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Iron rust is a type of corrosion product, coming from the chemical reaction between iron and 

oxygen in the presence of water that first documented ca. 800 BCE. It is a heterogeneous inorganic 

solid-state material composed of multiple phases and is ubiquitous throughout the universe. Rust 

species such as Hematite (α-Fe2O3), Akaganeite (β-FeOOH), and ferrous hydroxide (Fe(OH)2), 

make up the solid-state chemical family composed of iron oxides, oxyhydroxides, and hydroxides 

that are typically recognized as chemical waste. Conducting polymer is a type of organic plastic 

composed of long chains with repeating subunits that bonding with strong interactions between 

neighboring molecules. Unlike conventional insulating plastics, conducting polymers possess a 

unique molecular structure with an electronically conjugated backbone, enabling electron freely 

to travel interchain and intrachain, and such subject received the Nobel Prize in Chemistry in 2000. 

This work introduces a unique synthetic strategy that advances the state-of-the-art chemical 

synthesis of nanostructured conducting polymers by utilizing “waste” material rust, named rust-

based vapor-phase polymerization (RVPP). The unique conversion between inorganic rust and 

organic conducting polymer leads to controlled depositions of poly(3,4-ethylenedioxythiophene) 

(PEDOT) and polypyrrole (PPy) nanostructures, including fibers, rods, flakes, and thin films. 
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Owing to the high conductivity, large surface area, and tunable band gap, nanostructured 

conducting polymers provide promising applications in energy storage, photovoltaics, sensing, 

CO2 photoreduction, and antimicrobial field.  

 

 

 

 Rust (red) / Conducting polymer (blue



1 

 

Chapter 1 

Introduction 

This dissertation seeks to build connections between inorganic rust chemistry and modern in situ 

nano and microstructure synthesis of organic conducting polymers. The synthetic strategies 

presented herein lead not only to novel and elegant nano and microstructures of conducting 

polymers, but also to distinct molecular structure of polymer chains, affording polymers for 

applications in energy storage, sensing, CO2 photoreduction, antimicrobial and photovoltaics.  

In this introductory chapter, I will discuss rust chemistry, its history, rust dissolution and iron 

hydrolysis. I will then discuss the fundamental mechanism by which specific polymers can conduct 

and store electricity. Finally, I will address the possibility and advantages of converting rust to 

nanostructured conducting polymers and introduce their potential applications. 

In the chapters following, I will describe my own experimental research beginning with 

synthesizing the conducting polymer PEDOT using rust to produce nanofibers via rust-based 

vapor-phase polymerization (RVPP). This synthesis opens the avenue of in-situ conversion 

between inorganic solid rust to organic solid conducting polymers, demonstrating the potential of 

rust for carrying out a chemical synthesis. Inspired by this unique synthesis, various 

interdisciplinary projects will be described starting with the fabrication of microsupercapacitors 

by combing RVPP and microelectronic systems (MEMS). 3D nanofibrillar electrodes are 
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produced from a sputtered Fe2O3 layers. I will also describe the deposition of nanofibrillar 

conducting polymers (PPy, PEDOT) films on Kirigami via RVPP, enabling the fabrication of a 

stretchable supercapacitor and a humidity dosimeter. The stretchability stems from the mechanical 

property of Kirigami cuts, and the mechanism for sensing is due to the chemo-resistive response. 

The RVPP implement layer-by-layer deposition of PEDOT and PPy nanofibers, and the Kirigami 

sensor is a perfect accessory for the surgical mask. One work also enables the fabrication of 

PEDOT-coated bricks and tiles that convert sintered Fe2O3 to PEDOT nanofibers. Due to the 

catalytic properties of PEDOT-coated masonry materials, one work demonstrates antimicrobial 

properties in masonry materials via peroxide generation. PEDOT-coated bricks for store energy is 

investigated; however, it falls outside of the scope of this dissertation.1 I will also discuss the 

photocatalytic property of RVPP-PEDOT for CO2 photoreduction. Additionally, collaboration 

with the Biswas lab gives state-of-the-art dye-sensitized solar cells since RVPP-PEDOT 

nanofibers possess ultra-surface areas that enhance the electrochemical activities. Finally, one 

work describes controlling nanostructured PEDOT synthesis via pH, solvent, and salts. 

I conclude with a discussion of recent advances in conducting polymer and their applications and 

the perspective of utilizing rust. 

1.1 A brief history of rust 

Rusting is one of the most widely recognized oxidative processes in the world, and its 

heterogeneous corrosion product, rust, is ubiquitous throughout the universe. Although rust 

encompasses a large class of iron oxides, it is most familiar to us as the reddish-brown coating of 

ferric oxide (Fe2O3) that envelops and corrodes iron surfaces as they react with oxygen in the 

presence of water. Hematite (α-Fe2O3), an iron oxide polymorph, is the rusty mineral which gives 
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Mars its distinctive red hue and is the very reason that the planet was named after the Roman god 

of war, named the “fire star” by Chinese astronomers, and nicknamed the “Red Planet” by Western 

ones.2 Within our solar system, another celestial body influenced by rust is the Moon – the Moon 

Mineralogy Mapper imaging spectrometer recently found a widespread abundance of hematite at 

the Moon’s lunar poles.3 The discovery of iron corrosion on the Moon demonstrates that nothing 

is safe from rust even on a planetary scale. 

Here on Earth, rust exists even thriving in the most unlikely climates. In the polar desert of 

Antarctica, five stories of rusty red saltwater pour out from Taylor Glacier in a striking sight known 

as “Blood Falls”.4  Buried beneath 400 meters of ice, the anoxic source lake of Blood Falls contains 

ferrous (Fe2+) iron-rich saltwater that turns blood red upon exposure to the highly oxygenated 

surface at the outlet of the falls. Although rusting is a natural phenomenon that produce remarkable 

natural wonders, humankind has long regarded rust as an unwanted pestilence. On an 

anthropogenic scale, rust represents a persistent problem in all manner of engineering and 

industrial pursuits. Rust is an inescapable source of chemical waste and has consequently become 

synonymous with decay and decline in the human psyche. The rusting process is gradual and 

nondiscriminatory, affecting iron structures of all shapes and sizes, from bridges and buildings to 

pipelines and wires. Simply exposing iron surfaces to oxygen and water is enough to precipitate 

the creeping plague of rust and stands as a stark reminder of the ever-present influence of nature. 

Corrosion and weakening of iron in factory parts, plane engines, and essential infrastructures such 

as bridges and water systems necessitates considerable spending on rust prevention and removal 

techniques. The issue is so pervasive that the National Association of Corrosion Engineers 

(NACE) estimated the global cost of corrosion to be US$2.5 trillion annually in a study in 2016.5 

The infamous “Rust Belt” is colloquially used to describe regions of the United States 
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characterized by sharp industrial decline, evoking images of derelict steel factories rusted over 

from decades of disuse. As a result, rust is commonly regarded as a symptom of deterioration and 

a physical manifestation of neglect in the eyes of the public. Yet, it is essential to note that even 

within this ‘waste’ material, there exists invaluable cultural merit and ample scientific potential. 

The color of rust is an iconic aesthetic quality that has long captivated humankind and cemented 

it as a historical and cultural cornerstone. Shades of rust ranging from fiery red hematite or golden 

yellow limonite (FeO(OH)·nH2O) to earthy brown goethite (FeO(OH)) can be mixed with clay to 

form intensely colored ochre pigments. Rust pigments have been used since the Middle Stone 

Ages, from the 73,000-year-old red ochre crayons found in Blombos Cave, South Africa,6 to the 

burnt umber streaked throughout Da Vinci’s Mona Lisa.7 Moreover, human utilization of rust is 

not just limited to painting cave walls and canvases. Ancient Egyptians associated red with life, 

health, and victory, which led to the common practice of coloring their bodies with red ochre 

powder during celebrations or women staining their lips and cheeks to brighten their appearances. 

The practice of adorning bodies with red ochre persists to this day, most notably in the Ovahimba 

tribe of Namibia. As part of a daily beautification ritual, Himba women slather their bodies, hair, 

and ornaments with a mixture of red ochre powder and clarified butter known as “otjize”.8 

Red ochre has been found to hold significant photoreceptive capacities under in vitro and in vivo 

conditions, demonstrating a positive correlation between iron oxide content and SPF that enables 

otjize to function as an effective sunscreen. Rust evidently holds immense functional and symbolic 

value across the boundaries of countless civilizations and appears time and time again throughout 

the annals of human history. Rust also impacts humans on the most intimate level, coursing 

through our veins in the hemoglobin of our red blood cells. The heme group contains a central 

ferrous (Fe2+) iron atom that is temporarily oxidized in order to bind with oxygen from the lungs 
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and deliver it to bodily tissues.9 Broadly speaking, rusting is a process which is necessary for 

human survival; to live is to breathe, and to breathe is to rust.  

1.2 Characterization of rust 

Rust is a corrosion product from the chemical reaction between iron and oxygen in the presence 

of water. It is a heterogeneous solid-state material composed of multiple phases and is ubiquitous 

throughout the universe. There are 16 phases of rust, such as oxides, hydroxides and 

oxyhydroxides (Table 1.1) composed of Fe and O and/or OH.  

 

Table 1.1: All rust phases.10 Typically, the iron is in the trivalent state with three exceptions, such 

as FeO, Fe(OH)2 and Fe3O4 that contain ferrous ions (Fe2+). Iron oxides consist of close packed 

arrays of anions (usually in hexagonal (hcp) or cubic close packing (ccp)) in which the interstices 

are partly filled with divalent or trivalent Fe predominately in octahedral (VI) (Fe(O, OH)6) or 

tetrahedral (IV) (FeO4) coordination (Figure 1.1a). The various oxides differ in how the basic 

structural units are arranged in space via corner, edge and face sharing (Figure 1.1b), resulting in 
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five polymorphs of FeOOH and four of Fe2O3. In some cases, small amounts of anions (Cl-, SO4
2-

, CO3
2-) also participate in the structure.  

 

Figure 1.1: (a) Schematic of Fe coordination with octahedra and tetrahedral. (b) Different linkages 

of octahedral in Fe (III) oxides. 

 

The oxide hydroxide can dehydroxylate to their oxide counterpart because the similarity between 

the anion frameworks that ensure rearrangement of the cations and loss of OH is often required to 

effect a transformation. Other characteristics of these compound includes the low solubility (high 

stability) of ferric oxides the brilliant colors (Figure 1.2), and the partial replacement of Fe in the 

structure by other cations. Due to the high energy of crystallization, Fe oxides often form minute 

crystals both in natural environments and industry. 
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Figure 1.2: Color of Fe (III) oxides.10 

 

1.2.1 Rust structures 

Goethite (α-FeOOH) (Figure 1.3a) occurs in rocks and throughout the global ecosystem. It 

possesses the diaspore structure which is based on hexagonal close packing of anions (hcp). 

Goethite is one of the thermodynamically most stable iron oxides at ambient temperature and is, 

therefore, either the first oxide to form or the end member among iron oxides transformations. 

Goethite is a vital pigment that possesses dark brown or black color in massive crystal aggregates 

and yellow in powder, responsible for the color of natural rocks, soils, and ochre deposits. Notably, 

goethite was named in 1815 after Johann Wolfgang von Gethe (1749-1832), the famous German 
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poet who was also a scientist and held the position of minister for mines for the Duke of Weimar. 

Lepidocrocite (γ-FeOOH) (Figure 1.3b), the orange color mineral, is named after its platy crystal 

shape (lepido = scale) and its orange color (krokus = saffron). It occurs in rocks, soils, biota, and 

rust and is a common oxidation product of Fe2+. It has the boehmite (γ-AlOOH) structure which is 

based on cubic close packing (ccp) of anions. Akaganeite (β-FeOOH) (Figure 1.3c) is named after 

the Akagane mine in Japan, where it was first discovered (Mackay, 1962). It rarely occurs in nature 

and is found mainly in Cl- rich environments, such as hot brines, and in rust in marine 

environments. Unlike the other FeOOH polymorphs, it has a structure based on body-centered 

cubic packing of anions (bcc) (hollandite structure) and contains chloride or fluoride ions with 

brown to bright yellow color. Schwertmannite (Fe16O16(OH)y(SO4)z)•nH2O (Figure 1.3d) has the 

same basic structure as akageneite, however it contains sulfate instead of chloride ions that 

frequently occurs in nature as an oxidation product of pyrite. The y/z ratio appears to vary, whereas 

Bigham et al. (1990) noticed a range of 3.3-6 for nature samples. Feroxyhyte (δ-FeOOH) (Figure 

1.3e) is reddish-brown, ferrimagnetic compound with poorly crystalline mineral. Their structures 

are based on hcp anion arrays and differ in the ordering of the cations. Feroxyhyte was first 

described by Chukhrov et al. in 1976 and it often occurs in various surface environments. 
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Figure 1.3:  Structures of iron oxyhydroxides. (a) Goethite. (b) Lepidocrocite. (c) Akaganeite. (d) 

Schwertmannite. (e) Feroxyhyte.  

 

The reddish-brown ferrihydrite is widespread in surface environments. It was first described by 

Chukhrov et al. in 1973. Unlike the other iron oxides, it exists exclusively as nanocrystals and 

easily transforms with time into the more stable iron oxides. Therefore, ferrihydrite is an important 

precursor for other more stable iron oxides. Structurally ferrihydrite consists of hcp anions and is 

a mixture of defect-free and defective structural units. The composition, especially for OH and 

H2O, is often recognized as Fe5O8H•H2O. Bernalite (Fe(OH)3) (Figure 1.4a) is a greenish 

hydroxide reported by Birch et al. 1993 and Kolitsch 1998, and Fe(OH)2 (Figure 1.4b) is in white 

color however does not exist as a mineral. The Fe is divalent and its structure is based on an hcp 

anion array which is similar to brucite. Fe(OH)2 is readily oxidized, upon which it develops into 

greenish-blue, so-called green rust and further be oxidized to reddish-brown Fe(OH)3 or black 

magnetite. 
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Figure 1.4: Structures of iron hydroxides. (a) Bernalite. (b) Fe(OH)2. 

 

Hematite (α-Fe2O3) is the oldest known Fe oxide mineral, first recorded in 800 BCE and 

widespread in rocks and soils. Its color is blood-red (Greek haima = blood) if finely divided and 

black or a sparking grey of coarsely crystalline. Hematite has the corundum (α-Al2O3) structure 

which is based on an hcp anion packing and similar to goethite, it is extremely stable and is often 

the end member of transformations of other iron oxides (Figure 1.5). 

 

Figure 1.5: Schematic illustration of formation of α-Fe2O3. 

 

Magnetite (Fe3O4) is a black ferrimagnetic mineral containing both Fe (II) and Fe (III), possessing 

an inverse spinel structure known as iron ore. Together with titanomagnetite, it is responsible for 
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the magnetic properties of rocks, and these are the object of palaeomagnetic studies. Maghemite 

(γ-Fe2O3) is a reddish-brown, ferrimagnetic mineral isostructural with magnetite but with cation 

deficient sites. It occurs in soils as a weathering product of magnetite or as the product of heating 

of the Fe oxides, usually in the presence of organic matter. β-Fe2O3 and ε-Fe2O3 are rare 

compounds that have been synthesized only in the laboratory. β-Fe2O3 (Braun and Gallagher, 

1972) is obtained by dehydroxylation of β-FeOOH under a high vacuum at 170 °C. ε-Fe2O3 was 

first reported in 1934 (Forestier and Guillain) and named in 1963 (Schrader and Buttner). It is a 

dark brown magnetic phase of iron (III) oxide, possessing an orthorhombic noncentral-symmetric 

structure. High-pressure FeOOH is another rare laboratory compound prepared by hydrothermal 

conversion of hematite in NaOH at 400 and 8 Gpa. Wustite (FeO) is a black iron oxide that contains 

only divalent Fe. It is usually non-stoichiometric (O-deficient). The structure is similar to NaCl 

and is based on ccp anion packing and it is an essential intermediate in the reduction of iron ores. 

Green rusts are a group of Fe oxides consisting of layers of Fe(II)OH octahedra in which Fe3+ 

replaces some Fe2+ and to maintain neutrality, anions, especially Cl- and SO4
2- are bound between 

the layers.  

1.2.2 Rust dissolution 

Rust dissolution refers to ferric ions detached from the solid surface through a redox reaction. The 

detachment is due to weakening bonds between Fe3+ and solid surface, and the rate of dissolution 

is associated with the electron transfer during the redox process. Rust dissolution effectively 

reduces iron oxides’ harmful effects, such as unclogging the rusty pipe and preventing water 

contamination. Here, we introduce three major iron dissolution mechanisms, such as proton-

mediated dissolution, ligand-mediated dissolution, and reductive dissolution. 
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Figure 1.6: Mechanisms of rust dissolution. (a) Proton-mediated dissolution. (b) Ligand-mediated 

dissolution. (c) Reductive dissolution. 

 

Stumm and Furrer proposed the proton-mediated iron dissolution mechanism (Figure 1.6a), where 

by three protons are adsorbed per one iron atom to generate a positively charged species.11 The 

protonation of several of these groups polarizes and weakens the Fe-O bonds promoting rate-

limiting iron detachment from the bulk iron oxide. It is well documented that proton-mediated 

dissolution is extremely slow compared to ligand-mediated dissolution and reductive dissolution 

for hematite.12 This is because protonation alone weakens the Fe-O bond to a lesser extent 
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compared to the other mechanisms which lead to a higher activation energy thus making it difficult 

and slower to remove iron (III) atoms from the bulk oxide. Anions that carry protons such as the 

sulfate ion and the chloride ion from sulfuric acid and hydrochloric acid enhance the kinetics and 

equilibrium of iron dissolution through anion exchange which further promotes Fe-O bond 

polarization.13 Anion exchange also reduces the positive surface charge of the iron oxide in acid 

and facilitates the proton adsorption.13  Additionally, increasing the temperature from 15 °C to 35 

°C exhibits significantly enchantment of iron dissolution.14 

The presence of complexing ligands either enhances or inhibits the iron dissolution (Figure 1.6b). 

For example, ligands form mononuclear complexes promote dissolution while binuclear and 

trinuclear complexes inhibit iron dissolution.10 Similar to proton-mediated dissolution, ligand-

mediated dissolution involves fast adsorption of atoms onto a surface iron atom (in this case, a 

ligand) which helps polarize and weaken the Fe-O bond, thus promoting subsequent iron 

detachment and fast surface protonation. At low pH, the abundance of protons further weakens the 

Fe-O bond in the presence of complexing ligands resulting in an increased iron dissolution. 

However, extra protons promote the surface charge of the iron oxide and protonate the complexing 

ligands impeding iron dissolution via ligand interactions. For example, In the presence of citric 

acid, hematite dissolution occurs mostly at a pH of 4 (Zhang et al, 1985).15 In alkaline solutions, 

Chang and Matijevic demonstrates in the presence of EDTA and hematite, ligand-mediated 

dissolution involves complexing free iron (III) instead of absorbing onto the surface.16 

Reductive dissolution is separated into an induction stage followed by autocatalytic dissolution 

(Figure 1.6c). In the induction stage, an adsorbed reductant, such as ascorbate initiates electron 

transfer onto a surface Fe (III) atoms which weakens the Fe-O bonds and generates a Fe (II) 

species, which is subsequently detached. Fe (II) detachment is then assisted by ligand 
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complexation, which further weakens the Fe-O bonds. The ferrous ligand complexation enables 

an autocatalytic dissolution since it activates ferrous ions into a better reductant. Stumm and 

Sulzberger demonstrated photochemistry efficiently facilitates the reductive dissolution since the 

facile electron transfer from oxalate on hematite.17 In terms of kinetics, Stumm and Brantwart 

shown reductive dissolution occurs at a faster rate compared to proton-mediated dissolution and 

ligand-mediated dissolution of hematite at a pH of 3. This is because iron detachment occurs via a 

more labile Fe (II) species compared to an Fe (III) species.17 

1.2.3 Ferric ion hydrolysis 

The ferric iron (Fe3+) hydrolysis process includes nucleation and aging (ion exchange and 

polymerization) that strongly depend on solution pH, reaction temperature, solvent polarity, type 

of ligands, and iron concentration. Such various conditions enable a multitude of iron precipitates 

such as iron oxide (Fe2O3), hydroxide (Fe(OH)3), and oxyhydroxides (FeOOH).18 

Typically, monomeric hexa-aqua complexes [Fe(H2O)6]
3+ undergo hydrolyzes, olation and 

oxolation reaction resulting in ferric hydroxide and oxyhydroxides.19 The olation and oxolation 

are condensation reactions,  proceed by removing hydrogen and hydroxy ligand to bridge the ferric 

irons via hydroxy and oxo bridges, respectively (Figure 1.7). This transformation is depended on 

the binding affinity of ferric metal center and anion that affect by pH and ligands. For example, in 

acidic condition (pH 0.5-2), the hydrated ferric ion undergoes hydrolysis to form a species with 

tightly bound hydroxide ions in addition to loosely bound water molecule ligands. For the pH 

ranges from 0.8-1.8, the predominant aqueous species in solution are expected to be monomers 

and dimers with zero to two hydroxide ligands per iron atom. If the concentration of these 

molecules is higher than the saturation concentration, the solution will possess both solid 
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precipitants and aqueous supernatant. Chloride ligand promotes the formation of tunnel-shape 

akageneite because the strong binding energy enhances the interaction between Cl- ions and 

hydrous iron oxide. 

 

Figure 1.7: Olation and oxolation of ferric ions. (a) Molecular schematic. (b) Iron octahedral 

schematic. 

 

Hematite (α-Fe2O3) is one of the most thermodynamically stable iron oxide phases featuring a 

hexagonal close-packed (hcp) unit cell composed of octahedral formula units. Each unit cell 

contains six octahedral units, where each octahedron shares one face with an octahedron and three 

edges with other octahedra.10  Notably, due to its stability, hematite is often the product of iron 

oxide phase transformations, enabling multiple different pathways of hematite formation. For 

example, feroxyhyte undergoes a phase transformation through thermal dehydroxylation in a 

vacuum to form hematite.10 Such phase transformations depend on the precursor and require 

specific conditions. In nature, hematite exhibits several different morphologies, including round 

or rhombohedral shapes in hot and dry soil or platy shapes at extremely high temperatures.20 

Synthetically, hematite exhibits rod-shaped morphologies, such as through phase transformations 

of ferrihydrite when citrate or maltose is present at high pH (10-12),10 or through the dehydration 

of akaganeite at high temperatures.21  
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Akaganeite (β-FeOOH) differs from all other iron oxides and hydroxides featuring a body-centered 

packing (bcp) crystal structure result in a low density.10 Each monoclinic unit cell is composed of 

eight octahedron units which are connected on one side through edge sharing to form four pairs of 

octahedra. These pairs of octahedron units are connected through corner sharing to form a ring-

like structure with a tunnel through the center. This tunnel is usually stabilized by chloride ions as 

well as fluoride ions.22 Removing the chloride or fluoride ions initiates a phase transformation of 

akaganeite to either goethite or hematite depending on the acidity of the environment.23 

Synthetically, akaganeite is often formed through the hydrolysis of FeCl3 solution under acidic 

conditions.24 Additionally, a study investigating the optimal conditions for akaganeite formation 

exhibits that akaganeite is the favored product after the oxidation of Fe2+ compounds ([FeCl2] = 

1.6 M) when [NaOH] = 0.4 M and the ratio of [Cl-]/[OH-] ≥ 8.22 Notably, this study found varying 

the [Cl-]/[OH-] ratio determine the formation of α, β, or γ-FeOOH. In nature, akaganeite forms in 

rust layers in chloride-rich environments, such as volcanoes and marine environments.25 In 

summary, different hydrolyzing environments lead to diversified hydrolysis products which are 

rich in structural chemistry, for example, rod-shape akageneite (β-FeOOH), fiber-shape goethite 

(α-FeOOH)/lepidocrocite (γ-FeOOH) and spherical and cubic hematite (α-Fe2O3). 

1.3 A brief history of conducting polymers 

 

Conducting polymers is a type of organic plastic composed of long chains with repeating subunits 

bonding with strong interactions between neighboring molecules. Unlike conventional insulating 
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plastics, conducting polymers possess a unique molecular structure with an electronically 

conjugated backbone, enabling electrons freely to travel interchain and intrachain. 

In 1862, the first documented partial conductive compound was synthesized by anodic oxidation 

of aniline in sulfuric acid, which was probably polyaniline. In the early 1970s, poly(sulfur nitride) 

(SN)x, the inorganic explosive polymer, exhibited superconductivity at extremely low 

temperatures (Tc=0.26 K). Meanwhile, many conductive organic compounds were also known, 

such as those discovered by K. Bechgaard (Copenhagen) together with D. Jerome (Paris) and 

famous for being superconductive at “high” temperatures (Tc around 10 K). Polyacetylene was 

the conductive polymer that launched this new field of research. Polyacetylene was known as a 

black powder and was prepared as a silvery film by Shirakawa and co-workers from acetylene, 

using a Ziegler-Natta catalyst in 1974; however, despite its metallic appearance, it was not a 

conductor. In 1977, Shirakawa, MacDiarmid and Heeger discovered polyacetylene films became 

109 times more conductive by oxidation via chlorine, bromine or iodine vapor.26 Such halogen 

treatment was called “doping” by analogy with the doping of semiconductors. The “doped” 

polyacetylene had a conductivity of 105 S/m, which was higher than that of any previously known 

polymer. As a comparison, Teflon has a conductivity of 10–16 S/m and silver and copper 108 S/m. 

The high conductivity found by Heeger, MacDiarmid and Shirakawa opened the field of “plastic 

electronics”.  

Other polymers studied extensively since the early 1980s include polypyrrole (PPy), 

polythiophene (and various polythiophene derivatives, such as poly(3,4ethlenedioxythiophene) 

(PEDOT)), polyphenylenevinylene (PPV) and polyaniline (PANi). Polyacetylene remains the 

most crystalline conductive polymer but is not the first commercialized conductive polymer due 

to its poor environmental stability. Differ from polyacetylene, polypyrrole and polythiophene are 
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easily synthesized in the doped state and possess physical and chemical stability in the air. 

Nowadays, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is well-known 

as the commercialized CPs due to its high conductivity (>1000 S/cm) and simple processibility 

(solution processible). Due to this remarkable discovery, the 2000 Noble Prize in Chemistry was 

awarded to Prof. Alan J. Heeger, Prof. Alan G. MacDiarmid, and Prof. Hideki Shirakawa, who 

have revolutionized the development of electrically conducting polymer. 

1.4 Charge transport theory in conducting polymers 

Different from inorganic semiconductors that conduct electrons/holes through doping theory, 

conducting polymers (CPs) possess the intrinsically electrical conductivity due to the delocalized 

𝜋 electrons along the conjugated backbone.27 To expand the real applications of CPs, we need 

address the fundamentals of their hydration, microstructure, and carrier-transports. 

1.4.1 Hybridization and conjugated 𝜋-bonds in conducting polymers 

Unlike saturated insulating polymers whose carbon atoms are sp3 hybridized and all electrons are 

localized in the form of covalent bonding.27 CPs possess backbones of contiguous sp2 hybridized 

carbon with delocalized electrons.28 Figure 1.8 illustrates that one 2p electron of a sp2-hybridized 

carbon atom is released and the left three remaining electrons that are involved in forming three δ-

bond, which constitute the backbones of conductive polymer chains.29 These 2p electrons are 

delocalized from carbon atoms forming 𝜋-bonds, whose dominant electrical density is located 

perpendicular to the polymer backbones enabling free charge transfer.29,30 Compared to saturated 

chains, conjugated chains exhibit more rigidity since the conjugated 𝜋-bonds impede large torsion 

in the system.31 
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Figure 1.8: Schematic diagram of sp2 hybridization and conjugated π-bonds in conductive 

polymers. 

 

1.4.2 Microstructure of conducting polymers 

CPs exhibit a random heterogeneous microstructure comprised of crystalline and amorphous 

domains which is differ from inorganic conductive materials whose structures are generally 

homogeneous and crystalline.32 Crystalline domains within CPs possess ordered stacking due to 

the 𝜋-𝜋 interaction resulting in rigid conjugated chains. Such crystalline domains enable free-

electron transport, while the amorphous domains exhibit refined electron transport.29, 33 Therefore, 

CPs is structurally recognized as highly conductive metallic domains surrounded by poorly 

conductive amorphous matrices.34 Molecular chains of CPs possess various configurations, 
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including linear-shaped, crosslinked, branched, and networked structures, leading to the 

microstructural complexity of CPs.35 

1.4.3 Charge carriers of conducting polymers – (bi)polarons  

Like conventional inorganic semiconductors, intrinsic CPs exhibit low conductivity (δ). Doping 

treatment effectively improves δ by tuning the number of charge carriers and simultaneously leads 

to distortion of local structures.29 Typically, charge carriers in doped conductive polymers exist in 

the form of polarons or bipolarons.36 

Doping leads to oxidation or reduction of CPs’ backbones through electron transfer. For example, 

the molecular structure of Cl- doped PEDOT (Figure 1.9a) presents when one electron is removed 

from the PEDOT’s backbones, a radical cation is generated at the same place, which induces a 

structural distortion from the benzoid to quinoid structure.37 Such structural distortion affects 

several units in the backbones (such as PEDOT with three units) and ultimately leaves an unpaired 

electron in the backbone recognized as a radical ion (a radical cation for p-type PEDOT). 

Bipolarons are recognized as a pair of radical ions (dication for p-type PEDOT), and it forms once 

the unpaired electrons in the polarons are removed. Notably, bipolarons’ fomation is related to the 

Coulomb repulsion, structural distortion, and counterion electrostatic stabilization instead of 

combining two single polarons.29, 38 Conjugated 𝜋 bond in the quinoid structure provides transport 

orbitals for the electrons of (bi)polarons, making them delocalized within several repeating units.39 
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Figure 1.9: (a) Schematic diagram of PEDOT in neutral, polaronic and bipolaronic state. (b) 

Electronic structure evolution with (bi)polaron generation and doping level, where the LUMO and 

HOMO represent the lowest unoccupied molecular orbital and the highest occupied molecular 

orbital, respectively 

 

(Bi)polarons generated by doping create a new electronic state between the conduction band and 

valence band of CPs, commonly defined as the lowest unoccupied molecular orbital (LUMO) and 

the highest occupied molecular orbital (HOMO), respectively.35 For polarons, the remaining 

unpaired electrons possess higher energy than the paired ones, located at an energy level above the 

HOMO where electrons are half-filled.29 Accordingly, a related antibonding level is generated and 

is located below the LUMO as an empty electronic level as shown in (Figure 1.9b). Removal of 

the remaining electrons from polarons generates bipolarons with higher electronic energy levels.36 

For example, the energy gap between the bipolaron electronic level and the HOMO band edge is 

0.75 eV, while the polaron’s energy gap is 0.5 eV.36  Polaron and bipolarons’ binding energies are 

0.12 and 0.69 eV, respectively, placing the polaron in a more favorable thermodynamic position 

by 0.45 eV (0.69-0.12•2). Therefore, bipolarons are less mobile than polarons and contribute only 

a tiny portion of the electron transport, even with an ambient electric field.40 
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Under low or no doping condition, most (bi)polarons in CPs tend to be localized, resulting in their 

discontinuous electronic energy levels and isolated energy states within the band structures, and 

exhibiting insulating.29 In contrast, at high doping levels, the adjacent (bi)polarons tend to overlap, 

forming intrachain and interchain (bi)polarons couplings, as shown in (Figure 1.10).41-42 These 

overlapping structures create continuous electronic energy levels depicted in electronic energy 

bands between the LUMO and HOMO, resulting in highly conducting. Such electronic energy 

bands diminish the bandgap between the LUMO and HOMO enabling the CPs exhibit metal-like 

electrical properties at room temperature.43 

 

Figure 1.10: Generation of intrachain and interchain (bi)polaron coupling at high doping levels. 

 

1.4.4 Charge carriers transport in conducting polymers  

The charge carriers in CPs exhibit a distinct transport mechanism in both ordered crystalline and 

disordered amorphous domains.29, 35 Crystalline domains possess a well-ordered structure and 

exhibit anisotropic carrier-transport behavior both in intrachain and interchain. Intrachain charge 

carrier transport possesses a high mobility (μ) since the conjugated chains of crystalline domains 

are connected via covalent bonding. While, intrachain charge carrier transport is limited by the 

weak 𝜋-𝜋 interactions, leading to poor μ and anisotropic δ compared with carrier transport within 

the in-plane direction.44 Typically, μ of crystalline organic semiconductors (0.1-20 cm2/V•s)45 is 
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larger than the amorphous organic materials (< 0.1 cm2/V•s).46 Charge carrier transport in 

amorphous domains highly depends on the residence time (τ) of carriers between adjacent chains, 

and τ is calculated via Equation 1.1.47 

𝜏 =
ℎ

𝑊
=  

ℎ

4𝑡
                                               (Equation 1.1) 

Where h is the reduced Planck’s constant, W is the interchain band induced by 𝜋-𝜋 interactions, 

and t is the average electronic coupling or transfer integral.47 Typically, CPs exhibit t < 0.05 eV 

which is lower than the crystalline organic semiconductors leading to a large τ. If τ is larger than 

the vibration (10-13 s), local polymer chains possess enough time to relax and adapt their structures 

and electronic density to trap charge carriers resulting in (bi)polaron formation.29 These localized 

(bi)polarons predominately exist in CPs, leading to limited μ. If τ is smaller than the vibration (< 

10-13 s), polymer chains cannot manage to tune the local structure and electronic density to trap 

carriers, leading to delocalized carriers. Such delocalized carriers are similar to carriers in single 

organic crystals, which possess high μ (~ 4.65 cm2/V•s).48 

1.5 Converting rust to nanostructured conducting polymers 

Rust is a thermodynamically stable and its superior stability enables preservation of ancient 

frescoes resulting in an invaluable cultural merit to the human society.2 For example, the color of 

rust is an iconic aesthetic quality that has long captivated humankind and cemented it as a historic 

and cultural cornerstone.5 Shades of rust ranging from fiery red hematite or golden yellow limonite 

(FeO(OH)·nH2O) to earthy brown goethite (FeO(OH)) can be mixed with clay to form intensely 

colored ochre pigments. From a historical perspective, rust allows us to see those precious cultural 
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relics; to us, rust is an abundant and stable source of Fe3+ ions – a vital chemical reagent, arousing 

our interest in exploring its function benefiting modern society.  

1.5.1 Rust serves as an oxidant for conducting polymers synthesis 

Fe3+ is a ubiquitous oxidant with a moderate oxidation potential (E0 = +0.77 V), serving as an ideal 

oxidant for conjugated polymer synthesis (Figure 1.11 and Figure 1.12).49-51 Conjugated polymer 

is a class of organic semiconducting materials possessing both electrical and ionic conductivity. 

Majority of conjugated polymers are synthesized by oxidative radical polymerization which is 

initiated via oxidizing monomers into reactive radicals, and the polymer chain grows subsequently 

via coupling between monomer radicals and neutral monomers, followed by removing excess 

protons.52 The presence of oxidant and proton scavenger are thus pivotal throughout the 

proceeding of the reaction.18 Nonetheless, using aqueous Fe3+ solutions in a polymerization 

reaction often involves complications, such as liquid surface tension, pH, and the hydrolysis of 

Fe3+, while powdery and mechanical robust solid phase rust mitigate these constrains.  

 

Figure 1.11: Mechanism of PEDOT oxidative radical polymerization 
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Figure 1.12: Mechanism of PPy oxidative radical polymerization 

 

1.5.2 Rust serves as a template for the formation of conducting polymer 

nanostructures 

Besides oxidative potential, Fe3+ ion hydrolysis products provide diversified growing templates 

due to the rich structural chemistry of rusting process, such as rod-shape akageneite (β-FeOOH), 

fiber-shape goethite (α-FeOOH)/lepidocrocite (γ-FeOOH) and spherical and cubic hematite (α-

Fe2O3) (Figure 1.13a-d).20, 53-54 A high aspect ratio nanostructure is ideal for conjugated polymers 

to maximize their surface area, benefiting in electrochemical and catalytical performances. 

Therefore, hard or soft templates are usually employed to guide polymer growth, enabling high 

aspect ratio nanostructures.55 Nonetheless, removing these templates are difficult or even 

impossible. Iron hydrolysis products serve as ideal templates for generating high aspect ratio 

nanostructured conjugated polymers due to one dimensional growth of hydrolysis nuclei and ease 

of template removing with mild acid wash.56  In our strategy, the presence of oxidative radical 

polymerization changes the course of hydrolysis, captures nanostructured hydrolysis intermediates 

serving as templates for polymer growth (Figure 1.13e-h). The interplay between iron hydrolysis 
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and oxidative radical polymerization leads to a highly conductive and various nanostructured 

conjugated polymers.  

  

Figure 1.13: Nanostructures of rust and conducting polymers. (a-d) Various rust nanostructures. 

(e-h) Diversified conducting polymer nanostructures.  

 

1.5.3 Synthesis and methods for converting rust to nanostructured conducting 

polymers 

Conventional synthesis of conducting polymers nanostructures requires hard or soft templates that 

suffer from costly fabrication and template removal. Here, I introduce our strategy by utilizing 

products from rust, droplets with rust, and interfaces containing rust to synthesize nanostructured 

conducting polymer, including rust-based vapor-phase polymerization (RVPP), hydrolysis-

assisted vapor-phase polymerization (HVPP). 
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Rust-based vapor-phase polymerization (RVPP) 

 

Figure 1.14: (a) Schematic diagram of experimental setup for rust-based vapor-phase 

polymerization (RVPP) carried out in a sealed vessel. (b) Scheme of RVPP mechanism entailing 

rust dissolution, Fe3+ hydrolysis and oxidative radical polymerization of EDOT monomer resulting 

in a doped form of PEDOT. (c) Scanning electron micrograph shows the rust possesses sea-urchin 

like microstructure is converted to a nanofibrillar architecture that possessing a high packing 

density of high aspect ratio nanofibers. (d-e) Photographs show that a rusted screw and red fired 

brick serves as a substrate for RVPP leading to a conformal blue texturized PEDOT coating, upon 

delamination of the polymer coating, adapt from reference 56. 

 

Rust, when treated with an acid, is an ideal source of Fe3+ ions that afford an oxidation potential 

of 0.77 V for oxidizing thiophene-based moieties and for producing conducting polymers 

characterized by long conjugation lengths.56 Here, we introduce a strategy that advances the state-

of-the-art in chemical synthesis by demonstrating the functionality of this ubiquitous inexpensive 

inorganic material for depositing freestanding nanofibrillar films of the conducting polymer 

poly(3,4-ethylenedioxythiophene) (PEDOT) and this synthesis is named rust-based vapor-phase 

polymerization (RVPP). 
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A nanofibrillar PEDOT film is deposited through vapor-phase synthesis using a rusted steel sheet 

in a sealed vessel along with 20 µL of concentrated hydrochloric acid and 200 µL of a 0.0034 M 

EDOT in chlorobenzene solution (Figure 1.14a). Initially, as temperature is ramped, hydrochloric 

acid vapor diffuses and dissolves rust. The liberated Fe3+ ions simultaneously undergo hydrolysis 

in an acidic environment and oxidize monomer molecules upon contact (Figure 1.14b). During 

this oxidative radical polymerization, ferric ions are reduced to ferrous ions (Fe2+) and the 

monomer 3,4-ethylenedioxythiophene (EDOT) is oxidized to EDOT+• radical cations.18 The 

conjugated PEDOT backbone assembles via step growth polymerization as monomer-radical 

coupling is in concomitant with deprotonation. Finally, the conjugated polymer chain is doped by 

Cl- ions present from hydrochloric acid and forms an electronically conductive form of PEDOT 

that converts sea-urchin like rust to nanofibrillar PEDOT (Figure 1.14c). Since this technique 

utilizes vapors and a solid-state substrate, a rust-coated three-dimensional substrate is an ideal 

source of Fe3+ ions and as a proof of concept, a corroded metal screw is utilized as a template 

(Figure 1.14d). Additionally, RVPP is suitable with masonry material and converts a red fired 

brick to PEDOT nanofiber-integrated brick. This creates opportunity for functionalizing 

conventional masonry materials (Figure 1.14e).  
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Hydrolysis-assisted Vapor-phase polymerization (HVPP) 

 

Figure 1.15: (a) Schematic illustration of PEDOT nanofiber growth mechanism including forced 

hydrolysis of FeCl3 in water into β-FeOOH nanospindles that templates the oxidative radical 

vapor-phase polymerization of EDOT into PEDOT nanofibers. The polymerization produces Cl--

doped PEDOT and HCl as a byproduct that etches the β-FeOOH core and liberates more FeCl3 for 

reaction. Control of pH enables the synthesis of (b) FeOxHyClz-PEDOT core-shell nanofibers and 

(c) monolithic PEDOT nanofibers. (d) Hydrolysis of FeCl3 in organic solvent (ethanol) produces 

FeOCl 2D nanostructure that templates 2D PEDOT nanoflower synthesis. (e) Addition of 2 vol% 

water in ethanol results in the formation of 1D + 2D PEDOT nanostructures. Hydrolysis of TeCl4 

and SnCl4 lead to (f) TeOx-PEDOT core-shell nanowires and (g) SnO2-PEDOT core-shell 

nanorods. (h) Modification of the reactor adding a N2 bypass increases mass transport efficiency 

of EDOT vapor and enables the synthesis at temperatures lower than 130 °C. (i) Horizontally 

directed PEDOT nanofibers are synthesized with nucleation control and self-assemble into a 3D 

network mat, adapt from reference 18, 60. 

 



30 

 

Diverse inorganic compounds form distinct nanostructures from hydrolysis. Hydrolysis-assisted 

vapor-phase polymerization (HVPP) “hijacks” the formation of nanostructures during hydrolysis 

of inorganic species and utilize them to template the synthesis of organic conducting polymers 

such as poly(3,4-ethylenedioxythiophene) (PEDOT). When dissolve ferric chloride in water, 

hydration of Fe3+ produces hexa-aqua complex [Fe(H2O)6]
3+ that undergoes olation and oxolation 

forming Fe-OH-Fe and Fe-O-Fe bonds, respectively (Figure 1.15a).57 The Cl- rich environment 

and acidic condition contribute to the precipitation of β-FeOOH nanospindles upon forced 

hydrolysis at an elevated temperature (130 °C). In an atmosphere of vaporized monomer 3,4-

ethylenedioxythiophene (EDOT), Fe3+ also serves as an ideal oxidant that provides a 0.77 V 

standard reduction potential to initiate oxidative radical polymerization of EDOT. The product 

PEDOT attaches to the low aspect ratio β-FeOOH nanospindals (~6) and stabilizes the axial 

growth, which eventually develops into nanofibers with high aspect-ratio of ~500. 

Control of pH, solvent polarity, cation, stoichiometry, temperature, and mass transport enable 

conducting polymer morphologies from 1D nanofibers to 2D nanoflowers as well as 

nanostructures from monolithic to core-shell. For example, a higher pH stifles HCl, a byproduct 

of polymerization from etching the inorganic core and results in FeOxHyClz-PEDOT core-shell 

nanofibers (Figure 1.15b), while a lower pH leads to monolithic PEDOT nanofibers (Figure 1.15c). 

The forced hydrolysis of FeCl3 in organic solvents such as ethanol and nitromethane produces 

FeOCl 2D structures that templates the formation of PEDOT nanoflowers (Figure 1.15d); the 

mixture of organic solvent with water generates 1D and 2D nanostructures (Figure 1.15e). A two-

salt system is developed utilizing FeCl3 as the oxidant for polymerization and the other salt 

undergoes hydrolysis as a template. The concentration of FeCl3 is reduced to prevent its hydrolysis, 

and salts more prone to hydrolyze than FeCl3, such as TeCl4 and SnCl4, are introduced in the 
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reactant solution. Forced hydrolysis of TeCl4 and SnCl4 in water produces TeO2 nanowires (F 

Figure 1.15f) and SnO2 nanorods (Figure 1.15g) serving as cores in inorganic oxide-PEDOT core-

shell hybrid nanomaterials.58-59 Stoichiometry and temperature control the initial nucleation of β-

FeOOH that determines the growth direction of PEDOT nanofibers. Under high FeCl3 

concentration (saturated) and low temperature (95 °C), hydrolysis is stifled to nucleate β-FeOOH 

nanospindles in a slow and heterogeneous manner on the substrate. This uncrowded nucleation 

contributes to the development of nanofibers horizontally directed along the substrate to minimize 

the overall system energy, eventually self-assembling into a porous mat. Mass transport of EDOT 

vapor is enhanced with a N2 gas flow because of the low temperature that diminishes the 

evaporation of monomer solution (Figure 1.15h).60 The horizontally directed PEDOT nanofiber 

shows a high aspect-ratio ~1000 with high packing density and forms 3D network with 23 µm 

thick (Figure 1.15i). 

1.6 Applications of nanostructured conducting polymers 

Conducting polymers (CPs) is one of the research hotspots due to their unique electrical, optical, 

mechanical and biological properties and therefore are widely applied in energy storage and 

conversion devices, photo/electrocatalysis, chemical/biological sensors and electromagnetic 

shielding.61 Unlike bulk CPs, nanostructured CPs exhibit superior electrical conductivity, higher 

carrier mobility, enhanced electrochemical activity and improved optical property due to their 

confined nanostructures and ultra-surface areas.62 
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1.6.1 Energy storage 

Conducting polymers (CPs) are uniquely suited for energy storage due to their ability to undergo 

fast and reversible doping and dedoping, as well as reduction and oxidation reactions. Here we 

will discuss their relevance in electrochemical capacitors (ECs), an important family of energy 

storage devices that bridge the gap between batteries and capacitors.63 The ideal energy storage 

device has the high energy and power density of a combustion engine and would be quickly 

rechargeable by applying an electrical potential across its electrodes rather than having to refuel 

to sustain a combustion reaction. Efficiency remains a fundamental drawback of combustion 

engines. ECs reach 99% efficiency with moderate energy and power densities i.e., these are a 

compromise between fast (capacitive) storage systems and energy dense (battery-like) systems.64  

Since 1957, when the first patent was filed,65 the most common commercially available active 

material for ECs remains activated carbon; this inexpensive black powder is commonly produced 

by the combustion of coconut shells. Activated carbon is a porous material that provides a high 

surface area for ions to adsorb on with applied potential, a mechanism known as electric double 

layer capacitance. Fabricating active electrodes from activated carbon generally requires the 

addition of a conductive additive (mostly graphitic carbon black nanoparticles) and a polymer 

binder. These materials are combined into a slurry, spread on current collectors such as aluminum 

or copper foil, and lead to an electrochemically active electrode. In a two-electrode geometry 

device, two of these electrodes are immersed in an electrolyte and with minimal separation to 

shorten ion diffusion path lengths and avoid a short circuit. This device is charged when electrodes 

are polarized simultaneously under opposing potentials; as electrolyte ions segregate to the 

positive and negative electrodes, the charge is balanced and remains stable. Attaching an electrical 
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load, an LED for example, between these electrodes causes current to flow through the LED as 

ions desorb from the polarized active material back into solution. Advantages of using carbon 

allotropes for energy storage include low-cost, high electrical conductivity in some and a wide 

potential window in organic solvents; moreover, specialized carbons have shown promising 

energy densities in aqueous media using smaller potential windows.66 One major limitation of 

activated carbon ECs is their relatively low energy density caused by non-capacitive additive 

materials, low redox activity of activated carbons and low material utilization yield.   

A promising route to improving the performance and applicability of ECs is to develop new 

materials for next-generation devices with improved properties. These materials must be able to 

undergo fast charging and discharging with high efficiency and cycling stability comparable to 

activated carbon. Some of these promising materials include metal oxides,67 MXenes,68-69 small 

organic molecules70 and conducting polymers. Composites of these will not be discussed here, 

though many examples of positive results exist from combining these materials together to 

improve performance.71-73 We will focus on the application of conducting polymers for storing 

electrochemical energy and aim to provide the reader with an accurate depiction of progress made 

in the last decade. There are many reasons to look at conducting polymers for energy storage; for 

example, their synthesis is typically inexpensive resulting in nano- and microstructures through 

self-assembly. Stable conducting polymers have high conductivity, up to 8797 S/cm for PEDOT,74 

with a surprisingly high energy storage density due to a unique redox/doping charge storage 

mechanism that can also be controlled from the vapor phase, in solution, or via electrochemistry. 

Advanced polymeric materials synthesized with a focus on molecular structure, engineered into 

devices that fully consider both the chemical and material limitations of conducting polymers, 



34 

 

have been shown to perform with extraordinarily high cycling stabilities rivaling that of 

commercialized activated carbons and with a high energy density as well. 

1.6.1.1 Theoretical limits of conducting polymers 

The amount of charge transferred to or from each monomer unit in the polymer is an important 

parameter for theoretical capacitance calculation (Equation 1.2). This parameter, α, or doping 

level, is proportional to the specific capacitance (Csp) of a conducting polymer75 

                                                                                              𝐶𝑠𝑝  =   
𝛼·𝐹

𝛥𝐸·𝑀
                                           (Equation 1.2) 

Where 𝐹 is the Faraday constant, 𝛥𝐸 is the potential range and 𝑀 is the molecular mass of the 

monomer unit in the polymer.76 Generally, analysis of charge-transfer reactions in the conducting 

polymer is carried out via cyclic voltammetry (CV). The doping level 𝛼 can be quantified using 

an electrochemical quartz crystal microbalance (EQCM), by observing the mass of the CP 

electrode change with repeated electrochemical doping and dedoping of electrolyte ions.75 

Conducting polymers are semiconductors that undergo conducting/insulating phase transitions 

during CV i.e., the doping level 𝛼 varies with the potential window during CV. For example, a 

ferrocenyl substituted bithiophenic CP cycled under potential windows 0 - 0.8 V, 0.2 - 0.55 V, and 

0.55 - 0.7 V exhibits α of 0.93, 0.35 and 0.16, respectively.77 The specific capacitance is calculated 

by Equation 1.3. 

                                                                                                𝐶𝑠𝑝 =
𝑄

𝛥𝐸·𝑚
                                                                          (Equation 1.3) 

where 𝑚 refers to the electrode mass, 𝑄 is the total charge transferred in Coulombs, and Q = α•F. 

Within these potential windows (𝛥𝐸 ), the theoretical capacitances are 505 F/g, 435 F/g, and 
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464 F/g thereby illustrating the importance of the potential range that is applied. Consideration of 

the potential window matters when comparing these capacitances, for example, in a 0.8 V window, 

where 0.0 V represents fully discharged and 0.8 V fully charged, the total % of charge stored 

differs significantly from 37.3% (0.2 - 0.55 V) down to 17.5% (0.55 - 0.7 V).  

Another clear example of the disparity between experiment and theory is found in polyaniline 

(PANi), a polymer that exhibits the highest theoretical capacitance among all conducting 

polymers. The theoretical capacitance of PANi is around 2000 F/g while the experimental 

capacitance of PANI in 1.0 M H2SO4 is around 400 F/g – 600 F/g,78 though some groups have 

successfully demonstrated capacitances up to 1000 F/g.79 The cyclic voltammogram of PANi is 

shown in Figure 1.16. 

 

Figure 1.16: Cyclic voltammogram of polyaniline in 1 M aqueous H2SO4 shows two redox 

couples. The direction of potential scan is shown with the arrows and chemical reactions are in 

boxes. 

 

The cyclic voltammogram shows two oxidation peaks (a1, a2) and two reduction peaks (b1, b2) 

corresponding to a transition from an insulating to a conducting state; this process is highly 

reversible without degradation of a polymer when carried out under a constrained potential 

window. PANi is typically synthesized in the emeraldine oxidation state, observed in the cyclic 
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voltammogram between fully oxidized pernigraniline (a2) and fully reduced leucoemeraldine (b2). 

Emeraldine is electronically conducting when doped and an ideal material for electrochemical 

capacitors; the depth of discharge of a PANi electrode, doping levels, and theoretical capacitance 

are related to the potential window utilized (Table 1.2). 

 

 𝛥E / V Ccalc / F/g %  

charge 

-0.1 ~ 1.0 V 1.1 825-744 100 

-0.1 ~ 0.4 V 0.5 718-648 37.4 

0 ~ 0.4 V 0.4 743-670 31.9 

0.1 ~ 0.4 V 0.3 719-649 23.5 

0.15 ~ 0.5 V 0.35 695-627 25.6 

0.15 ~ 0.6 V 0.45 738-665 35.0 

0.15 ~ 0.7 V 0.55 747-673 43.4 

Table 1.2: Capacitance versus potential window of PANi electrode, adapted from reference 80. 

 

At opposite ends of voltage window, conductivity drops off dramatically, visible as a low current 

“tail” following a clear redox peak. This also occurs in other conducting polymers, such as 

polythiophene, poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), all of which 

have insulating states at extreme anodic and cathodic potentials.  
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The mass of conducting polymer deposited as electrode material needs to be quantitatively 

determined - an accurate measurement of the mass of activate material is paramount for 

determining the correct gravimetric capacitance (Equation 1.4): 

                                                                                                    𝐶𝑠𝑝 =
𝐼·𝑡

𝛥𝐸·𝑚
                                                        (Equation 1.4) 

Where 𝐶sp is the specific capacitance, 𝐼 is the current, 𝑡 refers to the discharge time, Δ𝐸 is the 

potential range and 𝑚 is the mass of electrode.81 In general, the total mass of PANi coated on a 

current collector serves as the mass of active material. However, in the case of the PANi nanofibers 

depicted in Figure 1.17, the mass of electrically accessible active material is constantly in flux 

depending on charging conditions. 

 

Figure 1.17: Influence of PANi morphology on charging characteristics. (a) Only the outer surface 

of a low surface-area PANi fiber is doped at high rates, leading to a low gravimetric capacity. 

(b) The capacitance of a single PANi nanofiber grafted to a current collector is influenced by the 

kinetics of oxidation of the polymer. 

 

Figure 1.17a depicts a model for an electrochemically oxidized PANi fiber with a significantly 

large diameter. Dopants can only diffuse to the shell, limiting capacitance at high charging rates. 

The core does not contribute to charge storage and remains as synthesized, in the emeraldine salt 

doped state. Given that the large core volume of the PANi nanofiber, the specific capacitance will 
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be relatively low. A possible way to mitigate this issue is to graft high aspect ratio nanofibers 

directly on a current collector where the inaccessible core volume is negligible even at high 

charging rates (Figure 1.17b). Albeit, the nanofibrillar area closest to the current collector may be 

reduced to an insulating state at a faster rate than the end of the fiber causing break-up of the 

percolation network and a lower than expected capacitance. 

It is important that the relationship between theoretical and experimental capacitance be fully 

understood before viewing a theoretical capacitance as a “benchmark” or as an unachievable goal. 

Materials with high theoretical or experimental specific capacitances do not necessarily translate 

to state-of-the-art energy storage electrodes. However, capacitance can be an incredibly useful 

metric in the discovery of new materials that may have a lasting impact in energy storage. The 

level of agreement between theoretical and experimental capacitance allows researchers to 

elucidate the fundamental mechanisms of charge storage in materials, so that both experimental 

materials and theoretical models can be improved. 

The synthesis of conducting polymers leads to a variety of macromolecular salt structures. Upon 

initial electrochemical cycling of a material, a conducting polymer electrode undergoes 

irreversible processes, including conversion of synthesized salt structures to reversible ones and 

removal of intrinsic dopants. Therefore, it is important not to refer to the initial capacitance loss of 

a conducting polymer as a loss of reversible charge storage ability. For instance, condensing vapor 

phase polymerized polypyrrole microtube electrodes purified in 6 M HCl show a high first cycle 

capacitance in 1 M LiClO4 of over 700 F/g, but quickly fade to a stable capacitance of 350 F/g.82 

Much of the initial charge comes from a large reduction peak present at the lower extent of the 

potential window. If this initial drop in current were to be included in the calculation of capacitance 

loss, the polymer would appear to lose 50% of its initial capacitance within the first few cycles.  
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1.6.1.2 Electrolytes, ions and stability 

In CPs, the inherent flexibility of the polymer network causes modulation of pore size during 

charging and discharging. In rigid materials like activated carbon, electrolyte ions are chosen based 

on their size compatibility with the pore size in the carbon.83 Improvement of traditional ECs has 

involved the production of higher surface area carbon while maintaining acceptable conductivity, 

combined with distinct ion size matching for maximum double-layer capacitance. The electrolyte 

ions must also be stable under high potentials and soluble in the chosen solvent. 

Aqueous Electrolytes 

Aqueous electrolytes such as H2SO4, HCl, KOH, and Na2SO4 provide a high ionic conductivity 

compared with other types of electrolyte. Acidic (H2SO4) and alkaline (KOH) electrolytes have 

conductivities up to 1 S/cm, at least an order of magnitude more conductive than salts in organic 

electrolytes. Thus, ECs using aqueous electrolytes will generally have a higher capacitance and 

lower internal resistance than ECs based on organic electrolytes.84 It has been suggested that 

aqueous acidic electrolytes lead to higher ionic conductivity based on a charge transfer mechanism 

in water known as the Grotthus mechanism,85 where protons hop via hydrogen-bonding networks 

of  water molecules on the surface of activated materials, increasing ionic conductivity. Given 

finite scan rates, this can lead to higher capacitance.86  

While aqueous electrolytes maintain an advantage of low resistance, they are limited by water 

decomposition which occurs at a potential of 1.23 V. Voltage window is incredibly important for 

high energy and power density, shown by Equation 1.5 and Equation 1.6. 

                                                                                                     𝐸 =
1

2
𝐶𝛥𝑉2 =  

𝑄𝛥𝑉

2
                     (Equation 1.5)                                                     
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                                                                                                         𝑃 =
1

4𝑅𝑠
𝛥𝑉2

                                       (Equation 1.6)                                                    

where 𝑄 denotes the stored total charge in the ECs, Δ𝑉 refers to the EC’s total voltage window, 

and 𝑅s stands for the equivalent series resistance of the total packaged EC.87   

Organic Electrolytes 

Compared to aqueous electrolytes, organic electrolytes provide a voltage window as high as 3.5 V. 

This leads to organic electrolytes being preferred in traditional electrochemical capacitors based 

on carbon.84 Among organic electrolytes, acetonitrile (AN) and propylene carbonate (PC) are the 

most commonly used solvents. Preparation of organic electrolyte ECs is more complicated than 

their aqueous counterparts. The water content in organic electrolytes must be kept below 3-5 ppm 

or H2 and O2 will be produced by water decomposition at voltages higher than 1.23 V, limiting 

device lifetime.84 This often requires solvent distillation, glovebox device fabrication and intricate 

device sealing mechanisms. 

When conducting polymers charge and discharge, in theory, the complete volume of electrode 

material should contact the electrolyte solution, resulting in a high effective surface area. However, 

the swelling and shrinking of the polymer chains in organic electrolytes is less pronounced than in 

aqueous electrolytes, leading to less doping from counter ions because of the constrained space 

between polymer chains and resulting in high ionic resistance.88 

Ionic Liquids as Electrolytes 

Ionic liquids are solvent-free electrolytes at room temperature; their voltage window stability is 

thus only driven by the electrochemical stability of the ions.87 Ionic liquids have many desirable 

properties that make them promising candidates for CP EC electrolytes, such as low vapor phase 
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pressure, high thermal as well as chemical stability,89-90 low flammability, wide electrochemical 

stability window ranging from 2 to 6 V (typically about 4.5 V). Moreover, ionic liquids anions and 

counter ions for CPs are often the same, such as PF6
-, BF4

-, CF3SO3
- or [(CF3SO2)2N]-.91 In ionic 

liquids, conducting polymer electrodes show improved performance and greater lifetimes,92-93 

especially in actuators94 where doping and de-doping of ions into the polymer is required for large-

scale morphological changes. Compared with carbon electrodes where ion sorption and desorption 

is facile, conducting polymers differ by undergoing large volume change in polymer architecture 

due to the intercalation of doping anions or cations.91  

However, viscosity remains a problem for ionic liquids. As there is no solvent, the kinetics of ions 

transfer are low, leading to low ionic conductivity. Ionic liquids can be mixed with small amounts 

of organic solvents like acetonitrile, nitrobenzene or chloroform, thus decreasing viscosity95 and 

increasing ionic conductivity from 20 mS/cm to 70 mS/cm, a value comparable to organic 

electrolytes.96   

Solid Gel or Polymer Electrolytes 

Compared with using liquid electrolyte in ECs which requires robust encapsulation to prevent 

leakage and a separator to avoid electrical contact between the electrodes, polymer electrolytes97-

98 offer dual functionality as they combine the separator and the electrolyte into a single layer. This 

avoids potential leakage since the electrolyte is bound within the polymer matrix and by shortening 

the distance between two electrodes, the specific capacitance becomes much larger.98 The 

performance of gel electrolytes has already been demonstrated to be comparable to its liquid 

counterparts.99-100 Flexible devices based on poly(vinyl alcohol)/H3PO4 as well have been 

demonstrated by using polyaniline and polyaniline composite electrodes.101-102 
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Degradation 

Improving the electrochemical cycling stability of CP-based ECs is paramount for their successful 

implementation in real-world applications. Typically, the electrochemical performance of a CP-

based EC decays sharply after only a few thousand charge-discharge cycles, far from the well-

established carbon-based ECs that can be cycled up to 1 million times.84 Two destructive 

mechanisms during cycling are the causes for CPs’ reported low cycling stability: electrochemical 

and mechanical degradation (Figure 3).   

 

 

Figure 1.18: A schematic of the electrochemical degradation of CPs. (a) Overoxidation of 

polypyrrole (chemical degradation); (b) Expansion and contraction of CPs during cycling due to 

doping and de-doping, resulting in mechanical degradation. 
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Electrochemical degradation of p-dopable CPs during cycling is related to the over-

charging/discharging of polymer backbone and the presence of nucleophiles in the electrolyte 

(Figure 1.18a). At a more positive potential, chemical bonds in CPs are broken and the polymer 

chains are irreversibly over-oxidized into fragments; at a more negative potential, the reduced CPs 

show poor conductivity, resulting in decreased capacitance. For example, both reduced and 

oxidized states of PANI (leucoemeraldine and pernigraniline, separately) are insulating and result 

in low current at low and high potentials when charging and discharging.103  

It is also demonstrated that nucleophile in the electrolyte (e.g. OH-, Br-) facilitates the 

electrochemical degradation of CPs. With OH- in the electrolyte, it is easy for β-C in PPy to oxidize 

into C=O and form quinone, disrupting conjugation and leading to low electrochemical 

performance. Polymer chains also crosslink during the degradation process, creating rigid islands 

entrapped by insulating points that hinder ionic exchange, deteriorating the capacitance.104-105 To 

overcome electrochemical degradation during cycling, both electrochemical processes (voltage 

window, scan rate, etc.) and cell components (electrolyte, current collector, etc.) need to be 

carefully selected.106 Large voltage windows beyond an electrochemically stable range may 

increase the energy density of a device but will degrade the CP and lead to reversibility issues.  

Mechanical degradation is highly related to the volume change of CPs during cycling. When 

charging and discharging, CPs undergo doping and de-doping processes; counter ions travel 

toward and away from the polymer backbone, causing repeated expansion and contraction of the 

material (Figure 1.18b). Unlike in activated carbon, where ion intercalation has little effect on pore 

structure (Figure 1.19a),87 there is no accurate model for predicting dopant effects on CP pore 

structure. Since the solvent shell around ions will undergo partial dissolution when ions penetrate 

into smaller pores, the effective size of ions can vary.107 Though the polymer is porous, during the 
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charge and discharge process, the polymer network will swell and shrink, leading to variable pore 

size (Figure 1.19b). This can cause irreversible changes in the percolation network, loss of 

conductivity and reversibility.  The correlation between size of electrolyte ion and CP performance 

is complicated, and electrolyte/CP compatibility is generally determined heuristically.  

 

 

Figure 1.19: Microscale charging mechanisms in rigid materials and soft materials. (a) Porous 

carbon structure. Inset: Porous carbon structure during charging process in electrolyte. (b) PANi 

fiber porous structure. Inset: PANi fiber structure during charging process in electrolyte. 
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Upon doping with ClO4
-, a PPy film shows radial expansion, causing structural breakdown and 

decline of electrochemical performance.84, 105, 108-109 Mechanical degradation of CPs can be 

minimized by attaching CPs onto porous materials or synthesizing CP nanostructures,110 allowing 

more free volume for the material’s shrinkage and swelling, while also facilitating electrolyte 

diffusion. Making composites can also increase the overall mass and volume of the device, 

decreasing the gravimetric and volumetric capacitance. Moreover, fast diffusion of electrolytes 

facilitates the self-discharge rate of conducting polymer (higher charge loss rate per unit time at 

certain cell potential values).111 Nanostructured CPs with soft architectures are ideal for resisting 

mechanical degradation while retaining energy density. A homogeneous CP structure and ordered 

polymer chain alignment help mitigate stress generated during cycling, prevent crack formation 

when the CPs are shrinking and swelling, and result in extended electrochemical stability.112-113 

For example, control of the electrochemical polymerization of PPy results in ordered molecular 

alignment that uniformly distributes stress while facilitating charge transfer; the resulting device 

retains 86% of capacitance after 100,000 charging/discharging cycles.113 Initial electrochemical 

cycling under reduced voltage windows is also shown to increase the cycling stability of a CP EC. 

This “priming” step relaxes the molecular structure gradually, so the electrode architecture 

experiences less strain after increasing to a larger voltage window. This priming technique enables 

a PANi based EC to cycle for more than 10,000 cycles with 93% capacitance retained in a voltage 

window of 0.8 V.103  
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1.6.2 Other applications 

1.6.2.1 Biosensors 

Biosensors are devices that enable to emulate biological systems and take noninvasive 

measurements of various functional indicators of the human body.114 Nanostructured conducting 

polymers (NCPs) are one of the promising biosensor materials since their conductivities are 

sensitive to the environment, resulting in a change from an insulating state to an electrically 

conducting state with chemical or electrochemical doping.115 There are three advantages of NCPs: 

first, the properties of NCPs are easily tailored to detect a wide range of chemicals based on the 

conductivity change versus various dopant ions and doping levels; second, NCPs exhibit enhanced 

sensitivity compared to the bulk material-based sensors due to their high surface area; third, the 

NCPs possess faster response time than non-nanostructured sensors since the porosity of the 

nanostructures enables facile diffusion of gas molecules.116-117 

1.6.2.2 Electromagnetic interference 

Electromagnetic interference (EMI) is receiving increased emphasis due to the extensive 

utilization of communication equipment, such as phones and radar systems, leading to a negative 

effect on human health.118 However, the conventional shielding materials, such as carbon 

nanotubes, suffer from the reflection, result in incomplete EM waves absorption, and further 

produce secondary/repeated EMI pollution.119 Conducting polymers (CPs) are ideal EMI shielding 

materials due to their high electrical conductivity, low energy optical transitions, low ionization 

potential, and high electron affinity, enabling both reflection and microwave absorption 

behavior.120 To date, CPs-based EMI shielding materials have made significant achievements in 
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this field through rational design of microstructures and hybridization with different types of 

materials.121 

1.6.2.3 Thermoelectric 

Thermoelectric materials play a vital role in improving energy conversion efficiency by converting 

waste heat into electricity.122 The key parameter of thermoelectric performance is the 

dimensionless thermoelectric figure-of-merit (ZT), defined as (ZT = S2δT/κ).35, 123 Where S is the 

Seebeck coefficient, δ is the electrical conductivity, T is the absolute temperature, and κ is the 

thermal conductivity. Conducting polymers (CPs) are well investigated in the thermoelectric field 

due to their low cost, flexibility, processability and low intrinsic thermal conductivity (0.1-0.5 

W/mK).124 However, the random orientation of the molecular chains in amorphous domains 

impedes the conductance of CPs, leading to low thermoelectric performance. Recently, 

considerable enhancements are achieved by nanoscale conducting polymers. The highly ordered 

polymer chains facilitate the charge carrier mobility result in an improvement in both electrical 

conductivity and Seebeck coefficient.125 
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Chapter 2 

Converting Rust to PEDOT Nanofibers for 

Supercapacitors 

 

Convert rust (red) to PEDOT nanofibers (blue) 
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2.1 Introduction 

Iron corrosion species such as Hematite (α-Fe2O3), Maghemite (γ- Fe2O3), Goethite (α-FeOOH) 

and Lepidocrocite (γ-FeOOH), first documented circa 800 BCE, make up the solid-state chemical 

family comprised of iron oxides, oxyhydroxides and hydroxides that is known as rust.1-5 Natural 

sources of these species are found everywhere in our universe; here, on earth, rust is a byproduct 

of redox reactions between iron and oxygen in the presence of water and represents a major 

problem for our anthropogenic engineering endeavors.6-8 Rust is thermodynamically stable, 

ubiquitous, inexpensive and contains ferric ions (Fe3+) and therefore serves as an attractive 

candidate for developing oxidative chemical reactions. The ferric ion, with an oxidation potential 

of 0.77 V, is a nominal oxidizing agent used in the syntheses of conducting polymers such as 

poly(3,4-ethylenedioxythiophene) (PEDOT), polythiophene and polypyrrole resulting in doped 

states and long conjugation lengths.9-12 PEDOT is a particularly useful heteroaromatic organic 

electronic possessing excellent chemical and physical stability as well as high electrical 

conductivity. This polymer is typically synthesized via solution phase reaction, electrochemical 

oxidation or vapor-phase polymerization.13,14 Among these, vapor-phase polymerization is a 

particularly promising strategy that results in conformal coatings of low electrical resistance in a 

single step.10,15-18 Polymerization from the vapor phase usually requires a ferric ion-containing salt 

serving as oxidizing agent.  Some ferric ion-containing salts are quite expensive and all ferric ion-

containing salts are corrosive requiring safety precautions during handling.14,19,20 Moreover, Fe3+ 

salts are hygroscopic and chemically unstable undergoing hydrolysis over time which challenges 

the reproducibility of experiments.3,4,10  
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Here, we present a robust platform for synthesizing PEDOT nanofibers utilizing solid-state rust as 

a reactant and we introduce rust-based vapor-phase polymerization (RVPP) – a versatile 

alternative to traditional vapor-phase polymerization. This approach obviates the need of a 

corrosive salt, affords a nonabsorbent solid-state oxidant source for engineering facile reactions 

and provides a sustainable approach for the synthesis of organic electronics using what is typically 

considered chemical waste. The protocol for producing a nanofibrillar PEDOT film requires using 

hydrochloric acid vapor to dissolve rust and liberate aquated Fe3+ ions that initiate polymerization 

upon contact with monomer vapor. Hydrolysis of Fe3+ ions occurs in unison with polymerization 

resulting in the precipitation of one-dimensional inorganic nanostructured colloidal iron species 

such as FeOOH.  Our approach to synthesis is scalable, producing nanostructured polymer film 

growth on any rusted surface of any dimension requiring only a sealed vessel for reactant vapors 

to interact with solid-state rust. Dissolution of rust and hydrolysis of Fe3+ ions occur in situ 

resulting in a conformal coating of inorganic-organic core-shell FeCl2-PEDOT nanofibers. A rust 

layer on a steel surface plays the role of a versatile solid-state 2D reactant that enables control of 

polymer patterning and film thickness. Polymerization consumes rust resulting in nanofibrillar 

PEDOT films that delaminate from the steel. This synthetic strategy results in freestanding 

nanofibrillar PEDOT films that are ideal for developing energy storage applications possessing an 

electronic conductivity of 323 S/cm. Our nanofibrillar PEDOT-based supercapacitors exhibit 

state-of-the-art performance with gravimetric capacitance of 181 F/g at a current density of 3.5 

A/g,10, 21,22 retaining 80% of the original capacitance after 38,000 charge-discharge cycles. 
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2.2 Experimental methods 

2.2.1 Corrosion protocol 

α-FeOOH, -FeOOH and FeSO4 rust layers were produced as per ASTM A109 protocol by 

immersing a 2.5 cm × 4 cm low carbon steel sheet in 20 mL of a 0.01 M H2SO4 solution for 48 h 

at 25 °C. Corroded sheets were then rinsed and dried under ambient conditions; thickness of a rust 

layer is controlled by immersion time ranging between 24 h and 40 h.  

2.2.2 Rust-based vapor-phase polymerization (RVPP) of PEDOT 

The Teflon liner of a hydrothermal reactor is loaded with: a 7 mm × 7 mm rusted steel substrate, 

20 μL of concentrated hydrochloric acid and 200 μL of a 0.0674 M EDOT solution (3.3710-5 

mol) in chlorobenzene (4.9310-3 mol). Each of these components is contained in a glass vial.  

This rector is sealed, heated for 6 h in an oven at 150 °C and then cooled in an ice bath for 15 min. 

A PEDOT-coated substrate is immersed in water to delaminate the polymer film. 

2.2.3 Supercapacitor fabrication 

A wet freestanding RVPP-PEDOT film is placed on a hard carbon fiber paper current collector 

and vacuum dried overnight to enhance adhesion. A platinum foil lead contacts the backside of the 

current collector and a 25 μm thick Celgard 3501 separator is pre-wetted with a 1 M H2SO4 

aqueous solution during assembly. 
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2.2.4 Morphology and structure characterization 

Scanning electron micrographs and energy-dispersive X-ray spectrograms were collected using a 

JEOL 7001LVF FE-SEM. Transmission electron micrographs were obtained in a JEOL 2100 by 

squeezing a PEDOT film in folding double TEM grid. A Bruker d8 Advanced X-ray diffractometer 

was utilized to collect powder X-ray diffractograms of pulverized samples at room temperature, 

with Cu Kα radiation source (λ = 1.5406 Å) and LynxEye XE detector, operating at 40 kV and 40 

mA; sample holder was rotated at 30 rpm with a scan step of 0.02°. Ultraviolet–visible–near-

infrared absorption spectra were obtained on a Cary 5000 UV-Vis-NIR spectrophotometer using 

pulverized samples dispersed in 6 M H2SO4. Samples were dedoped using concentrated NH4OH. 

Fourier-transform infrared spectra were collected on a Bruker ALPHA Platinum-ATR. 

Thermogravimetric analysis was performed on a Discovery TGA (TA Instruments) with a ramp 

rate of 2 °C/min. Current-voltage (I-V) curves were obtained using a built-in-house 3D printed 

probe stating using two gold needles with 1 mm of separation.56 

2.2.5 Electrochemical measurements  

Cyclic voltammetry and electrochemical impedance spectroscopy were performed on a BioLogic 

VMP3 multi-potentiostat. Three-electrode experiments utilized a platinum mesh lead, affixed to 

the back side of the working electrode, that was fully covered with polyimide tape. Platinum mesh 

connected with a platinum wire served as counter electrode. The reference electrode (BASi 

Ag/AgCl RE-5B) is pointed directly at the working electrode to compensate and minimize solution 

resistance. A 5 mm  5 mm PEDOT film serving as working electrode was washed in 6 M HCl 

and methanol prior to a measurement. A 1 M H2SO4 aqueous electrolyte was employed using milli-

Q water (18 MΩ) that was degassed for 15 min. Electrochemical impedance spectroscopy was 
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carried out at the electrode’s open circuit potential after obtaining a reversible cyclic 

voltammogram. Impedance values were recorded using a 10 mV sinusoidal disturbance at 

frequencies ranging from 100 kHz to 100 mHz. 

2.3 Results & discussion 

Rust-based vapor-phase polymerization (RVPP) is a synthetic strategy that utilizes rust (Figure 

2.1a-c) to produce nanofibrillar freestanding films of the conducting polymer PEDOT (Figure 

2.1d-f). Rusted steel serves as substrate and is produced by immersing a steel sheet in a 0.01 M 

sulfuric acid aqueous solution for 48 h (Figure 2.2); the rust layer possesses a microstructure 

comprised of two-dimensional platelets and acicular one-dimensional spherulites (Figure 2.1c). 

Powder X-ray diffraction patterns indicate that these microstructures are α-FeOOH, γ-FeOOH and 

FeSO4 phases (Figure 2.3). A nanofibrillar PEDOT film (Figure 2.1f) is vapor-phase deposited 

using a 7 mm × 7 mm rusted steel sheet that is introduced into a sealed vessel along with 20 µL of 

concentrated hydrochloric acid and 200 µL of a 0.0034 M EDOT solution in chlorobenzene (Figure 

2.1g). The reactor is sealed, placed in an oven (150 °C) for 6 hours and subsequently cooled in an 

ice bath for 15 minutes resulting in a blue colored nanofibrillar PEDOT film that readily 

delaminates from the steel sheet. Initially, as temperature is ramped, hydrochloric acid vapor 

diffuses (Figure 2.1h) dissolving rust and liberating Fe3+ ions that oxidize monomer vapor upon 

contact. During this oxidative radical polymerization, ferric ions are reduced to ferrous ions (Fe2+) 

and the monomer 3,4-ethylenedioxythiophene (EDOT) is oxidized to EDOT+• radical cations 

(Figure 2.4). The conjugated PEDOT backbone assembles via step growth as radical coupling is 

concomitant with deprotonation and oligomer formation; protons produced lower the pH of a 
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reaction.21 Finally, the conjugated polymer chain is doped by Cl- ions present from hydrochloric 

acid resulting in an electronically conductive form of PEDOT. 

 

 

Figure 2.1: Optical and electron microscopy analysis of a nanofibrillar PEDOT film produced 

from rusted steel. (a) Digital photograph shows a steel sheet coated by a yellow colored rust layer 

characterized by (b) a texturized porous architecture; (c) scanning electron micrograph shows that 

the rust layer possesses sea-urchin like microstructure. When this rusted substrate is utilized for 

vapor phase polymerization, (d) a blue PEDOT coating is deposited comprised of (e) a 

nanofibrillar architecture possessing (f) a high packing density of high aspect ratio nanofibers.      

(g) Schematic illustration of rust-based vapor-phase polymerization (RVPP) carried out in a sealed 

vessel. (h) Scheme of RVPP mechanism entailing dissolution of rust, liberation of Fe3+ ions and 

oxidative radical polymerization of EDOT monomer resulting in a doped form of PEDOT. 
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Figure 2.2: Flow process diagram of rust formation. 

 

 

Figure 2.3: Powder X-ray diffraction pattern shows the heterogeneous composition of our rust 

film. 
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Figure 2.4: Mechanistic scheme of the formation of PEDOT via step growth polymerization. 

 

Mechanistic studies of nanofiber evolution are carried out using microscopy and time-lapse 

spectroscopy by quenching reactions. Initially, HCl vapor condensation and rust dissolution lead 

to the collapse of microstructured rust (Figure 2.5a) as proposed in the schematic diagram (Figure 

2.5b). After 2 h of reaction, a porous PEDOT skin (Figure 2.5c) forms when aquated Fe3+ ions 

oxidize EDOT monomer vapor, this reaction reduces Fe3+ ions and produces the Fe2+ ion-

containing salt FeCl2 detected via powder X-ray diffraction (PXRD) (Figure 2.6). As the reaction 

progresses, HCl vapor permeates and diffuses throughout bulk rust increasing the concentration of 

Fe3+, Cl- and H+ aquated ions; dissolution of rust with HCl vapor promotes hydrolysis-driven 

precipitation of one-dimensional FeOOH nuclei23-25 detected via PXRD (Figure 2.6). Based on our 

previous work,21 these nuclei are responsible for nanofibrillar formation, however, at this early 

stage of polymerization, nuclei redissolve under the low pH environment (Figure 2.5d). Upon 
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reaching 3 h of synthesis, the entire rusted surface is coated with a dense PEDOT film visible via 

scanning electron microscopy (Figure 2.7a). As the reaction continues, HCl vapor is consumed 

and pH increases thus facilitating hydrolysis and the formation of FeOOH nuclei (Figure 2.6). 

These inorganic nuclei are unstable and undergo Ostwald ripening by coalescing into more 

energetically favored larger sized one-dimensional structures.26-30  

A nanofibrillar morphology is initially observed after 4 h of synthesis and is characterized by low 

aspect ratio PEDOT microfibers that pierce out of the polymer skin (Figure 2.5e, Figure 2.7b). A 

one-dimensional PEDOT structure possesses a FeOOH inner scaffold identified by PXRD (Figure 

2.6) and as polymerization continues, diffusion of HCl vapor liberates Fe3+ ions from this FeOOH 

inner scaffold promoting polymerization radially inward (Figure 2.5f). Vertical growth of a 

PEDOT-coated FeOOH nanofiber is driven by hydrolysis, Ostwald ripening and polymerization. 

Moreover, one-dimensional FeOOH ribbons undergo crystal splitting along the crystal lattice 

(Figure 2.7c) resulting in extended growth of one-dimensional nanofibers (Figure 2.7d).31-33 Ferric 

ions in FeOOH scaffolds are reduced to ferrous ions during oxidative radical polymerization 

forming a FeCl2 core. This reaction comes to completion after 6 h, resulting in a freestanding 

polymer film characterized by a high packing density of nanofibers (Figure 2.5e) with a core-shell 

FeCl2-PEDOT architecture (Figure 2.5h). 
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Figure 2.5: Scanning electron micrographs and schematic illustration of rust-based vapor-phase 

polymerization mechanism. (a) Rust microstructures collapse as HCl vapor dissolves a rust layer 

promoting the (b) liberation of Fe3+ ions from bulk rust (α/γ-FeOOH, FeSO4). (c) A PEDOT skin 

forms on the surface of rust as Fe3+ ions contact EDOT vapor. During this process, water content 

and Fe3+ concentration in the rust bulk increases leading to (d) hydrolysis and the precipitation of 

FeOOH nuclei. (e) One dimensional microfibers pierce out of the PEDOT skin and as the 

concentration of hydrolysis products increases, (f) FeOOH nuclei undergo Ostwald ripening 

forming large one-dimensional microstructures. Upon contact with HCl and EDOT vapor, these 

microstructures are dissolved and polymerized resulting in one-dimensional core-shell FeOOH-

PEDOT microstructures. (g) A high packing density of nanofibers is obtained after a 6 h reaction 

that reduces ferric ions in the FeOOH core resulting in (h) one-dimensional core-shell FeCl2-

PEDOT nanofibers. 
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Figure 2.6: Powder X-ray diffraction patterns of quenched experiments during rust-based vapor-

phase polymerization. 

 

 

Figure 2.7: Scanning electron micrographs of quenched experiments during rust-based vapor-

phase polymerization. 
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Figure 2.8: Fourier-transform infrared spectrograms of quenched experiments of PEDOT films 

during rust-based vapor-phase polymerization. The percent of IR transmittance from C=C 

decreases with respect to C-O-C as the reaction progresses; the conjugation length of the polymer 

backbone is maximized by 5 h. 

 

The conjugation length of the polymer is studied via Fourier transform infrared spectroscopy 

(Figure 2.8) and shows the characteristic C=C stretch from the doped quinoid PEDOT structure at 

1510 cm-1 and the C-O-C vibration peak at 965 cm-1 from the ethylenedioxy group.34 Oxidative 

doping converts benzoid to quinoid leaving the ethylenedioxy group unaltered, this enables 

characterization of conjugation length by their relative ratios.35 The quinoid to ethylenedioxy 

group ratio is maximized in the 6 h synthesis, resulting in PEDOT nanofibers of long conjugation 

length. 

Our mechanism is tested by obviating HCl vapor from synthesis, this results in suppression of 

polymerization as indicated by powder X-ray diffraction and electron microscopy (Figure 2.9); 
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HCl is necessary for rust dissolution, liberation of Fe3+ ions and provides a source of water for 

hydrolysis. A synthesis without EDOT, leads to the collapse of the rust layer and a product void 

of polymer (Figure 2.10). Nanofibrillar growth requires the use of HCl vapor, EDOT monomer 

and chlorobenzene as a carrier gas, this organic polar solvent affords a universal surfactant-like 

solvent for the assembly of oligomers and facile polymer formation (Figure 2.11). Benzene, 

dichloromethane, nitromethane and 1-butanol also generate nanofibers albeit of low electronic 

conductivity. Figure 2.12 shows the granular morphology on the underside of a PEDOT film while 

a rip demonstrates that nanofibers make up the bulk of a cross section of the film.   

 

  

Figure 2.9: Scanning electron micrographs and powder X-ray diffraction patterns of product from 

rust-based vapor-phase polymerization without HCl vapor. 
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Figure 2.10: Scanning electron micrograph of product from rust-based vapor-phase 

polymerization without EDOT vapor. 

 

 

Figure 2.11: Scanning electron micrograph of product from rust-based vapor-phase 

polymerization without chlorobenzene vapor. Nanofiber growth is stifled plausibly due to 

chlorobenzene’s polar organic structure providing a universal solvent for oligomers and polymer 

assembly during vapor phase polymerization. 
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Figure 2.12: Scanning electron micrographs of the underside of a rust-based vapor-phase 

polymerization PEDOT film. 

 

Rust-based vapor-phase polymerization (RVPP) is scalable due to rust’s chemical stability and the 

ease with which an iron-containing substrate corrodes; the thickness of the rust layer on a substrate 

is controlled to produce a freestanding PEDOT film that readily delaminates. Figure 2.13a shows 

a digital picture of a 10 mm × 50 mm delaminated PEDOT film next to its original supporting steel 

sheet, the thickness of this polymer film is controlled by the thickness of the pre-deposited rust 

layer. The thickness of a rust layer is optimized by immersing a steel substrate in a 0.01M H2SO4 

corroding aqueous solution for 24 h, 40 h and 48 h leading to 20 µm, 40 µm and 70 µm rust-layer 

thickness, respectively (Figure 2.13b–d). These corroded substrates are utilized for RVPP resulting 

in PEDOT films with thicknesses of 6 µm, 8 µm and 10 µm, respectively (Figure 2.13e–g). A 10 

µm thick PEDOT film, produced using a heavily corroded rust layer, possesses a sheet resistance 

of 2.85 Ω square-1 and a conductivity of 323 S cm-1. When a substrate is immersed in a corroding 

solution for less than 48 h, the rust layer is comprised of a porous architecture that leads to a higher 

sheet resistance (Figure 2.14). 
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Figure 2.13:  RVPP controls the thickness of freestanding PEDOT films. (a) A digital photograph 

shows a delaminated freestanding PEDOT film next to its original steel substrate. Cross sectional 

analyses carried out using scanning electron microscopy show rust layers with thicknesses of (b) 

20 μm, (c) 40 μm and (d) 70 μm that lead to PEDOT films with thicknesses of (e) 6 μm, (f) 8 μm 

and (g) 10 μm, respectively.  

 

 

 

 

Figure 2.14: Sheet resistance and electrical conductivity of PEDOT film versus film thickness. 
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Patterning of a PEDOT film is carried out by masking a rusted surface with polyimide tape 

resulting in selective deposition of an electronically conductive blue colored nanofibrillar PEDOT 

film (Figure 2.15a–c). In RVPP, a rusted three-dimensional substrate is also an ideal source of Fe3+ 

ions; for example, we utilized a rusted screw as substrate (Figure 2.15d, e). Note that the rust layer 

on this screw is from natural exposure to environmental moisture and air. A PEDOT coating 

deposits conformally on a screw via RVPP and delaminates completely by immersion in water 

leaving the screw surface clean, lustrous and void of rust (Figure 2.15f). In order to ascertain the 

extent of cleaning attained using our protocol, another rusted screw is cleaned using a commercial 

rust-removing solution and the surface roughness is characterized before and after via profilometry 

and scanning electron microscopy. Surface roughness is then compared to that of a cleaned screw 

after PEDOT delamination (Figure 2.16). The surface roughness of a 2D steel substrate treated 

with a rust-removing solution exhibits a surface roughness with a 600 nm amplitude in variance 

after cleaning. When a rusted-steel substrate is utilized for RVPP and rust is removed, its surface 

roughness exhibits a 400 nm amplitude variance; a steel surface cleaned via RVPP is smoother 

than steel cleaned by a commercial rust-removing solution. A steel substrate utilized in our 

synthesis is pre-polished and after synthesis, the surface roughness is comprised of aggregates of 

iron as determined by powder X-ray diffraction and scanning electron microscopy (Figure 2.17). 
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Figure 2.15: RVPP enables patterning of a freestanding PEDOT film as well deposition of a 

conformal coating on a three-dimensional substrate. (a) Digital photograph shows a rust layer 

masked by polyimide tape; this substrate is subsequently utilized for RVPP resulting in selective 

deposition of (b) a blue colored PEDOT film. (c) A patterned delaminated PEDOT film is robust 

retaining its “W” shaped-pattern and comprised of nanofibers as shown by scanning electron 

microscopy. (d) Photographs show that a rusted screw also serves as a substrate for RVPP leading 

to (e) a conformal blue texturized PEDOT coating; upon delamination of the polymer coating, (f) 

the screw surface is cleaned and void of rust. 
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Figure 2.16: Scanning electron micrographs and profilometry measurements for a) pristine steel, 

b) rusted steel sheet cleaned by commercial solution and c) rusted steel sheet cleaned during rust-

based vapor-phase polymerization. 

 

 

Figure 2.17: Microscopic analysis and X-ray diffraction measurements of a) a pristine steel sheet 

and b) a rusted-steel sheet cleaned during rust-based vapor-phase polymerization. 
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A PEDOT film readily delaminates from its substrate by simple immersion in water resulting in a 

freestanding polymer film, this is because a rust layer lacks chemical coordination to steel (Figure 

2.18a). A freestanding RVPP-PEDOT film is characterized by a high packing density of high-

aspect ratio core-shell nanofibers as confirmed by high angle annular dark field (HAADF) images 

collected via scanning transmission electron microscopy (Figure 2.18b). The contrast in these 

images is roughly proportional to the square of the atomic number enabling characterization of 

elemental composition.36,37 These nanofibers have a 20 nm diameter core, 50 nm thick shell 

(Figure 2.19) and lengths up to 100 μm reaching an aspect ratio of 1000 (Figure 2.20). Energy 

dispersive X-ray spectroscopy maps show that a PEDOT film possesses an elemental distribution 

comprised of S and Fe (Figure 2.18c) pertaining to a polymer shell and an inorganic core, 

respectively. Powder X-ray diffraction confirms the existence of a FeCl2 core (Figure 2.18d); 

purification in 6 M HCl removes this inorganic core resulting in a hollow nanofiber (Figure 2.21).  

 

Figure 2.18: Spectroscopic characterization of RVPP-PEDOT. (a) Photograph shows that a 

PEDOT film retains the substrate’s original shape and delaminates by simple immersion in water. 

(b) A high angle annular dark field (HAADF) scanning transmission electron micrograph for a 

PEDOT nanofiber. (c) A zoom in image shows its core-shell structure and an elemental 

composition comprised of a sulfur-containing shell and an iron-containing core. (d) Powder X-ray 

diffractogram confirms that the core is comprised of ferrous chloride – this salt is the product of 

reduced ferric ions. (e) FT-IR spectrum shows a doped conjugated backbone. (f) UV-Vis-NIR 
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spectrum of acid treated PEDOT shows a bipolaronic state and its (g) powder X-ray diffractogram 

indicates a polycrystalline structure. (h) Current-voltage curve shows that a freestanding PEDOT 

film is reversibly doped and dedoped by acid and base, respectively. 

 

 

Figure 2.19: High angle annular dark field scanning transmission electron micrographs and 

energy-dispersive X-ray spectrograms of a PEDOT nanofiber; a polymer nanofiber contains an 

inorganic Fe core and a sulfur-containing PEDOT shell. Nanofibrillar growth occurs 

concomitantly as a polymer shell deposits on one-dimensional FeOOH iron (III)-containing 

crystallites produced from dissolution of rust, hydrolysis and Ostwald ripening.  

 

Figure 2.20: Optical micrograph of a PEDOT film shows that the surface of the film is comprised 

a homogeneous distribution of one-dimensional microstructures 
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Figure 2.21: High angle annular dark field scanning transmission electron micrographs and 

energy-dispersive X-ray spectrograms collected after a PEDOT film rinsed in 6 M HCl; note that 

the acid wash removes the inorganic core resulting in a hollow nanofiber. 

 

The molecular structure of purified RVPP-PEDOT, characterized by Fourier transform infrared 

spectroscopy (Figure 2.18e), shows an oxidized doped form of PEDOT. The bands at 1510 and 

1312 cm-1 correspond to aromatic C=C asymmetric stretches in the polythiophene ring and inter-

ring C–C stretches, respectively. Bands at 1180, 1135 and 1085 cm-1 are assigned to C-O-C 

stretches in the ethylenedioxy ring whereas the C-S-C stretches in the thiophene ring  appear at 

962, 903, and 743 cm-1.38 Ultraviolet-visible-near-infrared absorption spectroscopy aids in probing 

doping levels and typically, neutral PEDOT produces a broad absorption peak in the visible region 

(400-600 nm) corresponding to the -* transition. The broad absorption above 800 nm 

corresponds to free charge carriers and a conductive PEDOT state.17,39 Post-synthetic doping of 

RVPP-PEDOT using HCl vapor introduces Cl- ions that increase the doping level and conductivity 

of the polymer (Figure 2.18f). This post-synthetic doping is detected as a -* transition that stifles 

absorption between 400-600 nm and leads to a broad absorption hump between 800 and 1000 nm 
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due to the generation of polaronic and bipolaronic states.10 In order to understand charge transport 

as a function of a material’s structure, a polymer film is examined via powder X-ray diffraction 

revealing three sharp peaks at 2θ = 6.5°, 13.0° and 26.5° (Figure 2.18g) with peak widths at half 

height of 0.8, 1.1, 2.7 characteristic of crystalline PEDOT.10,13 The broad diffraction peak at 2θ = 

26.5° due to - stacking is assigned to the (020) reflection with an inter-chain spacing distance 

of ~0.4 nm, a sharp peak for (100) at 2θ = 6.5° and its second-order reflection (200) at 2θ = 13.0° 

correspond to lateral chain packing; lamellar stacking (100) exhibits a distance of 1.3 nm.36,40 The 

selective area electron diffraction pattern of PEDOT shows discrete diffraction spots indicating a 

preferred polycrystalline orientation (Figure 2.22). Charge transport studied via two-point probe 

I-V measurements shows linear ohmic behavior for HCl treated PEDOT and a low electrical 

resistance (Figure 2.18h); treating a PEDOT film with ammonium hydroxide dedopes the polymer 

resulting in a more negative I-V curve slope. The four-point probe sheet resistance of PEDOT 

(2.85 Ω square-1) indicates that its electrical conductivity is approximately 323 S cm-1 (Figure 2.23) 

calculated from sheet resistivity.41 This high electrical conductivity is a function of an ordered 

crystal structure and a high charge carrier concentration.36 

 

Figure 2.22:  Selected area diffraction pattern of purified PEDOT. 
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Figure 2.23:  Profilometry measurement of a PEDOT film. 

 

The electrochemical properties of a freestanding PEDOT film are studied utilizing a current 

collector-less three-electrode configuration, platinum lead and a polyimide mask that exposes the 

polymer to the electrolyte (Figure 2.24a inlet).  Cyclic voltammograms demonstrate a high 

electrochemical stability with nearly rectangular shapes after 500 cycles in 1 M H2SO4 at a scan 

rate of 25 mV s-1 (Figure 2.24a). Notably, cyclic voltammograms retain their rectangular shape as 

the scan rate is increased from 25 mV s-1 to 200 mV s-1, this is due to a low electrode resistance 

and the polymer’s high electronic conductivity (Figure 2.24b). Nyquist plots (Figure 2.24c), 

collected via electrochemical impedance spectroscopy, are carried out at the open circuit potential 

with a 10 mV sinusoidal perturbation frequency ranging from 0.1 Hz to 100 kHz and show real 

impedance Z” versus imaginary impedance -Z”. A 1.23 Ω internal resistance for the cell is obtained 

from the x-axis intercept at high-frequency, this represents the aggregated resistances from the 

electrode material, electrode/electrolyte interface and electrolyte.42 Low charge-transfer resistance 

is determined from the nearly 90 angled curve in the low-frequency region of the plot and by 
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curve shape retention after 500 cycles. The low internal resistance enables reversible facile doping 

during charging and discharging.42 PEDOT-RVPP exhibits a state-of-the-art  capacitance of 181 

F g-1 calculated from a discharge curve (Figure 2.24d) at a current density of  3.5 A g-1, moreover, 

triangular-shaped curves at various current densities indicate facile charge transfer.43-47 Cyclic 

voltammetry (Figure 2.24e) and electrochemical impedance spectroscopy (Figure 2.24f) 

experiments are carried out using 1 M and 6 M H2SO4 electrolytes to test the doping effect 4of the 

SO4
2- counter anion – a commonly used dopant for increasing the conductivity of PEDOT.48 The 

Nyquist plots in Figure 2.24f show a large semicircle diameter for 6 M versus 1 M electrolyte 

stemming from interfacial resistance, poor charge propagation and a low ionic mobility.49,50 

 

Figure 2.24: Three-electrode electrochemical characterization of a freestanding RVPP-PEDOT 

film serving as a working electrode. (a) Cyclic voltammograms, collected in the absence of a 

current collector using a degassed 1 M H2SO4 aqueous electrolyte, show rectangular reversibility 

at a scan rate of 25 mV s-1 and (b) as the scan rate increases from of 25 to 200 mV s-1, the polymer 

remains capacitive. (c) Nyquist plots indicate a mixed pseudocapacitive and capacitive behavior 

remaining stable throughout 500 cycles. (d) Galvanostatic charge-discharge profiles at 0.7, 1.4, 

3.5, 7 and 14 A g-1 show retention of triangular symmetry and demonstrate PEDOT’s high rate 

capability. (e) Cyclic voltammograms show similar rectangular curves in 1 M and 6 M H2SO4 
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electrolyte. (f) Electrochemical impedance spectroscopy Nyquist plots display more resistance in 

6 M H2SO4 from electrolyte ion diffusion. 

 

Supercapacitors are fabricated using RVPP-PEDOT as shown in the flow process diagram of 

Figure 2.25a, these are developed utilizing a 1 M H2SO4 aqueous electrolyte and a hard carbon 

paper current collector for stable device performance and rapid charging-discharging. A device is 

encased in polyimide tape to mitigate electrolyte evaporation and retains rectangular-shaped cyclic 

voltammograms at 25 mV s-1 in voltage windows of 0.6 V, 0.8 V, 1V and 1.2 V (Figure 2.25b). 

After 1000 cycles at a specific scan rate, ranging from 25 mV s-1 to 4000 mV s-1 (Figure 2.25c, d), 

electrochemical performance and capacitive behavior remain stable due to a high rate capability.49 

The plot in Figure 2.25e shows that as the scan rate increases, the capacitance decreases from 185 

F g-1 (25 mV s-1) to 148 F g-1 (4000 mV s-1) because of the limited time for electrolyte ions to 

diffuse to the electrode surface.51,52 Galvanostatic charge-discharge curves show nearly linear and 

triangular symmetry  (Figure 2.25f) stemming from a low internal resistance and high coulombic 

efficiency.53 The highest capacitance attained is 181 F g-1 at a current density of 3.5 A g-1 with 

98.3% coulombic efficiency. Figure 2.25g shows a plot of the ohmic drop versus coulombic 

efficiency at different current densities, this ohmic drop (ΔU) = I•R stems from stifled ion diffusion 

due to time constraint. Throughout this test, resistance (R) is held constant and ΔU is proportional 

to current density (I).54 The ohmic drop increases with current density as ion diffusion becomes 

more limited; however, a small initial ohmic drop present at a low current density is due to self-

discharge (Figure 2.26). A supercapacitor possesses a self-discharge rate and a charging rate 

(current density); the effective charging rate is the difference between the set current density and 

the intrinsic self-discharging rate of a device. Galvanostatic charge-discharge curves show 
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coulombic efficiencies of 99.1%, 98.3% and 96.5% as a device is charged to 0.6 V, 0.8 V and 1 V 

respectively, at a current density of 3.5 A g-1 (Figure 2.25h). 

 

Figure 2.25: Performance characteristics of a two-electrode RVPP-PEDOT symmetric 

supercapacitors. (a) Flow process diagram of device fabrication. (b) Cyclic voltammograms 

collected in 1 M H2SO4 at a scan rate of 25 mV s-1 using varied voltage windows show stable 

rectangular capacitive behavior. (c, d) A rectangular-shaped curve and stable capacitive behavior 

is exhibited as the scan rate increases from 25 to 4000 mV s-1; (e) device displays a high rate 

capability retaining gravimetric capacitance at fast scan rates. (f) Galvanostatic charge-discharge 

curves at current densities ranging from 0.35 to 14 A g-1 show stable profiles with corresponding 

(g) ohmic drops increasing from 1 to 5 mA as a function of current density. (h) Charge-discharge 

behavior remains stable as voltage window is widened at a current density of 3.5 A g-1 and (i) 80% 

of original capacitance is retained after 38,000 cycles. 
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The Nyquist plot in Figure 2.27 shows an equivalent series resistance of 0.43  and an approximate 

90° angle at low frequencies. This low aggregated device resistance is characteristic of an 

electronically conducting nanostructured electrode possessing a large electrode/electrolyte contact 

area that shortens ion diffusion pathways.55 An supercapacitor exhibits 80% retention of the 

original capacitance after 38,000 cycles (Figure 2.25i) buttressed by a nanofibrillar architecture 

that mitigates the stresses associated with polymer swelling and shrinking during long-term charge 

and discharge. 

 

 

Figure 2.26: Charging and self-discharging curve of a two-electrode symmetric RVPP-PEDOT 

electrochemical capacitor. 
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Figure 2.27: Nyquist plot of a two-electrode symmetric RVPP-PEDOT electrochemical capacitor. 

 

2.4 Conclusions 

 

Rust is a ubiquitous byproduct from the corrosion of iron, and when treated with acid, this solid-

state material serves as an ideal source of Fe3+ ions for carrying out chemical synthesis. This work 

demonstrates the advantages of utilizing rust for developing oxidative radical polymerizations 

from the vapor phase thereby overcoming the hygroscopic and corrosive nature of iron (III) salts 

that serve as nominal oxidants for synthesizing conducting polymers. Discussions and results 

presented here address mechanistic steps associated with dissolution of rust during synthesis and 

introduce a fundamental understanding of a synergistic chemical process that combines polymer 

growth, hydrolysis, and crystallization. Rust-based vapor-phase polymerization is a novel 

approach for producing high-performing conducting polymers as proven by the attained high 

conductivity and high electrochemical stability of our robust freestanding nanofibrillar PEDOT 

films. In this approach, we advance the fields of conducting polymer synthesis, vapor-phase 
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chemical deposition, and energy storage through a facile, scalable, and patternable process that 

enables deposition of electroactive high-surface area electrodes for fabricating state-of-the-art 

supercapacitors. 
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Chapter 3 

Direct Conversion of Fe2O3 to 3D 

Nanofibrillar PEDOT Microsupercapacitors 

 

 

Microsupercapacitor for micro-electronics 
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3.1 Introduction 

The rapidly growing market for autonomous devices, micro-electromechanical systems, micro-

robots and radio frequency identification tags creates a demand for high-performing miniaturized 

electrochemical energy storage.1-3 Currently, high energy density micro-batteries fulfill the 

market’s needs albeit suffering from diffusion-limited low power density and poor cycling stability 

that shortens lifespan.4 Microsupercapacitors (μSCs) are an alternative to micro-batteries affording 

high charge/discharge rates and high cycling stability5 for developing power supplies for portable 

electronics.5-10 These devices are produced via inkjet printing,11 laser scribing12-13 or 

electrochemistry14 with a 3D electrode configuration comprised of nanostructures that facilitate 

ion diffusion and enhance energy density. 

Interdigitated electrodes for μSCs are commonly coated by state-of-the-art materials such as 

capacitive onion-like carbon15 or carbide-derived carbons4,16 as well as by pseudocapacitive 

RuO2
17,18 or Ni(OH)2.

19 Unfortunately, these carbon allotropes possess low energy density, and 

metal oxides/hydroxides exhibit low cycling stability as well as poor rate capability due to phase 

transition and limited ion migration.20,21 Alternatively, μSCs based on conducting polymers such 

as polyaniline (PANi),20,22 polypyrrole (PPy)23,24 and poly(3,4-ethylenedioxythiophene) 

(PEDOT)21, 25-27 show excellent rate capability due to facile charge transport. Moreover, faradic 

near-surface redox reactions in conducting polymers also afford a pseudocapacitive mechanism 

for increasing energy density. Among conducting polymers, PEDOT is an ideal electrode material 

for μSCs due to its high electrical conductivity (reaching 7000 S cm-1)28 and its ability to produce 

nanofibers,29 nanowires30 and nanosheets31 that increase an electrode’s active surface area. 
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However, integrating 3D PEDOT nanostructures in μSCs is challenging. Current fabrication 

strategies require pre-fabricated templates that unfortunately possess low packing density and low 

aspect ratio scaffolds resulting in low surface area.25, 32-33 Moreover, polymer is typically produced 

via electrochemical syntheses, that due to an inhomogeneous dristribution of reactants, produce 

conjugated backbones with structural defects.2,27,34 These limitations highlight the urgency for 

advancing current electrode fabrication protocols.  

Here, we present a superior low-cost approach for engineering 3D μSCs compatible with 

conventional micro-fabrication and based on our previously reported rust-assisted vapor-phase 

polymerization.35 We produce homogeneous coatings of vertically directed PEDOT nanofibers 

characterized by an electronic conductivity of 3580 S cm-1; deposition occurs in one step resulting 

in a high packing density of 1D nanostructures with aspect-ratio of 100. Our electrode engineering 

protocol utilizes sputtered α-Fe2O3 as a ferric ion-containing solid-state oxidant-precursor to 

induce dissolution, liberation of ferric ions, and Fe3+ hydrolysis concomitant with oxidative radical 

polymerization. The electrode thickness, gap distance and fractal geometry of PEDOT μSCs is 

controlled resulting in state-of-the-art areal (21.3 mF cm-2) and volumetric (400 F cm-3) 

capacitances as well as energy density (16.1 mWh cm-3). Such magnitudes exemplify the highest 

figures of merit for conducting polymer-based μSCs. This work also develops quasi-solid-state 

μSCs exhibiting extended rate capability (50 V s-1) and high cycling stability (94 % capacitance 

retention after 10,000 cycles) as well as able to operate efficiently at a temperature of 60 oC.   
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3.2 Experimental methods 

3.2.1 Fabrication of an interdigitated PEDOT nanofibrillar electrode  

1) Micro-fabrication process. An insulating layer of SiO2 (1.5 µm thick) was deposited on a 4-inch 

silicon wafer via plasma-enhanced chemical vapor phase deposition (PECVD). To generate a 4 

μm thick double layer photoresist on SiO2, photoresist LOR 10B (Mico Chem) was spun coated at 

1500 rpm for 60 s followed by 10 min soft-bake at 195 °C. Subsequently, photoresist AZP 4620 

(AZ Electronic Materials) was spun coated at 3000 rpm for 60 s followed by 2 min soft-bake at 

115 °C. The photoresist etching was carried out using a Heidelberg Laser Lithography system. 

After etching, samples were developed in AZ 400 developer solution (AZ Electronic Materials) 

for 3 min resulting in an interdigitated electrode pattern. Metal layers comprised of 10 nm Cr 

(adhesion layer) and 50 nm Au (current collector) were sequentially deposited over the patterned 

photoresist layer via thermal evaporation (Edwards 306 Vacuum Coater). A solid-oxidant 

precursor, Fe2O3, was sputtered over the gold current collector via physical vapor deposition (Kurt 

J. Lesker PVD 75 RF and DC). 2) Rust-based vapor-phase polymerization. A glass reactor is 

loaded the Fe2O3-coated micro-electrode, and using glass vials, 40 μL of concentrated hydrochloric 

acid and 200 μL of a 0.674 M EDOT solution in chlorobenzene are also loaded. This rector is 

sealed and heated in an oven 150 °C / 1.5 hr. A PEDOT-coated substrate is immersed in Remover-

PG (Mico Chem) solution and agitated on a shaker for 2 h to induce lift-off. 

3.2.2 Spectroscopic characterization of electrode material  

Scanning electron micrographs and energy-dispersive X-ray spectra were collected using a JEOL 

7001LVF FE-SEM. Transmission electron micrographs were obtained using a JEOL 2100 TEM 
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by drop-casting a dispersion of PEDOT nanofibers on a TEM grid. Raman spectra were obtained 

using a Renishaw inVia confocal Raman spectrometer mounted on a Leica microscope with a 20× 

objective and 785 nm wavelength diode laser serving as an illumination source. A low power was 

necessary to mitigate heating of PEDOT sample. A Bruker d8 Advanced X-ray diffractometer was 

utilized to collect powder X-ray diffractograms of pulverized samples at room temperature using 

a Cu Kα radiation source (λ = 1.5406 Å) and LynxEye XE detector (operating at 40 kV and 40 

mA); the sample holder was rotated at 30 rpm with a scan step of 0.02°. Current-voltage (I-V) 

curves were obtained with a built-in-house 3D printed probe station using two gold needles 1.24 

mm apart. A Bruker Multimode 8 Atomic Force Microscope was used to measure the films’ 

surface morphology and thickness. Four-point probe sheet resistance measurements were carried 

out using a Keithley 2450 SourceMeter with a Signatone SP4 four-point probe head.  

3.2.3 Preparation of gel electrolyte  

A 1 M H2SO4 aqueous electrolyte required milli-Q water (18 MΩ) degassed for 15 min. A 1 M 

H2SO4/polyvinyl alcohol gel electrolyte was prepared by adding 1 g of concentrated H2SO4 to 10 

mL of deionized water, followed by addition of 1 g of polyvinyl alcohol powder. The whole 

mixture was heated to 85 °C while stirring until a clear solution was obtained. 

3.2.4 Fabrication of PEDOT microsupercapacitor   

Platinum foil leads were connected to two gold pads using polyimide sticky tape, and 100 μL of a 

1 M H2SO4 aqueous electrolyte were added to polymer-coated interdigitated electrodes by drop-

casting.  For a gel electrolyte, 100 μL of a 1 M H2SO4/polyvinyl alcohol mixture were added to 

interdigitated electrodes by drop-casting followed by drying at 55 °C / 2 h. 
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3.2.5 Electrochemical characterization of micro-supercapacitor  

Cyclic voltammetry and electrochemical impedance spectroscopy were performed on a BioLogic 

VMP3 multi-potentiostat. Cyclic voltammetry was carried out from 25 mV s-1 to 50 mV s-1 

between 0 V and 1 V. Electrochemical impedance spectroscopy was carried out at the electrode’s 

open circuit potential after obtaining a reversible cyclic voltammogram. Impedance values were 

recorded using a 10 mV sinusoidal disturbance at frequencies ranging from 100 kHz to 100 mHz.  

3.3 Results & discussion 

Micro-fabrication requires spin coating photoresist on SiO2 and photolithography to produce an 

interdigitated pattern. Typically, microfabrication requires UV-masking protocols. Here, we 

utilize a laser writer to lower costs and increase versatility enabling us to readily produce 

interdigitated electrodes, evaluate the gap distance and develop fractal geometries. Chromium, 

gold and iron oxide (Fe2O3) are sequentially deposited serving as an adhesion layer, current 

collector and oxidant precursor, respectively (Figure 3.1a and Figure 3.2). An Fe2O3-coated 

electrode is introduced into a reaction vessel, heated, and exposed to vapors of 1) concentrated 

hydrochloric acid (HCl) and 2) 3,4-ethylenedioxythiophene (EDOT) monomer in chlorobenzene 

to produce PEDOT nanofibers (Figure 3.1b and Figure 3.3).  Nanofibers, as previously reported,35 

form via dissolution of an iron (III)-containing solid and hydrolysis of ferric ions concomitant with 

preferential nucleation of monomer vapor on 1D FeOOH spindles. Polymer grows on partially 

dissolved spindles via oxidative radical polymerization in a step-growth fashion resulting in the 

deposition of PEDOT nanofibers on a current collector (Figure 3.1b).  After lift-off, PEDOT 

nanostructures remain intact as interdigitated electrodes adhered to the current collector (Figure 

3.1c).  
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Figure 3.1: Fabrication process and structural characterization of a 3D nanofibrillar PEDOT μSC. 

a) SiO2 is deposited on Si wafer, photoresist is spin coated and the interdigitated pattern is 

produced via laser writer after exposure and development. b) Adhesion layer (Cr), current collector 

(Au) and oxidant precursor (Fe2O3) are deposited sequentially, the latter via sputtering. Chemical 

conversion is carried out by i) liberating Fe3+ from Fe2O3 via dissolution using HCl vapor and ii) 

oxidizing EDOT vapor with Fe3+ to produce PEDOT nanofibers. c) A nanofibrillar PEDOT μSC 

is obtained after lift-off. d) Digital photograph shows the μSC configuration consisting of 2 

electrodes with gold pads and each possessing 5 PEDOT-coated fingers. e) A scanning electron 

micrograph shows a close-up of 200 μm wide polymer-coated fingers and demonstrates a gap void 

of polymer. f) Cross-sectional electron micrograph captures device layers (augmented by color) 

and the active polymer coating comprised of a carpet of vertically directed PEDOT nanofibers. 
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Figure 3.2: Schematic illustration and cross-sectional SEM image shows thickness for each layer 

in our device including iron oxide (oxidant precursor), gold (current collector), chromium 

(adhesion layer) and silicon dioxide layer (insulating layer). These have been painted with 

Photoshop to delineate boundaries. 

 

 

 

Figure 3.3: Schematic illustration of our rust-based vapor-phase polymerization setup. A glass 

reactor is loaded with individual containers carrying concentrated hydrochloric acid, 

EDOT/chlorobenzene, and a micro-fabricated electrode (sample). This glass reactor is then sealed 

and heat to 150 °C in an oven for 1.5 h. 
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Figure 3.4: Left SEM image show a morphological change on nanofibers after a 5 min oxygen 

plasma treatment that fused fibers together. Right SEM images shows a rupture in the nanofibrillar 

polymer film after sonication using a common bath sonicator. 

 

 

Figure 3.5: Left SEM image shows photoresist deformation during rust-based vapor-phase 

polymerization. Right SEM image shows the formation of thin PEDOT film over the photoresist 

at the electrode/gap interface.  
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Figure 3.6: Schematic illustration of lift-off process and SEM images show that an undercut, 

results in a clean lift-off. 

 

The production of this electrode structure is aided by a double-layered photoresist undercut that 

facilitates lift-off (Figure 3.4-4.6). Lift-off aims to remove photoresist between finger electrodes. 

Conventionally, oxygen plasma and sonication are two approaches to enhance lift-off, however, 

these methods damaged our PEDOT morphology resulting in low electronic conductivity (Figure 

3.4). Moreover, after EDOT polymerization, we found a thin film forming between electrode and 

photoresist at the gap interface preventing contact between photoresist and dissolving solution and 

thus impeding lift-off (Figure 3.5). 

To address these problems, we designed a 12 μm-thick double layer photoresist (LOR 10 B and 

AZP 4620) during spin-coating. The photoresist became soft after laser writer etching (Figure 3.6a) 

and started dissolving when immersed in AZ 400 solution. Since the dissolution rate of LOR 10 B 

is faster than AZP 4620, the undercut is obtained by controlling the immersion time as shown in 

Figure 3.6b-d. The undercut remained after deposition of Cr/Au/Fe2O3 layer and synthesis of 

PEDOT nanofibers (Figure 3.6e). This was confirmed by SEM images as shown in Figure 3.6f1-
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f3. The SEM image (Figure 3.6f4) exhibits the clear edge between electrode and photoresist 

thereby enabling clean lift-off (Figure 3.5). The undercut provides more pathways for PG remover 

solution to dissolve photoresist and the LOR 10 B photoresist is easily lift-off during immersion 

(Figure 3.6g). Finally, an electrode with a clear gap and an undercut trace is produced as shown in 

Figure 3.6h. 

A µSC is comprised of two five-finger electrodes (Figure 3.1d) homogeneously coated by PEDOT 

nanofibers; a finger is 200 μm wide and the device’s interdigitated gap is 200 μm (Figure 3.1e). 

Polymer and metal electrodes are strongly adhered as demonstrated after Scotch tape delamination 

tests and repeated sonication cycles (Figure 3.7). A high packing density of vertically aligned 

nanofibers is produced, as shown in cross-sectional electron micrograph (Figure 3.1f), plausibly 

due to confined polymerization28 within the photoresist trenches.  

 

Figure 3.7: Photograph image shows sonication test and Scotch tape test being performed on a 

micro-supercapacitor.  

 

Understanding intrinsic chemical properties of the electrode material is necessary for advancing 

μSC engineering and yet few discussions on characterization are present in the literature. Here, we 

apply microscopy, spectroscopy, current-voltage (I-V) profiles and four-point probe resistivity 

measurements to probe molecular and solid-state structure. A finger electrode is coated by a high 

packing density of nanofibers possessing a 10 μm length and 100 nm diameter (aspect ratio ~100) 
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(Figure 3.8a, b and Figure 3.9, 3.10). Each nanofiber possesses a core-shell structure confirmed 

via high-angle annular darkfield (HAADF) imaging in scanning transmission electron microscopy 

(Figure 3.8c) where image contrast is roughly proportional to the square of the atomic number.36 

Elemental maps via energy-dispersive X-ray spectroscopy show an iron-containing core and a 

sulfur-containing shell for a nanofiber (Figure 3.8d and Figure 3.11). This iron core is dissolved 

in 6 M HCl to produce a hollow 1D polymer nanostructure with an extended surface area[28] and a 

highly oxidized conjugated backbone; chemical bond resonance signals in Raman spectroscopy 

(Figure 3.8e) indicate a high doping state.21  

 

Figure 3.8: Direct characterization on intrinsic properties of a nanofibrillar PEDOT electrode. a) 

Scanning electron micrograph shows bulk 1D electrode morphology. b) Transmission electron 

micrograph and c) high-angle annular dark-field STEM image of single fibers confirm a core-shell 

structure. d) EDX maps for a nanofiber show an elemental composition consisting of Fe and S. e) 

Raman spectrum is characteristic of an oxidized conjugated backbone possessing high doping. f)  

I-V curves collected throughout the entire polymer coating (inset) show ohmic behavior indicative 

of a homogenous percolation network. g) PXRD confirms a polycrystalline structure with three 

characteristic peaks. h) The electrode/gap interface, probed by i) line scan atomic force microscopy 

(green arrow), reveals j) a ~250 nm thick polymer coating. k) Four-point probe carried out on a 

modified electrode (inset), aids in measuring electronic conductivity.  
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Figure 3.9:  Close-up SEM image of a nanofibrillar PEDOT coating on a current collector. 

  

Figure 3.10: SEM images of PEDOT nanofibers synthesized on current collectors possessing 

aspect ratios of 10 nm (left), 30 nm (middle) and 100 nm (right). 

 

Figure 3.11: Images of EDX maps for a micro-supercapacitor collected after synthesis. Note that 

purification of polymer was omitted as indicated by iron signal. 
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Electronic charge transport, plotted by applying a potential and measuring current (Figure 3.8f 

inset), shows that a PEDOT coating is characterized by ohmic behavior (straight line), low 

resistance (large slope) (Figure 3.8f) and a small Schottky barrier that facilitates charge transport.16 

We designed a gold micro-electrode using photolithography that possesses identical configuration 

to our interdigitated micro-supercapacitor electrodes and was connected directly with four (0.8 

mm × 0.8 mm) gold pad that fit of four-point-probe station’s needles (Figure 3.12). More than 20 

devices were fabricated and measured for I-V curve and conductivity measurements. 

The line slope decreases linearly and inversely proportional with probe distance because the 

polymer coating is a homogeneous and continuous percolation network. To probe charge transport 

as a function of PEDOT’s polycrystalline structure, powder X-ray diffraction (Figure 3.8g) is 

carried out revealing three characteristic peaks at 6.4°, 12.1° and 25.8° corresponding to lateral 

chain packing of (100), (200) and 𝜋- 𝜋 stacking of (020), respectively. Peaks’ widths at half-

heights are 0.43, 0.79 and 1.38; these small values indicate a crystalline polymer structure that 

enhances charge transport.28 A four-point probe conductivity measurement (Figure 3.8h-k), carried 

out using a collinear configuration (Figure 3.8k inset), demonstrates an exceedingly high 

conductivity of 3580 S cm-1 stemming both from PEDOT’s ordered structure and homogeneous 

deposition.  
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Figure 3.12: AutoCad file (left) and optical photograph (right) of electrode configuration utilized 

for carrying out I-V and conductivity measurements.  

 

A PEDOT μSC (Figure 3.13a inset) is tested using 1 M H2SO4 electrolyte (Figure 3.14) by 

collecting cyclic voltammograms (CVs) with potential windows of 0.6, 0.8 and 1 V (Figure 3.13a). 

Single-sided sticky Kapton tape is ideal for connecting potentiostat/galvanostat platinum leads to 

our device’s gold pads; electrical connections are pressed together by hand and remained stable 

for months and characterized by mechanical robustness (Figure 3.14). Note that soldering leads to 

the gold pads led to deterioration of the metal layer. These curves exhibit a symmetric rectangular 

shape due to reversible doping and dedoping during charging and discharging. Free movement of 

electrolyte ions is facilitated by the ordered nanofibrillar electrode architecture resulting in 

rectangular CVs under scan rates spanning 1 V/s to 50 V/s throughout 500 cycles (Figure 3.13b). 

To identify charge transfer and ion diffusion processes, a μSC is cycled 500 times at scan rates of 

25 mV s-1 and 50 V s-1 enabling electrochemical impedance spectroscopy (EIS) studies. Nyquist 

plots of real impedance Z’ (x-axis) versus imaginary impedance -Z” (y-axis) show similar 

equivalent series resistances (ESR) (x-axis intercept) and capacitive behavior (vertical line), 

regardless of scan rate (Figure 3.13c). The high rate capability of our μSCs stems from strong 
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mechanical adhesion between PEDOT and current collector enabling facile electron transfer.37 The 

absence of a semicircle at high frequency in Figure 3.13c indicates a low charge transfer resistance 

as electrolyte readily accesses a nanofibrillar electrode.21, 38   

Electrode thickness versus electrochemical performance is investigated by developing various 

PEDOT coatings. Nanofibrillar PEDOT coatings of 250 nm, 500 nm and 900 nm are synthesized 

from sputtered Fe2O3 layers of 60 μm, 120 μm and 180 μm, respectively (Figure 3.15, 3.16). These 

electrodes lead to areal capacitances of 10.08 mF cm-2, 14.6 mF cm-2 and 21.3 mF cm-2, 

respectively, calculated from galvanostatic charge-discharge (GCD) measurements at a current 

density of 100 μA cm-2 (Figure 3.17). Areal capacitance increases with polymer coating thickness, 

whereas volumetric capacitance decreases because of limited contact between electrolyte and 

active electrode surface area.7 This is shown by an increasing electrolyte resistance (IR drop) and 

decreasing coulombic efficiency of 99.5%, 97.6% and 94.8% (Figure 3.13d). Notably, a 900 nm 

thick electrode is well adhered to the current collector and characterized by an areal capacitance 

of 21.3 mF cm-2, while a thick polymer coating (1 m) exhibits poor adhesion and peels-off during 

sonication. An electrode thickness of 250 nm leads to a volumetric capacitance of 400 F cm-3
. 

These figures of merit are the highest values among all reported conducting polymer-based µSCs.2, 

8 Cycling stability is evaluated via continuous charging and discharging cycles, at a current density 

of 100 μA cm-2, demonstrating 90% capacitance retention after 10,000 cycles for all devices 

regardless of thickness (Figure 3.13e).   
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Figure 3.13: Electrochemical performance of nanofibrillar PEDOT μSCs in 1 M H2SO4 aqueous 

electrolyte. a) Cyclic voltammograms, collected at a scan rate of 25 mV s-1 and under various 

voltage windows, show stable capacitive behavior and retain b) a rectangular shape under fast scan 

rates ranging from 1 to 50 V s-1. c) Nyquist plots show stable ESR and similar capacitive behavior 

using scan rates of 25 mV s-1 and 50 V s-1 after 500 cycles. d) Galvanic charge-discharge curves, 

collected at a current density of 100 μA cm-2, for electrodes generated from 60 nm, 120 nm and 

180 nm thick Fe2O3 layers show e) a 90% capacitance retention after 10,000 cycles. f) 

Volumetrically normalized Ragone plot compares our μSCs with 2D lithium film battery, Al 

electrolytic capacitor, activated carbon commercial supercapacitor as well as 2D PEDOT, 

PANi/rGO, Co(OH)3/rGO and MnO2/rGO based micro-supercapacitors. 

 

 

 

 

Figure 3.14: Schematic illustrations of two micro-supercapacitor configurations. Left diagram 

shows copper wires soldered on Au pads for connecting external circuit. Right diagram shows 

platinum leads stuck on Au pads via adhesive Kapton tape.  
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Figure 3.15: Profilometry data for 250 μm (left), 600 μm (middle), and 900 μm (right) thick 

nanofibrillar PEDOT films generated from 60 nm, 120 nm, and 180 nm thick Fe2O3 layers, 

respectively.  

 

 

 

 

  

Figure 3.16: Cyclic voltammograms and Nyquist plots for polymer coatings generated from 60 

nm, 120 nm and 180 nm thick Fe2O3 layers. 
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Figure 3.17: Galvanostatic charge and discharge curves for a polymer coating generated using a 

60 nm Fe2O3 layer – data is collected under different current densities ranging from 20 μA cm-2 to 

1,000 μA cm-2. 

 

 

Figure 3.18: Ragone Plot for a PEDOT SC normalized by area. 
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A Ragone plot representing the relationship between power density and energy density enables 

evaluation of energy storage metrics after normalizing figures of merit by volume or area.39 A 200 

nm gap device coated by polymer (250 nm) exhibits a volumetric energy density of 16.1 mWh cm-

3, and by increasing coating thickness (900 nm), an areal energy density of 1.9 mWh cm-2 is 

achieved. These values represent the highest performance for conducting polymer-based µSCs 

surpassing Li-thin film battery metrics (Figure 3.13f and Figure 3.18).5,15,20,21,40 

Typically, decreasing the gap distance between electrodes results in lower ion diffusion resistance 

and higher capacitance due to shorter ion diffusion pathways.38 To evaluate the effect of gap 

distance we fabricate devices from a 60 nm Fe2O3 coating using 200 μm or 500 μm gaps (Figure 

3.19a). A device with shorter gap exhibits lower ESR and a more capacitive behavior as 

demonstrated by a vertical line in Nyquist plots (Figure 3.19b) resulting in a 30% capacitance 

increase as calculated from CVs (Figure 3.19c). Note that engineering a 100 μm gap is challenging 

because polymer coating at the gap/electrode interface limits contact between photoresist and lift-

off solution (Figure 3.19-3.21).  
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Figure 3.19: Electrochemical performance of PEDOT μSCs, generated from a 60 nm Fe2O3 layer, 

and fabricated with various gap distances and fractal geometries using 1 M H2SO4 aqueous 

electrolyte. a) Photograph and illustrations of Microsupercapacitors with gap distances of 500 μm 

and 200 μm. b) A Nyquist plot for the 200 μm gap device shows lower impedance and c) its cyclic 

voltammogram shows higher capacitance. d) Schematic representations of interdigitated (L0) and 

fractal electrodes (L1) possessing a 200 μm gap. A fractal electrode augments ion diffusion 

pathways thereby lowering impedance in e) a Nyquist plot and increasing capacitance in f) a CV. 
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Figure 3.20: Optical images for devices generated from a 60 nm thick Fe2O3 layer and with gap 

distances of 500 μm (a), 200 μm (b), and 100 μm (c). These same devices are then coated with 

PEDOT nanofibers (d-f) and their corresponding clean gaps (void of polymer) are shown in SEM 

images (g-i). 

 

 

Figure 3.21: Comparison of cyclic voltammograms (left) and Nyquist plots (right) for liquid and 

quasi-solid-state devices both possessing a 500 μm gap distance. 
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Fractal electrodes are predicted to enhance electrochemical performance of devices because they 

maximize 2D active surface area and ion diffusion pathways.41,42 Here, we demonstrate, for the 

first time, the effect of a fractal geometry in a 3D μSC architecture by designing interdigitated (L0) 

and fractal (L1) nanofibrillar PEDOT electrodes (Figure 3.19d). These devices, possessing a 200 

μm gap, and generated from a 60 nm Fe2O3 layer are characterized by ESRs of ~17 Ω and ~13 Ω, 

respectively (Figure 3.19e). Unlike 2D electrodes, where ESR increases with complexity in 

electrode geometry, L1 possesses lower ESR than L0 due to its vertically directed nanofibrillar 

structure providing accessible ion pathways and resulting in a 10% capacitance increase (Figure 

3.19f and Figure 3.22). Our results highlight the synergistic convergence between fractal geometry 

and a 3D nanofibrillar electrode architecture, demonstrating low impedance, high capacitance and 

a cost-effective fabrication strategy.  

 

 

Figure 3.22: Comparison of cyclic voltammograms (left) and Nyquist plots (right) for devices 

possessing fractal electrodes; polymer coatings were generated from 60 nm and 120 nm thick 

Fe2O3 layers. 
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Minimization of electrolyte leakage is of paramount importance for developing stable μSCs and is 

achieved using a gel electrolyte comprised of a viscous hydrated polymer matrix carrying free 

ions.39 Micro-supercapacitors, characterized by a 200 μm gap and 1 M H2SO4/polyvinyl alcohol 

(PVA) gel electrolyte (Figure 3.23a inset), exhibit symmetric rectangular CVs due to facile charge 

transfer processes (Figure 3.23a).  Nyquist plots, however, show higher ESR and deviation from 

capacitive behavior (smaller slope inclination) (Figure 3.23b) due to the electrolyte’s high 

viscosity that stifles ion diffusion.16 To evaluate the power performance of our quasi-solid-state 

devices, their frequency response is represented by a Bode plot (Figure 3.23b inset) and analyzed 

via phase angle and relaxation time studies. Frequency response is evaluated by Bode plot and 

shows the relationship between phase angle and frequency. As phase angle approaches 90°, the 

mechanism of energy charge storage is more capacitive because electric double layer capacitance 

contributions become more significant. The higher phase angle for a liquid electrolyte (82°) versus 

a gel electrolyte (76°) demonstrates a lower impedance. Further evaluation of frequency response 

is carried out by comparing the frequency at a phase angle of 45°, also known as the characteristic 

frequency (f0), with a relaxation time constant (τ0 = 1/f0). The relaxation response time for liquid 

electrolytes (7 ms) is shorter than for gel electrolytes (11 ms).37,39,43,44 Our device exhibits 2-4 

times faster relaxation time (11 ms) than current state-of-the-art μSCs with a phase angle of 76°.21 

This excellent power performance stems from an extended ordered nanofibrillar surface area as 

well as low electronic and ionic resistances resulting in a scan rate capability of 50 V s-1. Quasi-

solid-state μSCs retain 94% of original capacitance after 10,000 cycles whereas liquid water-based 

devices retain 90% (Figure 3.23c); a gel electrolyte prevents leakage thus enhancing cycling 

stability. 
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Figure 3.23: Electrochemical performance of quasi-solid-state μSCs in 1 M H2SO4/PVA gel 

electrolyte and its temperature-dependent behavior. a) Cyclic voltammograms compare aqueous 

and gel electrolytes at a scan rate of 1 V s-1. b) Nyquist plot for aqueous electrolyte exhibits lower 

impedance and more ideal capacitive behavior versus gel electrolyte; this is also confirmed via 

Bode plots (inset). c) After 10,000 cycles with a gel electrolyte, 94% of original capacitance is 

retained and rectangular-shaped cyclic voltammograms are obtained at scan rates of 10 V s-1, 20 

V s-1 and 50 V s-1. d) Schematic illustration of experimental setup for studying temperature. e) 

Cyclic voltammograms of a quasi-solid-state μSC show increasing capacitance as temperature 

rises from 25 °C to 60 °C; note that at 70 °C, capacitance is restricted. f) Nyquist plots exhibit 

similar ESR between 25 °C – 60 °C, however, as temperature increases, capacitive behavior 

diminishes resulting in resistive charge transfer (semi-circle) and Warburg impedance as 

temperature approaches 70 °C. 

 

High-temperature stability is crucial for micro-devices since heat, inevitably generated during 

energy consumption, imposes thermal stress that leads to current leakage and decreases a device’s 

lifespan.45 Therefore, the effect of high temperature on quasi-solid-state μSCs is studied and Figure 

3.23d shows the experimental setup consisting of a heated aluminum block. We use a large 

aluminum block to heat our devices using a heating cartridge, thermocouple and PID controller. 

Through-plane thermal conduction in silicon wafers is excellent thus enabling us to dynamically 

monitor the effects of temperature on the performance of our devices. The curve area for cyclic 
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voltammograms expands proportionally as temperature rises from 25 °C to 60 °C and contracts 

drastically at 70 °C (Figure 3.23e). At the latter temperature, charge storage decline stems from 

rapid electrolyte evaporation significantly increasing charge transfer resistance as detected by the 

appearance of a semi-circle and a 45o line (Warburg impedance) in Nyquist plots (Figure 3.23f).46 

Fortunately, chemically and physically stable nanofibrillar PEDOT coatings result in enhanced ion 

mobilities that boost capacitance in our devices by ~8% at 40 °C, ~10% at 50 °C and ~12% at 60 

°C.35  

3.4 Conclusion 

In summary, we demonstrate the integration of chemical synthesis with conventional micro-

fabrication producing a streamlined, superior and low-cost electrode engineering strategy for 3D 

nanofibrillar PEDOT μSCs. This technology leads to 250-nm thick coatings of 3D vertically 

directed capacitive conducting polymer nanofibers characterized by an electronic conductivity of 

3580 S cm -1. Our nanofibrillar PEDOT μSCs exhibit areal and volumetric capacitances of 21.3 

mF cm-2 and 400 F cm-3, respectively, and possess a state-of-the-art energy density of 16.1 mWh 

cm-3 in 1 M H2SO4 aqueous electrolyte. Quasi-solid-state μSCs retain 94% of their original 

capacitance after 10,000 cycles exhibiting high scan rate capability at 50 V s-1 and thermostability 

at 60 °C in 1 M H2SO4/PVA gel electrolyte. This work advances electrode characterization in situ 

and explores electrode thickness, gap distance and fractal geometry to control electrochemical 

performance. Nanofibrillar PEDOT μSCs are produced using a cost-effective and superior 

electrode engineering platform enabling in situ deposition of a 3D architecture bridging the energy 

density gap between micro-batteries and conventional micro-supercapacitors for miniaturized 

portable electronics. 
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Chapter 4 

Kirigami Electrodes of Conducting Polymer 

Nanofibers for Wearable Humidity 

Dosimeters and Stretchable Supercapacitors  

4.1 Introduction 

Wearable healthcare monitors and stretchable power sources are emerging as hotspots in scientific 

research and engineering innovations due to their expansive applications in medical science and 

smart electronics.1-5 Kirigami, the art of paper cutting, is an emerging approach to constructing 

stretchable 3D architectures out of simply cutting planar sheets. Under external strain, cuts made 

in thin films undergo in-plane rotation and out-of-plane buckling leading to expanded 3D 

structures.6-7 Combining Kirigami with electrode material deposition enables simultaneous 

achievement of macroscopic robustness, mechanical strength, and high stretchability alongside 

high electronic performance.2, 8 These properties are ideally suited to a variety of flexible devices 

including chemoresistive sensors and supercapacitors. However, these thin film electrodes suffer 

from limited surface area and are characterized by poor sensitivity and low energy density. The 

field of Kirigami is consequently experiencing a lack of applications in healthcare-sensing devices 

and power sources. 
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Nanofibrillar electrode material deposition offers a promising solution to current challenges in 

Kirigami thin film-based electrodes. Conducting polymer nanofibers such as poly(3,4-

ethylenedioxythiophene) PEDOT,9 polypyrrole (PPy)10 and polyaniline (PANi)11 afford 

continuous conductive networks for fast electron transfer and a large active surface area. These 

polymers are highly flexible due to conjugated π-bonding networks and a lack of rigid lattice 

structures, allowing polymer chains to slide against one another and minimize energy under 

macroscopic bending forces.12 However, existing deposition approaches such as solution 

processing and electrochemistry are incompatible with Kirigami because 1) pre-cut substrates are 

irregular and impede nanofiber deposition resulting in heterogeneous coatings and 2) laser cutters 

damage pre-deposited nanofibers.13-14 Moreover, the low packing density, low yield, and low 

quantities of nanofibers produced using current established synthetic protocols lead to poor 

sensitivity and low energy density that hinders practical applications.15 Given the numerous 

advantages that Kirigami offers, this gap in the field highlights the necessity for a new synthetic 

strategy capable of integrating nanofibrillar electrodes and high electroactive performance with 

stretching, bending and twisting. 

Here, we demonstrate precise control over deposition of conducting polymer nanofibers on pre-

patterned substrates for humidity dosimeters and supercapacitors via our previously reported rust-

assisted vapor-phase polymerization (RVPP).9 Our electrode engineering protocol utilizes 

sputtered iron oxide (Fe2O3) as a solid-state oxidant-precursor to induce dissolution and hydrolysis 

of ferric ions (Fe3+) while working in concert with oxidative radical polymerization. Our synthetic 

approach allows in-situ generation of homogeneous, high packing density coatings of nanofibers 

that facilitate charge transfer and ion adsorption on the electrode. Our nanofibrillar PEDOT 

humidity dosimeter exhibits significant sensitivity, showing a 40% resistance change within 
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seconds when exposed to a new humidity level under 200% stretch. We demonstrate that our 

humidity dosimeter is an ideal mask accessory for detecting the presence of droplets from coughs 

or sneezes. Our synthetic strategy affords multi-layer deposition for developing bilayered 

PPy/PEDOT nanofibrillar composite supercapacitors. This composite supercapacitor exhibits a 

synergistic effect that elicits a state-of-the-art energy density of 115 μWh/cm2 at 1 mA/cm2 and an 

extended stretched cycle capacitance stability (85% capacitance after 100% elongation over 300 

cycles). Assembling the supercapacitor into a planar configuration enables it to light up LEDs at 

various open voltages and demonstrates its potential as a power supply for wearable electronics. 

4.2 Experimental methods 

Materials. Pyrrole, 3,4-ethylenedioxythiophene (EDOT, 97%), chlorobenzene (99%), sulfuric 

acid (98%), hydrochloric acid (37%), lithium perchloride (99.9%), acetonitrile (99.8%), ammonia 

hydroxide (25%) and hydrazine hydrate (50%) were purchased from Sigma Aldrich and used as 

received. 

4.2.1 Deposition of nanofibrillar Kirigami electrodes 

1) Kirigami cut slots were generated via CO2 laser cutter following a pattern design created in 

AutoCAD. 2) A solid-oxidant precursor, Fe2O3, was sputter deposited over polyethylene 

terephthalate (PET) films via physical vapor deposition (Kurt J. Lesker PVD 75 RF and DC). 3) 

For single polymer electrodes, all syntheses were performed at 140 °C for 1.5 h in glass reactors, 

each containing a substrate, a reservoir for concentrated hydrochloric acid (HCl), and a reservoir 

for 0.674 M monomer (pyrrole or EDOT) chlorobenzene solution. Various volume combinations 

of liquid reactants were tested (10~200 μL HCl, 100~200 μL monomer solution) to achieve 
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conformal coating of polymer on the substrate and to gain optimal electrochemical performance. 

After 1.5 h, the electrodes were immediately removed from the reactors and cooled at room 

temperature and purified with 6 M HCl. 4) For PPy/PEDOT composite electrodes, another 

deposition of Fe2O3 was performed on the purified PEDOT electrodes. The same synthetic 

procedure was then performed again using concentrated HCl and pyrrole chlorobenzene solution. 

Composite electrode was purified with 6 M HCl to remove all Fe impurities. 

4.2.2 Kirigami electrode characterizations 

Scanning electron micrographs and energy-dispersive X-ray spectra were collected using a JEOL 

7001LVF FE-SEM. Raman spectra were obtained using a Renishaw inVia confocal Raman 

spectrometer mounted on a Leica microscope with a 20× objective and 785 nm wavelength diode 

laser serving as an illumination source. A low power was necessary to mitigate heating of 

conducting polymer samples. Current-voltage (I-V) curves were obtained with a built-in-house 3D 

printed probe station using two gold needles 1.24 mm apart. Four-point probe sheet resistance 

measurements were carried out using a Keithley 2450 SourceMeter with a Signatone SP4 four-

point probe head. Stress-strain curves were characterized via INSTRON 5583.  

4.2.3 Preparation of gel electrolyte 

A 1 M H2SO4 and LiClO4 aqueous electrolyte required degassing of milli-Q water (18 MΩ) for 15 

min. A 1 M LiClO4/polyvinyl alcohol gel electrolyte was prepared by adding 1 g of concentrated 

LiClO4 to 10 mL of deionized water, followed by addition of 1 g of polyvinyl alcohol powder. The 

whole mixture was heated to 85 °C while stirring until a clear solution was obtained. 
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4.2.4 Fabrication of PEDOT nanofibrillar Kirigami humidity dosimeter 

Platinum foil leads were connected to PEDOT film using Kapton tape and attached onto the 

surgical mask via Scotch tape. 

Humidity characterizations. PEDOT nanofibrillar film and PEDOT:PSS granular film were 

tested via a humidity chamber. Utilizing N2 gas flow to decrease the humidity and water vapor to 

increase the humidity. 

4.2.5 Fabrication of PPy/PEDOT nanofibrillar Kirigami supercapacitor 

Platinum foil leads were connected to PPy/PEDOT film and 100 μL of a 1 M LiClO4 gel electrolyte 

was added by drop-casting followed by drying at 55 °C / 2 h. 

4.2.6 Electrochemical Characterizations 

All electrochemical tests were performed on a BioLogic VMP3 multi-potentiostat and each data 

was selected after testing 5 devices. Cyclic voltammetry was carried out from 25 mV/s to 1000 

mV/s between -0.2 V and 0.8 V. Electrochemical impedance spectroscopy was carried out at the 

electrode’s open circuit potential after obtaining a reversible cyclic voltammogram. Impedance 

values were recorded using a 10 mV sinusoidal disturbance at frequencies ranging from 100 kHz 

to 100 MHz. After synthesis, the electrodes were soaked in 6 M HCl overnight to remove residual 

iron compounds from the reaction and then dried at 50 °C. For 3-electrode tests, various 

electrolytes (1 M H2SO4, 1 M LiClO4) were tested against Ag/AgCl reference electrode at room 

temperature (25 °C). Galvanostatic charging/discharging (GCD) was carried out from 0.1 mA/cm2 

to 2mA/cm2 between 0 – 1 V. 
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4.3 Results & discussion 

A conformal nanofibrillar coating is produced by sputtering an oxidant precursor (Fe2O3) onto a 

laser cut polyethylene terephthalate (PET) film (Figure 4.1a). The uniformity of the solid-state 

precursor ensures homogenous polymer deposition and performing synthesis on a pre-cut substrate 

avoids polymer damage due to CO2 laser heating. As previously reported, growth of PEDOT 

nanofibers is initiated by liberating Fe3+ ions from Fe2O3 via dissolution using HCl vapor at 140 

°C (Figure 4.1bi).9, 16 PEDOT nanofiber deposition stems from the preferential nucleation of 

monomer vapor on one-dimensional FeOOH spindles produced in situ during concomitant Fe3+ 

hydrolysis (Figure 4.1bii). Pyrrole has a similar oxidant potential which makes the synthesis of 

PPy nanofibers possible (Figure 4.1biii).10 Scanning electron micrographs (SEM) in Figure 4.1c-

d show homogeneous PEDOT (blue) and PPy (black) thin films with nanofibers growing up to an 

aspect ratio of 50. These nanofibers deposit with a high packing possessing a higher surface area 

than a granular film.  

Although the polymerization mechanism between PEDOT and PPy is similar, the stoichiometry 

of acid required for obtaining nanofibrillar morphology varies. SEM images of PEDOT films only 

show nanofibrillar structures when a small volume of HCl (10-20 μL) is used during synthesis, as 

larger quantities of acid lead to the formation of ferrous chloride crystals and granular morphology 

of the polymer. This is because the excess HCl creates a more acidic environment inside the 

reactor, enhancing dissolution of iron oxides but suppressing the hydrolysis of Fe3+ ions as well as 

the formation and growth of FeOOH spindles. The consequent lack of nucleation sites and 

templates for PEDOT growth results in an undesirable granular morphology (Figure 4.2).  
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Figure 4.1: Schematic diagram shows deposition of conducting polymer nanofibrillar coatings on 

Kirigami sheets. a) PET sheet is laser cut and subsequently sputtered with a 60 nm Fe2O3 layer. b) 

Rust-based vapor phase polymerization results in PEDOT and PPy nanofibers by i) liberating Fe3+ 

from Fe2O3 thus triggering oxidative polymerization of ii) EDOT and iii) Py. The resulting 

nanofibrillar coatings are homogeneous as shown by c) blue PEDOT and (d) black PPy. 

 

 

 

Figure 4.2: SEM images of ferrous chloride crystals and granular morphology of PEDOT. 

 

In comparison, PPy synthesis requires much larger volumes of HCl (100-150 μL) to produce a 

nanofibrillar morphology. We propose that this phenomenon arises from the difference in 

polymerization mechanisms of PEDOT and PPy; although both polymers form via an oxidative 

radical polymerization mechanism, their initiation steps differ. Pyrrole molecules are more prone 
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to protonation due to the nitrogen atom in the heterocycle, and this initial protonation step 

facilitates the formation of a cationic radical (Figure 4.3), whereas EDOT is readily oxidized and 

forms cationic radicals without protonation.17 Previous work also indicates that PPy synthesis 

requires the presence of a much higher concentration of Fe3+ ions than PEDOT synthesis.10 Thus, 

to generate a nanofibrillar morphology during PPy synthesis, greater volumes of HCl are required 

to account for protonation as well as for the large amount of Fe3+ liberated by dissolution. Here, 

we develop PEDOT (~7 Ω, 15 μL-HCl) and PPy (~15 Ω, 120 μL-HCl) nanofibrillar films to serve 

as electrodes for further characterization and application.  

 

Figure 4.3: Step growth mechanism for PPy via oxidative radical polymerization. 

 

Characterizing the intrinsic chemical properties of nanofibrillar conducting polymer electrodes is 

necessary to deepen understanding of their potential applications. Raman spectroscopy provides 

insight into the impact of doping on chemical bonding within our materials. Raman peaks of 

PEDOT (Figure 4.4a) at 1261 and 1357 cm-1 correspond to Cα-Cα’ and Cβ-Cβ’ bonds, respectively, 

while peaks at 1437 and 1510 cm-1 correspond to symmetric and asymmetric Cα=Cβ stretching.18 

The symmetric Cα=Cβ stretching band shifts towards 1426 cm-1 after doping with HCl vapor. This 

shift towards higher wavenumbers corresponds to greater doping levels due to an increased ratio 
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of quinoid vs. benzenoid structure in PEDOT, and is consistent with previously reported behavior 

of electrochemically synthesized PEDOT samples.19-20 Similar information is derived from the 

Raman analysis of PPy that shows peaks at 1345 and 1573 cm-1 associated with C=C bonds at 

higher intensity (Figure 4.5). The behavior of the PEDOT and PPy samples indicates that Cl- is an 

efficient dopant due to its small size and single negative charge as a counter anion.21  

 

 

Figure 4.4: Spectroscopic and mechanical characterization of conducting polymer coatings. a) 

Raman spectra shows PEDOT’s oxidized conjugated backbone. b) UV-vis spectra prove that both 

a reducing agent and base partially convert polaronic PEDOT to its neutral state. c) I-V curves for 

a PEDOT-coated substrate demonstrate ohmic behavior stemming from a homogenous percolation 

network. d) Schematic illustration of a Kirigami unit cell. e) Stress tests of PEDOT-coated 

Kirigami sheet yield f) stress-strain curves that show increasing elongation proportional with 

increasing unit cells. g) Electronic conductivity remains stable throughout the entire stretching 

process.  
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Figure 4.5: Raman spectra of the oxidized conjugated backbone of PPy. 

 

Ultraviolet-Visible-near-IR spectroscopy (UV-Vis-NIR) is utilized to assess charge carrier density 

as a function of chemical structure and determine changes in molecular structure due to doping. 

The UV-Vis-NIR spectra of PEDOT (Figure 4.4b) is divided into three regimes: neutral, polaronic, 

and bipolaronic.22 A larger absorbance in the polaronic and bipolaronic regimes for the HCl vapor-

doped PEDOT sample vs. the ammonia hydroxide (NH4OH) and hydrazine hydrate dedoped 

samples is observed because doping increases the charge carrier density of the polymer chain, 

resulting in enhanced conductivity. This behavior also emerges in the UV-Vis-NIR spectra of HCl 

vapor-doped PPy (Figure 4.6a).23 Notably, this doping process is reversible and controlled by 

charge carrier concentration as evidenced by Figure 4.6b. Electronic charge transport of the 

PEDOT film is probed via I-V measurement showing ohmic behavior (straight line) and low 

resistance (large slope) (Figure 4.4c) signifying a homogeneous and continuous percolation 

network that facilitates charge transport.24 The line slope decreases when the sample is de-doped 
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with NH4OH due to the reduction of charge carriers thus showing reversibility that is  consistent 

with UV-Vis spectra.  

 

 

Figure 4.6: (a) UV-Vis-NIR spectra of PPy doped by HCl and dedoped by NH4OH and hydrazine. 

(b) UV-Vis-NIR spectra of PEDOT dedoped by NH4OH and hydrazine and subsequently re-doped 

by HCl. 

 

The stretchable electrode is highly dependent on mechanical properties and strong adhesion 

between active material and substrate. Strain-stress and two/four-point probe measurements 

examine the relationship between mechanical deformation and conductivity. Kirigami is an 

engineering solution to a chemistry problem that overcomes the intrinsic stretch limits of 

conducting polymers by redirecting applied strain onto the substrate instead. We pattern unit cells 

with a cut geometry of length l (18 mm), horizontal spacing d (0.2 mm), and vertical spacing h 

(0.5 mm), enabling PET-based films to stretch up to 350% strain before rupturing (Figure 4.4d). 

As mechanical strain is first applied, the cuts open, enhancing the in-plane stretching capacity of 

the substrate. Additional strain causes the initial planar structure to deform and the unit cells begin 

bending out-of-plane to redistribute stress concentrations to the vertices of the cuts (Figure 4.4e).25 

This structural response allows the substrate to accommodate increased stretching and maintain 
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low stress growth by minimizing the strain felt by individual nanofibers. We conformally coat PET 

substrates with active materials to fabricate electrodes, establishing adhesion strength as a critical 

factor in the ability to withstand bending while retaining capacitance. Conducting polymers exhibit 

strong interfacial adhesion to the PET substrate due to covalent interactions. This is facilitated by 

Friedel-Crafts catalysts that covalently graft PEDOT onto aromatic polymer substrates.26 Our 

synthesis utilizes this mechanism by providing reaction conditions that enable simultaneous 

formation of radical cations on monomer vapor and aromatic PET substrate using chlorobenzene 

carrier gas. Adhesion strength between PEDOT and PET is clearly demonstrated by bending, 

scotch tape and sonication tests (Figure 4.7) revealing minimal delamination of active material. In 

comparison, pristine PPy electrodes exhibit cracking and delamination when bent, revealing 

weaker adhesion with PET attributed to the lack of covalent interactions (Figure 4.8).26 

 

 
Figure 4.7: (a) Adhesion strength of PEDOT electrode demonstrated after sonication, scotch tape 

tests and via (b) resistance characterization. 
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Figure 4.8: PPy film delaminate from Kirigami sheet. 

 

Increasing the number of Kirigami unit cells (Figure 4.9) further extends the maximum elongation 

of the film. Additional unit cells can delay the point of fracture as demonstrated by the gradual 

decoupling of the stress-strain curves in Figure 4.4f. Similar curves obtained for PET and 

PEDOT/PET indicate that the PEDOT coating is strongly adhered while the mechanical properties 

for a substrate remain intact. Under increasing external strain, yielding initiates from the innermost 

cut and propagates outwards until the peripheral cuts reach their maximum stress load and the 

electrode ruptures.27 Besides buffering the transmission of strain to outer regions of the film, extra 

unit cells also lessen the overall load felt by each cut, significantly enhancing the fracture strain.4, 

28 The nanofibrillar electrodes demonstrate excellent electrical stability stemming from their ability 

to withstand complex deformation without rupturing the conductive polymer layer. Conductivity-

strain curves (Figure 4.4g) confirm that electrode conductivity is not significantly affected by 

increasing strain. Localization of strain on the corners of the cuts allows the substrate to stretch 

without disrupting the conductive nanofibrillar network.29 Preservation of conducting pathways 

allows the electrode to retain a high degree of electrical conductivity (95%) under different 

mechanical tensile strains (0-150%). Other modes of mechanical deformation, such as bending 
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and twisting, exert low stress on the film allowing the structural and electrical properties of the 

active material layer to also remain unchanged.30 These characterizations indicate that our 

synthetic strategy generates high packing density, highly conductive, stretchable nanofibrillar 

electrodes with great feasibility for sensing and energy storage applications. 

 

Figure 4.9: Nanofibrillar PEDOT Kirigami sheets with increasing number of unit cells. 

 

The global outbreak of COVID-19 is significantly affecting economic and human health, and 

recent studies have demonstrated that surgical masks can efficiently prevent virus transmission 

from airborne aerosols.31-32 However the ability to detect whether the outer surface of a mask has 

been exposed to respiratory droplets from coughing or sneezing, is also of considerable importance 

since the mask will lose function once it faces extreme humidity. Also, touching or handling a 

contaminated mask carries the risk of transmitting infections (Figure 4.10a).33 Our nanofibrillar 

PEDOT film serves as a flexible chemoresistive sensor by monitoring the relative humidity change 

on the mask to detect droplet attachment. The stretchable 2D film is easily integrated onto the 2D 

mask via platinum lead, Kapton tape and a multimeter (Figure 4.10b) and shows clear 

compatibility with the mechanical requirements of wearing surgical masks due to the 3D tunable 
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mechanical properties generated by Kirigami. Notably, the electrode is only 0.5 mm thick and 

weighs only 0.16 g making it easy to assemble on the mask (Figure 4.10c). 

 

Figure 4.10: Nanofibrillar PEDOT coatings for Kirigami humidity dosimeters. a) Schematic 

illustration shows our humidity dosimeter detecting droplets that originate from sneezes and 

coughs. b) Photograph of humidity dosimeter in its 2D state attached to a surgical mask. c) Front 

and side view of our device stretching to accommodate 3D deformation from surgical mask. d) 

Resistance change and e) response time in dosimeters comprised of PEDOT nanofibers vs. 

PEDOT:PSS and as a function of relative humidity. f) Schematic illustration shows water droplets 

spreading on PEDOT nanofibers and enhancing charge transfer processes. 

 

To explore the relationship between sensitivity and electrode morphology, we introduce our 

nanofibrillar PEDOT electrode and compare it against PEDOT:PSS thin film electrodes for testing 

humidity levels. Figure 4.10d shows that the resistance decreases with increasing humidity for 

both electrodes due to 1) polymer swelling-induced electron transfer through conjugation length, 

and 2) formation of a water layer that induces electron hopping and facilitates electron transfer. 

Importantly, the nanofibrillar PEDOT film exhibits remarkable decrease in resistance at the initial 

humidity range (around 40% relative humidity) and exhibits faster response (<2s) in comparison 

to the PEDOT:PSS thin film (Figure 4.10e).34 The heightened response of our electrode is a 
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consequence of the larger surface area generated by high aspect ratio nanofibers that provide more 

accessible pathways for water vapor to traverse.35 This is congruent with the porous nature of 

nanofiber films, in which gas molecules or aerosol droplets can rapidly diffuse in and out of the 

nanofibers (Figure 4.10f).36 Our PEDOT nanofibrillar humidity dosimeter exhibits better 

performance in both sensitivity and response time than conventional PEDOT:PSS films as well as 

commercial humidity sensors, qualifying it as an ideal humidity-sensing dosimeter accessory for 

surgical masks. 

Our synthetic strategy utilizes a solid-state precursor that allows us to deposit nanofibers layer-by-

layer providing a solution to issues stemming from a low packing density or low nanofibrillar 

mass. We engineer a composite electrode to circumvent delamination by polymerizing PPy 

directly on the surface of an initial PEDOT layer (Figure 4.11a). SEM images show that the 

composite electrode surface is comprised of a carpet of PPy/PEDOT nanofibers. The hierarchical 

configuration suggests that the preceding PEDOT layer acts as a barrier to the diffusion of HCl 

vapor. Hydrochloric acid is prevented from initiating PPy polymerization on the PET substrate 

and PEDOT nanofibers therefore serve as the preferential nucleation site for PPy growth.10, 37 This 

sequential deposition of conducting polymer layers allows grafting of PPy onto the PEDOT layer 

affording a novel synthetic approach for depositing electroactive composites and engineering 

electrodes (Figure 4.11b).  
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Figure 4.11: Nanofibrillar Polypyrrole and PEDOT composites for Kirigami electrodes. a) 

Schematic illustration shows deposition strategy where a nanofibrillar PEDOT-coated PET 

substrate is sputtered with oxidant precursor (Fe2O3) and utilized for synthesis (RVPP) producing 

a nanofibrillar polypyrrole film on top of PEDOT nanofibers. These bi-layered PPy/PEDOT 

Kirigami electrodes b) possess a high packing density of nanofibers as shown by SEM with a 150 

nm diameter (inset). c) Schematic illustration shows a PPy/PEDOT composite electrode charging 

in the electrolyte where PPy serves as a highly capacitive material with active redox sites and 

PEDOT serves as a conductive layer providing facile charge transfer. d) EIS of PEDOT, PPy, and 

PPy/PEDOT electrodes show that the latter exhibits lower ESR due to the conductive PEDOT 

layer and low ion transfer resistance suggesting an ideal structure for ion penetration. e) CVs of 

PEDOT, PPy, and PPy/PEDOT composite electrodes at 25 mV/s show a larger CV area for the 

latter indicating a higher capacitance in the composite. f) Scan rate capability of the PPy/PEDOT 

composite electrode from 25 to 1000 mV/s in LiClO4 aqueous electrolyte. 

 

The composite electrodes possess a bilayer architecture that capitalizes on the high conductivity 

of PEDOT (1000 S/cm) through intimate contact and chemical bonding at the electrode/current 

collector interface. Moreover, the PPy layer (nanofibers) possesses higher pseudo-capacitance and 

is more sensitive to ion adsorption at the electrode/electrolyte interface than PEDOT (Figure 

4.11c). To prove this model, we introduce EIS to compare the electron and ion transfer resistance 

of the single electrode against the composite electrode (Figure 4.11d). Nyquist data for PEDOT 

and PPy electrodes reveal that PEDOT possesses a lower ESR (intercept of x axis), lower ion 
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diffusion resistance (small semicircle) and superior capacitive behavior (large slope) than PPy that 

is consistent with the literature.16  In comparison, EIS results for the composite electrode produce 

a Nyquist plot with a smaller semicircle. A smaller radius compared to PEDOT indicates less 

contact resistance between electrolyte ions and the electrode and low diffusion resistance for 

adsorption/desorption of electrolyte ions.38 The enhanced diffusion and adsorption of ions stems 

from the grafting process generating mechanically stable nanofibers that readily withstand 

expansion and contraction during doping and dedoping, respectively.  

Three-electrode cyclic voltammetry (CV) provides fundamental understanding of electrochemical 

processes that occur during charging and discharging of the composite electrode. Figure 4.11e 

shows the CV curves for PEDOT, PPy and PPy/PEDOT electrodes immersed in 1 M aqueous 

solutions of various electrolytes. Unlike PEDOT, where both acidic and neutral electrolytes are 

suitable, the most rectangular and reversible curve for PPy is achieved using LiClO4 as an 

electrolyte (Figure 4.12). Interestingly, the composite electrode performs better in LiClO4 which 

typically generates a neutral environment that weakens the charge storage performance of PEDOT. 

This behavior is offset by the high capacitance of PPy enhancing charge storage and diffusion of 

electrolyte ions to yield a greater enclosed CV area vs. single active material electrodes. The 

composite electrode exhibits superior electrochemical performance demonstrating that a 

synergistic effect exists between PEDOT and PPy. Synergy is generally regarded as the 

cooperative interaction of multiple components producing a greater collective effect than the sum 

of the individuals.39 In our composite material, PEDOT’s electronic charge transport and PPy’s 

pseudo-capacitance interact and enhance the electrode’s electrochemical performance. Cyclic 

voltammograms remain mostly undistorted at high scan rates (1000 mV/s) as the open electrode 
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nanofibrillar architecture creates free volume and accessible electroactive sites; fast redox 

reactions in our devices enable high-rate charging that is ideal for supercapacitors (Figure 4.11f).  

 

 

Figure 4.12: (a) CV scans of PEDOT in 1M H2SO4, 1M aqueous LiClO4 and 1M LiClO4 in 

acetonitrile. (b) Rectangular CV response of PEDOT in 1M H2SO4 electrolyte under scan rates 

ranging from 25 to 1000 mV/s. (c) CV scans of PPy in LiClO4 and H2SO4 aqueous electrolyte. (d) 

CV response of PPy in 1M LiClO4 aqueous electrolyte under scan rates ranging from 25 to 1000 

mV/s.   

 

Our PPy/PEDOT nanofibrillar electrodes excel at charge transfer processes that are of paramount 

importance in enhancing electrochemical performance for supercapacitors. Electrochemical 
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capacitance is characterized via galvanostatic charging/discharging (GCD) and cyclic 

voltammetry (CV) techniques. The sandwich configuration supercapacitor is comprised of two 

electrodes and 1M LiClO4 gel electrolyte (Figure 4.13a). GCD curves (Figure 4.13b) for the 

composite electrode exhibit symmetric triangular shapes under current densities (0-1 V) indicating 

a reversible redox charge storage mechanism.40 The linearity of the GCD curves together with 

minimized IR-drop at a fast discharging rate stems from a low internal resistance promoting 

capacitive behavior.41 Cyclic voltammograms exhibit a rectangular shape proportional to the 

reversibility of doping/dedoping by electrolyte ions. The PPy/PEDOT composite electrode is 

characterized by a fast charge/discharge capability producing symmetric rectangular cyclic 

voltammograms under scan rates ranging from 5 mV/s to 50 mV/s and larger area compared with 

pristine PEDOT and PPy electrodes (Figure 4.14).42 Areal capacitance calculations from CV 

curves are summarized in Figure 4.13c. The PPy/PEDOT composite supercapacitor possesses 

state-of-the art areal capacitance of 378 F/g due to its bilayered nanofibrillar morphology. 

Moreover PPy nanofibers provide a large surface area for storing charge and PEDOT nanofibers 

provide conductive networks that facilitate electron transfer.43 This result further confirms the 

synergistic effect between the two nanofibrillar polymers in our composite electrode. 

Maintaining electrical performance under mechanical deformation is a crucial parameter for 

stretchable power sources. Our PPy/PEDOT nanofibrillar supercapacitor shows only a slight 

change in capacitance during stretching (378 F/g at 0% stretch, 373 F/g at 50% stretch, 368 F/g at 

100% stretch, 363 F/g at 50% stretch), twisting (369 F/g at 50% stretch) and bending (372 F/g at 

50% stretch) (Figure 4.13d) demonstrating superior energy storage performance under mechanical  

strain. Our composite supercapacitor is stable exhibiting 99% and 85% capacitance retention after 

a 1 and 300 cycles (100% stretch), respectively (Figure 4.13e). An areal-normalized Ragone plot 
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graphing the relationship between power density and energy density shows the state-of-the-art 

performance among carbon allotropes and metal oxides, as well as a metal-organic framework, 

MXene, and transition metal dichalcogenide (Figure 4.13f).44-48 Among these, our composite 

supercapacitor exhibits the highest areal energy density of 115 μWh/cm2. This result confirms the 

synergistic effect of our bilayered composite electrode characterized by highly conductive 

PEDOT, capacitive PPy and a large surface area. 

 
Figure 4.13: Nanofibrillar PPy/PEDOT Kirigami supercapacitors. a)  Schematic diagram shows 

our 2-electrode (sandwich configuration) supercapacitor comprised of a 1 M LiClO4 gel 

electrolyte. b) Symmetric triangular GCD curves at current densities ranging from 0.1 mA/cm2 to 

2 mA/cm2 demonstrate reversible charging and discharging. c) The PPy/PEDOT composite 

possesses higher capacitance than pristine PEDOT or PPy across all scan rates due to synergistic 

interactions between capacitive PPy and conductive PEDOT. d) Capacitance in our 

supercapacitors is stable during mechanical deformation such as stretching, twisting, and bending. 
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e) Comparison of capacitance retention without stretching versus stretching demonstrates an 85% 

capacitance retention after 300 stretching cycles; an LED is powered using 3 stretched 

supercapacitors connected in series (inset). f) Areal normalized Ragone plot compares our 

PPy/PEDOT composite device against graphene/PPy, CNT/PANI, PEDOT:PSS/MnO2/CNT, 

RuO2/PEDOT:PSS, PPy/CPH, 10% rGO-PEDOT:PSS, and PEDOT/rGO thin-film polymer-based 

supercapacitors. g) Schematic diagram of planar configuration of multiple supercapacitors 

connected in series for high voltage generation. h) GCD curves collected at 1 mA/cm2 show 1 V 

(black), 2 V (red), 4 V (blue) and 6 V (green) plots with increasing number of units of PPy/PEDOT 

supercapacitors. i) Photograph shows our Kirigami supercapacitor module in its planar 

configuration powering various colored LEDs. 

 

 

Figure 4.14: CV scans of (a) PEDOT, (b) PPy and (c) PPy/PEDOT in 1M LiClO4 electrolyte 

under various scan rates. 

 

 

Figure 4.15: (a) Fabrication process of a nanofibrillar PEDOT Kirigami-based supercapacitor in 

a planar configuration. (b) Schematic diagram of flexible supercapacitor (c) possessing a high 

packing density of 1D nanostructures. The supercapacitor withstands complex deformation 

including (d) stretching, (e) twisting and (f) bending.  
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Supercapacitor units are assembled both in series and in parallel to meet specific energy needs or 

open circuit voltages making it a versatile choice for various applications. Figure 4.13g and F 

Figure 4.15 illustrates the geometric details of the planar configuration comprised of 6 units of 

PPy/PEDOT supercapacitors (labeled in red and green) connected in parallel. The capacitance 

performance is confirmed via GCD curves collected at 1 mA/cm2 for 1V (black), 2V (red), 4V 

(blue) and 6V (green). This functional device lights up LEDs of different colors demonstrating the 

advantage of a planar configuration and highlighting its potential applications for stretchable 

electronics. 

 

4.4 Conclusion 

We advance stretchable electrodes and Kirigami-based engineering by developing a synthetic 

strategy that produces electroactive nanofibrillar films of conducting polymer composites. Our 

approach directly grafts polymer onto a PET substrate in situ during synthesis producing a high 

packing density of various conducting polymer nanofibers.  We develop a Kirigami humidity 

dosimeter using PEDOT nanofibers that exhibits superior performance both in sensitivity (40% 

change) and response time (<2s) over conventional PEDOT:PSS films and commercial humidity 

sensors. This work demonstrates how to apply our layer-by-layer technique via consecutive 

depositions to produce nanofibrillar PPy/PEDOT composite-based supercapacitors possessing 

state-of-the-art energy density (115 μWh/cm2 at 1 mA/cm2) and capacitance (85% capacitance 

retention after 300 stretching cycles). This work overcomes current challenges associated with 

nanostructure deposition on pre-cut substrates by generating stretchable electrodes that enhance 
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both sensitivity and energy density in Kirigami-based wearable healthcare monitors and 

stretchable power sources. 
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Chapter 5 

PEDOT-integrated Masonry Materials for 

Antimicrobial Application 

 

Future sustainable house with PEDOT masonry materials 
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5.1 Introduction 

Demand for antimicrobial surfaces is rapidly increasing due to heightened public 

awareness regarding home hygiene and stringent regulations across the healthcare industry.1,2 

Antimicrobial solutions are frequently used to disinfect surfaces such as sinks, tables and walls.3 

However, overuse of antimicrobials has led to the development of antibiotic-resistant microbes 

resulting in less effective or completely ineffective antibiotic treatments.1,4 In 2019, the CDC 

reported over 2.8 million individuals had infections caused by antibiotic-resistant bacteria and 

fungi.5 Antibiotic resistant infections lead to prolonged hospital stays, higher medical costs, and 

an increase in mortality.6,7 Common infectious diseases are becoming more difficult to treat with 

emerging resistance mechanisms. It is therefore essential that new technologies be developed to 

limit the use of antibiotics, thereby limiting the evolution of resistance.7 Non-antimicrobial 

cleansers have also been developed, but there is concern that frequent exposure to chemical 

cleansers can have detrimental health effects, and with any cleansers there is the possibility for 

accidental ingestion by children and pets. Traditionally, microbes settle on surfaces and are 

allowed to proliferate, where they potentially acquire resistance, and are later removed by periodic 

application of disinfectant cleansers. Ideally, new technologies ought to prevent infections by 

reducing our exposure to microbes without requiring the use of harmful cleansers and antibiotics.8 

A strategy for accomplishing these goals would integrate antimicrobial agents within the 

microstructure of masonry materials, such as brick and tile. This concept is a promising approach 

for sterilizing commonly contacted surfaces without exacerbating the rise of microbial resistance. 

Therefore, developing antimicrobial masonry materials is an imperative step towards preventing 

antibiotic-resistant infections. 
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Researchers have made numerous attempts to develop antimicrobial masonry materials by 

introducing additives that possess antimicrobial properties for sterilization.9,10 For example, ZnO-

cement composite possesses effective antibacterial and antifungal activities under dark and solar 

light due to nanosized ZnO particles that are hazardous to bacteria via ROS generation.11,12 

Concrete containing TiO2 nanoparticles kills bacteria under light by provoking inflammation, 

cytotoxicity and DNA damage in bacterial cells.13,14 Nanostructures have been shown to also kill 

bacteria by affecting their uptake through cell membranes, stimulating phagocytosis, as well as 

endogenous ROS generation.15 Unfortunately, these strategies suffer from complicated synthesis, 

coating delamination and metal ion contamination.16
 Furthermore, each of these strategies would 

be complicated to translate to a format amenable to household use. 

Here, we demonstrate a new class of antimicrobial masonry materials by integrating 

conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers within the 

microstructure of conventional brick and tile. We find that a network of nanofibers, extending from 

the surface to the pores inside masonry materials, has efficient antimicrobial properties when a 

weak external electric voltage is applied. These antimicrobial properties are notable even on the 

external glazed surface of tiles. Brick and tile are cost-effective, mechanically robust, and 

ubiquitous in today’s masonry construction. Inspired by our previous work,17 we transform Fe2O3 

in brick and tile to initiate rust-based vapor-phase polymerization (RVPP)18 resulting in the 

nanofibrillar conducting polymer PEDOT characterized by high environmental stability and low 

electrical resistance (5 Ω/sq). PEDOT-integrated masonry materials such as a PEDOT-tile and 

PEDOT-brick possesses highly conductive surface results in peroxide generation upon application 

of an external voltage, eliciting a strong antimicrobial effect against Escherichia coli, 

Saccharomyces cerevisiae, and Staphylococcus aureus. This common E. coli bacteria is 
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responsible for food-poisoning19 while S. aureus, a pathogenic bacteria, readily acquires resistance 

leading to methicillin resistant staph infections (MRSA).20,21 S. cerevisiae (harmless baker’s yeast) 

serves as a model fungi to assess the likelihood that this method could prove effective against other 

fungi such as Stachybotrys chartarum (black mold) and Candida albicans (cause of 

ringworm/athlete’s foot).22,23 A high packing density of PEDOT nanofibers ensures significant 

peroxide production (large inhibition zone). Integration of PEDOT with brick and tile results in 

robust organic-inorganic composites that withstand wear and tear. Notably, coating PEDOT onto 

the back face of tile also produces an antimicrobial effect on the front surface enabling construction 

of antimicrobial glazed tile walls, floors and counters. 

5.2 Experimental methods 

Materials. Chlorobenzene (99%), 3,4-ethylenedioxythiophene (97%), poly(vinyl alcohol) (Mw 

89,000–98,000, 99+% hydrolyzed), methanol (≥99.8%), and hydrochloric acid (37%) were 

purchased from Sigma-Aldrich; sulfuric acid (AR) was purchased from Macron. All chemicals 

were used without further purification. Platinum foil (0.025mm thick, 99.9%) was purchased from 

Alfa Aesar and utilized for engineering electrode leads and Celgard 3501 membrane was used as 

a separator. Fired bricks were purchased from local hardware stores: The Home Depot Inc. (type 

1 brick, https://www.homedepot.com, Internet #100323015, Model #RED0126MCO, Store SKU 

#393134), Lowe’s Inc. Floor tiles are purchased from local hardware stores: Internet #305322621, 

Model #NRETBLA3X6INBEV, Store SKU #1003235709, Store SO SKU #1003190599. 
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5.2.1 Synthesis of nanofibrillar PEDOT-integrated masonry materials 

Brick and tile were cut using a diamond saw (±0.03 cm error) into the 2.00 cm ⨯ 1.00 cm ⨯ 1.00 

cm. A brick is thrice washed with deionized water to remove surface dust then dried at 140 °C for 

1 h and cooled to room temperature. Reaction was carried out in a glass reactor (12.30 cm⨯ 8.55 

cm⨯ 11.30 cm) using 100 μL of 12M HCl and 200 mL of a 0.675M EDOT in chlorobenzene 

solution at 140 °C for 1.5 h. 

5.2.2 Material characterization 

 Scanning electron micrographs and energy-dispersive X-ray spectra were collected with a JEOL 

7001LVF FE-SEM. Two-point probe resistance measurements were carried out using a Fluke 177 

True RMS digital multimeter with 3 mm distance between two probes. Current–voltage tests were 

performed on a 3D printed two-point probe station with two gold probes separated by 2mm. 

5.2.3 Microbial strains and growth 

XL10 gold E. coli cells (Agilent) were used for this study. The bacterial stocks were stored at -

80˚C in glycerol stocks. The cells were thawed on ice and then 50 μL of cells were mixed with 

200 μL of fresh SOC medium before being plated on LB agar plates (Figure 5.3h). A similar 

process was performed with the SH1000 S. aureus cells (gifted from Petra Levin) that were stored 

at -80˚C in glycerol stocks. These cells were thawed on ice, then 50 μL of cells were mixed with 

200 μL of fresh LB medium, then all 250 μL were plated on LB agar plates (Figures 3F, 3J). The 

S. cerevisiae cells were thawed from -80˚C glycerol stocks and diluted with SD-HU medium and 

plated on SD-HU plates (Figure 3I). The media has been supplemented with 2% glucose. 
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5.2.4 Percent cell survival assay 

The E. coli cells were grown overnight at 37˚C rotating in sterilized LB media. On the second day, 

the overnight culture was diluted so the optical density at 600 nm went from ~1.0 to 0.3. Two 

samples of the XL10 gold E. coli cells were diluted by a factor of 103, 104, and 105 into fresh SOC 

media and plated on LB agar plates (Figure 5.3a). These plates were incubated overnight at 37˚C 

and imaged the following day (Figure 5.3b). The number of colonies on each plate were counted 

manually for three replicates (Figure 5.3c). 

5.2.5 Real scenario test 

After performing the 1:5 dilution of the E. coli glycerol stocks, 200 μL of the sample was plated 

on the LB agar plate, and then 25 μL of the sample was split and plated atop each of the tiles. The 

plates were left overnight at room temperature and treated with 3V (Figure 4b). The tiles were 

swabbed the following day and plated directly on LB agar plates and incubated overnight at 37˚C. 

The tiles were swabbed again after 48 hours following the same protocol. The plates were imaged 

after incubating at 37˚C. 
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5.3 Results & discussion 

 

Figure 5.1: Deposition of PEDOT nanofibers on brick and tile. (a) Schematic illustration of rust-

based vapor-phase polymerization (RVPP) shows that the final product is (b) a polymer-coated 

masonry material. (c) Photographs show the color change of a brick and tile (2 cm × 1 cm × 1 cm) 

as Fe2O3 (red) is converted to PEDOT (dark blue). (d-e) Scanning electron micrographs show 

complete conformal coverage of a masonry material by PEDOT nanofibers. f-g Synthesis is 

scalable to the decimeter scale as demonstrated by a coat on the back side of a commercial tile. 

 

PEDOT nanofiber synthesis is initiated by partially dissolving a masonry material’s hematite (α-

Fe2O3) using HCl vapor (140 °C) thereby liberating Fe3+ ions from their solid-state environment. 

Liberated ferric ions spontaneously undergo hydrolysis forming 1D FeOOH spindles that serve as 

preferential nucleation sites for polymerizing EDOT vapor and promoting the growth of PEDOT 

nanofibers (Figure 5.1a). We advance previous findings by demonstrating that rust-based vapor-

phase polymerization is a versatile synthesis suitable for both brick and tile (Figure 5.1b).17,18 The 
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inorganic oxide matrix structure of a substrate, comprise of SiO2 and Al2O3, remains pristine after 

synthesis enabling robust integration with polymer nanofibers (Figure 5.1c). Scanning electron 

micrographs (SEM) show that nanofibers (aspect ratio = 50) generate a high surface area and high 

packing density (Figure 5.1d); polymerization imparts high electronic conductivity and is scalable 

(Figure 5.1e). 

 

Figure 5.2: Characterization of a nanofibrillar PEDOT coating integrated in masonry materials. 

(a) Cross-sectional photograph of brick and tile show PEDOT integration. (b) SEM confirms that 

PEDOT nanofibers penetrate the brick bulk forming a conformal coating (~20 μm-thick). (c) A 

Scotch tape test fails to delaminate a polymer coating from brick and tile. Moreover, (d) a scratch 

test using a diamond scriber proves that polymer remains integrated within the inorganic matrix. 

(e) Energy-dispersive X-ray elemental map for a PEDOT nanofiber shows overlapping Cl, S, C 

and O signals. (f) Linear current–voltage curves show ohmic behavior after Scotch tape test and 

wear and tear test indicating a stable electronic performance for the nanofibrillar polymer coating. 

 

In contrast to conventional coating technologies that only deposit a surface layer, our synthetic 

strategy enables integration of PEDOT nanofibers within the porous microstructure of a masonry 

material (Figure 5.2a); cross-sectional SEM shows that nanofibers penetrate the brick 

microstructure resulting in a 20 μm-thick coating (Figure 5.2b). During synthesis, the vapor 
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diffusion of reactants leads to a nanofibrillar surface coating and integration of a nanofibrillar 

network within bulk of the substrate. Coatings on brick and tile exhibit strong adhesion, are 

impervious to delamination under Scotch tape tests (Figure 5.2c) and withstand wear and tear after 

scratch tests using a diamond scriber (Figure 5.2d). Elemental maps obtained via energy-dispersive 

X-ray spectroscopy for a single fiber (Figure 5.2e) show overlapping Cl, S, C and O signals 

indicating a homogeneous PEDOT composition.25 Electronic transport for a polymer film, probed 

using current–voltage measurements, shows ohmic behavior (straight line) and low resistance 

(large slope, ~5 Ω/sq) (Figure 5.2f) due to a continuous percolation network that facilitates charge 

transport.26 PEDOT-tiles and PEDOT-bricks exhibit stable electrical resistance after adhesion tests 

because our synthetic strategy achieves significant mechanical robustness suitable for masonry 

surface coating applications. 

To study the antimicrobial effects of a PEDOT-integrated tile, we carried out solution experiments 

with Escherichia coli (E. coli) and studied cell growth upon treatment with external voltage at 

room temperature.11 Here, E.coli cultures were grown to logarithmic phase to reach an OD600 of 

0.3. PEDOT-integrated tiles were then added to the tubes and an external voltage (3 V) was applied 

to the tile overnight (Figure 5.3a). As a control, we included a second culture where we added a 

PEDOT-integrated tile without applying voltage. Following overnight treatment, cultures were 

diluted and plated to quantify cell survival. The treated (3 V) sample displays strongly diminished 

growth as compared to the untreated (no voltage) sample (Figure 5.3b). Quantification of cell 

survival indicates that 70% of E. coli are killed upon treatment with external voltage (Figure 5.3c) 

confirming PEDOT’s antimicrobial effect. 
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Figure 5.3: Antimicrobial effects of PEDOT tiles. (a) E. coli was cultured to logarithmic phase 

until the OD600 reached 1.0 at which point the culture was diluted and a low voltage (3 V) treatment 

was applied overnight. Equal volumes from each culture were plated to compare colony growth. 

(b) Growth is compared from a culture with voltage applied (treated) and without an applied 

voltage (untreated). (c) Colonies from b were counted to determine percent cell survival. Values 

represent means +/- SEM, n=3. (d) Schematic showing experimental setup comprised of two 

PEDOT tiles, external 3 V battery and O2
- test strip. (e) Upon applying voltage, O2

- test strip at the 

positive electrode turns blue signaling the generation of O2
- as demonstrated. (f) Schematic 

depicting generation of O2
-. (g-i) Experiments were performed as depicted in part D on plates of 

freshly streaked with E. coli (g), S. cerevisiae (h), and S. aureus (i). To demonstrate that voltage 

is required for antimicrobial effects, an additional PEDOT reference brick that was not connected 

to an electrode was included in (g). In each instance, a region with no microbial growth is noted 

surrounding the positive electrode.  
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Antimicrobial properties based on hydrophobicity, electrostatic repulsion and cathodic peroxide 

generation have been reported for a similar conducting polymer (PEDOT:PSS), unfortunately, 

these studies suffer from minimal antimicrobial effect and polymer coatings prone to 

delamination.27-30 To more closely investigate our polymer and its antimicrobial mechanism, we 

modified our setup to monitor growth on agar plates and included a test strip next to a PEDOT-tile 

to detect peroxide generation (Figure 5.3d). Notably, the test strip turns blue at the positive 

electrode after voltage is applied for 2 h confirming peroxide production, while the negative 

electrode lacks peroxide (test trip color remains unchanged) (Figure 5.3e). Unlike conventional 

metal oxide electrodes (WO3, BiVO4 and Al2O3) commonly used for anodic H2O oxidation, 30,31 

this is the first time that PEDOT has been demonstrated to generate anodic peroxide. We propose 

that this mechanism is driven by anodic oxidation of water, where electrons (serving as charge 

carriers in the closed circuit) transfer to the anode, leaving holes to coordinate with H2O to produce 

peroxide (Figure 5.3f).32  

We next assessed the versatility of our strategy by testing for efficacy against not just gram-

negative E. coli, but also gram-positive S. aureus bacteria, and yeast S. cerevisiae strains. Two 

PEDOT bricks were attached to either a positive or negative electrode and applied to plates of 

freshly streaked microbes. A third brick was included without an applied voltage to serve as an 

additional control (Figure 5.3g). After applying 3 V for 24 h, the E. coli plates shows no growth 

in the region surrounding the positive electrode, whereas the regions surrounding the negative 

electrode and the reference brick (no voltage) display normal growth. Antimicrobial effects on S. 

cerevisiae (Figure 5.3h) were tested under the same conditions using a PEDOT brick and PEDOT 

tile. Notably, we again observe no growth in the region surrounding the positive electrode. Similar 

results were achieved against S. aureus (Figure 5.3i). We noted what appeared to be more mild 
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effects against S. aureus compared to E. coli. This observation could be due to the thick 

peptidoglycan layers that make S. aureus harder to kill. 33,35  Antimicrobial effects are observed 

against all three microbes, indicating that our strategy yields materials with antimicrobial 

properties suitable for various types of masonry materials (brick and tile).  

  

 

Figure 5.4: Real-world scenario test based on a “tile wall”. (a) Schematic illustration of potential 

application of PEDOT-coated tiles to construct a bathroom wall. (b) E. coli was smeared on a 

glazed tile surface and a 3 V battery was applied. (c) After 1 (top) or 2 (bottom) days of applied 

voltage, the tiles were swiped and allowed to outgrow on an agar plate. 

 

To test the applicability of antimicrobial masonry materials in real-world scenarios such as 

bathroom or kitchen tile walls, floors, and counters, we examined whether a PEDOT-integrated 

tile exhibits antimicrobial effects on the glazed surface that is exposed to bacteria (Figure 5.4a). 

Two tiles are connected by 1 M H2SO4/PVA gel and an external 3 V battery is applied as illustrated 



169 

 

in Figure 5.4b. E. coli is applied onto the glazed surface. A 3 V or 1.5 V battery is then applied. 

Following application of voltage for 1 day or 2 days, the surface of the tiles was swabbed and 

streaked onto agar plates. When a 3 V battery is applied (Figure 5.4c), just a few colonies were 

noted in the positive electrode region following one day of applied voltage. In the region 

surrounding the negative electrode, more colonies were noted after one day of applied voltage. 

These results are consistent with our earlier findings suggesting that peroxide is generated from 

anodic oxidation (Figure 5.3). Antimicrobial effects are observed on the uncoated face of the tile 

as peroxide diffuses (in vapor phase) or penetrates (in liquid phase) up to the glazed surface. To 

determine if this antimicrobial activity persists, we next applied voltage to the tiles for 2 days. 

Interestingly, following two days of treatment we observe no E. coli colonies on either plate. This 

suggests that either the peroxide generation is sufficiently strong to reach the region near the 

negative electrode, or that both electrodes possess antimicrobial properties. We propose that the 

delayed antimicrobial effect exhibited by the negative electrode is due to the restrained oxygen 

diffusion as is typically seen in fuel cell systems. A 1.5 V battery test was carried out to probe the 

energy consumption required to observe an antimicrobial effect. The results exhibit E. coli survival 

in both electrodes after 1 day, while antimicrobial effect is observed on both electrodes (less E. 

coli colonies on negative electrode and clear Agar on positive electrode) after 2 days suggesting 

low voltage (1.5 V) takes longer time to achieve the same antimicrobial effect. These results 

demonstrate that the magnitude of the external voltage affects the rate of antimicrobial effect and 

provide a reference for future customized design.  
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Figure 5.5: Testing PEDOT against environmental microbes. (a) Flow process diagram of placing 

PEDOT tiles in a bathroom. Environmental microbe experiments are introduced on tiles’ glaze 

surface with voltage test and no voltage test. (b) Optical images of voltage test and no voltage test 

results. (c) Schematic diagram and optical images of environmental microbes’ experiment on LB 

agar. 

 

Since tiles are encountered in a household setting, to probe whether our products possess efficacy 

against environmental microbes, we place PEDOT tiles in a bathroom to experience home 

conditions. Two groups (voltage test and no voltage test) of tiles are placed in bathroom for 7 days, 

enabling environmental microbes to naturally accumulate on the glaze side of the tiles (Figure 

5.5a).  3 V is applied on the tiles in the voltage test group for 2 days while no voltage to the other 

group. Each group of tiles is swabbed and streaked onto agar plates to assess outgrowth. An 

increased growth of microbes is obtained versus the laboratory strains of microbes (Figure 5.5b). 

Notably, a significant decrease in voltage test is observed compared with no voltage test, 

demonstrating our PEDOT tiles possess an efficient antimicrobial property against environmental 

microbes. 
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To confirm whether any of these microbes were resistant to our approach, we introduce another 

experiment by introducing the environmental microbes’ mixture onto a fresh LB plate and repeated 

the experiments using the same method as the inhibition assays in Figure 3g-i (Figure 5.5c). 

Strikingly, we observe a clear boundary of growth in a region around the positive electrode for the 

environmental microbes, similar to our laboratory strain experiments. Therefore, we conclude that 

the PEDOT tiles enable preventing the growth of all environmental microbes.  

5.4 Conclusion 

This work demonstrates that rust-based vapor-phase polymerization produces composites 

comprised of PEDOT nanofibers and conventional masonry materials possessing antimicrobial 

properties. The state-of-the-art is advanced by our synthetic technology resulting in a superior 

antimicrobial effect against E. coli, S. cerevisiae, S. aureus and other environmental microbes. 

Here, vapor polymerization utilizes the structural stability and open microstructure of bricks and 

tiles producing a mechanically robust integrated polymer structure impervious to mechanical 

degradation such as delamination. PEDOT’s antimicrobial properties, arising from the release of 

peroxide triggered by an external anodic voltage, represent a new electrochemical mechanism. In 

comparison to traditional cleaning products, this new class of smart masonry materials removes 

and prevents the growth of microbes thereby obviating the need for hazardous chemicals that 

propagate resistance to antibiotics. Interestingly, the dual nature of these smart masonry materials 

affords energy storing functionality (previously demonstrated) and antimicrobial properties for 

developing the next generation of multifunctional sustainable infrastructures. 
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Chapter 6 

Single PEDOT Catalyst Boosts CO2 

Photoreduction Efficiency 

6.1 Introduction 

Excessive fossil fuel combustion has drastically increased net global carbon dioxide (CO2) flux 

into Earth’s atmosphere, inducing climate change and worsening air quality, human health, and 

energy security.1-2 The critical need for mankind to counteract increasing atmospheric greenhouse 

gas concentrations elicits intensive research to develop processes that attenuate CO2 emissions.3 

Photoreduction of CO2 is one promising approach wherein abundant and sustainable solar energy 

is utilized with the aid of semiconductor photocatalysts to reduce CO2 into chemical fuels.4-5 In a 

photocatalytic system, electrons/holes generated by light absorption migrate towards catalytically 

active sites where they react with adsorbed CO2 molecules. Catalytic efficiency relies on 

generation and separation of photogenerated charge carriers while minimizing recombination as 

well as on efficient CO2 adsorption and light absorption.6-7 Numerous efforts have optimized 

structure and composition of photocatalysts by increasing surface area, creating surface defects on 

graphene, introducing nanocrystals to enhance visible light absorption and applying metal/metal 

oxide co-catalysts such as Ni, TiO2 and ZnO to facilitate charge separation. However, these co-

catalysts suffer from recombination of charge carriers and band gap mismatch leading to poor 
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conversion efficiencies.8-9 As opposed to a single catalyst, delivery of photogenerated charge 

carriers between co-catalysts of different band gaps must overcome the high energy barrier of out-

of-plane Ohmic or Schottky contact during an intramolecular cascade.10 Although researchers have 

modified co-catalyst systems by tuning the ratio of components to precisely match the band gap, 

costly fabrication techniques and low yields highlight the importance of developing a more 

favorable single catalyst alternative.  

Among all single catalysts, conducting polymers (CPs) are a new class of organic semiconductors 

primed to become the next generation of multifunctional photocatalysts; this is because the 𝜋-

conjugation backbone in CPs enhances CO2 adsorption via 𝜋-𝜋 interactions with delocalized p-

conjugated electrons from CO2 molecules. As semiconductors, CPs possess a wide light absorption 

range and photostability in the Ultraviolet-Visible-near-IR (UV-Vis-NIR) region that is easily 

controlled by doping/de-doping treatments and further enhanced by wide-ranging 

nanostructures.11 Growing interest in CPs has prompted recent studies on CO2 photoreduction 

using polyaniline (PANi) and polypyrrole (PPy), 12-13 unfortunately the low electrical conductivity 

of these polymers results in low photoreduction efficiency. Poly(3,4-ethylenedioxythiophene) 

(PEDOT) exhibits high mobility of photogenerated electrons/holes14 and is widely recognized as 

the most stable conductive CP (7600 S/cm) thus potentially serving as an ideal CO2 

photoreduction catalyst. To the best of our knowledge, there is an absence of reports in the current 

literature regarding its CO2 photoreduction catalytic properties.  

Here, for the first time, we demonstrate that a nanofibrillar PEDOT film is an ideal single catalyst 

for CO2 photoreduction. This film is deposited via our previously reported rust-based vapor-phase 

polymerization15 resulting in a homogeneous PEDOT coating of high surface area possessing a 

nanofibrillar morphology and characterized by a high electronic conductivity (1200 S/cm). The 
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CO2 adsorption and light absorption properties are controlled by the polymer’s band gap via 

chemical doping and de-doping treatments using an acid (HCl) and base (NH4OH or hydrazine), 

respectively. Our single catalyst results in a state-of-the-art CO yield rate (3000 μmolg-1 h-1) with 

100% CO yield under a stable regime (> 10h) representing two orders of magnitude higher than 

the best single catalyst reported and surpassed by only three other co-catalyst systems. 

6.2 Experimental methods 

Materials. FluoroporeTM membrane was purchased from MilliporeSigma. 3,4-

ethylenedioxythiophene (EDOT, 97%), chlorobenzene (99%), hydrochloric acid (37%), ammonia 

hydroxide (25%) and hydrazine hydrate (50%) were purchased from Sigma Aldrich and used as 

received. 

6.2.1 Deposition of nanofibrillar PEDOT film 

A solid-oxidant precursor, Fe2O3, was sputter deposited over polytetrafluoroethylene (PTFE) 

membrane via physical vapor deposition (Kurt J. Lesker PVD 75 RF and DC). All syntheses were 

performed at 140 °C for 1.5 h in glass reactors, each containing a substrate, a reservoir with 20 μL 

concentrated hydrochloric acid (HCl) and a reservoir with 200 μL of a 1.56 M 

EDOT/chlorobenzene solution. After 1.5 h, the electrodes were immediately removed from the 

reactors and cooled at room temperature and purified with 6 M HCl. 

6.2.2 PEDOT Characterizations  

Scanning electron micrographs and energy-dispersive X-ray spectra were collected using a JEOL 

7001LVF FE-SEM. Transmission electron micrographs were obtained using a JEOL 2100 TEM 
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by drop-casting a dispersion of PEDOT nanofibers on a TEM grid. Raman spectra were obtained 

using a Renishaw inVia confocal Raman spectrometer mounted on a Leica microscope with a 20× 

objective and 785 nm wavelength diode laser serving as an illumination source. A low power was 

necessary to mitigate heating of conducting polymer samples. A Bruker d8 Advanced X-ray 

diffractometer was utilized to collect powder X-ray diffractograms of pulverized samples at room 

temperature using a Cu Kα radiation source (λ = 1.5406 Å) and LynxEye XE detector (operating 

at 40 kV and 40 mA); the sample holder was rotated at 30 rpm with a scan step of 0.02°. Current-

voltage (I-V) curves were obtained with a built-in-house 3D printed probe station using two gold 

needles 1.24 mm apart. Four-point probe sheet resistance measurements were carried out using a 

Keithley 2450 SourceMeter with a Signatone SP4 four-point probe head.16 

Ultraviolet−Visible−near infrared (UV-Vis-NIR) spectra were collected on a Cary 5000 

UV−Vis−NIR spectrophotometer. Solid PEDOT films were dispersed in HCl (37%), NH4OH and 

hydrazine. X-ray photoelectron spectroscopy (XPS) was conducted on solid samples using a PHI 

5000 Versaprobe II with an Al 1486.6 eV Mono-X-ray source at 51.3 W, a beam diameter of 

100−200 μm and a 1 V neutralizer at 15 μA. Ultraviolet photoemission spectroscopy (UPS) 

measurements required a Physical Electronics 5000 VersaProbe II Scanning ESCA Microprobe 

and were performed to determine the valence band, conduction band and Fermi level position. He 

I (21.2 eV) ultraviolet source was used, and a 5 V bias was applied to the sample to observe a clear 

secondary electron edge. 

6.2.3 Evaluation of PEDOT films for CO2 photoreduction  

Photocatalytic activity of the synthesized PEDOT films was evaluated using a photoreduction 

analysis system (Figure 6.5D) which was explained in our previous publications.17-18 The 
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photoreduction analysis system contains a lab-built continuous flow reactor, Xe arc lamp (Oriel 

66021, Newport Co.) and gas chromatograph (GC, 6895N, Agilent Technologies, Inc.). For testing 

samples, the PEDOT film was deposited glass and placed in a lab-built continuous flow reactor. 

High purity compressed CO2 was used as the source gas and its flow rate was fixed at 20 ml min-

1 by a mass flow controller (OMEGA engineering Inc.). The gas stream continuously passed 

through a water bubbler to generate a mixed flow of CO2 and water vapor. Then, the mixed flow 

was introduced into the continuous flow reactor and a quartz window enables positioning a sample 

vertically to face the light (inset photo of Figure 6.5D). The PEDOT film was illuminated by the 

Xe arc lamp which was operated at 400 W with UV-vis-NIR wavelength region (250-950 nm). 

The compositions in the gas streams were continuously measured by the GC equipped with a 

porous layer open tubular (PLOT) capillary column (Supelco Carboxen-1010) and a thermal 

conductivity detector (TCD); helium was used as a carrier gas for the GC. In all experiments, the 

Xe arc lamp was initiated after the system was stabilized and approximately 3 ml min-1 of gas 

stream was introduced to the GC. All experiments were performed at least in duplicates.   
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6.3 Results & discussion 
 

 

Figure 6.1: Schematic diagram of PEDOT nanofiber deposition on PTFE membrane and 

microscopy/spectroscopy characterization of nanofibrillar PEDOT film.  (A) Pristine porous PTFE 

membrane is sputtered with a 60 nm Fe2O3 layer (B). (C) Rust-based vapor phase polymerization 

results in PEDOT nanofibers by a) liberating Fe3+ from Fe2O3 and triggering oxidative 

polymerization of b) EDOT. (D) Homogenous PEDOT nanofibrillar coating supported on a 

membrane. (E) Optical image of a PEDOT-coated PTFE membrane. (F) Scanning electron 

micrograph (SEM) shows bulk homogeneous PEDOT coating. (G) Close-up SEM reveals the free 

volume architecture between nanofibers. (H) Transmission electron micrograph (TEM) of a single 

nanofiber (aspect ratio ~50). (I) EDX maps of nanofiber show an elemental composition consisting 

of C, S, O and Fe. (J) PXRD confirms a polycrystalline structure with three characteristic peaks. 
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A conformal PEDOT nanofibrillar coating is produced via rust-based vapor-phase 

polymerization15 by initially sputtering a 60 nm coating of Fe2O3 oxidant precursor onto a robust 

polytetrafluoroethylene (PTFE) membrane (Figure 6.1A). A conformally packed oxide coating 

exhibits a yellow color in the solid state (Figure 6.1B) and its dissolution controls oxidant 

concentration resulting in the homogenous deposition of a PEDOT coating. Polymer deposition is 

initiated by dissolving Fe2O3 at 140 °C using HCl vapor to dissolve inorganic oxide, liberate Fe3+ 

ions (Figure 6.1C) and promote the hydrolysis of ferric ions. Monomer vapor, induced by heating 

a liquid EDOT reservoir, preferentially nucleates on 1-D FeOOH spindles produced during Fe3+ 

hydrolysis resulting in PEDOT nanofibers (Figure 6.1D). This templated vapor-phase synthetic 

strategy is scalable, enabling deposition of a homogenous nanofibrillar PEDOT coating on a 

superhydrophobic substrate. 

Photocatalyst morphology, surface area, and intrinsic chemical properties are vital parameters for 

CO2 adsorption, light absorption and CO2 reduction efficiency. The molecular and solid-state 

structure of a blue PEDOT-coated PTFE film (2 cm × 5 cm) (Figure 6.1E) is characterized via 

microscopy and spectroscopy. The polymer is uniformly integrated within the PTFE membrane 

(Figure 6.2) and scanning electron micrographs (SEM) of low (Figure 6.1F) and high 

magnification (Figure 6.1G) reveal a free volume web-like architecture composed of spherical 

aggregates interconnected by nanofibers. This open nanofibrillar structure possesses a high surface 

area that enhances absorption of both light and CO2; transmission electron micrograph (TEM) 

shows a 100 nm mean nanofiber diameter with an aspect ratio of 50 (Figure 6.1H). Elemental 

mapping via energy-dispersive X-ray spectroscopy (Figure 6.1I) shows a uniform distribution and 

strong signals for C, O, and S corresponding to PEDOT’s ethylenedioxy and thiophene ring 

whereas Fe signal disappears once PEDOT is purified using 6 M HCl. Current-voltage (I-V) 
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measurements, carried out to probe the electronic charge transport of a PEDOT film, demonstrate 

ohmic behavior (linear relationship) and a low resistance (large positive slope) (Figure 6.3) 

characteristic of a homogeneous and continuous percolation network that facilitates charge 

transport. Powder X-ray diffraction patterns (Figure 6.1J) further elucidate PEDOT’s charge 

transport as a function of its polycrystalline structure. Three characteristic peaks are observed at 

6.4°, 13.1° and 26.3° corresponding to lattice planes (100), (200) and (020), respectively. The first 

and second planes stem from lateral chain packing (x-axis) and the third is due to π–π stacking (y-

axis). Low peak width values at half-height (0.4, 0.7, and 1.4) indicate a crystalline polymer 

structure responsible for enhanced charge transport.19 Four-point probe conductivity 

measurements (Figure 6.4) show a high conductivity (1200 S/cm) stemming from the 

homogeneous deposition of an ordered PEDOT structure. 

 

 

Figure 6.2: Photograph of a pristine PTFE film shows its macroscale morphology. 
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Figure 6.3: I-V curves of unpurified and purified PEDOT films (purification is carried out via 

repeated washes in concentrated HCl). 

 

 

 

Figure 6.4: Conductivity measurement is carried out using a four-point probe station. 
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Figure 6.5: Doping/de-doping treatment of PEDOT catalyst and CO2 photoreduction 

characterization. (A) Optical image of PEDOT-coated PTFE treated with HCl (doping), NH4OH 

(de-doping) and hydrazine (de-doping). (B) Contact angle data show the decreasing surface energy 

via de-doping. (C) Raman spectra demonstrate two interchangeable polymer backbones i.e., 

benzoic and quinoid controlled by de-doping and doping, respectively. (D) Illustration of gas-

phase CO2 photoreduction set-up and (E) insight process of light absorption, photogeneration and 

charge carrier transportation. (F) Time-dependent production rate of CO versus PEDOT-HCl, 

PEDOT-NH4OH and PEDOT-Hydrazine catalysts under illumination (250 nm – 950 nm). (G) Our 

catalysts exhibit state-of-the-art performance among multiple conventional photocatalysts. 

 

PEDOT’s CO2 adsorption capacity is enhanced by doping/de-doping treatments with acid, base 

and reducing agents that alter its surface energy.20 We investigate this property utilizing HCl 

(37%), NH4OH (30%) and hydrazine to dope/de-dope a PEDOT film resulting in PEDOT-HCl 

(light blue), PEDOT-NH4OH (purple) and PEDOT-hydrazine (black) samples (Figure 6.5A). 

Contact-angle measurements are carried out to study surface energy revealing that all PEDOT 

coatings decrease PTFE surface energy while the hydrazine-treated PEDOT film exhibits the 

wetting degree angle at 60° (Figure 6.5B). PEDOT-coated membranes promote water molecule 

permeability confirmed by water content using TGA (Figure 6.6), SEM (Figure 6.7) and EDX 
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(Figure 6.8); we suspect this is due to charged dopant effects. We gain insight into the impact of 

doping on chemical bonding within our materials using Raman spectroscopy. PEDOT’s peak 

(Figure 6.5C) at 1357 cm-1 correspond to Cβ-Cβ bonds, while peaks at 1437 and 1510 cm-1 

correspond to symmetric and asymmetric Cα=Cβ stretching.  The symmetric Cα=Cβ stretching band 

shifts towards 1426 cm-1 after doping with HCl.21 This shift towards higher wavenumbers 

corresponds to greater doping levels due to an increased ratio of quinoid vs. benzenoid structures 

in PEDOT and is consistent with previously reported behavior of other PEDOT films.22 

 

Figure 6.6: TGA of pristine PTFE and PEDOT-coated PTFE. 

 

Figure 6.7: Scanning electron micrographs of PEDOT catalyst after treatment of HCl, NH4OH, 

and hydrazine. 
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Figure 6.8: Energy-dispersive X-ray spectroscopy of PEDOT after treatment of HCl, NH4OH, and 

hydrazine. 

 

The CO2 photoreduction properties of PEDOT films are evaluated using a photoreduction analysis 

system under atmospheric pressure and room temperature (Figure 6.5D). Three initial control tests 

are performed to establish the source of the reduction products: the first test is conducted with He 

as the source gas instead of CO2, the second test is performed in the absence of PEDOT, and the 

third test is carried out under a lack of illumination. Carbonaceous product is absent from all three 

control test results demonstrating that catalysis is unfeasible in the absence of CO2, PEDOT film 

or light illumination. Notably, our gas-solid interface-based photoreduction system produces 

nearly 100% CO as the main product because CO formation is kinetically favorable, requiring only 

a minimal number of electrons and protons for CO2 reduction. Electrons and holes generated by 

UV-Vis-NIR light (250 - 950 nm) arrive at the photoactive PEDOT film interface (Figure 6.5E) 

facilitating simultaneous reduction of CO2 (electrons) and oxidation of H2O (holes). The PEDOT 

nanofibrillar morphology boosts light-harvesting because internal reflection of light is multiplied 

within the fibrillar nanostructure. Figure 6.5F shows the production rates of CO using three 

PEDOT films as a function of illumination time, initially starting after 30 min of excitation, and 

reaching a maximum after one or two hours. PEDOT-hydrazine exhibits the highest CO2 

photoreduction activity (3000 µmol gcat
-1 h-1) followed by PEDOT-HCl (2550 µmol gcat

-1 h-1) and 

PEDOT-NH4OH (2200 µmol gcat
-1 h-1). Thereafter production rates gradually decrease and 
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converge to approximately 2000 µmol gcat
-1 h-1 due to PEDOT photocorrosion as confirmed by 

UV absorption (Figure 6.9). All CO production rates decrease after reaching their maxima and 

remain stable for 10 h thus demonstrating excellent catalytic stability. Maximum (3000 µmol gcat-

1 h-1) and average (2350 µmol gcat-1 h-1) activity rates over 10 h for the hydrazine-treated PEDOT 

catalyst are state-of-the-art.23-24 Our performance is two orders of magnitude higher than the top-

rated single catalyst and is surpassed by only three other co-catalyst systems (Figure 6.5G). 1, 10, 18, 

25-30 

 

 

Figure 6.9: UV-vis-NIR measurement data after CO2 photoreduction. 
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Figure 6.10: PEDOT mechanism for CO2 photoreduction. (A) CO2 adsorption capabilities of 

PEDOT-HCl, PEDOT-NH4OH and PEDOT-Hydrazine at 80 °C. (B) UV-Vis-NIR spectra prove 

that both a reducing agent and base can enhance the light absorption at visible region and can 

partially convert polaronic PEDOT to its neutral state. (C) Ultraviolet photoelectron valence band 

spectra for PEDOT-HCl, PEDOT-NH4OH and PEDOT-Hydrazine predict the secondary electron 

edge and onset of the density of states. (D) Proposed mechanism of charge separation/transfer and 

LUMO/HOMO band gap for PEDOT-HCl, PEDOT-NH4OH and PEDOT-Hydrazine 

photocatalysts under a range of wavelengths (250 nm – 950 nm). 

 

To study reduction rates among our catalysts, we investigate CO2 adsorption, light harvesting 

properties and band gap structure through CO2 uptake data, UV-Vis-NIR and ultraviolet 

photoelectron spectroscopy (UPS). Adsorption of CO2 on the catalytic surface is the first step of 

the photocatalytic reaction, marking it as an important parameter for catalyst evaluation. The CO2 

uptake data evaluated from TGA measurements (Figure 6.10A and Figure 6.11), show the 

following trend: PEDOT-hydrazine (0.15) > PEDOT-NH4OH (0.113) ≈ PEDOT-HCl (0.12), 

confirming that low surface energy enhances CO2 adsorption. The 𝜋-conjugated structure of 
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PEDOT attracts delocalized p-conjugated electrons from CO2 molecules prompting CO2 uptake 

on catalytic surface sites.31 The enhanced CO2 uptake capacity exhibited by PEDOT-hydrazine 

may arise from increased interactions between quadrupolar CO2 (Lewis acid) and depolarized 

oxygen of the ethylenedioxy ring (Lewis base) leading to greater CO2 solubility and permeability 

in PEDOT-coated membranes.32 

 

 

Figure 6.11: TGA isotherm for CO2 adsorption 

 

Another key factor for improving CO2 photoreduction efficiency is light absorption as photons act 

as the energy source for photoreduction. UV-Vis-NIR spectroscopy is utilized to assess charge 

carrier density as a function of chemical structure and characterize changes in molecular structure 

caused by doping. The UV-Vis-NIR spectra of PEDOT (Figure 6.10B) is divided into three 

regimes i.e., neutral, polaronic and bipolaronic.33 The wavelengths chosen for CO2 reduction (250 

nm – 950 nm) lead to higher absorbance for de-doped PEDOT-hydrazine and PEDOT-NH4OH 

thereby promoting photogeneration of charge carriers as well as enhanced photocatalytic activity. 
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Larger absorbance in the polaronic and bipolaronic regimes for the PEDOT-HCl samples is 

observed because doping ions (Cl-) help delocalization of electron cloud thereby increasing 

electrical conductivity.  

To understand the effect of doping on charge carrier density and mobility for enhanced CO2 

photoreduction, UPS is employed to determine the valence band (VB), conduction band (CB), and 

Fermi level of the PEDOT catalyst (Figure 6.10C). Long tails in the VB spectrum of each PEDOT 

sample indicate different convoluted peaks and PEDOT-hydrazine in particular exhibits clear steps 

suggesting the presence of multiple hybridized states between VB and CB.18 The work function 

(Fermi level energy) of the PEDOT is determined by calculating the difference between the 

secondary electron cutoff and the energy of an incident photon. The gap between the Fermi level 

and the VB maximum is the onset of photoemission of valence electrons and the CB is calculated 

from the VB maxima, Fermi level and band gap. An energy level diagram shows that the CB level 

for all PEDOT catalysts meets CO2 reduction requirements by lying at potentials wider than that 

of CO2 redox couples (Figure 6.10D). PEDOT catalysts are excited by absorbing energetic photons 

and produce electron-hole pairs as opposed to conventional inorganic catalysts which only allow 

direct excitation of electrons from the VB to the CB. The doping process introduces various 

hybridized middle states into PEDOT enabling electrons to jump from the sub-band to the VB. 

Further study is required to determine whether doping or de-doping changes the charge carrier 

density or charge carrier mobility. Based on our results, PEDOT-hydrazine possesses a narrower 

band gap requiring less excitation energy and a higher Fermi level promoting facile excitation. 

Moreover, the higher Fermi level also prevents the recombination process of photo-excited 

electrons and holes thereby facilitating photocatalytic activity. 
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6.4 Conclusion  

In summary, we present PEDOT nanofibers as a novel single catalyst for CO2 photoreduction and 

a synthetic strategy enabling conformal deposition on a superhydrophobic PTFE membrane 

thereby affording both high surface area and high electronic conductivity. The hydrazine-treated 

PEDOT catalyst demonstrates the highest CO production rate under 250 nm – 950 nm 

wavelengths. We achieve a state-of-the-art CO yield rate (3000 µmol gcat
-1 h-1) with 100% CO 

yield under a stable regime (> 10h) surpassing the top performing single catalyst system by two 

orders of magnitude. This work overcomes challenges associated with co-catalyst systems and 

opens up a new avenue for CO2 photoreduction utilizing nanofibrillar conducting polymers. Our 

single catalyst system represents a novel material serving as the next generation building block for 

developing co-catalyst systems with the potential to catapult catalytic efficiencies to new levels. 
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Chapter 7 

Highly Conductive PEDOT Film with 

Enhanced Catalytic Activity for Dye-

Sensitized Solar Cells 

PEDOT nanofiber-based counter electrode DSSC 
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7.1 Introduction 

Dye-sensitized solar cells (DSSCs) are low cost and simple to make, and they have a relatively 

high conversion efficiency of ~12%.1 Generally, DSSCs consist of a porous TiO2 electrode 

sensitized with an absorbing layer, an electrolyte, and a platinum (Pt) counter electrode (CE). In 

DSSCs, CE are used to reduce an oxidized redox couple, to collect and transmit the electrons back 

into the cell, and to reflect unabsorbed light back to the cell, enhancing the utilization of solar 

energy. To ensure an efficient redox reaction in the electrolyte, an ideal CE should possess high 

conductivity, high electrochemical and mechanical stability, and high catalytic activity. Pt, because 

of its high conductivity and excellent catalytic activity toward I3
- (iodide) reduction, is the most 

nearly ideal CE in DSSC.2 However, large-scale use of Pt is limited by its low stability in the redox 

electrolyte, as well as by its high cost and rarity.3-5 An alternative CE is highly desirable, one with 

low-cost fabrication, easy scalability, high photocorrosion stability, and relatively high conversion 

efficiency. To this end, many works have carried out to substitute Pt with suitable alternatives, 

such as carbonaceous material,3-4, 6-7 metal oxide,8-10 and polymers.11-12 Among these alternatives, 

polymers are advantageous for their low cost and high catalytic activity.13-17 Polypyrrole (PPy), 

polyaniline (PANI),15 and poly (3,4 ethylenedioxythiophene) (PEDOT)18 are commonly used as 

conductive polymer CEs in DSSC or as hole transporting materials in perovskite solar cells.19-23 

Amongst them, PEDOT is attractive as it possesses the highest transparency, stability, and catalytic 

activity.24 Its conductivity, 300–600 S/cm, is also much higher than those of PANI (~5 S/cm) and 

PPy (~50 S/cm).18, 25-28 However, the existing conductivity can be increased by various methods, 

such as by annealing at elevated temperatures,29 acid treatment, adding co-solvents,30-31 and doping 

to enhance the crystallization of the films.32-33 Zhang et al.24 used cyclic voltammetry (a three-
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electrode system) to deposit three different CEs with different carbon doped polymers to fabricate 

a DSSC with C160 ruthenium dye. PEDOT + carbon black (C) exhibited the highest efficiency, 

7.6%, compared to PANI + C and PPY + C with efficiencies of ~ 5.2%, prepared under the same 

experimental condition. Typically, PEDOT films are generated via electrochemical 

polymerization under constant voltage or constant current, which results in low electrical 

conductivity.24, 34-35 For example, Li et al.36 report a PEDOT/rGO composite film possessing a 

conversion efficiency of 7.115%; however, their electrochemical method requires a potentiostat, a 

three-electrode system, and refined control of voltage, all of which decrease the film’s 

reproducibility. Alternatively, toluenesulfonate, ClO, poly(styrenesulfonate) (PSS),31 TsO;37 and 

polyoxometalate (POM)) are frequently employed as dopants to increase the solubility or electrical 

conductivity of PEDOT. The water solubility and simple fabrication process of PEDOT:PSS make 

it an interesting industrial polymer. G. T. Yue et al.31 deposited PEDOT:PSS/carbon on an fluorine 

doped tin oxide (FTO) glass with a scratch method under infrared light irradiation and used it as a 

CE for DSSC. They achieved the highest reported conductivity for a PEDOT:PSS/carbon 

electrode, 173 S/cm, and a resulting cell efficiency of 7.6%. Another synthesis approach is 

oxidative vapor phase polymerization (VPP) using various oxidants such as MoCl5,
38 Fe(ClO4)3,

39 

and FeCl.40-42 However, these oxidants require fabrication in a controlled environment.43 Bjorn et 

al. synthesized a PEDOT film via chemical vapor deposition (CVD) by controlling the humidity 

and pressure, achieving a PEDOT conductivity of only 1000 S/cm.43 It is worth noting that single-

crystal PEDOT has a reported electrical conductivity as high as 8797 S/cm, which is significantly 

higher than that observed in the thin films desired for electronic devices.44 These limitations 

highlight the urgency of advancing current PEDOT film fabrication protocols so that they are 

facile, cheap, and yield high conductivity. Several methods have been proposed, mainly using VPP 
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with FeCl3 as an oxidant, but to the best of our knowledge our method has never been applied in 

DSSC. Herein, we present a low-cost approach for engineering superior quality PEDOT films on 

FTO glass, using iron oxide (rust) -based vapor-phase polymerization (RVPP).45 We used Fe2O3 

(rust) as an oxidant because it is the cheapest and most thermodynamically stable Fe phase. The 

electronic conductivity of the films is reported. The film as synthesized was used as a CE in a Pt-

free DSSC. 

7.2 Experimental methods 

7.2.1. Counter electrode preparation 

FTO glass substrates (TEC™ 7) were purchased from MSE supplies LLC, USA. First, the FTO 

glass substrates were washed via ultrasonic baths in acetone and then in isopropyl alcohol for 20 

min, each. Then they were treated under UV-ozone for 30 min to remove remaining organic 

impurities. Next, a solid-oxidant precursor, 20-nm thick Fe2O3, was sputtered over the FTO via 

physical vapor deposition (Kurt J. Lesker PVD 75 RF and DC). A glass reactor was loaded with 

the Fe2O3-coated FTO, 40 μL of HCl, and 200 μL of a 0.674 M EDOT solution in chlorobenzene, 

then sealed and heated in an oven at 140 ◦C for 1.5 hr. The samples were purified via 6 M HCl 

overnight to remove iron impurities (Figure 7.1). The sputtered α-Fe2O3 was used as a ferric ion-

containing solid-state oxidant precursor to induce dissolution, liberation of ferric ions, and Fe3+ 

hydrolysis concomitant with oxidative radical polymerization. 
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Figure 7.1: Schematic diagram of PEDOT/FTO fabrication and its Mechanistic scheme for the 

liberation of Fe3+ and formation of PEDOT via step-growth polymerization.  

 

7.2.2. Solar cell materials and device fabrication process 

A working electrode was made of two layers of screen printed TiO2 nanoparticles (transparent 

TiO2 and a reflective TiO2) treated with TiCl4, resulting in an overall thickness of 12–16 μm. The 

final TiO2 film was then annealed at 450 °C for 30 min before immersing it in a dye solution of 

N719, 20 mg/mL in ethanol. The working electrode was soaked in the dye solution after being 

cooled to 70 °C. After 12 h, it was rinsed with ethanol, and dried. The Pt electrode was made by 

drop casting Plastisol T/SP precursor solution on the FTO glass and was used as the reference CE. 

Finally, both the CE and the working electrode were clipped together and filled with Iodolyte AN-

50 (Solaronix, Aus) electrolyte. Then the cell was tested under ambient conditions (30–50% 

relative humidity) and AM1.5 illumination. 
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7.2.3. Characterization 

To investigate their crystal structure, PEDOT films were characterized with an X-ray 

diffractometer (XRD, Bruker D8 ADVANCE, Bruker, USA) configured with a 1.5418 Å Cu X-

ray operating at 40 kV. Field emission scanning electron microscopy (FE-SEM, Nova NanoSEM 

230) also used to investigate the surface morphology of the PEDOT films on the FTO substrate. 

Four-point probe measurements were carried out using a Keithley 2450 SourceMeter with a 

Signatone SP4 four-point probe head. Cyclic voltammetry (CV) analysis and electro impedance 

spectroscopy (EIS) were conducted using a BioLogic VMP3 multipotentiostat. CV was carried out 

with three-electrode configurations at a scan rate of 50 mV/s. Ag/AgCl (3 M KCl) was used as a 

reference electrode, Pt and PEDOT films were the working electrodes, and Pt wire was the CE, in 

an acetonitrile solution containing LiI (10 mM), I2 (1 mM), and LiClO4 (0.1 M) as supporting 

electrolytes. The surface area of the CEs was 1 cm2. EIS characterization was carried out using a 

symmetric cell, which consisted of two same CEs facing each other (Pt-Pt and PEDOT-PEDOT), 

and the space between the CEs was filled with the same electrolyte as used in full DSSC. EIS was 

operated at open circuit voltage using an ac perturbation of 10 mV and a frequency range 100 kHz 

to 0.1 Hz. The spectra were then analyzed by fitting the arc observed at the highest frequency in 

Nyquist plots to the equivalent circuit, which contained the series resistance (Rs), charge transfer 

resistance (RCT), and constant phase element (CPE). 
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7.3 Results & discussion 

7.3.1. Morphology and crystal structure of PEDOT CE 

Figure 7.2a shows a SEM image of a PEDOT film on an FTO glass substrate. The film consists of 

bundles and nanofibers that result from, respectively, the removal of iron crystals formed during 

iron hydrolysis and EDOT oxidative radical polymerization through RVPP.45-46  

 

Figure 7.2: (a) SEM image of a PEDOT film on an FTO substrate (b) XRD spectra of a PEDOT 

film on a glass substrate. 

 

 

 

Figure 7.2b shows XRD patterns of the same PEDOT film on a glass substrate. Three characteristic 

peaks are centered at 6.5 °, 13.0 °, and 26.5 °. The wide diffraction peak at 26.5 ° corresponds to 

the (020) reflection, which is due to π-π stacking, whereas the sharp peaks at 6.5 ° and 13.0 ° are 

assigned to (200) and (100) reflections, respectively, and correspond to lateral chain packing. A 

four-point probe conductivity measurement was also carried out and demonstrated an exceedingly 

high conductivity of 1120 S/cm, mainly the result of the PEDOT crystal structure and its high 
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charge carrier concentration.47 The thickness of the PEDOT film is around 200 nm, measured using 

a profilometer (Figure 7.3). 

 

 

Figure 7.3: Profilometer data of PEDOT thin film 

 

 

7.3.2. Electrochemical properties of PEDOT CE 

The electrocatalytic activities of the PEDOT CEs were evaluated by CV to quantify the 

electrocatalytic activities of the CEs in the electrolyte. The Pt CE was also prepared under the same 

experimental conditions for comparison. In CV analysis, the oxidation of I- and the reduction of 

I3
- are the major redox reactions, corresponding to the anodic (Jpa) and cathodic (Jpc) peak current 

densities, respectively.  
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Figure 7.4: Cyclic voltammograms of Pt and PEDOT film as counter electrode for DSSC at a scan 

rate of 50 mV/s. 

 

These peaks are labeled in Figure 7.4, which shows the CV diagrams of PEDOT and Pt CEs. Jpa 

in CV is not important to us, because the main role of a CE is to prompt the reduction of I3- in the 

DSSC. Therefore, Jpc and the potential difference between the Jpa and Jpc (ΔEpp) are our focuses in 

this graph. The very high Jpc value of PEDOT (6.0 mA/cm2), compared to Pt electrode with a Jpc 

of 2.7 mA/cm2, indicates the outstanding electrocatalytic activity of the PEDOT CE in the I3- 

reduction reaction.48 The lower peak potential separation (ΔEpp) for PEDOT film also shows a 

quicker reaction rate for the reduction of I3- to I-. Both factors together result in higher values of 

the short-current density (JSC) and fill factor (FF) in a complete cell, owing to higher charge 

transfer through the electrolyte and CE interface and a lower recombination rate at the electrolyte 

and working electrode interface, respectively.  
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Figure 7.5: CV of Pt and PEDOT film using acetonitrile solution containing 0.1 M of LiClO4, 10 

mM of LiI, 1 mM of I2 as supporting electrolyte, (a) at fix scan rate of 50 mV/s, cycle times = 30; 

(b) with different scan rates (from inner to outer: 25, 50, 75. . .200 mV/s) ;(c) and the redox peaks 

current versus square root of scan rate at different scan rates from 25 mV/s to 200 mV/s ; (d) 

Nyquist plots of the symmetric CE-CE cells and the equivalent circuit models for I−/ I3
- reaction. 

Rs: series resistance; Rct: charge-transfer resistance at CE/electrolyte interface; Cdl: double layer 

capacitance; W: diffusion resistance. 

 

Figure 7.5a shows 30 successive scan cycles of the PEDOT CE at a fixed scan rate. The peak 

current densities change with the change in scan rate, while the potential remains unchanged, 

which indicates that the PEDOT film possesses good chemical stability and is firmly coated on the 

FTO substrate.31 Figure 7.5b displays the CVs of the PEDOT at scan rates ranging from 25 mV/s 

to 200 mV/s. As the scan rate is increased, the cathodic and anodic peaks slowly shift in the 
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negative and positive directions, respectively. In addition, Figure 7.5c shows a linear relationship 

between the current density and the square root of the scan rate, indicating that the reduction 

reaction of the redox couples at the PEDOT CE is controlled by ionic diffusion of iodide species 

within the electrolyte, and accordingly follows the Randles-Sevcik equation.49-50 We further 

investigated the electrochemical features of the CEs by EIS measurements in a symmetric cell in 

which the iodine electrolyte solution was filled in the interspaces of two facing identical CEs to 

eliminate the effect of the photoanode. A fixed electrode area of 1 cm2 was used for these 

measurements. Figure 7.5d shows the Nyquist plot of the real impedance, Z’, on the x-axis versus 

the imaginary impedance, -Z”, on the y-axis for Pt and PEDOT cells. The intercept of the high 

frequency (100 kHz) semicircle on the x-axis represents the series resistance (Rs). The diameter of 

the high-frequency semicircle equals both the charge transfer resistance (Rct) at the CE/electrolyte 

interface as well as the redox species (I- /I3
-) diffusion resistance (Zw) in the electrolyte. The 

equivalent RC circuit model is also given in inset (d) of Figure 7.5 and was used to obtain the EIS 

parameters (RS, Rct, Zw) by fitting the impedance spectra to the equivalent model. The Rs value, 

known as the equivalent series resistances (ESR: x-axis intercept), which is mainly associated with 

the contact between current collector and CE, the resistance of CE as well as the electrolyte 

resistance at CE surface. The Nyquist plot of our PEDOT CE possess much lower ESR (4.3 Ω) 

compare to PT (9.2 Ω). The value of Rct for the PEDOT film (7 Ω) is similarly six times lower 

than that for the Pt film (42 Ω), indicating a higher charge transfer process at the electrolyte and 

PEDOT CE interface. This difference can be associated with the high conductivity and catalytic 

activity of the PEDOT, which facilitate the transmission of the electrons across the PEDOT 

film/FTO interface. Therefore, we can expect higher photovoltaic performance from a DSSC using 

a PEDOT CE. Bode phase plot of the Pt and PEDOT CEs is also provided in Figure 7.6.  
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Figure 7.6: Bode plot for PEDOT and Pt counter electrode 

 

Typically, the high-frequency peak in the bode phase plots are reflecting the Rct (charge transfer), 

and a smaller peak phase or higher frequency often indicates lower Rct.
51 Our PEDOT CE possess 

a peak around 13 ° which is smaller than the Pt CE (39 °) at higher frequency that suggesting our 

PEDOT CE exhibits lower charge transfer resistance. Furthermore, obvious shift in the 

characteristic response peaks at high-frequency regime implies a faster electron transfer at the 

interface between PEDOT and electrolyte when compare to Pt CE.52-53  
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7.3.3. Photovoltaic performance of PEDOT CE in DSSC 

 

Figure 7.7: (a) Schematic diagram of a DSSC using a PEDOT film as a CE and (b) Photocurrent-

voltage characteristics of DSSCs with the PEDOT and Pt CEs under the illumination of AM 1.5 

G. 

 

Table 7.1: photovoltaic parameters of the DSSCs assembled with PEDOT and Pt CEs under the 

illumination of AM 1.5. 

Cell name Jsc (mA/cm2) Voc (V) FF (%) η (%) 

PEDOT-based DSSC 20.24 0.64 0.65 8.42 

Pt-based DSSC 21.47 0.64 0.61 8.38 

 

The photovoltaic performances of DSSCs with PEDOT and Pt CEs were evaluated under ambient 

conditions. Figure 7.7a is a schematic of the full cell, using FTO/TiO2 as the working electrode 

and PEDOT as the CE. For comparison, Figure 7.7b plots the photocurrent density–photovoltage 

(J–V) of DSSCs using PEDOT and Pt as CEs, and Table 7.1 lists their photovoltaic parameters. 

The open-circuit voltage (VOC) values of both CEs, as listed in Table 7.1, are the same because we 

used the same TiO2 as the working electrode for both cells. The DSSC with a PEDOT CE presents 
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a high Jsc of 20.24 mA/cm2, which is slightly lower than the Pt electrode due to the higher intrinsic 

electrical conductivity of the Pt. However, a higher FF value is observed for the PEDOT film, 

which we attribute to its low Rct and excellent electrochemical catalytic activity. Moreover, the 

comparably high Jsc and FF values can be originated from the improved contact area between the 

PEDOT CE and the electrolyte.54 In general, high performance of the CE originates due to three 

factors, (i) the intrinsic electrocatalytic activity of CE, (ii) large contact area between the CE and 

the electrolyte, and (iii) the good adhesion between the CE and the substrate.55 Here in this study, 

good contact area between the CE and the electrolyte can be seen from high catalytic activity of 

the PEDOT CE to reduce iodine to triiodide as evidence by CV analysis shown in Figure 7.4, while 

good adhesion of PEDOT to the substrate can be confirmed from Figure 7.5a showing 30 

successive CV of PEDOT electrode in an iodine containing electrolyte solution. Moreover, the 

porous structure of the PEDOT film (Figure 7.2a) can further improve the contact area between 

CE and electrolyte by providing more surface area for the electrolyte to react with the CE. As a 

result, the PEDOT-based cell achieved an efficiency of 8.4%, among the highest of values reported 

in the literature, some of which are listed in Table 7.2. Notably, our synthesis approach is facile 

and cheap because we use a rust layer as the oxidant and the reaction occurs in a simple glass vial 

at a low temperature. 

Table 7.2: PEDOT films with different fabrication strategies, taken from the references 

CE Conductivity 

(S/cm) 

Reaction condition Efficiency 

(%) 

Reference 

PEDOT 1120 Rust-based vapor-phase polymerization 8.4 (this work) 
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PEDOT/rGOa ---- Potentiostat (three-electrode system) with 

applied voltage 

7.1  

36 

 

PEDOT 

--- Oxidative molecular layer deposition 

using MoCl5 as an oxidant 

7.2  

38 

PEDOT 357 Humidify chamber with low pressure and 

gas purge system using Fe(ClO4)3 as an 

oxidant 

6.1  

39 

PEDOT/CNTb 45.2  

FeCl3 

4.62  

34 

PEDOT 195 Potentiostat (three-electrode system) with 

applied voltage 

7.8  

49 

Graphene/ 

PEDOT:PSS 

6.24 Electrospray using applied voltage 8.3  

18 

Carbon 

+PEDOT 

---- Potentiostat (three-electrode system) with 

applied voltage 

7.6  

24 

PEDOT:PSS 172 Scratch method under infrared light 

irradiation 

7.6  

31 

aReduced graphene oxide, bSingle wall carbon nanotube; 
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7.4. Conclusion 

Highly conductive and low-cost PEDOT films were successfully deposited on an FTO glass 

substrate via rust-based vapor-phase polymerization (RVPP) and used as the CE in a DSSC. CV 

and EIS measurements revealed a highly efficient electrochemical catalysis of the PEDOT CE, 

accelerating the triiodide to iodide reduction and ensuring fast electron transport at the 

CE/electrolyte interface. The PEDOT CE also showed a high FF (65%) and conversion efficiency 

(8.4%), slightly outperforming Pt CEs. Compared to costly and rare Pt-based CEs, the inexpensive 

and simple fabrication method of our PEDOT CE, in addition to its high conductivity and excellent 

efficiency, make it a promising candidate for large scale DSSC applications. 
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Chapter 8 

Hydrolysis-Assisted Vapor-Phase 

Polymerization (HVPP) on PEDOT 

Nanostructures 

 

Conducting polymer (blue) / Rust (red)
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8.1 Introduction 

When ferric chloride dissolves in water, the result is a thermodynamically unstable aqueous 

solution that readily hydrolyzes under standard conditions and at room temperature. This 

kinetically controlled reaction yields a multitude of iron precipitates such as oxides, hydroxides, 

and oxyhydroxides, with various crystal growth mechanisms.1-3 Initially, a hexaaqua complex 

[Fe(H2O)6]
3+ hydrolyzes to produce ferric hydroxides [Fe(H2O)5(OH)]2+,4-7 then olation and 

oxolation connect iron centers via hydroxo and oxo bridges,5, 8 finally condensing into ferric 

hydroxides or oxyhydroxides.5-10 The pH of solution, electronegativity of ions, reaction 

temperature, and solvent properties control hydrolysis product, crystal structure and nanostructure 

morphology. The binding affinity of an anion to a ferric metal center is pH dependent. Under acidic 

conditions, Cl- and SO4
2- bind stronger leading to the precipitation of β-FeOOH (akaganeite) 

nanorods, while a weak binding affinity in ClO4
- and NO3

- results in (Fe3+)2O3·0.5H2O 

(ferrihydrite) nanosheets.8, 11 Moreover, β-FeOOH and 6-line ferrihydrite are the main products of 

hydrolysis at high temperatures (90-100 °C) and high Cl- concentration (> 0.2 M).5-6, 12 

Interestingly, this unstable ferric chloride aqueous solution is an ideal oxidant for synthesizing a 

plethora of conjugated polymer nanostructures and plays the role of a dopant by providing a Cl- 

counter anion that stabilizes charge during polymerization.13 The synthesis and doping of a 

semiconducting polymer via oxidative polymerization requires oxidation of monomer resulting in 

oligomers and a final conjugated polymer backbone.14 Oxidation strategies include 

electrochemical, solution and vapor-phase techniques, the last two share common chemical 

oxidizing agents such as FeCl3 (0.77 V), Fe(OTs)3, (0.77 V), Fe3(SO4)2 (0.77 V), ammonium 

persulfate (2.01 V), H2O2 (1.78 V), CuCl2 (0.32 V).15-17 Among these synthetic routes, the vapor-
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phase is particularly appealing when using FeCl3 to oxidize a monomer such as 3,4-

ethylenedioxythiophene (EDOT) because it results in poly(3,4-ethylenedioxythiophene) (PEDOT) 

conformal coatings of high chemical and physical stability and low electrical resistance in a single 

step.13, 18-20 For example, vapor-phase polymerization (VPP) using FeCl3 in a liquid-bridge-

mediated nanotransfer printing process, deposits crystal PEDOT nanowires with conductivities 

ranging between 3000 and 8000 S/cm.21 FeCl3 is a mild inexpensive oxidant highly soluble both 

in both water and polar protic organic solvents making it an ideal oxidant for solution processing.  

Here, we combine VPP with in situ hydrolysis of a ferric chloride aqueous solution by introducing 

a liquid droplet that contains hydrolyzable inorganic salts into a CVD reactor and develop a system 

that allows us to control both hydrolysis and polymerization. This approach results in conformal 

coatings of 1D or 2D FeOxHyClz-PEDOT core-shell nanostructures via a hydrolysis-assisted 

vapor-phase polymerization (HVPP) (Figure 8.1). Our evaporative approach to material synthesis 

utilizes dewetting to produce homogenous nanostructures; dewetting serves as a universal and 

versatile platform in the literature for controlling nanostructure formation in situ.22-23 Hybrid 

inorganic-organic 1D nanofibers, nanowires and nanorod as well as 2D nanoleaves and 

nanoflowers are deposited in bulk quantities in a single step from the vapor phase. A mechanism 

for the formation of nanostructures is proposed whereby kinetics of hydrolysis and polymerization 

are controlled in situ during synthesis, this universal approach to core-shell nanostructures is tested 

by depositing other oxide composites such as TeO2-PEDOT and SnO2-PEDOT. The capacitance 

of these PEDOT nanostructures is then measured for energy storage applications in 

electrochemical capacitors with structure-property relationship discussed. 
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Figure 8.1: The mechanism for HVPP PEDOT core-shell nanofibrillar growth. (a) the hydrolysis 

of FeCl3 and results in (b) the precipitation of β-FeOOH nanospindles. (c) Polymerization is 

initiated when EDOT monomer vapors contact the oxidant producing HCl as a byproduct. Upon 

contact with HCl, β-FeOOH nanospindles are transformed to FeCl3; this oxidant localizes 

polymerization to the spindle surface, and as hydrolysis continues, Ostwald ripening of β-FeOOH 

nanospindle promotes (d) nanofibrillar growth. 

 

8.2 Experimental methods 

8.2.1 Preparation of PEDOT via hydrolysis-assisted vapor-phase 

polymerization (HVPP) protocol.  

A flow process diagram of synthesis is shown in Figure 8.2. In a CVD chamber, a droplet of 150 

μL 0.266 M FeCl3 (3.99  10-5 mol) is placed on a substrate, and 500 µL of a 0.0674 M EDOT 

(3.37  10-5 mol) / chlorobenzene (4.93  10-3 mol) solution is loaded in two separate reservoirs. 

Controlled by a PID controller, the temperature ramps from 30 °C to 130 °C in 10 min (rate = 10 

°C/min) and holds at 130 °C for 50 min, then the obtained material on glass is annealed in air at 

130 °C for 10 min. 
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Figure 8.2: Schematic illustration of HVPP synthesis protocol. 

 

8.2.2 Reaction substrate preparation.  

A glass substrate is cleaned via sonication in soapy water, followed by washing in deionized water 

and methanol. The substrate is immersed in piranha solution (concentrated H2SO4 : 30% H2O2 = 

3 : 1) at room temperature overnight, then rinsed with water and immersed in 0.025 M HCl 

isopropanol solution at room temperature overnight for the control of surface energy. For 

synthesis, the pre-treated substrates are dried in air and cut into 2.5 cm  2.5 cm pieces. In 

nitromethane-HVPP and ethanol-HVPP, the surface energy of the substrate is modified using 3% 

trichlorododecylsilane (by volume) in dry toluene. Typically, glass is soaked for 2 h at room 

temperature followed by washing in dry toluene (2 h). This surface-modified substrate is immersed 

in isopropanol for 2 h at room temperature and then dried in air. For electrochemical 

characterization of PEDOT, 0.5 inch  0.5 inch hard carbon paper is placed on a glass slide as the 

substrate. 

8.2.3 Synthesis of metal oxide-PEDOT nanostructures.  

All syntheses follow a common HVPP protocol. For H2O-HVPP, urea-HVPP and NH4OH-HVPP, 

150 µL 0.266 M FeCl3 (3.99  10-5 mol) aqueous solution only, or the mixture with 0.266 M urea 
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(3.99  10-5 mol) or diluted aqueous ammonia (5.6 ~ 6.0%) are used as the oxidative droplet. For 

TeCl4-HVPP, 150 µL aqueous solution with 0.0266 M FeCl3 (3.99  10-6 mol), 0.2394 M TeCl4 

(3.59  10-5 mol) and 1.08 M HCl (1.62  10-4 mol) is used as the oxidant droplet. For SnCl4-

HVPP, 150 µL aqueous solution with 0.0399 M FeCl3 (5.99  10-6 mol) and 0.2261 M SnCl4 (3.39 

 10-5 mol) is used as the oxidant droplet. For solvent controlled synthesis, 150 µL nitromethane 

(or ethanol/H2O) solution with 0.266 M FeCl3 (3.99  10-5 mol) is used as the oxidant droplet. 

PEDOT is purified by soaking thrice in 6 M HCl at 70 °C (1 hr/soak) and methanol at 25 °C (10 

min/soak) and is dried in air; this process removes all inorganic species. 

8.2.4 Characterization 

pH of the solution is measured with a Mettler Toledo Inlab Micro pH probe combined with a F20 

pH meter. Scanning electron micrographs (SEM) and energy-dispersive X-ray spectroscopy 

(EDXS) data is collected using a JEOL 7001LVF FE-SEM, Transmission electron micrographs 

(TEM) data is obtained in a FEI Spirit TEM; samples are dropcast from hexafluoroisopropanol 

onto TEM grids. A Bruker d8 advance X-ray diffractometer is utilized to collect powder X-ray 

diffraction spectrum (PXRD) of pulverized sample s at room temperature, with Cu Kα radiation 

source (λ = 1.5406 Å) and LynxEyeXE detector, operating at 40 kV and 40 mA with sample holder 

rotate at 30 rpm/min at a scan step of 0.02°. The composition of the hybrid material and the mass 

of PEDOT in PEDOT/HCP electrode is determined by Discovery thermogravimetric analysis 

(TGA) from TA Instruments. To characterize the composition of the sample, samples are heated 

from 30 °C to 600 °C with a ramping rate of 2 °C / min. For determining the mass of PEDOT in 

PEDOT/HCP electrode, temperature is ramped to 100 °C under N2 and held isothermally for 30 

min to drive off water, then ramped to 600 °C with a ramping rate of 20 °C / min and held 
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isothermally for 60 min; after that, the purging gas is exchanged to dry air to induce the rapid 

decomposition of PEDOT. Ultraviolet-visible-near infrared absorption spectra (UV-Vis-NIR) are 

collected on a SHIMADZU UV-1800 spectrophotometer with pulverized samples that are 

dispersed in concentrated H2SO4. Fourier-transform infrared spectra (FT-IR) is collected on a 

Bruker ALPHA Platinum-ATR. 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed on a 

BioLogic VMP3 multi-potentiostat. For three-electrode CV characterization, a platinum mesh lead 

is affixed to the back side of the working electrode and fully covered with a polyimide tape. A 

bundled length of platinum mesh with a platinum wire lead serves as counter electrode. The 

reference electrode (BASi Ag/AgCl RE-5B) is pointed directly at the working electrode surface to 

minimize solution resistance. All the as-synthesized working electrodes are washed in 6M HCl 

and methanol to remove any excess solvent or reduced oxidant, and are cut to 5 mm  5 mm square 

shape. The electrolyte in all cases is 1M H2SO4 in milli-Q water (18 MΩ). EIS is carried out at the 

electrodes’ open circuit potential after obtaining a reversible cyclic voltammogram. Impedance 

values are recorded with a 10 mV sinusoidal disturbance at frequencies ranging from 100 kHz to 

100 mHz. 4-point probe resistance is measured by a Keithley 2450 SourceMeter with a 5 mA 

current; the resistance of each sample is measured for 10 times on different spots then averaged. 

Resistance data is recorded after continuously adding pressure on the probe until a stable reading 

(Ω) to two decimal places is achieved. Current-voltage (I-V) curves are measured with a 

convertible 2/4 point probe station built in-house, with two gold probes held at 1 mm in distance.24 



7 

 

8.3 Results & discussion 

Hydrolysis-assisted vapor-phase polymerization is a synthetic strategy that utilizes a droplet of an 

aqueous solution of FeCl3 to carry out two reactions simultaneously: 1) forced hydrolysis and 2) 

oxidative radical polymerization. This droplet is placed inside a chemical vapor deposition 

chamber and rapidly heated under an atmosphere of monomer vapor (Figure 8.2). An aqueous 

solution of ferric chloride is thermodynamically unstable and readily hydrolyzes resulting in the 

precipitation of various inorganic colloidal phases. The pH of hydrolysis enables selective 

precipitation of iron hydroxides (β-FeOOH, pH ≤ 1.80), oxides (α-Fe2O3, pH = 4.20 – 4.40) and 

mixtures thereof (α-FeOOH/α-Fe2O3, pH = 6.00 – 6.50).1 The pH is controlled using a base, either 

inorganic (sodium hydroxide, ammonium hydroxide) or organic (urea, urotropine).1, 25-27 At 

elevated temperatures, urea decomposes into NH4
+ and OH-, buffering the solution, resulting in 

the precipitation of ferric hydroxide and oxide nanostructures of uniform shape and size.25-27 The 

effect of urea and ammonium hydroxide in the synthesis is therefore investigated for producing 

metal oxide-conducting polymer composite nanostructures of uniform shape and size. 

Figure 8.3a shows the pH change in droplets as they undergo the synthesis with (urea-HVPP and 

NH4OH-HVPP) and without a pH controlling additive (H2O-HVPP). The initial pH for a urea-

treated droplet is 1.47. After 7 min of forced hydrolysis, pH smoothly decays down to 1.26. Urea 

buffers this reaction by continuously releasing NH3, neutralizing HCl produced during hydrolysis 

and polymerization.27 The pH profile for an ammonium hydroxide-treated droplet resembles that 

of urea during the first 6 minutes, however, by minute 7, complete evaporation of NH3 at 90 °C 

triggers a sharp drop in pH down to 0.87. The omission of a base or buffer results in abrupt 

fluctuations in pH, starting at 1.33 and decreasing to 0.92. 
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This low pH approximates that of an ammonium hydroxide treated droplet at minute 7. The erratic 

variations in pH are due to competing reactions during synthesis i.e., the rapid evaporation of HCl 

byproduct from step-growth polymerization increases pH, whereas droplet evaporation elevates 

ferric chloride concentration, promoting hydrolysis and decreasing pH.27-28 Quenching 

experiments aid in determining the identity of colloidal phases throughout the synthesis. After 8 

min of heating, PXRD and TEM show that β-FeOOH nanospindles precipitate out of a droplet; 

these 1D nanostructures are 150 nm in length and 25 nm in diameter and are a common product 

of FeCl3 hydrolysis1, 7, 27, 29-31 (Figure 8.3b). Addition of urea or ammonium hydroxide produces a 

high concentration of β-FeOOH nanospindles due to an increase in OH- ions, promoting 

precipitation (Figure 8.4).  
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Figure 8.3: Characterization of pH controlled PEDOT synthesis from HVPP. (a) pH and 

temperature change for all the three syntheses during first 12 min of reaction. (b) PXRD of the 

suspension at 8 min after drop-casting on filter paper (inset at the bottom is the TEM of the 

precipitate from all the syntheses). Morphology of PEDOT under SEM: (c) Urea-HVPP and (d) 

NH4OH-HVPP. (e) PXRD and (f) TGA for the synthesized product. (g) PXRD and (h) I-V for the 

PEDOT samples after removal of inorganic species. 
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Figure 8.4: TEM of quenched synthesis at 8 min showing the density of distribution of β-FeOOH 

nanospindles for (a) H2O-HVPP, (b) urea-HVPP and (c) NH4OH-HVPP. 
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Figure 8.5: SEM and PXRD spectra show the morphology and composition of urea-HVPP 

quenched at 15, 25, 35, 45 and 60 min after ramping from 30 °C. 

 

 

 

Figure 8.6: SEM and PXRD spectra show the morphology and composition of NH4OH-HVPP 

quenched at 15, 25, 35, 45 and 60 min after ramping from 30 °C. 
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Figure 8.7: SEM and PXRD spectra show the morphology and composition of H2O-HVPP 

quenched at 15, 25, 35, 45 and 60 min after ramping from 30 °C. 

 

After 15 minutes, a blue colored disc-shaped polymer coating covers the droplet area and PXRD 

shows the presence of FeCl2·xH2O, a byproduct of vapor-phase polymerization from the reduction 

of FeCl3 (Figure 8.5-8.7). When EDOT vapor is oxidized by FeCl3, radical coupling is promoted 

resulting in the formation of a conjugated backbone. During assembly of PEDOT, unstable 

intermediates such as low molecular weight oligomers are produced that require deprotonation. 

Water serves as a proton scavenger that stabilizes oligomers and enables step-growth 

polymerization; these scavenged protons react with chloride ions in solution forming HCl in situ. 

SEM of unpurified PEDOT after 60 minutes of polymerization show that both urea-HVPP and 

NH4OH-HVPP deposit bulk quantities of homogeneous nanofibers of approximately 5 μm in 

length (Figure 8.3c-d) (Figure 8.8-8.9). When pH is not controlled, a striking difference in polymer 

morphology is observed, i.e., nanofibers are heterogeneous in length and range between 3 and 20 

μm (Figure 8.10).  
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Figure 8.8: (a) As-synthesized PEDOT disk from urea-HVPP. (b-j) SEM of different regions on 

the disk showing controlled homogeneous morphology. 

 

Figure 8.9: (a) As-synthesized PEDOT disk from NH4OH-HVPP. (b-j) SEM of different regions 

on the disk showing controlled homogeneous morphology. 

 

Figure 8.10: (a) As-synthesized PEDOT disk from H2O-HVPP. (b-j) SEM of different regions on 

the disk showing heterogeneous morphology. 
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The difference in fiber length distribution is possibly caused by two different nucleation types: 

instantaneous nucleation and progressive nucleation.32 When bases are added, more β-FeOOH is 

produced at the initial stage of the reaction (Figure 8.4) serving as nucleation sites, then 

nanostructures homogeneously grow based on the initial nucleation sites, i.e., “instantaneous” 

nucleation. For the synthesis without a base, new nucleation sites keep emerging during the 

reaction because of both a small number of initial nucleation sites, as well as a relatively high 

concentration of FeCl3 (due to less transformation into β-FeOOH initially with low pH). As a 

result, the growing time for each nucleation sites are different, leading to the heterogeneous 

nanostructure formation, i.e., “progressive” nucleation. Atomic-resolution chemical mapping 

using EDXS shows these nanofibers are composed of the elements S, Fe, C, Cl, and O (Figure 

8.11-8.13). TEM reveals a difference in their nanofibrillar structure where urea-HVPP leads to 

FeOxHyClz-PEDOT core-shell nanofibers with a 35 nm core diameter and an 18 nm thick polymer 

shell (Figure 8.3c inset). NH4OH-HVPP nanofibers have a monolithic polymer architecture and a 

diameter of 40 nm (Figure 8.3d inset). PXRD patterns prove the presence of β-FeOOH, Fe2O3 and 

Fe2Cl6(H2O)5 for urea-HVPP, and FeCl2·xH2O (x = 2 or 4) for both urea-HVPP and NH4OH-

HVPP (Figure 8.3e). TGA confirms the major degradable inorganic species as β-FeOOH for urea-

HVPP (degrade at 140 °C) and FeCl2·xH2O for NH4OH-HVPP (degrade below 100 °C) (Figure 

8.3f); purified PEDOT nanofibers degrade at 310 °C. 
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Figure 8.11: EDXS mapping and spectrum of as-synthesized PEDOT from urea-HVPP. 

 

Figure 8.12: EDXS mapping and spectrum of as-synthesized PEDOT from NH4OH-HVPP. 

 

Figure 8.13: EDXS mapping and spectrum of as-synthesized PEDOT from H2O-HVPP. 
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PEDOT is permeable to both organic and aqueous solvents and is purified by extended immersion 

in 6 M HCl to remove iron species. A PXRD pattern of the purified polymer shows a sharp peak 

for (100) at 2θ = 6.5° and its second-order reflection for (200) at 2θ = 13.0°. These low angle 

reflections correspond to edge-on packing, a lamella stacking with (100) distance in the range of 

1.33 - 1.39 nm for Cl- doped PEDOT. The (020) peak at 2θ = 26.2° is characteristic of face-to-face 

packing, an interchain planar ring-stacking with distance of 0.3 – 0.4 nm (Figure 8.3g and 8.14).33-

35 PEDOT’s polycrystallinity leads to ohmic behavior during I-V measurements under an applied 

voltage ranging between -2.5 and 2.5 V (Figure 8.3h); the sheet resistance for urea-HVPP PEDOT 

is 4.6 Ω / square. Note that when no pH controlling additive is used (H2O-HVPP), the polymer 

layer has a lower electrical resistance as indicated by the more positive I-V slope (Figure 8.3h). 

This is because under pH controlled conditions, FeCl3 is consumed during hydrolysis whereas 

when no additive is used, preferred oxidation of the monomer leads to an increased layer thickness 

and a possibly longer conjugation length.36 

 

Figure 8.14: EDXS mapping and spectrum of as-synthesized PEDOT from H2O-HVPP. 
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Evolution of nanofibrillar morphology is observed between minutes 15 and 60 of the synthesis. 

Initially, low aspect ratio tapered nanofibers appear, and by minute 60, growth ceases (Figure 8.5-

8.7). Tapering of fiber tips, presenting at initial and final stages of nanostructure formation, 

indicates a top-down growth process, a common growth mechanism for inorganic nanostructures 

where the bottom of a nanofiber serves as the active growing site.37-39 A proposed mechanism for 

nanofibrillar growth in HVPP is shown in the red boxes in Figure 8.1. Initial precipitation of β-

FeOOH nanospindles (Figure 8.1a-b) and oxidation of EDOT vapor lead to deposition of a disc-

shaped polymer film that coats β-FeOOH spindles (Figure 8.1c). As polymerization proceeds, 

water and EDOT vapor permeate the polymer film. During step-growth polymerization protons 

are released and scavenged by water molecules leading to in situ formation of hydrochloric acid 

that, upon reaction with β-FeOOH, regenerates FeCl3. This in situ regeneration of the oxidant 

promotes preferential nucleation of polymer at the nanospindle surface, combined with the growth 

of nanospindle bottom cause by Ostwald ripening,40 resulting in the deposition of FeOxHyClz-

PEDOT nanofibers (Figure 8.1d). When the kinetics of consumption and Ostwald ripening of β-

FeOOH are controlled, core-shell or monolithic structures are formed. For example, the addition 

of urea increases the pH (Figure 8.2) that facilitates the hydrolysis of FeCl3 and Ostwald ripening, 

resulting in an enhanced growth rate of β-FeOOH that leads to the core-shell nanofiber, with β-

FeOOH remaining as the core. For NH4OH-HVPP and H2O-HVPP, a lower pH after 7 min (Figure 

8.1a) results in a slower Ostwald ripening rate, enabling the complete conversion of β-FeOOH to 

FeCl3 that promotes polymerization, leading to a monolithic PEDOT structure. 

The polymer morphology is controlled by FeCl3 present during the synthesis (Figure 8.15-8.17). 

A low FeCl3 concentration (0.050 M) leads to a rough amorphous polymer surface while a high 

concentration (0.266 M) leads to nanofibers. A concentrated solution (0.4 M) causes aggregation 
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of β-FeOOH nanospindles into raft-shaped somatoids29-30 resulting in nanofibrillar bundles and 

microribbons of PEDOT (Figure 8.16e, 8.17c, d, e). Assemblies of β-FeOOH also form star-shaped 

twined crystals31 that lead to radially aligned PEDOT superstructures (Figure 8.18). Polymer 

morphology is also affected by EDOT vapor concentration. Decreasing the concentration of a 

vaporizable EDOT solution from 0.067 M to 0.022 M stifles nanofibrillar growth in both NH4OH-

HVPP and H2O-HVPP, and results in a heterogeneous polymer morphology in urea-HVPP. This 

indicates that a critical mass of polymer is required to support the growth of homogenous 

nanostructures during FeCl3 hydrolysis (Figure 8.19). Vapor-phase polymerization is crucial for 

the synergistic growth of inorganic crystal and polymer, because the combination of solution-phase 

PEDOT polymerization with in situ hydrolysis of FeCl3 produces low aspect ratio β-FeOxHyClz-

PEDOT nanospindles between 250 – 390 nm long and 60 – 120 nm wide.41 
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Figure 8.15: SEM and PXRD of urea-HVPP carried with FeCl3 concentration of (a) 0.050 M, (b) 

0.015 M, (c) 0.266 M, (d) 0.320 M and (e) 0.400 M. 
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Figure 8.16: SEM and PXRD of NH4OH-HVPP carried with FeCl3 concentration of (a) 0.050 M, 

(b) 0.015 M, (c) 0.266 M, (d) 0.320 M and (e) 0.400 M. 
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Figure 8.17: SEM and PXRD of H2O-HVPP carried with FeCl3 concentration of (a) 0.050 M, (b) 

0.015 M, (c) 0.266 M, (d) 0.320 M and (e) 0.400 M. 

 

Figure 8.18: SEM of radially aligned nanofiber superstructures from NH4OH-HVPP with FeCl3 

concentration of 0.4 M. 
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Figure 8.19: SEM and PXRD of (a) urea-HVPP, (b) NH4OH-HVPP and (c) H2O-HVPP with 

EDOT concentration of 0.022 M and 0.067 M. 
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Solvent polarity plays a pivotal role in FeCl3 hydrolysis, for example, in a polar protic solvent α-

Fe2O3 precipitates, while in an aprotic solvent such as dimethylformamide, this phase transforms 

into γ-Fe2O3.
42-43 Among non-aqueous protic and aprotic solvents, both ethanol and nitromethane 

solubilize FeCl3, promote assembly of PEDOT and result in a polymer with low electrical 

resistance. The hydrolysis of FeCl3 in nitromethane initially produces 2-line ferrihydrite 

(Fe2O3·0.5H2O), an intermediate that reacts with FeCl3 under thermolysis to generate FeOCl. 

Nitromethane-HVPP results in the deposition of FeOCl-PEDOT core-shell 2D nanostructures that 

resemble nanoleaves as confirmed by SEM, TEM, and PXRD (Figure 8.20a-c, 8.21). EDXS 

mapping shows the expected overlap between iron and sulfur signals (Figure 8.22). PEDOT’s FT-

IR spectrum indicates an oxidized doped polymer state and shows vibration bands at 1485 and 

1285 cm−1 due to C–C and C=C stretching in the quinoidal structure of the thiophene ring. The 

characteristic C-S bond stretching bands are present (961, 907 and 742 cm-1) as well as C-O-C 

stretching bands from the ethylenedioxy ring (1166, 1129 and 1045 cm-1) (Figure 8.20d).44-45 

FeOCl is an oxidant with lamellar structure for the polymerization of conducting polymers such 

as polyaniline46 and polypyrrole47, it is possible for PEDOT to intercalate through FeOCl structure. 

For this reason, the core-shell structure of FeOCl-PEDOT is further investigated by removing 

PEDOT from the composite at 250°C (in air) in a TGA instrument. After the completion of 

degradation indicated by TGA (Figure 8.23a, b), samples are taken out for TEM. As a result, a 

structure with a width of around 200 nm is observed (Figure 8.23c), compatible with the diameter 

of FeOCl in FeOCl-PEDOT, indicating that the shape of the FeOCl core remains after burning. 

High-resolution TEM (HRTEM) shows a clear and continuous boundary of the structure with 

lattice fringes (Figure 8.23d), indicating a solid instead of porous core structure. After heated to 

800 °C, the structure is deformed and transformed into granules (Figure 8.23e). Electron energy 
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loss spectroscopy (EELS) measurement for the sample burnt at 250 °C shows low S content 

(Figure 8.23f), combing with TGA confirms the complete degradation of PEDOT. Based on these 

experiments, we believe a clear boundary between PEDOT and FeOCl is present, with limited 

PEDOT intercalation through FeOCl. 

 

 

Figure 8.20: Characterization of FeOCl-PEDOT core-shell nanoleaves produced from 

nitromethane-HVPP. (a) SEM, (b) TEM and (c) PXRD of as-synthesized FeOCl-PEDOT core-

shell nanoleaves, and (d) FT-IR after removal of FeOCl.  
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Figure 8.21: (a-c) Close-up SEM of as-synthesized nitromethane-HVPP PEDOT nanoleaves. 

 

 

Figure 8.22: EDXS mapping and spectrum of as-synthesized nitromethane-HVPP PEDOT 

nanoleaves. 
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Figure 8.23: Core-shell relationship research in nitromethane-HVPP. (a). temperature based and 

(b). time based TGA curve for burning off PEDOT at 250°C for 100 min. Close-up (c). TEM and 

(d). HR-TEM of sample burns at 250°C; (e). TEM of sample burns at 800°C. (f). EELS of sample 

burns at 250°C. 
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Ethanol-HVPP results in monolithic PEDOT nanoflowers comprised of 2D nanoplates (Figure 

8.24a, 8.25) and reduced oxidant FeCl2·H2O (Figure 8.26). If the monomer is omitted from 

synthesis, PXRD shows that FeOCl, Fe2O3 and FeCl2·4H2O are produced (FeCl2·4H2O is 

produced from the reduction of Fe3+ by ethanol48) (Figure 8.27). The presence of the single 

inorganic species FeCl2·H2O when using a monomer, indicates facile polymerization kinetics that 

outcompete hydrolysis. Addition of water to anhydrous ethanol leads to selective deposition of 1D 

PEDOT nanostructures (Figure 8.24b-c, 8.28); this selectivity is proportional with water 

concentration, and above 30%, nanofibers are deposited in bulk quantities (Figure 8.29). Two-

probe I-V measurements after removal of inorganic species demonstrate that using a mixture of 

ethanol and water results in PEDOT exhibiting ohmic behavior (Figure 8.24d). An increasing slope 

with water content indicates a lower electrical resistance49 that conforms well with the 4-point 

probe sheet resistance of 4.78 Ω / square, 4.42 Ω / square and 2.81 Ω / square for ethanol-PEDOT, 

ethanol-PEDOT(2% H2O) and ethanol-PEDOT(30% H2O), respectively. This is possibly due to 

water’s superior proton scavenging ability that promotes step-growth polymerization and produces 

polymer of longer conjugation length.50 UV-Vis-NIR shows a broad absorption band starting at 

450 nm and extending to over 800 nm (Figure 8.24d inset), indicating a π-π* transition associated 

with the conductive metallic state of PEDOT.51 Absorption above 800 nm and the peak at 980 nm 

is due to bipolarons, dopant counter anions and an extended polymer chain conformation resulting 

in a free carrier tail characteristic of doped PEDOT.52  
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Figure 8.24: Characterization of PEDOT synthesized with ethanol as the solvent. SEM of as-

synthesized PEDOT from ethanol-HVPP with H2O addition of (a) 0%, (b) 2% and (c) 30% by 

volume. (d-g) Characterization of ethanol-PEDOT after removal of inorganic species. (d) I-V 

(inset: UV-Vis-NIR), (e) Nyquist plot of impedance response (inset shows the high frequency 

region), (f) cyclic voltammogram at 100th cycle with scan rate of 25 mV/s and (g) cyclic 

voltammogram of PEDOT nanofibers cycled at varying scan rates from 25 mV/s to 2000 mV/s. 
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Figure 8.25: EDXS mapping and spectrum of as-synthesized ethanol-HVPP PEDOT nanoflakes. 

 

Figure 8.26: PXRD spectrum of as-synthesized product via ethanol-HVPP. 

 

Figure 8.27: PXRD spectrum of product from synthetic procedure of ethanol-HVPP without 

EDOT. 
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Figure 8.28: Close-up sequence of SEM of (a-c) PEDOT nanoflakes obtained from ethanol-

controlled synthesis, (d-f) PEDOT nanoflowers obtained from ethanol controlled synthesis with 

2% (by volume) of H2O, and (g-i) PEDOT nanofibers obtained from ethanol controlled synthesis 

with 30% H2O. 
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Figure 8.29: SEM of morphology evolution of H2O affected ethanol-HVPP, from nanoflakes to 

nanoflowers to nanofibers. The water content in ethanol is (a) 0%, (b) 2%, (c) 10%, (d) 20%, (e) 

30% and (f) 40%. 

 

Inspired by the diversity of synthesized PEDOT nanostructures, we tested PEDOT nanoplates, 

nanofibers and their mixture as electrodes for electrochemical capacitors. Three-electrode cyclic 

voltammograms of HVPP-PEDOT-coated electrodes, collected at 25 mV/s in a 1M H2SO4 aqueous 

electrolyte, show a rectangular shape indicative of facile charge transfer kinetics with capacitance 

values of 90.2 F/g, 125.5 F/g and 185 F/g for synthesis with pure ethanol, 2% water in ethanol and 

30% water in ethanol (Figure 8.24f). This capacitance is comparable to the nanofibrillar PEDOT 

electrodes synthesized with similar protocols around 180 F/g.18, 35 Notably, PEDOT synthesized 

from 30% water retains a rectangular shape at a high sweep voltage of 2000 mV/s, indicating a 

good conjugation network and electrolyte contact (Figure 8.24g). The difference in capacitance is 
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caused by more than electrode material resistance, for example, ethanol-PEDOT and ethanol-

PEDOT (2% H2O) share similar sheet resistance (4.78 Ω / square and 4.42 Ω / square) however 

with a large difference in capacitance (90.2 F/g and 125.5 F/g). Morphology of the electrode 

material is another important factor that affects charge transfer events and capacitive behavior, as 

probed via EIS53 with Nyquist plots spanning frequencies ranging from 100 mHz to 100 kHz 

(Figure 8.24e). The high frequency intercept of the semicircle with the x-axis represents the 

internal resistance from the electrode, the electrode/electrolyte interface, the electrolyte, and the 

components’ contact,54 that are 0.59 Ω (for synthesis with pure ethanol), 0.38 Ω (2% water in 

ethanol) and 0.34 Ω (30% water in ethanol). A higher water content during the synthesis (higher 

in fibrillar morphology content) results in a lower internal resistance. Synthesis with 2% and 30% 

water in ethanol produce PEDOT showing small semicircle radius on the Nyquist plot, combining 

with a nearly 90° angle at low-frequency region indicating low charge-transfer resistance and facile 

doping. For ethanol-PEDOT, the deviation of low-frequency curve from 90° indicates that the 

charge transfer process is limited by ion diffusion.55 The EIS research suggests that 1D fibrillar 

morphology enhances the capacitance performance by increasing the electrolyte diffusion kinetics, 

resulting in a facile doping and de-doping of PEDOT during charging and discharging, leading to 

a lower internal resistance and higher capacitance compared to a 2D planar morphology. 
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Figure 8.30: Characterization of metal oxides-PEDOT core-shell nanostructures. SEM, EDXS 

mapping, TEM and PXRD spectrum for (a-c) PEDOT nanowires from TeCl4 templated synthesis 

(TeCl4-HVPP), and (d-f) PEDOT nanorods from SnCl4 templated synthesis (SnCl4-HVPP). 

 

Hydrolysis is a versatile strategy for mixing hydrolysable salts, where FeCl3 serves as the oxidant, 

and a second salt plays the role of a template. This two-salt system strategy enables deposition of 

various metal oxide-PEDOT core-shell nanostructures. In this approach FeCl3 is used in reduced 

concentration; approximately 90% of the salt mixture is comprised of a templating salt such as 

TeCl4 or SnCl4. The hydrolysis of TeCl4 into Te(OH)4 (Ksp = 3  10-54) and SnCl4 into Sn(OH)4 

(Ksp = 1  10-56) is preferred over the hydrolysis of FeCl3 into Fe(OH)3 (Ksp = 4  10-38). During 

hydrolysis of TeCl4 and SnCl4, the continuous drop of pH caused by the production of H+ stifles 

the hydrolysis of FeCl3. As a result, TeCl4 and SnCl4 hydrolyze to form nanostructures while FeCl3 

only serve as the oxidant. At 130 °C, Te(OH)4 and Sn(OH)4 dehydrate forming TeO2 and SnO2, 

and in air, TeO2 decomposes spontaneously to Te metal.56 The hydrolysis of TeCl4 and SnCl4 
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results in TeO2 nanowires56 and SnO2 nanorods57-58 serving as templating structures for polymer 

growth. Electron microscopy shows that these salts lead to the deposition of TeOx-PEDOT core-

shell nanowires and SnO2-PEDOT core-shell nanorods (Figure 8.30, 8.31). EDXS mapping 

confirms overlap of sulfur and metal signals (Figure 8.30a and 8.30d) and the presence of Fe, S, 

C, Cl, O and Te or Sn (Figure 8.32-8.33). A TeOx-PEDOT core-shell nanowire has a 25 nm core 

diameter and a 33 nm thick polymer shell, PXRD indicates the presence of Te in the core as well 

(Figure 8.30b-c), while a SnO2-PEDOT core-shell nanorod possesses a 10 nm core diameter and 

a 15 nm thick polymer shell (Figure 8.30e-f). Purification in DI-water selectively removes Fe 

byproducts and retains the Te and Sn nanofibrillar core (Figure 8.33-8.35). 

 

Figure 8.31: Close-up sequence of SEM of (a-c) TeOx-PEODT nanowires from TeCl4-HVPP and 

(d-f) PEDOT nanorods from SnCl4-HVPP. 
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Figure 8.32: EDXS mapping and spectrum of as-synthesized nanowires from TeCl4-HVPP. 

 

Figure 8.33: EDXS mapping and spectrum of as-synthesized nanorods from SnCl4-HVPP. 

 

Figure 8.34: EDXS mapping and spectrum of PEDOT nanowires from TeCl4-HVPP after washed 

with 0.1M HCl for 30 min at room temperature, then rinsed with deionized water and acetone 

thrice each in sequence and dried at 60 °C for 10 min. 
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Figure 8.35: EDXS mapping and spectrum of PEDOT nanorods from SnCl4-HVPP after washed 

with deionized water for 30 min at room temperature, then rinsed with deionized water and acetone 

thrice each in sequence and dried at 60 °C for 10 min. 

 

8.4 Conclusions 

In conclusion, a new one-step protocol for synthesizing nanostructured PEDOT and its metal-oxide 

composites is developed. A hydrolysis-assisted vapor-phase polymerization strategy is 

demonstrated whereby control of the hydrolysis of an inorganic salt with simultaneous 

polymerization of a conducting polymer drives the growth of hybrid nanostructures. Control of 

parameters such as pH, solvent type, and the nature of the hydrolyzable salt leads to homogeneous 

formation of inorganic−organic hybrid materials such as 1D FeOxHyClz/ PEDOT core−shell 

nanofibers, TeOx/PEDOT core−shell nanowires, and SnO2/PEDOT core−shell nanorods as well 

as 2D FeOCl/PEDOT nanoflowers. For energy storage application, the structure−property 

relationship is discussed based on the capacitance of PEDOT with different morphologies: 1D 

fibrillar structure enables facile electrolyte ion diffusion kinetics compared to 2D structure, 

resulting in a higher capacitance. The synergistic connection established between hydrolysis and 

polymerization enables the future development of nanostructured inorganic, polymeric, and 

inorganic−organic hybrid materials with large diversity. This work provides a synthetic route for 
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enabling various applications using hybrid composites that are ideal for energy storage 

applications. 
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Chapter 9 

Advances in conducting polymers and their 

applications  

 

 

 

PEDOT configuration 
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9.1 Conducting polymer configuration 
 

9.1.1. Background 

Conducting polymers are of widespread interest for enabling high-performance, low-cost 

electronic devices due to their excellent conductivity.1 Optimal device performance for high-end 

technologies requires a fundamental comprehension of charge transfer mechanism and polymer 

chain configuration.2 However, the understanding of conduction mechanisms remains incomplete 

even after several decades of intensive investigation.3 

Recent researches shed light on complicated microscale conduction pathways from different 

aspects.4 Charge carriers in conducting polymers, such as polaron and bipolaron, is one of the 

directions that highly depended on various dopants, such as Cl-, tosylate and polystyrenesulfonate.5 

Besides, charge transfer is another critical factor that affects the conductivity associated with the 

degree of crystallinity.6 Currently, there is a debate on charge transfer in conducting polymers, 

which neither fully crystalline nor completely amorphous and different models are introduced 

(Dudel model and Mott and Efros–Shklovskii model).7-8 Charge-carrier mobility depends not only 

on polymer chain alignment (crystallinity) and crystallite orientation at the nanoscale, but also on 

the connection or defects between crystalline and amorphous domains at the macroscale.9 For 

example, single-crystal PEDOT exhibit the highest conductivity (~8000S/cm) due to the well-

aligned polymer chains, the absence of grain boundaries.10 However, the crystalline order of 

PEDOT and its derivatives is limited in amorphous domains, leading to scattering, trapping at 

defects, and localization of charge carriers.11  

Highly crystalline domains are vital for superior conductivity since the close-pack 𝜋-𝜋 stacking 

facilitates the charge transfer associated with optimized crystal morphology and degree of 
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crystallinity.12 Therefore, the configuration of conducting polymers is essential for research, and 

here, we utilize poly(3,4-ethylenedioxythiophene) (PEDOT) as an example to construct a 

configuration.  

To better understand PEDOT configuration, we introduce glass transition temperature, degradation 

temperature, and melting temperature as the critical parameters to a polymer structure. Glass 

transition temperature (Tg) is a property of the amorphous materials or the amorphous portion of 

semicrystalline materials, referring to the temperature at which 30-50 carbon chains start to 

move.13 Unfortunately, PEDOT as a semicrystalline polymer possesses no observable glass 

transition temperatures due to its unsolvable property. Similar to Tg, PEDOT exhibit no melting 

temperature since the polymer chains undergo degradation at 160°C in the atmosphere and 200°C 

in N2.
14 However, based on other soluble or chemically stable conducting polymers, there is a trend 

suggesting that the Tg and melting temperature for highly crystalline polymer possess higher Tg 

due to the enhanced interaction between polymer chains.15 After summarizing previous works, we 

propose a model for the PEDOT configuration possessing a tertiary structure.  
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9.1.2. Experimental Methods  

 

The Teflon liner of a hydrothermal reactor is loaded with: a 7 mm × 7 mm rusted steel substrate, 

20 μL of concentrated hydrochloric acid and 200 μL of a 0.0674 M EDOT solution (3.3710-5 

mol) in chlorobenzene (4.9310-3 mol). Each of these components is contained in a glass vial.  

This rector is sealed, heated for 6 h in an oven at 150 °C and then cooled in an ice bath for 15 min. 

A PEDOT-coated substrate is immersed in water to delaminate the polymer film. 

Scanning electron micrographs and energy-dispersive X-ray spectrograms were collected using a 

JEOL 7001LVF FE-SEM. Transmission electron micrographs were obtained in a JEOL 2100 by 

squeezing a PEDOT film in folding double TEM grid. A Bruker d8 Advanced X-ray diffractometer 

was utilized to collect powder X-ray diffractograms of pulverized samples at room temperature, 

with Cu Kα radiation source (λ = 1.5406 Å) and LynxEye XE detector, operating at 40 kV and 40 

mA; sample holder was rotated at 30 rpm with a scan step of 0.02°. 
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9.1.3. Discussion 

 

 

Figure 9.1: (a) Schematic of RVPP-PEDOT chain. (b) Schematic of PEDOT crystalline domains. 

(c) Orthorhombic crystal unit. (c) pXRD of PEDOT. (e) HRTEM exhibit crystal domains and 

amorphous domains of PEDOT. (f) SAED of PEDOT 

 

PEDOT exhibits a random heterogeneous microstructure comprised of crystalline and amorphous 

domains, which differ from inorganic conductive materials whose structures are generally 

homogeneous and crystalline (Figure 9.1a).11, 16 Unlike the well-ordered inorganic unit cell, 

PEDOT’s unit cell consists of polymer chains and crystal (Figure 9.1b). Based on the single crystal 

PEDOT research, RVPP-PEDOT exhibits an orthorhombic crystal unit cell  (Figure 9.1c) with 

lattice constants of a = 11.01 Å, b = 4.64 Å, and c = 7.91 Å and that it forms along the [010] 

direction on the substrate, coinciding with the (100) projection from XRD results (Figure 9.1d).10 

A high-resolution transmission electro-micrograph (HRTEM) (Figure 9.1e) exhibits both crystal 

and amorphous domains. The crystalline structures of the RVPP-PEDOT are characterized by 
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selective-area electron diffraction (SAED). A SAED pattern of the RVPP-PEDOT (Figure 9.1f) 

presents various continuous haloes that confirming the semi-crystal structure.17-18 

 

 

 

Figure 9.2: Schematic of PEDOT’s configuration. 

 

Similar to protein structures, PEDOT configuration consists of multiple levels of structures. The 

primary structure exhibit that RVPP-PEDOT chain is semicrystalline composed of crystal domains 

and amorphous domains.2 The secondary structure is associate with the orientation between 

polymer chain and substrate, consisting of face-on, edge-on and side-on.19-20 The tertiary structure 

is based on the molecular chains’ location, including 𝜋-𝜋 stacking and lateral chains.4 Therefore, 

accurate control of PEDOT configuration enables refining the charge transfer, thus enhance the 

PEDOT electrical conductivity. 
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9.2 Synthesis and processing of conducting polymers for 

energy storage 
 

During charging and discharging, CP ECs undergo two major processes simultaneously: ions 

diffuse through the electrolyte into the vicinity of CP backbones and electrons are either added or 

removed. Thus, more accommodation of electrolyte ions and lower resistance of ion and electron 

migration in the system lead to both high energy density and power density. The former requires 

ionically porous CP electrodes with large ion accessible areas, invoking ideas of 

nano/microstructural design, while the latter calls for highly conductive, crystalline CP electrodes 

in which all active material is utilized and connected to the same conjugated network. In the past 

decade, significant progress has been made via improved synthetic techniques and advances in 

electrode processing. 

Synthesis controls the molecular structure of CPs by manipulation of reaction kinetics. When 

polymerization is carried out too quickly, uncontrollable reactions deteriorate the conjugation 

length and packing of CP chains by introducing defects and side reactions, rendering CP electrodes 

with low conductivity. On a larger scale, poor polymerization conditions result in dense and non-

porous CP films, blocking accessible surface area and hindering ion diffusion, both of which are 

critical for advancing energy storage. Not accounting for expansion in these electrodes leads to 

mechanical delamination during charging and discharging and thus low cycling stability.21-22 

Researchers have developed a myriad of ways to mitigate these issues. In general, the synthesis of 

any conducting polymer needs only monomer and oxidant. Creatively introducing these two 

components has been a large contributor to the progress in polymer science over the past decade. 

The most common method is chemical (solution phase) polymerization, where monomer and 
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oxidant are both in liquid form. Electrochemical polymerization of CPs is also a universal strategy, 

where a potentiostat is used in lieu of a chemical oxidant. CPs retain their conjugation network 

and conductivity during synthesis, whereas electropolymerization of non-conjugated polymers 

leads to a huge drop in current and slowing of the polymerization process as the conductive 

electrode is coated with an insulator. A variety of strategies have also been developed where 

oxidant and/or monomer are reacted in the vapor phase; moreover, interfacial synthesis and 

templating routes have led to many exquisite CP morphologies. Advances in synthesis seek to 

confine the reaction rate and selectivity of polymerization to generate highly conductive CP 

electrodes characterized by high crystallinity, long conjugation length, high conductivity and well-

ordered nano/micro architectures.  

9.2.1. Solution-based chemical polymerization 

 

 

Figure 9.3: Control of polymerization conditions leads to molecular ordering of CP electrodes. (a) 

In chemical synthesis (solution phase), low concentration of reactants forces preferential 

deposition of polymer on the substrate with directional growth, netting a high aspect ratio 

architecture beneficial to charge storage. Using too high a concentration of reactants results in 

disordered nuclei forming in solution, reducing electrode performance. (b) If the oxidant and 

monomer solutions are immiscible, polymerization will be restricted to their interface, lowering 

reaction kinetics. CP films synthesized inter-facially show a high crystallinity, conductivity, and 

capacitance. 
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Solution-based chemical polymerization refers to mixing oxidant and monomer in solution; this 

method is simple and results in bulk quantities of solution-processable active material with 

minimal effort. A purification step, commonly carried out via filtration, centrifugation or dialysis, 

is often required to remove excess oxidant, monomer and reaction side-products. This ensures a 

stable and reversible charge storage performance during electrochemical testing of a conducting 

polymer electrode. Solid-state polymer powder samples can also be obtained by filtration or 

lyophilization protocols; these powders are processable, similar to activated carbon. 

Direct deposition of CPs onto substrates and current collectors remains a challenge in solution-

based chemical polymerization. It has been shown that immersing a substrate in a dilute mixture 

of oxidant and monomer solution results in fast nucleation of polymer on solid surfaces, favoring 

CP growth on the substrate.23 Lowering reagent concentration slows down the polymerization 

speed, resulting in oriented nano and micro-morphologies. An array of needle-like PANi 

nanowires is synthesized on graphitized carbon fiber by immersing the substrate in a mixed 

solution of ammonium persulfate (oxidant) and aniline (monomer); the length of a nanowire 

increases with aniline concentration. The nanowires become disordered when aniline 

concentration exceeds 0.3 M, attributed to a high concentration of PANi nuclei in solution (Figure 

9.3a).24 Variability in PANi nanowire length and degree of alignment affects the charge storage 

ability i.e., short nanowires synthesized from 0.1 M aniline possess a capacitance of 546 F/g, 

longer nanowires from 0.3 M aniline reach 976.5 F/g, and disordered PANi nanowires (0.5 M 

aniline) show a capacitance of 573.5 F/g. Aligned high aspect ratio nanowires exhibit the highest 

performance due to well-defined ion diffusion channels that result in high capacitance and high 

charging rate electrodes for ECs.24  
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Another strategy for coating substrates from solution is to apply reagents directly on a substrate. 

For example, alternating coats of immiscible oxidant and monomer solutions on flexible cellulose 

paper confine polymerization at the monomer/oxidant interface, slow the rate of polymer growth, 

and lead to an ordered CP molecular packing that enhances the conductivity of the electrode. This 

interfacially synthesized PEDOT is characterized by high crystallinity and high electrical 

conductivity (375 S/cm), whereas similar monophasic solution-based PEDOT exhibits lower 

conductivity (30 S/cm) (Figure 9.3b).25 A  capacitance of 115 F/g coupled with electrochemical 

stability even after 4000 bending cycles, makes this EC an ideal example of a flexible device.25 

 

 

Figure 9.4: Size controllable CP colloidal synthesis is a promising direction to explore, as a highly 

conductive electrode self-assembles with ordered pores that accommodate a large volume of ions 

with short diffusion paths, optimum for high energy density and power density ECs. 

 

Size and shape controllable syntheses create CP nanoparticles that serve as building blocks for EC 

electrodes.  When particles are of a monodispersed spherical shape, their self-assembly will result 

in an electrode consisting of close-packed microspheres on a substrate.26 The close-packed 

architecture presents a high electrical conductivity derived from many contact points between 

neighboring spheres. Ordered microporous vacancies between the spheres facilitate ion migration, 
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and lead to high energy, power and rate EC electrodes (Figure 9.4).26 Theoretically, the smaller 

the particles are, the higher the surface area should be, however, a recent study shows that small 

spherical CP particles lack sufficient charge carriers to serve as active material in an EC electrode. 

Moderate sized (80 nm) particles lead to ECs with the highest specific capacitance.27 Optimized 

particle size and shape with refined self-assembly conditions will lead to solution processable, high 

performance EC electrodes ready for commercialization.   

9.2.2. Electrochemical polymerization 

Electrochemical polymerization of CPs, first reported in 1979,28 allows for fine control of synthetic 

parameters rather than relying on limited oxidation potentials and chemical oxidants. Typically, a 

potentiostat is programmed to pulse current and cycle through potentials, leading to a broad variety 

of polymer nano/microstructures and molecular packing. There are several challenges in the 

electropolymerization of high-performance CP electrodes for ECs requiring careful optimization 

of reaction conditions. Uncontrolled electrochemical polymerization of CPs, as in solution-based 

chemical polymerization, commonly leads to dense films that block ion diffusion pathways.29-31 

Electrochemical polymerization is a surface localized process and as the thickness of a deposited 

conducing polymer film grows, its molecular structure changes due to increased electrode 

resistance and hindered ion migration; unregulated polymer growth also leads to a high 

concentration of defects, hindering conductivity.31-32 Electrochemical oxidation requires a working 

electrode typically coupled to a conducting current collector that pulls electrons away from a 

monomer in solution. Deposition of CPs on insulating substrates is also important for developing 

flexible and transparent EC electrodes and is carried out electrochemically by pre-patterning of a 

substrate with a conductive coating, albeit at a high cost.31    
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Figure 9.5: (a) In electrochemical synthesis, low current results in aligned CP fibers; high current 

leads to a thick, featureless film due to uncontrolled reaction kinetics. The aligned conformation 

exhibits higher performance due to its superior structure promoting ion accommodation. b) Pulsed 

potential in electrochemical polymerization significantly reduces the defects on polymer chains 

due to constrained reaction speed, increasing conjugation length, and enhancing specific 

capacitance. 

 

The nano or microscale morphology of an electropolymerized CP is controlled by polymerization 

kinetics in situ during synthesis using an applied voltage and/or current; this method is versatile 

and enables the synthesis of a plethora of template-free nanoscale morphologies.31 For example, 

an array of vertically aligned polyaniline (PANi) nanowires of 50 nm in diameter is synthesized 

galvanostatically using a constant current. Initial polymer nucleation minimizes interfacial surface 

energy as monomer radicals nucleate repeatedly on a surface site resulting in preferential 

directional growth, whereas uncontrolled reaction kinetics result in a disordered dense polymer 

architecture via a branched growth process.23 Aligned nanowires (Figure 9.5a) provide a short ion 

diffusion path and a large accessible surface area resulting in ECs with a specific capacitance of 

950 F/g at 1 A/g; this pure PANi electrode also exhibits a high rate capability with an 82% 

capacitance retention at 40 A/g.   

Direct on/off switching of polymerization with pulses of current further steers polymer chain 

alignment and packing, leading to CPs with high conjugation length and low defects. Decreasing 



57 

 

the current pulse time from 50 ms to 5 ms leads to a near doubling of electrode specific capacitance 

at 1100 F/g. Shorter pulse times lead to CP electrodes with a low density of backbone defects like 

carbonyl groups and high electronic conductivity. Carbonyl bonds are due to oxidation of hydroxyl 

groups at the β position of pyrrole, as water molecules react with monomer radicals. Short pulses 

suppress the kinetics of this process and minimize defect density in the final molecular structure. 

A longer pulse-off interval (~100 ms) allows the growing polymer chains to relax in the direction 

of conjugation before further growth, leading to ordered films with high conjugation length (Figure 

9.5b). ECs made from pulse electropolymerized PPy films demonstrate a high capacitance of 

400 F/g with a charging/discharging stability of 10 000 cycles at 5 mA/cm2.32 

 

Figure 9.6: Atomic force microscope (AFM) based electrochemical synthesis. A pulsed potential 

is applied to the conductive tip, guiding the polymer formation in an electrolyte. This method has 

high resolution in 3-dimensions, ideal for design and fabrication of a hierarchical EC electrode. 

 

Electrochemical polymerization also offers precise deposition and simultaneous patterning of a 

polymer architecture via Atomic Force Microscopy (AFM) using a cantilever tip as working 

electrode and a gold coated-counter electrode.31 Polymer growth at the electrolyte/substrate 

interface occurs when a substrate is immersed in an electrolyte containing monomer and a pulse 

of current is applied to the cantilever. The small dimension of the tip provides highly localized 
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current for polymerization. An ultrashort pulsing of current is essential in achieving a well 

confined morphology because it limits current dispersion (Figure 9.6). This technique offers 

excellent patterning in both lateral (353 nm-3.37 μm) and vertical dimensions (2.0-88.3 nm) and 

enables continuous fabrication of CP electrodes with well controlled nano/micro architectures.33  

9.2.3. Vapor-phase polymerization 

Several synthetic methods fall under the umbrella of vapor-phase polymerization (VPP), generally, 

involving the oxidative polymerization reaction between monomer vapor and a chemical oxidant 

resulting in the deposition of a solid-state polymer film. Using a pre-patterned oxidant-coated 

substrate is a particularly  successful form of VPP that leads to PEDOT films of high electrical 

conductivity when additives such as base inhibiters (pyridine) and triblock copolymers (PEG-PPG-

PEG) are added to the oxidant; these species slow down reaction kinetics and reduce acidic side 

reactions.34 Ultrahigh electronic conductivity of 8797 S/cm (Figure 9.7a) has been reported for 

VPP-PEDOT single-crystal nanowires deposited inside 10 nm deep channels35 that constrain 

polymer growth and plausibly slow down reaction kinetics.  

 

Figure 9.7: Vapor phase polymerization. (a) Dimensional constraint or polymerization inhibiting 

additives help lower reaction rates, leading to highly crystalline and conductive CP films. 

(b) Evaporative Vapor Phase Polymerization (EVPP) is a facile technique that results in a highly 

conductive CP film with ordered high aspect ratio nanostructures. 
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In traditional VPP the resulting CP film is typically a thin smooth layer deposited on a substrate; 

this flat polymer architecture results in a low areal energy density not favorable for standard ECs,34 

albeit favorable for in-plane microsupercapacitors. To increase areal energy density, oxidant is 

commonly applied directly on a porous substrate of high surface area, this strategy aims to produce 

a conformal polymer coating that increases material utilization yield. 

Our own efforts in this field have produced one-dimensional nanostructures via evaporative vapor 

phase polymerization without the use of templates leading to nanofibrillar electrodes that increase 

areal and gravimetric energy density.  This strategy is rapid and occurs when monomer vapor 

reacts with a heated droplet of an aqueous solution of iron (III) chloride; as the droplet evaporates, 

a freestanding disc shaped PEDOT film deposits. This film is characterized by a nanofibrillar 

architecture (Figure 9.7b) and electrical conductivity of 130 S/cm; deposition of on carbon fiber 

paper current collectors enables fabrication of ECs with a capacitance of 160 F/g at 1A/g. 

Increasing the current density 1000-fold results in  9% loss of capacitance – this minimal loss is 

due to a nanofibrillar morphology that maximizes free volume of the electrode architecture thus 

enhancing ionic conductivity and resulting in a high rate capability. 36 Polypyrrole nanofibers 

deposit possessing similar morphology under these conditions.37 Evaporative vapor phase 

polymerization also grafts PEDOT nanofibers on aromatic rings present on the carbon-based 

current collector’s graphitic surface. This is accomplished via Friedel-Crafts alkylation during in 

situ vapor phase polymerization, using nitromethane as a catalyst activator and FeCl3 Friedel-

Crafts as catalyst; grafting imparts outstanding electrochemical stability and contributes to a 

capacitance retention of 90 % after 350,000 cycles.38  
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9.2.3. Summary 

The electrical conductivity of a CP, controlled via crystal structure, solid-state packing, 

conjugation length and doping levels, can be improved during synthesis, generally, by slowing 

down polymerization rates. For example, during electrochemical polymerization, lowering the 

magnitude of the applied current and concentration of chemical species increases the packing order 

due to a polymer structure possessing few numbers of defects. Using immiscible solvents and 

chemical inhibitors in chemical polymerization and vapor phase polymerization, respectively, lead 

to a high degree of crystallinity. This, in turn, facilitates intrachain, interchain and interdomain 

electronic transport and39 results in conductive bulk electrodes.  

Ordered CP architectures with well-defined ion migration channels are ideal for high energy 

density and high-rate capability electrochemical electrodes. In solution-based polymerization, a 

low concentration of monomer leads to a low polymerization rate that favors ordered polymer 

nucleation and growth that enables template-free protocols for producing nanostructured CPs.  

These polymer architectures are readily applied in electrochemical capacitors due to their high 

conductivity, ordered micro/nano morphologies, accessible surface area and robust 

electrochemical stability. 

Among various synthetic techniques, vapor phase polymerization is a promising route for 

producing PEDOT electrodes for symmetric ECs reaching a 300 F/g capacitance.40 Polymerization 

rate controlled by mass transport of reactant vapors under steady state kinetics results in high 

electronic conductivity. Our own investigations in this area are focused on the interface between a 

resting oxidant liquid droplet and monomer vapor; we envision precise deposition of CP 

hierarchical architectures using oxidant aerosols and a modified 3D printer (Figure 9.8). 
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Figure 9.8: An idealized 3D printing strategy to controlling droplet/vapor interface and 

polymerization kinetics. 

 

 

9.3 Materials and electrochemical capacitor engineering 
 

PEDOT and PANi based ECs exceed 100,000 cycles and exhibit a high capacitance retention38, 41 

thus serving as promising soft organic materials for developing stable electrochemical cells 

possessing extended shelve lives. This high cycling stability is achieved by innovation in material 

synthesis and rational engineering. For example, ordered CP nanostructures characterized by 

aligned polymer chains are ideal synthetic targets that when directly grafted onto current 

collectors, result in efficient charge transport as well as highly accessible surface area electrodes. 

9.3.1. Types of electrochemical capacitors 

 

A CP based electrochemical capacitor typically consists of two electrodes, anode and cathode,42 

that undergo fast redox reactions within a controlled potential window while immersed in an 

electrolyte. A CP that attains stability in positively charged oxidized state is p-dopable, and 

conversely, n-dopable when stability is gained in a negatively charged reduced state; most CPs are 
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p-type solid-state organic semiconductors given that a negatively charged carbon backbone is 

highly reactive toward water and oxygen from ambient atmosphere and electrolyte.43 Electrodes 

in CP based ECs are therefore usually categorized as p-dopable or p/n dopable; based on the 

symmetry and doping mechanism of the two electrodes, ECs are commonly segregated as Type I, 

Type II, Type III or Type IV devices. These four types of ECs have theoretical energy densities 

proportional to the maximum extractable charge and highest achievable voltage window. A 

detailed explanation of types of CP-based ECs can be found in the previous edition of this 

Handbook44 as well as in a perspective recently published by our group.45 Briefly, a Type I EC 

contains two identical p-dopable CP electrodes and the cell voltage is restricted to one of the 

electrode’s p-doping potential window (ΔV = 0.5 ~ 0.75 V). Charging creates a neutral negative 

electrode and a fully doped positive electrode; discharging brings both electrodes back to a 

partially doped state. This releases only half of the total charge stored and thus restricts the energy 

density of a Type I device. A Type II device utilizes two different types of p-dopable CP electrodes 

e.g., PANi and PEDOT that offer complementary stable potential windows for increasing both cell 

voltage (ΔV= 1 ~ 1.25 V) and extractable charge resulting in high energy density. Type III and 

Type IV ECs utilize ambipolar p/n electrodes where the negative electrode is negatively doped, 

and the positive electrode is positively doped, this engineering strategy expands the maximum 

charging voltage (ΔV = ~3 V). Full discharging brings the device’s electrodes to a neutral state 

and therefore Type III and IV devices often exhibit significantly higher energy densities than Type 

I or Type II devices.46 Unlike a Type III device that uses two identical p/n dopable CPs, a Type IV 

device combines two different p/n dopable CPs. This results in two active materials, each with 

different stable potential window. In a Type IV, polymers electrodes are selected that match the 
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maximum voltage window for an electrolyte; this idealized geometry leads to the highest energy 

density among all four devices.44 

Type III and Type IV ECs are rarely reported due to a lack of stable n-dopable CPs - this challenge, 

previously brought up in the last edition44 remains today a significant barrier for advancing 

conducting polymer ECs.47-48 Many advances in n-doping of CP electrodes have taken place over 

the last decade however, however, Type III and Type IV ECs remain mostly unexplored.11 The 

addition of an electron from a donating dopant leads to instability in the CP conjugated backbone 

as this electron is readily lost in the presence of oxygen or water given that it resides in a dopant 

band of higher energy level than the LUMOs of ambient air (O2 and water) (Figure 9.9a).43 In ECs, 

aqueous electrolytes and air stability are a major concern. An aqueous electrolyte is often favored 

over organics because it results in a device possessing a low equivalent circuit resistance (ESR) 

originating from higher ionic conductivity,49 moreover, water leads to a reduced cost in packaging 

and sealing due to its non-flammable nature. Surprisingly, no water-stable n-dopable CP ECs have 

been reported in the literature.  
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Figure 9.9: Stability of n-doped CPs. (a) CPs have conjugated backbones that enable electronic 

conductivity due to a continuous conduction band arising from delocalized charge, however, the 

higher LUMO causes electrons to be easily lost to ambient oxygen or water, making n-doping 

unstable. (b) Redox polymers have redox sites that stabilize electrons, but the electron transfer is 

hindered due to non-conjugated bonding, which leads to discrete energy level instead of a 

conduction band. (c) A combination of conjugated CP and redox polymer sites both increase the 

charge stabilization and charge transport, making stable n-dopable CP possible. (d) Alternating 

chain structure of acceptor and donor CRPs. (e) Branched structure of acceptor and donor CRPs. 

Adapted from reference.77 

 

For a CP electrode to be stable in its n-doped state, electrons injected into the backbone need to be 

stabilized by electron accepting groups.50 Some non-conjugated redox polymers have electron 

accepting groups that stabilize the negatively charged carbanion chain from donating electrons to 

water and air by significantly lowering the polymer’s LUMO, however, the lack of conjugation 

makes the use of these polymers difficult for high-power energy storage. These suffer from a poor 

electronic conductivity that originates from discrete energy levels that localize charge in acceptor 

sites (Figure 9.9b).50 Combining the redox active moieties with a conjugated backbones forms 

what is referred to as “conjugated redox polymers” (Figure 9.9c).50 Lowering of polymer LUMO 
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stabilizes n-doping and decreases the band gap by increasing the HOMO due to electron richness, 

while charge transport is facilitated by a continuous conduction band in the conjugated backbone.51 

In organic electrolytes, poly[N,N’-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-

diyl]-alt-5,5’-(2,2’-bithiophene), shortened to P(NDI2OD-T2), is a polymer that presents stable 

and reversible n-dopability at a high doping level while retaining 100% capacitance over 3,000 

cycles. Its structure is shown in Figure 9.10. Further investigation reveals that electron 

accommodation on the redox groups has little effect on backbone electronic transport, suggesting 

great versatility in the continuous tuning of conjugated redox polymer structure and performance.50 

Alternating acceptor and donor units can also be incorporated in the conjugated backbone 

imparting ambipolar character. During charging and discharging cycles, the donor and acceptor 

units will stabilize and release charges on the backbone, contributing to the energy storage and 

output. 

 

Figure 9.10: Molecular structure of monomer NDI2OD-T2 and its corresponding polymer 

P(NDI2OD-T2). 

 

Poly[6,6’-bis(ethylene-3,4-dioxythien-2-yl)]N,N’-dialkylisoindigo (PBEDOT-iI) (Figure 9.11) is 

an ambipolar conjugated redox polymer for a Type III device where if only the p-doping voltage 

window is utilized (0.5 – 0.75 V), a specific energy of 0.5 Wh/kg with 80% retention over 10 000 

cycles is obtained. On the other hand, when the operating voltage is increased to 2.5 V, both 
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electrodes become fully doped and the specific energy jumps to 15 Wh/kg as both p- and n-doping 

potential windows are utilized. Electrochemical stability, however, is poor with a 50% capacitance 

loss within 100 cycles and nearly 100% lost after 200 cycles.52 Another Type III EC based on 

poly(4Cz−4Cl−PBI) (Figure 9.12) exhibits an energy density of 22.1 mWh/cm3.48  

 

Figure 9.11: Molecular structure of monomer BEDOT-iL and its corresponding polymer poly-

BEDOT-iL. “D” represents an electron donating functional group, which is p-dopable, while “A” 

represents an acceptor functional group, which is n-dopable. 

 

 

 

Figure 9.12: Chemical structure of 4Cz-4Cl-PBI and its polymerized form poly(4Cz-4Cl-PBI). 

Shapes are used to illustrate how a monomer connects to four neighboring units, making a polymer. 

Adapted from reference.76 
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Unfortunately, conjugated redox polymer-based ECs suffer from a low cyclability with poor-

reversible n-doping, even in organic electrolytes. During n-doping, these polymers become less 

conductive than in their p-doped form, due to more delocalized electrons in electron accepting 

groups. Some irreversibly trapped charges remain unreleased during discharging due to poor 

electron transfer, this leads to degradation of device performance in energy retention.47 One 

effective strategy to address this is by tuning the conformation of the polymer chain with the spatial 

distribution of the redox active groups. The performance differences of conjugated redox polymer 

electrodes based on donor-acceptor-donor unbranched structures (Figure 9.9d) and branched 

structures (Figure 9.9e) are compared. Branching shows a better cyclability with 83% retention 

over 2,000 cycles (56% for linear polymer). The branched structure possesses extended 

conjugation, a more open morphology and attains a high doping level, contributing to a high 

conductivity when n-doped. This relieves the charge trapping effect and enhances the device’s 

reversibility and cyclability. Type III ECs made with alternating linear and branched structures 

show a maximum energy density of 29.1 Wh/kg and 19.5 Wh/kg. The alternating structure has a 

higher bandgap than the branched structure, expanding its maximum charging voltage to 2.4 V, 

while branched structure Type III devices are limited to 2.0 V.47  

The realization of commercial Type III and Type IV ECs is highly dependent on the development 

of stable p/n-dopable electrodes. The understanding of n-dopable CPs for ECs still lags far behind 

p-dopable CPs. More investigation is needed to increase substantially the electrode specific energy 

and cyclability. The structure of conjugated redox polymers is rather complex compared to p-

dopable CPs, and their synthesis is mostly restricted to electrochemical polymerization. Finding 

low mass and stable n-dopable CP structures will increase active material utilization yield50  and 

enhance energy density in Type III and Type IV devices.55 
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9.3.2. Novel types of polymer electrochemical capacitors 

9.3.2.1 Flexible and Stretchable Polymeric Electrochemical Capacitors 

Recent developments in material science and engineering boost the strong market demand for 

flexible electronics including roll-up displays, sensory skins and smart textiles, as well as flexible 

power sources with high energy and power density. CPs are the most promising active material for 

flexible energy storage due to inherent flexibility brought by 1D polymer chains that bend and 

slide past each other opposed only by van der Waals’ forces; subsequently, flexible ECs based on 

CPs are well established.53-55 

Apart from flexibility, which refers to bending in most cases, stretchability that requires extension 

is another important parameter for future wearable electronics. Desirable properties of stretchable 

electronics include low modulus and stiffness, high crack-onset strain, low thickness and high 

elasticity that is comparable to human skin.56 Serving as an active layer, thin films of CPs 

maximize device specific capacitance by minimizing the device mass and volume, meanwhile 

facilitating electron and charge transfer. Unfortunately, this film architecture hardly bears 

mechanical loads (low crack-onset strain). Furthermore, CPs are stiffer than other organic 

polymers (larger forces needed for unit strain) due to the strong π-π interaction between polymer 

chains, presenting an intrinsic challenge for fabrication of stretchable CP based ECs. 

To overcome CPs’ mechanical loading limitation in ECs, several strategies include synthesizing 

CPs with porous architecture and depositing CPs uniformly onto a substrate. Porous CP networks 

accommodate a certain degree of strain and increase the EC’s mechanical cycling stability. For 

example, combining a porous PANi nanofiber network with multiwalled carbon nanotubes and 

poly(dimethylsiloxane), leads to a stretchable electrode. The device capacitance is 150 F/g with 
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volumetric capacitance of 2.0 F/cm3 at 10 mV/s scan rate, which drops to 1.38 F/cm3 when 

stretched by 50% strain. Dynamically stretching and releasing the EC to 50% strain for 500 cycles 

decreases the volumetric capacitance by only 4.4%, indicating a good mechanical cycling 

stability.57  

 

Figure 9.13: Enhancing the stretchability of CPs by grafting functional groups that noncovalently 

cross-link polymer chains via hydrogen bonding. 

 

A uniform CP coating also shows high electronic and mechanical cycling stability due to low 

number of surface defects. For example, when PEDOT is polymerized from 2,5-dibromo-3,4-

ethylenedioxythiophene onto a polyester fabric substrate using vacuum, the resulting material 

shows high areal (0.64 F/cm2) and volumetric (5.12 F/cm3) capacitance with good cycling 

stability. After 50,000 cycles or when stretched by 100% strain, the capacitance is nearly 

unchanged.58 

Introduction of interchain hydrogen bonding by grafting functional side groups is an effective way 

to enhance the stretchability of CPs, this compensates for stress during stretching via noncovalent 

cross-linking (Figure 9.13).59 Incorporation of ionic additives in PEDOT:PSS improves the 

conductivity and stretchability by softening the PSS domains, promoting the connectivity and 

crystallinity of PEDOT regions and providing dopant.60 Stretchable materials obtained from these 

strategies are generally applied to fields such as field-effect transistors and strain sensors instead 
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of flexible ECs, so more investigation is needed to determine if they are useful for energy storage 

purposes. In terms of device fabrication, other strategies that improve the stretchability and 

capacitance include using superelastic substrates,61 stretchable and self-healing electrolytes62 and 

other pseudocapacitive materials.63  

9.3.2.2 Transparent Electrochemical Capacitors 

The emergence of transparent electronic devices including speakers,64 diodes65 and transistors66 

requires the design of transparent power sources, accordingly, transparent CP based ECs are in 

development. Thin layers of CPs are semi-transparent. When designing transparent ECs, a high 

transmittance always means a low concentration or low thickness of CP that has decreased 

capacitance. In this case a balance needs to be achieved between transmittance and capacitance by 

controlling the CP layer concentration or thickness. Apart from CP layers, the selection of 

electrode substrate and separator with high transmittance is also important, affecting the overall 

transmittance of the device.  

The most common CPs used for transparent ECs are PANI, PEDOT and PPy, deposited as a thin 

layer on a transparent substrate and then incorporated into a device. Because of the thin film 

structure, most of the ECs are both transparent and flexible. The substrate or incorporated material 

includes single/multi-walled carbon nanotubes,67-68 graphene,69-70 cellulose nanofibers,71-72 PET 

film,73 RuO2
74 and metal nanowires.75 A high surface area of the substrate ensures a high 

capacitance while retaining a thin device for high transparency. For example, when using 15 nm 

thick transparent films composed of single-walled carbon nanotubes (10.0 µg/cm2) as the substrate 

for electrochemically depositing PANI (59 wt%), the transmittance is 70% at 500 nm while the 

capacitance is 55.0 F/g at a current density of 2.6 A/g.67 The capacitance is enhanced to 233 F/g 

when using aligned multi-walled carbon nanotubes at 1 A/g, with PANI loading of 70 wt% and 
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transmittance of 70% in a wavelength range of 300 – 900 nm; loss of alignment decreases 

capacitance when testing randomly dispersed nanotubes under the same condition.68 Graphene and 

reduced graphene oxide, possessing good transparency, high theoretical specific area and good 

electrical conductivity are easily combined with PANI for fabricating transparent ECs. Through a 

one-pot liquid-liquid interfacial synthesis, PANI/graphene nanocomposite thin film is synthesized 

from benzene and aniline, and shows 83.7% transmittance at 550 nm with 88 nm in thickness; after 

supported by PET film, the fabricated device shows a capacitance of 95.5 F/cm3.69  

Exquisite molecular control is achieved in aqueous solvents via Layer-by-layer assembly of PANI, 

graphene oxide and PEDOT:PSS on cellulose nanofibrillar paper for transparent ECs; cellulose 

nanofibers have a net negative charge in aqueous solution that facilitates assembly process. As a 

result, the device fabricated by PANI and graphene oxide shows a transmittance of 30.6% at 550 

nm, with areal capacitance of 5.86 mF/cm2 at a current density of 0.0043 mA/cm2, while the device 

fabricated by PANI and PEDOT:PSS shows 47.1% transmittance and 4.22 mF/cm2 under the same 

conditions.69 Aerosol-jet spraying is used to produce RuO2/PEDOT:PSS hybrid thin films with 

high transparency, good conductivity and high capacitance. RuO2 is both pseudocapacitive and 

conductive, resulting in a thin film with areal capacitance of 1.2 mF/cm2 at a high transmittance of 

93%.74 

The development of transparent CP based ECs enables engineering new functionalities in energy 

storage technologies, for example, an electrochromic EC is a type of smart EC that indicates the 

level of stored energy via color or contrast change. This requires incorporation of two 

electrochromic materials into one device i.e., PANi as the active electrode under positive potentials 

during anodic oxidation and W18O49 as the active electrode under negative potentials during 

cathodic reduction. PANI is bleached at -0.2V and colored at 0.8 V, while W18O49 is bleached at 
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0V and colored at -0.6V; selective deposition of PANI and W18O49 results in a device that only 

shows PANI’s pattern at 0.8 V, and W18O49’s at -0.5 V.76 PANI itself also has multiple oxidative 

states that show different colors,  among them yellow, green and blue that can be observed by 

naked eye, so the transparent ECs using PANI as the active material also indicate charged states 

(Figure 9.14).77  

 

Figure 9.14: Schematic representation of a smart electrochromic-EC electrode that shows 

different color at different charged states. 

 

9.4 PEDOT-based electrochromic device 

9.4.1 Background 

 

Electrochromic is a reversible optical change in materials upon redox reaction in the presence of 

external potential.78 Electrochromic devices (ECD), made of electrochromic materials, are widely 

used in smart windows, electrochromic displays, anti-glare rearview mirrors, and military 

camouflage.79-80 Inorganic electrochromic materials, such as WO3, MoO3, NiO and V2O5 are 

commercialized in the last several years; however, they suffer from slow response time, high cost 

and complex fabrication.81 Currently, conducting polymers attract much attention due to their 

excellent optical contrast ratio, rapid response and low applied potential. PEDOT is a promising 



73 

 

material due to its simple synthesis, low-cost fabrication, tunable properties and high 

environmental stability.82  

Previous reports demonstrate PEDOT’s nanostructures enable enhancement in electrochromic 

performance, such as nanoparticles,83 nanotubes84 and nanowires85. However, the poor optical 

contrast, low cycle stability and unsatisfied response time impede their practical applications. 

Recent research focuses on hybridization between organic and inorganic components, enhancing 

charge transfer via metal additives to solve those issues.86-87 

9.4.2 Experimental Methods  

FTO glass substrates (TEC™ 7) were purchased from MSE supplies LLC, USA. First, the FTO 

glass substrates were washed via ultrasonic baths in acetone and then in isopropyl alcohol for 20 

min, each. Then they were treated under UV-ozone for 30 min to remove remaining organic 

impurities. Next, a solid-oxidant precursor, 20-nm thick Fe2O3, was sputtered over the FTO via 

physical vapor deposition (Kurt J. Lesker PVD 75 RF and DC). A glass reactor was loaded with 

the Fe2O3-coated FTO, 30 μL of HCl, and 200 μL of a 0.674 M EDOT solution in chlorobenzene, 

then sealed and heated in an oven at 140 ◦C for 1.5 hr. The samples were purified via 6 M HCl 

overnight to remove iron impurities. The sputtered α-Fe2O3 was used as a ferric ion-containing 

solid-state oxidant precursor to induce dissolution, liberation of ferric ions, and Fe3+ hydrolysis 

concomitant with oxidative radical polymerization. 
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9.4.3 Discussion 

 

 

Figure 9.15: (a) A photograph of PEDOT coated FTO. (b) The SEM of PEDOT film exhibit 

nanofibrillar morphology. 

 

A light blue color PEDOT film (Figure 9.15a) is deposited on FTO glass substrate (2.5 cm × 2 cm) 

via rust-based vapor phase polymerization (RVPP).88-89   Figure 9.15b exhibits conformal PEDOT 

nanofibers suggest high surface area. 

 

 

 

Figure 9.16: (a) Cyclic voltammagrams of PEDOT on FTO (working electrode) with reference 

electrode of Ag/AgCl and counter electrode of platnium mesh in 1 M LiClO4  acetonitrile 
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electrolyte, showing PEDOT oxidation peak and reductionpeak. (b-c) The color change during 

cycling from 0.6 V (blue) to -0.8 V (purple).  (d-e) The color change during cycling from 1.4 V 

(light blue) to -1.8 V (dark purple).   

 

Electrochromic performance is evaluated via a three-electrode electrochemical cell using 1 M 

LiClO4 acetonitrile electrolyte under different potential varying from 1.4 V to -1.8 V (vs. 

Ag/AgCl). The CVs (Figure 9.16a) exhibits characteristic peaks of PEDOT at 0.5 V and -1.5 V, 

and the PEDOT electrode possesses cycle stability between 1.4 V and 1.8 V. The color of the 

PEDOT film (Figure 9.16b) changed from blue to purple at -0.8 V corresponding to reduced-state, 

and the color change back to blue -0.6 V corresponding to oxidized-state. Such color change is 

due to the various dopant that affects the conductivity of PEDOT.90 The electrical conductivity 

varies by order of magnitude between the oxidized (high conductivity) and reduced (low 

conductivity) state. The low conductivity contains neutral segments that contribute to strong 

absorption of visible light centered around 600 nm, forming a purple tint. Charging the polymer 

by electrochemical oxidation minimizes this absorption, making the same film transparent to 

visible light exhibiting blue tint.91-92 Notably, the extended voltage window from 1.4 V to -1.8 V 

possesses similar color contrast. 

9.5 Iron-based electrode for battery applications 

9.5.1. Introduction 

The critical need for high energy density batteries has drastically elicited intensive research to 

develop next-generation batteries due to the rapid development of electronic devices and electric 

vehicles. There are two promising battery systems that potentially meet this requirement, lithium-

ion battery93 and metal-air battery.94 
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The next-generation lithium-ion batteries are the key to a revolution in electronic devices, electric 

vehicles, and implantable medical devices.95-96 The ideal batteries require inexpensive electrode 

materials, high energy density, and environmentally friendly materials. Therefore, iron oxides as 

anode materials serve as a promising option since iron enables lithium reaction to give metal 

nanoparticles through conversion reactions.97  This concept of hematite (α-Fe2O3) with metallic Li 

is demonstrate in the earlier 1980s,98 and reignited by research on hematite electrodes with a 

theoretical capacity of 1007 mAh/g in 2000.99 However, the hematite anode suffers from rapid 

capacity loss during the first cycle when operating at voltages, enabling complete reduction to 

metallic iron. Recently, significant progress in cyclability is reported with magnetite/carbon 

composites with a stable capacity of 600 mAh/g at a rate of 10 C.100 

Metal-air batteries are the other promising battery system due to their high energy density and 

potential application in grid energy storage.101-102 There are multiple anode material candidates, 

such as iron,103 zinc104 and aluminum,105 and iron-air battery received considerable attention due 

to their high electrochemical and thermal stability, low cost, and environmental safety.106 

However, the iron-air battery suffers from electrode passivation caused by iron hydroxide 

generation during discharge, preventing further anodic utilization. Notably, a porous iron electrode 

possesses a low hydrogen overpotential, limiting its application in commercial batteries.106 
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9.5.2. Results and Discussion 

 

 

Figure 9.17: (a) Flow process diagram of α-Fe2O3 electrode fabrication. (b) SEM of Fe2O3 coated 

hard carbon paper electrode. (c) Close-up SEM and EDX of Fe2O3 electrode. (d) pXRD pattern of 

α-Fe2O3 electrode. 

 

Fe2O3 electrode is obtained from PEDOT electrode through combustion: 1) 0.266 M FeCl3 

nitromethane solution is drop cast on a piece of hard carbon paper (HCP) (1 cm × 1cm). 2) a 

uniform PEDOT nanofibrillar coating is deposited on HCP via HVPP synthesis. 3) a homogeneous 

nanostructured Fe2O3 electrode is obtained after combustion at 500 °C with 2 h airflow (Figure 

9.17a). Figure 9.17b exhibits the Fe2O3 layer conformally deposit on HCP, and Fe2O3 electrode 

possesses aggregated nanoflake morphology suggesting the high surface area (Figure 9.17c). 

Elemental maps via energy-dispersive X-ray spectroscopies show a uniform distribution and solid 

signals for Fe and O corresponding to Fe2O3. Powder X-ray diffraction (Figure 9.17d) is carried 

out and reveals three characteristic peaks at 33°, 35.5°, 42°, 50°, 54° corresponding to (104), (110), 

(113), (024), (116) lattice planes, respectively, that confirms the  α-Fe2O3 configuration.107 
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Figure 9.18: (a) Photograph of a single α-Fe2O3/HCP electrode connected with Pt lead. (b-c) Three 

electrode setup of a single α-Fe2O3/HCP electrochemical characterization, including Hg/HgO 

reference electrode, α-Fe2O3/HCP working electrode, Pt mesh counter electrode and 8 M KOH 

aqueous electrolyte. (d) CVs of α-Fe2O3/HCP electrode with a scan rate of 0.5 mV/s under voltage 

window of -1.2 V - 0 V. (e) Cycle performance of α-Fe2O3/HCP electrode. 

 

Nanostructured α-Fe2O3/HCP electrode is sealed with Pt lead via Kapton tape (Figure 9.18a). 

Three electrode system is investigated to probe the electrochemical property of a single α-

Fe2O3/HCP electrode. Typically, the setup for iron electrode characterization consists of a working 

electrode (α-Fe2O3/HCP), a counter electrode (Pt mesh), and a specific reference electrode 

(Hg/HgO) to accurate probe the electrochemical performance under alkaline solution (8 M KOH) 
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(Figure 9.18b). Cyclic voltammogram (CV) curves of α-Fe2O3/HCP electrode (Figure 9.18c) 

exhibit Fe/Fe (II) and Fe (II)/Fe (III) redox couples. The oxidation of Fe (II)/Fe (III) occurs at -

0.62 V (a2) and the corresponding reduction peak is at around -0.98 V (c1), whereas a Fe/Fe (II) 

redox couple occurs at around -0.9V (a1) and -1.1 V (c2), respectively.108 The redox current for 

the Fe/Fe (II) couple is smaller than the Fe (II)/Fe (III) couple and hydrogen evolution (c3) occurs 

at -1.2 V, suggesting the nanostructured α-Fe2O3/HCP electrode possess a small overpotential of 

Fe/Fe(II) redox couple resulting in a separation of hydrogen evolution.109  

Notably, a significant current drop occurs after the first cycle associated with the irreversible 

conversion between Fe(OH)3 to FeOOH or Fe(OH)2, resulting in passivation of the electrode. The 

cycle performances (Figure 9.18d) exhibit good stability within 30 cycles and possess a capacity 

of 200 mAh/g, which is one-third of the state-of-the-art performance,94 and further work is 

necessary to surpass the hydrogen evolution, restrain the passivation of the electrode, and increase 

the surface area and stability of the iron electrode.   
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Figure 9.19: (a-b) CVs of α-Fe2O3/HCP electrode in 8 M KOH and 8 M KOH/0.01 M K2S with a 

scan rate of 0.5 mV/s. (c-e) SEM of α-Fe2O3/HCP electrode after 30 cycles. 

 

To improve the α-Fe2O3/HCP electrode’s capacity, we add 0.01 M K2S additive to the electrolyte. 

Metal sulfide additives, such as K2S, FeS, Bi2S3, are common additives for iron-based battery 

systems since they are effective in suppressing hydrogen evolution, enhancing the ionic 

conductivity of the electrolyte, impeding passivation of the electrode, and promoting the 

dissolution of iron.110-111 CVs of α-Fe2O3/HCP electrode in 8 M KOH/0.01 M K2S electrolyte 

exhibit a more significant current compare with 8 M KOH electrolytes, confirming the sulfide 

additives improve the capacity (Figure 9.19a-b). Notably, the overlapping of CVs suggests the 

excellent reversibility and stability of the electrochemical reaction.107 
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To understand the change of α-Fe2O3/HCP electrode after the 30 cycles at a scan rate of 0.5 mV/s. 

SEMs is introduced to compare the structure of the electrodes before and after cycling (Figure 

9.19c-e). Before cycling, the α-Fe2O3 in the iron electrode is nanoflakes (Figure 9.17), while after 

continuous cycling, they transfer to a prismatic shape with the size of the particles from 200 nm to 

500 nm (Figure 9.19). Such Fe2O3 particle is generated via dissolution-precipitation ripening of 

the Fe2O3.
112 The phase transition from nanoflakes to nanoparticles leads to less surface area and 

detachment from HCP, resulting in gradual passivation of the iron electrode that impedes the 

electrochemical reaction. 
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Chapter 10 

Conclusions 

The similarity of the fine nano/micro-structures in rust and conducting polymers inspires us to 

think about bridging this “waste” inorganic material and this promising organic material. 

Fortunately, the chemistry of rust (natural Fe3+ source) and nanostructured conducting polymers 

(Fe3+ as an essential oxidant for synthesis) provides a fundamental understanding of the synthesis 

versus structure versus property relationship for developing novel synthesis and state-of-the-art 

devices in energy storage, sensing, electro/photocatalysis, and mixed ionic-electronic electronics. 

Clearly, such a combination will raise a revolution in rust utilization and synthesis of nanostructure 

conducting polymers. 

Over the course of this dissertation, we have introduced various concepts for producing 

nanostructured conducting polymers by utilizing rust via rust-based vapor phase polymerization 

(RVPP). It should be reiterated that rust is a ubiquitous byproduct from the corrosion of iron, and 

a solid-state material serving as an ideal source of Fe3+ ions for carrying out chemical synthesis 

via its 0.77 V oxidant potential. The emergence of RVPP overcomes the traditional challenge of 

utilizing hygroscopic and corrosive iron (III) salts for synthesizing conducting polymers. It also 

creates an approach that enables conducting polymer synthesis from any solid-state materials, such 

as on masonry materials and even possibly on rust-containing soil on other planets. Besides the 

oxidative property, rust also provides various nanostructured templates that enable multiple 
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nanostructured conducting polymers, such as nanofibers, nanoflakes, nanowires, nanotubes, and 

microparticles.  

Conducting polymers exhibit unique properties - they are soft materials assembling into 

nanostructures held by weak intermolecular electrostatic and van der Waals bonds; they are 

versatile materials and possess high surface area, enabling applications in energy storage, sensing, 

CO2 photoreduction, antimicrobial, and photovoltaics. Conducting polymers accommodate 

solvated ions impregnation without structural degradation and provides ultra-surface area, leading 

to an outstanding electrochemical performance in energy storage under various electrochemical 

circumstances. Conducting polymers are responsive to external stimuli, such as humidity, 

temperature, and acidity, due to their large active surface area and sensitive electrical properties, 

leading to a chemoresisitve sensor. Conducting polymer PEDOT is an ideal photocatalysis for CO2 

photoreduction and H2O2 evolution due to its suitable band gap for CO2/CO and H2O/H2O2 

conversion and facile charge carrier mobility. The band gap is controlled by doping treatment, 

such as acid, base, oxidized and reduced agents enabling various doping levels for performance 

optimization. Notably, PEDOT also investigated in photovoltaics and light-emitting diodes as a 

charge collection or charge injection layer, such as a hole transfer layer in dye-sensitized solar 

cells and perovskite solar cells. 

Unlike ordered inorganic crystal structures, conducting polymers possess both crystalline and 

amorphous domains that affect the charge transfer. To better understand the conduction 

mechanism in polycrystalline conducting polymers, we describe a PEDOT configuration of 

tertiary structures. Almost all conducting polymers exhibit electrochromism when 

electrochemically oxidized or reduced, such as PEDOT transfer from light blue (oxidized state) to 

dark purple (reduced state), enabling applications in smart windows and electrochromic displays. 
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We detail a deposition of PEDOT nanofibers on FTO, leading to an enhancement of 

electrochromic stability. The research for next-generation batteries remains a significant area of 

discovery. Lithium-iron batteries and iron-air batteries receive intensive attention due to their 

inexpensive, high energy density, and environmentally friendly properties. We offer a novel 

approach to iron electrode deposition via combustion on RVPP-PEDOT, enabling nanoflakes and 

nanofibers morphologies. 
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Appendix A Rust formation and RVPP 

reactions 

A.1 Remove impurity ions from glass reactors 

Since ions have effect on the hydrolysis synthesis, it is necessary to keep away all impurities 

among reactors. 1) Utilize Aqua regia (concentrated HCl:concentrated nitic acid = 3:1) to wash all 

glass reactors, such as beakers, containers and pipets. 2) Utilize plastic reactors and pipets is an 

alternative approach. 3) Utilize MilliQ water for hydrolysis synthesis making sure there is no 

impurities. 

A.2 Immersion methods 

Rust layers are produced as per ASTM A109 protocol by immersing a 4 cm × 4 cm low-carbon 

steel sheet in 20 mL of a 0.01 M H2SO4 solution for 24 h at 25 °C. Corroded sheets were then 

rinsed and dried under ambient conditions. The thickness of a rust layer is controlled by immersion 

time ranging between 18 and 24 h. 
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A.1: Immersion method for rust film production. 

 

 

A.2: Synthesis rust from 1 M KOH, 1 M HCl, 1 M H2SO4, 3 M NaCl, MilliQ water, and 1.4 M 

H3PO4.  
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A.3: Mechanism of rust formation in 0.01 M H2SO4. 

 

 

 

A.4: Optical photographs of pristine iron, green rust, and yellow rust. 

A.3 RVPP reactions 
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A.5: Schematic illustration of rust-based vapor phase polymerization (RVPP). 

 

 

 

A.6: Flow process diagram of rust-based vapor phase polymerization (RVPP). (a-d) Pristine iron 

piece rusted to (e-h) α-FeOOH and γ-FeOOH layer via immersion method. (i-l) PEDOT nanofibers 

deposited on the iron substrate after RVPP. (m-p) The PEDOT layer detached from the iron 

substrate resulting in a clean and smooth iron surface. 
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A.7: SEMs of RVPP-PEDOT synthesized from MilliQ water rust. 

 

A.8: SEMs of RVPP-PEDOT synthesized from 1 M H2SO4 rust. 
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A.9: SEMs of RVPP-PEDOT synthesized from 1 M HCl rust. 

 

 

 

A.10: SEMs of RVPP-PEDOT synthesized from 1 M H2SO4 rust via formic acid, acetic acid and 

carbonic acid. 
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A.11: Optical photographs demonstrate that RVPP enables crack recover. 
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A.12: Comparation of rust cleaning between scratch, sonication, HCl wash, and RVPP via SEMs. 

 

 

 

Appendix B Hydrothermal synthesis for β-

FeOOH 
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B.1: Schematic of β-FeOOH hydrothermal synthesis. 
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B.2: TEM characterization of β-FeOOH. 

 

B.3: Schematic and TEM characterization of β-FeOOH hydrothermal synthesis under different 

conditions. 
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Appendix C Stoichiometry experiments on 

HVPP 

 

 

 

 

C.1: Stoichiometry of chlorobenzene. HVPP reactions in 0.266 M FeCl3 and 0.0674 M 

EDOT/chlorobenzene solution with different amount of chlorobenzene. 
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C.2: Stoichiometry of EDOT. HVPP reactions in 0.266 M FeCl3 and 200 mL 

EDOT/chlorobenzene solution with different amount of EDOT. 
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C.3: Stoichiometry of FeCl3. HVPP reactions in 200 mL 0.0674 M EDOT/chlorobenzene solution 

with different amount of FeCl3 solution. 
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C.4: Stoichiometry of water content. HVPP reactions in in 0.266 M FeCl3 and 200 mL 0.0674 M 

EDOT/chlorobenzene solution with different amount of water content. 
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C.5: HVPP reactions in 200 mL 0.0674 M EDOT/chlorobenzene solution with different iron 

nanoparticles. 
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C.6: HVPP reactions in 200 mL 0.0674 M EDOT/chlorobenzene solution with different iron 

nanoparticles. 
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Appendix D Three electrode system for 

electrochemical characterization 

D.1 Schematic and mechanism of three electrode system 

 

 

D.1: (a) Schematic illustration of three electrode system. (b) Mechanism of reference electrode. 

(c) Equations for input potential calculation. 

 

 

 



116 

 

 

D.2: Schematic of potential and current flow in three electrode system. 

 

D.2 Electrochemical impedance spectroscopy  

Electrochemical impedance spectroscopy (EIS) is a technique that can detect the ion transfer 

during electrochemical process including Nyquist plot and Bode plot.  

 

 

D.3: Schematic of Nyquist plot. 
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D.4: Mathematic model of EIS. 
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D.5: Mathematic model of a series RC circuit. 

 

 

D.6: Mathematic model of a parallel RC circuit. 



119 

 

 

D.7: Mathematic model of an ideal blocking electrode circuit. 

 

 

D.8: Mathematic model of a pseudocapactive electrode circuit. 
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D.9: Mathematic model of a porous electrode circuit. 

 

Appendix E Smart masonry material for 

future sustainable living 
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E.1: Schematic illustration of conductive brick for sustainable living. 

 

 

E.2: Schematic illustration of conductive brick for energy storage application 
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Appendix F Mechanism of solar cell 

 

F.1: Schematic illustration of solar cell mechanism. 

 

 

Appendix G AutoCAD of 

microsupercapacitor patterns 
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G.1: AutoCAD of dots array electrode. 
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G.2: AutoCAD of small-interdigitated electrode microsupercapacitor. 
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G.3: AutoCAD of small-interdigitated electrode long current collector microsupercapacitor. 
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G.4: AutoCAD of large-interdigitated electrode microsupercapacitor. 

 



127 

 

 

G.5: AutoCAD of large-interdigitated electrode microsupercapacitor and conductivity 

measurement pattern. 
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G.6: AutoCAD of small-interdigitated electrode microsupercapacitor and conductivity 

measurement pattern. 
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G.7: AutoCAD of large-interdigitated electrode microsupercapacitor in series and parallel pattern. 
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Appendix H Comb-shape Au-Al bi-electrode 

ZnO UV sensor 

 

 

H.1: (a) Band structure of ZnO, Au and Al electrodes. (b) AutoCAD of interdigitated electrode. 
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H.2: (a) Three views of UV sensor. (b) Schematic of UV sensor and SEM of ZnO tetrapod. 
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H.3: Flow process diagram of ZnO based UV sensor. 
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H.4: (a) Conductivity, (b) sensitivity and (c-d) recovery of ZnO based UV sensor. 

 

 

Appendix I Nice pictures of rust and 

nanostructured conducting polymers 
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I.1:  The Mountain. (Award 1st in 2019 spectra completion) 

“The mountain” is composed of iron crystals and conducting polymer, or PEDOT, on a colorful 

film.  
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I.2:  The Rose. (Award 2nd in 2019 spectra completion) 

“The rose” is composed of conducting polymer (PEDOT) with 2D nanosheets and 1D nanofibers. 
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I.3:  Symmetric nanofibers consist of PEDOT (blue) and iron (red). 

 

 

 

 

I.4:  A ink wash painting made of PEDOT nanostructures. 
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I.5: PEDOT nanofibers. 
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I.6:  PEDOT nanofibers (1). 
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I.7: PEDOT nanofibers (2). 
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I.8: PEDOT nanofibers (3). 
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I.9: PEDOT nanofibers (4). 
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I.10: PEDOT nanofibers (5). 
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I.11: PEDOT nanofibers (6). 
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I.12: PEDOT nanofibers on hard carbon paper (1). 
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I.13: PEDOT nanofibers on hard carbon paper (2). 
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I.14: PEDOT nanofibers on hard carbon paper (3). 
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I.15:  Symmetric nanofibers consist of PEDOT (blue) and iron (purple). 
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I.16: Iron oxide nanofibers. 
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I.17: Yellow rust. 
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I.18: Green rust. 

 



152 

 

 

I.19: Red rust. 
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I.20: Iron oxide on hard carbon paper. 
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I.21: Iron oxide (flower) on hard carbon paper. 
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