, mean inter-spike intervals and

changes in the mean firing rates for the n-th bin for the entire network respectively. The

mean inter-spike interval is set equal to the bin length if there is a single spike over the entire

bin length, and equal to twice the bin length if there are none. Note that the inter-spike

interval computed for one time-bin may be different from (1/r), particularly for low firing

rates, and hence encodes useful information. The similarity metric between the u-th stored

pattern and the v-th recall pattern is given by

su,v = 1− distu,v, (4.30)
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Figure 4.13: Ensemble plots showing (a) mean recall accuracy and (b) mean number of
spikes as memory load increases for the network, in the absence as well as presence of global
adaptation. The range of values across the ensemble is shown by the shaded area.

where distu,v is the mean Euclidean distance between the two decoding vectors over the total

number of time-bins, normalized between [0, 1].

To estimate the capacity of the network, the mean recall accuracy is calculated over 10 trials

for varying number of stored patterns, both with and without global adaptation. Figure

4.13(a) plots the mean recall accuracy for different numbers of patterns stored for the two

cases, and Figure 4.13(b) plots the mean number of spikes for each storage. For each plot, the

shaded region indicates the range of values across trials. As expected, the accuracy is 100%

for lesser storage,but degrades with higher loading. However with global adaptation, the

degradation is seen to be more graceful for a large range of storage with the decoding used

in Figures 4.12(c) and (d), allowing the network to recall patterns more accurately using

much fewer spikes. Hence by exploiting suitable decoding techniques, we can implement

highly energy-efficient spiking associative memory networks with high storage capacity.
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Note that the recall accuracy using global adaptation deteriorates faster for > 175 patterns.

The proposed decoding algorithm, which determines the recall accuracy, takes into account

the mean spiking rates, inter-spike intervals and changes in spike rates. It is possible that as

the number of spikes is reduced through the use of global adaption, the information encoded

in first-order differences (inter-spike intervals or change in spike rates) may not be sufficient

to encode information at high fidelity, resulting in the degradation in recall accuracy when

the number of patterns increased. However, augmenting the decoding features with higher-

order differences in inter-spike intervals or spike rates may lead to an improved performance

for higher storage.

4.3.3 Classifying noisy MNIST images using global adaptation

Aside from pattern completion, associative networks are also commonly used for identifying

patterns from their noisy counterparts. We use a similar associative memory network as

above to classify images from the MNIST dataset which were corrupted with additive white

Gaussian noise at different signal-to-noise ratios (SNRs), and which were, unlike in the

previous case, unseen by the network before the recall phase. The network size in this case

was M = 784, the number of pixels in each image, and the connectivity matrix was set using

a separate, randomly selected subset of 5000 binary, thresholded images from the training

dataset according to (4.28). Unseen images from the test dataset were corrupted at different

SNRs and fed to the network after binary thresholding. Figures 4.14(a)-(c) show an example

of a test image at different SNRs after binary thresholding. As before, the non-zero pixels

got a steady depolarizing input. A noisy test image was assigned to the class corresponding

to the closest training image according to the similarity metric in (4.30).
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The test accuracies and mean spike counts for a test image are plotted in Figures 4.14(d) and

(e) respectively for different noise levels. We see that even for relatively high noise levels,

the network has a robust classification performance. As before, a global adaptation based

on the state of convergence of the network produces a slightly better performance with fewer

spikes per test image.

4.4 Discussions

In this chapter, I explored different ways in which short-term network dynamics and popula-

tion trajectories across a network of GT neurons can be used to perform supervised learning

tasks in the context of liquid state machines, spiking support vector networks and spiking

associative memory networks, by appropriately defining synaptic weights and external in-

puts. For the last two approaches, I also explored how we can exploit the network structure

and state of convergence for energy-efficient neural encodings.
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Chapter 5

A sparsity-driven learning framework

for synaptic adaptation

Till now, the GT neuron and network model had a fixed energy landscape with constant

synaptic weights. In this chapter I extend the framework to incorporate learning or synaptic

adaptation, which will play a pivotal role in determining the optimal network configuration

in terms of energy as well as performance. Specifically, I address learning/synaptic adapta-

tion to reshape the energy landscape optimally for solving standard machine learning tasks.

I moreover show how we can exploit the inherent dynamics of GT neurons to design net-

works where learning the optimal parameters for a learning task simultaneously minimizes

an important energy metric for a spiking neural network - the sum-total of spiking activity

across the network.

89



5.1 Background and related work

Over the last few years, neuromorphic algorithms using event-driven communication on

specialized hardware have been claimed to outperform their classical counterparts running

on traditional hardware in energy costs by orders of magnitude in bench-marking tests across

applications [11–14]. However, like traditional ML approaches, these advantages in energy-

efficiency were demonstrated only during inference. Implementing spike-based learning and

training has proven to be a challenge and in literature one of the following approaches have

been reported:

� Top-down/Backpropagation-based: For a vast majority of energy-based learn-

ing models, backpropagation remains the tool of choice for training spiking neural

networks. In order to resolve differences due to continuous-valued neural outputs in

traditional neural networks and discrete outputs generated by spiking neurons in their

neuromorphic counterparts, transfer techniques that map deep neural nets to their

spiking counterparts through rate-based conversions are widely used [89–91]. Other

approaches use temporal coding to formulate loss functions that penalize the differ-

ence between actual and desired spike-times [92–96], or approximate derivatives of spike

signals through various means to calculate error gradients for backpropagation [97–99].

� Bottom-up/Based on local learning rules: On the other hand there are neuromor-

phic algorithms that use local learning rules like the Synaptic Time-Dependent Plastic-

ity (STDP) for learning lower-level feature representations in spiking neural networks.

Some of these are unsupervised algorithms that combine the learned features with an

additional layer of supervision using separate classifiers or spike counts [100–102]. Yet
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others adapt weights in specific directions to reproduce desired output patterns or tem-

plates in the decision layer, for example, a spike (or high firing rate) in response to a

positive pattern and silence (or low firing rate) otherwise. Examples include supervised

synaptic learning rules like the tempotron [103] implementing temporal credit assign-

ments according to elicited output responses; and algorithms using teaching signals to

drive outputs in the decision layer [104,105].

5.1.1 Limitations of current approaches

ℒ
Ω

* *

(a) (b)

ℒ = Ω

*

𝒘𝒘∗

𝒘𝒘∗

Figure 5.1: (a) Energy-efficiency in energy-based neuromorphic machine learning, where L is
the loss function for training and Ω is an additional loss for enforcing sparsity. (b) Proposed
sparsity-driven energy-based neuromorphic machine learning where L and Ω are equivalent.

From the perspective of tinyML systems, each of these family of approaches have their own

shortcomings. Backpropagation has long been criticized due to issues arising from weight

transport and update locking - both of which, aside from their biological implausibility, pose

serious limitations for resource constrained computing platforms [106]. Weight transport

problem refers to the perfect symmetry requirement between feed-forward and feedback

weights in backpropagation, making weight updates non-local and requiring each layer to

have complete information about all weights from downstream layers. This reliance on global

information leads to significant energy and latency overheads in hardware implementations.
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Update locking implies that backpropagation has to wait for a full forward pass before

weight updates can occur in the backward pass, causing high memory overhead due to the

necessity of buffering inputs and activations corresponding to all layers. On the other hand,

neuromorphic algorithms relying on local learning rules do not require global information and

buffering of intermediate values for performing weight updates. However, these algorithms

are not optimized w.r.t. a network objective, and it is difficult to interpret their dynamics

and fully optimize the network parameters for solving a certain task. Additionally, neither

of these existing approaches inherently incorporates optimization for sparsity within the

learning framework. This is an important aspect for tinyML systems, because similar to

biological systems [107, 108], generation and transmission of spike information from one

part of the network to the other consumes the maximum amount of power in neuromorphic

systems [36]. Even though Time-to-First-Spike (TTFS) SNNs [95, 96] have been shown to

be sparser and more energy-efficient in comparison to their rate-coded counterparts, these

networks still use backpropagation using non-spiking variables (floating-point numbers) and

as such inherit the limitations of BP-based approaches when used in the context of tinyML

applications.

In absence of a direct control over sparsity, energy-efficiency in neuromorphic machine learn-

ing has largely been a secondary consideration, achieved through external constraints on

network connectivity and/or quantization level of its neurons and synapses [34], or through

additional penalty terms that regularize some statistical measure of spiking activity like fir-

ing rates [35] or the total number of synaptic operations [36]. In the latter approach, the

total cost function to be minimized is given by

Ltotal = L+ βΩ, (5.1)
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where L represents a training loss and Ω is a cost function which favors solutions that are

sparser or produce lower activations in the network. This is illustrated in Figure 5.1(a)

where finding optimal weight parameters w∗ for a given task is then equivalent to finding a

solution that minimizes both energy functions, with the relative importance determined by

a regularization hyper-parameter β.

In order to truly exploit neuromorphic principles for tinyML architectures, we would need

to design energy-based learning models that are also neurally relevant or backpropagation-

less and at the same time enforce sparsity in the network’s spiking activity. Over the last

few years, there has been a growing interest in developing algorithms for training neural

networks that overcomes one or more constraints of the backpropagation algorithm. One

well-known method is feedback alignment - also known as random backpropagation - which

eradicates the weight transport problem by using fixed random weights in the feedback

path for propagating error gradient information [109,110]. Subsequent research showed that

directly propagating the output error [111] or even the raw one-hot encoded targets [112] is

sufficient to maintain feedback alignment, and in case of the latter, also eradicates update

locking by allowing simultaneous and independent weight updates at each layer. Equilibrium

propagation [113] is another biologically relevant algorithm for training energy-based models,

where the network initially relaxes to a a fixed-point of its energy function in response to

an external input. In the subsequent phase when the corresponding target is revealed,

the output units are nudged towards the target in an attempt to reduce prediction error,

and the resulting perturbations rippling backward through the hidden layers were shown to

contain error gradient information akin to backpropagation. Yet another class of algorithms

are predictive coding frameworks, which use local learning rules to hierarchically minimize

prediction errors [114,115]. However, it is not clear how we can design such systems within a
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neuromorphic tinyML framework which can (a) generate spiking responses within an energy-

based model; (b) learn optimal parameters for a given task using local learning rules; and

(c) additionally optimize itself for sparsity such that it is able to encode the solution with

the fewest number of spikes possible without relying on additional regularizing terms.

5.1.2 Proposed approach

In this work I propose a framework for designing neuromorphic tinyML systems that is

backpropagation-less but is also able to enforce sparsity in network spiking activity in ad-

dition to conforming to additional structural or connectivity constraints imposed on the

network. The framework builds upon the previously introduced spiking neuron and popu-

lation model based on a Growth Transform dynamical system [38]. However till now, the

model had a fixed energy landscape with constant synaptic weights. In this chapter I extend

the framework to incorporate learning or synaptic adaptation, which will play a pivotal role

in determining the optimal network configuration.

Specifically in this work, I address learning/adaptation to reshape the energy landscape

optimally for solving standard machine learning tasks. I moreover show how we can exploit

the inherent dynamics of Growth Transform neurons to design networks where learning the

optimal parameters for a learning task simultaneously minimizes an important energy metric

for the system - the sum-total of spiking activity across the network. This is illustrated in

Figure 5.1(b), where the energy function for reducing the training error also represents the

network-level spiking activity, i.e.,

Ltotal = L = Ω, (5.2)
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Figure 5.2: (a) An ON-OFF neuron pair. (b) Temporal dynamics of an ON-OFF neuron
pair in response to positive and negative stimuli. (c) Coupled differential GT network. (d)
Firing rate minimization through weight adaptation in a coupled differential network. (e)
Template projection using a GT network.

such that minimizing one is equivalent to minimizing the other.
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5.2 An ON-OFF GT neuron model for stimulus encod-

ing

The fundamental building block in the proposed GTNN learning framework is an ON-OFF

GT neuron model which is described here. Consider a GT network as shown in Figure 5.2(a),

comprising of a pair of neurons, an ON neuron and an OFF neuron. We will denote the

membrane potentials of the ON neuron and OFF neuron as v+ and v− respectively. The

external input b is presented differentially to the neuron pair, where the ON neuron receives

a positive input stimulus b and the OFF neuron receives a negative input stimulus −b. We

will assume for now that the neurons do not have any synaptic projections to each other, as

shown in the Figure 5.2(a). The optimization problem (3.14) decomposes into two uncoupled

cost functions corresponding to the ON and OFF neurons respectively as

min
|v+|≤vc

H
(
v+
)

= min
|v+|≤vc

1

2
Qv+2 − bv+ + Ψ+v+, and (5.3)

min
|v−|≤vc

H
(
v−
)

= min
|v−|≤vc

1

2
Qv−

2
+ bv− + Ψ−v− (5.4)

This corresponds to the following first-order conditions for the differential pair

Qv+ + Ψ+ = b, and (5.5)

Qv− + Ψ− = −b, (5.6)
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along with the non-negativity and complementary conditions for the respective spike func-

tions

Ψ+ ≥ 0; Ψ+v+ = 0, and

Ψ− ≥ 0; Ψ−v− = 0. (5.7)

Let us consider two cases based on the sign of the input b.

Case 1. b ≥ 0: When b is positive, we obtain the following set of solutions to (5.5)-(5.6)

under the above constraints

v+ = 0, Ψ+ = b, and (5.8)

Qv− = −b,Ψ− = 0. (5.9)

Case 2. b < 0: When b is negative, the corresponding solutions are as follows

Qv+ = b, Ψ+ = 0, and (5.10)

v− = 0, Ψ− = −b. (5.11)

Combining the two cases, the ON-OFF variables v+, v− satisfy the following important

properties:

v+v− = 0, (5.12)

Q
(
v+ − v−

)
= Ψ+ −Ψ− = b (5.13)

Ψ+ + Ψ− = −Q
(
v+ + v−

)
. (5.14)
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Property (5.12) show that the membrane voltage vectors v+ and v− are always orthogonal to

each other. Figure 5.2(b) shows that the orthogonality also holds for their respective tempo-

ral dynamics as well when the input stimulus is turned ON and OFF. This temporal ON-OFF

responses have been well documented for networks of biological neurons as well [116–119].

Property (5.13) show that the ON-OFF neurons taken together faithfully encode the input

stimuli. In this regard, the pair behaves as an analog-to-digital converter (ADC) which

maps the time-varying analog input into a train of output binary spikes. Property (5.14) in

conjunction with Property (5.12) leads to

(Ψ+ + Ψ−) = −Q(v+ + v−) (5.15)

= Q|v+ − v−| (5.16)

which states that the average spiking rate of an ON-OFF network encodes the norm of the

differential membrane potential v = v+−v−. This property has been used in the next section

to simultaneously enforce sparsity and solve a learning task.

5.2.1 Extension to a differential network

We now extend the ON-OFF neuron pair to a generic network comprising M neuron pairs,

as shown in Figure 5.2(c). The i-th neuron pair is coupled differentially to the j-th neuron

pair through a trans-conductance synapse denoted by its weight Qij ∈ R. The differential

stimuli to the ON-OFF network in (5.5)-(5.6) can be generalized to comprise the external

input bi and inputs from other ON-OFF neuron pairs as

bi −
∑
j 6=i

Qij(v
+
j − v−j ). (5.17)
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Denoting the Q in (5.5)-(5.6) by Qii leads to the first-order conditions for the i-th ON-OFF

neuron pair as

Qiiv
+
i + Ψ+

i = −
∑
j 6=i

Qij(v
+
j − v−j ) + bi, and (5.18)

Qiiv
−
i + Ψ−i =

∑
j 6=i

Qij(v
+
j − v−j )− bi. (5.19)

As before, each neuron in the network satisfies

Qii

(
v+
i − v−i

)
= b

′

i, or (5.20)

Qii

(
v+
i − v−i

)
= bi −

∑
j 6=i

Qij(v
+
j − v−j ), or (5.21)

M∑
j=1

Qij(v
+
j − v−j ) = bi, (5.22)

Equation (5.22) can be written in a matrix form as a linear constraint

Qv = b, (5.23)

where Q = {Qij} ∈ RM × RM is the synaptic matrix, v = {v+
i − v−i } ∈ RM is the ON-OFF

membrane potential vector and b = {bi} ∈ RM is the input stimuli vector. Note that the

linear constraint (5.23) arose as a result of each neuron optimizing its local power dissipation

as

min
v+,v−

H(v+) +H(v−), (5.24)

with the synaptic connections being modeled by the matrix Q.
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5.3 Weight adaptation for sparsity

In addition to each of the neurons minimizing its respective power dissipation with respect to

the membrane potentials v+
i , v

−
i , the total spiking activity of the network could be minimized

with respect to Q as

min
Q
L(Q) = min

Q

M∑
i=1

(
Ψ+
i + Ψ−i

)
. (5.25)

From (5.16),

L(Q) =
M∑
i=1

Qii|v+
i − v−i |

= ||Λv||1, (5.26)

where Λ ∈ RM × RM is a diagonal matrix with Λii = Qii; Λij = 0 ∀i 6= j. Hence, solving

the optimization problems in (5.24) and (5.25) simultaneously is equivalent to solving the

following L1 optimization

min
Q
||Λv||1 (5.27)

s.t. Qv = b. (5.28)

Note that the L1 optimization bears similarity to compressive sensing formulations [120].

However in this case, the objective is to find the sparsest membrane potential vector by

adapting the synaptic weight matrix Q in a manner that the information encoded by the

input stimuli is captured by the linear constraint in (5.28). This rules out the trivial sparse

solution v∗ = 0 for a non-zero input stimuli.
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A gradient descent approach is applied to the cost-function L(.) in (5.25) to update the

synaptic weight Qij according to

∆Qij = −η ∂L
∂Qij

, (5.29)

where η > 0 is the learning rate. Using the property (2.56), one obtains the following

spike-based local update rule

∆Qij = η

(
Ψ+
i

(
v+
j − v−j

)
−Ψ−i

(
v+
j − v−j

))
(5.30)

= η
(
Ψ+
i −Ψ−i

)(
v+
j − v−j

)
, i 6= j. (5.31)

Note that since there are no synaptic connections between the ON-OFF neurons of the same

pair,

∆Qii = η

(
Ψ+
i v

+
i + Ψ−i v

−
i

)
= 0, (5.32)

implying that the self-connections in GTNN do not change during the adaptation. This

feature is important because Qii can be adapted independently to adjust the precision of

the approximation in (2.56). For the rest of this work, I will fix Qii = 1 so that Λ is an

identity matrix. Also, note that the synaptic matrix Q need not be symmetric which makes

the framework more general than conventional energy-based optimization.

Figure 5.2(d) pictorially depicts how the sparsest solution is achieved through firing rate

minimization for a differential network where M = 2. We assume for this exposition that the

matrix Q is symmetric and hence the solution can be visualized using energy contours. The

figure shows energy contours in absence of the barrier function for the positive and negative

parts of the network superimposed on the same graph. The corresponding optimal solutions

(v+∗
1 , v+∗

2 ) and (v−∗1 , v−∗2 ), denoted by P and N respectively, satisfy v+∗
i = −v−∗i , i = 1, 2. As

discussed previously, the presence of the barrier function prohibits the membrane potentials
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from reaching the optimal solutions. Instead, the membrane potentials exhibit steady-state

spiking dynamics around the spike thresholds. These steady-state dynamics corresponding

to the positive and negative networks are shown in the figure as black lines at points A and

C where the two coupled networks breach the spiking threshold under the respective energy

contours in steady-state.

During weight adaptation since Ψ+
i is minimized ∀i, network weights evolve such that the

membrane potentials breach the spiking threshold less often, which essentially pushes the

optimal solution for the positive network towards A. However since the two networks (and

hence their solutions) are differential, the optimal solution for the negative network is pushed

towards B. Similarly during the weight adaptation process since Ψ−i is also minimized ∀i,

optimal solution for the negative network is pushed towards C such that its own spike

threshold constraints are violated less frequently, which in turn pushes the optimal solution

for the positive network towards D. The positive network therefore moves towards the path

#  –

P0 given by the vector sum of paths
#    –

PD and
#    –

PA. Similarly, the negative network moves

towards the path
#    –

NO, given by the vector sum of paths
#    –

NC and
#     –

NB. This minimizes

the overall firing rate of the network and drives the membrane potentials of each differential

pair towards zero, while simultaneously ensuring that the linear constraint in (5.23) is always

satisfied. Figure 5.3 illustrates sparsity-driven weight adaptation using a differential network

with two neuron pairs presented with a constant external input vector. Figures 5.3(a) and

(b) show the spike responses corresponding to the ON and OFF networks respectively, before

any weight adaptation has taken place. Figures 5.3(c) and (d) present the same plots post-

training. Training evolves the weights such that as many elements of the vector of membrane

potentials as possible can approach zero while the network still satisfies the linear constraint

in (5.23). We see that weight adaptation is accompanied by a decline in the firing rates

for neuron pair 2, while firing rates for neuron pair 1 remains largely unchanged. This is
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Figure 5.3: (a)-(b) Spike responses for the ON and OFF neurons respectively of a differential
network with two neuron pairs for a fixed input vector before weight adaptation. (c)-(d)
Corresponding plots after weight adaptation. (e) Evolution of the loss function with the
number of training iterations for the differential network in (a)-(d) averaged over 5 different
initial conditions. (f)-(h) Evolution of ||v||1, spike count across the network and ||Qv− b||1
with the number of training iterations for the same problem.
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expected for a network with 2 differential pairs, since at least one neuron pair needs to spike

in order to satisfy (5.23). Figures 5.3(e)-(g) plot the decrease in cost function, ||v||1 and total

spike count across the network respectively as weight adaptation progresses. Figure 5.3(h)

shows that ||Qv − b||1 remains close to zero throughout the training process. For Figures

5.3(e)-(h), solid lines indicate mean values across 5 runs with different initial conditions,

while the shaded regions indicate standard deviation about the mean.

5.3.1 Inference using network sparsity

The sparsity in network spiking activity could be directly used for optimal inference. The

rationale is that the L1 optimization in (5.27) and (5.35) chooses the synaptic weights Q

that exploits the dependence (statistical or temporal) between the different elements of the

stimulus vector b to reduce the norm of membrane potential vector ||v||1 and hence the

spiking activity. Thus, the process of inference involves choosing the stimulus that produces

the least normalized network spiking activity defined as

arg min
b

ρb =
1

2M

M∑
i=1

(
s+
bi

+ s−bi
)
, (5.33)

where M denotes the total number of differential pairs in the network and s+
bi

, s−bi are the

average spike counts of the i-th ON-OFF pair when the stimulus b is presented as input.
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5.4 Unsupervised learning using template projection

The L1 optimization framework described by (5.27) provides a mechanism to synthesize and

understand the solution of different variants of GTNN. For instance, if the input stimulus

vector b is replaced by

b = b0 −Qt. (5.34)

where t ∈ RM is a fixed template vector then according to (5.27), the equivalent L1 opti-

mization leads to

min
Q
||v||1 s.t. Qv = b0 −Qt. (5.35)

The L1 optimization chooses the solution Qt = b0 such that ||v||1 → 0. Thus,

min
Q
||v||1 =⇒ min

Q
||b0 −Qt||1. (5.36)

The synaptic update rule corresponding to the modified loss function is given by

∆Qij = η
(
Ψ+
i −Ψ−i

)(
v+
j − v−j + tj

)
. (5.37)

This is depicted in Figure 5.2(e), which shows that the projection of the template vector,

Qt, evolves towards b0 with synaptic adaptation.

We can formulate unsupervised machine learning tasks like domain description and anomaly

detection as a template projection problem, and show how the GT network can be applied

to solve them using the framework in (5.36). Let xk ∈ RD, k = 1, ..., K, be data points

drawn independently from a fixed distribution P (x) where D is the dimension of the feature

space, and let t ∈ RD be a fixed template vector. Then from (5.36), weight adaptation gives
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us

min
Q
L(Q) =⇒ min

Q

1

K

K∑
k=1

||Qt− xk||1, (5.38)

where L(.) has the same form as in (5.25). Thus minimizing the network-level spiking

activity evolves weights in the transformation matrix Q such that the projection of the

template vector can represent the given set of data points with the minimum mean absolute

error.

5.4.1 Domain description

In a domain description problem, we aspire to describe a set of objects or data points given

by the training set so that we can faithfully distinguish them from all other data points in the

vector space [121]. Using the template projection framework introduced above, we can train

a GT network to evolve towards a set of data points such that its overall spiking activity

is lower for these points, indicating that it is able to describe the domain and distinguish it

from others.

The equivalence between firing rate minimization across the network and the L1 loss mini-

mization in (5.38) is first demonstrated for a series of toy problems where D = 2. We first

consider the simplest case with a single data point and a fixed threshold vector, as shown

in Figure 5.4(a). As training progresses, Qt evolves along the trajectory shown by black

dots from the initial condition indicated by a green circle towards the data point indicated

by a blue circle. Figure 5.4(b) plots the mean and standard deviation of the loss function

L(.) for the problem in Figure 5.4(a) across 5 experiments with randomly selected initial

conditions. The average loss decreases with the number of training iterations until a small

baseline firing rate is reached upon convergence. Figures 5.4(c)-(d) plot the corresponding
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the areas identified as members and anomalies respectively.

L1 norm of the vector of mean membrane potentials and the L1 loss in (5.38) respectively.

We see that the L1 loss goes to zero with training, while ||v||1 approaches near zero. Figure

5.4(e) presents a case when the network is trained with multiple data points in an online

manner. The network trajectory in this case evolves from the initial point to a point that

lies near the median of the cluster. Figures 5.4(f)-(h) are the corresponding plots for the

loss function, L1 norm of mean membrane potential vector and the L1 loss in (5.38) versus

epochs, where one epoch refers to training the network on all points in the dataset once in

a sequential manner. Since here a single template vector tries to explain or approximate all

data points in the cluster, the L1 loss in Figure 5.4(h) does not reach zero. However the

network adapts its weights such that it responds with the fewest number of spikes overall

for the data points it sees during training, such that the network-level spiking activity is

minimized for the dataset.
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5.4.2 Anomaly detection

The unsupervised loss minimization framework in the preceding section drives the GT net-

work to spike less when presented with a data point it has seen during training in comparison

to an unseen data point. We can seamlessly extend this to apply to outlier or anomaly detec-

tion problems, as described in this section. When the network is trained with an unlabeled

training set xk ∈ RD, k = 1, ..., K, it adapts its weights so that it fires less for data points

it sees during training (or data points that are ‘similar’ to these), referred to as members,

and fires more for points that are far away (or dissimilar) to them, referred to as anoma-

lies. Template vectors in this case are random-valued vectors held constant throughout the

training procedure.

After training, we determine the mean firing rates of the network for each data point in the

training dataset and set the maximum mean firing rate as the threshold. During inference,

any data point that causes the network to fire at a rate equal to or lower than this threshold

is considered to be a member, otherwise it is an outlier or anomaly. In Figure 5.5, blue circles

correspond to the training data points. Based on the firing rate threshold computed, the

network learns to classify data points similar to the training set as members (indicated by

the region shaded in blue in Figure 5.5(a), and others as anomalies (indicated by the region

shaded in gray). We can also tune the firing rate threshold appropriately in order to reject

a pre-determined fraction of training data points as outliers. Figures 5.5(b)-(c) show the

contraction in the domain described by the anomaly detection network when the threshold

was progressively reduced to reject 25% and 50% of the training data points as outliers.
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5.5 Supervised learning with different network config-

urations

In this section, I exploit the framework outlined in (5.27) to design networks that can solve

linear classification problems using the GT network. Consider a binary classification prob-

lem given by the training dataset (xk, yk), k = 1, ..., K, drawn independently from a fixed

distribution P (x, y) defined over RD × {−1,+1}. The vector xk is denoted as the k-th

training vector and yk is the corresponding binary label indicating class membership (+1 or

-1). We consider two network architectures for solving this supervised learning problem -

one, a minimalist feed-forward network, and the other, a fully-connected recurrent network,

and compare the properties of the two architectures.

5.5.1 Linear Feed-forward network

Let us define the following loss function for solving a linear classification problem

min
ai,b
Llinear = min

ai,b
|y −

D∑
i=1

aixi − b| (5.39)

where ai ∈ R, i = 1, ..., D, are the feed-forward weights connecting the input features to

the output, and b ∈ R is the bias term. We can minimize this loss function by considering a

feed-forward network only consisting of synaptic projections from input neuron pairs to the

output neuron pair. Let the i-th input neuron pair be denoted by (i+, i−), i = 1, ..., D, and

the output neuron pair be denoted by (y+, y−). The network also has a bias neuron pair

denoted by (b+, b−) which receives a constant positive input equal to 1 for each data point.

Feed-forward synaptic connections from the feature neuron pairs to the output neuron pair
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are then given by

Qyi = ai, i = 1, ..., D,

Qyb = b. (5.40)

Self-synaptic connections Qii are kept constant at 1 throughout training, while all remaining

connections are set to zero. When we present a data point (x, y) to the network, from (5.22)

we have

(v+
i − v−i ) = xi, i = 1, ..., D, and (5.41)

(v+
b − v

−
b ) = 1. (5.42)

For the output neuron pair, we similarly have

v+
y − v−y = y −

∑
j 6=y

Qij(v
+
j − v−j )

= y −
D∑
i=1

ai(v
+
i − v−i )− b(v+

b − v
−
b )

= y −
D∑
i=1

aixi − b. (5.43)

Then, minimizing the sum of mean firing rates for the output neuron pair gives us

min
Qyi,Qyb

Lff (Qyi, Qyb) = min
Qyi,Qyb

(
Ψ+
y + Ψ−y

)
= min

Qyi,Qyb

|v+
y − v−y |

= min
ai,b
|y −

D∑
i=1

aixi − b|

= min
ai,b
Llinear (5.44)

112



The linear classification framework with the feed-forward architecture is verified in Figure

5.6(a) for a synthetic two-dimensional binary dataset, where training data points belonging

to the two classes are plotted as gray and blue circles. During inference, both possible labels

are presented to the network along with each test data point, and the data point is assigned

to the class that produces the least number of spikes across the output neurons, according to

the inference procedure outlined in Section 5.3.1. Figure 5.6(a) also shows the classification

boundary produced by the GT network after training.

5.5.2 Linear Recurrent network

Let us also consider a fully-connected network architecture for linear classification, where

the feature and bias neuron pairs were not only connected to the output pair, but to each

other. There were also trainable recurrent connections from the output pair to the rest of

the network. Then from (5.22) we can write

Qv = x′, (5.45)

where x′ = [y, x1, x2, ..., xD, 1]T is the augmented vector of inputs. We solve the following

optimization problem for the recurrent network, which minimizes sum of firing rates for all

neuron pairs across the network

min
Q
Lfc(Q) = min

Q

M∑
i=1

(
Ψ+
i + Ψ−i

)
. (5.46)

Weight adaptation in the fully-connected network ensures that (5.45) is satisfied with the

minimum norm on the vector of membrane potentials, i.e, the lowest spiking activity across
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the network, as opposed to enforcing the sparsity constraint only on the output neuron pair

in the previous case. The inference phase then proceeds as before by presenting each possible

label to the network, and assigning the data point to the class that produces the least number

of spikes across the network.

Figure 5.6(b) shows the classification boundary produced by the fully-connected network for

the same two-dimensional binary dataset. We see that both networks are able to classify

the dataset, although the final classification boundaries are slightly different. Figure 5.6(c)

plots the training accuracy versus number of epochs for the two networks, where each epoch

refers to training on the entire dataset once. For comparing how the network-level spiking

activity evolves with training for the two networks, we can average the sparsity metric given

in (5.33) over the training dataset

ρtrain =
1

2MK

K∑
k=1

M∑
i=1

(
s+
bki

+ s−bki
)
, (5.47)

where s+
bki

and s−bki are the mean spike counts of the i-th ON-OFF pair when the k-th

training data point is presented to the network along with the correct label. Figure 5.6(d)

plots how this metric evolves with the number of training epochs for the two networks.

Although the fully-connected network has a considerably higher number of non-zero synaptic

connections, the final network firing activity after training has converged is much lower

than the feed-forward network, indicating that it is able to separate the classes with a

much lower network-level spiking activity across the entire training dataset. This is also

evident from Figures 5.6(e) and (f), which show the spike rasters and post-stimulus time

histogram (PSTH) curves for one representative training data point corresponding to the

feed-forward and fully-connected networks respectively, after the weights have converged for

114



both networks. We see that the total spike count across the network is much lower for the

fully-connected network.

5.6 Discussions

In this chapter, I introduced a sparsity-driven learning framework for GTNN where

� The optimal parameters for a given task can be learned using neurally relevant local

learning rules and in an online manner

� The network optimizes itself to encode the solution with as few spikes as possible

(sparsity)

� The network optimizes itself to operate at a solution with the maximum dynamic range

and away from saturation

� The framework is flexible enough to incorporate additional structural and connectivity

constraints on the network

As a result, the proposed formulation is attractive for designing neuromorphic tinyML sys-

tems that are constrained in energy, resources and network structure. I showed how the

approach could be used for unsupervised and supervised learning such that minimizing a

training error is equivalent to minimizing the overall spiking activity across the network.

Moreover since the energy functionals for deriving the optimal neural responses as well as

weight parameters are directly expressible in terms of continuous-valued membrane poten-

tials, the Growth Transform (GT) neuron model can implement energy-based learning using

the neural variables themselves, without requiring to resort to rate-based representations,
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spike-time conversions, output approximations or the use of external classifiers. In the next

chapter, I will extend the framework to build multi-layered spiking neural network architec-

tures.
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Chapter 6

Multi-layer spiking GTNN

We can now build up on the results from the previous sections to construct end-to-end

spiking networks for solving more complex non-linearly separable classification problems.

In this chapter, I present three different network architectures using one or more of the

components described in the preceding chapter, with progressively increasing flexibility in

training - and consequently, sparsity. Additionally, lateral connections within a layer allow

each layer to learn a non-linear encoding of its input, whereas the connections between layers

could remain static. This allows us to design networks where weight adaptation only happens

between neurons on the same layer, which could be locally implemented on hardware. I also

show in this chapter that the sparsity constraints on the network’s spiking activity acts as a

regularizer that improves the Growth Transform neural network’s (GTNN’s) generalization

performance when learning with few training samples (few-shot learning).
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Figure 6.1: (a) Network architecture for non-linear classification based on random pro-
jections. (b) Classification boundary for a synthetic XOR dataset with a fully-connected
network in the supervised layer, where the two classes are plotted in blue and gray. Contour
plot corresponds to a majority vote over 5 trials with different initial conditions. (c) Plot of
the average training accuracy and sparsity metric versus number of training epochs over the
5 trials, with the shaded region denoting standard deviation about the mean.
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6.1 Network 1: Classification based on random projec-

tions

This network architecture, shown in Figure 6.1(a), consists of an unsupervised, random

projection-based feature transformation layer followed by a supervised layer at the output.

The random projection layer consists of S independent sub-networks, each with D differential

neuron pairs, where D is the feature dimensionality of the training set. Let the transforma-

tion matrix for the s-th sub-network be denoted by Qs and its template vector be denoted

by ts, s = 1, ..., S. We consider a network configuration where each sub-network is densely

connected, but there are no synaptic connections between the sub-networks. When the k-th

training data point xk is presented to the network, we have from (5.38)

D∑
i=1

Ψ+
ski + Ψ−ski = −

( D∑
i=1

v+
ski + v−ski

)
= ||Qsts − xk||1, (6.1)

where Ψ+
ski and Ψ−ski are the mean values for the spike function of the i-th differential pair

in the s-th sub-network, in response to the k-th data point, and v+
ski and v−ski are the corre-

sponding mean membrane potentials. Let us define the ‘centroid’ for the s-th sub-network

as

cs = Qsts. (6.2)

Thus, when a new data point xk is presented to the network, the sum of mean membrane

potentials of the s-th sub-network essentially computes the L1 distance (with a negative sign)

between its centroid cs and the data point. Note that no training takes place in this layer.

The summed membrane potentials encoding the respective L1 distances for each sub-network
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serve as the new set of features for the linear, supervised layer at the top. Thus for a network

consisting of S sub-networks, the input to the supervised layer is an S-dimensional vector.

I demonstrate the random projection-based non-linear classification with an XOR dataset

in Figure 6.1(b), which uses 50 sub-networks in the random projection layer and a fully-

connected architecture in the supervised layer. The figure shows training data points be-

longing to the two classes as blue and gray circles, as well as the classification boundary

produced by the GT network after 5 rounds of training with different initial conditions, as

decided by a majority vote. Figure 6.1(c) plots the evolution of the mean and standard

deviation of the training accuracy as well as the sparsity metric with each training epoch.

Since training for this network architecture only takes place in the top layer, the sparsity

gain is minimal.

6.2 Network 2: Classification based on layer-wise train-

ing

The second network architecture, shown in Figure 6.2(a), consists of two fully-connected

differential networks stacked on top of each other, with connection matrices for the two

layers denoted by Q1 and Q2 respectively. The first layer consists of S sub-networks as in

the previous architecture, but with connections between them. For the first layer, we can

rewrite (5.22) as follows

Q1v1 = x1, or

Q1(v+
1 − v−1 ) = x1 (6.3)
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Figure 6.2: (a) Network architecture for non-linear classification based on layer-wise train-
ing. (b)-(c) Classification boundaries for the same XOR dataset without and with weight
adaptation in layer 1 respectively. Contour plot corresponds to a majority vote over 5 trials
with different initial conditions. (d)-(e) Mean training accuracy and mean sparsity metric
versus epochs for the two cases, estimated over 5 runs with random initializations.
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where v+
1 ,v

−
1 ∈ RM1 are the vectors of mean membrane potentials for the ON and OFF

parts of the differential network in layer 1, and x1 = [x,x, ...,x]T ∈ RM1 is the augmented

input vector, M1 = DS being the total number of differential pairs in layer 1. Since for each

neuron pair, only one of v+ and v− could be non-zero, the mean membrane potentials for

either half of the differential network encodes a non-linear function of the augmented input

vector x1, and can be used as inputs to the next layer for classification. We considered a

fully-connected network in the second layer for linear classification. Figure 6.2(b) shows the

classification boundary for the XOR dataset with this network architecture.

We can further train the first layer such that it satisfies (6.3) with much lower overall firing.

Figure 6.2(c) shows the classification boundary for a network where synapses in both layers

are adapted simultaneously at first, followed by adaptation only in the last layer. We see

that the network learns a slightly different boundary, but is able to distinguish between the

classes as before. This is also evident from Figure 6.2(d), which plots the training accuracy

versus epochs for the two cases without and with adaptation in layer 1. Figure 6.2(e) plots

the evolution of the sparsity metric evaluated on the training dataset for both cases. In

the second case, the network learns to distinguish between the classes with a lower overall

network-level spiking activity. Since both layers are trainable for this network, it is able

to distinguish between the classes with a much lower network-level spiking activity for the

dataset than in the case of Network 1.
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6.3 Network 3: Including target information in classi-

fication based on layer-wise training

It is possible to further drive sparsity in the network by including information about class

labels in the layer-wise training of fully-connected layers. This allows the network to exploit

any linear relationship between the elements of the feature and label vectors to further drive

sparsity in the network. The corresponding network architecture is shown in Figure 6.3(a).

Each sub-network in layer 1 receives the external input x ∈ RD and the corresponding label

vector y ∈ {−1,+1}C , where C is the number of classes. The top layer receives the DS-

dimensional output vector corresponding to the membrane potentials from the positive part

of layer 1 (which as in Network 2 encodes a non-linear function of its input) as well as the

same label vector. Each layer in the network is trained with the correct class label. During

inference, the network is presented with a new data point and the network-level spiking

activity is recorded for each possible label vector. The data point is assigned to the class

that produces the lowest firing across all layers of the network.

This architecture is similar to Direct Random Target Projection [112] which projects the one-

hot encoded targets onto the hidden layers for training non-spiking multi-layer networks. The

notable difference, aside from the neuromorphic aspect, is that I use the input and target

information in each layer to train the lateral connections within the layer, and not the feed-

forward weights from the preceding layer. All connections between the layers remain fixed

throughout the training process. Figure 6.3(b) shows the classification boundary for the

XOR dataset with this network architecture, and Figure 6.3(c) shows the evolution of the

training accuracy and sparsity metric for this problem with the number of training epochs.
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6.4 Incremental, few-shot learning on machine olfac-

tion dataset

A consequence of choosing the sparsest possible solution to the machine learning problem

in the proposed framework is that it endows the network with an inherent regularizing

effect, allowing it to generalize rapidly from a few examples. Alongside the sparsity-driven

energy-efficiency, this enables the network to also be resource-efficient, making it particularly

suitable for few-shot learning applications where there is a dearth of labeled data [122]. In

order to demonstrate few-shot learning with the proposed approach, I tested Networks 1-3

on the publicly available UCSD gas sensor drift dataset [123, 124]. This dataset contains

13,910 measurements from an array of 16 metal-oxide gas sensors that were exposed to 6

different odors (ammonia, acetaldehyde, acetone, ethylene, ethanol and toluene) at different

concentrations. The measurements are distributed across 10 batches that were sampled

over a period of 3 years, posing unique challenges for the dataset including sensor drift

and widely varying ranges of odor concentration levels for each batch. Although the original

dataset has eight features per chemosensor yielding a 128-dimensional feature vector for each

measurement, the present work considers only one feature per chemosensor (the steady-state

response level) resulting in a 16-dimensional feature vector, similar to other neuromorphic

efforts on the dataset [125].

6.4.1 Previous work on this dataset

Previous efforts using classical machine learning approaches on this dataset include among

others ensembling support vector machine classifiers trained at different points in time [123],
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Figure 6.4: Evolution of the training accuracy and sparsity metric for (a) Network 1, (b)
Network 2 and (c) Network 3 with each phase of re-training on the UCSD gas sensor drift
dataset. Green arrows mark the beginning of each phase of re-training.
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domain adaptation techniques using extreme learning machines [126,127] and transfer-sample

based multi-task learning across domains using logistic regression [128]. More recently, [125]

proposed a neuromorphic machine learning algorithm based on design principles from the

mammalian olfactory circuit to extract relevant features, which were then assigned classes

using a similarity metric based on Hamming distance.

6.4.2 Proposed approach

In order to mitigate challenges due to sensor drift, I followed the same reset learning approach

as in [125], re-training the network from scratch as each new batch became available using

few-shot learning. However, the main objectives of the experiments in this section differ

from previous work in the following ways:

� I demonstrate the proposed learning framework on a real-world dataset, where the

network learns the optimal parameters for a supervised task by minimizing spiking

activity across the network. It is shown that for all three architectures introduced pre-

viously, the network is able to optimize for both performance and sparsity. Moreover,

we see that it is possible to achieve benchmark performance on the dataset using a

generic network that does not take into account the underlying physics of the problem.

� I showcase end-to-end, backpropagation-less spiking networks that implements feature

extraction as well as classification within a single framework. Moreover, I demonstrate

SNNs that can encode non-linear functions of layer-wise inputs using lateral connections

within a layer, and present an approach to train these lateral connections.
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Table 6.1: Batch-wise information, final test accuracies and sparsity metrics evaluated on
test data for the UCSD gas sensor drift dataset with Networks 1-3 and with a Multi-layer
Perceptron network.

Batch 1 2 3 4 5 6 7 8 9 10

Data points 445 1244 1586 161 197 2300 3613 294 470 3600

Network 1
Acc. (%) 86.72 94.17 94.55 94.56 94.44 87.20 83.42 84.24 97.50 78.77

ρtest 0.0918 0.1122 0.0926 0.0981 0.0891 0.0915 0.0949 0.1061 0.0927 0.0705

Network 2
Acc. (%) 90.86 97.55 95.93 98.91 96.83 95.57 90.90 76.85 94.44 80.60

ρtest 0.0832 0.0923 0.0946 0.0941 0.1071 0.0813 0.0886 0.1207 0.0922 0.0760

Network 3
Acc. (%) 90.26 95.95 92.65 95.65 100.00 96.56 86.42 90.14 95.00 69.34

ρtest 0.0514 0.0631 0.0647 0.0608 0.0930 0.0390 0.0753 0.0924 0.0653 0.0348

MLP Acc. (%) 95.63 95.42 94.53 99.56 99.20 90.27 89.96 86.50 98.11 80.81

For each batch, I selected 10 measurements at random concentration levels for each odor

as training data, and 10% of the measurements as validation data. The remaining data

points were used as the test set. If a batch had fewer than 10 samples for a particular

odor, all samples for that odor were included within the training set. Input features for

the training data were scaled between [0, 1], and the same scaling parameters were used to

transform the validation and test sets. For Network 1, I considered 50 sub-networks in the

random projection layer, which produced a 50-dimensional input vector to the supervised

layer. For Networks 2 and 3, the number of sub-networks in layer 1 was 20, generating a

320-dimensional input vector to layer 2 corresponding to the 16-dimensional input vector to

layer 1. Moreover for the first layer in Networks 2-3, I considered a connection probability of

0.5, randomly setting around half of the synaptic connections to 0. Figures 6.4(a)-(c) plot

the evolution of training accuracy and sparsity metric (evaluated on the training set) with

number of epochs for each phase of re-training for Networks 1-3 respectively. Green arrows

in each plot mark the onset of a re-training phase, i.e. a new batch. We see that with the
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arrival of new training data in each batch and for each network, the training error as well

as the average spiking activity across the network increases, and subsequently decline with

re-training.

To compare the performance of the proposed network with standard backpropagation, I

trained a multi-layer perceptron (MLP) with 16 inputs and 100 hidden units for the odor

classification problem with a constant learning rate of 0.01 and using the same validation

set as before. The number of hidden neurons as well as learning rate were selected through

hyper-parameter tuning using only the validation data from Batch 1. Table 6.1 gives the

number of measurements for each batch, as well as final test accuracies and sparsity metrics

(evaluated on the test sets) for each batch for Networks 1-3 with 10-shot learning, as well

as the final test accuracies for each batch with the multi-layer perceptron. Figure 6.5(a)

shows the batch-wise test accuracies for the three GTNN architectures and the MLP, and

Figure 6.5(b) shows the sparsity metrics on test data for the GTNN architectures. We see

that the proposed networks produce classification performance comparable with classical

backpropagation-based models, while driving sparsity within the network. The sparsity

metrics are highest for Network 1, where synaptic adaptation takes place only in the top

layer. Network 2 has the flexibility of training both layers, leading to a decline in the values

of the sparsity metric for most batches. In Network 3, synaptic adaptation in both layers

coupled with the inclusion of target information drives the sparsity values to less than half

of Networks 1-2.
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Figure 6.6: (a)-(j) Test accuracy for Batches 1-10 respectively with Network 3 and a standard
MLP when the number of shots is varied from 1 to 10.
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6.5 Resource-efficiency with sparsity-driven learning

When the number of shots, i.e. the number of training data points/class for each phase of re-

training is further reduced, the classification performance of GTNN declines more gracefully

than standard learning algorithms when no additional regularizing effect or hyper-parameter

tuning was done. This is demonstrated in Figure 6.6(a)-(j) where test accuracy for all 10

batches with Network 3 as well as MLP is plotted by varying the number of shots from 1-10.

Importantly, no hyper-parameters were changed from the previous experiments in order to

evaluate recognition performance when no such tuning would be possible under different

training scenarios. It is seen that although MLP yields similar classification performance as

GTNN for a larger number of shots, GTNN has a consistently higher recognition performance

for fewer training data points per class. Figure 6.7(a)-(b) show the effect of varying number

of shots on final network sparsity for two representative batches, Batch 2 and Batch 7

respectively. We see that the network becomes more and more sparse as the network is

trained on more and more data, as expected from the equivalence between training error

and network-level spiking activity. Figure 6.8 plots the test accuracy of Batches 1-10 with

the same two networks for one-shot learning. For most of the batches, GTNN performs

significantly better.

6.6 Processing dynamic information with GTNN

GTNN can also be used as a recurrent network for capturing dynamic information in time-

series data by letting the input vector change slowly over the training duration, while the

output labels are held constant. This is similar to liquid state machines [129], with the
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Table 6.2: Final test accuracies and sparsity metrics evaluated on test data for AReM dataset
using Network 3.

Dataset Test accuracy (%) ρtest

AReM Task 1 (30, 6, 480, 2) 100.00 0.0474

AReM Task 2 (37, 6, 480, 3) 100.00 0.0370

AReM Task 3 (36, 6, 480, 3) 90.00 0.0347

difference that here the recurrent connections are adapted instead of the feed-forward weights

connecting the recurrent neurons to the output units, as usually done in reservoir computing-

based approaches. To demonstrate this, I ran experiments with Network 3 using the Activity

Recognition system based on Multisensor data fusion (AReM) dataset, which contains time-

series data generated by a Wireless Sensor Network (WSN) worn by an user performing

7 different activities [130]. For each data point, there are 6 different sequences containing

information about the Received Signal Strength (RSS) values coming from the WSN, where

each sequence consists of 480 time-steps corresponding to 120 seconds. The dataset contains

88 such sequences with a total of 42,240 instances. Specifically, I considered the three tasks

proposed in [130], each focusing on discriminating between smaller sets of similar movements:

Task 1 involves Cycling and Standing, Task 2 involves Bending1, Standing and Walking; and

Task 3 involves Bending2, Lying and Sitting. I used 18, 21 and 20 sequences respectively for

training Network 3 on Tasks 1-3, and another 4, 6 and 6 sequences respectively for validation.

Each sub-network in Network 3 comprised 6 differential neuron pairs to process the sequences

corresponding to each activity. Results on the AReM dataset are given in Table 6.2, where

dataset labels (N, D, L, M) refer to the size of dataset, number of sequences per data point,

sequence length and number of classes respectively.
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6.7 Evolution of population activity with training

A deeper analysis of the network and the synaptic dynamics reveals several parallels and

analogies with dynamics and statistics observed in biological neural networks. Figure 6.9

shows how the population activity evolves in the GT network with synaptic adaptation using

the proposed learning framework (Network 3 in particular) on the UCSD Gas Sensor Drift

dataset. Figures 6.9(a) and (b) plot the probability histograms of spike counts elicited by

individual neurons in response to the same set of stimuli before and after training in log-

log scale. There is a distinct shift in the range of spike counts from higher to lower values

observed before and training, as expected in sparsity-driven learning. This also indicates

that the network has figured out how to tune the precision level of individual neurons such

that fewer neurons have to encode the stimulus at high precision compared to before training.

Figures 6.9(c) and (e)-(f) present how network trajectories evolve as training progresses.

Stimulus encoding by a population of neurons is often represented in neuroscientific literature

by a trajectory in high-dimensional space, where each dimension is given by the time-binned

spiking activity of a single neuron. This time-varying high-dimensional representation can

be projected into two or three critical dimensions using dimensionality reduction techniques

like Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) to uncover

valuable insights about the unfolding of population activity in response to a stimulus [70,71].

In Figure 6.9(c), the evolution of PCA trajectories of normalized binned spike counts across

Network 3 are plotted during training corresponding to a training data point belonging to

odor 1 (Ethanol). The percentages in the axes labels indicate the percentage of variance

explained by the corresponding principal component. For the sake of clarity, trajectories are

shown only at 3 instances of time - before training, halfway into training and after training.

With synaptic adaptation, the PCA trajectories are seen to shrink and converge faster to
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the steady-state, indicating that the network-level spiking has reduced. This is also evident

from Figures 6.9(e)-(f), which plot network trajectories for training data points belonging

to 6 different classes (odors) before and after training respectively on the same subspace.

Although the trajectories belonging to different classes are elaborate and clearly distinguish-

able before training, they are seen to shrink and become indistinguishable after training.

Moreover, the net percentage of variance explained by the first 3 principal components de-

creases from ≈ 37% to only ≈ 18%. Together, these indicate that stimulus representation

becomes less compressible with training, relying on fewer spikes across a larger population

of neurons to achieve the optimal encoding. Figure 6.9(d) shows the decay in the eigen-

spectra corresponding to the PCA plots shown in 6.9(e)-(f). Both the spectra, pre-training

and post-training, exhibit a power-law decay, a property that has been observed in evoked

population activity in biological neurons [131]. However, as shown in Figure 6.9(d), the

eigenspectrum post-training reveals that the network encodes its activity with a code that

is higher-dimensional than pre-training. The tails of the spectrum, though, decays faster

indicating that the trained GTNN network efficiently utilizes the high-dimensional code to

represent neural activity.

6.8 Discussions

In this chapter I extended the learning framework for GTNN introduced previously to differ-

ent multi-layer network configurations that exploit one or more concepts in Chapter 5 and

showed how these SNNs are able to learn optimal parameters for a given task while simul-

taneously minimizing spiking activity across the network using benchmark datasets. I also

showed how the sparsity-driven learning endows GT network with an inherent regularizing
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effect, enabling it to generalize rapidly from very few training examples per class. Since only

the lateral connections within each layer are trained, the network structures considered in

this work are inherently scalable where each layer can be independently and simultaneously

trained, eradicating the need for propagating error gradients throughout the network. The

sparsity-driven learning also ensures that the neurons remain within their dynamic ranges

and away from saturation, facilitating the training of larger networks. Moreover, sparsity

optimization not only reduces the number of active neurons, but also the spiking rates of

the active neurons, and as such could be used to relax the communication bandwidth and

improve network scalability.

6.8.1 Implications for neuromorphic hardware

The GT neuron and network model, along with the proposed learning framework, has unique

implications for designing energy-efficient neuromorphic hardware, some of which are out-

lined below:

� Typically in neuromorphic hardware, transmission of spike information between differ-

ent parts of the network consumes most of the active power [36]. This work presents

a learning paradigm that can drive the network to converge to an optimal solution

for a learning task while minimizing firing rates across the network, thereby ensuring

performance and energy optimality at the same time.

� Unlike most spiking neural networks which adapt feed-forward weights connecting one

layer of the network to the next, the proposed framework presents an algorithm for

weight adaptation between the neurons in each layer, while keeping inter-layer connec-

tions fixed. This could significantly simplify hardware design as the network size scales
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up, where neurons in one layer could be implemented locally on a single chip, reducing

the need for transmitting weight update information between chips. Moreover unlike

backpropagation, this algorithm can support simultaneous and independent weight

updates for each layer, eradicating reliance on global information. This could enable

faster training with less memory access requirements.

6.8.2 Relation with balanced spiking networks

The balance between excitation and inhibition has been widely proposed to justify the tem-

porally irregular nature of firing in cortical networks frequently observed in experimental

recordings. This balance ensures that the net synaptic input to a neuron are neither over-

whelmingly depolarizing nor hyper-polarizing, dynamically adjusting themselves such that

the membrane potentials always lie close to the firing thresholds, primed to respond rapidly

to changes in the input [132].

The differential network architecture considered in this work is similar in concept, maintain-

ing a tight balance between the net excitation and inhibition across each differential pair. It

is shown how designing the network this way always satisfies a linear relationship between

the mean membrane potentials and the external inputs. Moreover, a learning framework is

developed that adapts the weights of the differential network such that membrane potentials

of both halves of the differential pairs are driven close to their spike thresholds, minimizing

the network-level spiking activity. By appropriately designing the network, it was shown

how this property could be exploited to simultaneously minimize a training error to solve

machine learning tasks.
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Chapter 7

Conclusions and Future Work

7.1 Summary of contributions

In summary, in this dissertation, I developed a neuromorphic machine learning framework

where neural responses and weight parameters in a spiking neural network are optimized

w.r.t. energy functionals that represent actual energy metrics for the system. This enables

us to connect key optimization concepts to biologically relevant neural dynamics in spiking

neural networks for developing algorithms that can perform energy-efficient learning and

inference for energy and resource-constrained environments like tinyML platforms. More

specifically, the contributions of this dissertation are:

� I proposed a spiking neuron and network model based on Growth Transform dynamical

system where individual neural responses are optimized w.r.t. an energy function that

models local power dissipation at the neuron, and where spike generation occurs as

a result of a constraint violation in the underlying optimization problem. The model

exhibits spike-based encoding and can replicate single-neuron response characteristics

similar to biological neurons.
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� I explored a number of learning frameworks without synaptic adaptation using short-

term network dynamics in the proposed model in the context of liquid state machines,

spiking support vector networks and spiking associative memory networks. For the

last two, I also explored how to exploit network structure and state of convergence to

learn energy-efficient neural representations.

� I proposed a sparsity-driven backpropagation-less learning framework for the Growth

Transform Neural Network (GTNN) that simultaneously minimizes a training error

and the network-level spiking activity, and demonstrated unsupervised and supervised

learning using the framework.

� I extended the sparsity-driven learning framework to build multi-layered spiking neural

network (SNN) architectures and demonstrated how progressively increasing flexibility

in training leads to higher network sparsity. I also showed how weight adaptation

between neurons on the same layer allows each layer to learn a non-linear encoding of

its input, whereas the connections between layers could remain static. Additionally, I

demonstrated using a benchmark dataset that sparsity-driven learning allows GTNN to

generalize better from very few training samples per class, leading to resource-efficient

learning.

7.2 Future directions

The Growth Transform neuron and network model along with the learning framework intro-

duced in this work provides a number of interesting directions for future research, some of

which are outlined below:
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� A key advantage of the proposed framework is that it decouples the network solution

from the transient dynamics, which could be independently controlled by the modula-

tion function. Thus while the solution to the energy functional is determined by the

coupling matrix Q and the stimulus vector b, the trajectory to the solution could be

determined by a different optimization process. For example, a hybrid spiking network

comprising neurons of different types (tonic spiking, bursting, non-spiking, etc.) could

be exploited to influence factors such as speed, energy-efficiency and noise-sensitivity of

information processing. Alternatively, this could model the effect of neurotransmitters

and metabolic factors that have been known to affect the properties and functional

connectivity of populations of neurons, enabling the network to generate different out-

put patterns and produce different behaviors for the same stimulus [133,134]. It could

also be used to model the effect of diffusion processes or glial processes that have

been known to modulate response properties and synaptic transmission in neurons,

influencing information processing and learning in the brain [135,136].

� The proposed neuron model abstracts out the essential aspects of spike generation and

transmission that can replicate neural dynamics, and remapped synaptic interactions

to an energy-based framework. As a result of the remapping procedure, the coupling

matrix Q in the proposed model is proportional to the inverse of the synaptic weight

matrix W in a standard spike response model. This could pave the way for developing

novel neuromorphic learning algorithms in the Q-domain that involves sparse local

analog connectivity, but which actually translates to fully-connected non-sparse global

connectivity in the W -domain. Thus, adapting one synaptic connection in the Q-

domain, in this case, will be equivalent to adapting multiple synapses in the W -domain.
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� In the current version, the GT neuron models the hyperpolarization (reset) part of the

spike, but does not explicitly model the runaway process that leads to a spike. An

interesting direction for future research could be to incorporate additional processes

that capture the different biophysical and bio-molecular properties (e.g. ion-channel

conductances) of neurons in order to generate the exact shape of a spike.

� Last but not the least, although the scope of this work was to provide a theoretical

framework for energy-efficient learning and inference using spiking neural networks, the

full potential of the proposed framework would only be realized with a hardware im-

plementation. Building neuromorphic processors that implement GTNN would be an

interesting direction of future research for tinyML applications. As a first step towards

a practical realization of the same, I designed a continuous-time analog optimization

circuit based on Growth Transform updates, as reported in Appendix A. Future scope

involves molding the circuit design to implement the GT neuron and network model

that could perform on-chip inference as well as learning.
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Appendix A

Circuit implementation of

continuous-time Growth Transform

dynamical system

Analog circuits have long been used for solving various mathematical optimization problems

due to their lower latency when compared to their digital counterparts. Here I present a

continuous-time analog optimization circuit based on Growth Transforms that could be used

to implement the neuron and network model proposed in this dissertation. The circuit uses

translinear MOSFET elements to implement the multiplication and normalization functions

using only 5 transistors, whereas continuous-time updates and recursion are implemented

using current mirrors. The circuit does not require any additional components to enforce

optimization constraints and naturally converges to a steady-state solution corresponding to

a local minimum of an objective function. I show that the proposed circuit is generic enough

to encompass a multitude of objective functions simply by changing the external circuitry,

and the power dissipation of the circuit can be adjusted according to the desired latency. I

also present simulation results for specific forms of quadratic and linear cost functions with
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tunable coefficients, subject to a normalization constraint, and the results show excellent

match to floating-point software simulation results.

A.1 Introduction

Physical processes occurring in nature have an universal tendency to move towards the

most stable (minimum-energy) state over a constraint manifold, defined by the values taken

by the process variables. Since such processes are essentially analog in nature, exploiting

analog circuits for performing such tasks is an obvious choice. Moreover, analog circuits

are capable of processing real-time optimization problems and converge to the steady-state

solution almost quasi-instantaneously because of the constant interaction between all parts

of the circuit, in contrast to digital circuits having higher latency owing to the sequential

updates they implement, which scales with the size of the optimization problem.

Analog circuits were first used for solving linear and quadratic optimization problems in [137]

by computing the steady-state currents and node potentials in electrical circuits consisting of

resistors, voltage and current sources and diodes for implementing the equality and inequal-

ity constraints. This was later extended to more general nonlinear optimization problems

which were applied for solving neural network based algorithms [138,139]. Modifications to

the above topologies were proposed in the canonical nonlinear programming circuit of Chua

and Lin [140], the constrained optimization circuit of Platt [141], the penalty function based

approach proposed by Lillo et al. [142] and many more. These circuits had considerably high

settling times (in orders of milliseconds), primarily because of the capacitances present in

the circuit for implementing the required constraint functions. Later in Vichik’s work [143],
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a similar concept was utilized for solving linear and quadratic programming problems by us-

ing an FPAA (Field Programmable Analog Array) based implementation, which drastically

reduced the computation time to the order of microseconds. This was later extended in [144]

to obtain nanosecond range computation time with reasonably high accuracy using switched

capacitor circuits. However, the above methods suffer from a number of limitations. First,

they implement the Lagrangian function corresponding to the original constrained optimiza-

tion problem, and use the KKT conditions for arriving at the equilibrium point by essentially

solving the dual problem. The notion of strong duality is thus implicitly assumed, which

may not be true for all classes of optimization problems. Secondly, they have significantly

higher power dissipation, which scales with the number of optimization variables involved.

Additionally, parasitic capacitances involved in the nonlinear programming implementation

as well as in the switched capacitor based implementation significantly degrade the accuracy

of the solution.

In this work, I propose a continuous-time analog optimization circuit which uses multiplica-

tive updates based on Growth Transforms for solving generic optimization problems involving

Lipschitz continuous cost functions over a scaled probabilistic domain [49]. Sub-threshold

operation ensures that power dissipation is extremely low, whereas inherent conservation con-

straints present in the circuit alleviate the need for designing separate circuitry for enforcing

KKT conditions. Additionally, since the proposed circuit does not implement an equivalent

Lagrangian for the constrained optimization problem unlike existing analog optimization

topologies, the assumption of strong duality is not necessary.
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Figure A.1: (a) Schematic of the Growth transform based analog optimization circuit. The
i−th block Mi implements Growth transform updates on the i-th variable xi, given the

corresponding gradient term
∂H
∂xi

for optimizing a cost function H(xi). Updated currents are

normalized at node A, w.r.t. the normalization current I0. (b) and (c) External circuitry for
implementing quadratic and linear objective functions respectively.
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A.2 Circuit Implementation

As outlined in Section 2.3.1, Growth Transforms based on the Baum-Eagon inequality [45]

define a continuous mapping σ : D → D for minimizing a Lipschitz continuous function H

on a continuously differentiable manifold D = {xi : xi ≥ 0 and
M∑
i=1

xi = 1}, where

σ(xi,n) = xi,n+1 =

xi,n(− ∂H
∂xi,n

+ λ)

∑
j

xj,n(− ∂H
∂xj,n

+ λ)

, (A.1)

with λ being chosen to ensure that xi,n+1 ≥ 0 ∀i. Note that in (A.1), I considered a specific

case for Growth Transforms with a single linear constraint, but the circuit implementation

can be easily extended to M linear constraints in accordance with (2.16) in a modular fashion.

In [49], a continuous-time variant of the Growth transform updates was proposed, where each

variable xi dynamically evolves with a time constant τ according to the following equation:

τ
dxi(t)

dt
+ xi(t) = σ(xi(t)), (A.2)

and the solution converges to the optimal point of H(.) in steady state.

Here the Growth transform minimization algorithm is used in conjunction with the translin-

ear principle for designing a current-mode analog optimization circuit. By construction, the

circuit will be capable of minimizing a generic Lipschitz continuous objective function subject

to a conservation constraint naturally implemented by the circuit. The design is essentially
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canonical, consisting of individual update blocks for the optimization variables, which per-

form the multiplicative updates locally on each variable in the optimization problem, and

sends the updated variable for subsequent normalization.

Figure A.1(a) shows a circuit-level implementation of the i−th submodule Mi, where the

pins Pvar and Pder are connected to an external circuit that governs the type of cost function

to be implemented by selecting the particular form for the derivative term. We consider all

of the transistors to be in sub-threshold, which implies the following relationship between

the drain current and the gate to source voltage:

Ids = KIs exp

(
κVg − Vs
UT

)
, (A.3)

where:

Is = specific current =
2µCoxU

2
T

κ
exp

(
−κVth
UT

)
.

K = aspect ratio = W/L.

UT = thermal voltage.

Vth = threshold voltage.

κ = gate coefficient.

Under the assumption that κ ' 1, this can be approximated as follows:

Ids = KIs exp

(
Vgs
UT

)
. (A.4)
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The transistors N1, N2 and N3 of each block, along with the normalization circuit, implement

translinear current multiplication-normalization, such that the following relation holds:

τ
dxi(t)

dt
+ xi(t) = I0

exp

(
κ
Vg|N3i(t)

UT

)
∑
j

exp

(
κ
Vg|N3j(t)

UT

) , ∀i, j = 1, . . . ,M. (A.5)

Since Vg|N3(t) = Vgs|N1i(t) + Vgs|N2i(t), we arrive at the following relation:

τ
dxi(t)

dt
+ xi(t) = I0

xi(t)(−
∂H

∂xi(t)
+ λ)∑

j

xj(t)(−
∂H

∂xj(t)
+ λ)

. (A.6)

Inside each sub-module, the updated current xi is mirrored to N2 at each instant to be

used for the next update. The time-constant τ of the circuit is determined by the gate

capacitances at the mirror and parasitic capacitances. A second mirror is used at pin Pvar,

which gives the instantaneous value of the variable at each block. The current λ can be

tuned to ensure that the current flowing through N1 is always nonnegative. Since ( A.6)

exactly corresponds to the growth transform updates in (A.1), it follows that the proposed

circuit reaches the optimal solution corresponding to the cost function H in steady-state.

Moreover, since KCL is enforced at each node of the circuit at each instant, convergence of

the solution to the steady state is almost instantaneous, leading to high speed operations,

while sub-threshold operation ensures very low power dissipation.
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A.3 Experimental Results

Although the proposed circuit is generic enough to implement any Lipschitz continuous

function by connecting different external circuitry to the pins Pvar and Pder, simulation results

corresponding to the minimization of quadratic and linear objective functions subject to the

normalization constraint are presented here. The circuit in Figure A.1(a) was simulated

using 0.5µm CMOS process SPICE parameters, and the results were compared against the

equivalent optimization problem implemented on floating-point software.

A.3.1 Quadratic objective function

Figure A.2: (a) Solution of the quadratic objective function Hquadratic. (b) Comparison
between the normalized steady-state values obtained from SPICE and from software simu-
lations, for a quadratic optimization problem by sweeping α1 while keeping α2, α3, α4 = 1.
(c) Solution of the quadratic objective function Hrls. (d) Solution of the linear objective
function Hlinear.
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Using the proposed circuit, we can implement an objective function which is quadratic in xi,

by making ∂H
∂xi

a linear function of xi through a current mirror as shown in Figure A.1(b).

Moreover, we can make the weights (coefficients) of the quadratic terms different simply by

connecting different voltage sources Vi and Vdi to the pins Pvar and Pder respectively, such

that Vi, Vdi � Vdd. Sub-threshold operation ensures that the following relationship holds

between the currents through T1 and T2

∂H
∂xi

= αixi, αi = exp

(
Vi − Vdi
UT

)
, (A.7)

which corresponds to the cost function H(xi) =
∑
i

αix
2
i . For demonstrating the circuit

functionality, a sub-circuit consisting of 4 variables is chosen, and the voltage sources Vi and

Vdi at the four blocks are set so as to produce the following arbitrary quadratic cost function

Hquadratic = 2.2255x2
1 + x2

2 + 0.6703x2
3 + 1.2214x2

4 (A.8)

which the circuit minimizes over the domain D. Figure A.2(a) shows the time-evolution of

individual currents xi when the output pins are connected to the respective voltage sources

at time = 0. Here, the normalization current I0 = 100 nA, so prior to t = 0, the currents are

equally divided among the four update blocks (i.e., 25 nA). When the different voltage sources

are applied, the circuit applies growth-transform updates and reaches the new steady-state

with a latency of < 10µs.

For the next set of experiments, it is shown that the operation of the quadratic circuit

remains stable when we sweep one of the coefficients (say, α1) over a large range, while

keeping the other coefficients fixed at 1. Figure A.2(b) shows the comparison between the
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normalized steady-state solution obtained from SPICE simulations, and the corresponding

software simulations for different values of α1.

It is also possible to solve L1− regularized least squares optimization problems of the form

H(xi) =
∑
i

1
2
(αixi − yi)2 by connecting a constant current sink yi to pin Py. The SPICE

simulation results corresponding to

Hrls =
1

2

(
(x1 − 30)2 + (x2 − 20)2 + (x3 − 40)2 + (x4 − 25)2

)
(A.9)

are shown in Figure A.2(c), which conform to software simulations with an average accuracy

of 97.71% and an average latency of 50 µs across the four variables.

A.3.2 Linear objective function

The proposed framework is also capable of solving a linear programming problem of the form

H(xi) =
∑
i

αixi subject to a normalization constraint, by connecting a constant current

sink αi to the pin Pder, and connecting Pvar to ground through T1 and T2, as shown in

Figure A.1(c). Since we are minimizing a linear cost function under a simple sum constraint,

the solution will converge to a boundary point of the domain, with the entire current being

drawn by the block Mi having the lowest value of αi. This conforms to our SPICE simulation

results shown in Figure A.2(d), for the following simple cost function

Hlinear = 15x1 + 20x2 + 10x3 + 25x4, (A.10)

in which case, x3 converges to I0 as expected, whereas the other variables draw no current.

Here too, the average latency is less than 10 µs.
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A.4 Discussions

A novel sub-threshold current-mode analog optimization circuit is presented in this section,

where the optimization variables implement Growth transform-based multiplicative updates

in parallel, for optimizing a generic Lipschitz continuous objective function subject to a

normalization constraint. Simulation results indicate that the proposed circuit produces

high accuracy solutions with significantly low latency and very low power dissipation, while

simultaneously alleviating the need for separate circuitry for enforcing the KKT conditions,

unlike other analog optimization frameworks. Additionally, existing topologies for analog

optimization require separate circuitry to optimize different polynomial cost functions, and

circuit parameters are usually hard-wired for solving a cost function with fixed coefficients. It

was shown that the proposed circuit can implement quadratic and linear objective functions

with easily tunable coefficients for individual terms, simply by connecting different external

circuitry to the canonical building block. This can also be extended easily to implement

other types of nonlinear cost functions. The proposed framework is capable of minimizing a

time-varying cost function in real-time, and is moreover scalable to larger problem sizes, as

long as the sub-threshold operation of each individual update block is ensured. Additionally,

because of the inherently modular structure of the framework, faults in any part of the circuit

can be easily isolated, or variables can be added or taken out of the optimization problem

without changing the overall architecture.

The circuit model in Figure A.1(a) can be seamlessly extended to the Growth Transform

neuron model by taking M = 2, satisfying the normalization constraint between pairs of

variables, which would then essentially implement the variables v+
i and v−i in (2.25). Con-

necting an external circuitry at the pin Pder that implements (2.35) would complete the

neuron model. The spiking function Ψ(.) could be implemented by a threshold circuit that
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outputs a constant current whenever the optimization variable vi = v+
i − v−i exceeds the

spiking threshold.
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