
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2021

Reasoning about Scene and Image Structure for Computer Vision Reasoning about Scene and Image Structure for Computer Vision

Zhihao Xia
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Xia, Zhihao, "Reasoning about Scene and Image Structure for Computer Vision" (2021). Engineering and
Applied Science Theses & Dissertations. 667.
https://openscholarship.wustl.edu/eng_etds/667

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/667?utm_source=openscholarship.wustl.edu%2Feng_etds%2F667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST.LOUIS

School of Engineering & Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Ayan Chakrabarti, Chair

Tao Ju
Brendan Juba

Ulugbek Kamilov
Kalyan Sunkavalli

Reasoning about Scene and Image Structure for Computer Vision
by

Zhihao Xia

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2021
St. Louis, Missouri

© 2021, Zhihao Xia

Table of Contents

List of Figures... v

List of Tables .. xii

Acknowledgments.. xv

Abstract ... xix

Chapter 1: Introduction.. 1

1.1 Scene map estimation from images ... 3

1.1.1 Quality of camera measurements .. 3

1.1.2 Ill-posed nature of scene map estimation 4

1.1.3 High-dimensional output and search space 6

1.1.4 Insufficient data for deep learning ... 6

1.2 Dissertation overview ... 7

Chapter 2: Exploiting internal structures in low-light photography 10

2.1 Related work.. 13

2.2 Exploiting patch similarity for image denoising 14

2.2.1 Introduction ... 14

2.2.2 Proposed denoising algorithm .. 16

2.2.3 Experiments... 22

2.2.4 Discussion.. 29

2.3 Exploiting self-similarity in denoising kernels for burst photography 30

2.3.1 Introduction ... 30

2.3.2 Method ... 32

2.3.3 Kernel-based burst denoising ... 33

2.3.4 Experiments... 37

ii

2.3.5 Discussion.. 46

2.4 Exploiting scene appearance in flash photography 47

2.4.1 Introduction ... 47

2.4.2 Proposed approach .. 50

2.4.3 Experimental setup.. 55

2.4.4 Evaluation ... 57

2.4.5 Discussion.. 62

Chapter 3: Learning without direct supervision for computational photog-
raphy ... 64

3.1 Training image estimators without ground-truth images 66

3.1.1 Introduction ... 66

3.1.2 Related work .. 69

3.1.3 Proposed approach .. 71

3.1.4 Experiments... 76

3.1.5 Discussion.. 80

3.2 Training a dark flash normal camera without ground-truth normals............. 84

3.2.1 Introduction ... 84

3.2.2 Related work .. 86

3.2.3 Network design and training .. 89

3.2.4 Dataset ... 93

3.2.5 Evaluation ... 96

3.2.6 Discussion.. 100

Chapter 4: Probabilistic scene map estimation for modular inference 102

4.1 Related work.. 105

4.2 Probabilistic monocular depth ... 108

4.2.1 Proposed method .. 108

4.2.2 Monocular inference tasks ... 111

4.2.3 Experimental results .. 112

4.3 Depth estimation with additional information ... 115

4.3.1 Proposed approach .. 115

iii

4.3.2 Applications ... 117

4.3.3 Experimental results .. 119

4.3.4 Analysis and ablation... 123

4.4 Discussion ... 125

Chapter 5: Conclusion .. 126

References .. 129

iv

List of Figures

Figure 1.1: Visualization of the system considered in this dissertation. An image
(b) represents a two-dimensional projection of incident light from a
scene (a), as captured by a camera—often with noise and other degra-
dation. We study the inverse problem—inferring scene properties from
the captured (b) image with neural networks, where scene properties
is represented by a dense array of real-valued numbers, i.e., (c) “scene
maps”. (d) Example scene maps include high-quality images, depth
maps, albedo, etc. This problem is ill-posed. Because the observed
(b) image could correspond to multiple (e) plausible scenes. Scene ex-
amples are based on Adelson and Pentland’s “workshop” metaphor [1]. 2

Figure 1.2: Scene maps (for example, this depth map from the NYUv2 dataset [151])
are not arbitrary arrays of independent numbers. They exhibit statis-
tical and spatial structure. .. 5

Figure 2.1: (a) A photo of New York City at night taken with a mobile phone
(cr. Ayan Chakrabarti). (b) Human portraits taken with the night
sight mode on Google Pixel 3 (cr. Alexander Schiffhauer [144]). (c)
Astrophotography with a Huawei P30 Pro (cr. Justin Ng [125])........ 11

Figure 2.2: Overview of Our Approach to Patch Denoising. We produce estimates
of clean patches by weighted averaging across a candidate set of nearby
patches in the observed noisy input. We decompose every patch using
a wavelet and de-correlating color transform into sets of sub-band
coefficients, with coefficients at the same scale, orientation, and color
channel grouped together in each set. We then train a neural network
that, given a pair of patches, computes a vector of matching scores—
one for each group of coefficients. For every patch, we compute these
score vectors with respect to all candidate patches. The denoised
patch is obtained by averaging, across all candidates, of each group of
coefficients using its corresponding matching scores........................ 16

v

Figure 2.3: Matching Network Architecture. To produce the matching scores
mg

ij, we first extract a feature vector for all patches by passing the
image through a feature extraction network, comprised of a set of
convolutional layers with skip connections (where the join is performed
by a concatenate operation. Then, for any pair of patches, we take
the corresponding pair of feature vectors, and pass them after concate-
nation through a series of fully-connected layers. The final layer has a
sigmoid activation, yielding scores that lie between 0 and 1. 19

Figure 2.4: Example Crops of Denoised Images (σ = 50). Compared to state-
of-the-art denoising algorithms (IRCNN [185], DnCNN [184], and
FFDNet [186]), we see that our overall method is often able to recover
texture and detail with higher fidelity, by exploiting similar patterns
in the input image itself. .. 25

Figure 2.5: Effect of training set size. We report average PSNR on Urban-100 [64]
for denoising at σ = 50 with our method and IRCNN [185], when both
are trained with a limited number of training images (“Full” represents
using the entire training set for our method, and the official model for
IRCNN). While our estimates are always more accurate than those
from IRCNN, the gap is especially higher when the number of training
images is small. .. 26

Figure 2.6: Visualization of Matching Score Distributions in Different Sub-bands.
We show reference patches (indicated by blue squares) along with
their local search windows from various images of the training set
(9 windows per image), and visualize the matching scores predicted
by our network. We show the predicted weights averaged across all
sub-bands, as well as specific to different scales (averaging over color
and orientation at each scale), and orientations (averaging over color
and scale).. 28

Figure 2.7: (top) Qualitative result of our denoising network. The proposed ap-
proach (b) recovers fine geometric details from a very noisy image
burst (a, only one frame is shown). (Bottom) our per-burst bases can
compactly represent a large variety of kernels by exploiting the redun-
dancy of local image structures. We clustered the per-pixel coefficients
predicted from the noisy burst using k-means. The clusters we obtain
show strong spatial structure (d). For instance, we can identify a
cluster corresponding to horizontal image edges (e, orange), one corre-
sponding to vertical edges (e, green), and another for homogeneous
regions with no structure (e, gray).. 30

vi

Figure 2.8: Our basis prediction network takes as input a burst of noisy input
frames (a) together with the noise parameters (b). The frames are
encoded into a shared feature space (c). These features are then
decoded by two decoders with skip connections into a burst-specific
basis of 3D kernels (e) and a set of per-pixel mixing coefficients (d).
Both the coefficients and basis kernels are individually unit-normalized.
Finally, we obtain per-pixel kernels by mixing the basis elements
according to the coefficients and we apply them to the input burst to
produce the final denoised image (f). ... 33

Figure 2.9: We illustrate denoising performance on a benchmark synthetic grayscale
test set [120] for our method, a direct prediction network (which di-
rectly regresses denoised pixels), and two KPN variants [115, 120]
with the same kernel size K = 15 as our method. The numbers in
inset refer to the PSNR (dB) on the full image. In addition to better
quantitative performance, our method does better at reproducing
perceptual details like textures, edges, and text. 38

Figure 2.10: We visualize a few 3D kernels predicted by our approach (withK = 15),
and those produced by standard KPN (with K = 5 and K = 15).
For kernels predicted at a given location, we also show crops of the
different noise-free frames centered at that point, with the support
of the kernel marked in blue. In comparison to those from KPN, our
kernels are more evenly distributed across all frames in the burst, with
spatial patterns that closely follow the apparent motion in the burst. 45

Figure 2.11: We show examples of color denoising using our method on our synthetic
color test set, comparing these to direct prediction and our color-
extended version of KPN [120] (with K = 5). Numbers refer to PSNR
(dB) on the full image. ... 46

Figure 2.12: Given a pair of images of low-light scenes captured with and without
a flash (left), our method produces a high-quality image of the scene
under ambient lighting (right). This output is generated by filtering
the no-flash image with a predicted field of kernels—to capture a
smoothed stimate of scene appearance under ambient lighting, followed
by multiplication with a scale map that introduces high-frequency
detail illuminated by the flash. ... 48

Figure 2.13: System Overview. The denoising network takes as input a pair of
flash, no-flash images (a) together with the noise parameters (b). After
encoding, the resulting features (c) are decoded into a multi-scale basis
(d), a set of pixel-wise coefficients (e) and a scale map (f). The no-flash
image is filtered using the reconstructed kernels (g) and multiplied by
the scale map to produce the final denoised output (h). 51

vii

Figure 2.14: Performance vs. misalignment. We show the performance profile
of our method and select baselines as a function of average displacement
between the two frames. Our model consistently delivers superior
performance and is robust to large misalignment between its inputs. 59

Figure 2.15: Qualitative comparison. Our method uses flash/no-flash image
pairs to denoise low-light images. It produces cleaner outputs than
baseline flash/no-flash denoisers (Direct (F+NF), BPN (F+NF)), as
well as single-image (Only No-Flash Input) and burst denoisers (2×
No-Flash Burst). We also visualize our intermediate filtered no-flash
image and scale map. .. 60

Figure 2.16: Qualitative comparison (continued). Our method uses flash/no-
flash image pairs to denoise low-light images. It produces cleaner
outputs than baseline flash/no-flash denoisers (Direct (F+NF), BPN
(F+NF)), as well as single-image (Only No-Flash Input) and burst
denoisers (2× No-Flash Burst). We also visualize our intermediate
filtered no-flash image and scale map. ... 61

Figure 2.17: Flash vs. no-flash as reference frame. We use the ambient-only
image as the reference frame for our reconstruction (top), i.e. the
ground truth is aligned to the no-flash image. We found this choice
leads to a lower error on average, compared to the alternative, using
the flash as reference (bottom). ... 61

Figure 2.18: Benefit of large kernels. By using a 2-scale kernel decomposition,
where the low-pass component is bilinearly upsampled, our model (top)
can better denoise the ambient-only image. This leads to reduced
residual chroma noise, which makes the scale map more effective at
recovering fine details. Without it (bottom), the kernels are too small
to effectively denoise the ambient image, so the scale map needs to
compensate for the residual mid-frequency noise............................ 62

viii

Figure 3.1: Unsupervised Training from Measurements. Our method al-
lows training image estimation networks f(·) from sets of pairs of
varied measurements, but without the underlying ground-truth im-
ages. (Top Right) We supervise training by requiring that network
predictions from one measurement be consistent with the other, when
measured with the corresponding parameter. (Bottom) In the blind
training setting, when both the image and measurement parameters
are unavailable, we also train a parameter estimator g(·). Here, we
generate a proxy training set from the predictions of the model (as
it is training), and use synthetic measurements from these proxies
to supervise training of the parameter estimator g(·), and augment
training of the image estimator f(·). ... 67

Figure 3.2: Images reconstructed by various methods from compressive measure-
ments (at 10% ratio). .. 77

Figure 3.3: Blind face deblurring results using various methods. Results from our
unsupervised approach, with both non-blind and blind training, nearly
match the quality of the supervised baseline. 82

Figure 3.4: Image and kernel predictions on validation images. We show outputs
of our model’s kernel estimator, that is learned as part of blind training
to compute swap- and self-measurement losses. 83

Figure 3.5: Estimating surface geometry from a single RGB image is challenging.
We augment this input with a single NIR “dark flash” image captured
at the same time, and present a network that can estimate high quality
normal maps and reflectance maps (not shown) under a wide range of
visible lighting conditions. .. 85

Figure 3.6: Our network learns to estimate shape and reflectance from a single
front-lit NIR image, a single RGB image under arbitrary lighting, and
a semantic segmentation map computed from the RGB image (inputs
are enclosed by the red line). During training we also use a stereo
depth map and replace the RGB image under arbitrary lighting with
4 RGB+NIR image pairs captured under calibrated point lights (the
training inputs are inside the blue dashed line). 87

Figure 3.7: Illustration of our network and training strategy. We estimate network
weights that minimize a photometric loss, computed between images
rendered from our network outputs and ground truth images captured
under known lighting, and a stereo loss, driven by differences between
the output normals and those estimated using an independent stereo
technique. ... 89

ix

Figure 3.8: Our hardware setup consists of controllable NIR and visible spectrum
light sources, an RGB camera, a stereo pair of NIR cameras, and two
NIR dot projectors. One of the NIR cameras and the RGB camera are
aligned with a beamsplitter and all of these components are triggered
electronically to record the types of images shown in Figure 3.6........ 94

Figure 3.9: Impact of the photometric loss term in our training procedure and the
Blinn-Phong BRDF in our image formation model, respectively. When
trained without photometric loss, our network learns to output the
stereo normals, which lack fine-scale details. This has a fairly small
effect on the error measures in Table 3.3, but is perceptually significant
as seen in these “n dot l” shading renderings. Our full image formation
model, which includes a Blinn-Phong specular term, produces more
accurate albedos across the face than using a Lambertian model alone. 94

Figure 3.10: Comparison of our network to a modified version that takes only
a single RGB image (“RGB Only”) as input. Example results for
three common challenging lighting conditions. Top to bottom: low
light / noisy inputs; mixed light colors; harsh directional lighting with
saturated intensities. The “RGB only” network struggles to produce
stable normal and reflectance estimates from these inputs in contrast
to our method. ... 95

Figure 3.11: Stereo methods often struggle to recover fine-scale surface details.
Left: Applying a guided bilateral filter to raw stereo depths yields a
smoother surface but with distorted features (e.g. the nose is reduced
and skin wrinkles are missing). Right: We use the method of Nehab et
al. [123] to compute a refined surface according to normals estimated
with our method. Note how details are better preserved around the
eyes, nose, and mouth, along with fine wrinkles and creases. 99

Figure 3.12: Our method can be used to simulate adding lights to a scene to fill in
shadows. .. 100

Figure 4.1: Overview of our approach. Given an input color image, we use a com-
mon task-agnostic network to output a joint probability distribution
p(Z|I) over the depth map—formed as a sample approximation using
outputs of a conditional VAE that generates plausible estimates for
depth in overlapping patches. The mean of this distribution represents
a standard monocular depth estimate, but the distribution itself can
be used to solve a variety of inference tasks in different application
settings—including leveraging additional depth cues to yield improved
estimates. All these applications are enabled by a common model,
that is trained only once. .. 104

x

Figure 4.2: Generating samples with a conditional VAE. Our network generates
samples for depth independently in each overlapping patch, and we
run it multiple times to generate multiple plausible samples per-patch.
The input to the VAE comes from pre-trained feature extraction layers
from a state-of-the-art monocular model [49]. Samples generated for
different patches (including those that overlap) are kept statistically
independent—after conditioning on the image—by using separate
per-patch latent vectors.. 109

Figure 4.3: Example depth estimates for different applications. We show outputs
from our method for both the pure monocular setting, as well as the
improved estimates we obtain combining our distributional output
with additional depth information—such as different kinds of partial
measurements, and user guidance with annotation and selection. 120

Figure 4.4: Analysis of distributional output and inference method on the test set.
Our distribution allows for many possible global depth explanations,
visualized here by choosing one of the generated samples in each patch
based on the rank of its accuracy going from best (oracle) to worst
(adversary), and computing global depth by overlap-average. These
solutions span a large range in accuracy, and without any additional
information, the mean monocular estimate lies in the middle of this
range. But when additional cues are available, they can be effectively
exploited by our MAP estimation method to extract better solutions
from our distribution. .. 124

xi

List of Tables

Table 2.1: Denoising Performance at Various Noise Levels on Different Datasets.
We report performance in terms of Average PSNR (dB) and SSIM. To
gauge robustness, we also report the 25th%-ile worst-case PSNR (dB),
computed across 8× 8 patches across each dataset. Ours-Blind refers
to results from a common model of our method that is trained for a
range of noise levels σ ∈ [0, 55] (and does not have knowledge of the
specific noise level of its input). ... 22

Table 2.2: Window Size and Pre-Training Ablation. We report average PSNR
(db) of the initial match-averaged estimates from our method on a
validation set for σ = 25. Run-times are for 256 × 256 images on a
1080Ti GPU. ... 27

Table 2.3: Denoising performance on a synthetic grayscale benchmark [120]. We
report performance in terms of Average PSNR (dB). Following [115,
120], our BPN was not trained on the noise levels implied by the gain
in the fourth column. Numbers for KPN* (K = 5) and MKPN* are
based on our implementation of these techniques. Numbers for all
other methods, including the end-to-end regression model to directly
synthesize denoised pixel intensities (denoted as Direct), are from
[120]. Our method widely outperforms all prior methods at all noise
levels. ... 37

Table 2.4: Ablation study on our validation dataset. Performance is reported in
terms of Average PSNR (dB). Beyond motivating our parameter choices
(K = 15,B = 90), this demonstrates that our use of a burst-specific
spatio-temporal basis outperforms standard KPN [120], separable
spatial kernels, a common spatial basis for all burst frames, separate
spatial bases per-frame, and a fixed, input-agnostic basis. All these
variants were trained with the same settings (K = 15, B = 90) as our
model. .. 40

xii

Table 2.5: Average basis rank for each noise level (first row), average rank of the
union of two bases from random burst pairs (second row), and the
average overlap ratio (third row) between the subspaces spanned by the
two bases. The low overlap justifies our prediction of a burst-specific
basis. ... 43

Table 2.6: FLOPS and runtimes on 1024×768 resolution images for different KPN
denoising approaches. All variants of our basis prediction network are
significantly faster than KPN and match the compute cost of separable
filters (with better denoising quality). Increasing the kernel size for
our technique comes at marginal cost thanks for the Fourier filtering
approach. This allows us to use large kernels for better denoising
performance... 43

Table 2.7: Denoising performance on our synthetic color test set. We report
performance in terms of Average PSNR (dB). Numbers for KPN*
(K = 5) are based on our implementation of [120]. Our method
outperforms KPN by more than 1 dB at all noise levels. 44

Table 2.8: Quantitative results. Thanks to the richer signal provided by
the flash input, our method outperforms our single image denoising
baseline, and a 2-frame burst denoising baseline. Comparisons to
standard burst denoising approaches adapted to use flash–no-flash pairs
show that our model architecture with its filtering/scale decomposition
and larger kernels outperforms previous work. These results hold over
a wide range of ambient light levels, shown here as dimming factors
between the low-light no-flash input and a well-lit ground-truth target. 57

Table 2.9: Ablation study. We compare the performance of our method to two
ablations. One uses the flash image instead of the no-flash image as
reference for the geometric transformation. The other uses a kernel
basis without interpolation, leading to an effective kernel size of only
15× 15. .. 59

Table 3.1: Performance (in PSNR dB) of various methods for compressive mea-
surement reconstruction, on BSD68 and Set11 images for different
compression ratios... 77

Table 3.2: Performance of various methods on blind face deblurring on test images
from [146]. .. 81

Table 3.3: Mean absolute angular error in degrees of normal maps computed
with modified versions of our full network. Results are reported for
the five lighting conditions described in Section 3.2.5...................... 97

xiii

Table 4.1: Results our probabilistic output for monocular depth estimation on
the NYUv2 test set. Methods that we compare to are specifically
proposed for monocular depth estimation..................................... 113

Table 4.2: RMS error for depth estimation from different numbers of sparse
measurements, when making measurements at random locations vs.
with guidance from our distribution. Given the measurements, we use
our depth estimation algorithm described in Section 4.3.2 in both cases 113

Table 4.3: Error rates for pairwise ordinal depth ordering from our common
model, compared to other methods that used accurate ordering as
an objective during training. We also report baseline errors from
predictions just based on our mean depth estimate. 114

Table 4.4: Part A of results for various applications on the NYUv2 test set. We
use distributional outputs from our common model to generate depth
estimates in a diverse variety of application settings when different
forms of additional depth cues are available. We compare to other
methods for these applications, including those (shaded background)
dependent on task-specific networks trained separately for each setting.
Our network, in contrast, is task-agnostic and trained only once. 121

Table 4.5: Part B of results for various applications on the NYUv2 test set. We
use distributional outputs from our common model to generate depth
estimates in a diverse variety of application settings when different
forms of additional depth cues are available. We compare to other
methods for these applications, including those (shaded background)
dependent on task-specific networks trained separately for each setting.
Our network, in contrast, is task-agnostic and trained only once. 122

Table 4.6: Ablation study on validation set. We evaluate different ways of gen-
erating samples: using a GAN instead of a VAE, and using different
patch-sizes p (with proportional strides s). For each case, we compare
achievable accuracy of individual samples via the “oracle” estimate
(see Figure 4.4), vs. their utility for actual inference—in the pure
monocular case and with random sparse measurements (#100). We
also evaluate the importance of patch overlap by considering larger
strides for our chosen model. ... 125

xiv

Acknowledgments

My PhD journey started with the first computer vision class I went to, which till this day

I still remember vividly. A picture of that class was recorded and locked in my brain. In

the center of that picture is a slide of a robot holding a watering can, while trying to figure

out the color of the flower and how far the plant is. Standing next to that slide, it was

Ayan talking passionately about what computer vision is. I was immediately struck by the

exciting mission of computer vision and Ayan’s vibrant intellectual energy. Ever since that

moment, my PhD research has been all about working with Ayan to enable that robot, or

any computer, to perceive the world as we human beings. In retrospect, I feel immeasurably

glad that I made that decision. Ayan has taught me how to do research, write papers, give

talks and most importantly how to think. For the past four years, he has been my go-to

person whenever I have a question and he can give me advice on almost everything. I will

certainly miss him as an inspiring advisor who led me into the door of computer vision, but I

am also deeply looking forward to more conversations that I will have with him as a friend in

the future.

One of the privileges that I enjoyed most as a researcher, especially a computer vision

researcher, is my collaborations with industrial labs, through which I have the chance to work

with more amazing mentors: Federico Perazzi, Michaël Gharbi, Kalyan Sunkavalli, Supreeth

Achar and Jason Lawrence. I could not ask for a better host for my first internship than

xv

Federico: he is a wonderful mentor and a fun friend. Michaël has given me so many advice

and has certainly become the role model for my next few years. I always enjoy talking to

Kalyan for his intellectual insights and deep knowledge. I’m grateful to Supreeth for showing

me how to set up cameras and lights to collect data. Jason is always passionate and so fun

to talk to, and he showed me to think bold and that our research can really change our life.

Besides research, my friends and peers are the reason why my PhD journey has been so fun

and they are: Wei Tang, Rusi Yan, Xiaojian Xu, Kyle Singer, Jeffery Jung, Aaron Park. I

spent so much time talking to Wei, about research and almost everything in life. Countless

times we talked for so long that Rusi has to remind us it is midnight. I’m so glad that we

have grown together from two naive students to two independent researchers. I spent more

New Year’s Eves and enjoyed more delicious meals with Kyle and Xiaojian than with my

parents in the last four years. I had many fun and exciting trips with Jeff and Aaron and

they’ve become my wonderful memories. I’m also grateful to Chen Liu for being a great

friend and giving me so much help and advice. I’m also fortunate to have many chances to

talk about papers and research with my peers. They are Huayi Zeng, Dan Zeng, Xingyi Du

and Yu Sun.

These few words go to my family. My Mom and Dad have being given me unconditional

supports for my entire life. Even though they do not understand my research, I find every

bit of my work related to them because they have made the person that I am today. My

little brother, Yihao (I named him when he was born although he now has a English name

Justin), I hope that one day when you can understand this and when you are reading this,

you have found the thing that you love as I have right now. I am so happy that I can call Bei

my family, for that we have been together for 8 years through our entire undergrad and PhD.

I simply, cannot imagine my life without her. There are so many amazing journeys ahead

xvi

waiting for us. Oh and of course thanks to our little cat, Panghu or Chubby tiger. Ever since

we adopted her, she has been on the slides of almost every talk that I gave.

Finally, I want to dedicate this thesis to my Grandma (Nainai). The darkest moment of my

PhD was when I was sitting on the hotel floor in Aspen for WACV and crying alone after I

heard that she was taken to the ICU. She passed away in a few months. My Grandma raised

me when I was a child, and the last time I saw her when she was conscious, she told me to

stay well. This is for you, Nainai.

Zhihao Xia

Washington University in Saint Louis

August 2021

xvii

To grandma

xviii

ABSTRACT OF THE DISSERTATION

Reasoning about Scene and Image Structure for Computer Vision

by

Zhihao Xia

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2021

Professor Ayan Chakrabarti, Chair

The wide availability of cheap consumer cameras has democratized photography for novices

and experts alike, with more than a trillion photographs taken each year. While many

of these cameras—especially those on mobile phones—have inexpensive optics and make

imperfect measurements, the use of modern computational techniques can allow the recovery

of high-quality photographs as well as of scene attributes.

In this dissertation, we explore algorithms to infer a wide variety of physical and visual

properties of the world, including color, geometry, reflectance etc., from images taken by

casual photographers in unconstrained settings. We specifically focus on neural network-based

methods, while incorporating domain knowledge about scene structure and the physics of

image formation. We describe novel techniques to produce high-quality images in poor

lighting environments, train scene map estimators in the absence of ground-truth data and

learn to output our understanding and uncertainty on the scene given observed images.

The key to inferring scene properties from casual photography is to exploit the internal

structure of natural scenes and the expressive capacity of neural networks. We demonstrate

that neural networks can be used to identify the internal structure of scenes maps, and that

xix

our prior understanding on natural scenes can shape the design, training and the output

representation of neural networks.

xx

Chapter 1

Introduction

The long history of human using photography to record where they are and what they see at

an instant, i.e., a scene, dated back to the 4th century BCE when the Chinese philosopher

Mozi described the earliest version of a pinhole camera. Projecting the world onto a 2D plane,

whether it being a wall, a Kodak photographic film or an array of CMOS sensors, what a

camera captures is far beyond a grid of pixels ever since then. When a human looks at a

photograph, our brain sees what the scene was like at the moment of capture. For example,

when we see an image full of people, our human perception system can often easily tell the

actual color of a person’s hair, which person is standing closer, the material of a person’s

clothes, etc. Empowering a computer to do the same, namely, decode scene properties from a

single or a few images, however, is very challenging and has long been a research problem in

computer vision and computational photography.

In the last two decades, drastic changes have taken place in the way we record a scene and

decode a photograph. Cameras have become cheap and are now available on mobile phones.

As a result, many more photographs are being taken by both professional photographers and

1

(a) Scene

(c) "Scene map"

(b) Image

high-quality
image

depth map albedo

(d) Example scene maps

(e) Other plausible scenes

Figure 1.1: Visualization of the system considered in this dissertation. An image (b) represents
a two-dimensional projection of incident light from a scene (a), as captured by a camera—often
with noise and other degradation. We study the inverse problem—inferring scene properties
from the captured (b) image with neural networks, where scene properties is represented
by a dense array of real-valued numbers, i.e., (c) “scene maps”. (d) Example scene maps
include high-quality images, depth maps, albedo, etc. This problem is ill-posed. Because the
observed (b) image could correspond to multiple (e) plausible scenes. Scene examples are
based on Adelson and Pentland’s “workshop” metaphor [1].

novice users. As a result, there are many more applications—in photography, image editing,

scene understanding, and beyond—where computer vision algorithms can find immediate

2

use. However, these algorithms must deal with the fact that many of the measurements that

these cameras make—especially with small and inexpensive optics—are imperfect, and that

there is much more diversity in scene content, illumination conditions, camera viewpoint, etc.

in casual photography.

Thankfully, the availability and ease of collecting large amounts of data has allowed the use

of large scale machine learning models. In particular, deep neural networks (DNNs) have

revolutionized computer vision. After seeing initial successes in semantic tasks such as image

classification and object detection, they are being increasingly used for tasks in computational

photography and for the recovery of physical scene properties. However, these tasks are far

from being solved. Many challenges, as we discuss next, still remain.

1.1 Scene map estimation from images

In this dissertation, we study the problem of scene map estimation from casually captured

images (visualized in 1.1). Specifically, we define a scene map to be a high-dimensional

dense array of continuous-valued scalar or vectors at each pixel on the image plane, which

characterize different physical and visual properties of the scene. Example scene maps

include image intensities for image restoration, depth maps and surface normals for geometry

reasoning, reflectance and shading in photometric applications, optical flow in video analysis.

The goal of scene map estimation tasks is to solve the inverse problem to infer scene properties

from observed images.

1.1.1 Quality of camera measurements

Casual photography, as opposed to professional photography and cinematography, involves

images taken by regular people with consumer grade cameras. While casual photography

3

provides photographers the advantage of convenience to capture the scene spontaneously, the

unsatisfying lighting environment, the poorly-tuned camera settings and the limitation of

mobile cameras often lead to unsatisfying image quality. The undesirable effects of captured

photos, including observation noise and artificial blur, obscures the encoded information about

the scene and creates great challenges for scene map estimation. Many of my dissertation

researches are indeed about using computational models to produce a unique kind of scene map,

i.e. high quality images, from degraded measurements. The other alternative is to develop

robust models to directly estimate other scene properties from images with unsatisfying

quality (as done in Section 3.2).

1.1.2 Ill-posed nature of scene map estimation

The inverse problem of scene map estimation is ill-posed due to the confounding of a variety

of variables in the image formation model. Given an observed image, there are often multiple

or even infinite physically plausible solutions to explain the captured image (see Figure 1.1).

The ill-posed nature of scene map estimation is the fundamental challenge in many tasks.

Image restoration seek to recover the underlying clean image from observational artifacts.

Intrinsic decomposition methods must disambiguate shading variation or reflectance variation

that lead to an appearance change. Depth estimation methods often struggle to infer the

absolute depth of the scene because of the ambiguity of scale and distance.

Fortunately, scene maps are not arbitrary arrays of independent numbers and exhibit statistical

and spatial structure. An easy way to see this is that the human visual system can easily

distinguish a real scene map or image from arbitrary arrays, or even shuffled versions of true

maps, even when one is not familiar with the scene the image corresponds to. An example

is shown in Figure 1.2. Therefore, researchers have tried to exploit the statistics and the

structure of natural scene maps to identify the most natural estimation from all plausible

4

solutions. Such prior knowledge are often defined as statistical models on natural scene maps

and treated as regularization or cost function on the probability of a candidate estimation.

Examples include different types of sparsity constraint on natural images and piece-wise

constant variations for albedo maps [6].

(a) A depth map (b) Randomly shuffled version of (a)

Figure 1.2: Scene maps (for example, this depth map from the NYUv2 dataset [151]) are not
arbitrary arrays of independent numbers. They exhibit statistical and spatial structure.

The last decade has witnessed significant strides in computer vision through the use of

convolutional neural networks (CNNs). While initially used for semantic applications with

discrete outputs, extensive works have shown that CNNs can also be useful for physics-based

and image-level scene map estimation. By training on a large-scale dataset of natural scene

maps, CNN based methods take a different approach and learn to automatically choose the

inverse mapping (from images to scene maps) from a space of possible solutions (also often

referred as hypothesis and hypothesis space). However, how to come up with a hypothesis

space for scene map estimations, which is defined by the architectural design of a neural

network, still remains an active research problem. A main contribution of this dissertation

is to combine the power of learning from large-scale datasets with our prior knowledge on

natural scene maps to tackle the ill-posed nature of scene map estimation.

5

1.1.3 High-dimensional output and search space

A unique challenge of scene map estimation is the high-dimensionality of both the dense array

of real-valued estimation and the search space of these estimations. High-dimensionality

not only makes inference more challenging, but also increases the computational burden

of neural networks, which often prevents neural-based solution being deployed in practice.

To alleviate the curse of high-dimensionality, we must again recall that natural scene maps

are not arbitrary, the manifold of natural scene maps only spans a small subspace of the

entire space of high-dimensional arrays. As we will show in Chapter 2, by regularizing the

hypothesis space of neural networks with our knowledge on the internal structure of natural

scene maps, we can achieve more effective and more efficient neural network based inference

models.

In many tasks, we need to model the probability distribution of a scene map estimation

which is often intractable due to its high dimensionality. We cannot, on the other hand,

ignore the correlation between estimates for different pixels as we must model the joint

statistics and structure of the scene map. Therefore, we often take a patch-wise approach

and divide scene maps into overlapping patches (as shown in Section 2.2 and Chapter 4).

The inter-dependencies of different patches are characterized by their overlapping regions.

1.1.4 Insufficient data for deep learning

Unlike semantic tasks, e.g., image classification, where a large-scale dataset with ground-truth

categorical labels can be easily collected through crowd sourcing, collecting ground-truth scene

maps is extremely hard and sometimes even impossible for most computational photography

applications. For example, acquiring a dataset of high-resolution normal maps with enough

diversity and at scale is still a problem as of today. Even very well defined tasks such as

6

image restoration require laborious work and expert knowledge and camera setup to capture

ground-truth images. Insufficient data, unfortunately, has been a major obstacle for the

implementation of neural network based models in real-world applications. After all, it is

often those tasks where acquiring scene maps is expensive that we need scene estimators the

most.

The other end of the spectrum lies the synthetic dataset, which has been widely adopted in

the academia due to the lack of high-quality real dataset. However, while synthetic datasets

can be useful to test new ideas and to augment real datasets, the unavoidable domain gap

between real and synthetic images means that they are insufficient by themselves—i.e., real

data is still required during training to achieve satisfactory performance during inference. In

Chapter 3, we dive into this problem and study how to train neural networks for computational

photography in the absence of direct supervision.

1.2 Dissertation overview

In this dissertation, we address the aforementioned challenges of scene map estimation. The

dissertation is presented as follows:

Chapter 2 describes three neural network based methods for different image capturing

strategies to produce natural looking, noise-free images in low-light environments. We

exploit the internal structure of various forms of inputs for low-light photography, including

natural images, image bursts and flash/no-flash pairs. Novel neural network architectures

are presented, based on our prior knowledge on the input signals, to achieve state-of-the-art

performance in each case.

7

Chapter 3 proposes to take advantages of our understanding on the observation model or

the image formation of given inference tasks, and train scene map estimators in the absence

of ground-truth scene maps. We demonstrate that, with carefully chosen regularization and

training scheme, even indirect measurements (which are far easier to collect) of the scene

alone could provide sufficient supervision to train a neural network to produce high-quality

estimates of scene properties.

Chapter 4 takes a different direction by acknowledging that scene estimators will never

be perfect and instead rely on the recourse of other sources of information about the scene

that are often available in practice (i.e., other measurements of the scene). We first train a

neural network to output a rich probabilistic representation to encode our understanding and

uncertainty of the scene given the captured image. The network is versatile as its output

can be combined with a variety of types of additional inputs to yield improved scene map

estimations without retraining.

We conclude the dissertation in Chapter 5 and discuss potential avenues for future work.

Note that early versions of this research have appeared in the following publications.

• Zhihao Xia and Ayan Chakrabarti. “Training Image Estimators without Image

Ground-Truth”, NeurIPS , 2019 (Spotlight)

• Zhihao Xia and Ayan Chakrabarti. “Identifying Recurring Patterns with Deep Neural

Networks for Natural Image Denoising”, WACV , 2020.

• Zhihao Xia, Federico Perazzi, Michaël Gharbi, Kalyan Sunkavalli, Ayan Chakrabarti.

“Basis Prediction Networks for Effective Burst Denoising with Large Kernels”, CVPR,

2020.

8

• Zhihao Xia, Patrick Sullivan, Ayan Chakrabarti. “Generating and Exploiting Proba-

bilistic Monocular Depth Estimates”, CVPR, 2020 (Oral).

• Zhihao Xia, Michaël Gharbi, Federico Perazzi, Kalyan Sunkavalli, Ayan Chakrabarti.

“Deep Denoising of Flash and No-Flash Pairs for Photography in Low-Light Environ-

ments”, CVPR, 2021.

• Zhihao Xia, Jason Lawrence, Supreeth Achar. “A Dark Flash Normal Camera”, arXiv,

2020.

9

Chapter 2

Exploiting internal structures in

low-light photography

Insufficient light is the fundamental challenge for photographers to produce a high-quality

image. The noise inherent in the measured process dominates the captured image, leading to

a low signal-to-noise ratio for low-light photography. Direct solutions to gather more light

include expanding the camera’s aperture, increasing the exposure time and adding more

lights. However, many of these solutions are not feasible due to the physical limit of both

the camera and the environment in practice, especially for mobile phone cameras which is

the most popular type of cameras nowadays. The thickness and size constraints of mobile

phones limit the size of aperture and the length of optical path. Long exposure time often

leads to the undesired effect of blur especially for scenes with moving objects and hand-held

photography. Despite these challenges, great advances have been made in both the industry

and the research community, to produce impressive low-light photographs with mobile phone

cameras, which were previously deemed impossible (See Figure 2.1).

10

(a) (b) (c)

Figure 2.1: (a) A photo of New York City at night taken with a mobile phone (cr. Ayan
Chakrabarti). (b) Human portraits taken with the night sight mode on Google Pixel 3 (cr.
Alexander Schiffhauer [144]). (c) Astrophotography with a Huawei P30 Pro (cr. Justin
Ng [125]).

These results are achieved with computational algorithms. The search for computational

models to produce high-quality images in low-light inspired many interesting research problems,

from single-image denoising, one of the most fundamental problem in image processing, to

the more recent problem of burst denoising. Unfortunately, image denoising is fundamentally

ill-posed. A denoising model must be able to synthesize contents because of this ill-posed

nature, therefore must rely on the structure of contents in natural images. However, the

sheer diversity of content, that can be present in photographs of natural scenes, makes them

a challenge for any denoising algorithms as they must model their statistics.

Many early approaches in single-image denoising are inspired by the discovery of internal

redundancy in natural images. While the content of different images can be very diverse,

patches within an natural image are often similar and recur frequently. However, the state-

of-the-art single-image denoising algorithms take a different approach, by relying on the

expressive capacity of convolutional neural networks and the “external statistics” from a

large-scale dataset of images. In parallel to this is the so-called computational photography,

which tackles low-light photography by proposing a novel capturing strategy— capturing

more than one frame to produce a single high-quality image. These frames can be images with

11

the same appearance but small misalignments due to scene and camera motion, or ambient

and flash pair before and after the flash of the camera is shoot. The internal structure of

such captured signals has a new meaning, and is perhaps more prominent, as it not only

characterizes the contents the scene, but also the relations and the invariance of different

frames. Unlike single-image denoising, very few works have tried to leverage machine learning

to merge these frames.

In this chapter, we study how to produce a noise-free image in low-light environments

with different capturing strategy and different forms of inputs. We focus on exploiting the

internal structure of these inputs, whether them be the content within a single image, or

the structure of different frames. Unlike previous approaches, we combine machine learning

with our knowledge on the internal structure of input signals. One one hand, we leverage the

expressive capacity of neural networks to identify the structure and patterns that present

in our inputs. On the other hand, we embed our prior knowledge on what natural images

should be like into the design of our neural networks.

The rest of the chapter is presented as follows. We begin by reviewing prior works in low-light

photography in Section 2.1. We then study the classical problem of single-image denoising

by exploiting self-similarity in patches within a natural image in Section 2.2. In Section 2.3,

we discuss how to leverage self-similarity to design an efficient and effective burst denoising

neural network. Finally, we present our approach to produce a noise-free image from a

flash/no-flash pair with the ambient color and mood in Section 2.4.

12

2.1 Related work

Image Denoising. Early works reduced image noise using regularization schemes like sparse-

coding [90] and low-rank factorization [56] to model the local statistics of natural images.

Other classical approaches have exploited the recurrence of natural image patterns, averaging

pixels with similar local neighborhoods [15, 37, 100, 130, 139, 156, 178]. Current state-of the-

art denoisers use deep neural networks. Burger et al. [18] were the first to show the ability of

even shallow multi-layer perceptrons to to outperform traditional methods such as BM3D [32],

and more recent approaches utilizing deeper networks and complex architectures [102, 172,

184, 185, 190] have since led to further improvements in reconstruction accuracy.

Burst Image Denoising. Burst imaging can achieve impressive denoising results, by

capturing multiple frames in quick succession. Recent burst denoising algorithms have

focused on circumventing the frame misalignment that exists in a real burst. Some methods

estimate pixel-wise displacement [57, 58, 59, 74, 109]; others only require coarse global

registration, and rely on neural networks to account for the remaining displacement. Amongst

the latter group, kernel prediction networks (KPNs) proposed by Mildenhall et al. [120]

predicts per-pixel kernels that are then applied to the input burst to produce the denoised

output. They demonstrate that KPNs outperform direct pixel synthesis networks that

produce oversmooth results. Subsequent work has extended this idea to use multiple kernels

of varying sizes at every pixel [115].

Flash Denoising. Flash photography enables the capture of low-noise images in low-light

environments using short exposure times and low ISO settings. But, the additional source

flash light drastically changes the mood of the scene captured. To remedy this while benefiting

13

from the flash image’s higher signal-to-noise ratio, several approaches have used the flash as

reference to denoise a noisy ambient (no flash) image. Petschnigg et al. [131] and Eisemann et

al. [41] use the flash photo to guide a joint-bilateral filter that denoises the ambient image,

transferring high-frequency content from the flash photo. Krishnan and Fergus [78] exploit

the correlations between dark flash images and visible light to denoise the ambient image

and restore fine details. Yan et al. [175] combine gradients from the flash image with the

no-flash image for denoising. These methods all use hand-crafted heuristics to decide which

image features to preserve from each of the flash and no-flash inputs.

More recent work [92, 159] have replaced these heuristics with deep neural networks. Li et

al. [92] use the (aligned) flash photo as guidance to denoise ambient images. Wang et al. [159]

address some of the shortcomings of dark flash photography by adding a stereo RGB image

to the capture setup. After being registered and aligned the two images are fused using recent

techniques for hyperspectral image restoration and fast image enhancement [25, 51].

2.2 Exploiting patch similarity for image denoising

2.2.1 Introduction

In this section, we study the simplest form of low-light photography: single-image denoising.

Our goal is to recover an estimate of a clean image from a noisy observation with additive

white Gaussian noise (AWGN).

An important class of single-image denoising methods adopt a internal modeling approach,

to exploit self-similarity in images by relying on their “internal statistics” [16, 32, 33]. A

particularly successful example in this class is the BM3D [32, 33] algorithm, which identifies

sets of similar patches in noisy images using sum of squared distances (SSD) as the matching

14

metric, and then uses the statistics of each set to denoise patches in that set. Applying this

process twice, BM3D produced high-quality estimates that, until recently, represented the

state-of-the-art in image denoising performance.

However, recent methods have been able to exceed this performance by using neural networks

trained to regress to clean image patches from noisy ones [18, 27, 185]. With carefully

chosen architectures, these methods are able to use the powerful expressive capacity of

neural networks to better learn and encode image statistics from external databases, and

thus exceed the capability of self-similarity based methods. In this section, we describe a

single-image denoising method that brings the expressive capacity of neural networks to the

task of identifying and leveraging recurring patterns in the underlying images from their

noisy observations.

We introduce a novel matching network that looks at pairs of noisy patches at a time, and

makes fine-grained predictions of the similarity of their underlying clean versions. Specifically,

our network outputs separate matching scores for different groups of wavelet coefficients, to

exploit similarities that exist at some orientations and scales, but not others. These scores

are used for averaging to form an initial denoised estimate. We propose a two-step process to

train this matching network, with respect to denoising quality, that leads to convergence to a

better network model. We feed the initial match-averaged estimates, along with the original

noisy image, as input to a standard regression-based denoising network to produce the final

denoised estimate.

Extensive experiments on multiple datasets show that our method consistently yields higher

quality estimates than the state-of-the-art on a variety of metrics. Indeed, even a blind version

of our model—that does not have knowledge of the noise level—outperforms state-of-the-art

15

Figure 2.2: Overview of Our Approach to Patch Denoising. We produce estimates of clean
patches by weighted averaging across a candidate set of nearby patches in the observed
noisy input. We decompose every patch using a wavelet and de-correlating color transform
into sets of sub-band coefficients, with coefficients at the same scale, orientation, and color
channel grouped together in each set. We then train a neural network that, given a pair of
patches, computes a vector of matching scores—one for each group of coefficients. For every
patch, we compute these score vectors with respect to all candidate patches. The denoised
patch is obtained by averaging, across all candidates, of each group of coefficients using its
corresponding matching scores.

methods that do. Finally, we show that our method has a distinct advantage over regression-

based networks when learning from only a small amount of training data. In these cases, our

method is able to generalize better due to its reliance on per-image internal statistics.

2.2.2 Proposed denoising algorithm

Our goal is to produce an estimate of an image X given observation Y that is degraded by

i.i.d. Gaussian noise, i.e.,

Y = X + ε, ε ∼ N (0, σ2
zI). (2.1)

Our algorithm leverages the notion that many patterns will occur repeatedly in different

regions in the underlying clean image X, while the noise in those regions in Y will be

un-correlated and can be attenuated by averaging. In this section, we describe our approach

to training and using a deep neural network to identify these recurring patterns from the

noisy image, and forming an initial estimate of X by averaging matched patterns. We then

16

use a second network to regress to the final denoised output from a combination of these

initial estimates and the original noisy observation.

Denoising by Averaging Recurring Patterns. Our initial estimate is formed by denoising

individual patches in the image, by computing a weighted average over neighboring noisy

patches with weights provided by a matching network. Formally, given the noisy observation

Y of an image X, we consider sets of overlapping patches {yi = PiY } (corresponding to

clean versions {xi = PiX}), where each Pi is a linear operator that crops out intensities of a

different square patch (of size 8× 8 in our implementation) from the image. We then use a

de-correlating color space followed by a Harr wavelet transform to obtain coefficients si = Tyi

(corresponding to clean versions ri = Txi), where the orthonormal matrix T represents the

color and wavelet transforms.

We group these coefficients into sets {sgi } where each set includes all coefficients with the

same orientation (horizontal, vertical, or diagonal derivative), scale or pyramid level, and

color channel1. Then, for every patch yi we consider a set of candidate matches composed

of other noisy patches in the image yj, j ∈ Ni, from a large neighborhood around i. As

illustrated in Figure 2.2, our method produce an estimate of the denoised coefficients r̂i as a

weighted average of the corresponding coefficients of the candidate patches:

r̂gi =

1 +
∑
j∈Ni

mg
ij

−1sgi +∑
j∈Ni

mg
ijs

g
j

 , (2.2)

where mg
ij ≥ 0 are scalar matching weights that are a prediction of the similarity between

the gth set of coefficients in patches i and j respectively.
1For 8× 8 patches, this gives us 30 coefficient groups: 27 corresponding to 3 color channels, 3 scales, and

3 derivative orientations; and an additional 3 coefficients for the scaling coefficients of the 3 color channels.

17

This gives us a denoised estimate for each patch x̂i in the image as T−1r̂i. We then obtain

an estimate X̂ of the full clean image simply by averaging the denoised patches x̂i, i.e., the

denoised estimate of each pixel is computed as the average of its estimate from all patches

that contain it.

Predicting Matches from Noisy Observations. The success of our match-averaging

strategy in (2.2) depends on obtaining optimal values for the matching scores mg
ij . Intuitively,

we want mg
ij to be high when the clean coefficients rgi and rgj are close, so that the averaging

in (2.2) will attenuate noise and yield r̂gi close to rgi . Conversely, we want mg
ij to be low where

the two sets of underlying clean coefficients are not similar, because averaging them would

yield poor results, potentially worse than the noisy observation itself. However, note that

while the optimal values of these matching scores depend on the characteristics of the clean

coefficients {rgi }, we only have access to their noisy counterparts {sgj}.

Therefore, we train a neural network M to predict the matching scores given a pair of

larger noisy patches (16× 16 in our implementation) y+i and y+j centered around yi and yj

respectively: mij =M(y+i , y
+
j), where mij = [. . . ,mg

ij, . . .] is a vector of matching scores for

all sets of coefficients. We don’t require the output of the networkM to be symmetric (mij

need not be the same as mji), and we use the same network model for evaluating all patch

pairs, being agnostic to their absolute or relative locations.

The matching network M has a Siamese-like architecture as illustrated in Figure 2.3. It

begins with a common feature extraction sub-network applied to both input patches to

produce a feature-vector for each. This sub-network has a receptive field of 16 × 16, and

includes a total of fourteen convolutional layers with skip connections [63] including at the

final output (see Figure 2.3). The computed feature-vectors for each of the two inputs are

then concatenated and passed through a comparison sub-network, which comprises of a set of

18

Figure 2.3: Matching Network Architecture. To produce the matching scores mg
ij, we first

extract a feature vector for all patches by passing the image through a feature extraction
network, comprised of a set of convolutional layers with skip connections (where the join
is performed by a concatenate operation. Then, for any pair of patches, we take the
corresponding pair of feature vectors, and pass them after concatenation through a series
of fully-connected layers. The final layer has a sigmoid activation, yielding scores that lie
between 0 and 1.

five fully-connected layers. All layers have ReLU activations, except for the last which uses a

sigmoid to produce the match-scores mg
ij. These scores are thus constrained to lie in [0, 1].

Note that during inference, the feature extraction sub-network needs to be applied only once

to compute feature-vectors for all patches in a fully-convolutional way. Only the final five

fully connected layers need to be repeatedly applied for different patch pairs.

Observe that our matching network takes the noisy patches directly as input, while using the

wavelet and color transforms to parameterize its outputs, as a means of providing a more

fine-grained characterization of similarity between patches than a single score. Moreover,

although the inputs to the network itself consist only of a pair of relatively small patches, it

enables aggregation from a dense set of patches in a large neighborhood, through repeated

application on multiple patch pairs and averaging as per (2.2).

19

Training. We train the matching networkM to produce matching scores that are optimal

with respect to the quality of the denoised patches x̂i. Specifically, we use an L2 loss between

the true and estimated clean patches:

L = ‖xi − x̂i‖2 =
∑
g

‖r̂gi − r
g
i ‖2, (2.3)

where the denoised coefficients r̂gi are computed using (2.2) based on matching-scores predicted

by the network. Note that the loss for a single patch xi will depend on matching scores

produced by the network for xi paired with all candidate patches in its neighborhood Ni.

While it is desirable to train the network in this end-to-end manner with our actual denoising

approach, we empirically find that training the network with this loss from a random

initialization often converges to a sub-optimal local minima. We hypothesize that this is

because we compute gradients corresponding to a large number of matching scores (all

candidates in Ni) with respect to supervision only from a single denoised patch.

Thus, we adopt a pre-training strategy using a loss defined on pairs of patches at a time,

using a simplified loss for denoising patch i by averaging it with patch j as:

L̂ij =
∑
g

‖sgi − r
g
i ‖2 +mg

ij
2‖sgj − r

g
i ‖2(

1 +mg
ij

)2 . (2.4)

This is equivalent to the actual loss in (2.3) with performing the averaging in (2.2) with

only one candidate patch j, by dropping the cross term between (xi − yi) and (xi − yj), i.e.,

by assuming the noise is un-correlated with the difference between the two patches. It is

interesting to note here if we assume that the deviations between reference and candidate

patches are un-correlated, for different candidates j ∈ Ni, then the optimal averaging weight

for a given candidate is the same whether averaging with one or multiple candidates. The

20

modified loss in (2.4) serves as a good initial proxy for pre-training, but since the un-correlated

deviation assumption does not hold in practice, we follow this with training with the actual

loss in (2.3).

In particular, we pre-train the network for a number of iterations using the modified loss in

(2.4)—constructing the training set by considering all non-overlapping patches i in an image,

with random shuffling to select candidate j for each patch i, and train with respect to the

loss of both matching i to j and vice-versa. This allows us to compute updates with respect

to a much more diverse set of patches into a training batch, and to make maximal use of the

feature extraction computation during training. The pre-training step is followed by training

the network with the true loss in (2.3) till convergence—here, we extract a smaller number of

training reference patches from each image, along with all their neighboring candidates.

Final Estimates via Regression. While the initial estimates produced by our method as

described above are of reasonable quality, they are limited by (2.2) restricting every denoised

patch to be a weighted average of observed noisy patches. To overcome this and achieve

further improvements in quality, we use a second network trained via traditional regression

to derive our final denoised estimate. Specifically, we adopt the architecture of IRCNN [185]

with has seven dilated convolutional layers. In our case, this network takes a six-channel

input formed by concatenating the original noisy input and our initial denoised estimate from

match-based averaging. The output of the last layer is interpreted as a residual, and added

to the initial estimates to yield the final denoised image output.

After the matching network has been trained, we generate sets of clean, noisy, and initial

denoised estimates. This serves as the training set for this second network which is trained

using an L2 regression loss. We find that this step leads to further improvement over our

21

Method σ=50 σ=35 σ=25
PSNR SSIM 25%-ile PSNR SSIM 25%-ile PSNR SSIM 25%-ile

Urban-100

*CBM3D [32] 27.94 0.843 25.96 29.27 0.875 27.07 31.38 0.912 29.20
IRCNN [185] 27.69 0.842 25.63 29.50 0.881 27.39 31.20 0.911 29.06
FFDNet [186] 28.05 0.850 25.93 29.78 0.887 27.61 31.40 0.914 29.17
Ours-Blind 28.57 0.859 26.47 30.21 0.893 28.04 31.70 0.917 29.49

Ours 28.62 0.862 26.52 30.26 0.895 28.09 31.81 0.919 29.59

Kodak-24

*CBM3D [32] 28.45 0.775 26.51 29.90 0.821 27.77 31.67 0.868 29.51
IRCNN [185] 28.81 0.792 26.76 30.43 0.838 28.32 32.03 0.878 29.91
CDnCNN [184] 28.85 - - 30.46 - - 32.03 - -
FFDNet [186] 28.98 0.793 26.89 30.57 0.841 28.41 32.13 0.879 29.95
Ours-Blind 29.21 0.803 27.11 30.78 0.849 28.63 32.31 0.884 30.14

Ours 29.25 0.805 27.15 30.81 0.849 28.66 32.34 0.884 30.19

CBSD-68

*CBM3D [32] 27.38 0.767 25.07 28.89 0.821 26.46 30.71 0.872 28.25
*CBM3D-Net [176] 27.48 - - - - - 30.91 - -

*CNL-Net [86] 27.64 - - - - - 30.96 - -
IRCNN [185] 27.86 0.792 25.54 29.50 0.844 27.14 31.16 0.886 28.81
CDnCNN [184] 27.92 - - 29.58 - - 31.23 - -
FFDNet [186] 27.96 0.792 25.56 29.58 0.844 27.14 31.21 0.886 28.78
Ours-Blind 28.03 0.797 25.65 29.62 0.848 27.21 31.22 0.888 28.82

Ours 28.06 0.799 25.69 29.64 0.849 27.24 31.24 0.888 28.85

McMaster

*CBM3D [32] 28.52 0.794 26.41 29.92 0.833 27.73 31.66 0.874 29.49
IRCNN [185] 28.91 0.807 26.78 30.59 0.851 28.48 32.18 0.885 30.11
CDnCNN [184] 28.61 - - 30.14 - - 31.51 - -
FFDNet [186] 29.18 0.816 26.99 30.81 0.857 28.62 32.35 0.889 30.20
Ours-Blind 29.31 0.824 27.14 30.85 0.861 28.69 32.31 0.890 30.14

Ours 29.35 0.826 27.16 30.90 0.863 28.70 32.33 0.890 30.17
*Other methods that are based on internal image statistics.

Table 2.1: Denoising Performance at Various Noise Levels on Different Datasets. We report
performance in terms of Average PSNR (dB) and SSIM. To gauge robustness, we also report
the 25th%-ile worst-case PSNR (dB), computed across 8 × 8 patches across each dataset.
Ours-Blind refers to results from a common model of our method that is trained for a range
of noise levels σ ∈ [0, 55] (and does not have knowledge of the specific noise level of its input).

initial estimates, while also outperforming state-of-the-art denoising networks (including

IRCNN [185] itself).

2.2.3 Experiments

Preliminaries. We train our algorithm on a set of 1600 color images from the Waterloo

exploration dataset [112], and 168 images from the BSD-300 [116] train set, using the

22

remaining 32 images for validation and parameter setting. We train our network using noisy

observations generated by adding Gaussian noise to clean images in the training set. Unless

otherwise specified, we construct the candidate set Ni of patches by considering all the

overlapping patches in a 31× 31 search window around patch i.

We use Adam [71] to train both the matching and regression networks, with an initial learning

rate of 10−3. We pre-train the matching network for a 100k iterations based on the modified

loss (2.4), with batches of 16 images and pairing all non-overlapping patches with randomly

shuffled counterparts. This leads to a large number of ordered matching pairs for pre-training

in each batch. We then continue training the matching network with the true loss in (2.3),

in this case forming a batch with 256 unique reference patches from various images, and

computing matching scores for each with respect to all 312 candidates. We train with this loss

till saturation, with two learning rate drops of 100.5. Once the matching network is trained,

we store a set of noisy and denoised version of our training set, and use these to train the

regression network (with the same training schedule, but without pre-training).

Denoising with Known Noise Level. We evaluate our method for the task of color image

denoising at five different noise levels, corresponding to additive white Gaussian noise with

standard deviations of σ =25, 35 and 50 gray levels. We train a separate network model

for each level, and report their performance in Table 2.1 on four datasets: Urban-100 [64],

Kodak-24 [47], CBSD-68 [137], and McMaster [187]. For comparison, we also show results

from a number of other state-of-the-art color denoising methods [32, 86, 176, 184, 185, 186].

We evaluate performance in terms of the standard PSNR and SSIM [164] metrics, and to

measure robustness, report worst-case errors as the 25th%-ile among PSNR values of all

individual 8×8 patches in all images in each dataset. We find that our results are consistently

more accurate across all datasets, with significant improvements over state-of-the-art methods

23

at higher noise levels. Moreover, not only are our denoised estimates more accurate on

average in terms of PSNR and SSIM, our worst-case performance is also better—highlighting

the robustness of our approach.

We include examples of denoised images in Figure 2.4 for a qualitative evaluation, and see

that denoised results from our method often contain better reconstructions of texture and

image detail than state-of-the-art denoising methods. In general, we find that our method has

an advantage when a scene contains many repeating textures as expected, and also when it

contains unique patterns—that are rare in training data and which regression-based methods

are thus unable to reliably estimate. For images with limited repeating patterns, the burden

of denoising then falls more to our second regression network, which then is able to still

achieve results of acceptable quality at the level of standard regression-based methods.

Blind Denoising. Next, we consider the task of blind denoising, when the level of Gaussian

noise in an observed image is unknown. For this, we follow the approach of [184] in training

a common model for a range of noise levels σ ∈ [0, 55], by adding Gaussian noise with σ

chosen randomly for each image during training. Note that unlike for FFDNet [186], the

noise level for a specific input image is not provided to our model. Table 2.1 also includes

an evaluation of this version of our method (as Ours-Blind). We find that its performance

is only slightly lower than that of our noise-specific networks, and still better in almost all

cases than that of state-of-the-art methods that are aware of the level of noise in their inputs.

This represents an attractive and practically useful variant of our method—which does not

require maintaining multiple models for each noise level, and can be applied even when the

noise level is unknown.

24

Figure 2.4: Example Crops of Denoised Images (σ = 50). Compared to state-of-the-art
denoising algorithms (IRCNN [185], DnCNN [184], and FFDNet [186]), we see that our
overall method is often able to recover texture and detail with higher fidelity, by exploiting
similar patterns in the input image itself.

Training with Limited Data. For many forms of image data and measurement models

(e.g., medical images), a large amount of training data is difficult to acquire. Here, our

method presents an advantage because of its focus on leveraging common patterns and

textures in the input image itself, rather than those it has observed previously in a training

25

Figure 2.5: Effect of training set size. We report average PSNR on Urban-100 [64] for
denoising at σ = 50 with our method and IRCNN [185], when both are trained with a limited
number of training images (“Full” represents using the entire training set for our method,
and the official model for IRCNN). While our estimates are always more accurate than those
from IRCNN, the gap is especially higher when the number of training images is small.

set. We demonstrate this advantage by comparing our method to IRCNN [185] in Figure 2.5,

when both methods are trained with only a few training images (selected from our complete

training set).

We assume a fixed known noise level of σ = 50, and train versions of both models with

different training set sizes—ranging from 10 to 50 images. Since overfitting is an issue with

so little data, we track the performance of both methods on a validation set of 32 images

through training, and choose the version with highest validation accuracy. We do not drop

the learning rate for either method in this setting. Figure 2.5 shows the average PSNR

for both methods on the Urban-100 dataset [64], for different training set sizes. While our

method outperforms IRCNN [185] in all cases, the performance gap is notably larger for

smaller training sets—at 1.5 dB when training with only 10 images.

Matching Network Analysis. Our matching network is a key component of our denoising

algorithm. We end by analyzing its performance when applied to neighborhoods of different

26

Window Size 15 23 31 31 (No Pre-training)
PSNR (dB) 31.31 31.40 31.46 31.35
Run Time 1.07s 2.47s 4.42s 4.42s

Table 2.2: Window Size and Pre-Training Ablation. We report average PSNR (db) of the
initial match-averaged estimates from our method on a validation set for σ = 25. Run-times
are for 256× 256 images on a 1080Ti GPU.

sizes, and the role that pre-training plays in convergence to a good solution. We also visualize

the matching scores it generates, and how these differ across different groups of sub-bands.

In Table 2.2, we characterize the trade-off between quality and computational cost when

choosing different search window sizes over which to match and average patches. For different

window sizes, we report average PSNR (over our validation set) for our initial match-averaged

estimates when training with a known noise level of σ = 25. We also report the corresponding

running time required to compute matching scores and perform the averaging for different

window sizes—for a 256× 256 input image on an NVIDIA 1080Ti GPU. Note that computing

the initial estimates takes a majority of the time in our denoising method—the following

regression step takes only an additional 0.01 seconds, and is independent of window size.

As expected, running time goes up roughly linearly with the number of candidate matches

(i.e., as square of the search window size), but we find that the drop in PSNR is a modest 0.06

dB when going down to a 23× 23 window. Table 2.2 also demonstrates the importance of

pre-training, and reports performance (again, of our initial estimates) achieved by a network

that is initialized with random weights instead of with pre-training. We find that this leads

to a PSNR drop of about 0.1 dB, highlighting that pre-training is important for convergence

to a good model.

For a number of reference patches cropped from different training images, and their cor-

responding search windows, we visualize the matching scores predicted by our network in

27

Figure 2.6: Visualization of Matching Score Distributions in Different Sub-bands. We show
reference patches (indicated by blue squares) along with their local search windows from
various images of the training set (9 windows per image), and visualize the matching scores
predicted by our network. We show the predicted weights averaged across all sub-bands, as
well as specific to different scales (averaging over color and orientation at each scale), and
orientations (averaging over color and scale).

28

Figure 2.6. We show the average matching score across all sub-bands, as well as average

weights corresponding to combinations of sets at the same wavelet scale (averaging over

color channels and orientation), and at the same orientation (averaging over scale and color).

We see that the matching network produces very different averaging weights for different

sub-bands.

We find that that the weights tend to be generally higher at the finest scale (indicating more

averaging), and lowest for the scaling coefficients. This is likely because the highest-frequencies

are close to zero in most patches, and thus to each other. For lower-frequencies and DC

values, the network selects only those patches that are close to the reference patch (in the

clean image). For different orientations, the high matches are sometimes concentrated at

different locations for the same reference, especially when there are strong edges and repeating

textures. Thus, free from the contraint of matching patches as a whole with a single score,

our network finds different sets of matches for different sub-bands in order to achieve optimal

denoising.

2.2.4 Discussion

In this section, we proposed to employ neural networks to identify and exploit recurring

patterns in natural images for single image denoising. Our network provided a fine-grained

characterization of similarity, in terms of separate scores for different corresponding sub-

band components, and thus enabled the recovery of high-quality denoised estimates. We

also showed that our network is especially useful in regimes where training data is scarce,

being able to achieve relatively higher performance from training on a small number of

examples than standard regression-based methods. A natural direction of future work lies

in exploring applications of our approach, of characterizing sub-band level self-similarity, to

other image-like signals such as depth maps and motion-fields.

29

Figure 2.7: (top) Qualitative result of our denoising network. The proposed approach (b)
recovers fine geometric details from a very noisy image burst (a, only one frame is shown).
(Bottom) our per-burst bases can compactly represent a large variety of kernels by exploiting
the redundancy of local image structures. We clustered the per-pixel coefficients predicted
from the noisy burst using k-means. The clusters we obtain show strong spatial structure (d).
For instance, we can identify a cluster corresponding to horizontal image edges (e, orange),
one corresponding to vertical edges (e, green), and another for homogeneous regions with no
structure (e, gray).

2.3 Exploiting self-similarity in denoising kernels for

burst photography

2.3.1 Introduction

Despite the impressive results of single image denoising, the physical limits imposed by read

noise and photon noise, especially for hand-held smartphone cameras with small apertures and

sensors, make capturing a single high-quality image under low-light environments challenging.

To this end, burst photography [57, 109, 120] have been developed to enable high-quality

photography in such conditions and are increasingly being deployed in commercial mobile

30

cameras [57, 99]. A burst captures a sequence of short-exposure frames of the scene that

are free of motion-blur, but with a high amount of noise in each frame and relative motion

between frames. By accounting for this relative motion and using the fact that the noise is

independent across frames, burst denoising attempts to aggregate these inputs and predict a

single noise- and blur-free image estimate.

While classical approaches seek to explicitly estimating inter-frame motion [57, 58, 59, 74,

109], to align frames and then denoise, Mildenhall et al. [120] proposed to combine these two

steps with a neural network. Rather than explicitly estimating inter-frame motion [57, 58,

59, 74, 109], their method produces denoised estimates at each pixel as a weighted average

of observed noisy intensities in a window around that pixel’s location in all frames. These

averaging weights, or kernels, are allowed to vary from pixel-to-pixel to implicitly account

for motion and image discontinuities, and are predicted from the noisy input burst using a

“kernel prediction network” (KPN).

However, KPNs need to produce an output that is significantly higher-dimensional than

the denoised image—even for 5 × 5 kernels with eight frames, a KPN must predict 400

times as many kernel weights as image intensities. This comes with significant memory and

computational costs, as well as difficulty in training given the many degrees of freedom in

the output. As a result, KPNs have so far been used only with small kernels. This limits

their denoising ability by preventing averaging across bigger spatial regions, and over frames

with larger relative motion.

In this section, we take the recourse to self-similarity and describe a neural approach that

predict large denoising kernels, and thus benefit from wider aggregation, while simultaneously

limiting output dimensionality at each pixel, making the prediction network easier to train and

compute- and memory-efficient. Self-similarity is particularly strong for burst photography

31

because we expect both spatial structure in the form of similar patterns that recur within a

frame and across frames of the same scene, and temporal structure caused by consistency

in scene and camera motion. Given the expected self-similarity and structure in the image

intensities themselves, we argue that the corresponding denoising kernels must also have

similar structure. Specifically, while allowing for individual per-pixel denoising kernels to be

large, we assume that all the kernels for a given image span a lower-dimensional subspace.

Based on this observation, we train a network that, given an input noisy burst, predicts both

a global low-dimensional basis set of large kernels, and per-pixel coefficient vectors relative to

this basis. This corresponds to a significantly lower-dimensional output than a KPN that

predicts arbitrary kernels of the same size at each pixel. Enforcing this structure on the

denoising kernels acts as a form of regularization, and leads to state-of-the-art denoising

performance with significantly higher-quality (>1 dB PSNR) than regular KPNs. Beyond

reducing memory usage and computational burden, the structure of our output enables the

final kernel filtering step to be performed much more efficiently in the Fourier domain. We

show this in terms of required number of FLOPs, as well as experimentally with actual

run-times.

2.3.2 Method

In burst denoising, we are given an input noisy burst of images I[n, t], where n indexes

spatial locations and t ∈ {1, . . . , T} the different frames in the burst. Using a heteroscedastic

Gaussian noise model [46], which accounts for both read and shot noise, we relate this to the

corresponding noise-free frames R[n, t] as:

I[n, t] ∼ N (R[n, t], σ2
r + σ2

sR[n, t]), (2.5)

32

Kernel-based
Reconstruction

(e)	3D	Kernel	Basis(b)	Noise	Parameters

(a)	Noise	Input	Burst

(d)	Basis	Coefficients	Maps
(c)	Encoder	Features

(f)	Denoised	OutputBasis
Decoder

Common	
Encoder

Coefficients
Decoder

Pooled	Skip
Connections

Figure 2.8: Our basis prediction network takes as input a burst of noisy input frames (a)
together with the noise parameters (b). The frames are encoded into a shared feature space (c).
These features are then decoded by two decoders with skip connections into a burst-specific
basis of 3D kernels (e) and a set of per-pixel mixing coefficients (d). Both the coefficients
and basis kernels are individually unit-normalized. Finally, we obtain per-pixel kernels by
mixing the basis elements according to the coefficients and we apply them to the input burst
to produce the final denoised image (f).

where σ2
r and σ2

s are the read- and shot-noise parameters. Choosing the first frame as reference,

our goal is to produce a single denoised image R̂[n] as an estimate of the first noise-free frame

R[n, 1].

2.3.3 Kernel-based burst denoising

Rather than train a network to regress R̂ directly, Kernel Prediction Networks output a field

of denoising kernels wn[δ, t], one for each pixel n at each frame t. The kernels have a spatial

support K ×K, indexed by δ, with separate weights for each frame. Given these predicted

kernels, the denoised estimate R̂ is formed as:

R̂[n] =
∑
t

∑
δ

wn[δ, t]I[n− δ, t]. (2.6)

A key bottleneck in this pipeline is the prediction of this dense kernel field w, which requires

producing K2T numbers at every pixel of the output. Since networks with high-dimensional

33

outputs are both expensive and require learning a large number of parameters in their last

layer, KPNs have typically been used only with small kernels (K = 5 in [120]).

Basis Prediction Networks. Instead of directly predicting unconstrained kernels for each

spatial location, we designed a network that outputs: (1) a global kernel basis vb[δ, t], of size

K2T ×B with b ∈ {1, . . . B}; and (2) a B dimensional coefficient vector cn[b] at each spatial

location.

wn[δ, t] =
∑
b

vb[δ, t]cn[b]. (2.7)

Note that we typically choose the number of basis kernels B � K2T . This implies that

all the kernels for a given burst lie in a low-dimensional subspace, but this subspace will

be different for different bursts, i.e. the basis is burst-specific. This procedure allows us to

recreate a full kernel field with far fewer predictions. Assuming a W ×H resolution image,

we need only make WHB +K2TB predictions to effectively recreate a kernel field of size

WHK2T .

We designed our network following an encoder-decoder architecture with skip connections [136].

Our model, however, has two decoder branches, one for the basis, the other for the coefficients

(Figure 2.8). The encoder is shared between the two branches because the meaning of the

coefficients c is dependent on the predicted basis v in Equation (2.7), so the two outputs

need to be co-ordinated. This encoder takes the noisy burst and noisy parameters as input,

and through multiple levels of downsampling and global average pooling at the end, yields a

single global feature vector as its encoding of the image. The per-pixel coefficients c are then

decoded from the encoder bottleneck to the full image resolution W ×H, with B channels

as output. The common basis v is decoded up to distinct spatial dimensions — that of the

kernels K ×K — with B × T output channels.

34

Since the basis branch decodes to a different spatial resolution, we need a careful treatment

of the skip connections. Unlike a usual U-Net, the encoder and decoder feature size do not

match. Specifically, a pixel δ in the basis kernel vb[δ, ·] has no meaningful relation to a pixel

n in the input frames I[n, ·]. Therefore, in the skip connections from the shared encoder to

the basis decoder, we apply a global spatial average pooling of the encoder’s activations, and

replicate the average vector to the resolution of the decoder layer. This mechanism ensures

the encoder information is globally aggregated without creating nonsensical correspondences

between kernel and image locations, while allowing features at multiple scales of the encoder

to inform the basis decoder.

We ensure each of the reconstructed kernel w has positive weights that sum to one, to

represent averaging. We implement this constraint using soft-max normalizations on both

the coefficient and basis decoder outputs. So every 3D kernel of the basis vb[·, ·] and every

coefficient vector cn[·] is normalized individually.

Our network is trained with respect to the quality of the final denoised output R̂—with an

L2 loss on intensities and L1 loss on gradients. Like [120], we additionally use a per-frame

loss to bias the network away from relying only on the reference frame. We do this with

separate losses on denoised estimates from each individual frame of the input burst (formed

as R̂t[n] = T
∑

δ wn[δ, t]I[n− δ, t]). These are added to main training loss, with a weight that

is decayed across training iterations.

Efficient Fourier domain filtering. Filtering by convolution with large kernels is com-

monly implemented in the Fourier domain, where the filtering complexity is quasilinear in

image size, while the complexity of direct convolution scales with the product of image-

and kernel-size. But because the kernels w in KPNs vary spatially, Equation (2.6) does not

represent a standard convolution, ruling out this acceleration.

35

In our case, because our kernels are defined with respect to a small set of “global” basis

vectors, we can leverage Fourier-domain convolution to speed up filtering. We achieve this by

combining and re-writing the expressions in Eq. (2.6) and Eq. (2.7) as:

R̂[n] =
∑
t

∑
δ

wn[δ, t]I[n− δ, t]

=
∑
t

∑
δ

∑
b

vb[δ, t]cn[b]I[n− δ, t]

=
∑
b

cn[b]
∑
t

∑
δ

vb[δ, t]I[n− δ, t]

=
∑
b

cn[b]
∑
t

(
I[·, t] ? vb[·, t]

)
[n], (2.8)

where ? denotes standard spatial 2D convolution with a spatially-uniform kernel.

In other words, we first form a set of B filtered versions of the input burst I by standard

convolution with each of the basis kernels—convolving each frame in the burst I with

the corresponding “slice” of the basis kernel—and then taking a spatially-varying linear

combination of the filtered intensities at each pixel based on the coefficients c. We can carry

out these standard convolutions in the Fourier domain as:

I[·, t] ? vb[·, t] = F−1
(
F(I[·, t]) · F(vb[·, t])

)
, (2.9)

where F(·) and F−1(·) are spatial forward and inverse Fourier transforms. This is significantly

more efficient for larger kernels, especially since we need not repeat forward Fourier transform

of the inputs I for different basis kernels.

36

Method Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8

HDR+ [57] 31.96 28.25 24.25 20.05
BM3D [32] 33.89 31.17 28.53 25.92
NLM [16] 33.23 30.46 27.43 23.86
VBM4D [114] 34.60 31.89 29.20 26.52
Direct 35.93 33.36 30.70 27.97

KPN [120] 36.47 33.93 31.19 27.97
KPN* (K = 5) 36.35 33.69 31.02 28.16
MKPN* [115] 36.88 34.22 31.45 28.52

BPN (ours) 38.18 35.42 32.54 29.45

Table 2.3: Denoising performance on a synthetic grayscale benchmark [120]. We report
performance in terms of Average PSNR (dB). Following [115, 120], our BPN was not trained
on the noise levels implied by the gain in the fourth column. Numbers for KPN* (K = 5)
and MKPN* are based on our implementation of these techniques. Numbers for all other
methods, including the end-to-end regression model to directly synthesize denoised pixel
intensities (denoted as Direct), are from [120]. Our method widely outperforms all prior
methods at all noise levels.

2.3.4 Experiments

We closely follow Mildenhall et al. [120] for training and evaluation. Our model is designed

for bursts of T = 8 frames with resolution 128× 128. Following the procedure of [120], we

use training and validation sets constructed from the Open Images dataset [76], with shot

and read noise parameters uniformly sampled in the log-domain: log(σr) ∈ [−3,−1.5], and

log(σs) ∈ [−4,−2]. We also use [120]’s set of 73 grayscale test images for evaluation.

Our default configuration uses bases with B = 90 kernels of size K = 15. We train our

network (as well as all ablation baselines) using Adam [72] with a batch-size of 24 images,

and an initial learning rate of 10−4. We train for a total of about 600k iterations, dropping

the learning twice, by
√
10 each time, whenever the validation loss saturates.

37

23.6 23.9 23.9 25.7

 25.9 25.6 26.2 27.1

 29.2 29.2 29.6 30.4

25.4 25.5 25.6 26.2

27.2 27.2 27.4 28.2

23.3 23.4 23.6 24.8

30.9 30.5 31.5 33.3

28.4 28.0 28.9 30.7

28.7 28.3 29.2 31.6

Full Input Image Noisy Reference Direct KPN [26] MKPN [25] Ours Ground Truth

Figure 2.9: We illustrate denoising performance on a benchmark synthetic grayscale test
set [120] for our method, a direct prediction network (which directly regresses denoised pixels),
and two KPN variants [115, 120] with the same kernel size K = 15 as our method. The
numbers in inset refer to the PSNR (dB) on the full image. In addition to better quantitative
performance, our method does better at reproducing perceptual details like textures, edges,
and text.

38

Denoising performance. Table 2.3 reports the PSNR of our denoised outputs on the

grayscale test set [120]. Each noise level corresponds to a sensor gain value (one stop

increments of the ISO setting in a camera). The gains correspond to the following values for

(log(σs), log(σr)): 1 → (−2.2,−2.6), 2 → (−1.8,−2.2), 4 → (−1.4,−1.8), 8 → (−1.1,−1.5).

The highest noise level, denoted as Gain ∝ 8, lies outside the range we trained on. We use it

to evaluate our model’s extrapolation capability. In addition to our own model, we also report

results for a motion-alignment-based method [57], several approaches based on non-local

filtering [16, 32, 114], as well as the standard KPN burst denoiser [120]—which is the current

state-of-the-art. Since we did not have access to the original KPN model, we implemented a

version ourselves (that we use in ablations in the next section) and also report its performance

in Table 2.3. We find it closely matches those from [120]). Additionally, we train a network

to directly regress the denoised pixel values from the input burst (i.e., without kernels), as

well as our implementation of [115] with a larger kernel size of K = 15 for fair comparison.

We find that our method outperforms KPN [120] by a significant margin, over 1 dB PSNR

at all noise levels. Our implementation of [115] also does well, but remains inferior to our

model. We show qualitative results for a subset of methods in Figure 2.9. Our have fewer

artifacts, especially in textured regions and around thin structures like printed text.

Ablation and analysis. Our approach leads to better denoising quality because it enables

larger kernels without vastly increasing the network’s output dimensionality and number of

learnable parameters. To tease apart the contributions of kernel size and the structure of our

kernel decomposition, we conduct an ablation study on our validation set. The results can be

found in Table 2.4.

The performance gap between the test and validation set results (Table 2.3 and 2.4) comes

from differences in the datasets themselves.

39

Gain ∝ 1Gain ∝ 2Gain ∝ 4Gain ∝ 8

KPN (K = 15) 34.29 31.80 28.23 24.86
Separable (K = 15) 34.67 32.05 28.52 25.12

Ours (K = 5) 35.70 33.02 29.16 25.57
Ours (K = 9) 36.22 33.41 29.56 25.94

Ours (B = 10) 35.31 32.69 28.95 25.43
Ours (B = 50) 36.10 33.33 29.45 25.88
Ours (B = 130) 36.27 33.47 29.57 25.99

Ours (K = 15, B = 90) 36.29 33.57 29.62 25.99

Common Spatial Basis 35.71 33.04 29.23 25.71
Per-frame Spatial Basis 36.21 33.46 29.56 25.92

Fixed basis 34.66 32.15 28.68 25.39

Table 2.4: Ablation study on our validation dataset. Performance is reported in terms
of Average PSNR (dB). Beyond motivating our parameter choices (K = 15,B = 90), this
demonstrates that our use of a burst-specific spatio-temporal basis outperforms standard
KPN [120], separable spatial kernels, a common spatial basis for all burst frames, separate
spatial bases per-frame, and a fixed, input-agnostic basis. All these variants were trained
with the same settings (K = 15, B = 90) as our model.

Kernel Size. As a baseline, we consider using KPN directly with our larger kernel size of

K = 15. We also consider predicting a single separable kernel at that size ([115] predicts

separable kernels at multiple sizes, and adds them together). We find that our network

outperforms the large kernel KPN variant at all noise levels—suggesting that simply increasing

the kernel size is not enough. It also outperforms separable kernel prediction, suggesting that

a low-dimensional subspace constraint better captures the structure of natural images than

spatial separability.

For completeness, we also evaluate our basis prediction network with smaller kernels, K = 9

and K = 5. Although, this leads to a drop in performance compared to our default

configuration, these variants still perform better than the original KPN—suggesting our

approach has a regularizing effect that benefits even smaller kernels.

40

Basis Size. The number of basis elements in our default configuration, B = 90, was selected

from a parameter search on the validation set. We include this analysis in Table 2.4, reporting

PSNR values for B ranging from 10 to 130. We find that bases with fewer than 90 kernels

lead to a drop in quality. The larger bases, B = 130, also performs very slightly worse than

B = 90. We hypothesize that large bases start to have too many degrees of freedom. This

increases the dimensionality of the network’s output, which negates the benefits of a subspace

restriction.

Spatial vs. Spatio-temporal Basis Decomposition. Note that we define our basis as a subspace

to span 3D kernels—i.e., each of our basis elements vb is a 3D spatio-temporal kernel. We

predict a single weight cn[b] at each location, which is applied to corresponding spatial

kernels vn[·, t] for all frames t. However, there are other possible choices for decomposing 3D

kernels, and we consider two of these in our ablation (Table 2.4). In both cases, we output

coefficients cn,t[b] that vary per-frame, in addition to per-location—and are interpreted as

separate coefficients corresponding to a spatial basis kernel. In one case, we use a common

spatial basis vb[δ] across all frames, with wn[δ, t] =
∑

b cn,t[b]vb[δ]. In the other, we have a

per-frame spatial basis vb,t[δ] for each frame, and wn[δ, t] =
∑

b cn,t[b]vb,t[δ]. The per-frame

basis increases the dimensionality of our coefficient output and leads to a slight drop in

performance, likely due to a reduced regularizing effect. The common spatial basis, however,

suffers a greater performance drop since it also forces kernels in all frames to share the same

subspace.

We also compare qualitatively the spatio-temporal kernels produced by our default config-

uration with those predicted by standard KPN in Figure 2.10. Our model makes better

use of the temporal information, applying large weights to pixels across many frames in the

burst, whereas KPN tends to overly favor the reference frame. Our network better tracks the

41

apparent motion in the burst, shifting the kernel accordingly. And it is capable of ignoring

outliers caused to excessive motion (all black kernels in Figure 2.10).

Fixed vs. Burst-specific Basis. Given that our network predicts both a basis and per-pixel

coefficients, a natural question is whether a burst-specific kernel basis is even needed. To

address this, we train a network architecture without a basis decoder to only predict coefficients

for each burst, and instead learn a basis that is fixed across all bursts in the training set. The

fixed basis is learned jointly with this network as a direct learnable tensor. Table 2.4 shows

that using a fixed basis in this manner leads to a significant decrease in denoising quality

(although still better than standard KPN).

This suggests that while a subspace restriction on kernels is useful, the ideal subspace is

scene-dependent and must be predicted adaptively. We further explore this phenomenon in

Table 2.5, where we quantify the rank of the predicted bases for individual images, and for

pairs of images. Note that the rank can be lower than B, since we do not effectively require

the ‘basis’ vectors {vb[·, ·]} to be linearly independent. We find that the combined rank of

basis kernels of image pairs (obtained by concatenating the two bases) is nearly twice the

rank obtained from individual images—suggesting limited overlap between the basis sets of

different images. We also explicitly compute the average overlap ratio across image pairs

as 1− rank(v, v′)/[rank(v) + rank(v′)], and find it to be around 5% on average. This low

overlap implies that different bursts do indeed require different bases, justifying our use of

burst-specific bases.

Computational expense. Next, we evaluate the computational expense of our approach

and compare it to the different ablation settings considered in Table 2.4, including standard

KPN. We report the total number of floating point operations (FLOPs) required for network

prediction and filtering in Table 2.6. We find that in addition to producing higher-quality

42

Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8

rank(v) 80.6 81.8 84.3 86.2

rank(v, v′) 152.2 154.5 159.6 165.2
Overlap ratio 5.4% 5.5% 5.4% 4.4%

Table 2.5: Average basis rank for each noise level (first row), average rank of the union of
two bases from random burst pairs (second row), and the average overlap ratio (third row)
between the subspaces spanned by the two bases. The low overlap justifies our prediction of
a burst-specific basis.

GFLOPs Runtime (s)

KPN (K = 15) 59.3 0.63
Separable (K = 15) 29.9 0.43

Ours (K = 5) 28.9 0.24
Ours (K = 9) 29.1 0.29

Ours (B = 10) 26.5 0.19
Ours (B = 50) 28.2 0.27
Ours (B = 130) 31.7 0.41

Ours (K = 15, B = 90) 29.9 0.30

Common Spatial Basis 40.8 0.49
Per-frame Spatial Basis 41.9 0.57

Table 2.6: FLOPS and runtimes on 1024×768 resolution images for different KPN denoising
approaches. All variants of our basis prediction network are significantly faster than KPN and
match the compute cost of separable filters (with better denoising quality). Increasing the
kernel size for our technique comes at marginal cost thanks for the Fourier filtering approach.
This allows us to use large kernels for better denoising performance.

results, our approach also requires significantly fewer FLOPs than regular KPN for the same

kernel size. This is due to the reduced complexity of our final prediction layer, as well as

efficient filtering in the Fourier domain. Also, we find that our approach has nearly identical

complexity as separable kernel prediction, while achieving higher denoising performance

because it can express a more general class of kernels.

In addition to the evaluation FLOPs, Table 2.6 reports measured running times for the

various approaches, benchmarked on a 1024 × 768 image on an NVIDIA 1080Ti GPU. To

43

Method Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8

Direct 38.16 35.39 32.50 30.27
KPN* (K = 5) 38.86 35.97 32.79 30.01

BPN (ours) 40.16 37.08 33.81 31.19

Table 2.7: Denoising performance on our synthetic color test set. We report performance in
terms of Average PSNR (dB). Numbers for KPN* (K = 5) are based on our implementation
of [120]. Our method outperforms KPN by more than 1 dB at all noise levels.

compute these timings, we divide the image into 128×128 non-overlapping patches to form

a batch and send it to the denoising network. Since regular KPN have very high memory

requirements, we select the maximum batch size for each method and denoise the entire image

in multiple runs. This maximizes GPU throughput. We find that our approach retains its

running time advantage over KPN in practice. It is also a little faster than separable kernel

prediction—likely due to the improved cache performance we get from using Fourier-domain

convolutions with spatially-uniform basis kernels.

Color burst denoising. Finally, we report results on a color burst denoising task. We use

a similar observation model as (2.5) with noise independently added to each color channel

(note this ignores multiplexed measurements and demosaicking). We denoise with separate

predicted kernels for each color channel at each location. We extend standard KPN [120] to

produce this directly, and modify our method to have the basis decoder produce a “color”

kernel basis (of size 3K2T ×B), while the coefficient decoder still outputs a B dimensional

coefficient vector.

We use the same training protocol as for grayscale images, using color versions of the Open

Images dataset. In this case, training takes 1900k iterations with batches of 8 color images.

We construct a new synthetic test set of 100 images from the Open Images validation dataset,

with no overlap with our training set. We report comparisons in Table 2.7, showing a similar

44

Noisy Reference Frame

Clean frame crops Footprint of predicted kernels

Figure 2.10: We visualize a few 3D kernels predicted by our approach (with K = 15), and
those produced by standard KPN (with K = 5 and K = 15). For kernels predicted at a
given location, we also show crops of the different noise-free frames centered at that point,
with the support of the kernel marked in blue. In comparison to those from KPN, our kernels
are more evenly distributed across all frames in the burst, with spatial patterns that closely
follow the apparent motion in the burst.

45

improvement over KPN [120] as for grayscale images—over 1 dB PSNR at all noise levels.

We include qualitative comparisons in Figure 2.11.

Full Input Image Noisy Reference Direct KPN [120] Ours GT

28.36 29.02 29.73

29.55 29.79 30.95

Figure 2.11: We show examples of color denoising using our method on our synthetic color
test set, comparing these to direct prediction and our color-extended version of KPN [120]
(with K = 5). Numbers refer to PSNR (dB) on the full image.

2.3.5 Discussion

In this section, we exploit self-similarity to produce a high-quality noise-free image from a

sequence of noisy frames captured in low-light environments. We argue that local, per-pixel

burst denoising kernels are highly coherent. Based on this, we present a basis prediction

network that jointly infers a global, low-dimensional kernel basis and the corresponding

per-pixel mixing coefficients that can be used to construct per-pixel denoising kernels. This

formulation significantly reduces memory and compute requirements compared to prior

kernel-predicting burst denoising methods, allowing us to substantially improve performance

by using large kernels, while reducing running time.

46

While this work focuses on burst denoising, KPN-based methods have been applied to other

image and video enhancement tasks including video super-resolution [67], frame interpola-

tion [108, 126, 127], video prediction [45, 66], and video deblurring [193]. All these tasks

exhibit similar structure and will likely benefit from our approach.

2.4 Exploiting scene appearance in flash photography

2.4.1 Introduction

While image denoising algorithms rely on computational models to produce high-quality

images through post-processing, flash photography seeks to address the root cause of noise, i.e.

insufficient light, by illuminating the scene with a bright burst of light at the time of exposure.

It allowis the camera to acquire a photograph with a much higher signal-to-noise ratio than

would be possible under the dim ambient lighting alone and without introducing any motion

or defocus blur. However, flash illumination is not without drawbacks. An on-camera flash

often creates unappealing flat shading and harsh shadows, resulting in images that fail to

capture the true mood and ambience of the scene.

Researchers have considered combining pairs of flash and no-flash images—captured in quick

succession with and without the flash—to create a single enhanced photograph that is both

noise-free and accurately represents the scene under ambient lighting. This is achieved by

merging information about the ambient scene appearance from the noisy no-flash image, with

high-frequency surface image details revealed by the flash [41, 131]. However, these methods

assume moderate levels of noise in the no-flash image, and that the flash and no-flash pair

are, or can be, aligned.

47

Figure 2.12: Given a pair of images of low-light scenes captured with and without a flash
(left), our method produces a high-quality image of the scene under ambient lighting (right).
This output is generated by filtering the no-flash image with a predicted field of kernels—
to capture a smoothed stimate of scene appearance under ambient lighting, followed by
multiplication with a scale map that introduces high-frequency detail illuminated by the
flash.

In extremely low light, the no-flash image can be very noisy, especially when using mobile

phone cameras with small apertures. This precludes the use of traditional flash/no-flash

methods, since the noise obscures even the low-frequency shading information in the no-flash

image and makes automatic alignment of the pair unreliable. In comparison, modern neural

network-based denoising methods [23, 168, 185, 190] can produce reasonable estimates from

a noisy no-flash image alone—although at high noise-levels, they still struggle to reconstruct

high-frequency detail.

In this section, we leverage both the ability of modern neural networks to encode strong

natural image priors, and the unique combination of appearance information available in a

flash and no-flash image pair. Specifically, we consider the task of producing a high-quality

image of the scene under ambient lighting given a flash and no-flash pair as input. We focus

on extremely low-light scenes such that the no-flash image shows significant noise, and the

48

appearance of the no-flash image is entirely dominated by the flash illumination. We further

assume unknown geometric misalignment between the image pair, due to camera movement

typically observed in hand-held burst photography [167].

Under these conditions, we train a deep neural network to take noisy, misaligned no-flash/flash

image pairs as input, and output a denoised image of the scene under the scene’s ambient

illumination. Rather than directly predicting the denoised image, our network outputs a

kernel field used to filter the no-flash image, and a scale map that is multiplied with this

filtered output to incorporate high-frequency image details from the flash image. To use the

regularizing effect of kernels to effectively filter out the high levels of noise in the no-flash input

while overcoming its significant memory and computational costs [115], our network combines

the kernel basis prediction approach describeb in Sec 2.3 with efficient kernel up-sampling.

The use of a scale map is inspired by classical flash/no-flash approaches [41, 131] that adopt

multiplicative combination based on a view of factorizing images into albedo and shading,

where the former is common across the input pair while the latter is not.

We evaluate our approach extensively under different ambient light levels and spatial mis-

alignment, and demonstrate state-of-the-art results for low-light denoising (see example result

in Figure 2.12). Our method outperforms denoising without a flash—when using a single or

burst of two no-flash images. This demonstrates that a flash input, despite often representing

drastically different shading, is still informative towards ambient appearance. Our method

also outperforms other standard denoising approaches trained directly on flash/no-flash pairs,

highlighting the importance of the formulation and design of our network architecture.

49

2.4.2 Proposed approach

Our goal is to estimate a noise-free color image Y [n] ∈ R3 of the scene under ambient

illumination, from a pair of flash and no-flash images Xf [n] ∈ R3 and Xnf [n] ∈ R3, where

n ∈ Z2 denotes the pixel location. Since both images are of the same scene, they represent

observations of the same surfaces, with the same material properties, but under different

illuminations, and with a potential change in viewpoint due to hand motion between the two

shots.

Observation Model and Problem Formulation. In a chosen reference frame, we denote

the appearance of the scene under ambient-only illumination as Sa[n] ∈ R3, and under

flash-only illumination as Sf [n] ∈ R3. Further, we model the geometric transformations from

the reference to the flash and no-flash images as 2D warps Tf (n) and Tnf (n), respectively.

Then, the noise-free versions X̃nf [n] and X̃f [n] of our no-flash and flash inputs are given by:

X̃nf [Tnf (n)] = Sa[n],

X̃f [Tf (n)] = αf (Sf [n] + Sa[n]), (2.10)

where αf ≤ 1 is a scalar that captures the effect of a possibly shorter exposure time for the

flash image. Note that since the flash is typically much brighter than the ambient lighting

(Sf [n]� Sa[n]), the contribution of the flash-only appearance is dominant in the flash image

X̃f [n].

As in [120] and the previous section, we assume a heteroscedastic Gaussian noise model [46]

to account for both read and shot sensor noise. The observed input flash and no-flash pair

50

Kernel-based
Reconstruction

(e)	Basis
Coefficients	Maps

(b)	Noise	Parameters

(d)	3D	Kernel	Basis

(c)	Encoder	Features
Basis

Decoder

Encoder	

Coefficients	+
Scale	Map
Decoder

Pooled	Skip
Connections

(a)	Flash	/	No-Flash	Input

(f)	Scale	Map

(h)	Denoised	Output(g)	Filtered	No-Flash

Figure 2.13: System Overview. The denoising network takes as input a pair of flash,
no-flash images (a) together with the noise parameters (b). After encoding, the resulting
features (c) are decoded into a multi-scale basis (d), a set of pixel-wise coefficients (e) and a
scale map (f). The no-flash image is filtered using the reconstructed kernels (g) and multiplied
by the scale map to produce the final denoised output (h).

relate to their ideal noise-free version (Eq. (2.10)) as:

Xf [n] ∼ N (X̃f [n], σ
2
r + σ2

sX̃f [n]),

Xnf [n] ∼ N (X̃nf [n], σ
2
r + σ2

sX̃nf [n]), (2.11)

where σ2
r , σ

2
s are read and shot noise parameters, which we assume are known. Given Xf [n]

and Xnf [n], and the values of σ2
r and σ2

s , we seek to estimate Y [n] := Sa[n].

Note that in formulation above, we make a distinction between the target output Y [n] and

the noise-free no-flash image X̃nf [n], because they differ by the warp Tnf (n). We may wish

to use either of the two inputs (flash or no-flash) as the geometric reference. If for instance,

the no-flash image is the reference, we assume Tnf (n) = n is the identity transformation, and

Y [n] = X̃nf [n]. Conversely, if we choose the flash image as reference, Tf (n) = n is choosen

to be the identity mapping. In Section 2.4.4, we analyze the effect of this design choice on

the output image quality, finding that in most settings, the choice of the no-flash image as

reference yields more accurate reconstructions on average.

51

Enhancement Network. We use the basis prediction approach of describeb in the previous

section, which was designed for burst denoising, as the starting point for our model design.

Our network differs in two crucial aspects: (a) rather than predicting kernels to filter both

the flash and no-flash inputs and summing the result, we filter only the no-flash image and

multiply a predicted per-pixel three-channel scale map to form our final output; and (b) we

propose an efficient approach to predict larger kernels through upsampling, which is necessary

in our setting, because we are filtering a single, highly noisy image. We show an overview of

our approach in Figure 2.13.

Input data. Our network takes a twelve channel tensor as input, with six channels containing

the observed flash Xf and no-flash Xnf pair (Equation 2.11) themselves, and another six

encoding the expected per-pixel standard deviation of noise in these inputs, computed using

the (known) values of σ2
s and σ2

r and the observed noisy intensities as:
√
σ2
r + σ2

s max(0, X i[n]),

for each channel i ∈ {R,G,B} and X = Xf and Xnf .

Predicting a global kernel basis. Like our burst denoising network, our network features

a common encoder whose output is fed to two decoders. The first decoder outputs a global

low-rank kernel basis. However, we do not constrain our kernels to be positive and unit-

normalized. The second decoder outputs per-pixel mixing coefficients to combine the predicted

basis elements and form per-pixel kernels. Another departure from the method in the previous

section, the second decode also outputs a 3-channel scale map. We include skip-connections

from the encoder to both decoders, using global pooling for connections to the basis decoder.

Large kernels by interpolation. A key innovation in our method over our previous burst

denoising method is that our basis encodes larger kernels using a 2-scale representation and

an interpolation-based reconstruction scheme. This is crucial in our application where these

52

kernels are used to smooth only one image—the noisy no-flash input—rather than a burst of

images as in Section 2.3.

Specifically, our basis decoder outputs a set of J basis elements, each consisting of a pair of

three-channel kernels {(Aj, Bj)}Jj=1, where each Aj, Bj ∈ RK×K×3. We interpret the second

kernel Bj of each pair as a low-frequency term: a large kernel downsampled by a factor d,

with an effective ((K − 1) ∗ d+ 1)× ((K − 1) ∗ d+ 1) footprint. The jth element of our basis

is then given by Aj + (Bj ↑d), where ↑d denotes bilinear upsampling by a factor d. So that

Aj can add fine high-frequency details to the kernel center. In our experiments, we use a

basis with J = 90 kernels, with a base size K = 15 and upsampling factor of d = 4 resulting

in an effective kernel size of 57× 57.

Final reconstruction. Denoting the per-pixel coefficients from the second decoder as

{cj[n]}Jj=1, we first filter the no-flash input image as:

F [n] =
J∑

j=1

cj[n]
(
Xnf ∗ (Aj +Bj ↑d)

)
[n]. (2.12)

where ∗ denotes per-channel convolution between three-channel images and kernels. Note

that the filtering with upsampled kernels can be carried out efficiently, by pre-filtering the

no-flash image and using dilated convolutions:

F [n] =
J∑

j=1

cj[n]
(
(Xnf ∗ Aj)[n] + (Xh

nf ∗d Bj)[n]
)
, (2.13)

where Xh
nf [n] = (Xnf ∗ h)[n] is the result of smoothing the no-flash input with a (2d− 1)×

(2d− 1) tent kernel h[n], and ∗d represents dilated convolution with a factor of d.

53

The result F [n] of this filtering step will typically encode a noise-free (and in the case of

the flash as reference, an aligned) estimate of scene appearance under ambient illumination.

However, due to the lower signal-to-noise ratio of Xnf , this filtering step cannot recover the

high-frequency details that are illuminated only resolved in the flash image. To recover these,

our full-pixel decoder also produces a scale map G[n] ∈ R3. Our final output Ŷ [n] is given by

the element-wise product of this scale map and the filtered no-flash image:

Ŷ [n] = F [n]�G[n]. (2.14)

This formulation is inspired by classic flash/no-flashing denoising methods [41, 131] that

add high-frequency details from the flash image in the log domain, i.e., corresponding to a

product in our linear domain. In Section 2.4.4, we show this outperforms the alternative of

using kernels to jointly denoise the no-flash and flash images.

Training details. While our network accepts raw linear sensor measurements as input and

produces an estimate of linear intensities in Y [n], it is trained to maximize image quality in

a color and gamma-corrected sRGB space. In particular, we assume that for each training

sample (X t
f , X

t
nf , Y

t), we also have a scalar gain αt (representing a desired target brightness

level), and a 3× 3 color transform matrix Ct based on camera sensor parameters and white-

balance settings, such that the mapping to sRGB is given by ft(Y [n]) = γ(αCtŶ [n]), where

γ(·) is a gamma correction curve.

54

We train our model to minimize the sum of a squared L2 pixel loss, and a L1 gradient loss

between the estimated and ideal rendered images:

L =
1

T

T∑
t=1

‖ft(Ŷt)− ft(Yt)‖2 + η|∂x ∗ (ft(Ŷt)− ft(Yt))|

+ η|∂y ∗ (ft(Ŷt)− ft(Yt))|, (2.15)

where ∂x and ∂y are horizontal and vertical gradient filters.

We train our model using the Adam optimizer [72], beginning with a learning rate of 10−4,

and going through two learning rate drops every time validation loss saturates, for a total of

roughly 1.5 million iterations.

2.4.3 Experimental setup

We now describe our experimental setup to evaluate our approach.

Dataset. We use the dataset of Aksoy et al. [2], which contains 16-bit well-exposed ambient-

only and flash-only image pairs. These images were crowdsourced from users who were asked

to capture images with hand-held mobile phones in real-world settings, and roughly had

a 0.5-1 second delay between captures of the pair. We split the dataset as follows: 2519

images for the training set, 128 for validation and 128 for testing, considering 440 × 440

crops (random crops for training, and fixed central crops for validation and testing). We

simulate a real low-light capture by dimming the linear ambient-only image by dividing with

a random factor in [2, 50], sampled uniformly in the log domain. This forms our no-flash

input. We increase the exposure of the flash-only image by a constant factor 2, and add it to

the no-flash input to obtain our flash input.

55

Misalignment and simulated noise. The image pairs provided by [2] were automatically

aligned by finding correspondences with feature matching. Since this would be unrealistic in

low-light images, we undo such alignment by warping the no-flash or flash image (the other is

the reference) with a random homography. To obtain the homography parameters, we assume

the camera’s FOV is 90 degrees to get its intrinsic matrix. We perturb it with a random 3D

rotation uniformly sampled in the range [−0.5, 0.5] degrees in each axis, followed by random

2D scaling by a factor uniformly sampled in [0.98, 1.02], and a random 2D translation of

[0, 2] pixels. The overall average per-pixel displacement between our flash and no-flash inputs

ranges up to 20 pixels (Manhattan distance). Note that real-world non-idealities like parallax,

occlusions, blur, etc. originally present in the data are preserved by undoing [2]’s alignment.

We use the same noise parameters for the flash and no-flash image, i.e., we assume they

were captured with the same ISO setting. During training, we randomly sample the noise

parameters σr and σs uniformly in the log-domain in the ranges: log(σr) ∈ [−3,−2] and

log(σs) ∈ [−4,−2.6].

Losses and metrics. The preprocessing pipeline is executed on the original linear color

space of the camera. To compute losses, we set the desired gain αt in Section 2.4.2 to be the

inverse of the factor we used to dim the image above, since the original images in [2] were

well-lit. The database also includes a color transform matrix for each image which we use as

Ct. We evaluate performance by computing PSNR and SSIM between the rendered versions

of our estimate and the ground-truth.

Baselines. We compare to denoising without a flash input: using a single no-flash image

denoised by a version of our architecture (without a scale map), and a burst of two (misaligned)

no-flash inputs denoised using the state-of-the-art burst denoising method described in

56

Method 100x Dimmed 50x Dimmed 25x Dimmed 12.5x Dimmed

No-flash input only
Our Architecture 24.91 27.23 29.31 30.98

2-frame burst input (no flash)
BPN [169] 25.58 27.75 29.65 31.21

Flash and no-flash input pair
Direct Prediction 24.80 27.06 29.12 30.84
KPN [120] 25.87 27.94 29.69 31.21
BPN [169] 26.11 28.04 29.75 31.21
Ours 26.75 28.56 30.14 31.52

Table 2.8: Quantitative results. Thanks to the richer signal provided by the flash input,
our method outperforms our single image denoising baseline, and a 2-frame burst denoising
baseline. Comparisons to standard burst denoising approaches adapted to use flash–no-flash
pairs show that our model architecture with its filtering/scale decomposition and larger
kernels outperforms previous work. These results hold over a wide range of ambient light
levels, shown here as dimming factors between the low-light no-flash input and a well-lit
ground-truth target.

Section 2.3 (which we refer to as BPN). For flash and no-flash image inputs, we compare our

method to other standard architectures: a direct prediction network which simply regresses

to the denoised output, and burst denoising methods KPN [120] and BPN applied to the

flash and no-flash pair. All of these methods were trained on our dataset, and provided

information about noise standard deviation in an identical manner to our method.

2.4.4 Evaluation

We compare our approach to baseline methods for both denoising without a flash input,

and to applying existing network architectures to a flash and no-flash pair. We also include

ablations describing the effect of our kernel interpolation approach, and of choosing the

no-flash vs. flash image as geometric reference.

We begin by evaluating our method, choosing the ambient image as geometric reference

(i.e., we assume Tnf (n) = n), on our test set of 128 images, and comparing it to the various

57

baselines described above. We fix the noise level to log(σr) = −2.6 and log(σs) = −3.6,

sample a random homography for each pair to be applied to the flash image (for the no-flash

burst, this homography is applied to the second no-flash image), and repeat our evaluation

with a discrete set of dimming factors: [100, 50, 25, 12.5]. Note that the factor 100 lies outside

our training range, and demonstrates the robustness of our method.

Our method consistently outperforms all methods, regardless of the dimming factor, as

seen by the quantitative results in Table 2.8. We also include example reconstructions in

Figure 2.15, where we see that our method reconstructs fine surface detail with higher fidelity

than the other methods.

In Figure 2.14, we take a closer look at the effect of misalignment. We take a subset of 64

flash and no-flash pairs from our test set (all dimmed with a factor of 50), and evaluate each

set with different homographies that cause different average pixel displacements. We plot

the PSNR of reconstruction by various methods for different degrees of displacement (for

the single no-flash input baseline, these numbers are the same for all displacements). As

expected, the accuracy of all methods decreases with greater misalignment. Nevertheless,

we find that our method consistently outperforms all baselines, including the single no-flash

input even with misalignment greater than 10 pixels.

Ablation. In our method section, we considered two options for the alignment reference:

with the output geometrically aligned with the flash input, or the no-flash image. In Table 2.8,

we reported results with the no-flash input as the reference (for our method, as well as the

other methods evaluated on the flash and no-flash pair). This was based on an evaluation of

both alternatives, which we report in Table. 2.9.

58

Setting Flash No-Flash No-Flash
Reference Reference w/o {Bj}

100x dimmed 26.83 dB 26.75 dB 26.45 dB
50x dimmed 28.39 dB 28.56 dB 28.42 dB
25x dimmed 29.55 dB 30.14 dB 30.09 dB

12.5x dimmed 30.45 dB 31.52 dB 31.51 dB

Table 2.9: Ablation study. We compare the performance of our method to two ablations.
One uses the flash image instead of the no-flash image as reference for the geometric
transformation. The other uses a kernel basis without interpolation, leading to an effective
kernel size of only 15× 15.

Figure 2.14: Performance vs. misalignment. We show the performance profile of our
method and select baselines as a function of average displacement between the two frames.
Our model consistently delivers superior performance and is robust to large misalignment
between its inputs.

We found that except for the lowest light level, the using the no-flash image as reference

yields results that are quantitatively better (this is also true for the other baselines). However,

looking at the actual reconstructions in Figure 2.17, we find both images to be of similar

visual quality—with the lower quantitative performance of the flash reference being largely

due to slight, and largely imperceptible, alignment errors in low-frequency shading. However,

we do find that using the flash image as reference sometimes yields visually sharper results.

59

Figure 2.15: Qualitative comparison. Our method uses flash/no-flash image pairs to
denoise low-light images. It produces cleaner outputs than baseline flash/no-flash denoisers
(Direct (F+NF), BPN (F+NF)), as well as single-image (Only No-Flash Input) and burst
denoisers (2× No-Flash Burst). We also visualize our intermediate filtered no-flash image
and scale map.

60

Figure 2.16: Qualitative comparison (continued). Our method uses flash/no-flash image
pairs to denoise low-light images. It produces cleaner outputs than baseline flash/no-flash
denoisers (Direct (F+NF), BPN (F+NF)), as well as single-image (Only No-Flash Input) and
burst denoisers (2× No-Flash Burst). We also visualize our intermediate filtered no-flash
image and scale map.

Figure 2.17: Flash vs. no-flash as reference frame. We use the ambient-only image
as the reference frame for our reconstruction (top), i.e. the ground truth is aligned to the
no-flash image. We found this choice leads to a lower error on average, compared to the
alternative, using the flash as reference (bottom).

61

Figure 2.18: Benefit of large kernels. By using a 2-scale kernel decomposition, where
the low-pass component is bilinearly upsampled, our model (top) can better denoise the
ambient-only image. This leads to reduced residual chroma noise, which makes the scale map
more effective at recovering fine details. Without it (bottom), the kernels are too small to
effectively denoise the ambient image, so the scale map needs to compensate for the residual
mid-frequency noise.

Table 2.9 also evaluates the benefit of using larger filters though our interpolation-based

approach. We find that by allowing filters with a larger footprint (57× 57), our two-scale

kernel basis improves denoising quality, especially at low light levels. As show in Figure 2.18,

large kernels yield a smoother filtering of the noisy no-flash image, so that the flash-driven

scale map does not need to overcompensate for residual mid-frequency color noise, leading to

better reconstructions in the final output.

2.4.5 Discussion

This section introduced a method to effectively leverage the unique mix of visual information

available in a flash and no-flash image pair, and produce high-quality images in low-light

environments. Our method preserves the warmth and colors of the ambient lighting while

bringing out fine details thanks to the flash image. Drawing on traditional flash/no-flash

62

techniques, our network architecture assembles its output from a filtered ambient-only image,

and a scale map that encoded high-frequency details from the flash. Although it was not

trained with any intermediate supervision, we found our network automatically learns to

carry out both the necessary geometric alignment between the frames, and the photometric

transfer needed to produce state-of-the-art reconstructions.

63

Chapter 3

Learning without direct supervision

for computational photography

Many computational photography tasks are about decoding scene properties (including color,

illumination, geometry and material properties), from observations that are photographs of

the scene taken with real cameras . On the most basic level, computational photography

seek to build a “computational super camera” to output a photograph of the scene that has

enhanced quality from a single image (or a very few images). Due to limited capabilities

of a real camera, these input images could be degraded observations that are noisy, low-

resolution, blurry or has low dynamic range etc., and require a restoration algorithm to recover

corresponding un-corrupted image. On the next level of computational photography, the goal

is to go beyond the capability of this super camera and reverse the process of how an image

is formed to decompose a photograph into light fields, different illumination components,

geometric information of the scene and material properties. Example applications include

inferring lighting, depth, surface normal or reflectance from one or several photographs of a

scene.

64

At both levels, deep convolutional neural networks (CNNs) have recently emerged as an

effective tool for such tasks of decoding scene properties from photographs [20, 28, 35, 43, 49,

79, 95, 145, 146, 183, 185]. Specifically, a CNN for a given application is trained on a large

dataset that consists of pairs of ground-truth scene maps and observed images (in many cases

where the degradation or the image formation process is well characterized, such dataset can

be synthesized or rendered from ground-truth images or scene properties). This training set

allows the CNN to learn to exploit the expected statistical properties of scene maps in that

application domain, to solve what is essentially an ill-posed inverse problem.

However, unlike semantic tasks where ground-truth estimations can be easily annotated

by human beings, for many domains of computational photography, it is impractical or

prohibitively expensive to capture ground-truth scene properties, and construct such a large

representative training set. Unfortunately, it is often in such domains that a computational

photography solution is most useful. For example, collecting a large-scale real image restora-

tion dataset is very challenging because for real noisy, (motion-) blurry images it is often

too expensive to capture their corresponding high-quality images, and therefore leads to

unsatisfying performance for methods that are trained on synthetic dataset when deployed in

practice.

On the other hand, it is often practical and straightforward for us to capture indirect

measurements of those scene properties that are of interest. These indirect measurements are

different samples of the scene via photographs. Such captured images may have a different

exposure, focus, view, illumination, or instant of capture. Each image is a projection of the

scene which contains partial information about the scene property. Examples include blurry

images of the same scene taken at different instants (therefore have different camera or scene

motion), or images taken under different illumination and from different views that have the

same underlying geometry and reflectance. In this chapter, we study how to use such indirect

65

measurements to train deep neural networks to decode scene properties without using any

ground-truth scene maps. We demonstrate that these measurements could provide indirect

but sufficient supervision to learn the statistics of scene properties. This provides a valuable

and practical alternative to the training of neural networks for computational photography.

Specifically, we discuss how to train deep neural networks with indirect supervision for tasks

at these two different aforementioned levels of computational photography. In Section 3.1,

we describe how to train image enhancement models with only low-dimensional or degraded

measurements. In Section 3.2, we propose a data capturing hardware system and a training

strategy to train a normal estimation model to output high-quality normal maps with only

images and low-quality stereo.

3.1 Training image estimators without ground-truth

images

3.1.1 Introduction

Reconstructing images from imperfect observations is a classic inference task in many

computational photography applications. In compressive sensing [36], a sensor makes partial

measurements for efficient acquisition. These measurements correspond to a low-dimensional

projection of the higher-dimensional image signal, and the system relies on computational

inference for recovering the full-dimensional image. In other cases, cameras capture degraded

images which are then recovered by restoration algorithms [48, 181, 198]. Among these

algorithms, deep CNNs have recently become the state-of-the-art in almost every image

reconstruction application by training on a large dataset. However, collecting a large-scale

dataset of consisting of pairs of ground-truth images and observed measurements is often

66

Figure 3.1: Unsupervised Training from Measurements. Our method allows training
image estimation networks f(·) from sets of pairs of varied measurements, but without the
underlying ground-truth images. (Top Right) We supervise training by requiring that network
predictions from one measurement be consistent with the other, when measured with the
corresponding parameter. (Bottom) In the blind training setting, when both the image and
measurement parameters are unavailable, we also train a parameter estimator g(·). Here, we
generate a proxy training set from the predictions of the model (as it is training), and use
synthetic measurements from these proxies to supervise training of the parameter estimator
g(·), and augment training of the image estimator f(·).

impractical. Recently, Lehtinen et al. [87] proposed a solution to this issue for denoising,

with a method that trains with only pairs of noisy observations. While their method yields

remarkably accurate network models without needing any ground-truth images for training,

it is applicable only to the specific case of estimation from noisy measurements—when each

image intensity is observed as a sample from a (potentially unknown) distribution with mean

or mode equal to its corresponding true value.

In this section, we introduce an unsupervised method for training image estimation networks

that can be applied to a general class of observation models—where measurements are a

linear function of the true image, potentially with additive noise. As training data, it only

67

requires two observations for the same image but not the underlying image itself2. The two

measurements in each pair are made with different parameters (such as different compressive

measurement matrices or different blur kernels), and these parameters vary across different

pairs. Collecting such a training set provides a practical alternative to the more laborious

one of collecting full image ground-truth. Given these measurements, our method trains an

image estimation network by requiring that its prediction from one measurement of a pair be

consistent with the other measurement, when observed with the corresponding parameter.

With sufficient diversity in measurement parameters for different training pairs, we show

this is sufficient to train an accurate network model despite lacking direct ground-truth

supervision.

While our method requires knowledge of the measurement model (e.g., blur by convolution),

it also incorporates a novel mechanism to handle the blind setting during training—when the

measurement parameters (e.g., the blur kernels) for training observations are unknown. To be

able to enforce consistency as above, we use an estimator for measurement parameters that is

trained simultaneously using a “proxy” training set. This set is created on-the-fly by taking

predictions from the image network even as it trains, and pairing them with observations

synthetically created using randomly sampled, and thus known, parameters. The proxy set

provides supervision for training the parameter estimator, and to augment training of the

image estimator as well. This mechanism allows our method to nearly match the accuracy of

fully supervised training on image and parameter ground-truth.

We validate our method with experiments on image reconstruction from compressive mea-

surements and on blind deblurring of face images, with blind and non-blind training for the

latter, and compare to fully-supervised baselines with state-of-the-art performance. The

supervised baselines use a training set of ground-truth images and generate observations with
2Note that at test time, the trained network only requires one observation as input as usual.

68

random parameters on the fly in each epoch, to create a much larger number of effective

image-measurement pairs. In contrast, our method is trained with only two measurements

per image from the same training set (but not the image itself), with the pairs kept fixed

through all epochs of training. Despite this, our unsupervised training method yields models

with test accuracy close to that of the supervised baselines, and thus presents a practical way

to train CNNs for image estimation when lacking access to image ground truth.

3.1.2 Related work

CNN-based Image Estimation. Many imaging tasks require inverting the measurement

process to obtain a clean image from the partial or degraded observations—denoising [17],

deblurring [181], super-resolution [48], compressive sensing [36], etc. While traditionally solved

using statistical image priors [44, 137, 198], CNN-based estimators have been successfully

employed for many of these tasks. Most methods [20, 28, 35, 79, 122, 146, 183, 185] learn

a network to map measurements to corresponding images from a large training set of pairs

of measurements and ideal ground-truth images. Some learn CNN-based image priors, as

denoisers [22, 134, 185] or GANs [3], that are agnostic to the inference task (denoising,

deblurring, etc.), but still tailored to a chosen class of images. All these methods require

access to a large domain-specific dataset of ground-truth images for training. However,

capturing image ground-truth is burdensome or simply infeasible in many settings (e.g.,

for MRI scans [110] and other biomedical imaging applications). In such settings, our

method provides a practical alternative by allowing estimation networks to be trained from

measurement data alone.

Unsupervised Learning. Unsupervised learning for CNNs is broadly useful in many

applications where large-scale training data is hard to collect. Accordingly, researchers have

proposed unsupervised and weakly-supervised methods for such applications, such as depth

69

estimation [52, 194], intrinsic image decomposition [94, 113], etc. However, these methods are

closely tied to their specific applications. In this work, we seek to enable unsupervised learning

for image estimation networks. In the context of image modeling, Bora et al. [14] propose a

method to learn a GAN model from only degraded observations. Their method, like ours,

includes a measurement model with its discriminator for training (but requires knowledge

of measurement parameters, while we are able to handle the blind setting). Their method

proves successful in training a generator for ideal images. We seek a similar unsupervised

means for training image reconstruction and restoration networks.

The closest work to ours is the recent Noise2Noise method of Lehtinen et al. [87], who propose

an unsupervised framework for training denoising networks by training on pairs of noisy

observations of the same image. In their case, supervision comes from requiring the denoised

output from one observation be close to the other. This works surprisingly well, but is based

on the assumption that the expected or median value of the noisy observations is the image

itself. We focus on a more general class of observation models, which requires injecting the

measurement process in loss computation. We also introduce a proxy training approach to

handle blind image estimation applications.

Also related are the works of Metzler et al. [119] and Zhussip et al. [196], that use Stein’s

unbiased risk estimator for unsupervised training from only measurement data, for applications

in compressive sensing. However, these methods are specific to estimators based on D-AMP

estimation [118], since they essentially train denoiser networks for use in unrolled AMP

iterations for recovery from compressive measurements. In contrast, ours is a more general

framework that can be used to train generic neural network estimators.

70

3.1.3 Proposed approach

Given a measurement y ∈ RM of an ideal image x ∈ RN that are related as

y = θ x+ ε, (3.1)

our goal is to train a CNN to produce an estimate x̂ of the image from y. Here, ε ∼ pε is

random noise with distribution pε(·) that is assumed to be zero-mean and independent of

the image x, and the parameter θ is an M ×N matrix that models the linear measurement

operation. Often, the measurement matrix θ is structured with fewer than MN degrees of

freedom based on the measurement model—e.g., it is block-Toeplitz for deblurring with entries

defined by the blur kernel. We consider both non-blind estimation when the measurement

parameter θ is known for a given measurement during inference, and the blind setting where

θ is unavailable but we know the distribution pθ(·). For blind estimators, we address both

non-blind and blind training—when θ is known for each measurement in the training set but

not at test time, and when it is unknown during training as well.

Since (3.1) is typically non-invertible, image estimation requires reasoning with the statistical

distribution px(·) of images for the application domain, and conventionally, this is provided

by a large training set of typical ground-truth images x. In particular, CNN-based image

estimation methods train a network f : y → x̂ on a large training set {(xt, yt)}Tt=1 of pairs

of corresponding images and measurements, based on a loss that measures error ρ(x̂t − xt)

between predicted and true images across the training set. In the non-blind setting, the

measurement parameter θ is known and provided as input to the network f (we omit this in

the notation for convenience), while in the blind setting, the network must also reason about

the unknown measurement parameter θ.

71

To avoid the need for a large number of ground-truth training images, we propose an

unsupervised learning method that is able to train an image estimation network using

measurements alone. Specifically, we assume we are given a training set of two measurements

(yt:1, yt:2) for each image xt:

yt:1 = θt:1 xt + εt:1, yt:2 = θt:2 xt + εt:2, (3.2)

but not the images {xt} themselves. We require the corresponding measurement parameters

θt:1 and θt:2 to be different for each pair, and further, to also vary across different training

pairs. These parameters are assumed to be known for the non-blind training setting, but not

for blind training.

Unsupervised Training for Non-Blind Image Estimation. We begin with the simpler

case of non-blind estimation, when the parameter θ for a given measurement y is known,

both during inference and training. Given pairs of measurements with known parameters, our

method trains the network f(·) using a “swap-measurement” loss on each pair, defined as:

Lswap =
1

T

∑
t

ρ
(
θt:2 f(yt:1) − yt:2

)
+ ρ
(
θt:1 f(yt:2) − yt:1

)
. (3.3)

This loss evaluates the accuracy of the full images predicted by the network from each

measurement in a pair, by comparing it to the other measurement—using an error function

ρ(·)—after simulating observation with the corresponding measurement parameter. Note

Noise2Noise [87] can be seen as a special case of (3.3) for measurements are degraded only

by noise, with θt:1 = θt:2 = I.

When the parameters θt:1, θt:2 used to acquire the training set are sufficiently diverse and

statistically independent for each underlying xt, this loss provides sufficient supervision to

72

train the network f(·). To see this, we consider using the L2 distance for the error function

ρ(z) = ‖z‖2, and note that (3.3) represents an empirical approximation of the expected loss

over image, parameter, and noise distributions. Assuming the training measurement pairs

are obtained using (3.2) with xt ∼ px, θt:1, θt:2 ∼ pθ, and εt:1, εt:2 ∼ pε drawn i.i.d. from their

respective distributions, we have

Lswap ≈ 2 E
x∼px

E
θ1∼pθ

E
ε1∼pε

E
θ2∼pθ

E
ε2∼pε

‖θ2f(θ1x+ ε1)− (θ2x+ ε2)‖2

= 2σ2
ε + 2 E

x∼px
E

θ∼pθ
E

ε∼pε

(
f(θx+ ε) − x

)T
Q
(
f(θx+ ε) − x

)
, Q = E

θ′∼pθ
(θ′

T
θ′).

(3.4)

Therefore, because the measurement matrices are independent, we find that in expectation

the swap-measurement loss is equivalent to supervised training against the true image x,

with an L2 loss that is weighted by the N ×N matrix Q (upto an additive constant given

by noise variance). When the matrix Q is full-rank, the swap-measurement loss will provide

supervision along all image dimensions, and will reach its theoretical minimum (2σ2
ε) iff the

network makes exact predictions.

The requirement that Q be full-rank implies that the distribution pθ of measurement pa-

rameters must be sufficiently diverse, such that the full set of parameters {θ}, used for

training measurements, together span the entire domain RN of full images. Therefore, even

though measurements made by individual θ—and even pairs of (θt:1, θt:2)—are incomplete, our

method relies on the fact that the full set of measurement parameters used during training is

complete. Indeed, for Q to be full-rank, it is important that there be no systematic deficiency

in pθ (e.g., no vector direction in RN left unobserved by all measurement parameters used in

training). Also note that while we derived (3.4) for the L2 loss, the argument applies to any

error function ρ(·) that is minimized only when its input is 0.

73

In addition to the swap loss, we also find it useful to train with an additional “self-measurement”

loss that measures consistency between an image prediction and its own corresponding input

measurement:

Lself =
1

T

∑
t

ρ
(
θt:1 f(yt:1) − yt:1

)
+ ρ
(
θt:2 f(yt:2) − yt:2

)
. (3.5)

While not sufficient by itself, we find the additional supervision it provides to be practically

useful in yielding more accurate network models since it provides more direct supervision for

each training sample. Therefore, our overall unsupervised training objective is a weighted

version of the two losses Lswap + γLself, with weight γ chosen on a validation set.

Unsupervised Training for Blind Image Estimation. We next consider the more

challenging case of blind estimation, when the measurement parameter θ for an observation

y is unknown—and specifically, the blind training setting, when it is unknown even during

training. The blind training setting complicates the use of our unsupervised losses in (3.3)

and (3.5), since the values of θt:1 and θt:2 used there are unknown. Also, blind estimation

tasks often have a more diverse set of possible parameters θ. While supervised training

methods with access to ground-truth images can generate a very large database of synthetic

image-measurement pairs by pairing the same image with many different θ (assuming pθ(·) is

known), our unsupervised framework has access only to two measurements per image.

However, in many blind estimation applications (such as deblurring), the parameter θ has

comparatively limited degrees of freedom and the distribution pθ(·) is known. Consequently,

it is feasible to train estimators for θ from an observation y with sufficient supervision. With

these assumptions, we propose a “proxy training” approach for unsupervised training of blind

image estimators. This approach treats estimates from our network during training as a

source of image ground-truth to train an estimator g : y → θ̂ for measurement parameters.

74

We use the image network’s predictions to construct synthetic observations as:

x+t:i ← f(yt:i), θ+t:i ∼ pθ, ε+t:i ∼ pε, y+t:i = θ+t:i x
+
t:i + ε+t:i, for i ∈ {1, 2}, (3.6)

where θ+t:i and ε+t:i are sampled on the fly from the parameter and noise distributions, and ←

indicates an assignment with a “stop-gradient” operation (to prevent loss gradients on the

proxy images from affecting the image estimator f(·)). We use these synthetic observations

y+t:i, with known sampled parameters θ+t:i, to train the parameter estimation network g(·)

based on the loss:

Lprox:θ =
1

T

∑
t

2∑
i=1

ρ
(
g(y+t:i) − θ+t:i

)
. (3.7)

As the parameter network g(·) trains with augmented data, we simultaneously use it to

compute estimates of parameters for the original observations: θ̂t:i ← g(yt:i), for i ∈ {1, 2},

and compute the swap- and self-measurement losses in (3.3) and (3.5) on the original

observations using these estimated, instead of true, parameters. Notice that we use a stop-

gradient here as well, since we do not wish to train the parameter estimator g(·) based on the

swap- or self-measurement losses—the behavior observed in (3.4) no longer holds in this case,

and we empirically observe that removing the stop-gradient leads to instability and often

causes training to fail.

In addition to training the parameter estimator g(·), the proxy training data in (3.6) can be

used to augment training for the image estimator f(·), now with full supervision from the

proxy images as:

Lprox:x =
1

T

∑
t

2∑
i=1

ρ
(
f(y+t:i) − x+t:i

)
. (3.8)

This loss can be used even in the non-blind training setting, and provides a means of generating

additional training data with more pairings of image and measurement parameters. Also

note that although our proxy images x+t:i are approximate estimates of the true images, they

75

represent the ground-truth for the synthetically generated observations y+t:i. Hence, the losses

Lprox:θ and Lprox:x are approximate only in the sense that they are based on images that are

not sampled from the true image distribution px(·). And the effect of this approximation

diminishes as training progresses, and the image estimation network produces better image

predictions (especially on the training set).

Our overall method randomly initializes the weights of the image and parameter networks

f(·) and g(·), and then trains them with a weighted combination of all losses: Lswap + γLself +

αLprox:θ + βLprox:x, where the scalar weights α, β, γ are hyper-parameters determined on a

validation set. For non-blind training (of blind estimators), only the image estimator f(·)

needs to be trained, and α can be set to 0.

3.1.4 Experiments

We evaluate our framework on two well-established tasks: non-blind image reconstruction

from compressive measurements, and blind deblurring of face images. These tasks were

chosen since large training sets of ground-truth images is available in both cases, which allows

us to demonstrate the effectiveness of our approach through comparisons to fully supervised

baselines.

Reconstruction from Compressive Measurements. We consider the task of training a

CNN to reconstruct images from compressive measurements. We follow the measurement

model of [79, 183], where all non-overlapping 33 × 33 patches in an image are measured

individually by the same low-dimensional orthonormal matrix. Like [79, 183], we train CNN

models that operate on individual patches at a time, and assume ideal observations without

noise. We train models for compression ratios of 1%, 4%, and 10% (using corresponding

matrices provided by [79]).

76

Table 3.1: Performance (in PSNR dB) of various methods for compressive measurement
reconstruction, on BSD68 and Set11 images for different compression ratios.

Method Supervised BSD68 Set11
1% 4% 10% 1% 4% 10%

TVAL3 [89] 7 - - - 16.43 18.75 22.99
BM3D-AMP [118] (patch-wise) 7 - - - 5.21 18.40 22.64
BM3D-AMP [118] (full-image) 7 - - - 5.59 17.18 23.07

ReconNet [79] 3 - 21.66 24.15 17.27 20.63 24.28
ISTA-Net+ [183] 3 19.14 22.17 25.33 17.34 21.31 26.64

Supervised Baseline (Ours) 3 19.74 22.94 25.57 17.88 22.61 26.74
Unsupervised Training (Ours) 7 19.67 22.78 25.40 17.84 22.20 26.33
Unsupervised Training (Ours)

ablation without self-loss 7 19.59 22.73 25.32 17.80 22.10 26.16

Ground truth ReconNet [79] ISTA-Net+ [183] Supervised
Baseline (Ours)

Unsupervised
Training (Ours)

PSNR: 21.89 dB 23.61 dB 24.34 dB 24.03 dB

PSNR: 21.29 dB 23.66 dB 24.37 dB 24.17 dB

Figure 3.2: Images reconstructed by various methods from compressive measurements (at
10% ratio).

We generate a training and validation set, of 100k and 256 images respectively, by taking

363×363 crops from images in the ImageNet database [140]. We use a CNN architecture that

stacks two U-Nets [136], with a residual connection between the two. We begin by training

our architecture with full supervision, using all overlapping patches from the training images,

77

and an L2 loss between the network’s predictions and the ground-truth image patches. For

unsupervised training with our approach, we create two partitions of the original image,

each containing non-overlapping patches. The partitions themselves overlap, with patches in

one partition being shifted from those in the other. We measure patches in both partitions

with the same measurement matrix, to yield two sets of measurements. These provide the

diversity required by our method as each pixel is measured with a different patch in the

two partitions. Moreover, this measurement scheme can be simply implemented in practice

by camera translation. The shifts for each image are randomly selected, but kept fixed

throughout training. Since the network operates independently on patches, it can be used on

measurements from both partitions. To compute the swap-measurement loss, we take the

network’s individual patch predictions from one partition, arrange them to form the image,

and extract and then apply the measurement matrix to shifted patches corresponding to

the other partition. The weight γ for the self-measurement loss is set to 0.05 based on the

validation set.

In Table 3.1, we report results for existing compressive sensing methods that use supervised

training [79, 183], as well as two methods that do not require any training [89, 118]. We

report numbers for these methods from the evaluation in [183] that, like us, reconstruct each

patch in an image individually. We also report results for the algorithm in [118] by running it

on entire images (i.e., using the entire image for regularization while still using the per-patch

measurement measurement model). Note that [118] is a D-AMP-based estimator (and while

slower, performs similarly to the learned D-AMP estimators proposed in [119, 196] as per

their own evaluation).

Evaluating our fully supervised baseline against these methods, we find that it achieves

state-of-the-art performance. We then report results for training with our unsupervised

framework, and find that this leads to accurate models that only lag our supervised baseline

78

by 0.4 db or less in terms of average PSNR on both test sets—and in most cases, actually

outperforms previous methods. This is despite the fact that these models have been trained

without any access to ground-truth images. In addition to our full unsupervised method

with both the self- and swap- losses, Table 3.1 also contains an ablation without using the

self-loss, which is found to lead to a slight drop in performance. Figure 3.2 provides example

reconstructions for some images, and we find that results from our unsupervised method are

extremely close in visual quality to those of the baseline model trained with full supervision.

Blind Face Image Deblurring. We next consider the problem of blind motion deblurring

of face images. Like [146], we consider the problem of restoring 128×128 aligned and cropped

face images that have been affected by motion blur, through convolution with motion blur

kernels of size upto 27× 27, and Gaussian noise with standard deviation of two gray levels.

We use all 160k images in the CelebA training set [107] and 1.8k images from Helen training

set [83] to construct our training set, and 2k images from CelebA val and 200 from the

Helen training set for our validation set. We use a set of 18k and 2k random motion kernels

for training and validation respectively, generated using the method described in [20]. We

evaluate our method on the official blurred test images provided by [146] (derived from the

CelebA and Helen test sets). Note that unlike [146], we do not use any semantic labels for

training.

In this case, we use a single U-Net architecture to map blurry observations to sharp images.

We again train a model for this architecture with full supervision, generating blurry-sharp

training pairs on the fly by pairing random of blur kernels from training set with the sharp

images. Then, for unsupervised training with our approach, we choose two kernels for each

training image to form a training set of measurement pairs, that are kept fixed (including the

added Gaussian noise) across all epochs of training. We first consider non-blind training, using

79

the true blur kernels to compute the swap- and self-measurement losses. Here, we consider

training with and without the proxy loss Lprox:x for the network. Then, we consider the blind

training case where we also learn an estimator for blur kernels, and use its predictions to

compute the measurement losses. Instead of training a entirely separate network, we share

the initial layers with the image UNet, and form a separate decoder path going from the

bottleneck to the blur kernel. The weights α, β, γ are all set to one in this case.

We report results for all versions of our method in Table 3.2, and compare it to [146], as well

as a traditional deblurring method that is not trained on face images [173]. We find that with

full supervision, our architecture achieves state-of-the-art performance. Then with non-blind

training, we find that our method is able to come close to supervised performance when

using the proxy loss, but does worse without—highlighting its utility even in the non-blind

setting. Finally, we note that models derived using blind-training with our approach are also

able to produce results nearly as accurate as those trained with full supervision—despite

lacking access both to ground truth image data, and knowledge of the blur kernels in their

training measurements. Figure 3.3 illustrates this performance qualitatively, with example

deblurred results from various models on the official test images. We also visualize the blur

kernel estimator learned during blind training with our approach in Figure 3.4 on images

from our validation set.

3.1.5 Discussion

In this section, we presented an unsupervised method to train image estimation networks from

only measurements pairs, without access to ground-truth images, and in blind settings, without

knowledge of measurement parameters. We validated this approach on well-established tasks

where sufficient ground-truth data (for natural and face images) was available, since it allowed

us to compare to training with full-supervision and study the performance gap between the

80

Table 3.2: Performance of various methods on blind face deblurring on test images from [146].

Method Supervised Helen CelebA
PSNR SSIM PSNR SSIM

Xu et al. [173] 7 20.11 0.711 18.93 0.685
Shen et al. [146] 3 25.99 0.871 25.05 0.879

Supervised Baseline (Ours) 3 26.13 0.886 25.20 0.892
Unsupervised Non-blind (Ours) 7 25.95 0.878 25.09 0.885
Unsupervised Non-blind (Ours)

without proxy loss 7 25.47 0.867 24.64 0.873

Unsupervised Blind (Ours) 7 25.93 0.876 25.06 0.883

supervised and unsupervised settings. But we believe that our method’s real utility will be in

opening up the use of CNNs for image estimation to new domains—such as medical imaging,

applications in astronomy, etc.—where such use has been so far infeasible due to the difficulty

of collecting large ground-truth datasets.

81

GT Input Shen et al.
[146]

Supervised
(Ours)

Non-blind
(Ours)

Blind
(Ours)

PSNR: 22.69 dB 24.61 dB 25.16 dB 25.19 dB

PSNR: 26.83 dB 28.18 dB 28.27 dB 28.16 dB

PSNR: 26.59 dB 28.29 dB 27.42 dB 26.77 dB

PSNR: 22.36 dB 23.50 dB 22.84 dB 22.94 dB

Figure 3.3: Blind face deblurring results using various methods. Results from our unsupervised
approach, with both non-blind and blind training, nearly match the quality of the supervised
baseline.

82

GT Blurred Predictions GT Blurred Predictions

Figure 3.4: Image and kernel predictions on validation images. We show outputs of our
model’s kernel estimator, that is learned as part of blind training to compute swap- and
self-measurement losses.

83

3.2 Training a dark flash normal camera without ground-

truth normals

3.2.1 Introduction

In casual mobile photography, images are often captured under poor lighting conditions. This

is especially problematic for applications that try to reconstruct geometry and reflectance of

the scene from these captured images. Controlling the visible lighting or supplementing it

with a flash is often too difficult or too disruptive to be practical. On the other hand, the

near infrared (NIR) lighting in a scene can be much more easily controlled and is invisible to

the user. In this section, we seek to use a single “dark flash” NIR image and a single visible

image taken under uncontrolled lighting to recover high quality maps of the surface normals,

diffuse albedos, and specular intensities in the scene. Specifically, we focus on faces - the most

common photography subject at the short ranges over which active illumination is effective.

We present a deep neural network that takes as input one RGB image captured under

uncontrolled visible lighting and one monochrome NIR image captured from the same

viewpoint, but under controlled lighting provided by a single source located near the camera.

The network generates a surface normal and reflectance estimate (diffuse albedo + specular

intensity) at each pixel.

However, collecting a large-scale dataset of high-quality ground-truth normals can be very

expensive. Therefore, we propose to train this network by combining two imperfect but

complementary cues: a stereo depth map that provides a reliable estimate of the low-

frequency components of the scene’s 3d shape, along with RGB and NIR images under

different illumination and from different views containing photometric cues that convey

84

RGB Input NIR Input Normal Map

Figure 3.5: Estimating surface geometry from a single RGB image is challenging. We augment
this input with a single NIR “dark flash” image captured at the same time, and present a
network that can estimate high quality normal maps and reflectance maps (not shown) under
a wide range of visible lighting conditions.

higher-frequency geometric details. These measurements are far easier to obtain than ground

truth geometry and appearance measurements. We also propose a hardware setup for

collecting this data.

We compare our technique to a baseline learning approach that uses only a single RGB image

as input and state-of-the-art methods for single image intrinsic image decomposition [145] and

relighting [124]. We are able to produce overall more stable and more accurate outputs even

in very challenging visible light conditions. We also present two applications of integrating our

technique in a mobile photography pipeline: optimizing depths computed by an independent

stereo technique and reducing shadows in an image post-capture.

85

3.2.2 Related work

Intrinsic imaging and shape from shading. Decomposing a single image into its under-

lying shape and reflectance is a classical under-constrained problem in computer vision [7, 62].

One class of methods employ hand-designed priors, learned from relatively small datasets [5,

6] or NIR imagery [30], to disambiguate these components. Learning-based methods have

been proposed more recently that train convolutional neural networks to perform this task

using rendered datasets [96, 147], sparse human annotations [10], or multi-view images

under different lighting conditions [180]. Whereas some learning approaches function as

“black boxes” [147], others incorporate a physically-based image formation model [8, 96, 145,

154]. Similiar to ours, other approaches explore network inputs beyond a single RGB image,

including an additional visible flash image and a depth map [132] or a single NIR image [179].

A number of methods are specifically designed to work on images of faces. This includes 3D

morphable models [12], which are commonly used as a prior on reflectance and geometry in

learning-based approaches [145, 150, 155]. Sanyal et al. [141] estimate the shape of a face

within a single image in the form of blending weights over a parametric face model. Similar to

our approach, other techniques estimate dense normal or displacement maps [182] including

for faces partially hidden by occluders [34, 157]. However these methods do not attempt to

disentangle reflectance data from shading.

In contrast to these prior techniques, we propose a neural network that takes a single front-lit

NIR image in addition to a color input image, enabling our technique to perform well even

in very challenging visible light conditions. Our use of controlled NIR lighting provides a

number of benefits. First, the ambient NIR light in a scene is often weak or completely

absent in indoor environments and is significantly attenuated by atmospheric absorption

86

outdoors, making it practical to control this aspect of a scene. Second, it results in a more

tractable estimation problem in contrast to single-image “shape from shading” and intrinsic

image decomposition techniques that must simultaneously reason about shape, material

properties, and lighting. Third, it provides a stable source of information about the shape

and appearance of the scene even under very challenging visible lighting. By by locating the

NIR light source near the camera, this setup minimizes shadows in the scene while produces

specular highlights along surfaces that are nearly perpendicular to the viewing direction,

giving a useful cue for determining surface orientations. Our training process is also novel in

the way that it combines two independent and complimentary signals.

NIR Input Segmentation Map NIR Light 1 NIR Light 2 NIR Light 3 NIR Light 4

RGB Input Stereo Depth Map Visible Light 1 Visible Light 2 Visible Light 3 Visible Light 4

Figure 3.6: Our network learns to estimate shape and reflectance from a single front-lit
NIR image, a single RGB image under arbitrary lighting, and a semantic segmentation map
computed from the RGB image (inputs are enclosed by the red line). During training we
also use a stereo depth map and replace the RGB image under arbitrary lighting with 4
RGB+NIR image pairs captured under calibrated point lights (the training inputs are inside
the blue dashed line).

87

Fusing depth and normals. Depth estimated from methods like stereo triangulation and

normals estimated from shading cues are complementary measurements for shape recovery.

Nehab et al. [123] describe a technique that seeks to combine the more accurate low-frequency

information provided by direct depth measurement techniques with the higher-frequency

geometric details provided by photometric measurements. We use their technique to evaluate

how our approach could be used to improve a stereo pipeline (Section 3.2.5). More recent

work poses this as an optimization problem that seeks a surface that best agrees with these

different signals [4, 19, 31, 97, 177]. While our method does not use any depth information

at inference time, our training method is similar to these approaches in that we also combine

a stereo and photometric loss term.

Face relighting. Most single image face relighting methods include some representation

of shape and reflectance as intermediate components. Our network architecture is similar

to the one proposed by Nestmeyer et al. [124] for simulating lighting changes in a single

image assumed to have been captured under a single directional light. Zhou et al. [192]

present a dataset of relit portrait images generated using single-image normal and illumination

estimates and a Lambertian reflectance model. Although surface geometry is fundamental to

relighting, it is also possible to train an end-to-end network that does not explicitly reason

about shape [153]. We similarly use multiple images of a scene captured under varying

controlled lighting to train our network in order to enable a much simpler set of inputs for

inference.

Combining infrared and color imagery. A NIR (and/or ultraviolet) dark flash image

can be used to denoise a color image captured in low visible light conditions [77], or serve as

88

Inputs

Geometry Branch

Stereo Normals

OLAT j

Reflectance Branch

Render

Light Pos j

Diffuse Layer

Specular Layer

Shadow j

Rendering j

Photometric
Loss

Stereo Loss

Figure 3.7: Illustration of our network and training strategy. We estimate network weights
that minimize a photometric loss, computed between images rendered from our network
outputs and ground truth images captured under known lighting, and a stereo loss, driven
by differences between the output normals and those estimated using an independent stereo
technique.

a guide for correcting motion blur [174]. Techniques have also been developed that employ

controlled NIR lighting to simulate better visible lighting in real-time video communication

systems [55, 160]. We see these as compelling potential applications of this work.

3.2.3 Network design and training

Our goal is to estimate a normal map and a reflectance map from a single RGB image and a

front-lit “dark flash” NIR image. We train a deep neural network to perform this task. As an

auxiliary input, we use a 6-class semantic segmentation map computed from the RGB image

(background, head, hair, body, upper arm and lower arm) [24]. We found this segmentation

map was a useful cue for helping the network reason about shape and reflectance. An example

set of inputs are shown in Figure 3.6 (red line).

89

Our training procedure is driven in part by a physically-based image formation model that

connects the outputs of our network to images of a scene taken under known point lighting.

This image formation model combines a standard Lambertian diffuse term with the Blinn-

Phong BRDF [13], which has been used to model the specular reflectance of human skin [166].

Specifically, we introduce a reflectance function f that gives the ratio of reflected light to

incident light for a particular unit-length light vector l, view vector v, surface normal n,

four-channel (RGB+NIR) albedo ααα, scalar specular intensity ρ, and specular exponent m:

f(l,v,n) = ααα + ρ
m+ 2

2π
(n · h)m, (3.9)

where h = (n + l)/‖n + l‖. The observed intensity at a pixel due to a point light is given by

I(·) = f(l,v,n)(n · l)L, (3.10)

the product of the reflectance, cosine term, and light intensity L. We do not observe the

reflected intensity from enough unique light directions at each pixel to estimate all of the

parameters in Equation 3.9. We therefore fix the specular exponent to m = 30 based on prior

measurements of human skin [166] and our own observations, and estimate only n, ααα, and ρ.

The geometric quantities l and v, and light intensity L are determined by the calibration

procedures described in Section 3.2.4.

Illustrated in Figure 3.7, we use a standard UNet with skip connections [135]. The encoder

and decoder each consist of 5 blocks with 3 convolutional layers per block. The bottleneck

has 256 channels. The output of this UNet is forwarded to two separate networks: a geometry

branch that predicts a normal map ñ, and a reflectance branch that predicts an albedo map

α̃αα and log-scale specular intensity map, log(ρ̃). Both branches have 3 convolutional layers

with 32 channels and one final output layer.

90

We do not rely on ground truth normals or reflectance data to supervise training. Instead we

combine a stereo loss and a photometric loss derived from data that is far easier to obtain:

four one-light-at-a-time (OLAT) images in both RGB and NIR of the same subject, in the

same exact pose, illuminated by a set of calibrated lights activated individually in rapid

succession, and a stereo depth map (blue dashed line in Figure 3.6). These images are only

used at training time.

A stereo loss encourages our estimated normals ñ to agree with the gradients of the stereo

depth map ns. The gradients are computed by applying a 5x5 Prewitt operator on stereo

depth maps that are smoothed with RGB-guided bilateral filtering. Similar to [179], our

stereo loss combines a L1 vector loss and angular loss:

Ls(ñ) = ‖ñ− ns‖1 − (ñ · ns). (3.11)

A photometric loss is computed between each of the OLAT images and an image rendered

according to Equation 3.10 and our network outputs for the corresponding lighting condition:

Lj
p(ñ, α̃αα, ρ̃) =

∥∥∥∥Sj �
(
I(lj,v, ñ, α̃αα, ρ̃)− Îj

)∥∥∥∥
1

, (3.12)

where Îj is the per-pixel color observed in the jth OLAT image, and Sj is a binary shadow map,

computed by raycasting using the stereo depth and calibrated light position (Section 3.2.4).

We also apply a prior to the albedo map that encourages piecewise constant variation [6]:

Lc(α̃αα) =
∑
i

∑
j∈N (i)

‖α̃ααi − α̃ααj‖1, (3.13)

91

where N (i) is the 5×5 neighborhood centered at pixel i. We apply this prior only to clothing

pixels, those labeled as either body or arms in the segmentation mask. We found that other

regions in the scene did not benefit from this regularization.

Our total loss function is a weighted sum of these terms:

L(ñ, α̃αα, ρ̃) = Ls(ñ) + λp
∑
j

Lj
p(ñ, α̃αα, ρ̃) + λcLc(α̃αα). (3.14)

We set the weight λp to 10 and λc to 50 based on the validation dataset.

Data Augmentation and Training. To improve the robustness of our network, we apply

a series of data augmentations to our captured OLATs to simulate a variety of different

visible light conditions. Specifically, our training uses a combination of: evenly-lit RGB

inputs obtained by adding together all of the OLAT images; inputs with strong shadows by

selecting exactly one of the OLAT images; a mixture of two lights with different temperatures

by applying randomly chosen color vectors to two randomly chosen OLAT images; low-light

environments by adding Gaussian noise to a single OLAT; and saturated exposures by scaling

and clipping a single OLAT. We sample evenly from these 5 lighting conditions during

training. Further details on how these lighting conditions are simulated are provided in the

supplementary material.

We train the network using the Adam optimizer [70] for 30K iterations, with a learning rate

of 10−3 and a batch size of 8. Training takes 12 hours with 4 Tesla V100 GPUs.

92

3.2.4 Dataset

Shown in Figure 3.8, our setup combines a 7.0MP RGB camera that operates at 66.67 fps

with a stereo pair of 2.8MP NIR cameras that operate at 150 fps. The RGB camera and one

of the NIR cameras are co-located using a plate beamsplitter and a light trap. The RGB and

NIR cameras have a linear photometric response and we downsample all of the images by a

factor of 2 in each dimension and take a central crop that covers the face at a resolution of

960× 768.

Visible spectrum lighting is provided by 4 wide-angle LED spotlights placed at the corners of a

roughly 1.5m×0.8m (width x height) rectangle surrounding the cameras located approximately

1.1m from the subject. NIR lighting is provided by 5 NIR spotlights, one adjacent to each of

the visible lights, and a flash LED light located near the reference NIR camera to produce the

“dark flash” input. These NIR light sources are temporally interleaved with projectors that

emit NIR dot speckle patterns to assist stereo matching [128]. A microcontroller orchestrates

triggering the lights and cameras to ensure that at any time only one visible light source

and one NIR light source is active. All light sources are calibrated for position and intensity

and treated geometrically as point light sources. The light intensity term L in Equation 3.10

accounts for these calibrated colors. Note that the NIR and visible light sources are not

colocated and so slightly different values of l are used in Equation 3.10 between those two

conditions.

The image acquisition rate is limited by the RGB camera’s framerate and the total light

output, but is fast enough for us to record video sequences of people who are gesturing and

moving slowly. We compute optical flow [171] between consecutive frames captured under

the same lighting condition to correct for the small amount of scene motion that occurs

93

 Camera Unit

NIR Light

VIS Light

NIR Dot Pattern
Projector

Main NIR
camera

RGB camera

Beamsplitter

Second NIR
camera (for
stereo)

NIR Flash LED

Figure 3.8: Our hardware setup consists of controllable NIR and visible spectrum light
sources, an RGB camera, a stereo pair of NIR cameras, and two NIR dot projectors. One
of the NIR cameras and the RGB camera are aligned with a beamsplitter and all of these
components are triggered electronically to record the types of images shown in Figure 3.6.

RGB Input Shading Shading Albedos Albedos

(w/o Photometric Loss) (w/ Photometric Loss) (w/o Blinn-Phong) (w/ Blinn-Phong)

Figure 3.9: Impact of the photometric loss term in our training procedure and the Blinn-
Phong BRDF in our image formation model, respectively. When trained without photometric
loss, our network learns to output the stereo normals, which lack fine-scale details. This
has a fairly small effect on the error measures in Table 3.3, but is perceptually significant as
seen in these “n dot l” shading renderings. Our full image formation model, which includes
a Blinn-Phong specular term, produces more accurate albedos across the face than using a
Lambertian model alone.

94

RGB Input Normals Albedos NIR Input Normals Albedos
(RGB Only) (RGB Only) (Ours) (Ours)

Figure 3.10: Comparison of our network to a modified version that takes only a single
RGB image (“RGB Only”) as input. Example results for three common challenging lighting
conditions. Top to bottom: low light / noisy inputs; mixed light colors; harsh directional
lighting with saturated intensities. The “RGB only” network struggles to produce stable
normal and reflectance estimates from these inputs in contrast to our method.

within a single round of exposures. Since the RGB and reference stereo NIR camera are co-

located, we can generate pixel-aligned RGB, NIR, and depth images using scene-independent

precomputed image warps.

Each recording in our dataset is 10 seconds long and contains 166 sets of frames. We recorded

9 unique subjects, with between 5 and 10 sessions per subject, for a total of 61 recordings.

We used recordings of 6 of the subjects for training and tested on recordings of the other 3.

95

3.2.5 Evaluation

To the best of our knowledge, our method is the first technique for estimating surface normals

and RGB albedos from an RGB+NIR image. We demonstrate the value of utilizing NIR

inputs by comparing our method to two state-of-the-art RGB-only face normal estimation

methods [124, 145] as well as an RGB-only variant of our own method. We also perform

several other ablation studies to measure the impact of key design decisions. To illustrate the

performance of our method in lighting conditions that do not lie in the span of our captured

OLAT images, we also show qualitative results (Figure 3.5) on a real sequence captured

while casually moving a handheld light source around the scene. Note that ground-truth

normal maps are not available for this sequence. Finally, we present two applications of our

technique. None of the subjects shown in our results are in our training set.

Comparisons and Ablation Studies. In our evaluations we consider five different visible

lighting conditions: harsh lighting that produces strong cast shadows; a mixture of lights

with different color temperatures; saturated/overexposed intensities; low-light conditions that

produce noisy inputs; and a “well lit” condition that achieves largely shadow-free and well

exposed inputs. In lieu of ground truth geometry for quantitative assessments, we construct

a baseline using the technique of Nehab et al. [123] to refine our stereo depth maps according

to normals computed by applying Lambertian photometric stereo to the RGB OLAT training

images.

Table 3.3 reports the mean absolute angular errors in normal maps computed by two state-

of-the-art RGB-based face normal estimation methods [124, 145] along with several variants

of our network with different loss terms, image formation models, and inputs. Figures 3.9

96

Well lit Shadows Mixed colors Overexposure Low light
SfSNet [145] 14.10 18.32 - - -

Nestmeyer et al.[124] 14.82 17.52 15.87 21.85 25.56
Ours (No Stereo Loss) 12.80 12.78 12.78 12.82 12.81

Ours (No NIR Photometric Loss) 12.64 12.66 12.64 12.69 12.75
Ours (No Photometric Loss) 12.77 12.77 12.81 12.79 12.77

Ours (No Specular Component) 12.44 12.43 12.44 12.51 12.47
Ours (No RGB Input) 12.54 12.54 12.54 12.54 12.54
Ours (No NIR Input) 13.13 15.19 16.43 19.82 19.39

Ours 12.08 12.06 12.06 12.14 12.10

Table 3.3: Mean absolute angular error in degrees of normal maps computed with modified
versions of our full network. Results are reported for the five lighting conditions described in
Section 3.2.5.

and 3.10 show examples of the perceptual impact of some of these design decisions.

We first compare to SfSNet [145] and Nestmeyer et al [124]. As shown in Table 3.3, our

method outperforms both techniques even in the well lit condition and without using the NIR

input, which we attribute to our novel training strategy that combines shape information

from complementary stereo and photometric signals. More importantly, in challenging

lighting conditions, the benefit of our method becomes far more significant as the additional

information provided by the NIR input is crucial in these circumstances. Note that SfSNet [145]

uses a self-reconstruction loss that we found could not handle inputs with mixed color casts,

saturated intensities, or a significant amount of noise and so it fails to produce plausible

outputs in these cases (omitted from Table 3.3).

We next show the impact of our design choices. As expected, using both stereo and photo-

metric loss terms during training outperforms using either one alone. We consider two types

of photometric loss - one computed on only the RGB training images (“No NIR Photometric

Loss” in Table 3.3) and the second computed on both the NIR and RGB training images

(“Full Method”). As illustrated in the shading images in Figure 3.9, including the photometric

97

loss enables estimating fine geometric details that are not captured in the stereo depth maps.

Including the Blinn-Phong BRDF in our image formation model improves the accuracy of

the normals and diffuse albedo maps. It results in a modest improvement in the quantitative

errors in Table 3.3, and it produces more uniform diffuse albedo maps with fewer artifacts

(Figure 3.9). We attribute this to the fact that this richer image formation model is better

able to explain the observed intensities. We also found that including this BRDF in our

model enables reconstructing the glossy appearance of skin (Figure 3.12).

Including the NIR input image improves accuracy across the board, especially in poor visible

lighting conditions (Table 3.3). The benefit of the RGB input is comparatively smaller, but

making it available to the network enables estimating visible spectrum reflectance data, which

is a requirement for many downstream applications such as lighting adjustment (Figure 3.12).

Figure 3.10 illustrates the perceptual impact of including the NIR input in different lighting

conditions. For these comparisons we modified our network to take only a single RGB image

as input (“RGB Only”). The network architecture was otherwise unchanged, and we applied

the same training procedure described in Section 3.2.3. Note how the performance of this

“RGB Only” network significantly degrades in challenging conditions, while our method is

far more robust to these conditions due to the more stable NIR input. It’s particularly

noteworthy how well our method is able to reconstruct plausible diffuse albedos even for

highly saturated RGB input images (bottom row of Figure 3.10).

Application: Stereo Refinement. Stereo methods excel at measuring coarse geometry,

but often struggle to recover fine-scale surface details. This can be overcome by refining stereo

depths according to accurate high-resolution normals typically estimated with a photometric

98

Smoothed Stereo Refined Stereo (Ours)

Figure 3.11: Stereo methods often struggle to recover fine-scale surface details. Left: Applying
a guided bilateral filter to raw stereo depths yields a smoother surface but with distorted
features (e.g. the nose is reduced and skin wrinkles are missing). Right: We use the method
of Nehab et al. [123] to compute a refined surface according to normals estimated with our
method. Note how details are better preserved around the eyes, nose, and mouth, along with
fine wrinkles and creases.

approach [123]. We evaluate using the normals produced by our method to refine depth

measurements produced by an NIR space-time stereo algorithm [128] (Figure 3.11). In

comparison to using a standard bilateral filter to smooth the stereo depths, refining them

using our normals gives much higher quality reconstructions, most notably around the mouth,

nose, and eyes and better recovery of fine wrinkles and creases in the skin. As our method

works with a single NIR image it would be straightforward to integrate it into many existing

stereo pipelines.

99

RGB Input Relit Ground Truth

Figure 3.12: Our method can be used to simulate adding lights to a scene to fill in shadows.

Application: Lighting Adjustment. We also explored using our approach to digitally

improve the lighting in a portrait. Specifically, we evaluated adding a virtual fill light to

brighten shadowed parts of the face (Figure 3.12). We used normal and reflectance maps

estimated by our method to render the contribution of a virtual point light located within

view of the shadowed region, and then combined this with the original RGB image. Our

model enables a convincing effect, even producing realistic specular highlights along the

nasolabial folds and the tip of the nose.

3.2.6 Discussion

We have presented a dark flash normal camera that is capable of estimating high-quality

normal and reflectance maps from a single RGB+NIR input image that can be recorded

100

in a single exposure without distracting the subject. Notably, our training is supervised

by two indirect and complementary signals: one from stereo triangulation and the other

from photometric cues in RGB and NIR. A key benefit of our method over prior work is

its robustness. It performs well even in challenging lighting conditions that are commonly

encountered in casual photography such as harsh shadows, saturated pixels, and in very low

light environments. Our method could easily be integrated into existing smartphone camera

hardware designs and software pipelines to enable a range of applications from refining the

output of an auxiliary depth camera to improving the lighting of faces in still images and

streaming video.

101

Chapter 4

Probabilistic scene map estimation for

modular inference

Scene map estimation methods—that decode scene properties from a single or multiple

photographs—have achieved surprising success through the use of deep neural networks [21,

35, 39, 43, 49, 79, 82, 95, 145, 146, 161, 183]. This success confirms that even a single

photograph contains considerable information about different properties of the scene, such as

geometry and reflectance. However, these computational photography tasks are extremely

challenging given their ill-posed nature. Therefore, estimations from only photographs are far

from being precisely accurate. Fortunately, many practical systems are able to rely on other

(yet also imperfect) sources of scene information—successive frames for image restoration,

limited measurements from depth sensors for monocular depth estimation, interactive user

guidance for 3D mesh reconstruction, etc. And so, it is desirable to combine these other

sources with the input photographs to extract scene map estimations that are more accurate

than possible from one source alone.

102

Although the cues in images are useful for augmenting other sources of scene properties, the

same isn’t true for scene map estimators that simply output a scene map, a form which can

not be directly combined with additional knowledge of the scene. Instead, researchers have

treated scene map estimation using different combinations of cues as different applications

in their own right (e.g., depth estimation from sparse measurements [29]), and solved each

by learning separate estimators that take their corresponding set of cues, in addition to the

color image, as input. This requires, for each application, determining the types of inputs

that will be available, constructing a corresponding training set, choosing an appropriate

network architecture, and then training that application-specific network—a process that is

redundant and often onerous.

In this chapter, we seek to train a scene map estimation neural network to output a rich

representation of our belief and uncertainty on the scene property given the input image.

Rather than producing a “best guess” of the scene map, we propose to output a probability

distribution. Such output cannot simply be a per-pixel probability distribution, as we must

characterize the spatial dependencies of different pixels in the scene map estimation. The

proposed network can be trained in an application-agnostic way with image and scene map

pairs, but can be utilized for inference in different applications and combined with different

external information about the scene property.

Specifically, we focus on the task of monocular depth estimation. We train a conditional

VAE [73] to output multiple plausible depth samples independently for individual overlapping

patches, and form the density as a sample approximation from all samples and patches.

Our distributional output is versatile enough to enable a diverse variety of applications as

illustrated in Figure 4.1. It is useful even in the purely monocular setting—when only a single

image is available—and can be used to produce accurate depth predictions, a measure of

confidence in these predictions, as well as estimates of relative ordering of pairs of scene points.

103

Figure 4.1: Overview of our approach. Given an input color image, we use a common task-
agnostic network to output a joint probability distribution p(Z|I) over the depth map—formed
as a sample approximation using outputs of a conditional VAE that generates plausible
estimates for depth in overlapping patches. The mean of this distribution represents a
standard monocular depth estimate, but the distribution itself can be used to solve a variety
of inference tasks in different application settings—including leveraging additional depth cues
to yield improved estimates. All these applications are enabled by a common model, that is
trained only once.

More importantly, it is also able to incorporate additional information to produce improved

depth estimates in diverse application settings: producing multiple depth maps for user

selection, incorporating user annotation of erroneous regions, incorporating a small number

of depth measurements—along a single line, within a smaller field of view, at random as

well as regular sparse locations—and selecting the optimal locations for these measurements.

Crucially, all of these applications are enabled by the same network model that is trained only

once, while achieving accuracy comparable to state-of-the-art methods that rely on separate

task-specific models.

This chapter is structured as follows. Section 4.1 presents a review of related works in depth

estimation. We describe our approach to output a joint distribution over depth and its result

in the monocular setting, i.e., when only a single image is available in Section 4.2. We then

104

present our optimization method to combine this joint distribution with other sources of

depth information in Section 4.3.

4.1 Related work

Monocular Depth Estimation. First attempted by Saxena et al. [142], early work in

estimating scene depth from a single color image relied on hand-crafted features [81, 133,

143, 148], use of graphical models [106, 143, 195], and databases of exemplars [68, 75].

More recently, Eigen et al. [40] showed that, given a large enough database of image-depth

pairs [151], convolutional neural networks could be trained to achieve significantly more

reliable depth estimates. Since then, there have been steady gains in accuracy through the

development of improved neural network-based methods [21, 39, 49, 60, 84, 91, 103, 138, 163,

191], as well as strategies for unsupervised an semi-supervised learning [26, 50, 80]. Beyond

estimating absolute depth, some works have also looked at pairwise ordinal depth relations

between pair of points in the scene from a input color image [26, 197].

Probabilistic Outputs. Monocular depth estimators commonly output a single estimate

of the depth value at each pixel, hindering their use in different estimation settings. Some

existing methods do produce distributional outputs, but as per-pixel variance maps [60, 69]

or per-pixel probability distributions [101]. Note that depth values at different locations are

not statistically independent, i.e., different values at different locations may be plausible

independently, but not in combination. Thus, per-pixel distributions provide only a limited

characterization that, while useful in some applications, can not be used more generally, e.g.,

to spatially propagate information from sparse measurements.

105

Beyond per-pixel distributions, Chakrabarti et al. [21] train a network to produce independent

distributions for different local depth derivatives. They describe a method to use these

derivative distributions to generate a better estimate of global depth, but do not provide

a way to solve other tasks. Also, since their network output is restricted to uni-variate

distributions for hand-chosen derivatives, it can not express the general spatial dependencies

in a joint distribution over depth that we seek to encode for inference.

Depth from Partial Measurement. Since making dense depth measurements is slow and

expensive, it is useful to be able to recover a high-quality dense depth map from a small

number of direct measurements by exploiting the monocular cues in a color image. A popular

way of combining color information with partial measurements is by requiring color and

depth edges to co-occur: this approach is often successful for “depth inpainting”, i.e., filling

in gaps of missing measurements in a depth map (common in measurements from structured

light sensors). A notable and commonly-used example is the colorization method of Levin

et al. [88]. Other methods along this line include [38, 61, 104, 105, 117], while Zhang and

Funkhouser [189] used a neural network to predict normals and occlusion boundaries to aid

inpainting.

However, when working with a very small number of measurements, the task is significantly

more challenging (see discussion in [29]) and requires relying more heavily on the monocular

cue. In this regime, the solution has been to train a network that takes the color image and the

provided sparse samples as input. Various works have adopted this approach for measurements

along a single horizontal line from a line sensor [98], random sparse measurements [65, 111,

149, 158], and sub-sampled measurements on a regular grid [29, 54, 93]. Note that several of

these methods also train separate networks even for different settings of the same application,

such as for different sparsity levels [111] and different resolution grids [29].

106

An exception here is the depth completion method of Wang et al. [162] who use a pre-trained

monocular depth network, and provide a way to improve its monocular predictions when given

sparse depth measurements. They iteratively back-propagate errors between measurements

and the network output to update activations of an intermediate layer (but not the network

weights), leading to an improved depth map output. Thus, their method uses the monocular

network’s output as an initialization, and its internal representation as a structured way to

spatially propagate measurement information. In contrast, our method outputs an explicit

probabilistic representation which can be used for depth completion as well as for other

inference tasks, and as our experiments show, yields more accurate results.

Networks for Generating Samples. In this work, we form a conditional joint distribution

of depth values by training our network to generate samples of multiple plausible depth values.

In particular, we follow the approach of [73] to train a conditional VAE and use its outputs

to form a sample approximation to the joint distribution. Note that instead of generating

samples of a global map (like in [73]), we train the VAE to produce samples for individual

overlapping patches independently. We also conduct ablation experiments using a conditional

GAN [53, 121] to produce these samples, and while the VAE formulation performs better,

our results with the GAN are also reasonable. This suggests our approach is able to exploit

any neural network-based method for generating conditional samples, and can benefit from

future advances in this direction.

107

4.2 Probabilistic monocular depth

4.2.1 Proposed method

Given the RGB image I of a scene, our goal is to reason about its corresponding depth

map Z ∈ RN , represented as a vector containing depth values for all N pixels in the image.

Rather than predict a single estimate for Z, we seek to output a distribution p(Z|I), to more

generally characterize depth information and ambiguity present in the image. In this section,

we describe our approach for generating this distributional output, and equally importantly,

for exploiting it for inference in various applications.

We form the distribution p(Z|I) as a product of functions defined on individual overlapping

patches as

p(Z|I) ∝
∏
i

ψi(PiZ|I), (4.1)

where ψi(·) is a potential function for the ith patch, and Pi a sparse matrix that crops out

that patch from Z (for patches of size K ×K, each Pi is a K2×N matrix). Note that this is

a Markov Random Field with K ×K patches as the maximal cliques, and since these patches

overlap, depth values at all pixels—including those that do not lie in the same patch—are

statistically inter-dependent.

Generating Samples. To form the per-patch potentials ψi(·), we train a network that

produces samples of depth given the image input, and run it multiple times during inference

to generate multiple plausible samples. A crucial aspect of this network is that, instead

of sampling the global depth map, it generates separate samples independently for the

depth PiZ of every patch i. This ensures that depth values within each sample represent

108

Figure 4.2: Generating samples with a conditional VAE. Our network generates samples for
depth independently in each overlapping patch, and we run it multiple times to generate
multiple plausible samples per-patch. The input to the VAE comes from pre-trained feature
extraction layers from a state-of-the-art monocular model [49]. Samples generated for different
patches (including those that overlap) are kept statistically independent—after conditioning
on the image—by using separate per-patch latent vectors.

a plausible estimate for the corresponding patch, but that samples of different patches are

conditionally independent given the image. Limiting the dimensionality of each sample

allows us to approximate the per-patch potential ψi(·) with a reasonable number of samples,

while enforcing independence between samples of different patches ensures that the overall

distribution p(Z|I) in (4.1) sufficiently captures the global ambiguity in depth.

We adopt the conditional VAE framework proposed in [73] for generating samples—that

features a “prior-net” to predict distribution over values of a latent vector from the image,

with an encoder-decoder network that predicts depth values from the image and a sample

from this latent distribution. To reduce complexity, we bootstrap our network by taking a

pre-trained state-of-the-art monocular depth estimation network (DORN [49]), removing the

109

last two convolution layers, and treating the remaining layers as a “feature extractor”. These

features, rather than the image itself, are provided as input to the conditional VAE.

We achieve patch independent sampling by having a separate latent vector for each patch.

We set up the architecture of the decoder in the encoder-decoder network to produces an

estimate of the depth of each overlapping patch using only its own latent vector, and not

those of overlapping patches. The prior-net is also setup to predict separate distributions

for the latent vector of each patch (as is the posterior-net during training). At test time,

we draw multiple samples independently from the latent space for each patch, which the

encoder-decoder network uses to generate correspondingly independent per-patch depth

samples.

Sample Approximation. Next, given a set Si of samples {xs
i} for each patch i, we define

its potential ψi(·) as

ψi(PiZ|I) =
1

|Si|
∑

xi∈Si

exp

(
−‖PiZ− xi‖2

2h2

)
. (4.2)

This can be interpreted as forming a kernel density estimate from the depth samples in Si

using a Gaussian kernel, were the Gaussian bandwidth h is a scalar hyper-parameter3.

Unlike independent per-pixel [60, 69, 101] or per-derivative [21] distributions, the samples

{Si} enable the patch potentials ψi(·) to express complex spatial dependencies between

depth values in local regions. Moreover, our joint distribution p(Z|I) is defined in terms of

overlapping patches, and thus models dependencies across the entire depth map. During

inference, this enables information propagation across the entire scene, and reasoning about

the global plausibility of scene depth estimates.
3While h can be estimated based on the variance between xi and true patch depths, as we will see, its

actual value is often not needed as it is factored into other manually-set, task-specific parameters.

110

4.2.2 Monocular inference tasks

Note that the distribution p(Z|I) can be used to recover a monocular depth map estimate

as the mean over p(Z|I) by computing the average estimate of depth at each pixel from

all samples from all patches that include that pixel. But our distributional output is also

versatile and can be used to perform general monocular inference tasks, not just estimate

per-pixel depth. We describe two such applications below.

Confidence-guided Sampling. We can use p(Z|I) to compute a per-pixel variance map,

as the variance of each pixel’s depth value across patches and samples in {Si} (which differs

from the actual variance under p(Z|I) by a constant h2). This gives us spatial map of the

relative monocular ambiguity in depth at different locations. When seeking to estimate

depth from arbitrary sparse measurements, we can use this map to select where to make

measurements (assuming the depth sensor provides such control). Specifically, given a budget

on the total number of measurements, we propose choosing an optimal set of measurement

points as local maxima of the variance map.

Pair-wise Depth. A useful monocular depth inference task, introduced in [197], is to predict

the ordinal relative depth of pairs of nearby points in the scene: whether the points are

at similar depths (within some threshold), and if not, which point is nearer. We use our

distributional output to solve this task, by looking at the relative depth in all samples in all

patches that contain a pair of queried points, outputting the ordinal relation that is most

frequent. We find this leads to more accurate ordinal estimates, in comparison to simply

using the ordering of the individual depth value pairs in a monocular depth map estimate (as

done in [26, 197]).

111

4.2.3 Experimental results

We now evaluate our approach on the NYUv2 dataset [151] by training a common task-agnostic

distributional monocular model and applying it to solve monocular inference tasks.

Preliminaries. We use raw frames from scenes in the official train split for NYUv2 [151] to

construct train and val sets, and report performance on the official test set. We use feature

extraction layers from a pre-trained DORN model [49], and since it operates on inputs and

outputs rescaled to a lower resolution (to 257× 353 from 640× 480), we do the same for our

VAE. However, our outputs are rescaled back to the orginal full resolution to compute errors.

Input depth measurements, if any, are also provided at full resolution. We use overlapping

patches of size 33 × 33 with stride four, and generate 100 samples per-patch to construct

{Si}. Generating samples takes 5.7s on a 1080Ti GPU for each image, while inference from

these samples is faster.

Performance on Monocular Depth Estimation. We evaluate depth estimation using

our model for monocular depth estimation, and report performance in terms of standard

error metrics on the official NYUv2 test set (see [39])4 in Table 4.1. Although monocular

depth estimation is not the end goal of our versatile probabilistic estimation, our method

still perform well in the monocular setting—outperforming the DORN [49] whose features it

uses. Figure 4.3 shows example depth reconstructions by our method.

Performance on Confidence-guided Sampling. In Table 4.2, we report results for

making sparse depth measurements guided by the color image using our approach for different
4Some papers interpret RMSE as mean of per-image RMSE values. We report the standard definition as

rms, and this per-image version as m-rms.

112

Setting Method lower is better higher is better

rms m-rms rel δ1 δ2 δ3

Monocular Depth Estimation
Lee [85] 0.538 0.470 0.131 83.7 97.1 99.4
DORN [49] 0.545 0.462 0.114 85.8 96.2 98.7
Ours 0.512 0.433 0.116 86.1 96.9 99.1

Table 4.1: Results our probabilistic output for monocular depth estimation on the NYUv2 test
set. Methods that we compare to are specifically proposed for monocular depth estimation.

budgets on the number of measurements. Our guided measurements lead to better dense

depth estimates than those at random locations (given measurements, we use our depth

estimation algorithm described in Section 4.3.2 in both cases).

Measurements 20 50 100 200
Random 0.359 0.320 0.279 0.246
Guided 0.331 0.286 0.253 0.227

Table 4.2: RMS error for depth estimation from different numbers of sparse measurements,
when making measurements at random locations vs. with guidance from our distribution.
Given the measurements, we use our depth estimation algorithm described in Section 4.3.2 in
both cases

Performance on Pair-wise Depth. We evaluate using our distribution to predict pairwise

depth ordering in Table 4.3, comparing it to three methods that specifically target this task:

[26, 170, 197]. Results are reported in terms of the WKDR error metrics, on a standard

set of point pairs on the NYUv2 test set (see [197]). We find that using our method leads

to better predictions than from these methods, and that using our distributional output is

crucial—since the accuracy of simply using the orderings from our monocular mean estimate

is much lower.

113

Method WKDR WKDR= WKDR6=

Zoran [197] 43.5% 44.2% 41.4%
Chen [26] 28.3% 30.6% 28.6%
Xian [170] 29.1% 29.5% 29.7%
Ours: mean 30.2% 29.9% 30.5%
Ours (distribution) 27.1% 26.0% 27.8%

Table 4.3: Error rates for pairwise ordinal depth ordering from our common model, compared
to other methods that used accurate ordering as an objective during training. We also report
baseline errors from predictions just based on our mean depth estimate.

Although our output distribution p(Z|I) can be used to achieve state-of-the-art performance

in several monocular applications, the real utility of our distributional output comes from

enabling a variety of inference tasks, as we describe next.

114

4.3 Depth estimation with additional information

4.3.1 Proposed approach

In several applications, a system has access to additional sources beyond the monocular

image that provide some partial information about depth. Our distributional output allows

us to combine the monocular cue with these sources, and derive a more accurate scene depth

estimate than possible from either source alone. Specifically, we assume the additional depth

information is provided in the form of a cost C(Z), and combine it with our distribution

p(Z|I) to derive a depth estimate Ẑ as:

Ẑ = argmin
Z
− log p(Z|I) + C(Z),

log p(Z|I) =
∑
i

log
∑

xi∈Si

exp

(
−‖PiZ− xi‖2

2h2

)
. (4.3)

With some abuse of terminology, this can be thought of as computing the maximum a

posteriori (MAP) estimate of Z, where p(Z|I) is the image-conditional “prior”, and C(Z) can

be interpreted as a “likelihood” from the additional depth information source.

The log-likelihood of our distribution in (4.3) can be simplified with a standard approximation

of replacing the summation over exponentials with a maximum (since PiZ is high-dimensional,

the largest term typically dominates):

Ẑ ≈ argmin
Z
−
∑
i

log max
xi∈Si

exp

(
−‖PiZ− xi‖2

2h2

)
+ C(Z)

= argmin
Z

min
{xi∈Si}

∑
i

‖PiZ− xi‖2 + 2h2 C(Z). (4.4)

115

Note that this expression now involves a minimization over both Z and selections of samples

xi ∈ Si for every patch.

We will use two forms of the external cost C(Z) to encode available information in various

applications. The first is simply a generic global cost that we denote by CG(Z), and the

other is one that can be expressed as a summation over the depth values of individual

patches
∑

iCi(PiZ). Including both these possible forms in (4.4), we arrive at the following

optimization task:

min
Z

min
{xi∈Si}

∑
i

‖PiZ− xi‖2 +
∑
i

Ci(xi) + CG(Z)︸ ︷︷ ︸
Possible forms of C(Z)

, (4.5)

where the factor 2h2 is absorbed in the definitions of the costs, and the per-patch costs

Ci(PiZ) are approximated as Ci(xi) to act on samples instead of crops of Z (we assume this

will roughly be equivalent at convergence).

We use a simple iterative algorithm to carry out this optimization. The global depth Z is

initialized to the mean per-pixel depth from p(Z|I), and the following updates are applied

alternatingly to {xi} and Z till convergence:

xi ← arg min
xi∈Si

‖PiZ− xi‖2 + Ci(xi), ∀i. (4.6)

Z ← argmin
Z
‖PiZ− xi‖2 + CG(Z). (4.7)

The updates to patch estimates xi can be done independently, and in parallel, for different

patches. The cost in (4.6) is the sum of the squared distance from corresponding crop PiZ of

the current global estimate, and the per-patch cost Ci(·) when available. We can compute

116

these costs for all samples in Si, and select the one with the lowest cost. Note that the cost

Ci(·) on all samples need only be computed once at the start of optimization.

The update to the global map Z in (4.7) depends on the form of the global cost CG(·). If

no such cost is present, Z is given by simply the overlap-average of the currently selected

samples xi for each patch. For applications that do feature a global cost, we find it sufficient

to solve (4.7) by first initializing Z to the overlap-average, and then carrying out a small

number of gradient descent steps as

Z← Z− γ∇ZC
G(Z), (4.8)

where the scalar step-size γ is a hyper-parameter.

4.3.2 Applications

We now discuss concrete examples of our inference approach by considering specific applica-

tions, and describe associated choices of the costs CG(·) and Ci(·).

Dense Depth from Sparse Measurements. We consider the task of estimating the depth

map Z when an input sparse set F of depth measurements at isolated points in the scene is

available, along with a color image. We use the measurements F to define a global cost CG(·)

in (4.5) as

CG(Z) = λ‖Z ↓ −F‖2, (4.9)

where ↓ represents sampling Z at the measured locations. Based on this, we define the

gradients to be applied in (4.8) for computing the global depth updates as

∇ZC
G(Z) = λ(Z ↓ −F) ↑, (4.10)

117

where ↑ represents the transpose of the sampling operation. Since both the weight λ and the

step-size γ in (4.8) are hyper-parameters, we simply set λ = 1, and set the step-size γ (as

well as number of gradient steps) based on a validation set.

We consider two kinds of sparse inputs. The first are at arbitrary random locations like in [65,

111, 149, 158, 162], where we use nearest neighbor interpolation for the transpose sampling

operation ↑ in (4.10). The other case is depth up-sampling, where measurements are on a

regular lower-resolution grid. Given their regularity, we are able to use bi-linear interpolation

for the transpose operation ↑.

Depth Un-cropping. We next consider applications where the available measurements are

dense in a contiguous (but small) portion of the image—such as from a sensor with a smaller

field-of-view (FOV), or alone a single line [98]. In this case, we define F and W are set to

measured values and one at measured locations, and zero elsewhere. We use these to define a

per-patch cost Ci(·) for use in (4.5) as

Ci(xi) = λ‖PiW ◦ (PiZ− PiF)‖2, (4.11)

where the weight λ is determined on a validation set.

Depth estimates are often useful in interactive image editing and graphics applications. We

consider a couple of settings where our estimation method can be used to include feedback

from a user in the loop for improved depth accuracy.

Diverse Estimates for User Selection. We use Batra et al.’s approach [9] to derive

multiple diverse global estimates {Z1, . . .ZM} of the depth map Z from our distribution

p(Z|I), and propose presenting these as alternatives to the user. We set the first estimate

118

Z1 to our mean estimate, generate every subsequent estimate Zm+1 by finding a mode using

(4.5) with per-patch costs Ci(·) defined as

Ci(xi) = −λ/m
m∑

m′=1

‖PiZm′ − xi‖2. (4.12)

This introduces a preference for samples that are different from corresponding patches in

previous estimates, weighted by a scalar hyper-paramter λ (set on a validation set).

Using Annotations of Erroneous Regions. As a simple extension, we consider also

getting annotations of regions with high error from the user, in each estimate Zm. Note

that we only get the locations of these regions, not their correct depth values. Given this

annotation, we define a mask WM that is one within the region and zero elsewhere, and now

recover each Zm+1, with a modified cost Ci(·):

Ci(xi) = −λ/m
m∑

m′=1

‖(PiWm′
) ◦ (PiZm′ − xi)‖2, (4.13)

where ◦ denotes element-wise multiplication, and the masks focuses the cost on regions

marked as erroneous.

4.3.3 Experimental results

We now evaluate our approach on the same NYUv2 dataset [151] by applying the common

task-agnostic distributional monocular model trained in Section 4.2.3 to solve a diverse range

of inference tasks in various application settings.

The performance of our proposed method for the different depth completion and user guided

applications described in Section 4.3.2 are reported in Table 4.4 and Table 4.5.

119

Figure 4.3: Example depth estimates for different applications. We show outputs from our
method for both the pure monocular setting, as well as the improved estimates we obtain
combining our distributional output with additional depth information—such as different
kinds of partial measurements, and user guidance with annotation and selection.

Compare to our monocular results in Table 4.1, our approach is able to improve upon its

monocular estimate with different available depth cues in the various applications. We find

sparse measurements are most complementary to the monocular cue, and that user annotation

is more useful than selection alone. Figure 4.3 shows example depth reconstructions by our

method for several applications.

Table 4.4 and Table 4.5 provide comparisons to a number of other depth completion methods.

Two of these do not require task-specific training—Levin et al.’s colorization method [88],

and Wang et al.’s [162] approach to back-propagating errors from measurements. As Wang

et al.’s own results were with older monocular networks, for a fairer comparison, we derive

improved results by applying their method on the same DORN [49] model as used by our

network (finding optimal settings on a val set). As seen in Table 4.4 and Table 4.5, our

approach is more accurate than both these methods.

120

Setting Method lower is better higher is better

rms m-rms rel δ1 δ2 δ3

Depth Un-cropping (Setting = measurement FOV)
Liao [98] 0.442 - 0.104 87.8 96.4 98.9

Horizontal line Levin [88] 1.003 0.852 0.281 63.8 83.2 92.3
Wang [162] 0.482 0.394 0.089 90.7 97.3 99.1
Ours 0.431 0.356 0.088 91.1 98.1 99.5

∗120× 160
Levin [88] 1.104 0.953 0.348 57.5 79.2 90.0
Wang [162] 0.493 0.409 0.097 89.1 96.9 98.9
Ours 0.447 0.374 0.097 89.5 97.7 99.3

∗240× 320
Levin [88] 0.664 0.578 0.196 74.2 91.8 96.7
Wang [162] 0.416 0.342 0.081 91.5 97.7 99.2
Ours 0.363 0.298 0.076 92.5 98.3 99.5

∗ Metrics computed only on filled-in regions.
Depth Up-sampling (Setting = up-sampling factor)

Chen [29] 0.318 - 0.061 94.2 98.9 99.8

96x Levin [88] 0.512 0.443 0.120 85.9 97.1 99.4
Wang [162] 0.367 0.296 0.057 95.4 98.7 99.6
Ours 0.313 0.259 0.056 95.7 99.2 99.8
Chen [29] 0.193 - 0.032 98.3 99.7 99.9

48x Levin [88] 0.319 0.275 0.065 95.4 99.1 99.8
Wang [162] 0.318 0.256 0.048 96.7 99.2 99.8
Ours 0.235 0.195 0.035 97.7 99.6 99.9

Table 4.4: Part A of results for various applications on the NYUv2 test set. We use
distributional outputs from our common model to generate depth estimates in a diverse
variety of application settings when different forms of additional depth cues are available.
We compare to other methods for these applications, including those (shaded background)
dependent on task-specific networks trained separately for each setting. Our network, in
contrast, is task-agnostic and trained only once.

We also compare to application-specific approaches that train specialized networks separately

for each application (and each setting). For depth completion from sparse measurements, we

compare to the work of Chen et al. [29] for measurements on a regular grid, and of Ma et

al. [111]5 for those at random locations. For estimation from horizontal line measurements,
5[111] uses a non-standard resolution and crop to evaluate their method and report errors. We report our

performance with official settings here be consistent with the benchmark and the other applications.

121

Setting Method lower is better higher is better

rms m-rms rel δ1 δ2 δ3

Arbitrary Sparse Measurements (Setting = #measurements)
Ma [111] - 0.351 0.078 92.8 98.4 99.6

20 Levin [88] 0.703 0.602 0.175 75.5 93.0 97.9
Wang [162] 0.399 0.322 0.065 94.2 98.4 99.5
Ours 0.359 0.298 0.068 94.1 98.8 99.7
Ma [111] - 0.281 0.059 95.5 99.0 99.7

50 Levin [88] 0.507 0.436 0.117 86.4 97.1 99.3
Wang [162] 0.364 0.291 0.056 95.5 98.8 99.6
Ours 0.320 0.262 0.056 95.6 99.1 99.8

100
Levin [88] 0.396 0.340 0.085 92.2 98.5 99.6
Wang [162] 0.336 0.271 0.052 96.2 99.0 99.7
Ours 0.279 0.231 0.046 96.6 99.4 99.9
Ma [111] - 0.230 0.044 97.1 99.4 99.8

200 Levin [88] 0.305 0.264 0.061 95.7 99.2 99.8
Wang [162] 0.316 0.254 0.048 96.6 99.2 99.6
Ours 0.246 0.203 0.039 97.4 99.5 99.9

User Selection (Setting = #choices)
5 Ours 0.471 0.406 0.113 87.1 97.4 99.3
10 Ours 0.457 0.394 0.109 87.9 97.6 99.4
15 Ours 0.447 0.385 0.108 88.3 97.8 99.4

User Selection with Annotation (Setting = #choices)
5 Ours 0.398 0.342 0.098 90.4 98.2 99.6
10 Ours 0.372 0.322 0.093 91.5 98.5 99.7
15 Ours 0.364 0.315 0.090 91.9 98.7 99.7

Table 4.5: Part B of results for various applications on the NYUv2 test set. We use
distributional outputs from our common model to generate depth estimates in a diverse
variety of application settings when different forms of additional depth cues are available.
We compare to other methods for these applications, including those (shaded background)
dependent on task-specific networks trained separately for each setting. Our network, in
contrast, is task-agnostic and trained only once.

we show comparisons to the method by Liao et al. [98]6. We find that our results—from a
6[98] uses measurements along a line simulated to be horizontal in 3D, leading to different y image

co-ordinates for each x. Lacking exact details for replicating their setting, we use the same number of
measurements but from a line that is horizontal simply in the image plane.

122

common task-agnostic network model—are comparable, and indeed often better, than these

application-specific methods.

4.3.4 Analysis and ablation

We visualize the diversity of depth hypotheses in our distribution in Figure 4.4. We choose

one sample for each patch—based on its rank among samples for that patch in terms of

accuracy relative to ground-truth. We vary this rank from best to worse, form a global depth

map for each rank by overlap-average, and plot the resulting accuracies. Given the ambiguity

of the monocular cue, these span a diverse range—from a very accurate estimate when an

oracle allows ideal selection, to higher errors when adversarially choosing the worst samples

in every patch.

Figure 4.4 also overlays the performance of several our inference tasks from Table 4.4 and

Table 4.5. As expected, the accuracy of pure monocular estimation is roughly at the center of

the distirbution range. But when additional depth cues are available, we see that our results

begin to shift to have higher accuracy—by different amounts for different applications. This

shows that our inference method is successful in incorporating the information present in

these depth cues.

We also study different variations to our approach for generating samples for our distribution

p(Z|I) in Table 4.6—measuring performance, on a validation set, in terms of accuracy for a

ground truth-based oracle as described above, and more realistically, accuracy at monocular

estimation and depth completion (from 100 measurements).

First, we evaluate using a conditional GAN [121] instead of a VAE. While the VAE performs

better, results with the GAN are also reasonable—suggesting that our approach is compatible

with different network-based sampling approaches.

123

Figure 4.4: Analysis of distributional output and inference method on the test set. Our
distribution allows for many possible global depth explanations, visualized here by choosing
one of the generated samples in each patch based on the rank of its accuracy going from
best (oracle) to worst (adversary), and computing global depth by overlap-average. These
solutions span a large range in accuracy, and without any additional information, the mean
monocular estimate lies in the middle of this range. But when additional cues are available,
they can be effectively exploited by our MAP estimation method to extract better solutions
from our distribution.

Then, we consider varying the size of our patches (and proportionally, the stride). We find

smaller patches actually helps oracle performance, since with the same number of samples,

it is easier to generate a sample close to the ground-truth in a lower-dimensional space.

However, smaller patches do not accurately capture the spatial dependencies within a patch,

leading to poorer performance for actual inference. Conversely, while a higher patch size

could allow encoding longer range spatial dependencies, doing so is harder via approximation

from a reasonable number of samples—leading to lower accuracy both with the oracle and

during inference.

For our chosen patch-size, we also evaluate higher strides, and thus lower overlap. This leads

to lower performance (on depth completion), highlighting the utility of patch-overlap in the

global distribution p(Z|I), and in propagating information during inference.

124

Oracle Mean S→D
C-GAN p=33,s=4 0.384 0.597 0.428
C-VAE p=17,s=2 0.263 0.518 0.413
C-VAE p=33,s=4 0.323 0.516 0.377
C-VAE p=65,s=8 0.474 0.522 0.389

C-VAE S→Dp=33
s=8 0.396
s=16 0.405
s=32 0.436

Table 4.6: Ablation study on validation set. We evaluate different ways of generating samples:
using a GAN instead of a VAE, and using different patch-sizes p (with proportional strides
s). For each case, we compare achievable accuracy of individual samples via the “oracle”
estimate (see Figure 4.4), vs. their utility for actual inference—in the pure monocular case
and with random sparse measurements (#100). We also evaluate the importance of patch
overlap by considering larger strides for our chosen model.

4.4 Discussion

With distributional monocular outputs, our approach enables a variety of applications without

the need for repeated training. While we considered tasks directly focused on scene geometry

in this work, It would also be interesting to explore how our distributional outputs can

be used to manage ambiguity in downstream processing—such as for re-rendering or path

planning—in future work. We also believe probabilistic predictions can be useful for other

low- and mid-level scene properties, like motion and reflectance.

125

Chapter 5

Conclusion

The prevalence of mobile photography and the culture of content sharing has incited dramatic

changes in the way we perceive the world. Our stares are focused on screens, more often

than ever, to see the world that is far away physically and temporally via captured images

and videos. While this allows us to personally experience sights from around the world, it

also opens up opportunities to use this information computationally to enable a whole new

class of applications. The motivation for this research has been on advancing algorithms to

address some of the challenges in this context.

In this dissertation, we discussed how to reconstruct a variety of physical and visual properties

of the world from these captured images, especially in the context of deep learning. We

exploited our prior understanding on the internal structure of natural scene maps and physics-

based image models to design and train neural network based approaches for scene map

estimations. We proposed novel methods based on the internal structure of natural images to

recover clean images in low-light environments. We also tackled the notorious problem of data

insufficiency for computational photography applications by training scene estimators with

126

indirect scene measurements. Finally, we recognized that for all of these applications, our

estimations will never be perfect and there are other sources for scene information available

in practice. We demonstrated that we can derive a rich representation of our understanding

of the scene parameters given observed images, which can be combined with additional

information.

Over the last decade, we have witnessed rapid and exciting advances in computer vision

and computational photography research. While data is powerful, we have seen that using

generic neural networks architectures as black boxes and relying on data alone is insufficient,

especially for the applications we considered in this dissertation. However, the problem of

decoding scene properties from visual measurements are far from settled. While the techniques

described here shed some light on how to address the challenges of scene map estimation,

they are only the beginnings of many possible interesting directions of exploration.

Importantly, many more and new challenges have emerged as we are getting closer to our

goal to reconstruct all dimensions of the scene from images taken with cameras by casual

users. Computational photography applications are no longer satisfied with high-quality

images, their results must be photo-realistic for users to capture professional-level photos

with a pocket phone. Even more ambitiously, mobile photography techniques are seeking

to automatically tune the camera setting and even virtually “edit” the scene to produce

better images, such as viewfinder with auto exposure [57], shadow removal [188] and light

editing [11]. Meanwhile, the path of making machine learning models for computational

photography faster and more efficient has just begun. It is critical to enable these processing

algorithms to run on small devices with limited power and computational resources, such as

mobile phones and AR glasses.

127

Numerous effort, on the other hand, are invested in solving the insufficiency of training data

for scene map estimations both in the academia and by major tech companies. Facebook has

recently launched the so-called project Aria [42] where people wear glasses that are equipped

with cameras and sensors and walk around to capture images while record the world. Contrast

with the lack of training data is the massive amount of images and scene measurements that

are produced by regular users. For example, over 1.4 trillion photos were taken in the year

of 2020 alone [129]. Self-driving cars with many sensors are deployed on the road for data

acquisition [165]. Gaming stations with depth sensors are collecting depth maps for gaming

experiences [152]. How to make use of such unpaired data and imperfect measurements of

the world to solve each scene map estimation application remains an open research question.

Last but not least, reliable machine learning models are desired for their robustness and

consistency. Scene map estimators must be able to faithfully describe its reasoning and

ambiguity of the scene, and resolve them by the integration into a larger system where

acquisitions devices other than cameras are available. The modularization of scene map

estimators could open broader opportunities in a wide variety of downstream applications.

In the coming years, we will likely see machine intelligence, together with our understanding of

the visual world, revolutionize the way people produce and exploit image data, and eventually

how we experience the world.

128

References

[1] Edward H Adelson and Alex P Pentland. “The perception of shading and reflectance”.
In: Perception as Bayesian inference (1996), pp. 409–423.

[2] Yagiz Aksoy, Changil Kim, Petr Kellnhofer, Sylvain Paris, Mohamed A. Elgharib,
Marc Pollefeys, and Wojciech Matusik. “A Dataset of Flash and Ambient Illumination
Pairs from the Crowd”. In: Proc. ECCV. 2018.

[3] Rushil Anirudh, Jayaraman J Thiagarajan, Bhavya Kailkhura, and Timo Bremer.
“An unsupervised approach to solving inverse problems using generative adversarial
networks”. In: arXiv preprint arXiv:1805.07281 (2018).

[4] Jonathan T. Barron and Jitendra Malik. “Intrinsic Scene Properties from a Single
RGB-D Image”. In: Proc. CVPR (2013).

[5] Jonathan T Barron and Jitendra Malik. “Shape, albedo, and illumination from a
single image of an unknown object”. In: Proc. CVPR. 2012.

[6] Jonathan T. Barron and Jitendra Malik. “Shape, Illumination, and Reflectance from
Shading”. In: TPAMI (2015).

[7] H. Barrow and J. M. Tenenbaum. “RECOVERING INTRINSIC SCENE CHARAC-
TERISTICS FROM IMAGES”. In: 1978.

[8] Anil S. Baslamisli, Hoang-An Le, and Theo Gevers. “CNN Based Learning Using
Reflection and Retinex Models for Intrinsic Image Decomposition”. In: Proc. CVPR.
2018.

[9] Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera, and Gregory Shakhnarovich.
“Diverse M-Best solutions in Markov Random Fields”. In: Proc. ECCV. 2012.

[10] Sean Bell, Kavita Bala, and Noah Snavely. “Intrinsic Images in the Wild”. In: ACM
Transactions on Graphics (TOG) 33.4 (2014).

[11] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David
Kriegman, and Ravi Ramamoorthi. “Deep reflectance volumes: Relightable reconstruc-
tions from multi-view photometric images”. In: Proc. ECCV. 2020.

129

[12] Volker Blanz and Thomas Vetter. “A morphable model for the synthesis of 3D faces”.
In: Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 1999.

[13] James F. Blinn. “Models of Light Reflection for Computer Synthesized Pictures”. In:
Proceedings of the 4th Annual Conference on Computer Graphics and Interactive
Techniques. 1977, pp. 192–198.

[14] Ashish Bora, Eric Price, and Alexandros G Dimakis. “AmbientGAN: Generative
models from lossy measurements”. In: Proc. ICLR. 2018.

[15] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. “A Non-Local Algorithm for
Image Denoising”. In: Proc. CVPR. 2005.

[16] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm for image
denoising”. In: Proc. CVPR. 2005.

[17] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm for image
denoising”. In: Proc. CVPR. 2005.

[18] Harold C Burger, Christian J Schuler, and Stefan Harmeling. “Image denoising: Can
plain neural networks compete with BM3D?” In: Proc. CVPR. 2012.

[19] Xu Cao, Michael Waechter, Boxin Shi, Ye Gao, Bo Zheng, and Yasuyuki Matsushita.
“Stereoscopic Flash and No-Flash Photography for Shape and Albedo Recovery”. In:
Proc. CVPR. 2020.

[20] Ayan Chakrabarti. “A neural approach to blind motion deblurring”. In: Proc. ECCV.
2016.

[21] Ayan Chakrabarti, Jingyu Shao, and Greg Shakhnarovich. “Depth from a single image
by harmonizing overcomplete local network predictions”. In: NeurIPS. 2016.

[22] Jen-Hao Rick Chang, Chun-Liang Li, Barnabas Poczos, BVK Vijaya Kumar, and
Aswin C Sankaranarayanan. “One Network to Solve Them All-Solving Linear Inverse
Problems using Deep Projection Models.” In: Proc. ICCV. 2017.

[23] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. “Learning to See in the Dark”.
In: Proc. CVPR. 2018.

[24] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. “Rethink-
ing Atrous Convolution for Semantic Image Segmentation”. In: CoRR abs/1706.05587
(2017).

[25] Qifeng Chen, Jia Xu, and Vladlen Koltun. “Fast Image Processing with Fully-
Convolutional Networks”. In: Proc. ICCV. 2017.

[26] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. “Single-image depth perception
in the wild”. In: NeurIPS. 2016.

[27] Yunjin Chen and Thomas Pock. “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration”. In: TPAMI (2017).

130

[28] Yunjin Chen and Thomas Pock. “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration”. In: TPAMI 39.6 (2017), pp. 1256–
1272.

[29] Zhao Chen, Vijay Badrinarayanan, Gilad Drozdov, and Andrew Rabinovich. “Esti-
mating depth from RGB and sparse sensing”. In: Proc. ECCV. 2018.

[30] Ziang Cheng, Yinqiang Zheng, Shaodi You, and Imari Sato. “Non-local intrinsic
decomposition with near-infrared priors”. In: Proc. ICCV. 2019.

[31] Gyeongmin Choe, Jaesik Park, Yu-Wing Tai, and In Kweon. “Exploiting shading cues
in kinect ir images for geometry refinement”. In: Proc. CVPR. 2014.

[32] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. “Color
image denoising via sparse 3D collaborative filtering with grouping constraint in
luminance-chrominance space”. In: Proc. ICIP. 2007.

[33] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. “Image
denoising by sparse 3-D transform-domain collaborative filtering”. In: IEEE Transac-
tions on Image Processing (2007).

[34] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin Tong. “Accurate
3d face reconstruction with weakly-supervised learning: From single image to image
set”. In: Proc. CVPR Workshops. 2019.

[35] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. “Image super-resolution
using deep convolutional networks”. In: TPAMI 38.2 (2015), pp. 295–307.

[36] David L Donoho et al. “Compressed sensing”. In: IEEE Transactions on Information
Theory 52.4 (2006), pp. 1289–1306.

[37] David L. Donoho. “De-noising by soft-thresholding”. In: IEEE Transactions on Infor-
mation Theory 41.3 (1995), pp. 613–627.

[38] David Doria and Richard J Radke. “Filling large holes in lidar data by inpainting
depth gradients”. In: Proc. CVPR Workshops. 2012.

[39] David Eigen and Rob Fergus. “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture”. In: Proc. ICCV. 2015.

[40] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth map prediction from a single
image using a multi-scale deep network”. In: NeurIPS. 2014.

[41] Elmar Eisemann and Frédo Durand. “Flash photography enhancement via intrinsic
relighting”. In: ACM Transactions on Graphics (TOG) 23.3 (2004), pp. 673–678.

[42] Facebook Project Aria. https://about.fb.com/realitylabs/projectaria/.
[43] Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and David Wipf. “Revisiting

deep intrinsic image decompositions”. In: Proc. CVPR. 2018, pp. 8944–8952.
[44] Mário AT Figueiredo, Robert D Nowak, and Stephen J Wright. “Gradient projection for

sparse reconstruction: Application to compressed sensing and other inverse problems”.
In: IEEE Journal of selected topics in signal processing 1.4 (2007), pp. 586–597.

131

https://about.fb.com/realitylabs/projectaria/

[45] Chelsea Finn, Ian Goodfellow, and Sergey Levine. “Unsupervised learning for physical
interaction through video prediction”. In: Advances in neural information processing
systems. 2016, pp. 64–72.

[46] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian. “Practical
Poissonian-Gaussian noise modeling and fitting for single-image raw-data”. In: IEEE
Transactions on Image Processing 17.10 (2008), pp. 1737–1754.

[47] Rich Franzen. “Kodak lossless true color image suite”. In: source: http://r0k. us/graph-
ics/kodak 4 (1999).

[48] William T Freeman, Thouis R Jones, and Egon C Pasztor. “Example-based super-
resolution”. In: IEEE Computer Graphics and Applications 2 (2002), pp. 56–65.

[49] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao.
“Deep ordinal regression network for monocular depth estimation”. In: Proc. CVPR.
2018, pp. 2002–2011.

[50] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. “Unsupervised CNN
for single view depth estimation: Geometry to the rescue”. In: Proc. ECCV. 2016.

[51] Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasinoff, and Frédo Du-
rand. “Deep bilateral learning for real-time image enhancement”. In: ACM Transactions
on Graphics (TOG) 36.4 (2017), 118:1–118:12.

[52] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. “Unsupervised monocular
depth estimation with left-right consistency”. In: Proc. CVPR. 2017.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In:
NeurIPS. 2014.

[54] Shuhang Gu, Wangmeng Zuo, Shi Guo, Yunjin Chen, Chongyu Chen, and Lei Zhang.
“Learning dynamic guidance for depth image enhancement”. In: Proc. CVPR. 2017.

[55] Prabath Gunawardane, Tom Malzbender, Ramin Samadani, Alan McReynolds, Dan
Gelb, and James Davis. “Invisible light: Using infrared for video conference relighting”.
In: Proc. ICIP. 2010.

[56] Qiang Guo, Caiming Zhang, Yunfeng Zhang, and Hui Liu. “An Efficient SVD-Based
Method for Image Denoising”. In: IEEE Transactions on Circuits and Systems for
Video Technology 26.5 (2016), pp. 868–880.

[57] Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T Barron,
Florian Kainz, Jiawen Chen, and Marc Levoy. “Burst photography for high dynamic
range and low-light imaging on mobile cameras”. In: ACM Transactions on Graphics
(TOG) 35.6 (2016), p. 192.

[58] Felix Heide, Steven Diamond, Matthias Nießner, Jonathan Ragan-Kelley, Wolfgang Hei-
drich, and Gordon Wetzstein. “Proximal: Efficient image optimization using proximal
algorithms”. In: ACM Transactions on Graphics (TOG) 35.4 (2016), p. 84.

132

[59] Felix Heide et al. “FlexISP: A flexible camera image processing framework”. In: ACM
Transactions on Graphics (TOG) 33.6 (2014), p. 231.

[60] Minhyeok Heo, Jaehan Lee, Kyung-Rae Kim, Han-Ul Kim, and Chang-Su Kim.
“Monocular Depth Estimation Using Whole Strip Masking and Reliability-Based
Refinement”. In: Proc. ECCV. 2018.

[61] Daniel Herrera, Juho Kannala, Janne Heikkilä, et al. “Depth map inpainting under
a second-order smoothness prior”. In: Scandinavian Conference on Image Analysis.
2013.

[62] Berthold K. P. Horn. “Obtaining Shape from Shading Information”. In: Shape from
Shading. Cambridge, MA, USA: MIT Press, 1989, pp. 123–171.

[63] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. “Densely
connected convolutional networks”. In: Proc. CVPR. 2017.

[64] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. “Single image super-resolution
from transformed self-exemplars”. In: Proc. CVPR. 2015.

[65] Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier Perrotton, and Fawzi
Nashashibi. “Sparse and dense data with CNNs: Depth completion and semantic
segmentation”. In: Proc. 3DV. 2018.

[66] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. “Dynamic filter
networks”. In: NeurIPS. 2016.

[67] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. “Deep video
super-resolution network using dynamic upsampling filters without explicit motion
compensation”. In: Proc. CVPR. 2018, pp. 3224–3232.

[68] Kevin Karsch, Ce Liu, and Sing Bing Kang. “Depth transfer: Depth extraction from
video using non-parametric sampling”. In: TPAMI (2014).

[69] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learning
for computer vision?” In: NeurIPS. 2017.

[70] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: Proc. ICLR. 2015.

[71] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[72] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[73] Simon Kohl et al. “A probabilistic U-Net for segmentation of ambiguous images”. In:
NeurIPS. 2018.

[74] Filippos Kokkinos and Stamatis Lefkimmiatis. “Iterative residual cnns for burst
photography applications”. In: Proc. CVPR. 2019, pp. 5929–5938.

133

[75] Janusz Konrad, Meng Wang, Prakash Ishwar, Chen Wu, and Debargha Mukherjee.
“Learning-based, automatic 2D-to-3D image and video conversion”. In: IEEE Trans.
on Image Processing (2013).

[76] Ivan Krasin et al. “OpenImages: A public dataset for large-scale multi-label and multi-
class image classification.” In: Dataset available from https://github.com/openimages
(2017).

[77] D. Krishnan and R. Fergus. “Dark Flash Photography”. In: ACM Transactions on
Graphics (TOG) 28.3 (2009).

[78] Dilip Krishnan and Rob Fergus. “Dark flash photography”. In: ACM Transactions on
Graphics (TOG) 28.3 (2009), p. 96.

[79] Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok.
“Reconnet: Non-iterative reconstruction of images from compressively sensed measure-
ments”. In: Proc. CVPR. 2016.

[80] Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. “Semi-supervised deep learning
for monocular depth map prediction”. In: Proc. CVPR. 2017.

[81] Lubor Ladicky, Jianbo Shi, and Marc Pollefeys. “Pulling things out of perspective”.
In: Proc. CVPR. 2014.

[82] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. “Deeper depth prediction with fully convolutional residual networks”. In:
Proc. 3DV. 2016.

[83] Vuong Ba Lê, Jonathan Brandt, Zhe L. Lin, Lubomir D. Bourdev, and Thomas S.
Huang. “Interactive Facial Feature Localization”. In: Proc. ECCV. 2012.

[84] Jae-Han Lee, Minhyeok Heo, Kyung-Rae Kim, and Chang-Su Kim. “Single-image
depth estimation based on Fourier domain analysis”. In: Proc. CVPR. 2018.

[85] Jae-Han Lee and Chang-Su Kim. “Monocular Depth Estimation Using Relative Depth
Maps”. In: Proc. CVPR. 2019.

[86] Stamatios Lefkimmiatis. “Non-local color image denoising with convolutional neural
networks”. In: Proc. CVPR (2017).

[87] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. “Noise2noise: Learning image restoration without clean data”.
In: arXiv preprint arXiv:1803.04189 (2018).

[88] Anat Levin, Dani Lischinski, and Yair Weiss. “Colorization using optimization”. In:
ACM Transactions on Graphics (TOG). 2004.

[89] Chengbo Li, Wotao Yin, Hong Jiang, and Yin Zhang. “An efficient augmented La-
grangian method with applications to total variation minimization”. In: Computational
Optimization and Applications 56.3 (2013), pp. 507–530.

134

[90] Huibin Li and Feng Liu. “Image Denoising Via Sparse and Redundant Representations
Over Learned Dictionaries in Wavelet Domain”. In: Proc. International Conference on
Image and Graphics (ICIG). 2009.

[91] Jun Li, Reinhard Klein, and Angela Yao. “A Two-Streamed Network for Estimating
Fine-Scaled Depth Maps From Single RGB Images”. In: Proc. ICCV. 2017.

[92] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. “Deep Joint Image
Filtering”. In: Proc. ECCV. 2016.

[93] Yijun Li, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. “Deep joint image
filtering”. In: Proc. ECCV. 2016.

[94] Zhengqi Li and Noah Snavely. “Learning intrinsic image decomposition from watching
the world”. In: Proc. CVPR. 2018.

[95] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmo-
han Chandraker. “Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image”. In: Proc. CVPR. 2020, pp. 2475–2484.

[96] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. “Learning to Reconstruct Shape and Spatially-Varying Reflectance from
a Single Image”. In: ACM Transactions on Graphics (TOG) 37.6 (2018).

[97] Zhe Liang, Chao Xu, Jing Hu, Yushi Li, and Zhaopeng Meng. “Better Together:
Shading Cues and Multi-View Stereo for Reconstruction Depth Optimization”. In:
IEEE Access PP (2020), pp. 1–1. doi: 10.1109/ACCESS.2020.3003023.

[98] Yiyi Liao, Lichao Huang, Yue Wang, Sarath Kodagoda, Yinan Yu, and Yong Liu.
“Parse geometry from a line: Monocular depth estimation with partial laser observation”.
In: Proc. ICRA. 2017.

[99] Orly Liba et al. “Handheld Mobile Photography in Very Low Light”. In: ACM Trans-
actions on Graphics (TOG) 38.6 (2019), 164:1–164:16.

[100] Michael Lindenbaum, M. Fischer, and Alfred M. Bruckstein. “On Gabor’s contribution
to image enhancement”. In: Pattern Recognition 27.1 (1994), pp. 1–8.

[101] Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa Narasimhan, and Jan Kautz. “Neural
RGB->D Sensing: Depth and Uncertainty from a Video Camera”. In: arXiv preprint
arXiv:1901.02571 (2019).

[102] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and Thomas S Huang. “Non-
Local Recurrent Network for Image Restoration”. In: NeurIPS. 2018.

[103] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. “Learning depth from single
monocular images using deep convolutional neural fields”. In: TPAMI (2016).

[104] Junyi Liu and Xiaojin Gong. “Guided depth enhancement via anisotropic diffusion”.
In: Pacific-Rim Conference on Multimedia. 2013.

[105] Junyi Liu, Xiaojin Gong, and Jilin Liu. “Guided inpainting and filtering for Kinect
depth maps”. In: Proc ICPR. 2012.

135

https://doi.org/10.1109/ACCESS.2020.3003023

[106] Miaomiao Liu, Mathieu Salzmann, and Xuming He. “Discrete-continuous depth
estimation from a single image”. In: Proc. CVPR. 2014.

[107] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning Face At-
tributes in the Wild”. In: Proc. ICCV. 2015.

[108] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and Aseem Agarwala. “Video
frame synthesis using deep voxel flow”. In: Proc. ICCV. 2017, pp. 4463–4471.

[109] Ziwei Liu, Lu Yuan, Xiaoou Tang, Matt Uyttendaele, and Jian Sun. “Fast burst images
denoising”. In: ACM Transactions on Graphics (TOG) 33.6 (2014), p. 232.

[110] Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. “Compressed
sensing MRI”. In: IEEE Signal Processing 25.2 (2008), p. 72.

[111] Fangchang Ma and Sertac Karaman. “Sparse-to-dense: Depth prediction from sparse
depth samples and a single image”. In: Proc. ICRA. 2018.

[112] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li,
and Lei Zhang. “Waterloo exploration database: New challenges for image quality
assessment models”. In: IEEE Transactions on Image Processing (2017).

[113] Wei-Chiu Ma, Hang Chu, Bolei Zhou, Raquel Urtasun, and Antonio Torralba. “Single
image intrinsic decomposition without a single intrinsic image”. In: Proc. ECCV. 2018.

[114] Matteo Maggioni, Giacomo Boracchi, Alessandro Foi, and Karen Egiazarian. “Video de-
noising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal
transforms”. In: IEEE Transactions on Image Processing 21.9 (2012), pp. 3952–3966.

[115] Talmaj Marinč, Vignesh Srinivasan, Serhan Gül, Cornelius Hellge, and Wojciech
Samek. “Multi-Kernel Prediction Networks for Denoising of Burst Images”. In: arXiv
preprint arXiv:1902.05392 (2019).

[116] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A Database of Human Segmented
Natural Images and its Application to Evaluating Segmentation Algorithms and
Measuring Ecological Statistics”. In: Proc. ICCV. 2001.

[117] Kiyoshi Matsuo and Yoshimitsu Aoki. “Depth Image Enhancement Using Local
Tangent Plane Approximations”. In: Proc. CVPR. 2015.

[118] Christopher A Metzler, Arian Maleki, and Richard G Baraniuk. “From denoising
to compressed sensing”. In: IEEE Transactions on Information Theory 62.9 (2016),
pp. 5117–5144.

[119] Christopher A Metzler, Ali Mousavi, Reinhard Heckel, and Richard G Baraniuk.
“Unsupervised Learning with Stein’s Unbiased Risk Estimator”. In: arXiv preprint
arXiv:1805.10531 (2018).

[120] Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and Robert
Carroll. “Burst denoising with kernel prediction networks”. In: Proc. CVPR. 2018,
pp. 2502–2510.

136

[121] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In: arXiv
preprint arXiv:1411.1784 (2014).

[122] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. “Deep Multi-scale Convolutional
Neural Network for Dynamic Scene Deblurring”. In: Proc. CVPR (2017).

[123] Diego Nehab, Szymon Rusinkiewicz, James Davis, and Ravi Ramamoorthi. “Efficiently
combining positions and normals for precise 3D geometry”. In: ACM transactions on
graphics (TOG) 24.3 (2005), pp. 536–543.

[124] Thomas Nestmeyer, Jean-François Lalonde, Iain Matthews, and Andreas M Lehrmann.
“Learning Physics-guided Face Relighting under Directional Light”. In: Proc. CVPR.
2020.

[125] Justin Ng. Yes, The Huawei P30 Pro Can Shoot the Milky Way. https://petapixel.
com/2019/05/13/shooting-the-milky-way-and-meteors-with-the-huawei-p30-
pro/.

[126] Simon Niklaus, Long Mai, and Feng Liu. “Video frame interpolation via adaptive
convolution”. In: Proc. CVPR. 2017, pp. 670–679.

[127] Simon Niklaus, Long Mai, and Feng Liu. “Video frame interpolation via adaptive
separable convolution”. In: Proc. ICCV. 2017, pp. 261–270.

[128] Harris Nover, Supreeth Achar, and Dan B Goldman. “ESPReSSo: Efficient Slanted
PatchMatch for Real-time Spacetime Stereo”. In: Proc. 3DV. 2018.

[129] Number of photos taken per year. https://focus.mylio.com/tech-today/how-
many-photos-will-be-taken-in-2021.

[130] Pietro Perona and Jitendra Malik. “Scale-Space and Edge Detection Using Anisotropic
Diffusion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 12.7
(1990), pp. 629–639.

[131] Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe,
and Kentaro Toyama. “Digital Photography with Flash and No-Flash Image Pairs”.
In: ACM Transactions on Graphics (TOG) 23.3 (2004), pp. 664–672.

[132] Di Qiu, Jin Zeng, Zhanghan Ke, Wenxiu Sun, and Chengxi Yang. “Towards Ge-
ometry Guided Neural Relighting with Flash Photography”. In: arXiv preprint
arXiv:2008.05157 (2020).

[133] Rene Ranftl, Vibhav Vineet, Qifeng Chen, and Vladlen Koltun. “Dense monocular
depth estimation in complex dynamic scenes”. In: Proc. CVPR. 2016.

[134] Yaniv Romano, Michael Elad, and Peyman Milanfar. “The little engine that could:
Regularization by denoising (RED)”. In: SIAM Journal on Imaging Sciences 10.4
(2017), pp. 1804–1844.

[135] O. Ronneberger, P.Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation”. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Vol. 9351. 2015, pp. 234–241.

137

https://petapixel.com/2019/05/13/shooting-the-milky-way-and-meteors-with-the-huawei-p30-pro/
https://petapixel.com/2019/05/13/shooting-the-milky-way-and-meteors-with-the-huawei-p30-pro/
https://petapixel.com/2019/05/13/shooting-the-milky-way-and-meteors-with-the-huawei-p30-pro/
https://focus.mylio.com/tech-today/how-many-photos-will-be-taken-in-2021
https://focus.mylio.com/tech-today/how-many-photos-will-be-taken-in-2021

[136] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks
for biomedical image segmentation”. In: International Conference on Medical image
computing and computer-assisted intervention. 2015, pp. 234–241.

[137] Stefan Roth and Michael J Black. “Fields of experts”. In: IJCV (2009).
[138] Anirban Roy and Sinisa Todorovic. “Monocular depth estimation using neural regres-

sion forest”. In: Proc. CVPR. 2016.
[139] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total variation based

noise removal algorithms”. In: Physica D: nonlinear phenomena 60.1-4 (1992), pp. 259–
268.

[140] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
IJCV (2015).

[141] Soubhik Sanyal, Timo Bolkart, Haiwen Feng, and Michael Black. “Learning to
Regress 3D Face Shape and Expression From an Image Without 3D Supervision”. In:
Proc. CVPR. 2019.

[142] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. “Learning depth from single
monocular images”. In: NeurIPS. 2006.

[143] Ashutosh Saxena, Min Sun, and Andrew Y Ng. “Make3d: Learning 3d scene structure
from a single still image”. In: TPAMI (2009).

[144] See the light with Night Sight. https://www.blog.google/products/pixel/see-
light-night-sight/.

[145] Soumyadip Sengupta, Angjoo Kanazawa, Carlos D. Castillo, and David W. Jacobs.
“SfSNet: Learning Shape, Refectance and Illuminance of Faces in the Wild”. In:
Proc. CVPR. 2018.

[146] Ziyi Shen, Wei-Sheng Lai, Tingfa Xu, Jan Kautz, and Ming-Hsuan Yang. “Deep
semantic face deblurring”. In: Proc. CVPR. 2018.

[147] Jian Shi, Yue Dong, Hao Su, and Stella X. Yu. “Learning Non-Lambertian Object
Intrinsics across ShapeNet Categories.” In: CoRR abs/1612.08510 (2016).

[148] Jianping Shi, Xin Tao, Li Xu, and Jiaya Jia. “Break ames room illusion: depth from
general single images”. In: ACM Transactions on Graphics (TOG) (2015).

[149] Shreyas S Shivakumar, Ty Nguyen, Steven W Chen, and Camillo J Taylor. “DFuseNet:
Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth
Completion”. In: arXiv preprint arXiv:1902.00761 (2019).

[150] Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. “Neural
Face Editing with Intrinsic Image Disentangling”. In: Proc. CVPR. 2017.

[151] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. “Indoor segmen-
tation and support inference from rgbd images”. In: Proc. ECCV. 2012.

[152] Stereo Camera on PlayStation 5. https://www.roadtovr.com/playstation-5-
stereo-hd-camera-psvr-2-tracking/.

138

https://www.blog.google/products/pixel/see-light-night-sight/
https://www.blog.google/products/pixel/see-light-night-sight/
https://www.roadtovr.com/playstation-5-stereo-hd-camera-psvr-2-tracking/
https://www.roadtovr.com/playstation-5-stereo-hd-camera-psvr-2-tracking/

[153] Tiancheng Sun et al. “Single Image Portrait Relighting”. In: ACM Transactions on
Graphics (TOG) 38.4 (2019).

[154] Tatsunori Taniai and Takanori Maehara. “Neural Inverse Rendering for General
Reflectance Photometric Stereo”. In: Proc. ICML. 2018.

[155] Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard,
Patrick Perez, and Theobalt Christian. “MoFA: Model-based Deep Convolutional Face
Autoencoder for Unsupervised Monocular Reconstruction”. In: Proc. ICCV. 2017.

[156] Carlo Tomasi and Roberto Manduchi. “Bilateral Filtering for Gray and Color Images”.
In: Proc. ICCV. 1998.

[157] Anh Tran, Tal Hassner, Iacopo Masi, Eran Paz, Yuval Nirkin, and Gerard Medioni.
“Extreme 3D Face Reconstruction: Seeing Through Occlusions”. In: Proc. CVPR. 2018.

[158] Wouter Van Gansbeke, Davy Neven, Bert De Brabandere, and Luc Van Gool. “Sparse
and noisy LiDAR completion with RGB guidance and uncertainty”. In: arXiv preprint
arXiv:1902.05356 (2019).

[159] Jian Wang, Tianfan Xue, Jonathan T. Barron, and Jiawen Chen. “Stereoscopic Dark
Flash for Low-light Photography”. In: Proc. ICCP. 2019.

[160] Oliver Wang, James Davis, Erika Chuang, Ian Rickard, Krystle De Mesa, and Chirag
Dave. “Video relighting using infrared illumination”. In: Computer Graphics Forum.
Vol. 27. 2. 2008, pp. 271–279.

[161] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, and Alan L Yuille.
“Towards unified depth and semantic prediction from a single image”. In: Proc. CVPR.
2015.

[162] Tsun-Hsuan Wang, Fu-En Wang, Juan-Ting Lin, Yi-Hsuan Tsai, Wei-Chen Chiu, and
Min Sun. “Plug-and-Play: Improve Depth Prediction via Sparse Data Propagation”.
In: Proc. ICRA. 2019.

[163] Xiaolong Wang, David Fouhey, and Abhinav Gupta. “Designing deep networks for
surface normal estimation”. In: Proc. CVPR. 2015.

[164] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. “Image quality
assessment: from error visibility to structural similarity”. In: IEEE Transactions on
Image Orocessing (2004).

[165] Waymo Open Dataset. https://waymo.com/open/about/.
[166] Tim Weyrich et al. “Analysis of Human Faces using a Measurement-Based Skin

Reflectance Model”. In: ACM Transactions on Graphics (TOG) 25.3 (2006), pp. 1013–
1024.

[167] Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, Damien Kelly, Michael
Krainin, Chia-Kai Liang, Marc Levoy, and Peyman Milanfar. “Handheld multi-frame
super-resolution”. In: ACM Transactions on Graphics (TOG) 38.4 (2019), pp. 1–18.

139

https://waymo.com/open/about/

[168] Zhihao Xia and Ayan Chakrabarti. “Identifying recurring patterns with deep neural
networks for natural image denoising”. In: arXiv preprint arXiv:1806.05229 (2018).

[169] Zhihao Xia, Federico Perazzi, Michaël Gharbi, Kalyan Sunkavalli, and Ayan
Chakrabarti. “Basis Prediction Networks for Effective Burst Denoising With Large
Kernels”. In: Proc. CVPR. 2020.

[170] Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, Yang Xiao, Ruibo Li, and Zhenbo
Luo. “Monocular relative depth perception with web stereo data supervision”. In:
Proc. CVPR. 2018.

[171] Jiangjian Xiao, Hui Cheng, Harpreet Sawhney, Cen Rao, and Michael Isnardi. “Bilateral
Filtering-Based Optical Flow Estimation with Occlusion Detection”. In: Proc. ECCV.
2006.

[172] Junyuan Xie, Linli Xu, and Enhong Chen. “Image Denoising and Inpainting with
Deep Neural Networks”. In: NeurIPS. 2012.

[173] Li Xu, Shicheng Zheng, and Jiaya Jia. “Unnatural l0 sparse representation for natural
image deblurring”. In: Proc. CVPR. 2013.

[174] H. Yamashita, D. Sugimura, and T. Hamamoto. “RGB-NIR imaging with expo-
sure bracketing for joint denoising and deblurring of low-light color images”. In:
Proc. ICASSP. 2017.

[175] Qiong Yan, Xiaoyong Shen, Li Xu, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and
Jiaya Jia. “Cross-Field Joint Image Restoration via Scale Map”. In: Proc. ICCV. 2013.

[176] Dong Yang and Jian Sun. “BM3D-Net: A Convolutional Neural Network for Transform-
Domain Collaborative Filtering”. In: IEEE Signal Processing Letters (2018).

[177] Zhenheng Yang, Peng Wang, Wei Xu, Liang Zhao, and Ramakant Nevatia. “Unsu-
pervised learning of geometry with edge-aware depth-normal consistency”. In: arXiv
preprint arXiv:1711.03665 (2017).

[178] Leonid P Yaroslavsky. “Digital picture processing: an introduction”. In: Applied Optics
25.18 (1986), p. 3127.

[179] Youngjin Yoon, Gyeongmin Choe, Namil Kim, Joon-Young Lee, and In So Kweon.
“Fine-scale surface normal estimation using a single NIR image”. In: Proc. ECCV.
2016.

[180] Ye Yu and William A. P. Smith. “InverseRenderNet: Learning Single Image Inverse
Rendering”. In: Proc. CVPR. 2019.

[181] Lu Yuan, Jian Sun, Long Quan, and Heung-Yeung Shum. “Image deblurring with
blurred/noisy image pairs”. In: ACM Transactions on Graphics (TOG) 26.3 (2007),
p. 1.

[182] Xiaoxing Zeng, Xiaojiang Peng, and Yu Qiao. “DF2Net: A Dense-Fine-Finer Network
for Detailed 3D Face Reconstruction”. In: Proc. ICCV. 2019.

140

[183] Jian Zhang and Bernard Ghanem. “ISTA-Net: Interpretable optimization-inspired
deep network for image compressive sensing”. In: Proc. CVPR. 2018.

[184] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. “Beyond
a gaussian denoiser: Residual learning of deep cnn for image denoising”. In: IEEE
Transactions on Image Processing 26.7 (2017), pp. 3142–3155.

[185] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. “Learning deep CNN
denoiser prior for image restoration”. In: Proc. CVPR. 2017.

[186] Kai Zhang, Wangmeng Zuo, and Lei Zhang. “FFDNet: Toward a fast and flexible
solution for CNN based image denoising”. In: IEEE Transactions on Image Processing
(2018).

[187] Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. “Color demosaicking by local
directional interpolation and nonlocal adaptive thresholding”. In: Journal of Electronic
imaging 20.2 (2011), p. 023016.

[188] Xuaner Zhang, Jonathan T Barron, Yun-Ta Tsai, Rohit Pandey, Xiuming Zhang,
Ren Ng, and David E Jacobs. “Portrait shadow manipulation”. In: ACM Transactions
on Graphics (TOG) 39.4 (2020), pp. 78–1.

[189] Yinda Zhang and Thomas Funkhouser. “Deep depth completion of a single rgb-d
image”. In: Proc. CVPR. 2018.

[190] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. “Residual non-local
attention networks for image restoration”. In: arXiv preprint arXiv:1903.10082 (2019).

[191] Ziyu Zhang, Alexander G Schwing, Sanja Fidler, and Raquel Urtasun. “Monocular
object instance segmentation and depth ordering with cnns”. In: Proc. ICCV. 2015.

[192] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, and David W. Jacobs. “Deep Single-Image
Portrait Relighting”. In: Proc. ICCV. 2019.

[193] Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie1, Wangmeng Zuo, and
Jimmy Ren. “Spatio-Temporal Filter Adaptive Network for Video Deblurring”. In:
Proc. ICCV. 2019.

[194] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. “Unsupervised
learning of depth and ego-motion from video”. In: Proc. CVPR. 2017.

[195] Wei Zhuo, Mathieu Salzmann, Xuming He, and Miaomiao Liu. “Indoor scene structure
analysis for single image depth estimation”. In: Proc. CVPR. 2015.

[196] Magauiya Zhussip, Shakarim Soltanayev, and Se Young Chun. “Training deep learning
based image denoisers from undersampled measurements without ground truth and
without image prior”. In: Proc. CVPR. 2019.

[197] Daniel Zoran, Phillip Isola, Dilip Krishnan, and William T Freeman. “Learning ordinal
relationships for mid-level vision”. In: Proc. CVPR. 2015.

[198] Daniel Zoran and Yair Weiss. “From learning models of natural image patches to
whole image restoration”. In: Proc. ICCV. 2011.

141

	Reasoning about Scene and Image Structure for Computer Vision
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Scene map estimation from images
	1.1.1 Quality of camera measurements
	1.1.2 Ill-posed nature of scene map estimation
	1.1.3 High-dimensional output and search space
	1.1.4 Insufficient data for deep learning

	1.2 Dissertation overview

	Chapter 2: Exploiting internal structures in low-light photography
	2.1 Related work
	2.2 Exploiting patch similarity for image denoising
	2.2.1 Introduction
	2.2.2 Proposed denoising algorithm
	2.2.3 Experiments
	2.2.4 Discussion

	2.3 Exploiting self-similarity in denoising kernels for burst photography
	2.3.1 Introduction
	2.3.2 Method
	2.3.3 Kernel-based burst denoising
	2.3.4 Experiments
	2.3.5 Discussion

	2.4 Exploiting scene appearance in flash photography
	2.4.1 Introduction
	2.4.2 Proposed approach
	2.4.3 Experimental setup
	2.4.4 Evaluation
	2.4.5 Discussion

	Chapter 3: Learning without direct supervision for computational photography
	3.1 Training image estimators without ground-truth images
	3.1.1 Introduction
	3.1.2 Related work
	3.1.3 Proposed approach
	3.1.4 Experiments
	3.1.5 Discussion

	3.2 Training a dark flash normal camera without ground-truth normals
	3.2.1 Introduction
	3.2.2 Related work
	3.2.3 Network design and training
	3.2.4 Dataset
	3.2.5 Evaluation
	3.2.6 Discussion

	Chapter 4: Probabilistic scene map estimation for modular inference
	4.1 Related work
	4.2 Probabilistic monocular depth
	4.2.1 Proposed method
	4.2.2 Monocular inference tasks
	4.2.3 Experimental results

	4.3 Depth estimation with additional information
	4.3.1 Proposed approach
	4.3.2 Applications
	4.3.3 Experimental results
	4.3.4 Analysis and ablation

	4.4 Discussion

	Chapter 5: Conclusion
	References

