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Adverse drug reactions (ADRs) are a serious problem with increasing morbidity, mortality, and

health care costs worldwide. In the U.S., ADRs are responsible for more than 50% of acute liver

failure cases and are the fourth most common cause of death, costing 100,000 lives annually.

Idiosyncratic adverse drug reactions (IADRs) are immune-mediated hypersensitivity ADRs

that are difficult to foresee during drug development. IADRs are often caused by reactive

metabolites produced during drug metabolism. These reactive metabolites covalently attach to

cellular components, and the resulting conjugates may provoke toxic immune response. Because

reactive metabolites are short-lived, they can be difficult to detect. Tools to reliably predict

whether a compound forms reactive metabolites would enable us to avoid drug candidates prone

to causing IADRs and make new medicines safer. Unfortunately, due to inadequate modeling of

metabolism, current experimental and computational approaches do not reliably identify drug

candidates that form reactive metabolites.

Bioactivation pathways leading to reactive metabolite formations often are composed of

multiple steps. To accurately predict reactive metabolite formation, we must explicitly model

metabolic steps of bioactivation pathways. Therefore, we built models to predict specific

metabolic transformations such as hydroxylation, epoxidation, dehydrogenation, quinonation,

hydrolysis, reduction, glucuronidation, sulfuration, acetylation, and methylation. Using machine

learning and literature-derived data, we trained models that can predict both the likelihood that a

x



molecules undergoes a certain chemical transformation and the specific site(s) within the

molecule where this transformation happens. Together, our metabolism models cover ∼ 95% of

enzymatically-driven chemical reactions in human. Our models achieve high area under the

receiver operating characteristic curve scores (AUCs) of ∼ 90% in cross-validated tests.

Our mechanistic approach outperformed structural alerts—a common tool used to screen out

candidate compounds during drug development. Structural alerts are chemical moieties that were

frequently observed to give rise to reactive metabolite upon bioactivation. However, many safe

drugs also contain structural alerts which are not bioactivated and, conversely, many toxic drugs

contain no structural alert. We combined models of metabolism, metabolite structure prediction,

and reactivity to offer a better prediction of reactive metabolite formation in the context of

structural alerts. Based on the known bioactivation pathway(s) of each structural alert,

appropriate metabolism models were applied to evaluate whether drugs containing the structural

alert actually form reactive metabolites. Our study focused on the furan, phenol, nitroaromatic,

and thiophene alerts. Specifically, we used models of epoxidation, quinone formation, reduction,

and sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and

thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-,

phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%,

93%, and 88%, respectively. In addition, we used our models to uncover bioactivation

mechanisms that were previously under-appreciated. For example, N-dealkylation is the

oxidation of an alkylated amine at the nitrogen-carbon bond, cleaving the parent compound into

an amine and an aldehyde. Even though aldehydes can be toxic, metabolic studies usually neglect

to report or investigate them because they are assumed to be efficiently detoxified into carboxylic

acids and alcohols. Applying the N-dealkylation model to approved and withdrawn medicines,

we found that aldehyde metabolites produced from N-dealkylation may explain the hepatotoxicity

of several drugs: indinavir, piperacillin, verapamil, and ziprasidone. These results demonstrated

the utility of comprehensive bioactivation models that systematically consider constituent

metabolic steps in gauging toxicity risks.
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1
Introduction

1.1 Idiosyncratic adverse drug reactions.

Millions of Americans take medications on a daily basis to prevent and treat a variety of health

conditions. Breakthroughs in drug discovery and development have improved and saved millions

of lives [2]. However, medications can also cause harm. Adverse drug reactions (ADRs) have a

major impact on public health [2]. They are responsible for more than 50% of acute liver failure

cases [135] and 280, 000 hospital admissions [244]. ADRs are the fourth most frequent cause of

death in the U.S., costing 100,000 lives annually [132, 134].

Idiosyncratic adverse drug reactions (IADRs), also known as type B ADRs [71], are

immune-mediated hypersensitivity reactions that can affect virtually any organ. The skin, liver,

1



and blood cells are the most common sites. Major clinical manifestations of IADRs include skin

rashes (e.g. urticaria, maculopapular eruption, Stevens-Johnson syndrome, and toxic epidermal

necrolysis), hematologic adverse reactions (e.g. agranulocytosis, thrombocytopenia, and

hemolytic or aplastic anemia), drug-induced autoimmunity (e.g. drug-induced Lupus-like

syndrome), and liver injury (e.g. hepatocellular and cholestatic liver injury) [237, 239].

IADRs are a leading cause of acute liver failure, affecting 2, 000 patients per year in the U.S.

and accounting for 25% of cases in intensive care units [5, 188]. Also known as fulminant hepatic

failure, acute liver failure is characterized by severe and sudden liver cell dysfunction leading to

coagulopathy and hepatic encephalopathy in previously healthy persons with no known

underlying liver disease. Without liver transplant, this illness can rapidly progress to cerebral

edema and multi-organ failure and subsequently to coma and death. IADRs account for more than

17% of liver transplant cases [188].

IADRs are the most difficult type of ADRs to predict and prevent. Due to the relatively low

incidence rate, the lack of valid animal models, and limited knowledge of the underlying

mechanism, IADRs are usually not detected during clinical trials and serious IADRs commonly

emerge only after Food and Drug Administration (FDA) approval. One analysis found that

approximately one out of five drugs were either withdrawn or acquired new black box warnings

for IADRs after having been on the market for two to seven years [132].

IADRs are the most serious and expensive problem in drug development. They are the main

reason for drug clinical trial termination and drug withdrawal [245]. Nevertheless, the majority of

drugs are not associated with IADRs, offering hope that new medicines could avoid these adverse

reactions if reliable predictors existed [226]. Accurate prediction and identification of molecules

prone to IADRs would revolutionize drug development by screening out IADR-prone candidates

early, before significant resource investment and exposure to patients.
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1.2 Drug Metabolism.

One of the liver’s major physiological roles is to biotransform lipophilic xenobiotics into

hydrophilic metabolites that can be more readily excreted (Figure 1.2.1A). Liver enzymes like the

cytochromes P450 and uridine diphosphate glucunosyltransferases (UGTs) catalyze phase I and

phase II biotransformation (Table 1.2.1) of a remarkably diverse range of xenobiotics, including

therapeutic agents [85]. Such compounds are concentrated in the liver due to hepatic circulation

and active transport systems [245]. The liver is the most important organ in drug metabolism and

is also the first to suffer damage from drug toxicity [135, 190].

Although the major role of drug metabolism is detoxification, it can also act as a toxification

process (Figure 1.2.1C). A number of enzymes, especially the cytochromes P450, can generate,

and in many instances, release reactive metabolites — electrophilic species that can bind

covalently to macromolecules such as proteins and DNA. The diversity of cytochromes P450,

together with the reactivity of their oxygen intermediates, enables them to bioactivate even

relatively inert substrates, leading to the direct formation of chemically diverse reactive

metabolites [85].

There is substantial evidence that most IADRs are caused by drugs that are not intrinsically

toxic, but become harmful after being metabolically transformed into reactive metabolites

[29, 78, 166, 167, 191]. Approximately 62% of drugs withdrawn from the market for IADRs, or

with black box warning for IADRs, have been shown to produce reactive metabolites [243].

Reactive metabolites are a cause for concern because they can involve in covalent interactions

with critical macromolecules such as DNA and proteins, and/or nonconvalent interactions causing

oxidative and other intracellular stress [86, 113, 177, 231].

Reactive metabolites comprise hard and soft electrophiles. Hard electrophiles include

alkyl/benzylic carbonium ions, iminium ions, and glyoxals; while soft electrophiles are typically

α, β-unsaturated ketones, quinones, and acrylamides [86]. Hard and soft electrophiles form

covalent adducts with hard and soft nucleophiles in DNA and proteins. DNA conjugation can
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lead to cancer [25, 166, 167, 199]. Protein conjugation can lead to cellular dysfunction, cell death,

and sometimes, immune response cascades that can extend the damage to organ and systemic

levels [5, 8, 164, 165].

Two main factors can influence whether the reactive metabolite formation from a molecule

would lead to IADRs. The first factor is the relative contribution of all competitive bioactivation

and detoxification pathways involved in the metabolism of that molecule. Although the liver is

rich in bioactivating enzymes, it is also equipped with a plethora of detoxification pathways to

remove the toxic reactive metabolites. Examples of such pathways are glutathione conjugation,

glucuronidation, sulfation, arene oxide hydration, and formadehyde oxidation catalyzed by

glutathione S-transferases, UGTs, sulfotransferases, expoxide hydrolases, and formadehyde

dehydrogenases, respectively (Table 1.2.1). Only when a reactive metabolite escapes such

detoxification pathways due to poor affinity and enzyme depletion, can it damage proteins and

nucleic acids. The best example is the lack of liver injury with therapeutic doses of acetaminophen

and the fact that acetaminophen overdose accounts for more than 50% of drug-induced primary

liver failure cases in the U.S. [86, 123]. At therapeutic doses, acetaminophen’s reactive

metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), is neutralized and removed by reduced

glutathione (GSH) through conjugation (Figure 1.2.2). After an overdose, depleted GSH reserves

can no longer compensate for the excessive production of NAPQI [26, 121]. NAPQI starts

covalently binding to proteins and DNA and cause damage. The second factor is patient specific

attributes such as co-morbidities, co-administered medications and genetic variants. For example,

individuals with certain alleles of human leukocyte antigen (HLA) gene, which encodes for major

histocompatibility complexes (MHC) — immunologic receptors that display drug-derived

antigens on the cell surface, have higher risk to develop IADRs than the generation population

[30, 55, 237]. These idiosyncratic, individual-specific attributes explain why drug trials on

selected populations for limited time periods often fail to detect inter-personal variation and

adverse events that only emerged after long exposure to the drug.
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Table 1.2.1: Reaction Types and Enzymes that Participate in Drug Metabolism

Type Reactions Catalytic Enzymes

Phase I Oxidation Cytochromes P450
Flavin-containing Monooxygenases

Xanthine Oxidases
Amine Oxidases

Monoamine Oxidases

Reduction Cytochromes P450
NADP-quinone oxidoreductases

Carbonyl reductases
Glutathione peroxidases

Ester hydrolysis Carboxylesterases
Amidases

Hydration Epoxide hydrolases

Phase II Glucuronidation Uridine glucurosyl transferases
Sulfonation Sulfotransferases
Glutathione conjugation Glutathione S-transferases
Acetylation Acetylases
Methylation Methyltransferases
Glucosylation Glucosyltransferase

Data from [64]
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1.3 Current experimental approaches to directly screen for IADRs

Screening for potential toxicity is extremely important in drug development, especially in the

early stages. In vivo animal studies and in silico quantitative structure-activity relationship

(QSAR) models are examples of current approaches to assess IADR risk. The ultimate goal is to

define predictive markers to reliably screen out lead compounds with potential toxicity early and

thereby decrease late attrition rate.

There are very few good animal models to study IADRs in vivo. Similar to autoimmune

diseases, IADR is believed to arise from a failure of immune tolerance [218]. This failure is

idiosyncratic not only in humans but also in animals [218]. Strategies to develop IADR animal

models include (1) testing each drug that causes IADRs on several species, (2) co-administering

agents that activate the immune system or deplete GSH reserves, and (3) using genetically

modified animals with impaired immune tolerance [178, 218]. Unfortunately, these attempts have

been unsuccessful [178, 218]. Furthermore, due to differences in the immune system among

species, results from IADR studies in animal models are often not applicable to human [237].

Manipulation of animal models to mimic the human immune system is underway but little

success has been made. In addition, inter-species metabolic variation also compromises the value

of animal models [10, 33, 152, 183]. Many drugs have been shown to form reactive metabolites

in animal models but not in humans and vice versa. For example, efavirenz, a potent and specific

HIV-1 reverse transcriptase inhibitor commonly used in HIV drug cocktails, was shown to form

GSH and protein adducts in rats but not in humans, even though the drug is used at relatively high

dose [174].

In silico quantitative structure-activity relationship (QSAR) analysis is a common screening

tool for IADRs. Based on experimental data, QSAR analysis can discover the correlation between

a certain biological or pharmacological activity and the physiochemical properties of compounds

[131]. It can provide an understanding of how structure affects these activities, especially the

interactions between functional groups of small molecules and those of their biological targets,
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which may not be immediately obvious [7]. Because QSAR models can interpolate and make

predictions on novel analogues within the training domain, they can be used to inform structural

modification. However, because QSAR models rely heavily on biological data, which is prone to

considerable experimental error, false correlations may arise. In addition, data used in QSAR

models are often from multiple sets of assays whose experimental settings are not identical;

consequently, QSAR model predictions have broad confidence intervals. Lastly, QSAR models

often fail to extrapolate outside the range of the training domain. These disadvantages limit the

potential of QSAR models in predicting IADR risk and guiding structural modification in drug

design and development.

1.4 Current technologies in screening for reactive metabolite

Due to our inability to predict whether a reactive metabolite will be toxic, chemical intervention

to minimize bioactivation is always at high priority in the drug development pipeline. From

inception to completion of a drug development project, bioactivation mechanism investigation is

tightly coupled with iterative structure modification using medicinal chemistry [72]. This

proactive approach to addressing bioactivation is warranted when considering the issue of patient

safety and the economic risks in pursuing drug candidates that covalently modify DNA and

proteins.

Reactive metabolites are short-lived, with half-lives of typically less than one minute, and are

usually undetectable in plasma [118]. However, the intracellular formation of reactive metabolites

can be inferred from endogenous trapping reactions or physiochemistry techniques. Their

formation may be modulated by enzyme induction, enzyme inhibition, and gene deletion in

animals [86]. However, none of these experimental procedures are directly applicable to humans.

Hence, human exposure to reactive metabolites is almost impossible to quantify. Many in vitro

and in vivo experimental methods have been developed to screen for reactive metabolite

formation [126]. The following explores the advantages and limitations of these approaches.

High-throughput in vitro covalent binding assays use GSH and cyanide (CN-) as small
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molecule trapping agents for soft and hard electrophiles, respectively [72]. Lead compounds are

incubated in microsomal or S9 fraction 1 preparations before exposure to GSH and CN-. The

mixture containing stable adducts is then characterized by liquid chromatography-tandem mass

spectrometry (LC-MS/MS) and/or NMR spectroscopy. This methodology has been frequently

utilized to demonstrate bioactivation of structurally diverse functionalities or motifs. However, it

is an indirect approach to estimating the potential for covalent binding to biomacromolecules like

DNA and proteins. Not all reactive metabolites will react with GSH’s nucleophilic sulfydryl

group or CN-; instead, some (e.g. aldehydes and α, β-unsaturated ketones) may preferentially

react with other nucleophilic amine-based groups such as lysine and histidine [98, 110].

Direct screening of covalent binding to biological macromolecules are conducted either in vitro

using proteins that contain a representative array of amino acids (e.g. bovine ribonuclease A) or in

vivo in preclinical species (e.g. rat) [32, 160]. These methods require incorporation of a radiolabel

at a chemically and metabolically stable position of the molecule. The extent of protein

modification is based on the amount of radiolabeled molecules covalently bound to proteins

following in vitro incubation with human liver microsomes (sometimes hepatocytes) or in vivo

administration in a preclinical species. However, it is impossible to differentiate between bound

radiolabeled molecules and incorporation of radiolabel into macromolecules via decomposition of

metabolites into precursors of endogenous compounds. In addition, direct screening for covalent

binding is low-throughput and is not applicable in the early stages of drug development because

radiolabeled molecule synthesis is expensive and technically challenging.

In some cases, a reactive metabolite can irreversibly inactivate the enzyme that generates it by

covalently binding to an active site amino acid and/or the heme prosthetic group instead of exiting

the active site [125]. Consequently, enzyme inactivation studies are another approach to screen

for reactive metabolites [182]. Because bioactivation is required for enzyme inactivation,

precursors of such reactive metabolites are classified as mechanism-based inactivators or suicide

substrates. This screening approach is limited in scope because few reactive metabolites are
1S9 fraction preparation (post-mitochondrial supernatant fraction) contains both cytosolic and microsomal enzymes

together with appropriate cofactors.

10



suicide substrates.

The outcome of metabolite-protein conjugation depends on the role of the protein target. While

adduction of critical proteins required for important cellular functions and viability would lead to

cell death, adduction of noncritical protein would only cause minor dysfunction. Furthermore,

adduction of certain protein targets might be necessary for the desired pharmacological effect of a

drug [71]. For example, omeprazole and exemestane work through the generation of a reactive

metabolite directed at their therapeutic protein targets, H+,K+-ATPase [185] and aromatase [144],

respectively. Immunochemical assays are a powerful technique for identification and

characterization of cellular components that have undergone covalent modification by reactive

metabolites. In this approach, a synthesized surrogate protein-hapten adduct is used as an

immunogen to be administered to animals. The immunized animal would produce antibodies

against the immunogen after several administrations. These antibodies are selected from the

animal’s antiserum using enzyme-linked immunosorbent assay (ELISA). They can then be used

to identify haptenized proteins via Western blot analysis [175, 192, 254]. The major disadvantage

of immunoassays is that they may not quantify all adducts that are formed because of epitope

selectivity. Furthermore, screening for reactive metabolites through this approach is

low-throughput and time consuming.

Lastly, direct metabolite identification through various chemical techniques is an important

approach to understanding metabolic pathways and biochemical mechanisms by which

metabolites are generated [137, 142]. Unfortunately, like previous methods, this approach is also

low-throughput and labor-intensive.

Overall, most current in vitro and in vivo reactive metabolite screening approaches are too

expensive and low-throughput to perform for thousands of candidates in the early stage of drug

development. They also do not yield site-level information, which can sometimes be used to

modify drugs to avoid bioactivation and make them safer, as we will see in the next section

(Figure 1.5.1).
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Table 1.5.1: Common structural alerts and their corresponding reactive metabolites after bioactivation

Functional Group Reactive Metabolite(s) Bioactivation Pathway Reaction(s)

Aromatic amines Quinone-imine or nitroso metabolite Quinone formation, N-oxidation
Hydrazine, hydrazides Diazene or diazonium ion Oxidation, radical formation
Nitroarenes Nitroso Reduction
Fused azaheterocycles Nitrenium ion Dehalogenation, dehydrogenation
Benzylamines Nitroso, oxime Reduction
Foramides Isocyanate Hofmann rearrangement
Sulfonylureas Isocynate Hydrolysis
Thioureas S-Oxides, isocyanate S-oxidation
Hydroquinones p-benzoquinone Quinone formation
o- or p-Alkyphenols o- or p-Quinone methide Quinone formation
Methylenedioxyphenyl o-quinone Quinone formation
3-Methyleneindoles Imine-methide Imine formation
Furans α,β-Unsaturated dicarbonyl Ring scission, epoxidation, hydrolysis
Thiophenes α,β-Unsaturated dicarbonyl S-oxidation, epoxidation
Thiazoles Thioamide, glyoxal Ring opening, C-oxidation, S-oxidation
Thiazolidinediones Isocyanate, S-oxide Quinone formation, S-oxidation, ring-opening
Arenes, bromoarenes Arene oxide Epoxidation
Alkynes Ketenes, oxirene Oxidation, re-arrangement
α,β-Unsaturatedcarbonyl Intrinsic electrophilicity
Aliphatic amines Iminium ion Dealkylation,N-oxidation,radical formation
Alkylhalides Acylhalides C-oxidation

1.5 Structural alerts

Structural alerts are chemical moieties that have the potential to generate reactive metabolites

through bioactivation (Table 1.5.1). They are commonly used within the pharmaceutical industry,

the FDA, and discovery tools to flag lead compounds with toxicity risk [16, 48, 69, 96]. Indeed,

about 78-83% of drugs with high incidence of IADRs contain structural alerts, and 62-69% of them

have evidence of reactive metabolite formation [226].

The structural alert approach is commonly used because it is the only available tool that is

cheap and straightforward. Candidate compounds with one or more structural alerts are often

removed from drug development pipeline or chemically modified to minimize toxicity risk. For

example, when a lead compound MRL-A (a 3-acyl-N1-methylpiperazine derivative) was found to
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Figure 1.5.1: A drug development team at Merck Research Laboratories chemically modified a drug candi-
date, MRL-A (A), by adding an alkyl group at the α position to N1-methyl functionality in the piperazine struc-
tural alert (highlighted in purple) to create a new compound (B) [72]. The reactive MRL-A’s metabolite was
observed to conjugate to glutathione (indicated by the green shading). The new compound no longer contains
piperazine structural alert and does not undergo bioactivation. This simple chemical intervention eliminates the
formation of a potentially toxic reactive metabolite.

undergo bioactivation at the piperazine structural alert, researchers modified it by adding an alkyl

group at the α position to N1-methyl functionality (Figure 1.5.1) [72]. This simple chemical

intervention created a new drug candidate that was devoid of the piperazine structural alert and

did not undergo metabolic bioactivation.

Iterative chemical modifications to avoid structural alerts are not always practical because these

candidate compounds are simultaneously also being optimized for efficacy. More importantly, the

safety hazard associated with structural alerts seems to be overestimated. Toxicity due to a

specific alert structure is highly conditional, depending on metabolic transformations of the

precursor and electronic interactions across the metabolite. Figure 1.5.2 shows a typical example:

while the thiophene structural alert in suprofen is the site of bioactivation, the same alert structure

in eprosartan is not. The differences in biotransformation lead to drastic differences in the safety

profiles of the two compounds. While suprofen was withdrawn from the market due to

hepatotoxicity, eprosartan is safe. In fact, of the 200 most frequently prescribed drugs in the US,
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∼ 50% of them contain more than one structural alert [226]. Yet, the vast majority of these drugs

are not associated with adverse drug reactions despite prolonged use.

Current approaches using structural alerts fail to differentiate molecules with potential to form

reactive metabolite from those without because they do not adequately model metabolism and its

role in activating or evading reactive metabolite formation. Structural alerts are limited because

they neither account for the likelihood (or unlikelihood) of metabolism to bioactivate the alert,

nor do they account for the effect of substituents on the reactivity — the capability to form

covalent adduct with macromolecules like DNA and proteins — of the bioactivated molecule

[69, 119, 226]. Molecules are flagged even if (1) their structural alert is not bioactivated, (2) the

resulting metabolite is not reactive, (3) the reactive metabolite is eventually metabolized into a

non-reactive form, or (4) an alternative, non-activating pathway is responsible for metabolic

clearance of the compound [119]. In addition, structural alerts can only identify toxic molecules

with specific, well-known substructures (Table 1.5.1); they cannot identify substructures that have

not yet been observed to generate toxic metabolites. Consequently, the recommendations of the
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structural alert approach are very difficult to interpret; safe molecules are often flagged as toxic,

and unsafe molecules slip through the process [119].

1.6 Metabolism and reactivity modeling to predict bioactivation

I am proposing a new method that would improve the current structural alert-based reactive

metabolite screening approaches by explicitly modeling the impact of metabolism and reactivity.

This method combines the existing knowledge on the biotransformation pathways of well-studied

structural alerts with metabolism and reactivity models to differentiate molecules with potential to

form reactive metabolite from those without. Specifically, known metabolic pathway(s) of each

common structural alert can be broken down into individual reaction steps. Metabolism and

metabolite structure prediction models for each step along these biotransformation pathways can

then be developed using machine-learning software built from literature-derived data. Given the

structure of a new compound, these models would be able to predict its biotransformation

pathway(s), the structures of its metabolites, and the probabilities at which these metabolites are

formed. The probabilistic output and modularity of these models allow easy interpretation and

flexible application, i.e. the same model can be used in different biotransformation pathways. The

reactivity of all compounds along the biotransformation pathway(s) can be calculated using the

reactivity models recently developed in our laboratory [105, 106]. Figure 1.6.1 is a simple case

study showing how this approach can be used. This research holds the potential to reduce the cost

of drug development and decrease the chance of patient exposure to IADR-prone drugs.
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nitroaromatic structural alert [27, 133]. The remaining drug entacapone does not form reactive metabolite. In
addition, it should be noted that tolcapone and entacapone are structural analogues. My reduction model is
able to assign the bioactivated nitroaromatic structural alert nitrogen atoms with higher scores in comparison
to the non-bioactived ones.
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2
Modeling UGT-Mediated Metabolism

This chapter is adapted from a manuscript published in Bioinformatics:

Na Le Dang, Tyler B. Hughes, Varun Krishnamurthy, and S. Joshua Swamidass, A simple

Model Predicts UGT-Mediated Metabolism 2016, 32, 20, 3183-3189

2.1 Summary

Uridine diphosphate glucunosyltransferases (UGTs) metabolize 15% of FDA approved drugs.

Lead optimization efforts benefit from knowing how candidate drugs are metabolized by UGTs.

This chapter describes a computational method for predicting sites of UGT-mediated metabolism

on drug-like molecules. The UGT metabolism predictor developed in this study is available at
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http://swami.wustl.edu/xenosite/p/ugt. XenoSite correctly predicts test molecule’s sites

of glucoronidation in the Top-1 or Top-2 predictions at a rate of 86% and 97%, respectively. In

addition to predicting common sites of UGT conjugation, like hydroxyl groups, it can also

accurately predict the glucoronidation of atypical sites, such as carbons. We also describe a

simple heuristic model for predicting UGT-mediated sites of metabolism that performs nearly as

well (with, respectively, 80% and 91% Top-1 and Top-2 accuracy), and can identify the most

challenging molecules to predict on which to assess more complex models. Compared with prior

studies, this model is more generally applicable, more accurate, and simpler (not requiring

expensive quantum modeling).

2.2 Introduction

Uridine diphosphate glucuronosyltransferases (UGTs) are an important family of proteins that

metabolize 15% of FDA approved drugs [249]. UGTs conjugate glucuronic acid to a diverse range

of molecules, rendering them more hydrophilic and more easily eliminated. Specifically, the

glucuronic acid can conjugate to oxygens, nitrogens, sulfurs or carbons, in order of decreasing

likelihood (Figure 2.2.1).

Understanding and modeling UGT metabolism is important because conjugation can affect the

safety and efficacy of drugs. For example, a genetic polymorphism that inactivates a specific

UGT significantly increases the bone marrow toxicity of irinotecan, by preventing its primary

route of elimination [36]. Similarily, genetic polymorphisms that increase expression of a specific

UGT reduce the efficacy of atorvastatin, a commonly used HMG CoA reductase inhibitor

[197, 202]. More commonly, drug candidates are optimized to ensure that they are metabolically

stable and, therefore, not too rapidly eliminated [129].

Identifying the specific atoms of a candidate drug that are glucoronidated during

UGT-mediated metabolism—its sites of metabolism (SOMs)—is valuable to lead optimization

efforts. Knowing the SOMs of a candidate drug allows medicinal chemists to design new
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C-GlucuronidationO-Glucuronidation N-Glucuronidation S-Glucuronidation

H

Figure 2.2.1: Four types of UGT catalyzed reactions.UGTs attach glucoronides to molecules to detoxify
them and make them easier to excrete. Glucoronides can be attached to several atom types in a molecule,
for example (in order of decreasing likelihood) oxygens, nitrogens, sulfurs and carbons. Specific examples,
from the database, of each of these conjugation reactions is displayed. The site of conjugation is circled in the
parent molecules.
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compounds with improved bioavailability. Computational methods that predict UGT-mediated

SOMs for drug-like molecules are just now beginning to appear. So far, the literature reports two

approaches to predicting UGT sites of metabolism [194, 207]. Both methods use machine

learning to encode the chemical and biological rules represented in a set of reactions extracted

from the Accelrys Metabolite Database (AMD).

Here, we present two models to predict UGT metabolism. First, we propose a simple heuristic

model (based on global statistics) to predict UGT metabolism. This simple model correctly

predicts the site of UGT conjugation in more than 80% of molecules. This heuristic model

provides both a baseline of performance against which other methods can be compared, and also a

method for identifying specific molecules in the dataset that are difficult to predict without

modeling. Second, we introduce XenoSite UGT, an adaptation of an algorithm previously

developed by our group to predict drug metabolism by cytochrome P450s [258]. The XenoSite

UGT model uses a similar approach as existing methods, by learning rules from a training dataset

derived from the AMD. We built the XenoSite model using 2898 unique substrates containing 4557

glucoronidation reactions, 3.2 times more reactions than used in previous models.

XenoSite improves on existing approaches, including the simple heuristic model, in several

ways. First, it improves on the SOM-UGT model described by [194], who used support vector

machines to build four independent classification models to differentiate between observed and

non-observed SOMs for common substructures vulnerable to UGT-mediated

metabolism—aromatic and aliphatic hydroxyls, carboxylic acids and nitrogen containing groups.

Unlike XenoSite, SOM-UGT cannot predict glucuronidation of less common or atypical

substructures, such as ketones, thiols, or amides. Moreover, [194] do not describe or test any

strategies for combining the predictions of their four independent models into a single set of

predictions for a given molecule. This is a critical shortcoming, because in practice individual

molecules are being evaluated for metabolic soft spots, and there is no way to know the

performance of SOM-UGT at correctly identifying these soft spots on a per-molecule basis. In

contrast, XenoSite is a single model that produces predictions for all atoms in molecule, and can
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even identify atypical sites of conjugation accurately. Second, XenoSite improves on the SOMP

model described by [207], which uses fingerprint descriptors in a naïve Bayes classifier to rank all

atoms in a molecule by their likelihood of being conjugated by UGTs. However, SOMP was only

tested on small, uncharged molecules, and was not evaluated on difficult to predict molecules. On

these challenging molecules, XenoSite was significantly more accurate than SOMP, SOM-UGT,

and the heuristic model.

2.3 Materials and Methods

2.3.1 Training Data

The AMD was used to build a dataset of UGT substrates with their annotated sites of

glucoronidation. Each reaction in the AMD contains reactant and product molecular structures,

the catalyzing enzyme, and the species involved in the reaction. We extracted 4325 human

reactions labeled as glucoronidation by the AMD. To confirm the AMD’s classification, we used

SMARTS string matching to check that each reaction product included an added glucoronide

attached to an oxygen, nitrogen, carbon, or sulfur atom. UGT-mediated sites of metabolism were

identified through analysis of reactant and product structures to identify which reactant atom(s)

are glucoronidated. In total, 2839 unique substrates containing 3340 SOMs were curated from the

AMD. All atoms in each molecule were classified into one of four substructure groups, matching

those in Peng et al. [194]. These groups were aliphatic hydroxyls (AlOH), aromatic hydroxyls

(ArOH), carboxylic acids (COOH), and nitrogen containing sites (Nitrogen). The Nitrogen group

contained aromatic and aliphatic amino nitrogens, and aromatic and aliphatic heterocyclic

nitrogens. All remaining oxygens, nitrogens, sulfurs and carbons were added to the Atypical

group. For example, nitrogens in sulfoamides, urea and carboxamides were included in the

Atypical group because they are only rarely conjugated. The exact definitions of these groups are

included in the Supplementary Information. As expected, commonly glucoronidated

substructures (Figure 2.3.1) were much more common than atypical substructures (Figure 2.3.2),
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Figure 2.3.1: The propensity of commonly glucoronidated chemical groups to undergo UGT-mediated
metabolism in the data used in this study. UGT metabolism prediction models are trained on 4557 glu-
curonidation reactions from 2839 unique substrates extracted from the Accelrys Metabolite Database. Example
substrates shown above contain of commonly glucoronidated chemical groups—aliphatic hydroxyls (AlOH),
aromatic hydroxyls (ArOH), carboxylic acids (COOH) and nitrogen containing groups (Nitrogen)—circled in red.
Experimentally observed SOM are circled in black. In our data, the AlOH, ArOH, COOH, Nitrogen, and Atypical
groups are conjugated, respectively, 49.6%, 76.3%, 80.0%, 8.5%, and 0.15% of the time.

and there were enough examples to model even the atypical sites.

2.3.2 External Testing Data

Three external datasets were used to assess the generalizability of models built on the training

data. The first testing set contains 141 unique UGT substrates recently added to AMD (Jan-2015

version) that are not in our training dataset. The second and third test sets respectively composed

of 54 and 20 substrates were used as validation sets by [207] and [194].

2.3.3 Heuristic Model

We constructed a simple heuristic model based on overall database statistics. This model was

useful for two reasons. First, it provided a baseline of performance that more complex methods

should outperform. Second, the molecules it cannot predict were good test cases for more

complicated algorithms. In this heuristic model, all the potential sites of UGT metabolism in a
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Figure 2.3.2: Atypical chemical groups undergoing UGT-mediated glucorondiation. In rare instances,
ethers, ketones, ureas, carboxamides, sulfoamides, thiols and tertiary carbons are chemical groups that are
glucoronidated . These chemical groups are collectively referred to as Atypical group in the text. Across 54965
atypical sites within thousands of molecules, only 85 positive were identified, where UGT was conjugated with
oxygen, nitrogen, sulfur and carbon, respectively, 29, 51, 2, and 3 times. Examples of these atypicals are shown
with sites of UGT metabolism circled.
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test molecule were identified. Each potential site was labeled by its overall probability of being

metabolized in the database. Matching these probabilities, the AlOH, ArOH, COOH, Nitrogen,

and Atypical groups were assigned the initial scores of, respectively, 49.6%, 76.3%, 80.0%, 8.5%,

and 0.14%. Next, these scores were summed across the whole molecule to compute a

normalization term. Finally, the initial scores were divided by this normalization term to yield the

final score. This score sums to one in molecules that have at least one potential site. The atoms of

a molecule with no potential sites all receive a score of zero. A Python implementation of this

model is included in the Supplementary Information to facilitate future studies.

2.3.4 Descriptors

A vector of numerical descriptors represented each atom in a test molecule; 98 descriptors in total,

62, 20, and 16 of which encode topological-, molecule-, and quantum chemical-derived chemical

information, respectively. These descriptors were chosen because they are effective for modeling

P450 metabolism in our prior work [258]. Descriptors were computed using in-house software

applied to SDF files with 3D coordinates (generated using Open Babel) and explicit hydrogens

[186]. We added an additional set of 7 statistical descriptors based on the heuristic model. Five of

these descriptors encoded the number of certain substructural groups—AlOH, ArOH, COOH,

Nitrogen (NR3, NHR2, NH2R) and thiols—that are contained in a given substrate. All atoms of

the same molecule had the same values for these descriptors. Two atom-level descriptors,

heuristic score (see 7.3.4) and the number of topological equivalent atoms were also added. A full

description of all descriptors used in this work is available in the Supplemental Information.

2.3.5 Machine Learning Models

A matrix of descriptor encoded atoms was presented to a neural network with 10 hidden nodes.

For comparison, we also trained a logistic regressor on the same data. During training, we learn a

mapping between the descriptor values of each atom and the binary experimental response of that

atom, metabolized or not metabolized. Also, atoms in the dataset were weighted so that the less
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common elements were equally important to the model’s error function as the most common

atoms. The weights of the model were calibrated during training by performing gradient descent

on the cross-entropy error of the difference between the predicted and actual response values of

each atom. Predictions were obtained using a leave-one-molecule-out cross-validation procedure.

Each molecule was predicted by an independent model trained using the remaining molecules of

the training set.

2.3.6 Performance Metrics

Two different metrics were used to evaluate the prediction accuracy. The first was the Top-N

metric, which considered a substrate correctly predicted if any of its experimentally observed

SOMs were predicted in the top N rank-positions out of all possible SOMs of the substrate. Tied

scores are handled appropriately, by averaging Top-N scores over all permutations of the tied sites

within each molecule. The Top-2 metric is the standard metric for evaluation CYP site of

metabolism models and is sensible in this context as well [210, 221]. We used a paired t-test to

compute the statistic significance between Top-N accuracies. The second metric was the area

under the ROC curve (AUC) [228] of the predictions of metabolized and not metabolized atoms

that all belong to the same chemical group: AlOH , ArOH, COOH, Nitrogen, or Atypical. This is

a standard metric employed in machine learning, as well as by Peng et al. [194], to determine how

well a method is able to distinguish between positives and negative test cases. This metric does

not measure the within-molecule accuracy, which is much more important for this specific

application. At the same time, it exposes which types of sites are best predicted. We used fisher’s

exact test to compute the significance of ROC differences, choosing the score cutoff at the point

closest to the upper left corner of the ROC plot. All significance tests used a threshold of 0.05.
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Heuristic Logistic Neural Net

Top-1 79.9 85.5 86.1
Top-2 91.6 96.3 97.1
Top-3 94.7 98.4 98.9

AlOH-AUC 84.6 86.4 87.1
ArOH-AUC 80.0 81.3 83.1
COOH-AUC 85.4 86.8 87.5

Nitrogen-AUC 87.8 90.8 93.3
Atypical-AUC 86.7 98.6 98.4

Table 2.4.1: Leave-one out cross-validated prediction accuracies on the training dataset. For each met-
ric, the highest performance is bold, along with any scores not statistically different from the best performance
(using a p-value cutoff of 0.05). XenoSite is the best performing models across all metrics. The number of
metabolized to nonmetabolized AlOH , ArOH, COOH, Nitrogen, and Atypical sites are, respectively, 925/937,
1551/480, 507/127, 272/2940, and 85/54880.

2.4 Results and Discussion

2.4.1 Accuracy in Identifying SOMs

XenoSite model very accurately predicted UGT metabolism, and the heuristic model was nearly

as accurate. XenoSite model, using a neural network, had cross-validated Top-1, Top-2, and

Top-3 accuracies of 86.1%, 97.1% and 98.9% for the training set (Table 2.4.1 and Figure 2.4.1).

The AUC accuracies of XenoSite for AlOH , ArOH, COOH, Nitrogen, and Atypical chemical

groups were, respectively, 87.1%, 83.1%, 87.5%, 93.3%, and 98.4%. It appears that modeling UGT

metabolism is easy for most molecules; according to the Top-2 metric, the XenoSite models were

10% more accurate than CYP models, and the heuristic model alone was 91% accurate. According

to the Top-1, Top-2, and Top-3 metrics the performance difference between XenoSite and the

baseline heuristic was respectively 6%, 5%, and 4%. Likewise, the accuracy of the neural network

and logistic regressor models differed by less than one percent for all performance metrics, but

this improvement was consistent so we decided to continue using the neural network.

At the same time, the neural network identified Atypical and Nitrogen sites much better than
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Figure 2.4.1: Comparison between neural network, logistic regression and heuristic models. Leave-one
out cross-validated prediction accuracies on the training dataset are shown. Across all performance met-
rics, the neural network performs best, followed closely by the logistic regressor, and finally by the heuristic
method.
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the heuristic model. About 80% of the training set molecules were very easy, and predicted

correctly by the heuristic model. The remaining molecules were difficult, but often predicted

correctly by XenoSite (Figure 2.4.2).

2.4.2 Descriptors Driving Accuracy

A permutation sensitivity analysis identified the descriptors driving model accuracy [107]. We

started with the trained model. Next, we selected the 508 molecules that were poorly predicted by

the heuristic model (with no validated SOMs within the molecules’ first ranked heuristic scores).

Next, we randomly permuted each descriptor column (or group of closely related descriptors) in

the input data for these molecules. The trained model was applied to the permuted data, and the

performance drop across all the molecules was recorded. The higher the performance drop, the

more important the descriptor to the model’s performance.

We saw similar results using all performance metrics (Figure 2.4.3). Using the aggregate Top-2

performance as a guide, this analysis identified topological descriptors (identities of the atom and

its neighbors (atoms one, two and three bond away), number of bound hydrogens and heavy

atoms and size of ring containing the atom) and heuristic descriptors (heuristic score and number

of substructures) as the most important descriptors for differentiating metabolized sites from

non-metabolized sites. The result revealed that XenoSite heavily relies on local topology for

calculating SOM score, and does not need descriptors from the quantum simulation. Similar

results were seen in the substructure-specific sensitivities. Here, once again, topological and

heuristic descriptors were the most important, and no quantum chemical descriptors were

necessary. At the same time, a few molecule-level descriptors (like logP) were also important.

Notably, the two heuristic descriptors were consistently among the most important.
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score

Simple Molecules

Observed SOM

Potential Site

Figure 2.4.2: XenoSite predictions. Example molecules are shown with their experimentally observed UGT
site of metabolism (SOM) circled in black. Four commonly glucoronidated chemical groups—AlOH , ArOH,
COOH, Nitrogen—are in small dashed-circles. Possible atypical sites are not circled, even though our model
can predict them as sites. The shading on each atom plots the cross-validated prediction score. The top
panel shows simple molecules with SOMs that can be readily identified by the heuristic model. The bottom
panel shows complex molecules with SOMs that are accurately predicted by the XenoSite but not the heuristic
model. The complex molecules are real drug candidates and drugs: GSK101892 [193], Imatinib mesylate [84],
Voriconazole [204], 10074-G5 [49], Oxycodone [19], Methylprednisone [242], Ticagrelor [232], SN-38 [230] and
Dasatinib [45].
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Figure 2.4.3: The importance of specific descriptors to predicting 852 difficult molecules. A permutation
sensitivity analysis quantified the importance of descriptors for the human UGT metabolism model to differen-
tiate metabolized from non metabolized sites across the whole dataset (Top-2 accuracy) and within all poten-
tial sites of the same substructure groups (AUC accuracy). The 10 most important descriptors are plotted. The
heuristic and topological descriptors were most important. Surprisingly, none of the quantum level descriptors
were important. Consequently, the final model we publish in the website does not run a quantum simulation to
make predictions.
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Figure 2.4.4: Performance on external test sets: A test set of 141 unique molecules that were not in our
training set were collected by filtering the recently added glucuronidation reactions in the Accelrys Metabolite
Database. The neural network performed better than the heuristic model across all metrics.

2.4.3 Performance on External Dataset

We settled on using a neural network trained on heuristic and topological descriptors for our final

model, but also saw value in the heuristic model’s simplicity. Both the neural network and the

heuristic models performed well on the external testing dataset of 141 molecules (Figure 2.4.4).

Just like in the the training set, the neural network performed better than the heuristic model

(83.7% versus 75.5% Top-1 accuracy). Accuracies in substructure AUCs, however, were

essentially identical except with atypical sites. Here, the neural network achieved an AUC of

99.5%, compared to 55.4% for the heuristic model. Overall, performance on the testing dataset of

either model was comparable to the cross-validated performance on the training dataset.
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2.4.4 Comparison to Prior Studies

Performance comparisons to prior methods using previously published external datasets were

inconclusive. We first compared XenoSite to SOMP [207]. SOMP’s test set included 20

molecules. Prediction accuracies of XenoSite and SOMP [207] on this test—Top-1, -2 and -3

scores of 90%, 95%, and 95%, respectively for SOMP versus 95%, 95%, and 100% for

XenoSite—were not statically significant. Similarly, the SOM-UGT model in Peng et al. [194]

was validated using an external dataset of 54 molecules, reporting only sensitivity and specificity

for each chemical group. Difference in accuracies were not statistically significant ( Figure 2.4.5),

probably because this dataset is small and is mainly composed of very easy to predict molecules.

A test set built using 49 molecules that the heuristic model does not predict accurately

according to the Top-1 metric, showed XenoSite is significantly more accurate than the heuristic

model, SOM-UGT and SOMP. A subset of 49 difficult molecules was identified from the 141

external test set molecules. Each of these 49 molecules was not correctly predicted by the heuristic

model. The sites of UGT metabolism for these 49 molecules were predicted using SOMP’s

website and SOM-UGT software. Top-N and substructure AUC metrics were used to assess the

performance of the two models. The true positive, true negative, false positive and false negative

values were calculated using the point closet to the upper left conner on the ROC curve. SOMP

was unable to make predictions on two molecules with positive charges in this testing set while all

other models could. As shown in Table 2.4.2, XenoSite outperforms all other models across all

accuracy metrics. Specifically, XenoSite has statistically-significant better performance than

SOMP, SOM-UGT and the heuristic model according to the Top-2,-3 and Atypical AUC metrics.

XenoSite and the heuristic model run very quickly, taking less than a second per molecule. We

expect SOMP, which is based on fingerprints, is similarly fast. However, SOM-UGT requires 59

minutes to predict the 49 molecules in the test set. In this regard, SOM-UGT is substantially

slower than other approaches, and therefore less useful for screening large numbers of molecules.

These comparisons show that our modeling approach outperformed existing methods in tests,
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Figure 2.4.5: The XenoSite predictions on an external dataset of 54 molecules The external dataset in
the [194] study is used to test our model. The published performance of SOM-UGT are depicted as stars.
XenoSite ROC plots are depicted as solid black lines. Heuristic ROC plots are depicted as dash lines. The
points closest to the upper left corner of the XenoSite ROC plots are chosen for comparison to SOM-UGT. The
performance difference between our model and the SOM-UGT on this test set is not statistically significant
(Fisher’s exact test (2x4) two-tailed p-values: AlOH: 0.636, ArOH: 0.340, COOH:0.058, Nitrogen: 0.229).

33



Table 2.4.2: XenoSite is more accurate than all other methods on 49 difficult to predict molecules. To
compute the Top-N performances, a global SOM-UGT model was constructed predicting positive sites that
were predicted positive by any of the four published substructure-specific models. For each metric, the high-
est performance is bold, along with any scores not statistically different from the best performance (using a
p-value cutoff of 0.05). XenoSite is the best performing model. The number of metabolized to nonmetabolized
AlOH , ArOH, COOH, Nitrogen, and Atypical sites are, respectively, 26/44, 17/23, 2/15, 8/36, and 2/1062.

Heuristic XenoSite SOM-UGT SOMP

Top-1 0.00 53.06 33.70 49.88
Top-2 82.86 91.84 56.13 71.43
Top-3 94.29 97.96 63.70 79.59

AlOH-AUC 75.61 77.53 63.32 74.97
ArOH-AUC 60.33 68.03 48.59 64.05
COOH-AUC 60.71 56.67 43.33 48.21

Nitrogen-AUC 86.50 91.91 49.26 92.13
Atypical-AUC 89.82 99.43 50.00 93.67

but also highlights a key deficiency in the literature. Accuracy in this problem is strongly driven

by the number of easy molecules that are trivially predicted by a heuristic method. We

recommend future modeling effort should be directed towards predicting molecules performance

according to the heuristic model on test sets in future studies.

2.5 Conclusion

This study introduces two approaches to predicting UGT Sites of Metabolism: (1) a

statistics-based heuristic model and (2) XenoSite, a neural network trained on a large database of

UGT metabolism. XenoSite accurately predicts observed SOMs of known substrates 86% of the

time, and outperforms existing methods, including the heuristic model, on difficult molecules.

XenoSite might might be most useful in contexts where atypical sites of UGT metabolism are

important and, therefore, the heuristic model is less accurate.
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2.6 Abbreviations

ADR, Adverse Drug Reaction; AMD, Accelrys Metabolite Database; AUC, Area Under the

Receiver Operating Characteristic Curve; UGTs, Uridine diphosphate glucunosyltransferases

SOM, Site of Metabolism
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3
Modeling Phase II Metabolism

This chapter is adapted from a manuscript in preparation:

Na Le Dang, Matthew K. Matlock, and S. Joshua Swamidass, Deep Learning Phase II

Metabolism in Four Colors

3.1 Summary

Phase II metabolism works in concert with Phase I metabolism to influence the absorption,

disposition, metabolism excretion, and toxicity of drugs. However, there have been few modeling

efforts to predict Phase II metabolism. In addition, because metabolic reactions have been studied

in isolation, a common limitation of both in vitro and in silico studies is that they cannot integrate
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these isolated systems to predict their net effect in vivo. To fill this knowledge gap, we built a

Phase II metabolism model that predicts both the site and substrate specificity of four major Phase

II reactions: glucuronidation, sulfonation, acetylation and methylation. To learn the net effect of

competing pathways, we implement a model architecture with multi-score output layers and

cross-talk layers. The multi-score output layers allow information-sharing between metabolism

prediction tasks. The cross-talk layers allow integration of different reaction types and different

sites, scaling the output of a specific reaction type to reflect the presence of competing reaction

types. Our model can predict the site specificity with an average area under the ROC curve

(AUC) of 98% and the substrate specificity with an AUC of 83%.

3.2 Introduction

Given the importance of metabolism in the absorption, disposition, metabolism and excretion

(ADME) profile of a drug, the field of drug metabolism has rapidly evolved both experimentally

and computationally. While much effort has been focused on Phase I metabolism, specifically

that of P450 enzymes, very few models for Phase II have been developed.

[57–59, 97, 103, 155, 207, 208, 210, 257–259, 261] Our group and others had previously

developed site of metabolism models for uridine diphosphate glucuronosyltransferases

(UGT)[56, 194, 207] and glutathione transferases (GST).[105, 106] Despite accounting for only

∼ 20% of all metabolism reactions,[249] Phase II metabolism significantly contributes to the

ADME profile of a drug.[41, 51, 162, 219] As the results, having both accurate Phase I and Phase

II models is imperative to computational metabolism assessment.

Uridine diphosphate glucuronosyltransferases (UGT), sulfotransferases (SULT),

N-acetyltransferases (NAT), thiopurine S-methyl transferase (TPMT), and glutathione

transferases (GST) are the five most important Phase II metabolizing enzyme

families.[88, 115, 246] Together, these enzyme families account for 87% of all Phase II

metabolism.[115] In this study, we developed a model that simultaneously predicts UGT, SULT,
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Figure 3.2.1: Four Phase II reaction types covered in this study. We developed a model that simultane-
ously predicts glucuronidation (UGT), sulfonation (SULT), acetylation(NAT), and methylation (TPMT) sites of
metabolism. Example reactions above are glucuronidation and sulfonation of acetaminophen, and acetylation
and methylation of serotonin.
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NAT, and TPMT sites of metabolism (Firgure 3.3.1). GST metabolism has been assessed

extensively by our group, and is not covered in this study. [105, 106]

TO DO: Add a paragraph about the model prediction integration.

3.3 Methods

3.3.1 Training Datasets

We collected a chemically diverse Phase II substrate data set from the literature-derived Accelrys

Metabolite Database (AMD). A total of 17181 Phase II reaction records were collated. Multiple

reactions involving the same substrate were mapped onto a single substrate instance using

maximum common substructure matching. [39] The final Phase II data set contained 8750 unique

substrates. There were 6417, 2211, 918 and 910 UGT, SULT, NAT, and TPMT substrates,

respectively. 7468, 2535, 995, and 1125 sites of UGT, SULT, NAT, and TPMT metabolism,

respectively, were registered (Figure 3.3.1). Under the AMD license agreement, we were not

allowed to disclose the structures of molecules in the data set. However, to enable the

reconstruction of our complete database and reproduction of our results, we provided all reaction

and molecule AMD registry numbers in the Supplemental Materials.

3.3.2 Phase II Model

To predict the susceptibility to UGT, SULT, NAT, and TMPT metabolism, we trained a deep

neural network with one input layer, three hidden layers, one cross-talk layer, and two output

layers (Figure 7.3.2). For an input molecule, atom-level and molecule-level descriptors were

calculated for all atoms. There were 15 molecule-level and 390 atom-level descriptors. The

descriptors are detailed in the Supplemental Materials. The input layer fed to the first hidden layer

of 20 nodes, which in turn fed to the second hidden layer of four nodes. For each atom, this

second hidden layer would generate four scores, corresponding to the four types of Phase II
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SULT 1263 34 183

NAT 117 52 19

TPMT 265 184 27

UGT SULT NAT TPMT

0

1000

2000

3000

4000

5000

6000

7000

8000
C

ou
nt

s

Molecules

Sites

Figure 3.3.1: Training data set. (Upper) The numbers of molecules and sites metabolized by each enzyme
family are shown. There were 17181 compounds in the XenoSite Phase II training data set. 6417, 2211, 918 and
910 were UGT, SULT, NAT, and TPMT substrates, respectively. There were 7468, 2535, 995, and 1125, respec-
tively, sites of UGT, SULT, NAT, and TPMT metabolism. (Lower) The numbers of molecules (dark-gray cells)
and sites (light-grey cells) that metabolized by pairs of enzymes are shown.
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Figure 3.3.2: The Structure of the Phase II Reaction Model. Our neural network model contained one in-
put layer, two hidden layers, and two output layers. From the structure of an input molecule, 15 molecule-level
and 390 atom-level descriptors were calculated and fed to the input layer. Both molecule- and atom-level de-
scriptors were submitted to the atom neural network, which computed four atom-level scores, corresponding
to the four Phase I reaction types, for each atom in the input molecule. The atom network was trained using
site-level Phase II metabolism data, where sites were involved in a certain type of reaction and labeled positive
for that class. As the result, each bond is predicted with four atom-level scores corresponding to four Phase II
reaction types. Each of these score reflects the probability that the atom undergoes the corresponding type of
reaction. Next, the top five atom-level scores for each reaction type (20 in total) and all molecule-level descrip-
tors were presented to the molecule network, which yielded four molecule-level scores. The molecule network
was trained using molecule-level Phase II metabolism data, where molecules were involved in each type of
reaction classes and labeled positive for that type. Each molecule is predicted with four scores. Each of these
score reflects the probability that the molecule undergoes one of the four corresponding types of Phase II bio-
transformation.
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reactions. Outputs of the second hidden layer were aggregated on a per-molecule basis at the

cross-talk layer of five nodes, corresponding to the four reaction types and the composite of all

types. The cross-talk layer and the second hidden layer both fed into the site-level output layer.

This output layer would generate four site-level scores corresponding to the four types of Phase II

reactions for each atom. Site-level scores were aggregated on a per-molecule basis. Top 5

site-level scores for each reaction types (20 in total), in addition to molecule-level descriptors,

were fed to the third hidden layer of 10 nodes. The third hidden layer fed to the molecule-level

output layer which would generate four scores for each molecule. Each of these four scores

represented the probability that the molecule was a Phase II type-specific (UGT, SULT, NAT, and

TMPT) substrate.

The network was trained to produce accurate site-level and molecule-level scores. The weights

of the model were calibrated during training using gradient descent on the cross-entropy error of

the difference between the predicted and actual response values of each site/molecule using

TensorFlow.[3]

3.4 Results and Discussion

The following sections examined the inner working of the Phase II model. First, we reported the

model performance at the site level. Second, we assessed the accuracy at the molecule level.

Third, we examined the accuracy at predicting enzyme specificity. Fourth, we examined the

factors that are important to each target at the site level. Fifth, we examined the factors that are

important to each target at the molecule level. The accuracy of the model was evaluated using a

ten-fold cross-validation procedure. The data set was divided into ten groups with an equal

number of substrates in each group. Predictions were generated for each tenth of the data by a

model trained using the remaining nine tenths of the set. The resulting predictions covered the

complete data set and were used to compute the accuracy metrics in this study.
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3.4.1 Site Prediction Accuracy

Considering each reaction type separately, the Phase II model accurately predicts SOMs within

metabolized molecules. Reaction-type specific performance is measured using “top-two” and

“average site AUC”. First, we measure the“top-two” performance on a type-by-type base, where a

molecule is considered to be correctly predicted if any of its reported SOMs is ranked in the top

two sites sorted by that type-specific prediction score. The top-two metric is commonly used to

evaluate CYP site of metabolism models. The top-two metric is helpful for assessing individual

drug candidates. Glucuronidation, sulfuration, acetylation, and methylation top-two accuracies

are 96.5%, 95.3%, 94.4%, and 95.3%, respectively (Figure 3.4.1a, top). Second, we measure

“average site AUC”, a metric based on the area under the ROC curve (AUC). AUC is a standard

metric employed in machine learning to quantify how well a model distinguishes between

positive and negative test cases. For each reaction type, we compute the individual AUC of each

molecule in the data set, and then averaging across the whole data set to produce a single

summary statistic. Average-site AUCs for glucuronidation, sulfation, acetylation, and methylation

are 98.8%, 98.6%, 97.6%, and 98.6%, respectively (Figure 3.4.1a, bottom).

The model also accurately differentiates metabolized and non-metabolized sites considering the

entire data set. We use the “global-siteAUC” metric to evaluate this ability. For each reaction

type, a ROC curve across all atoms in the data set is constructed (Figure 3.4.1b). The global-site

AUCs for glucuronidation, sulfuration, acetylation, and methylation are 98.5%, 98.3%, 97.1%, and

98.0, respectively.

Considering all reaction types together, the Phase II model accurately predicted type-specific

SOMs within metabolized molecules. In contrast with the previous metrics, the model’s ability to

simultaneously predict the type and site is evaluated here. In this evaluation, each reaction-site

pair is considered as an individual entity. All pairs are ranked by the scores, and compared with

the known metabolism to verify if observed SOMs are separated from the rest. Considered all

reaction types together, the model has an average top-two, average-site AUC, and global-site
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Figure 3.4.1: Phase II Model Accurately Predicts Site-Level Metabolism. Considered each reaction type
separately, the Phase II model accurately predicted SOMs within metabolized molecules. Glucuronidation, sul-
furation, acetylation, and methylation top-two accuracies were, respectively, 96.5%, 95.3%, 94.4%, and 95.3%.
The global AUC for glucuronidation, sulfuration, acetylation, and methylation were 98.5%, 98.3%, 97.1%, and
98.0%, respectively. Similar results were observed considering all reaction types together. Considered all four
reaction types together (Aggregated–black), the model had an average cross-validated top-two accuracy and
global AUC of 95.3% and 98.6%, respecitively.

AUC of 95.3%, 98.2%, and 98.6%, respectively.

The site-level output of the model is a well-scaled probability. When we binned atom-reaction

pairs by prediction score, the proportion of sites of metabolism in each bin strongly correlates

with the bin’s score (Figure 7.4.2, R2 = 0.947). Thus, the model’s site-level output is interpretable

as the probability and can be combined with other probabilistic outputs.

3.4.2 Molecule Prediction Accuracy

Considering each reaction type separately, the Phase II model accurately predicts which molecules

are metabolized. The global AUCs at the molecule level are 80.9%, 77.2%, 89.4% and 85.2% for

UGT, SULT, NAT and TPMT, respectively. In addition, the Phase II model correctly predicts the

type of reaction for each site. The aggregated global AUC score is 90.9% (Figure 3.4.3).

The molecule-level output of the model is a well-scaled probability. When we binned

atom-reaction pairs by prediction score, the proportion of sites of metabolism in each bin closely
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Figure 3.4.2: The model makes well-scaled site-level predictions, corresponding to the probabilities.
Phase II site-level score has a strong correlation to a perfectly scaled prediction (R2 value of 0.947 and RMSE
of 7.6%). This means that the score is interpretable as the probability that an atom undergoes one of the four
Phase II reaction types. The bar graph plots the distribution of scores across reaction-type-specific metabo-
lized and non-metabolized heavy atoms. The solid line plots the percentage of metabolized atoms in each bin.
The diagonal dashed line indicates a hypothetical perfectly scaled prediction. Reliability diagrams for each
reaction type are in the Supplemental Materials.
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Molecule-level ROC Curves

Figure 3.4.3: The model accurately predict molecule-level metabolism. Considering each reaction type
separately, the Phase II model accurately predictes which molecule is metabolized. The global AUCs at the
molecule level are 80.9%, 77.2%, 89.4% and 85.2%. Considering all targets together, the global AUC score is
90.9%.
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Figure 3.4.4: The model makes well-scaled molecule-level predictions, corresponding to probabilities.
Phase II molecule-level score has a strong correlation to a perfectly scaled prediction (R2 value of 0.916 and
RMSE of 10.8%). This means that the score is interpretable as the probability that a molecule is metabolized
by a modeled Phase II reaction. The bar graphs plot the distributions of scores across 35, 000 reaction type-
specific metabolized and non-metabolized molecules (8750 for each reaction type). The solid lines plot the
percentage of molecules that undergoes one of the four modeled Phase II reactions in each bin. The diagonal
dashed lines indicate a hypothetical perfectly scaled prediction. Reliability diagrams for each of the reaction
type are in the Supplemental Materials.

correlates with the bin’s score (Figure 7.4.2, R2 = 0.916). Thus the model’s molecule-level output

is interpretable as a probability and can be combined with other probabilistic outputs.

3.4.3 Enzyme Specificity

Our model can discriminate pairwise enzyme specificity at both site- and molecule-levels with

high accuracies. We measure this ability through the “signed” and “unsigned enzyme specificity”

metrics. The “signed enzyme specificity” measures how often the model assigns higher score to

the metabolizing enzyme than the non-metabolizing enzyme among pairs with different

metabolism status. The “unsigned enzyme specificity” measures how often the model assign pairs

of scores with larger differences for differentially metabolized pairs than those of identically
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metabolized pairs. The average pairwise site- and molecule-level signed enzyme specificity are

90.4% and 90.6%, respectively. The average site- and molecule-level pairwise unsigned enzyme

specificities are 98.0% and 77.7%, respectively (Figure 3.4.6). Overall, the model is best at

differentiating NAT metabolism from that of other enzyme families.

Our model could predict which enzyme(s) of the four responsible for metabolism at both site-

and molecule-level with high accuracies. For each metabolized site/molecule, we constructed a

ROC curve from its four metabolism scores and corresponding metabolism statuses. The

“average enzyme-specificity AUC” reflects the model ability to accurately predict enzymes

specificity for sites and molecules. The average enzyme-specifity AUC at site- and molecule-

levels were 90.6% and 90.1%, respectively.

3.4.4 Descriptors Driving Accuracy

A permutation sensitivity analysis identifies the descriptors driving model accuracy [107]. We

started with the trained model. Next, we randomly permuted each descriptor column (or group of

closely related descriptors) in the input data for these molecules. The trained model was applied

to the permuted data, and the performance drop across all the molecules was recorded. The higher

the performance drop, the more important the descriptor to the model’s performance.

We saw similar results using all performance metrics (Figure 3.4.8). Using the aggregate

Global AUC performance as a guide, this analysis identified topological descriptors (identities of

the atom and its neighbors (atoms one, two and three bond away), number of bound hydrogens

and heavy atoms and size of ring containing the atom) and heuristic descriptors (heuristic score

and number of substructures) as the most important descriptors for differentiating metabolized

sites from non-metabolized sites. The result revealed that XenoSite heavily relies on local

topology for calculating SOM score, and does not need descriptors from the quantum simulation.

Similar results were seen in the substructure-specific sensitivities. Here, once again, topological

and heuristic descriptors were the most important, and no quantum chemical descriptors were
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Figure 3.4.5: Our Phase II Model Have High Enzyme Specificity. The “signed enzyme specificity” measures
how often the model assign higher score to metabolizing enzyme than non-metabolizing enzyme among pairs
with different metabolism status. The “unsigned enzyme specificity” measures how often the model assign
pairs of scores with larger differences for differentially metabolized pairs than those of identically metabo-
lized pairs. The average pairwise site- and molecule-level signed enzyme specificity are 90.4% and 90.6%,
respectively. The average site- and molecule-level pairwise unsigned enzyme specificity are 98.0% and 77.7%,
respectively.
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necessary. At the same time, a few molecule-level descriptors (like logP) were also important.

Notably, the two heuristic descriptors were consistently among the most important.

At molecule-level, a sensitivity analysis reveal that most important factors to predicting

substrate specificity, with the exception of sulfonation (SULT) target, are top scores from the

site-level. Top1 UGT score was the most important descriptor for glucuronidation (UGT),

acetylation (NAT), and methylation (TPMT) targets. Numbers of hydrogen bonds within the

molecules (HBD, HBA1, HBA2) and logP, correlated to the compound’s water solubility, are also

among the most significant descriptors.

3.5 Conclusion

This study introduces an accurate model to predict four major types of Phase II metabolism:

glucuronidation, sulfation, acetylation, and methylation. Phase II XenoSite can predict SOM

within metabolized molecule with an average top-two 95.3% and substrate specifcity with an

average molecule AUC of 85.2%. We will combine this model with other models to predict the

complete metabolism profile of a novel compound.
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Figure 3.4.7: The importance of specific descriptors to predicting site specificity. A permutation sensi-
tivity analysis quantified the importance of descriptors for the Phase II model to differentiate metabolized from
non metabolized molecules of each reaction type. The 10 most important descriptors are plotted for each tar-
get. The number of hydrogen bonds of the site is always the most important descriptors for predicting Phase II
SOM. Glucuronidation (UGT) target are most sensitive to numbers of hydrogen bonds.

52



�50510152025
Global AUC Performance Drop (%)

Top5 SULT Score

HBA2

Top5 TPMT Score

Top5 NAT Score

Top5 UGT Score

Top2 TPMT Score

Top3 NAT Score

Molar refractivity

Top4 TPMT Score

logP

Top3 UGT Score

HBD

Molercular Weights

Top2 SULT Score

Top1 UGT Score

�5 0 5 10 15 20 25
Global AUC Performance Drop (%)

Top2 NAT Score

HBA2

Top SULT Score

Top1 SULT Score

Molar refractivity

Number of Triple Bonds

Top2 UGT Score

Molercular Weights

Top4 UGT Score

Top2 TPMT Score

logP

Top1 NAT Score

Top4 TPMT Score

Top2 SULT Score

Top1 UGT Score

0.00 0.05 0.10 0.15 0.20 0.25
Global AUC Performance Drop (%)

HBA2

Top3 NAT Score

Number of Triple Bonds

Top3 TPMT Score

Number of Aromatic Bond

Top3 UGT Score

Top5 SULT Score

Number of Hydrogens

Number of Double Bonds

HBA1

Number of Heavy Atoms

HBD

Number of Rings

Number of Single Bonds

Number of Bonds

�50510152025
Global AUC Performance Drop (%)

Number of Double Bonds

Number of Triple Bonds

Top5 UGT Score

Top5 SULT Score

logP

TPSA

Top3 NAT Score

Top3 TPMT Score

Molar refractivity

Top3 UGT Score

Molercular Weights

Top1 TPMT Score

Top1 SULT Score

HBD

Top1 UGT Score

UGT SULT

NAT TPMT

Figure 3.4.8: The importance of specific descriptors to predicting molecule specificity. A permutation
sensitivity analysis quantified the importance of descriptors for the Phase II model to differentiate metabolized
from non metabolized molecules of each reaction type. The 10 most important descriptors are plotted for each
target. Top1 UGT was the most important descriptors for glucuronidation. Suprisingly, Top 1 UGT score was
also the most important descriptor for acetylation and methylation. The magnitude of performance drop is 10
fold smaller for sulfonation than that of other target.
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4
Modeling Phase-I Metabolism.

This chapter is adopted from a manuscript submitted to ACS Central Science:

Na Le Dang, Tyler B. Hughes, Matthew K. Matlock, and S. Joshua Swamidass, The Metabolic

Rainbow: Deep Learning Phase 1 Metabolism in Five Colors, 2018

4.1 Summary

Metabolism of drugs their affects absorption, efficacy, excretion, and toxicity profiles. In vitro

experiments with human liver microsomes and in vivo animal models are commonly used to

predict the metabolism of a drug candidate in humans. Unfortunately, it is expensive to

comprehensively test the metabolism of vast numbers of candidates during early stages drug
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development. Moreover, in vitro experiments do not correspond with in vivo metabolism, so

pathways giving rise to toxicity in patients are not always understood. Computational metabolism

models can rapidly and cost-effectively predict which atoms or bonds of a molecule are modified

during metabolism—site of metabolism—on thousands of drug candidates, thereby significantly

reducing the number of experiments needed. However, current computational metabolism models

are unable to predict what specific metabolic transformations would happen at certain sites.

Identification of metabolism type is important for metabolite prediction, especially in the case of

Phase I metabolism which includes many reaction types. Without knowledge of potential

metabolite structures, medicinal chemists cannot differentiate harmful metabolic transformations

from beneficial ones. To address this shortcoming, the current study modeled not only the site but

also the type of human Phase I metabolism. We trained a neural network model on a

literature-derived dataset of 20736 human Phase I reaction records. Among the covered reaction

types were dealkylation, dehydrogenation, epoxidation, hydrolysis, hydroxylation, and reduction.

Our model differentiated between these metabolic reactions with cross-validated accuracy of

97.1% area under the curve. The model developed in this study is available at

http://swami.wustl.edu/xenosite.

4.2 Introduction

Metabolism has a significant implication on the absorption, distribution, efficacy, excretion, and

toxicity profiles of pharmaceutical agents. In this study, we focused on human Phase I

metabolism by cytochrome P450s (P450), other oxidoreductases, and hydrolases. These enzymes

are responsible for the majority of xenobiotic metabolism. For example, P450s alone participate

in the metabolism of more than 75% of FDA approved drugs.[249]

Phase I enzymes like P450 catalyze a wide variety of substrates, forming a diverse range of

metabolites. [85] Phase I metabolism by these enzyme can introduce or reveal a functional group

such as a hydroxyl, carboxyl, or amino group through a wide range of chemical transformations.

Examples of Phase I reactions are hydroxylation, epoxidation, S- and N- oxidation, dealkylation,
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deamination, dehalogenation, and dehydrogenation, among others.[60]

Although metabolism mainly detoxifies and deactivates xenobiotics, it can also bioactivate

them into reactive metabolites.[135, 190] Reactive metabolites are electrophilic species that

disturb cellular homeostasis through covalent/non-covalent interactions with

macromolecules[100, 167, 177, 191] and can trigger cascades of toxic

responses.[86, 113, 177, 231] Whether molecules are activated into toxic metabolites, or

detoxified, often depends on the precise metabolic transformations they undergo in Phase I

metabolism. For example, only some Phase I metabolites of chloramphenicol are reactive, and

expected to be toxic (Figure 4.2.1).

There is substantial evidence that most immune-mediated hypersensitivity reactions—for

example, idiosyncratic adverse drug reactions (IADRs) [71]—are caused by reactive metabolites

of drugs. Approximately 62% of drugs either withdrawn from the market or labeled with a black

box warning due to IADRs have been demonstrate to be metabolized into reactive metabolites

[243]. For this reason, substantial effort is put towards determining which molecules are

metabolized into reactive metabolites.

There are three existing approaches to model the complexities of Phase I sites of metabolism:

(1) generic SOM prediction, (2) reaction-type specific prediction, and (3) multiple reaction-type

prediction. Each of these three approaches has different strengths and weaknesses. However, for

predicting bioactivation, all three are fundamentally limited. To address these limitations, a key

innovation put forward is a “five color” classes for metabolic sites of metabolims, a metabolic

rainbow. This is as an approach for building a rainbow SOM model that, based on context, can be

unambiguously decoded into a much larger number of reaction-types.

4.2.1 Generic Metabolism Model

In the first approach, generic SOM prediction, models are trained to predict which atoms are

modified by metabolism. Typically, atoms are labeled as metabolized or not metabolized, but in

some cases bonds may be labeled.[207, 208, 210, 257, 258] In this approach, metabolism models
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Figure 4.2.1: Both site and type identifications are important for determining whether a metabolic trans-
formation is beneficial or harmful. Antibiotic chloramphenicol is known for its severe toxicities such as
“gray baby syndrome” and bone marrow suppression.[74] These toxicities were attributed to the reactivity
of both chloramphenicol and several of its Phase I metabolites, nitroso-chloramphenicol and acylchloride-
chloramphenicol.[52, 83, 256] However, not all chloramphenicol’s Phase I metabolites are reactive. Both
metabolites generated through hydrolysis and dehydrogenation were reported and predicted by our reactiv-
ity model[106] to be inactive. This example illustrates the importance of knowing not only the site but the type
of reaction in discriminating between beneficial and harmful metabolic transformations.
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predict which atoms and bonds are metabolically modified within a given molecule (its sites of

metabolism), but not the specific type of metabolic transformations take place at these sites.

These models are very effective at identifying metabolically labile sites, have become widely

used in industry as a guide in designing molecules with increased half life.

Many sites, however, have potential to be metabolized in multiple ways. In generic SOM

modeling, the specific metabolic transformation, the specific reaction type, is not specified.

Consequently, these models do not provide enough information to predict metabolites, and are

unhelpful in modeling bioactivation pathways.

4.2.2 Single Reaction-Type Models

In the second approach, specific reaction types are modeled individually in separate models. For

example, our group has published quinone formation, epoxidation, N-dealkylation, reduction, and

sulfur-oxidation models.[57, 59, 103, 104] This approach has significant advantages. The nuances

of each reaction type can be carefully considered in isolation. Expert knowledge can guide design

of features, that can substantially improve accuracy. Curation of datasets of a uniform

reaction-type encourages consistent annotation, and identify when data must be supplemented for

reasonable performance. Most importantly, predictions are not ambiguous regarding the

metabolic transformation, and give enough information to predict metabolite structures. This

approach has been invaluable in studying bioactivation pathways, including modeling how

metabolism makes some molecules with structural alerts toxic, but leaves others inert.[57, 59]

However, this approach is limited in several key respects. First, each model is trained on

entirely different datasets, so their outputs are not scaled to predict the relative likelihood of

different reaction-types. Second, information common to different reaction-types is not exploited

to improve accuracy. Third, only a minority of reaction-types have been modeled this way.
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4.2.3 Multiple Reaction-Type Models

In the third approach, a single model is used to simultaneously a large number of Phase I

reactions.[97, 261] Only a few attempts have been made in this, all were very far from

comprehensive. As we will see, these models only cover 42-48% Phase I metabolism and leave

out several reaction types that frequently generate reactive metabolites like epoxidation[130] and

quinone formation.[214] Moreover, it is difficult for users to interpret these models’ predictions

because they are not probabilistic. Detailed review of these models is in the Result and

Discussion section. Those this approach might have potential, it has not useable to study

bioactivation for these reasons.

A looming problem for multiple reaction-type models is the difficulty of visualizing and

displaying results. As the number of reaction types proliferates, our ability to visualize and

organize results into coherent views becomes more and more difficult. With a large number of

reaction types in Phase I metabolism, the scalability of these approaches is in doubt.

4.2.4 Five Colors of Metabolism

The central innovation put forward here is a “five color” classification of reaction types into a

metabolic rainbow (Table 4.2.1). This is as an approach for building SOM models that predict just

five different classes of reactions taking place on bonds, which can, based on a bond’s context, be

unambiguously decoded into a much larger number of reaction-types. In this framework, bonds

are labeled, not atoms, and they are labeled by color. Depending on the precise substructure the

label appears and the color of its reaction, SOM sites can be decoded into one of 21 reaction-types.

Two design goals guided classification of reaction types into into five colors. First, knowledge

of the bond and color of a reaction, should almost always be sufficient to determine the expected

metabolite. Second, semantically related reaction types should be grouped in to the same color.

Notably, in this case, bonds are labeled, not atoms. Moreover, bonds between heavy atoms and

hydrogen are included too, as are pseudo-bonds between heavy-atoms and lone pairs.

Redundancy is reduced by training on only one bond from each topologically equivalent group.
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This conceptual innovation might overcome several limitations of prior approaches. First, in

using five colors, predictions corresponding to 21 reaction types can be displayed on just five

copies of a molecule, each one corresponding to a different color. Second, because training is

done jointly across all reaction-types and colors at the same time, information can be shared

across reaction types, which reduces the total number of trainable weights and may enable

modeling of the reaction types for which less data is available. Third, by using the same

molecules to train all reaction-types, the model outputs are expected to predict the relative

probabilities between different reaction-types with greater accuracy.

4.3 Materials and Methods

4.3.1 Five Colors of Metabolism

Using the five color class approach, we identified 21 reaction-types, and grouped them into five

colors: red (stable oxygenation), orange (unstable oxygenation), green (dehydrogenation), blue

(hydrolysis), and purple (reduction) (Table 4.2.1).

The first color is red, for stable oxygenation. In a red reaction, an oxygen is added to the

substrate and resulted a single observable metabolite. Red reactions include aromatic/aliphatic

hydroxylation, epoxidation, nitrogen oxidation, and sulfur oxidation (Table 4.3.1). The second

color is orange, for unstable oxygenation. In an orange reaction, addition of an oxygen to the

substrate destabilizes one of the molecule’s heavy bond (bond connecting between two

non-hydrogen atoms). Eventually this bond breaks and gives rise to two metabolites, one contains

the added oxygen and the other does not. Orange reactions include nitrogen-, oxygen-, sulfur-,

and carbon-dealkylation, and oxidative dehalogenation (Table 4.3.2). The third color is green, for

dehydrogenation. In a green reaction, hydrogen(s) is extracted to form double bond, triple bond,

iminium, or quinone. Green reactions include double/triple bond formation and

quinone/imine/methide formation (Table 4.3.3).The forth color is blue, for hydrolysis. In a blue

reaction, addition of water molecule causes amide-, ester-, or ether-bond breakage and gives rise
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Number

Color Definition Reaction Types Molecule Site

Red
O

H2
N

O

N

Mole
cul

e 2:

2

H2N
O

N

Molecule 1

1

3098 10280
aromatic hydroxylation
aliphatic hydroxylation
aromatic epoxidation
aromatic epoxidation

N-oxidation
Stable Oxygenation (SO) S-oxidation

Orange

Cl

N

O

N

Molecule 1

1

Cl

NH
N

O

Molecule 2:

2

N

N

O

HO

O

Molecule 1

ON
H

O

N

Molecule 2

1

+ 3749 5811
N-dealkylation
O-dealkylation
S-dealkylation
C-dealkylation

Unstable Oxygenation (UO) oxidative deamination
oxidative dehalogenation

Green
O NH

OH

O

N

O

762 2794
dehydrogenation

alcohol to aldehyde or ketone
single- to double-bond
double- to triple-bond

Dehydrogenation (DH) quinone formation
iminium formation

Blue
H2N

O

N
H

N

OH

O

H2N

H2N

O

N
H

N

H2N

O

N
H

N

+ 3188 3969
ester hydrolysis

amide hydrolysis
ether hydrolysis

Hydrolysis (HD) cyanide hydrolysis

Purple

O

Cl

N

O

N

HN

O

Molecule 1:

1

-
O

Cl

N

O

N

HN

O

Molecule 1

1

+
N

HO

OH

O

O

+

1213 1590
carbonyl reduction

nitro reduction
sulfo reduction

reductive dehalogenation
Reduction (RD) hydrogenation

Table 4.2.1: Five Colors of Phase I Metabolism

61



to two metabolites. Blue reactions include amide, ester, and ether hydrolysis (Table 4.3.4). The

fifth color is purple, for reduction. In a purple reaction, an oxygen is removed or hydrogen(s) is

added to the substrate. Purple reaction include nitro-, carbonyl-, and sulfo-reduction, reductive

dehalogenation, and hydrogenation (Table 4.3.5).

We built the first model to produce probabilistic predictions on both the site and the type of

human Phase I metabolism for small, drug-like molecules. Our model was trained on a diverse

dataset of literature-derived human Phase I reactions. The rainbow model was a multi-target, deep

neural network model that computed site- and molecule-level vectors of prediction scores, each

corresponding to the probability that the site or molecule being metabolized by a certain class of

Phase I reactions.

The training dataset of our model contained 21 types of Phase I reactions, ranging from the most

common types like hydroxylation and dealkylation to less common yet important

reactive-metabolite generating reaction types like epoxidation and quinone formation. We

grouped these diverse Phase I reaction types into five classes based the structural changes that

they introduce to the substrates: stable oxygenation, unstable oxygenation, dehydrogenation,

hydrolysis, and reduction. Detailed definitions of each class is in the Material and Method section.

While abundant data is available for Phase I reactions like hydroxylation and dealkylations,

reactions such as quinone formation and cyanide hydrolysis have only a few examples in our

dataset. Were individual models constructed for each reaction type, some of these models would

be susceptible to ascertainment bias due to data limitations.[153]

4.3.2 Metabolism Training Data

We collected a chemically diverse dataset from the literature-derived Accelrys Metabolite

Database (AMD). A total of 20736 human in vitro and in vivo records were gathered. Each record

was composed of one or more chemical transformations. A diverse set of Phase I reaction types,

including hydroxylation, dealkylation, deamination, dehalogenation, and hydrolysis, among

others were present in our training dataset (Table 4.2.1). Our study accounted for 92.3% of all
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human Phase I metabolism in the AMD dataset. The remaining 7.7% Phase I reaction types

excluded from the current study, in order from most to least common, were tautomerization,

isomerization, rearrangement, radical formation, hydration, deacylation, denitrogenation, and

decarbonylation. Reactions starting from the same substrate were mapped onto a single training

molecule using maximum common substructure matching. [39] Our final dataset contained 9674

unique molecules. Under the AMD license agreement, we were not allowed to disclose the

structures of molecules in the dataset. However, to enable rebuilding of our complete database

and reproduction of our results, we provided all reaction and molecule AMD registry numbers in

the Supporting Information.

4.3.3 Rainbow Sites of Metabolism

For each class, we implemented an automated labeling algorithm that uses the structures of

substrate and product to identify the specific bond or atom, called site(s) of metabolism (SOMs),

at which a metabolic reaction takes place. The specific labeling rules for each reaction type are

shown in ??. The final dataset had 10280, 5811, 2794, 3869, and 1590 sites of stable oxygenation,

unstable oxygenation, dehydrogenation, hydrolysis, and reduction, respectively (Table 4.2.1).

These labeling algorithms could identify SOMs for the majority of AMD reaction records, but

they were not perfect. Each pair of reactant and product was inspected to identify mislabeled

SOMs, and 15% of all SOMs were identified as incorrect and manually corrected. As with other

manual annotation processes, there were human errors in the labeling process. We estimated such

errors by randomly selecting a subset of 200 reaction records for further evaluation. For these

sampled reaction records, multiple independent annotators repeated the manual inspection. Next,

all annotators examined and discussed each reaction together to reach consensus on the correct

labeling. Of the 200 sampled reaction records, ten records had different annotations from the

established correct labeling. Approximately 5% of annotated reaction records contained errors.
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Reaction Type Example SOM Labeling Site

Epoxidation
O

H2
N

O

N

Mole
cul

e 2:

2

H2N
O

N

Molecule 1

1

Double/aromatic bond between two carbon atoms 636

Hydroxylation

OHO

OS

HN O

HN

Molecule 1

1

O

O

S

HN O

NH

Molecule 2: tolbutamide StableOxygenation

2

O

O

S

HN O

NH

Molecule 2: tolbutamide StableOxygenation

2

O

O

S

HN O

NH

Molecule 2: tolbutamide StableOxygenation

2

Bond between a heavy atom and a hydrogen 8475

S-oxidation
S

N

N O

S

N

N O

O

N

O

Lone pair on surfur atom 424

N-oxidation

N

N

N

N

HO

NN

N N

S

N

N

S

O

O

S

N

O

N
H

- +

Lone pair on nitrogen atom 665

Table 4.3.1: Red Reactions are Stable Oxygenations (SO). The table shows the “red” reaction types, how
each is marked on a molecule, and the number of times each appears in the data.

Reaction Type Example SOM Labeling Site

N-dealkylation

Cl

N

O

N

Molecule 1

1

Cl

NH
N

O

Molecule 2:

2

N

N

O

HO

O

Molecule 1

ON
H

O

N

Molecule 2

1

+
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O
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O

O

O
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+
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O
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HO

N N
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S

N

N

S

O

O

S

N

O

N
H

O

Cl

N

O

N

HN

O

Molecule1:

1

+

Bond between sulfur and carbon 93

C-dealkylation
O

O

O

O

O

Cl

N

O

N

HN

O

Molecule 1:

1

N

N

O

HO

O

Molecule 1

ON
H

O

N

Molecule 2

1

+

Bond between two carbon 577

Oxidative Dehalogenation

Cl

N

P

O
NH

O

Cl
+

Cl

N

P

O
NH

O

Cl

Cl

N

P

O
NH

O

Cl Cl

N

P

O
NH

O

Cl

Cl

N

P

O
NH

O

Cl

Bond between halogen and carbon 309

Table 4.3.2: Orange Reactions are Unstable Oxygenations (UO). The table shows the “orange” reaction
types, how each is marked on a molecule, and the number of times each appears in the data.
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Reaction Type Example SOM Labeling Site

Double/triple bond formation
Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

O

N

O

Bond between heavy atom and hydrogen 2741

Quinone/ Imine/Methide formation

O NH

OH

O

N

O

Bond between heavy atom and hydrogen 90

Table 4.3.3: Green Reactions are Dehydrogenations (DH). The table shows the “green’ reaction types, how
each is marked on a molecule, and the number of times each appears in the data.

Reaction Type Example SOM Labeling Site

Amide hydrolysis H2N

O

N
H

N

OH

O

H2N

H2N

O

N
H

N

H2N

O

N
H

N

+

Amide bond 1118

Ester hydrolysis

O

O

O

SO

O

Cl

N

O

N

HN

O

Molecule1:

1

O

O

O

SO

OHO

Molecule 1

1

+

Ester bond 2112

Ether hydrolysis

O

NH2

O

OH

OH

OH

O

O

O

O

HO

O

NH2

O

OH

OH

OH

O

O

O

O

HO

O

NH2

O

OH

OH

OH

O

O

O

O

HO

O

NH2

O

OH

OH

OH

O

O

O

O

HO

+
O

NH2

O

OH

OH

OH

O

O

O

O

HO

Ether bond 47

Table 4.3.4: Blue Reactions are Hydrolyses (HD). The table shows the “blue” reaction types, how each is
marked on a molecule, and the number of times each appears in the data.

4.3.4 Identification of Possible Sites of Metabolism

Each type of metabolic reaction occurs at some but not all sites. For example, epoxidation only

occurs at double and aromatic bonds while hydrolysis takes place at amide, ester, and ether bonds.

These sets of potential sites could be used to heuristically estimate where in the molecule a

specific reaction happens. To assess our model’s ability to predict site of metabolism for

individual reaction types within their specific domain, we identified all reaction type-specific

potential sites (Table ??) using SMARTS patterns. [63] Of 691349 bonds and lone pairs in our

dataset, 461876 (66.81%) sites were identified as potential sites for at least one of the covered
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Reaction Type Example SOM Labeling Site

Nitro reduction

O

Cl

N

O

N

HN

O

Molecule 1:

1

-
O

Cl

N

O

N

HN

O

Molecule 1

1

+
N

HO

OH

O

O

+

Bond between nitrogen and attached oxygen 313

Carbonyl reduction
+

N

HO

OH

O

O

OH

O

H2N

+
N

HO

OH

O

O

Carbonyl bond 869

Sulfo reduction

O

N
N

N

O

S

O

N

OH

O

O

N
N

N

O

S

O

N

OH

O Bond between sulfur and attached oxygen 46

Reductive dehalogenation
.Cl

Cl

Cl

Cl

Molecule 6: carbon tetrachloride Reduction

6

Bond between halogen and attached carbon 2

Hydrogenation

HO

O

OH

OH

O

HO

O

OH

OH

O

Double, triple bond between pair of hydrogenated atoms 1435

Table 4.3.5: Purple Reactions are Reductions (RD). The table shows the “purple” reaction types, how each
is marked on a molecule, and the number of times each appears in the data.

Phase I reaction types. On average, 99.97% of class-specific labeled SOM were in the

corresponding set of potential sites. Class-specific labeled SOM that did not fall within the

corresponding domain for their class were in fact mislabeled sites.

4.3.5 Descriptors

To predict the susceptibility to metabolism of each bond/lone pair in the dataset, our model used

structural, physical and chemical information encoded in numerical descriptors. Each bond was

represented by a vector of 404 descriptors that describe its properties at atom, bond and molecule

levels. All of these descriptors are calculated by in-house software from 2D Open Babel SDF

files.[186] The majority of the descriptors used in this project are atom-level descriptors (e.g.

atom identity, charge, hybridization) previously developed for XenoSite metabolism models, as

described in previous studies from our group.[104, 105, 258] For each bond, there were 189

descriptors for each atom on either side of the bond (Table ??), 10 bond descriptors (e.g. bond
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type, bond length) (Table ??) and 16 molecule descriptors (e.g. molecular weight, topological

polar surface area, molar refractivity) (Table ??). The complete list of descriptors used in this

study is provided in the Supporting Information Tables ??, ??, and ??.

4.3.6 Multitarget Deep Neural Network Model

Our Phase I model was a multitarget, deep convolutional neural network with one input layer,

four hidden layers, and two output layers (Figure 7.3.2). Multitask neural networks can reuse

features learned for one class of reactions to predict another, data-limited class, and can

significantly reduce the number of model parameters required. [53, 106, 189]

The top output layer computed molecule prediction vectors, each contained five scores

corresponding to the five classes of Phase I reactions. Each of these molecule prediction scores

correlated to the probability that a given molecule was observed to be metabolized via the

corresponding reaction class. Similarly, the bottom output layer computed bond prediction

vectors, each contained five scores. These scores correlated to the probabilities that a given

bond/lone pair was an actual site of metabolism for each of the five reaction classes.

The network was trained in two stages. First, the bond-level network was trained to produce

accurate bond-level scores. For an input molecule, atom-level, bond-level, and molecule-level

descriptors were calculated for all bonds and lone pairs. These descriptors were inputs to a neural

network with two hidden layers (each contains 25 nodes, ReLU activation) that generated vectors

of five scores corresponding to the five classes of Phase I reactions. Each element in the vector

represented the probability that a bond/lone pair was a Phase I reaction-class SOM. The weights

of the model were calibrated during training by performing gradient descent on the cross-entropy

error (with L2 penalty of 0.3) of the difference between the predicted and actual response values

of each bond using TensorFlow.[3] Second, the molecule-level network of two hidden layers

(each contains 5 nodes, ReLu activation) was trained. In this training step, each row of the data

matrix represented a molecule, and each column was descriptor. Descriptors included the top five

bond-level scores for each reaction class (25 in total), and all molecule-level descriptors. Similar
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to the first stage, we trained the weights of the networks using gradient descent on the

cross-entropy error (with L2 penalty of 0.3) so that molecules observed being metabolized by

certain class of reaction received higher score for that class than other molecules.

The accuracy of the model was evaluated using a ten-fold cross-validation procedure. The

dataset was divided into ten groups with an equal number of substrates in each group. Predictions

were generated for each tenth of the data by a model trained using the remaining nine tenths of the

set. The resulting predictions covered the complete dataset and were used to compute the

accuracy metrics in this study.

4.3.7 Visualizing Metabolism in Colors

Specifying the five colors more precisely, each was mapped to colorblind safe hex

codes. [128, 252] Rainbow coloring is often though inappropriate for visualization. [28, 138] In

this case, however, it is appropriate because there are no natural ordering to the reaction classes to

which the color is keyed. Moreover, the rainbow shading for the predictions also includes a size

cue, which immediately clarifies scale and ordering of colors, though a perceptually uniform

shading might be important to consider in future work. [31]

In displaying metabolism data, the 2D depiction of the molecule is always used, but it is

annotated with both (1) circles to denote each atom and bond that are metabolized and (2)

background shading that denotes with color and size the strength of predictions at each atom and

bond. Usually, the 2D depiction of the molecule is black and the annotation circles are white with

a black shadow. Here, we use color in the 2D depiction and the circles to indicate reaction color.

For the most part, SOMs are visualized exactly as used for modeling, and described in the prior

section, but in some cases adjustments are made. For a bond-between-hydrogen-and-heavy-atom

SOM, the circle is displayed at the corresponding heavy atom. Similarly, a lone-pair SOM is

visualized at the bearing atom. Likewise, prediction for a

bond-between-hydrogen-and-heavy-atom or a lone-pair is visualized at the corresponding heavy

atom. These modifications allow for displaying all SOMs and predictions on the molecule 2D
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Figure 4.3.1: The Structure of the Phase I Reaction Model. (Left) The diagram on the left shows how infor-
mation propagated through the neural network model, which contained one input layer, two hidden layers, and
two output layers. From the structure of an input molecule, 16 molecule-level, 10 bond-level and two sets of
179 atom-level descriptors were calculated and fed to the input layer. Both molecule and bond level descrip-
tors were submitted to the bond neural network, which computed five bond-level scores, corresponding to
the five Phase I reaction classes, for each bond in the input molecule. The bond network was trained using
site-level Phase I metabolism data, where sites involved in a certain class of biotransformation were labeled
positive for that class. As the result, each bond is predicted with five bond-level scores correspond to five
Phase I reaction classes. Each of these score reflects the probability that the bond undergoes the correspond-
ing class of biotransformation. Next, the top five bond-level scores for each reaction class (25 in total) and all
molecule-level descriptors were presented to the molecule network, which yielded five molecule-level scores.
The molecule network was trained using molecule-level Phase I metabolism data, where molecules involved in
each type of reaction classes were labeled positive for that class. Each molecule is predicted with five scores.
Each of these score reflects the probability that the molecule undergoes one of the five corresponding classes
of Phase I biotransformation. In the diagram, color circles are predictions ranging from 0 to 1; bars are vec-
tors of real numbers. The five classes of Phase I metabolism covered in this studies are stable oxygenation
(SO), unstable oxygenation (UO), dehydrogenation (DH), hydrolysis (HD), and reduction (RD). (Right) Examples
from the data used in the two sequential training stages, on bond and molecule neural network, are shown.
Positively labeled stable oxygenation bond and molecule are circled.
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depiction that only contains heavy atoms.

4.3.8 Prediction Aggregation and Scaling

To improve visualization, the predictions were, at times, aggregated and scaled. The highest

(summarized) visualization described in the prior section contains aggregated and scaled

predictions. First, each atom and bond is assigned with the probabilistic-OR of its five

color-prediction scores. Next, predictions at both the summarized and reaction-class levels are

scaled by other predictions on the molecule by molecule and level by level basis:

ρx = px/(1−
∏n

i=1(1− pi)), where n is the number of prediction scores at the same level in the

molecule to which prediction is scaled against. These predictions are visualized with a rainbow

and size based color map that shades the background behind each molecule (Figure 4.4.6).

The lowest (reaction-type level) visualizations described in the prior section contains scaled

predictions. The predictions for a reaction type are displayed only at its possible sites, and are the

scaled prediction of the corresponding class reaction. Because some of reaction types are rare,

their predictions are low and the corresponding color on the visualization scale are difficult for

human eyes to differentiable. To improve the visibility of probabilistic differences between sites

of the same reaction type, second, we scaled these prediction using the following equation:

ρx = σ(logit(px)− μlogit(p)) where μlogit(p) is the mean logit of prediction across all possible sites.

Predictions at the reaction-class level scaled by the applying the same equation are also included.

These predictions are visualized using the red-blue color scheme, where red indicates probabilities

higher than average and blue indicates probabilities lower than average (Figure 4.4.6).

4.4 Results and Discussion

The following sections study a rainbow SOM deep neural network model of Phase I metabolism.

This model was trained on a large training set of molecules, covering observed metabolic

transformations in human liver microsome, recombinant isozyme, and in human in vivo studies.

All Phase I metabolism was included, as is detailed in the Materials and Methods. First, we
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compared the reaction coverage and properties of our Phase I model to published SOM prediction

models. Second, we assessed the accuracy of our metabolism model in predicting both sites of

metabolism with metabolized molecules, and which molecules are metabolized. Third, we

evaluated the accuracy of the model in discriminating which molecules with specific structural

alerts are bioactivated.[121, 226] Finally, we discussed the limitations of our approach and

suggest future studies to improve toxicity risk assessment.

4.4.1 Reaction Coverage Comparison

We compared our rainbow model (Rainbow Xenosite) to previously published Phase I SOM

prediction models: SMARTCyp,[210] RSPredictor,[257] SOMP,[207, 208] Site of Metabolism

Estimator (SOME),[261] He et.al.,[97] and single reaction type models.[57, 59, 103, 104]. Our

metabolic models, the rainbow and single reaction type models, are the only ones that produce

well-scaled, probabilistic outputs (Figure 7.4.2). More importantly, Rainbow XenoSite cover sthe

largest proportion of known human Phase I metabolic reactions of all Phase I models (Table 2):

While previously published models cover up to 48% of Phase I reactions, our rainbow model

covers 92.3% of AMD Phase I reactions. The large difference in reaction coverage makes direct

comparison between Rainbow XenoSite and previously published models difficult.

SMARTCyp,[210] Xenosite 1.0/RSPredictor,[257, 258] and SOMP,[207, 208] are three

published generic SOM Phase I prediction models. SMARTCyp, XenoSite 1.0/RSPredictor, and

SOMP account for, respectively, 45.5%, 48%, and 46.1% of all human Phase I reactions from the

AMD database (Table ??).

We published several models that focused on specific reactions like epoxidation,[104] quinone

species formation,[103] N-dealkylation [59], S-oxidation, and N-reduction.[57] These reactions

play important roles the bioactivation of multiple structural alerts leading to the formation of

deleterious reactive metabolites.[57? ] Given a molecular structure, each of these models output

probabilistic prediction scores corresponding to the likelihood that each atom or bond in the

molecule is a site of metabolism for that specific reaction. Together, all these single reactions
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account for 21.0% of all Phase I reaction (Table 2).

Site of Metabolism Estimator (SOME)[261] and He et.al.[97] are two published multi-reaction

Phase I prediction models. SOME and He et. al. account for 42.6% and 37.6%, respectively, of all

human Phase I reactions from the AMD database (Table 2).
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4.4.2 Ambiguity of Generic SOMs

We first compared ambiguity of the rainbow labeling scheme to generic SOMs in reported

reactions. As an exemplar of the generic SOM labels, we used scheme adopted by XenoSite[258]

(XenoSite 1.0), which was among the first published computational models that predicted the

likely SOMs for P450 isozymes based on the structure of an input molecule. XenoSite 1.0 used a

generic SOM labeling scheme where atoms of a compound were labeled as SOM based on the

structural change from substrate to product. There are several methods reported in the literature

that generically predict SOM, and all use a similar labeling scheme. Compared to this generic

SOM approach, the rainbow labels specify both sites and reaction types by identifying modified

bonds and the reaction classes of reactions observed at those sites.

Among reported sites of metabolism, the rainbow labeling scheme significantly reduced the

ambiguity in the generic labeling algorithm. A single site can correspond to multiple types of

reaction, and generic labeling leaves ambiguity as to which metabolite is generated by

metabolism. A SOM was classified as able to undergo a certain reaction type if the SOM is part of

a potential site defined by SMARTS strings of that particular reaction. For sites that can undergo

more than one type of reactions, the ambiguous sites, we quantified how often knowledge of the

site of metabolism alone is sufficient or insufficient to infer the structure of the metabolite.

Most generic sites of metabolism, using atom labels, are ambiguous. Using generic atom

labeling approach (Table ??), 90.58% (18544 / 20472) of the SOMs can undergo more than one

reaction type. We identified 20 major groupings of ambiguous SOMs under this labeling scheme

(Figure 4.4.1). Most sites of metabolism, using generic bond labeling scheme, are ambiguous too.

Using bonds reduced the percentage of ambiguous SOM, but still left most sites of ambiguous

71.47% (17061/23872). In contrast, only 0.3% of rainbow labeled bonds are ambiguous. Despite

these improvements, the rainbow labels, however, are ambiguous for a small subset of

C-dealkylation reactions wherein the oxygen can attach to either of the two carbons in the bond.

Rainbow labels nearly eliminate all ambiguity in sites of metabolism, which might enable
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Table 7. Number of Ambiguous Potential Sites that can Undergoes Two Reaction
Types

Reported Clashed Count

hydroxylation C-dealkylation 4707
N-dealkylation hydroxylation 2754
hydroxylation double/triple bond formation 2446
hydroxylation hydrogenation 2124

ester hydrolysis carbonyl reduction 2109
hydroxylation epoxidation 2077

ester hydrolysis O-dealkylation 2036
ester hydrolysis C-dealkylation 2025
N-dealkylation C-dealkylation 1671
O-dealkylation hydroxylation 1519
O-dealkylation ether hydrolysis 1445
N-dealkylation double bond formation 1377

amide hydrolysis N-dealkylation 1116
amide hydrolysis carbonyl reduction 1116
amide hydrolysis C-dealkylation 1014

epoxidation adjacent reduction 1007
epoxidation C-dealkylation 912

C-dealkylation hydroxylation 856
carbonyl reduction C-dealkylation 853

epoxidation triple bond formation 848

Methodological Comparison to Reaction-Specific XenoSite Models
In addition to XenoSite 1.0, we published several models that focused on specific reactions like
epoxidation,27 quinone species formation,28 S-oxidation,41 nitroaromatic reduction,41 and
N-dealkylation.42 These reactions play important roles the bioactivation of multiple struc-
tural alerts leading to the formation of deleterious reactive metabolites.41 Given a molecular
structure, each of these models output probabilistic prediction scores corresponding to the
likelihood that each atom or bond in the molecule is a site of metabolism for that specific re-
action. These models can aid a medicinal chemist in identifying the mechanisms by which a
reactive metabolite may form, and guide structural optimization to prevent their formation.

While it may be possible to create individual models for each reaction type, the cur-
rent model can predict all these types. Using the same model for all reactions has three
advantages. First, it simplifies model usage for the end-user, since they need only interact
with a single model. Second, a combined model is likely to be more parsimonious, because
it can take advantage of information learned for one reaction type when predicting others,
and would require fewer parameters. Third, individual models cannot take into account
competing reaction pathways, which may inhibit some reactions.

17

Figure 4.4.1: Generic SOM labels are ambiguous. Many sites of metabolism (SOM) if labeled using the tra-
ditional method can undergo more than one type of reactions. Top 20 groups of such ambiguous sites are
listed in the table. These sites were reported to undergoes the reaction annotated in the left but could also un-
dergoes the reaction on the right. The number of known sites that can undergo at least two types of reaction
are listed. Example molecules are known drugs with known SOM circled.

metabolite prediction from effective rainbow SOM models of metabolism.

4.4.3 Reaction-Class Specific Site-Level Accuracy

Considering each color separately, the rainbow model accurately predicted colored SOMs within

metabolized molecules. First, we measured “top-two” performance on a color by color bases,

where a molecule was considered to be correctly predicted if any of its reported SOMs were

ranked in the top two sites sorted by that class-specific prediction score. The top-two metric is

commonly used to evaluate CYP site of metabolism models and is useful for assessing individual

drug candidates. Stable oxygenation, unstable oxygenation, dehydrogenation, reduction, and

hydrolysis top-two accuracies were, respectively, 72.2%, 80.4%, 74.2%, 94.9%, and 94.7%

(Figure 4.4.2). Across all five classes, the model had an average cross-validated top-two accuracy

of 88.2%.

Similar results results were obtained using the “average site AUC” for each reaction class, a
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Figure 4.4.2: XenoSite accurately predicts site of Phase I metabolism. Ten-fold cross-validated accura-
cies are shown. Across all five classes, the model had an average cross-validated top-two and average AUC
accuracies of 88.2% and 92.3%, respectively.
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Figure 4.4.3: XenoSite accurately predicts site of Phase I metabolism on drugs. Example drugs with
ten-fold cross-validated predictions are shown. Experimentally reported sites of metabolism are circled.
XenoSite assigns the molecule’s SOMs with the highest Phase I metabolism scores in every case. Five ex-
ample drugs are visualized, including from top to bottom, are chloramphenicol, levomepromazine, diethylstibe-
strol, terbinafine, and belinostat.
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metric based on the area under the ROC curve (AUC). AUC is a standard metric employed in

machine learning to quantify how well a model is able to distinguish between positives and

negative test cases of a specific chemical class. It is employed here by computing the individual

AUCs are computed for each molecule in the dataset, color by color, and then averaging across

the whole dataset to produce a single summary statistic for each reaction class. Stable

oxygenation, unstable oxygenation, dehydrogenation, reduction, and hydrolysis average site AUC

accuracies were 91.1%, 97.6%, 94.7%, 99.5%, and 99.7%, respectively. Across all five classes, the

average AUC was 97.5% (Figure 4.4.2). Third, we measured the model’s ability to distinguish

metabolized sites from all other potential sites across the entire dataset using “possible site AUC.

These results were consistently obtained, even when sites unable to undergo metabolism, because

they did not correspond to any reaction type, were removed from consideration and the

performance measure was recomputed. The “possible site AUC” [228] of the predictions of

metabolized and non-metabolized sites across all possible sites in the entire dataset. Stable

oxygenation, unstable oxygenation, dehydrogenation, reduction, and hydrolysis possible site

AUC accuracies were 85.4%, 94.3%, 86.8%, 98.2%, and 93.9%, respectively. Across all five

targets, the model had an average possible site AUC of 92.3%.

Considering all colors together, the rainbow model accurately predicted class-specific SOMs

within metabolized molecules. In contrast with the previous section, each color is considered

together, and the model’s ability to correctly predict the color and site at the same time is

measured. In this evaluation, each color-site pair is considered an individual entity, and is

assigned a score by the model. All pairs are ranked by the scores, and this is compared with the

known metabolism to test if observed sites of metabolism are separated from the rest.

We evaluated the model using three metrics. Across all metrics, we see high performance. First,

we measured “average all-color AUC”. This metric is computed by averaging the AUC over five

scores assigned to each metabolized site in the dataset. The model had cross-validated average

all-color AUC accuracy of 97.4%. Second, we calculated “all-color top-two” performance, where

a molecule was considered to be correctly predicted if any of its observed SOMs were ranked in
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Table 4.4.1: Reaction-Type Specific Accuracy.

Rainbow

Reaction Type PS All SOME[261] He et. al.[97]

red S-oxidation 89.4% 99.9% 92.9%∗

C-hydroxylation 79.8% 93.8% 89.4%∗

N-oxidation 91.1% 99.6% 96.9%∗

aromatic epoxidation 95.8% 99.5%
aliphatic epoxidation 89.5% 97.5%

orange N-dealkylation 94.2% 99.5% 95.4%∗ 95.5%∗

oxidative dehalogenation 82.8% 99.9%
O-dealkylation 92.3% 99.6% 94.3%∗

S-dealkylation 76.1% 99.9%
C-dealkylation 86.0% 96.5%

green aliphatic dehydegenation 87.8% 94.6%
quinone formation 92.1% 99.8%

aromatic dehydrogenation 90.4% 97.2%

blue amide hydrolysis 77.3% 99.8%
ester hydrolysis 81.1% 99.9%
ether hydrolysis 79.6% 99.6%

purple nitro reduction 91.8% 99.9%
aliphatic hydrogenation 98.7% 99.9%
carbonyl/sulfo reduction 95.2% 99.9%
reductive dehalogenation 99.2% 99.9%
aromatic hydrogenation 97.9% 99.9%

∗Each model in this table uses a different dataset. The reported accuracies are not
comparable.

the top two sites sorted by all site prediction scores. rainbow has an “all-color top-two” of 78.2%.

Third, we calculated “average all-color site AUC”. This is the average AUC of all molecule’s

ROC curves, each containing all points of reaction-color prediction and target pairs across five

reaction classes. The model had cross-validated average all-reaction AUC accuracy of 97.3%.

4.4.4 Reaction-Type Specific Site-Level Accuracy

We evaluated the model’s ability to separate metabolized sites from all potential sites for specific

reaction types across the entire dataset. Reported accuracies from [261] He et.al. [97] models on

the same reaction types are also included in Table ??. Across 21 reaction types, the model had an

average cross-validated global AUC accuracy of 99.0%.
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4.4.5 Molecule-Level Model Accuracy

The rainbow model accurately predicted whether a molecule undergoes a specific class of Phase I

reaction. In our training dataset, each substrate was metabolized through one or more reaction

classes but rarely through all five types. For each reaction class, we used the “molecule AUC”

metric to evaluate how well the model separated molecules metabolized through that specific

reaction class from those that undergo reactions of other classes. Following site-level training, we

investigated several methods of discriminating between type-specific metabolized and

non-metabolized molecules (Figure 7.4.1). The best performing model was a neural network that

takes as input the top five prediction scores for each reaction class and molecule-level descriptors

(Figure 7.3.2). The best performing model had molecule AUCs of 78.3%, 83.9%, 77.3%, 90.4%

and 92.7% for stable oxygenation, unstable oxygenation, dehydrogenation, reduction, and

hydrolysis, respectively (Figure 4.4.2).

4.4.6 Probability Scaling of Model Output

The model’s output can be interpreted as probabilities. When we binned class-specific sites by the

Phase I prediction score, the proportion of class-specific SOMs in each bin closely correlated with

the bin’s score (Figure 7.4.2). Likewise, when we binned molecules by the Phase I molecule

score, the proportion of class-specific metabolized molecules in each bin also correlates with the

bin score. Quantitatively, Pearson regression coefficients of site and molecule levels are 0.996 and

0.947, respectively.

4.4.7 Reactive Metabolite Forming Reactions

Detecting or predicting the formation electrophilically reactive metabolites is an important step in

avoiding idiosyncratic adverse drug reactions.[5, 196, 218, 225] Experimental methods for

detecting reactive metabolites, most frequently in vitro incubation with glutathione and cyanide,

are well established.[116, 206, 263] However, these methods require significant time and

resources, especially when screening thousands of compounds during drug development. Our
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previous works and others have shown the instrumental role of computational methods in

directing these experimental efforts.[57, 103, 104, 106] We published several models that focused

on specific reactions like epoxidation,[104] quinone species formation,[103] S-oxidation,[57]

nitroaromatic reduction,[57] and N-dealkylation.[59] These reactions play important roles the

bioactivation of multiple structural alerts leading to the formation of deleterious reactive

metabolites.[57] Given a molecular structure, each of these models output probabilistic prediction

scores corresponding to the likelihood that each atom or bond in the molecule is a site of

metabolism for that specific reaction. The following sections demonstrate that Phase I can predict

reactive metabolite formation reaction with high accuracy, comparable to previous models of

individual reaction types.

4.4.8 Epoxidation

Epoxides, the second most common type of reactive metabolites, are often formed via

P450-mediated oxidation of double bonds or aromatic rings.[130, 211] Epoxides are detoxified by

epoxide hydrolases and the glutathione system.[75, 172, 215, 224] When these pathways are

overwhelmed, epoxides can covalently bind to proteins and cause toxic side effects and immune

reactions.

The rainbow model can predict the formation of this key reactive metabolite, and is comparable

in accuracy to our previous epoxidation model.[104] The epoxidation model was trained on a

dataset containing 524 molecules, 389 of which contained sites of epoxidation. Our model was

able to predict this dataset with an accuracy of 92.7% possible site AUC (Figure 4.4.4A),

compared to the possible site AUC of 94.3% of the previous epoxidation model (one-sided

p = 0.097). Reliability plot of unscaled stable oxygenation on possible epoxidation sites

demonstrate that the scores can be interpreted as probabilities (Figure 4.4.5A).
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Figure 4.4.4: Rainbow Model Accurately Predicts Key Reactive Metabolite Formation Reactions.
Datasets of 524, 39, 883, 98, and 50 molecules were used to test rainbow performance on epoxidation, one-
step quinone formation, N-dealkylation, nitroaromatic reduction, and thiophene S-oxidation. The model’s pos-
sible site AUC accuracies are 92.7%, 90.1%, 92.2%, 90.1%and 86% on epoxidation, one-step quinone forma-
tion, N-dealkylation, nitroaromatic reduction, and thiophene S-oxidation datasets, respectively. Previously, we
trained models for each specific reactive metabolite formation reactions. These models’ possible site AUC ac-
curacies on epoxidation, one-step quinone formation, N-dealkylation, nitroaromatic reduction, and thiophene
S-oxidation datasets are 94.3%, 92.5%, 94.7%, 93.0%and 88.0%. The differences between each pair of per-
formance are statistically insignificant. Example molecules are shown with cross-validated scaled prediction
(refer to Prediction Visualization).
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4.4.9 One-Step Quinone Formation

Quinone is the most common class of reactive metabolites, accounting for 40% of known reactive

metabolites.[233] Quinone species are frequently highly electrophilically reactive.[214]

Dehydrogenation is the direct metabolic reaction that form quinone.

The rainbow model predicted the formation of this important reactive metabolite. Our model

predicted a dataset of 39 molecules that form quinone through one-step (dehydrogenation) with an

accuracy of 90.1% AUC across all quinone formation possible sites (Figure 4.4.4B). This

performance is comparable the possible site AUC of 92.5% of previous quinone formation model

(one-sided p = 0.36).[103] Reliability plot of unscaled dehydrogenation scores on possible

quinone sites demonstrate that the scores are well-scaled probabilities (Figure 4.4.5B).

The rainbow model does not predict multiple step quinone formation reactions. Only a small

subset of quinones are formed after a single-step of metabolism. This is an intrinsic limitation of

this approach, but it might be addressed by an algorithm that chain predictions of the rainbow

model into multiple steps. This possibility is out of scope of this study, and will be considered

future work.

4.4.10 N-Dealkylation

Alkylated amines are a class of compounds with important biological and pharmaceutical

functions. [21, 220] N-dealkylation, the replacement of an alkyl group by hydrogen, is the main

metabolism pathway for many alkylated amines.[87, 99, 253] This removed alkyl group is often

transformed into a reactive aldehyde. Unfortunately, metabolic studies often focus on the amine

metabolite and do not report the aldehyde metabolite because aldehydes are presumed to be

quickly detoxified to carboxylic acids and alcohols by multiple enzyme systems. However, some

reactive aldehydes escape these detoxification pathways, and form adducts that can give rise to

adverse drug events, especially in patients where the detoxification pathways are inhibited by

other drugs.[20, 212]

The rainbow model accurately predicts sites of N-dealkylation on the dataset of 883 molecules
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used to train our previous N-dealkylation model.[59] Our model predicted N-dealkylation with an

accuracy of 92.2% global AUC (Figure 4.4.4C). This accuracy is comparable than the global AUC

accuracy of 94.7%of our previous N-dealkylation model (p = 0.08). Reliability plot of unscaled

unstable oxygenation on possible N-dealkylation sites demonstrate that the scores can be

interpreted as probabilities (Figure 4.4.5C).

4.4.11 Nitroaromatics Reduction

Nitroaromatics are common in the environment and are important pharmacophores in many

drugs.[176, 198, 203, 247] Unfortunately, nitroaromatic groups can metabolically transform into

electrophilic, highly unstable intermediates such as nitroso and nitro anion radicals through

reduction.[27, 57, 124, 236]

The rainbow model accurately predicts nitroaromatic reduction. Previously, we published the

prediction from an early version of rainbow on nitroaromatic-containing drugs. The early version

model was trained on a dataset containing 3061 molecules, 98 of which contain nitroaromatics.[57]

In comparison, the training dataset of the rainbow model contains 314 nitroaromatic molecules.

The rainbow model of Phase I model predicted nitro-reduction of the 98 molecules with an AUC

accuracy of 90.1% (Figure 4.4.4D), compared to 93.0% obtained by the early version of the model

(one-sided p = 0.16). Reliability plot of unscaled reduction on nitroaromatics demonstrate that the

scores can be interpreted as probabilities (Figure 4.4.5D).

4.4.12 Thiophene S-Oxidation

Thiophenes are five-membered sulfur-containing aromatic rings that are important

pharmacophores in many drugs.[17, 38, 54, 101, 112, 148, 157] Thiophenes can undergo

P450-mediated S-oxidation to form a reactive sulfur oxide, which can subsequently bind to

proteins causing toxic side effects. For example, suprofen is a thiophene-containing analgesic

medication that failed in late-stage clinical trials because of the formation of a short-lived reactive

metabolite that caused irreversible inhibition of phase I enzymes.[182] However, many nontoxic
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Figure 4.4.5: The model makes well scaled predictions, corresponding to probabilities. The bar graphs
plot the distributions of scores across metabolized and non-metabolized potential sites for each reaction
class. The solid lines plot the percentage of bonds and lone pairs that are metabolized via a specific Phase
I reaction class (using non-normalized frequencies) in each bin. The diagonal dashed lines indicate a hypothet-
ical perfectly scaled prediction. Phase I XenoSite score has a strong correlation to a perfectly scaled predic-
tion. This means that the class-specific score is interpretable as the probability that potential sites is metabo-
lized via the corresponding bioactivation reaction.

drugs also contain thiophenes that are not bioactivated, such as eprosartan, a closely related

analogue to suprofen.[80]

The rainbow can predict thiophene S-oxidation. Previously, we published the predictions from

an early version of rainbow on thiophene-containing compounds.[57] The training dataset of the

earlier model contained 50 thiophene containing compounds [57], compared to 105 in the training

data for the current study. Our new model predicted thiophene S-oxidation with a global AUC

accuracy of 86.0% (Figure 4.4.4D), compared to the previous model’s performance of 88.0%

(p = 0.398). Reliability plot of unscaled stable oxygenation on thiophenes demonstrate that the

scores can be interpreted as probabilities (Figure 4.4.5).
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4.4.13 Visualizing Metabolism in Colors

There is no established way of displaying site of metabolism data from a large number of reaction

types in a coherent or efficient way. One motive in defining reaction classes as “colors” is to

introduce a mnemonic metaphor as a foundation for efficient visualizations of metabolism.

Reaction color becomes a visual cue for reaction classes in visualizations with multiple reaction

types.

We define three levels of visualizations at which to display SOM predictions and observations.

Three three levels of visualization work together (Figure 4.4.6). Large lists of molecules can be

displayed with just the highest level predictions, and lower level visualizations can clarify details

when they are requested. Also, multiple levels can be displayed at the same time to display a large

amount of metabolism data. At the highest level, we show predictions as a single molecule, so

this may be most useful for screening large numbers of molecules in the first pass. This

visualization uses a black molecule depiction with white circles. In the future, we might add color

to the circles to indicate reaction class, perhaps including multiple colors when multiple reaction

colors are observed at a single site (Figure 4.2.1).

At the middle level, five depictions are shown, one for each color. This visualization makes

immediately apparent the reaction type of most predictions and sites of metabolism. Here, each of

the five molecules are depicted each of the reaction colors, and observed sites of metabolism are

annotated with white circles. The model predictions for each color are displayed as shading

behind the molecule of the corresponding color. The color of the depicted molecule is a critical

visual cue. With practice, one can distinguish reaction-types based on structural context and the

reaction color.

At the lowest level, all reaction types are displayed in separate depictions. The visualization

still colors the molecule depiction with the class color, but there are multiple molecules with the

same color. Reported sites of metabolism, again, are marked with white circles. The reaction type

name is included too, to clarify which depiction corresponds to which reaction type. This is the

most expansive visualization, which is most suitable for drilling down into the details of
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molecules being considered most closely.

Though the predictions in the model can be visualized, it does take effort to learn now to

navigate the figure. In future we plan to integrate this model as a building block into composite

algorithms designed to answer specific questions in drug development. For example, we hope to

models that can predict bioactivation pathways with this model. Ultimately, we expect this

visualization may be more useful as a diagnostic for tools that make use of predictions from the

model.

4.5 Model Limitations

The rainbow model has several limitations. First, our model does not cover all Phase I reactions

and in vivo transformation. Although rare, excluded reactions include tautomerization,

isomerization, and rearrangement, which can have important implications on the efficacy and

safety profile of drugs. In the future, improved models may be able to label and group these

reaction types with a similar approach. Second, while the current SOM labeling scheme

significantly reduced ambiguity, it does not provide sufficient information to predict the exact

metabolites of a small number of reactions, about 0.3% of the total. In future studies, we could add

an ordering to the labeling, such that each bond is corresponds to two oppositely oriented edges.

SOMs such as these might remove the ambiguity in these rare cases.. Third, the model slightly

underperformed previously developed models of specific reactive metabolite generating reactions,

though the drop in performance was not statistically significant. It is possible that improved

descriptors or training protocols could change this general trend. Fourth, rainbow model only

consider one aspect of IADRs. IADRs are complex phenomenon with several additional factors,

including dosage, route of administration, competing bioactive and detoxification pathways,

co-morbidities, co-administered medications, and genetic variants.[30, 55, 237]
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4.6 Conclusions

Published site of metabolism models can provide both accurate and rapid screening tool for large

numbers of small molecules. Unfortunately, they are unable to predict the type of reaction a site

would undergo and thereby ambiguous in discriminating whether a harmful metabolic

transformation would happen at a certain site. This study demonstrated that modeling both site

and type of reaction would enable unambiguous metabolite structure prediction and thereby

discern which site of metabolism should be eliminate to avoid harmful metabolic transformation.

We developed a labeling scheme that reduced the number of ambiguous SOMs from 90.6% to

0.3%. We also showed that it is possible to develop a single model for a wide variety of Phase I

reaction types by grouping them into classes and using a multi-target model. In comparison to

published models, we doubled the Phase I reaction coverage to 92.3%. Our model predicted the

five classes of Phase I metabolism with top-two, average site AUC, and global AUC accuracies of

78.2%, 97.3%, and 97.1%, respectively. In comparison to previous models exclusively designed for

specific reaction types, our model performed equally well on several important structural alert

bioactivation pathways. The results underscored the feasibility of reducing ascertainment bias

without sacrificing performance. While we have not comprehensively handle all the relevant

complexities of predicting a compound’s likelihood of metabolism-induced toxicity, we are

moving closer to that goal. Ultimately, we envision that combined models of metabolism,

metabolite structure prediction, and reactivity prediction will provide a powerful tool in assessing

ADR risk of drug candidates.

4.7 Abbreviations

ADR, Adverse Drug Reaction; AMD, Accelrys Metabolite Database; AUC, Area Under the

Receiver Operating Characteristic Curve; CYP, Cytochromes P450; SOM, Site of Metabolism
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5
Modeling Phase-I and Phase-II in vivo

Competition

This chapter is a manuscript in preparation:

Na Le Dang, Matthew K. Matlock, and S. Joshua Swamidass, In vivo competition between

Phase I and Phase II.

5.1 Summary

As the field of metabolism modeling has matured, many important advances have been made. We

now can effectively and accurately predict many aspects of metabolism based on the structure of
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the candidate molecule. However, most work has focused on cytochrome P450 metabolism,

which is the major part of Phase I metabolism. We recently published Rainbow model[58] that is

capable of predicting not only the site but also the type of diverse Phase I reactions with high

accuracy. Much less work has been done on Phase II metabolism, even though our group and

others have published on glucuronidation[56, 194, 207] and glutathionation.[105, 106] We for the

less common nevertheless clinically significant[41, 51, 162, 219] Phase II reactions like

sulfuration, acetylation, and methylation.

A looming critical challenge is combining models of Phase I and 2 to predict metabolism in

vivo. This challenge is difficult not only for computational but also for experimental approaches.

Two major factors hinder using in vitro systems to measure the in vivo balance of Phase I versus

Phase II metabolism. First, in vitro studies entail using enzymes, substrates, as well as cofactors

at concentrations that are substantially higher than the typical in vivo conditions. As the result, in

vitro systems often overestimate in vivo substrate affinity. For example, uridine glucuronide

transferases (UGT) are capable of metabolizing even low affinity substrates given high enough

concentration.[88, 246] Second, it is very difficult to emulate in vivo compartmentalization in

vitro. Consequently, in vitro metabolism are not as diverse as in vivo metabolism.

The balance between Phase I and 2 metabolism in vivo has important clinical consequences.

While both Phase I and 2 are capable of generating reactive metabolite with deleterious effects,

[13] they often act as competitive and/or sequential pathways to limit reactive metabolite

formation and/or deactivate the reactive compound.[249] For example, while Phase I activate

acetaminophen into reactive quinone, Phase II reaction such as glucuronidation and sulfonation

are competitive pathways that limit the quinone formation and glutathionation is the deactivating

step (Figure 7.2.1). Furthermore, altered balance between Phase I and 2 metabolism can lead to

serious consequence in understudied subpopulations. For example, young children rely more

heavily on Phase II metabolism than healthy adults do: defect in UGT system increase toxicity

risk to drugs like chloramphenicol.[12, 173] Similarlly, SULT1A2 polymorphism may affect the

individual susceptibility towards procarcinogens, in particular certain aromatic amines and
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Figure 5.1.1: The balance between Phase I and 2 metabolism in vivo has important clinical conse-
quences.. For example, while phase 1 activate acetaminophen into reactive quinone, phase 2 reaction such
as glucuronide and sulfo conjugation are competitive pathways that limit the formation and glutathione conju-
gation is the deactivating step
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amides, including diuretic agent triamterene and hair follicle stimulant minoxidil.[115, 162]

Defective GSTA1*B allele was associated with increased survival in breast cancer patients treated

with cyclophosphamide [229] Defective NAT2 alleles increases risk of drug-induced lupus

erythematosus of procainamide.[200]

To address the aforementioned problem, we develop a machine learning model to predict in

vivo Phase I and 2 substrate specificity. We collated large databases of 200, 000 human in vivo and

XXX Phase II reactions. We built a Phase II metabolism model that predict four of the five major

Phase II conjugation reaction: UGT, SUTL, NAT, and TMPT. [115] This comprehensive site of

Phase II metabolism is the first of its kind and is highly accurate. Next, we combine outputs from

the Phase II metabolism model, our published Phase I metabolism[58] and reactivity[103] model

and other descriptors to build an accurate in vivo Phase I and 2 metabolism model. This in vivo

metabolism model is the an accurately predict when a molecule and its metabolite go down Phase

I and Phase II pathways.

5.2 Methods

5.2.1 Training Datasets

We collected a chemically diverse in vivo substrate data sets from the literature-derived Accelrys

Metabolite Database (AMD). A total of 11888 in vivo reaction records were collated. Our in vivo

data set contained 380016 -reference specific compounds. Under the AMD license agreement, we

were not allowed to disclose the structures of molecules in the data set. However, to enable

rebuilding of our complete database and reproduction of our results, we provided all reaction and

molecule AMD registry numbers in the Supplemental Materials.

5.2.2 Outputs from Phase I, Phase II, and Reactivity Models

A subset of descriptors for the in vivo models are cross-validated predictions from the Phase II

model and our published Phase I and Reactivity models. Our Phase I model produces 5 scores for
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Phase 1 Phase 2
59,043 18,351

In vivo Human Substrates and Products
175,534in vivo human studies: 19,205 

Figure 5.2.1: In vivo training dataset. TODO: include numbers from other Phase3 reactions: SULT, NAT, and
TMPT

each site and molecule, each correspond to a class of Phase I reactions: stable oxygenation,

unstable oxygenation, dehydrogenation, hydrolysis, and reduction. For each molecule in the in

vivo data set, five molecular scores and five highest site scores from each class (30 in total) are

used as input descriptors to the in vivo model.

Our reactivity model calculates 4 prediction scores for each site and molecule, indicating the

probabilities that these sites and molecules are conjugated to protein, glutathione, DNA, and

cyanide. Conjugation to glutathione is a type of Phase II reaction and conjugation to protein and

DNA can lead to hypersensitivity reactions and cancers. For each molecule in the in vivo data set,

four molecular scores and five highest scores from each conjugation type (24 in total) are used as

input descriptors to the in vivo model.

Similarly, for each molecule in the in vivo data set, four molecular scores and five highest

scores from each conjugation type (24 in total) from the Phase II model are used as input

descriptors to the in vivo model.

5.2.3 In Vivo Model Descriptors

To predict the susceptibility to Phase I and Phase II metabolism of molecule in the data set, our

model use numerical descriptors that include outputs from our previous models as well as context

and chemical/physcial descriptors. Each molecules was represented by a vector of 118 descriptors
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Figure 5.2.2: Context descriptors from metabolic network.Four context descriptors are calculated from
metabolic networks where compounds are nodes and metabolic transformations are edges. A metabolic net-
work is defined by the nodes and edges annotated from a certain study. Each study is associated with a sin-
gle metabolic network. Each metabolic network can be associated with multiple studies. The administered
compounds are denoted as the parents. The minimum and maximum transformations from the parent to a
compound of interest are the min_steps and max_steps descriptors of the compound. The number of path-
ways from the parent to a certain compound and the total number of compounds with fewer transformation
steps are the num_paths and higher_rank descriptors of the compound.

that describe its properties. 78 descriptors are molecule-level predictions from our Phase I,

PhaseII, and reactivity models that were trained on in vitro metabolism studies (See above

section).[56? ? ] 16 molecule descriptors (e.g. molecular weight, topological polar surface area,

molar refractivity) (Table ) were developed in previous works. Four context descriptors

(Figure 5.2.2) were calculated from metabolic networks where compounds are nodes and

metabolic transformations are edges. A metabolic network is defined by the nodes and edges

annotated from a certain study. Each study is associated with a single metabolic network. Each

metabolic network can be associated with multiple studies. The administered compounds are

denoted as the parents. The minimum and maximum transformations from the parent to a

compound of interest are the min_steps and max_steps descriptors of the compound. The number

of pathways from the parent to a certain compound and the total number of compounds with

fewer transformation steps are the num_paths and higher_rank descriptors of the compound.
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Figure 5.2.3: The Structure of the Phase I Reaction Model.) The diagram on the shows how information
propagated through the neural network model, which contained one input layer, five hidden layers, and one
output layer.

5.2.4 In Vivo Model

Our in vivo model have one input layer, serverl hidden layers and one output layers (Figure 7.3.2).

5.3 Results and Discussion

The following sections examined the inner working of the Phase II and in vivo models. First, we

reported on the accuracy of the Phase II model. Second, we assessed the prediction of the in vivo

model. Third, we examined the factors that are important to each target of the in vivo model.

Fourth, we presented several case studies to demonstrated the utility of the in vivo model.
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5.3.1 Phase II Model Accuracy

The accuracy of the model was evaluated using a ten-fold cross-validation procedure. The data

set was divided into ten groups with an equal number of substrates in each group. Predictions

were generated for each tenth of the data by a model trained using the remaining nine tenths of the

set. The resulting predictions covered the complete data set and were used to compute the

accuracy metrics in this study.

5.3.2 Phase II Descriptor Importance

SULT metabolites can be reactive.[] SULT is high affinity, low capacity while UGT is low

affinity, high capacity.[] Both sensitivity analysis and perturbation studies result is in agreement

with the observation.

5.3.3 In Vivo Model Accuracy

Ten fold cross-validation resulst: CYP 82.15 UGT 80.69 SULT 86.92 NAT 89.28 TMPT 73.76

Aggregated 91.44

5.3.4 Context-Dependence of In Vivo Model

5.3.5 Phase I and Phase II Selectivity of In Vivo Model

5.3.6 Case Studies

Acetaminophen Acetaminophen is the most common drug that cause liver failure.

Irinotecan

Raloxifene Scheme 36, Stepan2011structuralalert

Raloxifene form quinone by P450, but the alternative detoxification pathway is glucuronide

conjugation.
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Figure 5.3.2: The model accurately predict importance of UGT metabolism in irinotecan toxicity.
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6
Predicting Biotransformation of

Structural-Alert Containing Compounds

This chapter is adapted from a manuscript published in Chemical Research Toxicology

Na Le Dang, Tyler B. Hughes, Grover P. Miller, and S. Joshua Swamidass, Computational

Approach to Structural Alerts: Furans, Phenols, Nitroaromatics, and Thiophenes, Chem. Res.

Toxicol., 2017, 30, 4, 1046-1059

102



6.1 Summary

Structural alerts are commonly used in drug discovery to identify molecules likely to form

reactive metabolites, and thereby become toxic. Unfortunately, as useful as structural alerts are,

they do not effectively model if, when, and why metabolism renders safe molecules toxic.

Toxicity due to a specific structural alert is highly conditional, depending on the metabolism of

the alert, the reactivity of its metabolites, dosage, and competing detoxification pathways. A

systems approach, which explicitly models these pathways, could more effectively assess the

toxicity risk of drug candidates. In this study, we demonstrated that mathematical models of P450

metabolism can predict the context-specific probability that a structural alert will be bioactivated

in a given molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts.

Each of these structural alerts can produce reactive metabolites through certain metabolic

pathways, but not always. We tested whether our metabolism modeling approach, XenoSite, can

predict when a given molecule’s alerts will be bioactivated.

Specifically, we used models of epoxidation, quinone formation, reduction, and

sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and

thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-,

phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%,

93%, and 88%, respectively. Metabolism models accurately predict whether alerts are bioactivated

and thus serve as a practical approach to improve the interpretability and usefulness of structural

alerts. We expect that this same computational approach can be extended to most other structural

alerts and later integrated into toxicity risk models. This advance is one necessary step towards

our long term goal of building comprehensive metabolic models of bioactivation and

detoxification to guide assessment and design of new therapeutic molecules.
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6.2 Introduction

Idiosyncratic adverse drug reactions (IADRs) are a challenging problem in drug development.

They are the leading reason for both termination of clinical investigation and withdrawal from the

market.[132, 245] Most IADRs are hypersensitivity-driven adverse drug reactions, and arise

when drugs are bioactivated into reactive metabolites.[29, 78, 166, 167, 191] Reactive

metabolites frequently form covalent and noncovalent interactions with cellular macromolecules

such as DNA, proteins, and lipids.[167, 177, 191] Covalent interactions can lead to cancer or

trigger hypersensitivity reactions. Nonconvalent interactions can cause oxidative and other

intracellular stress.[86, 113, 177, 231]

Structural alerts or toxicophores are chemical structures that can be bioactivated to generate

reactive metabolites.[121] About 78-83% of drugs with a high incidence of IADRs contain

structural alerts, and around 62-69% of these drugs form reactive metabolites.[226] Because

structural alerts are understandable and inexpensive to apply, they are commonly used within the

pharmaceutical industry, the FDA, and drug discovery tools to flag lead compounds with toxicity

risk.[16, 48, 69, 96] Candidate compounds with one or more toxicophores are often chemically

modified to remove the structural alerts and minimize toxicity risk.[72, 122] However, avoiding

structural alerts is not always practical because alerts may be required for efficacy. Structural

alerts like furan, thiophene, nitroaromatic, phenol, and aniline are building blocks with important

pharmacological properties.[54, 176, 248] They can give rise to pharmacological activity, or

provide pharmacokinetic benefits.

More importantly, toxicity due to a specific structural alert is conditional. A structural-alert

containing compound would become harmful or remain safe depending on its metabolic

pathways[209] and the reactivity of its metabolites. For example, the thiophene structural alert is

ambiguous; in the case of methapyrilene, the structural alert undergoes bioactivation, while no

activation of the thiophene occurs for eprosartan (Figure 6.2.1). The differences in

biotransformation lead to drastic differences in the safety profiles of the two compounds. While
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methapyrilene was withdrawn from the market due to hepatotoxicity, eprosartan is a safe and

commonly prescribed anti-hypertensive. In fact, of the 200 most frequently prescribed drugs in

the US, about 50% of them contain more than one structural alert.[226] However, the vast

majority of these drugs are not associated with IADRs.

Because structural alerts do not adequately model metabolism, they often fail to predict

whether molecules will form reactive metabolites (Figure 6.2.2).[69, 119, 226] Molecules are

flagged even if (1) the structural alert is not bioactivated, (2) the reactive metabolite is quickly

metabolized into a non-reactive form, or (3) an alternative, non-activating metabolic pathway is

responsible for the clearance of the parent compound.[119] In addition, structural alerts can only

identify toxic molecules with specific, well-known substructures; they do not identify

substructures that have not yet been observed to generate reactive metabolites. For example, the

formation of terbinafine’s reactive metabolite—an aldehyde generated through

N-dealkylation—was missed by the structural alert approach.[111] Consequently, the

recommendations of structural alerts are very difficult to interpret: safe molecules are often

flagged as toxic, and unsafe molecules may slip through.[9, 119]

In our prior work, we built several models of metabolism[103, 104, 156]. We hypothesize these

models might more specifically identify when alerts are bioactivated, and the current study tests

this hypothesis. Our method combines the knowledge of the biotransformation pathways of

well-studied structural alerts with metabolism models to predict the formation of reactive

metabolites. As a practical assessment of our approach, we apply individual metabolism models

to predict the bioactivation of multiple structural alerts.
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Figure 6.2.1: Structural alerts (highlighted in red) incorrectly flag safe drugs, because they do not ade-
quately model metabolism. Known sites of metabolism are marked with white circles. The metabolism and
reactivity[106] predictions are plotted against each atom in the molecule, with color shading ranging from red
(1.0, likely) to white (0.0, unlikely). Structural alerts indiscriminately flag both bioactivated and not-bioactivated
compounds as problematic. For example, both methapyrilene and eprosartan contain the thiophene struc-
tural alert, yet their toxicity profiles are very different, as predicted by metabolism models (atom shading).
While methapyrilene, an antacid, was withdrawn from the market due to hepatotoxicity caused by reactive
metabolites,[79] eprosartan is a safe anti-hypertensive that does not form reactive metabolites[80].

6.3 Materials and Methods

6.3.1 Epoxidation Model

Furans and thiophenes can be bioactivated by epoxidation. We use a hierarchical deep neural

network to predict the probability that each alert is epoxidized. This model is based on 524

molecules, including 14 furans (Table 6.3.1), and was previously published by our group.[104] All

molecules epoxidized by Human Liver Microsomes (HLMs) in the literature-derived Accelrys

Metabolite Database (AMD) were used in the training set. Non-epoxidized molecules were

selected for structural similarity to the epoxidized molecules. This model is available on the

XenoSite web server.[156]
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model predictions on a reproduction of a figure from Stepan et al. [226] In contrast, structural alerts (high-
lighted in red) incorrectly flag many safe drugs. Known sites of metabolism are marked with white circles.
Predictions by one of our metabolism model[258] are plotted against each atom in the molecule, with color
shading ranging from red (1.0, likely) to white (0.0, unlikely). The model predicted that mycophenolic acid,
pramipexole, and ziprasidone would be metabolized outside their structural alerts to form safe metabolites.
Atomoxetine is predicted to be metabolized at the o-alkyl aromatic ether structural alert, but the predicted
metabolite is not the reactive quinone (Figure 6.4.3). Darunavir is the only incorrect prediction, because the
drug is not oxidized at its aniline to form a reactive nitroso. These results were promising but preliminary,
based on a previously published model that does not make metabolite specific predictions.[156, 258, 260]
Building on this initial and encouraging result, this study aims to systematically test more advanced
metabolism models in predicting the bioactivation of structural alerts.

6.3.2 Quinone Model

Phenols are bioactivated by quinone formation. We use a deep neural network that predicts

whether phenols are metabolized to form quinones. This model is trained on 718 molecules,

including 277 phenols (Table 6.3.1), from the AMD. This model is published in a separate

study,[103] and is available on the XenoSite web server.[156]

6.3.3 Reduction and S-Oxidation Model

Nitroaromatics can be bioactivated by reduction and thiophenes can be bioactivated by

sulfur-oxidation (S-oxidation). For these two structural alerts, we use a HLM metabolism model
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drawn small molecule drugs (in purple), respectively. Among those, 13 furan-, 127 phenol-, 31 nitroaromatic-,
and 31 thiophene-containing drugs have been metabolically studied (blue and red). Of those metabolically
studied drugs, the furan, phenol, nitroaromatic, and thiophene structural alerts are bioactivated, respectively,
23%, 26%, 51%, and 26% of the time. Nitroaromatics can include aromatic rings of any size, so only a fragment
of the ring is visualized.

that predicts which part of the molecule is metabolized and what types of biotransformation (e.g.

S-oxidation, hydroxylation, and/or reduction) the molecules undergoes. This model is a deep

neural network that has an output for reduction and an output for sulfur oxidation. It was trained

on 3061 molecules, including 98 nitroaromatics and 50 thiophenes from the AMD (Table 6.3.1).

This model will be published in a separate study, but is currently available on the XenoSite web

server.[156]

6.3.4 Scaled Predictions

The three models produce probabilistic predictions that range from zero to one. Still, it is possible

the predictions are not ideally scaled to each other. We investigated rescaling the models’ output

by fitting the formula z = 1/ (1+ exp (k log [y/(1− y)] + w)), where z is the rescaled score, y is the

unscaled model output, and k and w are tunable weights for each of the four models. This
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Table 6.3.1: Composition of the training and evaluation sets by structural alerts and metabolism mod-
els. In the table, the number of each structural alert that is bioactivated (BA) and not-bioactivated, (NBA) is
listed alongside the total size of the data set (Size). The bioactivated alerts are included in the training sets, but
those not bioactivated are not always included. This is because, for the epoxidation and quinone formation
models, negative examples are chosen to structurally match the positive examples, rather than to include all
examples of the alert.

Training Set Evaluation Set

Structural Alert Model BA NBA Size BA NBA Size

Furan Epoxidation 5 9 524 3 10 17
Phenol Quinone Formation 169 108 718 33 94 188

Nitroaromatic Reduction 24 74 3061 16 15 37
Thiophene Epoxidation 7 2 524 4 27 42
Thiophene S-oxidation 15 35 3061 8 23 42

rescaling preserves the order in which sites of metabolism are predicted by each model within its

assigned structural alert. Only requiring two weights for each structural alert, the score can be

trained with very small amounts of data (See Materials Section) For assessment, final rescaled

scores were obtained using leave-one-out cross-validation. As we will see, rescaling does not lead

to a statistically significant improvement in performance, so it may not be necessary.

6.3.5 Performance Comparison

We used the area under the receiver operating characteristic curve (AUC)[228] to evaluate the

prediction accuracy of the metabolism model and structural alert approaches. To assess the

statistical significance of different AUCs, two-tailed p-values were computed using the Hanley

and McNeil formula.[95] To establish a baseline, we used logP: the octanol/water partition

coefficient. Lipinski’s well-known “rule of five” advises that highly hydrophobic drugs should be

avoided, because they are more likely to be extensively metabolised.[139] Indeed, logP has been

reported to directly correlate with in vivo toxicity, partly due to increased metabolism.[102]

Because logP is an easily-computable, biologically-relevant parameter, it served as a good

comparison point for our much more complex models.
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6.3.6 Evaluation Set

We collected the structures of all FDA-approved and -withdrawn small molecule drugs from the

DrugBank Database (May 2016).[251] We used SMARTS patterns specifying the structural alert

of interest to filter each of the four evaluation sets: furan, phenol, nitroaromatic, and thiophene

(Table 6.3.1, Figure 6.3.1). Complete lists of molecules in these evaluation sets are provided in

the Supporting Information. Next, we used the AMD database to identify which of these

molecules were bioactivated at their structural alert. We counted all furans, phenols,

nitroaromatics, and thiophenes bioactivated for which there was a corresponding

experimentally-observed reactive metabolites (or their downstream products) resulting from

epoxidation, quinone formation, reduction, and S-oxidation/epoxidation, respectively.

Sufficient molecules for each structural alert were identified to test our approach. Furans were

identified in 17 approved or withdrawn drugs, 13 of which were in AMD, and 3 were bioactivated

(Table ??). All of the bioactivated furan examples are activated by epoxidation. Phenols were

identified in 188 approved or withdrawn drugs (Table ??), 127 of which were in AMD, and 33 were

bioactivated into quinones. Nitroaromatics were identified in 37 approved or withdrawn drugs

(Table ??), 31 of which were in AMD, and 16 were bioactivated. All of the bioactivated

nitroaromatic examples are activated by reduction. Thiophenes were identified in 42 approved or

withdrawn drugs, 31 of which were in AMD, and 8 were bioactivated (Tables ??). Of the

bioactivated thiophene drugs, 8 are reported to be bioactivated by S-oxidation, 4 are reported to be

bioactivated by epoxidation, and 8 are reported to be bioactivated by both S-oxidation and

epoxidation.

6.3.7 Evaluation Set Predictions

In some cases, molecules in the evaluation set were also in the training sets. To ensure unbiased

predictions on these molecules, we used a hold-out prediction. In turn for each validation

molecule, the model was retrained with all the molecules except the validation molecule, and the

predictions from the newly trained model was used. This approach ensured unbiased predictions,
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even when molecules were in both sets.

6.4 Results and Discussion

The following sections use metabolism models to predict the bioactivation pathways for four

commonly observed structural alerts: furans, phenols, nitroaromatics, and thiophenes. In turn, we

evaluate this approach’s performance with each alert. Next, we combine all four models to predict

bioactivation of molecules containing any of the four structural alerts. This combined model is a

more practical tool for identifying possible problematic metabolic pathways for functionally and

structurally diverse molecules. Finally, we discuss the limitations of this approach and solutions

for future studies to improve estimations of toxicity risk.

6.4.1 Furans

Furans are oxygen-containing five member aromatic rings that are commonly found in drugs,

food, nutraceuticals, the environment, and industrial pollutants.[195, 213, 227, 248, 262] Furans

can be bioactivated via epoxidation (Figure 6.4.1). For example, furosemide is a frequently

prescribed diuretic that sometimes causes idiosyncratic hepatitis, which may be due to

epoxidation of its furan ring.[154, 169–171, 226] This epoxide metabolite is electrophilically

reactive and conjugates to nucleophilic sites within proteins. The resulting adducted protein

serves as a hapten to induce toxic immune responses.[154, 226, 250] However, many

furan-containing drugs are not toxic. For example, the H2 antagonist ranitidine does not provoke

toxicity despite a high therapeutic dose because its furan is not bioactivated.[23, 226].

Significantly, many drugs contain furans, but only 23% undergo bioactivation (Figure 6.3.1).

We applied the epoxidation model to predict which furan-containing drugs undergo

bioactivation at the alert.[104] Bioactivated furans were identified with an AUC of 100%,

statistically outperforming using the structural alert alone, with a two-sided p-value of 0.01

(Figure 6.4.2). This performance also is significantly better than the baseline AUC of 60% using
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The resulting epoxide is highly reactive to ring strain and polarized carbon-oxygen bonds. Consequently, the
epoxide can react directly with proteins, or first undergo ring scission to form a reactive cis-enedione that then
conjugates to proteins.[195]

logP (two-sided p-value of 0.022). The bioactivated drugs included furosemide[154, 226, 250],

methoxsalen,[127] and prazosin[70], and the not-bioactivated drugs were vilazodone, fluticasone,

lapatinib, ranitidine, amiodarone, dantrolene, nitrofurantoin, furazolidone, nitrofural, and

dronedarone. Encouragingly, the model perfectly identified bioactivated furans with 100%

accuracy. Of note, we even correctly predicted that methoxsalen is epoxidized, despite the drug

being mislabeled as non-epoxidized in our training data drawn from the AMD. Upon further

investigation, we found a source omitted by the AMD that reported methoxsalen’s epoxidation at

its furan structural alert.[127] We found it reassuring that our model revealed an error in our

curated source data, because it is an evidence that the model was not overtrained.

6.4.2 Phenols

Phenols contribute significantly to biological and pharmacological properties and thus are found

in many drugs. In fact, phenols are one of the most frequently observed structural alerts, present

in about 10% of all drugs on the market. Unfortunately, this important structure can be readily

converted into quinones (Figure 6.4.3). Quinone species, such as quinone-imines and

quinone-methides, are electrophilic Michael acceptors that are often highly reactive, and comprise

over 40% of all known reactive metabolites.[233] At the same time, many safe drugs contain
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Figure 6.4.2: Metabolism model identifies which furans (highlighted in red) are bioactivated. From left to right,
top to bottom, the molecules are methoxsalen,[127] furosemide,[154, 226, 250] prazosin,[70] ranitidine, flutica-
sone, lapatinib, nitrofural, furazolidone, nitrofurantoin, dantrolene, amiodarone, vilazodone, and dronedarone.
Experimentally-observed sites of epoxidation are indicated by white circles. For each molecule, the colored
shading represents bond epoxidation scores, which range from 0 to 0.746. The model’s AUC accuracy on
the furan evaluation set is 100% (statistically outperforms structural alert approach, two-sided p-value = 0.01).
Notably, methoxsalen (the highest ranked molecule) was not epoxidized in the AMD. However, this is an omis-
sion in the AMD data set; methoxsalen is actually epoxidized, and is counted here as a positive drug.[127]
Markedly, the model correctly notes that terminal furans (with just one substituent) are most likely to be bioac-
tivated, but is still correctly recognizes the one exception (fluticasone) to the rule.

phenol and do not form quinones. Consequently, phenol’s presence alone is not necessarily

indicative of quinone formation. Furthermore, phenols may be “hidden” until phenyl rings

undergo hydroxylation in vivo to form the phenol. Such cases would be missed by the structural

alert approach. Avoiding phenyl rings in drug development is impractical. Therefore, an accurate

method for identifying which phenols are actually at risk for quinone formation would be of great

value.

We recently developed the quinone formation model, which accurately predicts quinone

formation across diverse chemicals.[103] On the phenol data set, the quinone formation model
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most important types of structural alerts. Furthermore, any phenyl ring—an unavoidable building block of
many drugs—can be subject to aromatic hydroxylation, thereby forming a phenol. “R” represents a carbon,
oxygen, or nitrogen, which in conjunction with the phenol oxygen can form a quinone-methide, quinone, or
quinone-imine, respectively. The R group can be either ortho or para to the phenol oxygen.

separated the quinone-forming molecules from the other molecules with an AUC of 73% (Figure

6.4.4).

Quinone formation is more complicated than the other pathways in this study, because the

process can involve multiple steps. The complexity of this biotransformation likely explains the

lower accuracy of 73%. Nevertheless, this performance is still better than the structural alert AUC

of 50% (two-sided p-value = 0.0026) and the baseline logP AUC of 50.5% (two-sided p-value of

0.003).

6.4.3 Nitroaromatics

Nitroaromatics are abundant in nature and the urban environment.[198, 203] We are frequently

exposed to nitroaromatic compounds through daily activities like smoking, inhaling combustion

gases, and consumption of grilled food.[198, 203] The nitroaromatic alert is also an important

building block in many pharmaceutical agents.[176, 247] Unfortunately, some of these drugs

cause adverse effects due to reactive metabolite formation.[176, 247]
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ported in the Supporting Information (Table ??). Attached numbers are the molecule quinone formation score,
with red for the bioactivated phenols and blue for the rest. Experimentally-observed sites of quinone forma-
tion are indicated by white circles. For each molecule, the colored shading represents quinone site scores,
which range from 0 to 0.97. The model’s AUC accuracy on the phenol evaluation set is 73%, and better than
the structural alert alone (two-sided p-value = 0.0026).

Nitroaromatic-containing compounds can undergo reductive metabolism through different

pathways to form electrophilic, unstable intermediates such as nitroso and nitro anion radical

(Figure 6.4.5). These reactive metabolites are responsible for the toxicity of some nitroaromatic

containing drugs like tolcapone[184] and nimesulide.[136] On the other hand, many drugs like

aranidipine[235] and nifedipine[205] are safe and lack reduction at their nitroaromatic group.

We used a reduction model to predict which nitroaromatic-containing drugs are bioactivated

through reduction (Figure 6.4.6). The reduction model identified bioactivated nitroaromatics with

an AUC of 93%, which significantly outperforms the structural alert alone (two-sided p-value =

0.0002). This performance also is significantly better than the baseline AUC of 77% using logP
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Figure 6.4.5: Nitroaromatics are bioactivated through reduction. Nitroaromatic compounds undergo sequen-
tial two-electron reductive steps to the nitroso, N-hydroxy, and amine. Alternatively, they can form nitro anion
radical through a one-electron reduction in the absence of oxygen. The reaction chain can also be reversed
when an aromatic amine is oxidized to the N-hydroxy/nitroso compound. However, because the intracellular
environment is reducing at physiological conditions, the equilibrium usually shifts toward the right.[27, 124]

(two-sided p-value of 0.048). Compared to the other structural alerts examined in this study, the

nitroaromatic moiety is the most frequently bioactivated (51%) (Table 6.3.1). Nevertheless,

nitroaromatic groups can be part of the pharmacophore and nitro reduction is required for drugs

like antibiotic nitazoxanide and metronidazole to exert their pharmacological effects.[109, 222]

So, this strong performance is encouraging, and might effectively guide safe use of nitroaromatics.

6.4.4 Thiophenes

Thiophene derivatives are ubiquitous in the environment, as well as many drugs on the

market.[54] Thiophene-containing compounds have a wide range of pharmacological properties,

such as nematocidal, insecticidal, antifungal, antiviral, and antioxidant

effects[17, 38, 101, 112, 148, 157]. For example, thiophene is a critical pharmacophore of

anti-thrombotic drugs like clopidogrel.[73]

Thiophenes can undergo oxidative metabolism through different pathways to form

electrophilic, unstable intermediates such as thiophene S-oxides, thiophene epoxides, and sulfenic

acids (Figure 6.4.7).[54, 61, 62, 150] Formation of reactive, electrophilic intermediates by
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Table 6.4.1: AUC Accuracies of metabolism models on the thiophene training and testing data sets.
Rows correspond to prediction scores and columns correspond to classification tasks (e.g. S-oxidized versus
not-S-oxidized). Highest accuracies are bolded, accuracies that are not statistically different from the high-
est prediction are italicized, and AUC accuracies that are statistically better than the accuracy of the random
model are asterisked.

Training Set Evaluation Set

S-oxidized Epoxidized Bioactivated S-oxidized Epoxidized Bioactivated

S-Oxidation score 92.2%* 69.6% 93.7%* 87.9%∗ 85.3%* 87.9%*
Epoxidation score 57.8% 65.8% 67.6% 67.9% 60.0% 67.9%
Combined score 82.5%* 66.4% 86.7%* 75.4%* 70.7% 75.4%*

oxidative metabolism of thiophenes can induce toxicity, as reported for suprofen and tienilic acid.

[22, 61, 67, 150, 159, 182]. On the other hand, thiophene-containing drugs like eprosartan and

rivaroxaban are neither bioactivated nor toxic.

There is disagreement in the literature about the dominant pathway of bioactivation in

thiophenes. Some have argued that, at least in specific cases like suprofen, epoxidation is more

important than S-oxidation.[114, 182] However, others have argued that S-oxidation is generally

more important.[50, 79, 82, 91, 117, 149, 161, 163] In this analysis, therefore, we consider both

S-oxidation and epoxidation, and aim to study empirically which model best discriminates

bioactivated molecules.

We evaluated three models: the epoxidation model, the S-oxidation model, and a model that

mathematically combines predictions from both models. The final model combines epoxidation

and S-oxidation predictions using the probabilistic OR function. This combined score reflects the

probability that a thiophene will be bioactivated by either pathway if both models are relevant.

These three models were assessed by their performances at identifying bioactivated thiophenes

(Table 6.4.1).

We find that the S-oxidation model identifies bioactivated thiophenes with an AUC of 88%,

better than both the epoxidation and combined models. Remarkably, the S-oxidation model

separates epoxidized from not-epoxidized thiophenes better than the epoxidation model (AUC of
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85% versus 60%). This surprising result reflects the controversy in the literature about the

dominant pathway of thiophene bioactivation.

Certainly, some thiophenes are epoxidized,[182] but in most research studies the experiments

necessary to discriminate between epoxidation and S-oxidation are not performed. Both the

S-oxide and epoxide metabolites result from transfer of oxygen to the nucleophilic S-atom or

double bond center of the thiophene. Consequently, S-oxide and epoxide metabolites look

identical in mass spectrometric analysis used in most drug metabolism studies, as both are 16 mass

units higher than the parent compound without a change in charge.[68, 179, 182]. Indeed,

uncertainties in the site or type of reactions are quite common in metabolic data, but for this case

are consequential because most studies cannot reliably determine which pathway leads to the

reactive metabolite. Moreover, both pathways can produce 5-hydroxyl thiophene and other

downstream metabolites (Figure 6.4.7). When a downstream metabolite is observed, the presence

of both short-lived S-oxide and epoxide thiophene are inferred. In this context, it is possible that

there is a tendency to misreport S-oxidations as epoxidations, especially if thiophene epoxidations

are less common than S-oxidation.

The model’s output in suprofen has direct relevance to the debate in the literature about

S-oxidation and epoxidation of thiophene rings. O’Donnell et al. conclude that suprofen

5-hydroxythiophene was formed via epoxidation based on 18O incorporation analysis.[182] This

evidence, however, does not exclude suprofen bioactivation via S-oxidation. Our model predicts

that epoxidation is slightly more likely than S-oxidation in this case (probability 0.63 vs 0.49), but

this is far from definitive. Encouragingly, our model’s assessment is echoed by the same authors

two years later in a review of bioactivation[121], where they note that suprofen might be

epoxidized instead of being S-oxidized, as they had originally reported. It would be interesting to

see if the epoxidation pathway, which is predicted slightly more likely, could be confirmed in a

more discriminative experiment. This, however, is beyond the scope of the current study, and we

are encouraged that our model produces results consistent with the literature.[80]

Figure 6.4.8 depicts 12 example molecules: suprofen,[80, 182] zileuton,[117] ticrynafen
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(tienilic acid),[143] methapyrilene,[93] duloxetine,[37] tiaprofenic acid,[] eprosartan,[158]

brotizolam,[216] rotigotine, rivaroxaban,[] dorzolamide, and olanzapine.[35, 47]. The first four

drugs have been reported to form reactive metabolite through either S-oxidation or epoxidation

catalyzed by cytochrome P450, while the other seven drugs do not undergo bioactivation within

thiophene rings. All of these bioactivated drugs have been withdrawn from the market for

reactive-metabolite-related toxicity (Table ??). The model AUC of 88% accuracy is better than

the structural alert AUC of 50% (two-sided p-value = 0.009) and the baseline logP AUC of 50.8%

(two-sided p-value of 0.01).

6.5 Combining the Alerts

In practice, molecules can have more than one structural alert at a time. An integrated model that

can predict the bioactivation of all alerts in a molecule is important in this case. Theoretically

speaking, it is possible for each model to correctly predict the bioactivation of each alert (Table

6.5.1), but then fail when combined if they are poorly scaled and require different cutoff scores

for each alert. Encouragingly, the global AUC across all alerts in the combined evaluation data set

of 188 molecules is 74.0%, indicating that this issue is not a limiting problem with this approach

(Figure 6.5.1). Moreover, the AUC can be improved to 81.1% by rescaling the scores of each

model using the relevant structural alerts evaluation set (Figure 6.5.1). This improvement is not

statistically significant. Nonetheless, the result is encouraging and suggests that a similar scaling

may be useful as we expand to additional structural alerts in the future. Furthermore, across all

molecules in the combined evaluation set that are bioactivated, the combined model assigns the

bioactivated structural alert with higher score than the rest of molecule 100% of the time (both

unscaled and scaled).
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Table 6.5.1: Accuracy on training and evaluation sets of four structural alerts. Sensitivity and specificity
were calculated with the optimal cutoff point (closest to the upper left corner) on the ROC curve. AUC accura-
cies that are statistically better than the accuracy of the random model are asterisked.

Training Set Evaluation Set

Structural Alert Model AUC Sensitivity Specificity AUC Sensitivity Specificity

Furan Epoxidation 53.3% 60.0% 66.7% 100.0%* 100.0% 100.0%
Phenol Quinone Formation 85.7%* 81.1% 78.7% 72.4%* 61.3% 76.1%
Nitroaromatic Reduction 71.4%* 70.8% 74.3% 92.9%* 87.5% 86.7%
Thiophene S-Oxidation 87.4%* 93.3% 74.3% 87.9%* 87.5% 78.2%

Table 6.5.2: Sensitivity and specificity at the optimal cutoff points on the ROC curves of unscaled and
scaled scores on the combined evaluation set. The scaling does not reorder predictions, so the AUC re-
mains unchanged from Table 6.5.1.

Unscaled Score Scaled Score

Structural Alert Model Sensitivity Specificity Sensitivity Specificity

Furan Epoxidation 100.0% 100.0% 100.0% 100.0%
Phenol Quinone Formation 80.6% 45.6% 54.8% 89.1%
Nitroaromatic Reduction 62.5% 100.0% 93.7% 73.3%
Thiophene S-Oxidation 62.5% 73.9% 50.0% 91.3%

6.6 Limitations and Future Work

The most obvious limitation of this approach is that it only includes four structural alerts. Clearly,

bioactivation of other structural alerts will not be handled by the current method. Nevertheless,

this quality is not an intrinsic limitation, and our future work will expand this approach to all

commonly observed alerts. While not definitive, these initial results are encouraging, and suggest

that metabolism modeling is broadly applicable. Our models performed far better than structural

alerts alone, and made quantitative predictions about how drugs will be bioactivated. As is

expected in any modeling strategy, the current models do not make perfect predictions all cases.

However, this strategy benefits from improved modeling approaches and data as they are

developed, and we expect performance improvements as we refine our models. Ultimately, this

approach might be most useful in identifying and prioritizing the most likely bioactivation

pathways for a given molecule for follow-up. Mechanistic and systematic predictions of
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bioactivation enable focused experimental studies to confirm or rule out reactive metabolites in

specific cases. More significantly, some metabolites that are formed from structural alerts are not

reactive. For example, only a subset of quinones formed from phenols are actually reactive. Side

chains can tune quinone reactivity up or down, and we expect better utility by combining

predictions of quinone formation with predictions of the reactivity of quinone metabolites. We

have already published accurate models of metabolite reactivity,[105, 106] and plan to combine

these with predictions of metabolites in our future work.

Perhaps most importantly, the toxicity profile of a drug reflects an intricate interplay of

multiple factors, including dosage, competing metabolic pathways, the reactivity of its

metabolites, and coadministration of other medicines. For example, reducing daily dose to under

20 mg/day can substantially reduce toxicity risk.[119] These factors can be complex and hard to

model. For instance, while acetaminophen overdose accounts for more than 50% of drug-induced

primary liver failure cases in the U.S., the drug is generally safe when consumed at its therapeutic

dose.[86, 123] At therapeutic doses, 85% of the administered acetaminophen undergoes phase II

conjugation reactions and is primarily excreted in the urine as the corresponding O-glucuronide or

O-sulfate[26]. Only 15% of the administered dose undergoes phase I oxidation reaction to form

the reactive N-acetyl-p-benzoquinoneimine (NAPQI) species. At safe doses of acetaminophen,

the small amount of NAPQI is neutralized and removed by reduced glutathione (GSH) through

conjugation.[121] However, at higher doses, elevated amounts of NAPQI overwhelm GSH

reserves and the reactive NAPQI starts covalently binding to macromolecules and eventually

disrupts cellular homeostasis. In future studies, we will move closer to predicting toxicity by

integrating individual metabolism models[56, 258–260] with further tools to incorporate

competing and sequential processes that occur in vivo, and then couple them to models of

reactivity,[104, 105] a key driver of drug toxicity.
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6.7 Conclusion

Structural alerts are commonly used to identify molecules likely to produce reactive metabolites.

Unfortunately, alerts are not precise, and incorrectly flag many safe molecules. This study

demonstrated that metabolism models can improve the specificity of structural alerts by

computationally modeling the relevant metabolism pathways. Our models predicted epoxidation

of furans, quinone formation of phenols, nitrogen-reduction of nitroaromatics, and

sulfur-oxidation of thiophenes with AUC performances of 100%, 73%, 93%, and 88%,

respectively. While we have not comprehensively covered all structural alerts, or handled all the

relevant complexities, our success suggests that computationally modeling metabolism could

improve the interpretability of many structural alerts. Ultimately, we envision that models of

metabolism coupled to models of toxicity will form a powerful new approach for assessing the

IADR risk of drug candidates.

6.8 Abbreviations

AMD, Accelrys Metabolite Database; AUC, Area Under the Receiver Operating Characteristic

Curve; BA, Bioactivated; NBA, Not Bioactivated; FDA, U.S. Food and Drug Administration

GSH, Glutathione; HLM, Human Liver Microsomes; IADR, Idiosyncratic Adverse Drug

Reactions; NAPQI, N-acetyl-p-benzoquinoneimine; P450, Cytochrome P450s
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Figure 6.4.6: Metabolism model identifies which nitroaromatics (highlighted in red) are bioactivated.
Twelve examples from the nitroaromatic evaluation set, from left to right, top to bottom: nitrofurantoin,[180]
furazolidone,[6] clonazepam,[205] tolcapone,[184] dantrolene,[136, 238] nimesulide,[136] flutamide,[136]
entacapone,[27, 133] tinidazole,[76] nifedipine,[205] benidipine,[] and lercanidipine.[] The remaining molecules
and their prediction is reported in the Supporting Information (Table ??). Site reduction score are indicated
by the color shading, ranging from red (1.0 highly probable) to white (0.0, low probability). Experimentally-
observed sites of reduction are indicated by white circles. Attached numbers are molecule reduction scores.
The reduction model was able to assign drugs that are known to be bioactivated at nitroaromatic structural
alerts (scores in red) with higher score than those that do not (scores in blue). The model AUC accuracy on the
nitroaromatic evaluation set is 93% (significantly outperforms structural alert approach, two-sided p-value =
0.0002).
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7
Modeling a Rare Bioactivation Pathway

This chapter is adapted from a manuscript published in Chemical Research Toxicology:

Na Le Dang, Tyler B. Hughes, Varun Krishnamurthy, and S. Joshua Swamidass,

Computationally Assessing the Bioactivation of Drugs by N-Dealkylation, 2018, 31, 2, 68-80

7.1 Summary

Cytochromes P450 (CYPs) oxidize alkylated amines commonly found in drugs and other

biologically active molecules, cleaving them into an amine and an aldehyde. Metabolic studies

usually neglect to report or investigate aldehydes, even though they can be toxic. It is assumed

that they are efficiently detoxified into carboxylic acids and alcohols. Nevertheless, some
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aldehydes are reactive and escape detoxification pathways to cause adverse events by forming

DNA and protein adducts. Herein, we modeled N-dealkylations that produce both amine and

aldehyde metabolites and then predicted the reactivity of the aldehyde. This model used a deep

learning approach previously developed by our group to predict other types of drug metabolism.

In this study, we trained the model to predict N-dealkylation by human liver microsomes (HLM),

finding that including isozyme-specific metabolism data alongside HLM data significantly

improved results. The final HLM model accurately predicted the site of N-dealkylation within

metabolized substrates (97% top-two and 94% area under the ROC curve). Next, we combined the

metabolism, metabolite structure prediction, and previously published reactivity models into a

bioactivation model. This combined model predicted the structure of the most likely reactive

metabolite of a small validation set of drug-like molecules known to be bioactivated by

N-dealkylation. Applying this model to approved and withdrawn medicines, we found that

aldehyde metabolites produced from N-dealkylation may explain the hepatotoxicity of several

drugs: indinavir, piperacillin, verapamil, and ziprasidone.

Our results suggest that N-dealkylation may be an under-appreciated bioactivation pathway,

especially in clinical contexts where aldehyde detoxification pathways are inhibited. Moreover,

this is the first report of a bioactivation model constructed by combining a metabolism and

reactivity model. These results raise hope that more comprehensive models of bioactivation are

possible. The model developed in this study is available at http://swami.wustl.edu/xenosite/.

7.2 Introduction

Alkylated amines are often important determinants of the bioactivity of organic molecules. The

alkylated amine groups in biological molecules, like acetylcholine and epinephrine, often are

required for their intended pharmacological functionality. As the result, alkylated amines are

frequently used in medicinal chemistry.

When metabolized by cytochromes P450 (CYPs), alkylated amines usually undergo N-C bond

cleavage (N-dealkylation) and give rise to an amine and an aldehyde.
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N-dealkylation impacts clearance as well as pharmacodynamic properties (Figure 7.2.1).[87]

Typically, N-dealkylation inactivates drugs and facilitates their elimination. For example,

morphine undergoes N-demethylation to form the more readily excretable normorphine.[94]

Alternatively, N-dealkylations may activate pro-drugs, like the N-demethylation of fluoxetine

(Prozac) to the more potent metabolite norfluoxetine.[99, 253]

Frequently, metabolic studies focus on the amine metabolite, without reporting the aldehyde

metabolite. Aldehydes are presumed to be detoxified to carboxylic acids or alcohols, which are

suitable for conjugation and excretion. These detoxification pathways are very efficient for

common aldehyde metabolites like formaldehyde, so researchers frequently ignore aldehydes and

their effects on biological systems.

However, a subset of aldehydes can cause adverse events when they escape detoxification

pathways. While most aldehydes form unstable adducts with protein, glutathione or DNA, some

can form stable adducts. We use the term “reactive” to refer to aldehydes that form stable adducts

with biological molecules.[5, 106] Reactive metabolites are especially problematic in patients

where the detoxification pathways are inhibited by other drugs.[20, 212] For example,

N-dealkylation of terbinafine yields a conjugated unsaturated aldehyde (TBF-A), a reactive

metabolite that forms a transiently stable glutathione adduct that appears to cause liver toxicity in

patients.[90, 111] Biochemical studies also suggest that several drugs—including clozapine and

chlorpromazine–inhibit detoxification pathways enough to increase the toxicity of aldehyde

metabolites.[20, 181] In addition, while animal models are frequently used to study competing

bioactivation and detoxification pathways, species-specific differences in these detoxification

pathways make these in vivo models less reliable in predicting metabolic outcome in human.[240]

In summary, aldehyde formation is understudied and their toxicity may be contingent on several

additional factors that are only now being elucidated.[212] As the result, aldehydes’ importance

may be under-appreciated and, at least on some cases, they might cause idiosyncratic toxicity in

patients.

Data-driven models are already used in scientific and regulatory context. In lead optimization,
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very similar machine learning models are used to identify metabolic hotspots on

molecules.[210, 257] Likewise, alert structures are commonly used to identify liabilities in

molecule structure,[120, 121, 226] and we previously demonstrated that metabolism models can

improve the specificity of alerts.[57] The hope is that modeling of metabolism and reactivity will

improve substantially on purely statistical approaches to understanding toxicity, as are commonly

relied upon within industry and regulatory agencies.[255] Metabolism modeling with machine

learning does not produce detailed enzyme mechanics, but they do provide finer grain information

that is currently used, and for this reason are a significant step forward.

Our group has published extensively on deep learning models of metabolism and reactivity,

with the ultimate goal of comprehensively predicting bioactivation pathways of drug-like

molecules. These studies have included models for reaction types yielding specific metabolites

such as epoxides[104] and quinone species. [? ]

We have also modeled the reactivity of metabolites toward adduction with glutathione, DNA,

proteins, and cyanide, which often are biomarkers for toxicity as well as drivers of toxicological

mechanisms.[? ? ] DNA conjugation can lead to cancer[166, 167] and protein conjugation can

lead to cellular dysfunction, cell death, and sometimes immune response cascades that extend the

damage to organ and systemic levels.[5] As insight into those possibilities, our models yield

probabilities for individual sites on the molecule to undergo the specific reaction, enabling

prediction of metabolite structures too. Taken together, metabolism modeling can predict if a

bioactivation reaction is likely to take place, and this information can guide downstream analyses.

In this study, we aim to study a specific bioactivation pathway, the formation of reactive

aldehydes by N-dealkylation. Though detailed enzyme mechanisms are not considered here, the

question is mechanistic in that a specific metabolic pathway is being assessed for its mechanistic

role in clinically observable toxicity. Our goal is to assess the impact of the N-dealkylation

pathway, specifically. In contrast, other studies have focused on fitting statistical models to

toxicity data without regard to bioactivation pathways.[255] We approach this question by

developing a new model of N-dealkylation, combining it with a previously reported reactivity
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model, and assessing drug-like molecules in the literature for bioactivation by this pathway. To

develop the metabolism model, we used a deep learning algorithm, previously developed by our

group to predict other types of drug metabolism[56, 57, 103–105, 258]. In this study, we trained

the model to predict N-dealkylations by human liver microsomes (HLM). We also assessed the

value of including isozyme-specific metabolism data alongside the HLM data, in building

metabolism models. Next, we combined the metabolism and reactivity models into a

bioactivation model. This combined model predicted the structure of the most likely reactive

metabolites formed by N-dealkylation of an input molecule. Molecules known to form reactive

metabolites by N-dealkylation were used to assess the bioactivation model. Finally, we used this

model to study the importance of N-dealkylation as a bioactivation pathway.

7.3 Materials and Methods

7.3.1 Training Data

We collected a data set from the literature-derived Accelrys Metabolite Database (AMD) as a

foundation for modeling efforts. A total of 1290 N-dealkylation reactions were extracted, each of

which catalyzed by human liver microsome (HLM) or one of the nine most common human P450

isozymes: CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 (Figure 7.3.1). We

implemented an automated labeling algorithm that used the structure of each N-dealkylation

product to identify the bond within the reactant that breaks, as the site of N-dealkylation.

Duplicate molecules were merged into a single representation, with all metabolized bonds

labeled. After merging, our final data set contained 883 unique substrates with each

nitrogen-carbon bond assigned ten binary values (including missing if not-known), corresponding

to metabolism by HLM and the individual P450 isozymes. There were 25, 506 bond-level training

labels in the dataset.

Under the AMD license agreement, we were not allowed to disclose the structures of molecules

in the data set. Nevertheless, to enable reproduction of our results, we provided the AMD reaction
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Figure 7.2.1: N-dealkylation can alter the efficacy and safety profile of drugs. Three drugs (with site of
metabolism circled) demonstrate different outcomes of N-dealkylation. Although N-dealkylation produces two
metabolites, only one observed metabolite for each reaction is shown.
(Left) N-dealkylation of a morphine, an analgesic drug, produces normorphine, pharmacologically inactive and
more soluble metabolite that can be easily excreted in comparison to the parent compound.[223] (Middle)
N-dealkylation of fluoxetine, an anti-depressive drug, generates norfluoxetine, the active metabolite responsi-
ble for the majority of fluoxetine’s therapeutic effects.[99, 253] (Right) N-dealkylation of terbinafine gives rise
to 7,7-dimethylhept-2-ene-4-ynal (TBF-A), a reactive metabolite that can conjugate to proteins and lead to
toxicity.[111]
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Figure 7.3.1: Size of each data set. Each data set contains unique N-dealkylation substrates metabolized
by the corresponding Cytochromes P450 (CYP) isozyme or in human liver microsome (HLM). The size of each
data set reflects the contribution of each enzymatic entity to N-dealkylation metabolism. Many of the sub-
strates are metabolized by multiple CYP isozymes and HLM. The combined data set contains 883 molecules.

and molecule registry numbers and the metabolism status of every compound in the final data set

in the Supporting Information.

7.3.2 External Validation Data

An external data set was used to assess the generalizability of models built on the training data.

This testing set contained 108 unique HLM-mediated N-dealkylation substrates recently added to

AMD (Jan-2017 version) that are not in our training dataset. We provided the AMD reaction and

molecule registry numbers and the metabolism status of every compound in the test data set in the

Supporting Information.
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7.3.3 Descriptors

To model N-dealkylation, we encoded chemical information in numerical descriptors. Each bond

was represented by a vector of 381 descriptors that described its properties at the atom, bond, and

molecule levels. All of these descriptors were calculated by in-house software from Open Babel

2D SDF files.[186] Specifically, the 381 descriptors included two sets of 179 atom descriptors, 7

bond descriptors (e.g. bond type, bond length), and 16 molecule descriptors (e.g. molecular

weight, topological polar surface area, or molar refractivity). Atom-level descriptors (e.g. atom

identity, charge, or hybridization), representing atoms on either side of each bond, were developed

for our previous models of metabolism and reactivity.[104, 105, 258] The complete list of

descriptors used in this study is provided in the Supporting Information.

7.3.4 Heuristic Model

We constructed a simple heuristic model using overall dataset statistics to provide a baseline of

performance against which to compare to more complex methods.[56]. In this heuristic model,

we identified all nitrogen-carbon bonds as potential sites of N-dealkylation in a test molecule.

Based on the carbon chain attached to the nitrogen, potential site of N-dealkylation could be

classified into four groups: methyl, short alkyl chains, in non-aromatic ring, and the remaining

nitrogen-carbon bonds. The probability of being labeled as metabolized in the combined data set

across all members of each group was calculated. This strategy yielded probabilities of 65.32%,

64.51%, 5.41%, and 16.98% for methyl, short alkyl chains, in non-aromatic ring, and the remaining

nitrogen-carbon bonds, respectively (Table7.3.1). Each potential site was initially assigned with

the probability of its group. All other bonds were assigned initial scores of zero. Next, these

scores were linearly scaled so that they summed to one in molecules that have at least one

potential site. The bonds of a molecule with no potential sites all received a score of zero. A

python implementation of this model and an excel file containing the detailed statistics are

included in the Supporting Information to facilitate future studies.
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Table 7.3.1: Classes of N-C bonds in the heuristic model and the probability of being N-dealkylated by HLM.

Group Percent Metabolized Example Reaction
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7.3.5 Multi-Target Modular Model

For each input molecule, atom-level, bond-level, and molecule-level descriptors were calculated

for all bonds between pair of heavy atoms. These descriptors were inputs to a neural network with

two hidden layers that generates vectors of ten scores corresponding to one for HLM and one for

each P450 isozyme. Each element in the vector represented the probability that a bond is

metabolized, mediated by the corresponding isozyme or HLM. The weights of the model were

calibrated during training by performing gradient descent on the cross-entropy error of the

difference between the predicted and actual response values of each bond.

For assessment, predictions were computed using ten-fold cross-validation. Cross-validation is

a jackknifing technique widely used in machine learning for providing an estimate of

generalization accuracy. In our case, a model generated by nine tenths of the data set was used to

predict the remaining tenth of the training data. The process was then repeated until all data were

used in a test set exactly one time. The aggregated accuracy was tracked and compiled to assess

the cross-validated accuracy as a reasonable estimate of model accuracy toward new data.

The model predicted N-dealkylation at the bond level using a multi-target, modular network

[11, 14, 15, 18, 145] with one input layer, three hidden layers and one output layer (Figure 7.3.2).

This architecture had several advantages over a standard neural network. First, it mirrors the local

structure of some of the input descriptors. The contribution of each descriptor to the final model

depended on the distance from the atom or bond it described.[104, 105, 258] Accordingly, the

modular network combined descriptors by their distances to the atom of interest into

neighborhood groups. Second, the multitask architecture solves related problems simultaneously.

In this case, P450 share the same catalytic mechanism while differing in substrate specificity.

This information from the isozyme specific datasets could then be used to improve the accuracy

of HLM predictions in our model design. Finally, the multitask model architecture has nearly the

same number of parameters as the single-task HLM model, but makes use of much more data.

136



7 bond	
descriptors

179	atom	
descriptors

bonds

18	hidden	nodes

N

N
N

NH

Cl

Molecule 1:

HN

N
N

Cl

NH

Molecule 2:

1

39	hidden	nodes

16	molecule
descriptors

10	scores

atoms

local	modules

Descriptor Layers

Atom Hidden Layer

Bond Output Layer 

Bond Hidden Layer

Molecule Layer

Modular Layers

Figure 7.3.2: The structure of the N-dealkylation model. This diagram shows how information flows
through the model, which is composed of one input layer, three hidden layers and one output layer. This
model computes predictions for each nitrogen-carbon bond in a test molecule. From the 2D structure of an
input molecule, 16 molecule-level, 7 bond-level, and two sets of 179 atom-level descriptors are calculated. All
nodes in the second hidden layer feed to the output layer of ten nodes (each corresponds to a cytochrome
P450 isozyme or human liver microsome). In the diagram, bars represent vectors of numbers. Layers are col-
ored red, purple and blue corresponding to, respectively, molecules, bonds, and atoms. The model has 6, 375
weights.
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7.3.6 Single Target Models

Multi-targeted models were more effective than single target models for predicting molecule

reactivity.[106] We tested if this was true also for N-dealkylation by training ten single-target

neural network models, each on a P450 isozyme or HML data set to provide a baseline of

performance against which to compare to the multi-target modular deep neural network. A matrix

of descriptor encoded bonds between heavy atoms in a data set was presented to a neural network

with 20 hidden nodes. During training, the model learned a mapping between the descriptor

values of each bond and the binary experimental response of that bond, metabolized or not

metabolized by HLM or each P450 isozyme. The weight calibration and cross-validation

procedures were identical to those of the multi-target modular deep neural network.

7.3.7 Reactivity Model

Previously, we developed a model to predict reactivity to biological molecules.[106] This model

was a deep neural network that predicted, given a molecule’s structure, its probabilities of

conjugating to protein, DNA, glutathione (GSH), and cyanide. The model was trained on 1364

electrophilic and 1439 nonreactive molecules. On the original training data, the reactivity model

predicted reactive atoms within reactive molecules with average site AUC of 96.6%, 89.8%, 92.8%,

and 94.4% for cyanide, DNA, GSH, and protein, respectively. It is unreported how accurately the

reactivity model predicts the reactivity of aldehydes in particular, and the cross-validated

predictions were used to assess the performance on subset of molecules with aldehydes.

7.3.8 Metabolite Structures

The metabolite algorithm constructed a pair of amine and aldehyde/ketone products for every

possible nitrogen-carbon bond cleavage. However, N-demethylations were excluded because the

formaldehydes produced by these reactions are rapidly detoxified.[65] A python implementation

of this N-dealkylation metabolite structure generator is included in the Supporting Information to
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Figure 7.3.3: Metabolites formed by N-dealkylation. Carbon-nitrogen bond breakage during N-dealkylation
creates two metabolites, one from each side of the bond. The nitrogen-side metabolite (R2NH) has a hydrogen
in place of the leaving alkyl group. The carbon-side metabolite is an aldehyde/ketone (RCOH/RCOR). Trifluo-
roacetaldehyde (TFALD) precursor’s site of N-dealkylation is circled.[66]

facilitate future studies.

When a molecule is N-dealkylated at a nitrogen-carbon bond, this reaction generates two

metabolites, i.e. a lower order amine from the nitrogen-side and aldehyde/ketone from the

carbon-side.[87] Usually only the nitrogen side of the product is reported (Figure 7.3.3). Even

when reported, carbon-side products are only described as aldehydes/ketones 48.5% of the time in

the AMD. In some cases, the reported reactions instead included downstream metabolites of the

aldehydes, i.e. alcohols (26.1%) and acids (25.4%), generated by subsequent detoxification

reactions by aldehyde reductases and aldehyde dehydrogenases.[65, 151, 187] For this reason, the

metabolite algorithm always inferred the formation of aldehydes (or ketones) and does not model

subsequent transformations.

7.3.9 N-Dealkylation Bioactivation Model

We built a bioactivation model that linked metabolism, metabolite structure prediction, and

reactivity models.

This combined model predicted the most likely reactive metabolites generated by

N-dealkylation from precursor molecules. For each potential metabolite, the combined model

defined its output as the product of two predictions, the probability of formation times the

probability of being reactive. The first prediction was the probability of formation as computed
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by HLM N-dealkylation model. The second prediction was the maximum of the probabilities of

reactivity toward protein and DNA as computed by the reactivity model. The metabolite with the

highest score (the product of both predictions) was predicted to be the most likely reactive

metabolite generated by N-dealkylation.

7.4 Results and Discussion

The following sections study the performance of the models, and then use them to assess

N-dealkylation as a bioactivation pathway. First, we evaluated the N-dealkylation model in its

accuracy of identifying metabolized sites within a metabolized molecule. Second, we analyzed

the model predictions at the global level by calculating classification performance on

nitrogen-carbon bonds in the entire data set. Third, we evaluated the accuracy of the

N-dealklyation model on an external testing data set. Fourth, we assessed the reactivity model

predictions on aldehyde containing molecules. Fifth, we tested the bioactivation model’s

prediction of reactive metabolites from molecules known to produce reactive aldehydes. Finally,

we present three case studies of drugs known to produce reactive aldehydes by N-dealkylation.

7.4.1 Metabolism Model Performance

A key objective was to identify the specific bond within a substrate that undergoes

N-dealkylation: its site of N-dealkylation. For every bond in a test molecule, the N-dealkylation

model generated ten scores, each ranging from zero to one and corresponding to the probability

that the bond was metabolized by HLM or a certain P450 isozyme. The HLM model predicts

most sites correctly (Figure 7.4.1).

An informative model should assign metabolized sites with higher scores than non-metabolized

sites within each molecule. We evaluated the model’s success at this objective using two metrics.

First, we calculated “top-two” performance, where a substrate was considered to be correctly

predicted if any of its experimentally-observed sites of metabolism were predicted in the top two

rank-positions out of all potential sites in the substrate. The top-two metric is commonly used to

140



Table 7.4.1: Scores and dataset sizes for reactive and non-reactive molecules. For the HLM model, a
reasonable cutoff might be a score of 0.1 to 0.15. However, our model uses the score itself as a probability in
downstream analysis.

Mean Score Number of Compounds

Reactive Non-Reactive Reactive Non-Reactive

Protein 0.23 0.06 20 222
GSH 0.32 0.03 48 1082
DNA 0.31 0.03 10 195
Cyanide 0.16 0.02 1 128

evaluate CYP site of metabolism models.[210, 221] Second, we calculated “average

nitrogen-carbon (N-C) AUC. This metric is computed by measuring the area under the ROC

curves(AUC),[228] for all nitrogen-carbon bonds in the dataset.[104, 105]

The model accurately predicted metabolized sites within metabolized molecules. HLM model

had cross-validated top-two and average N-C AUC accuracies of 96.6% and 93.7%, respectively.

Across all ten targets, the model had cross-validated top-two and average N-C AUC accuracies of

97.2% and 95.3%, respectively (Tables 7.4.2 and 7.4.1). As an additional test for overfitting, we

constructed a negative control where the metabolism targets were permuted randomly. The model

was trained and tested, in cross-validation, on the permuted data. In this negative control,

performance was poor, with an average AUC across isozymes of 49.4%, worse than a random

classifier. The poor performance on this negative control further confirms the model is not

overfitting and the high performances observed are not artifacts.

As another control designed to test the value of multitask training, we trained ten single-target

models, each on a CYP isozyme or HML data set, for comparison. The multitask model

performed slightly better than the single target models, but this improvement was not statistically

significant (P = 0.351 and 0.425 for top-two and average N-C AUC respectively). Both multitask

and single target models significantly outperformed the heuristic model, which had top-two and

average N-C AUC accuracies of 80.8% and 81.4%, respectively.

An effective model should distinguish metabolized sites globally in the dataset across all
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Table 7.4.2: The model accurately identifies sites of N-dealkylation. The table contains ten-fold cross-
validated top-two, average N-C AUC, and global N-C AUC performance of the multitask (MT), single target
(ST) and heuristic (HR) models. Accuracies of the MT model on the training data set (Self) are also included
for reference. For each metric, the highest cross-validated performance is bolded. Any scores not statistically
different from the best performance are italicized. In all cases, the neural networks are significantly better than
the heuristic model. The performance difference between the HLM single target and the multitask models by
top-two and average N-C AUC is not significant (P = 0.352 and 0.425, respectively, by Mann-Wittney U test).
The performance difference by global N-C AUC, is statistically significant (P = 0.021 by paired permutation
test).

Top-two Average N-C AUC Global N-C AUC

Isozyme Self MT ST HR Self MT ST HR Self MT ST HR

HLM 98.9 96.6 95.7 80.8 96.1 93.7 92.9 81.4 97.5 95.6 95.4 87.1

CYP1A2 98.9 96.6 94.9 86.5 97.0 95.0 91.5 87.2 95.1 90.1 90.5 83.4
CYP2A6 100 98.7 98.7 88.4 96.2 94.8 86.4 80.9 96.3 88.2 87.7 84.4
CYP2B6 99.1 99.1 96.3 90.2 99.7 98.9 94.4 89.9 97.3 92.4 90.8 87.1
CYP2C19 100 98.6 95.9 86.3 98.7 97.3 96.4 91.4 97.0 92.8 92.3 84.8
CYP2C8 100 97.8 96.8 85.4 98.3 96.4 93.9 88.2 95.4 89.3 88.6 82.9
CYP2C9 99.2 97.5 95.8 88.7 98.4 97.4 96.5 93.4 96.3 90.6 89.9 85.8
CYP2D6 100 99.0 98.5 89.6 98.2 97.0 97.0 91.9 95.7 91.4 90.7 84.4
CYP2E1 98.1 97.2 96.3 84.8 95.8 93.9 89.6 81.2 96.7 91.6 89.4 83.9
CYP3A4 98.2 96.1 96.6 80.1 98.2 95.8 95.5 86.8 95.9 90.9 90.2 82.8

nitrogen-carbon bonds. To quantify this performance, we computed the area under the ROC curve

globally across all metabolized and non-metabolized nitrogen-carbon bonds (Table

7.4.2).[56, 194]

The model accurately predicted sites of N-dealkylation by this metric. Across all ten targets,

the model had an average cross-validated global N-C AUC of 92.6% (Table 7.4.2). Notably, the

multitask model predicted HLM-mediated sites with global N-C AUC of 95.6%, significantly

outperforming the single target model (P = 0.021 by paired permutation test[228]). Both multitask

and single target models significantly outperformed the heuristic model, which had an average

global nitrogen-carbon AUC accuracy of 85.2%.

The output of the model is a well-scaled probability. When we binned N-C bonds by HLM

prediction score, the proportion of sites of HLM-mediated N-dealkylation in each bin closely

142



XenoSite
N-Dealkylation

score

Observed 
SOM

O

N

N

Molecule 15: Fentanyl

1
2

3
4

5
6

7
8

9

10
11

12

13
14

15
16

17

18
19

20
21

22

23
24

25

Molecule 16: Fentanyl

10

Fentanyl

N
N

N

NN

Molecule 39: Alvameline

1 2

3

4
5

6

7
8

9

10
11 12

13

14

Molecule 40: Alvameline

25

Alvameline

HN

O

F

F

F

Molecule 1:

1

1

Fluoxetine

NH

O

O

OH

Molecule 87: Metoprolol

50

Metoprolol

NH
O

Cl

Molecule 1:

1

1
2

3

4

5
6

7

8

9

10
11

12

13
14

15
16

Molecule 2:

1

1

Ketamine
O

O

I

O

N I

Molecule 21: Amiodarone

1
2

3

4

5

6
7

8 9

10

1112

13

14

15

16

17
18

19

20
2122

23
24

25

26
27

28

29

30

31

Molecule 22: Amiodarone

13

Amiodarone

N

N

O

N

O N

Molecule 11: Ca↵eine

1

2

3

4
5

6
7

8

9

10
11 12

13

14

Molecule 12: Ca↵eine

7

Caffeine

N

Molecule 1: Terbinafine

1

Terbinafine

Cl

O

HN

N O

F

O

OH2N

Molecule 1: (-)-Cisapride

1

Cisapride

N

N
N

Cl

NH

Molecule 1:

1

1
2

3
4

5

6
7 8

9 10

11 12

13

14

1516

17
18

19
20

21

22
23

Molecule 2:

1

1

Clozapine

N

N

O

NH2

Molecule 41: (S)-Disopyramide

1

23

4

5

6

7
8

9
10

11

12
13

1415

16

17 18

19

20
21

22

23

24

25

Molecule 42: (S)-Disopyramide

26

Disopyramide

N

N

O

N

O

N

NCl

Nefazodone

Figure 7.4.1: The HLM accurately predicts metabolism of most molecules. Cross-validated human liver
microsome (HLM) N-dealkylation scores on example drugs from our training data are shown. Experimentally
observed HLM sites of N-dealkylation are circled. The model gives the highest score to the correct sites in all
these cases.
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Figure 7.4.2: The model makes well-scaled predictions, corresponding to probabilities. The bar graphs
plot the distributions of scores across 4071 dealkylated and non-dealkylated nitrogen-carbon bonds. The solid
lines plot the percentage of nitrogen-carbon bonds that are dealkylated by human liver microsome (HLM)
(using non-normalized frequencies) in each bin. The diagonal dashed lines indicate a hypothetical perfectly
scaled prediction. HLM N-dealkylation score has a strong correlation to a perfectly scaled prediction (R2 value
of 0.975 and RMSE of 4.759%). This means that the score is interpretable as the probability that a nitrogen-
carbon bond is metabolized in HLM. Reliability diagrams for all cytochrome P450 isozymes in the multi-target
model are in the Supporting Information.

correlates with the bin’s score (Figure 7.4.2, R2 = 0.975). Thus the model’s output is interpretable

as a probability and can be combined with other probabilistic outputs.

7.4.2 External Validation of N-Dealkylation

The multitask N-dealkylation model performed well on the external testing data set of 108

HLM-metabolized molecules. Prediction accuracies of our model on this external testing data set

were 95.5%, 94.1% and 94.8%, Top-two, Average N-C AUC, and Global N-C AUC, respectively.

Overall, performance on the testing data set was comparable to the cross-validated performance
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on the training data set.

7.4.3 Reactivity Predictions on Aldehydes

The accuracy of the reactivity model on aldehydes, specifically, was not assessed. A effective

reactivity model for aldehydes is important for this study, and assessed here.

We find that the reactivity model accurately predicted aldehydes reactivity. We identified 746

aldehyde containing molecules and 1128 aldehyde sites from the reactivity model’s training data

set and used their cross-validated predictions to access the model performance on this subset of

data. First, we assessed the ability of model to identify the correct atom in the molecule as

reactive. The average site AUC is computed by averaging the AUC of sites computed within each

molecule separately. The reactivity model predicted reactive atoms of 746 aldehyde containing

molecules with average site AUC accuracies of 97.0%, 91.7%, 95.7%, and 94.9% for cyanide,

DNA, GSH, and protein, respectively. Next, we assessed the ability of the model to separate

reactive and non-reactive aldehyde molecules. Across the full database 1128 aldehydes, the model

can accurately separate reactive and non-reactive substructures with AUCs of 93.0%, 80.3%,

89.1%, and 71.0% for cyanide, DNA, GSH, and protein, respectively.’ The model?s performance

was similarly strong on the 313 alpha-beta unsaturated aldehyde in this same dataset

(Supplementary Materials). These assessments demonstrate that the reactivity model can

accurately model the reactivity of aldehyde containing compounds.

7.4.4 A Census of Reactive Aldehyde Metabolites

The aldehyde products from the carbon-side of N-dealkylation reactions are frequently omitted in

the literature. The training data set contained 1290 N-dealkylation producing aldehyde

metabolites, yet only 26 of these reactions were reported with aldehyde metabolites. Of these 26

aldehydes, the literature reports 16 and 21 conjugate to GSH and DNA, respectively. Moreover,

several of the aldehydes unreported from these reactions appear to be reactive (Figure 7.4.3). This

omission underscores the large gaps in the literature, and suggests the potential importance of
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aldehydes in toxicity pathways too.

Next, we studied the aldehyde metabolites of the reported N-dealkylation reactions of approved

and withdrawn drugs. The complete list of these drugs, their aldehyde metabolites, and reactivity

scores are provided in the Supporting Information. Several hepatotoxic drugs with unknown

mechanisms of hepatotoxicity[1]—like indinavir, piperacillin, verapamil, and ziprasidone—are

predicted by the reactivity model to have aldehyde metabolites more reactive than the parent drug

and all the rest of their reported metabolites in the AMD (Figure 7.4.4). Although piperacillin

toxicity has been recently associated with beta-lactam ring opening and subsequent protein

conjugation, metabolic studies on this antibiotic did not assessed the reactivity of its acetyl

aldehyde metabolite produced via N-demethylation, a major in vitro and in vivo metabolic

pathway of piperacillin.[77] This omission adds to the evidence that N-dealkylation may be an

under-appreciated bioactivation pathway. Reactive aldehydes could contribute to hepatotoxicity

of these drugs. In future work, we plan to study these pathways, and confirm them in appropriate

in vitro studies.

When a N-dealkylation reaction is reported in the literature without reporting the aldehyde

metabolite, it is unclear if the aldehyde is unreported because (1) it was observed but not deemed

important enough to report, (2) it was not observed because experiments were not tuned to detect

them, or (3) it was not observed because it is a reactive metabolite that conjugates to protein. This

final case is most concerning because these aldehydes could contribute to the toxicity of a large

number of drugs. N-dealkylation appears to be a neglected bioactivation pathway that merits

systematic study, especially in cases with evidence of idiosyncratic adverse events typically

associated with reactive metabolites.

7.4.5 Modeling Bioactivation Into Reactive Aldehydes

We tested the bioactivation model on molecules that are known to produce reactive metabolites

by N-dealkylation. The metabolism model’s training data set contains 112, 52 and 3 molecules with
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Figure 7.4.3: Reactive aldehyde metabolites. We computed the structures of all aldehyde metabolites
generated from observed N-dealkylation reactions. Next, we applied the reactivity model to these predicted
metabolites to assess their reactivity.[? ] Examples of the aldehyde metabolites and their reactivity predictions
are shown. The molecular reactivity scores (MRS) are bolded. The number of molecules known to produce this
metabolite are shown in parentheses. Experimentally determined sites of reactivity are circled.
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Figure 7.4.4: Reactive aldehyde metabolites formed by N-dealkylation reactions. Of 1925 approved and
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dealkylation reactions were inferred, and their reactivity was assessed with a previously published reactiv-
ity model.[? ] (Left) The distribution of reactivity scores above 0.3 for glutathione (GSH), protein and DNA
molecule reactivity. For reference, the reactivity score of N-acetyl-p-benzoquinone imine, a well known elec-
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tively. (Right) Several drugs are (1) known to be hepatotoxic (2) by unknown mechanisms, also (3) appear to
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Figure 7.4.5: The bioactivation model accurately identifies reactive metabolites produced by N-
dealkylation. The upper panel shows top-N performance metrics for 112, 52, 3 molecules that produce through
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Figure 7.4.6: Combination of metabolism, metabolite structure prediction and reactivity models to pre-
dict reactive metabolites. The combined model predicts the most likely reactive metabolites produced by
N-dealkylation from precursor molecules. Example molecules are trifluoroacetaldehyde precursor[66] and
ifosfamide.[40, 43] Terbinafine is discussed in the next section and figure.

N-dealkylation metabolites reported to be reactive with DNA, GSH, and protein, respectively. No

training is done in this experiment, so the molecules here are just used for validation. In this task,

the aldehyde metabolites that are not formed or are not reactive are intrinsic negative controls.

For each molecule, the goal is to predict the known reactive first, above all possible

N-dealkylation metabolites.

The bioactivation model can predict reactive metabolite generated through N-dealkylation with

high accuracy (Figure 7.4.5). The bioactivation model can rank the metabolites observed to be

reactive with DNA, GSH, and protein at the first position 79.4%, 75.0%, and 66.6% of the time.

Averaging the AUC of the metabolites associated with each molecule, the bioactivation model

ranking predict observed reactive metabolites with accuracies of 95.4%, 95.7%, and 86.6% for

DNA, GSH, and protein, respectively. The Supporting Information includes the metabolite

structures and their bioactivation model scores, with the reactive aldehyde labeled.

The three molecules known to have toxicity associated with reactive metabolites generated by

150



N-dealkylation: a trifluoroacetaldehyde (TFALD) precursor,[66] isfosamide,[40, 43] and

terbinafine (TBF)[111] illustrate the model’s predictions (Figures 7.4.6 and 7.4.7). The

bioactivation model correctly identifies the toxic metabolite in all three cases (Figures 7.4.6 and

7.4.7). In the first case, the TFALD precursor, TFALD is identified with high probability, and is

known to cause cytotoxicity[140, 141] The second case, ifosamide is an anticancer prodrug that is

extensively metabolized by P450.[40] Ifosamide’s hepato- and nephrotoxicity-profile has been

attributed to chloroacetaldehyde—a metabolite formed through N-dealkylation of ifosamide.[43]

For both cases of TFALD precursor[66] and ifosfamide, [40, 43] the combined model correctly

ranks known reactive metabolites (TFALD and chloroacetaldehyde) as the most likely reactive

metabolites produced by N-dealkylation from the parent molecules (Figure 7.4.6).The anti-fungal

TBF, the third case, is more complicated. The correct metabolite is identified (Figure 7.4.7),

however it is assigned a low probability, just 6%. As we will see, this is because the reactive

metabolite may be formed by double rather than single dealkylation(s) from TBF.

These results are encouraging. No training is need to sequentially apply the metabolism and

reactivity models. So without fitting an parameters, it appears the bioactivation model can

correctly identify reactive aldehydes in drug-like molecules. A better analysis might include more

molecules, but aldehyde toxicity is not studied enough to be sure any aldehydes safe.

7.4.6 Bioactivation of Terbinafine

TBF is a widely used anti-fungal agent. The most common adverse side effects associated with

oral terbinafine treatment are mild to severe gastrointestinal and cutaneous reactions.[92]

However, TBF causes transient liver injury in at least 1% of patients, which may progress to death

or fulminant liver failure.[4, 89] Consequently, oral TBF prescriptions require regular monitoring

of liver enzymes.[89, 90] Hepatotoxicity is thought to be caused by

7,7-dimethylhept-2-ene-4-ynal (TBF-A, Figure 7.4.7). This reactive metabolite was only

demonstrated 15 years after marketing TBF worldwide, and was not identified by standard

reactive metabolite screens.[111]
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Figure 7.4.7: Terbinafine is predicted to form its reactive metabolite by two sequential dealkyla-
tions. Multiple metabolites generated by N-dealkylation of terbinafine have been observed.[111, 241] The
reactive metabolite 7,7-dimethylhept-2-ene-4-ynal (TBF-A, depicted) was identified as a key mediator of
hepatotoxicity.[111] It is proposed that TBF-A is formed directly from terbinafine single dealkylation (dashed
arrows, P = 0.06), but several alternate pathways are possible. The model computes the probability of each
pathway, finding that TBF-A is most likely formed by two sequential dealkylations (path B, P = 0.27) through
the intermediate desmethyl terbinafine (TBF-D). Supporting this prediction, TBF-D is reported as a metabo-
lite of TBF by some studies.[241] This suggests a revision of the single dealkylation pathway reported in the
literature (path A, P = 0.06).
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Although TBF-A was eventually identified as a reactive metabolite, the exact mechanism of its

formation is unclear.[18, 111, 241] TBF-A has been proposed as a metabolite of TBF,[111], but

there are several pathways possible, and the precise pathway was not identified. TBF possesses

three N-alkyl groups that are susceptible to oxidative cleavage. These metabolic reactions may

generate reactive TBF-A in a single dealkylation (path A, Figure 7.4.7) or multiple dealkylations

(paths B, C, and D, Figure 7.4.7). The model identifies the most probable pathway (path B,

Figure 7.4.7). Though beyond the scope of this computational study, preliminary experimental

data suggest the double- dealkylation pathway is more important.

A sequential dealkylation pathway to forming TBF-A might explain why it was not detected in

the glutathione trapping experiments commonly used to screen for reactive metabolites. Likewise,

TBF-A may be more reactive with proteins than with GSH, as many aldehydes are, and therefore

not be reliably trapped by GSH. These are all reasons TBF-A’s role as a reactive metabolite might

have been missed for so long and highlight the promise of using computational modeling

alongside experimental screens. We envision a joint approach. Computational models might

identify reactive metabolites missed in the experimental screens. Further study would then verify

or rule out these metabolites, so the risk factors of a molecule can be more reliably understood.

At the same time, the TBF case study demonstrated the limitations of the current bioactivation

model, which only considers single-transformation bioactivation even though

multiple-transformation bioactivation is important too. Our immediate goals are to expand the

range of metabolism that can be modeled, and then use these models to predicting multiple

generations of metabolites. Combining reactivity models with this comprehensive metabolism

model might enable bioactivation modeling for most drugs.

7.5 Limitations and Future Directions

The most prominent limitation of the current approach is that it does not consider competing

metabolic pathways and multiple metabolic transformations. For example, a molecule can

undergo either hydroxylation and then dehydrogenation at one site or N- dealkylation and then
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reduction at another site. We are currently developing comprehensive models to predict

competing Phase I and II metabolic pathways. Our next goal is being able to predict the complete

metabolic network for a test molecule. Ultimately, we aim to build comprehensive metabolic and

reactivity models. Perhaps a first step might extend this approach to O-dealkylation , another

reaction that produces aldehydes. Alternatively, we could include epoxidation or quinone

formation, both of which often produce reactive molecules and are predicted by models

previously published by our group.

Just as importantly, this model does not account for all important factors. Dosage,

co-administered medicines, and patient factors (age, co-morbidities, genetic variations) also play

important roles in adverse drug reactions (ADR). For example, limiting daily dose to under 20

mg/day can significantly decrease ADR.[119] Similarly, understanding the factors governing

which specific proteins and amino acid are bound by reactive metabolites may be important to

understanding toxicity.[108] While taking all of these factors in to account will be a daunting task,

we believe that models solving smaller problem like ours are steady steps toward this goal.

Finally, as with any machine learning approaches, there is no guarantee that the models’

applicability domain will extend beyond their training domain of metabolically studied small

molecules. Proprietary chemical domains such as natural products and peptides-based drugs that

are actively explored by pharmaceutical companies may not be well suited to the current models

trained on literature-derived data. However, this approach could be easily applied to new data to

expand its domain of applicability.

7.6 Conclusion

This study demonstrated a deep network model for predicting N-dealkylation leading to the

formation of reactive aldehydes. The model predicted sites of N-dealkylation for HLM substrates

with top-two, average N-C AUC, and global N-C AUC accuracies of 96.6%, 93.7%, and 95.6%,

respectively. We also predicted reactive and potentially toxic metabolites by combining

metabolism and reactivity models into a bioactivation model. One limitation to the current
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approach is that it does not automatically consider multiple metabolic steps. More comprehensive

modeling of bioactivation pathways are on the horizon, and actively being developed by our

group. Even so, we identified multistep pathways for terbinafine. Likewise, we identified several

drugs (indinavir, piperacillin, verapamil, and ziprasidone) that are hepatotoxic by unknown

mechanisms of hepatotoxicity, and produce reactive aldehyde metabolites by N-dealkylation.

This suggests that N-dealkylation may be an under-appreciated bioactivation pathway, and

suggest they should be more carefully reported and assessed in metabolic studies. These results

also encourage continued work towards building comprehensive models of bioactivation, to

consider the full range of metabolic transformations.

7.7 Abbreviations

ADR, Adverse Drug Reaction AMD, Accelrys Metabolite Database; AUC, Area Under the

Receiver Operating Characteristic Curve; CYP, Cytochromes P450; HLM, Human Liver

Microsomes; N-C, nitrogen-carbon; N-dealkylation, nitrogen dealkylation; TBF, terbinafine;

TBF-A, 7,7-dimethylhept-2-ene-4-ynal; TBF-D, desmethyl terbinafine TFALD,

Trifluoroacetaldehyde
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8
Conclusion and Future Directions

Predicting idiosyncratic adverse drug reactions (IADRs), toxicity due to bioactivated reactive

metabolites, is a very challenging task. Multiple, competing metabolism pathways contribute to

the complexity of drug metabolism, disposition, and toxicity. In this work, we developed models

which were able to learn reactions comprising a substantial portion of these complex,

interconnected metabolism networks. While each model presented in this thesis can accurately

predict the corresponding metabolic components, we are still exploring different approaches for

building a comprehensive metabolism model. Furthermore, the models developed in this thesis

work do not account for all the important factors contributing to IADR risk. Dosage,

co-administered medicines, and patient factors (age, co-morbidities, genetic variations) also play
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important roles in IADR. For example, limiting daily dose to under 20 mg/day can significantly

decrease IADR [119]. In addition, the relationship between IADRs and specific hapten

complexes of reactive metabolite and proteins is important to predicting toxicity [108].

In order to address the aspects of metabolism necessary to predict IADRs, several addition

models must be developed. First, several key metabolic reactions including tautomerization,

isomerization, and rearrangement are not covered by our current modeling efforts. Second, we

must develop methods for integrating models of individual reactions to predict the complete

metabolic network for a test molecule. Third, quantifying exposure to reactive metabolites

requires accurate modeling of kinetics, which are not addressed in our current work. Fourth, to

predict IADR risk for individual patients, we must model patient-specific differences in

metabolism cause by environmental and genetic factors.

While taking all of complex factors in to account to predict IADR is a daunting task, we believe

that models solving smaller problems like those in this thesis are steady steps toward this goal.

The thesis work is a part of our laboratory’s ongoing effort to develop XenoSite, an online

collection of metabolism and reactivity mathematical models that systematically summarize the

data from thousands of papers into a condensed and useable computational tool that predicts

adduction and potential toxicity of molecules. If successful, these modeling approaches will help

make new medicines and current medical practice safer and more effective.
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