
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Spring 5-15-2021

Efficient and Scalable Computing for Resource-Constrained Efficient and Scalable Computing for Resource-Constrained

Cyber-Physical Systems: A Layered Approach Cyber-Physical Systems: A Layered Approach

An Zou
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Zou, An, "Efficient and Scalable Computing for Resource-Constrained Cyber-Physical Systems: A Layered
Approach" (2021). McKelvey School of Engineering Theses & Dissertations. 640.
https://openscholarship.wustl.edu/eng_etds/640

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F640&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=openscholarship.wustl.edu%2Feng_etds%2F640&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/640?utm_source=openscholarship.wustl.edu%2Feng_etds%2F640&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering & Applied Science
Department of Electrical and System Engineering

Dissertation Examination Committee:
Xuan Zhang, Chair

Shantanu Chakrabartty
Christopher D. Gill

Jing Li
Chuan Wang

Efficient and Scalable Computing for Resource-Constrained Cyber-Physical Systems: A
Layered Approach

by
An Zou

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2021
St. Louis, Missouri

© 2021, An Zou

Contents

List of Figures . vi

List of Tables . x

Acknowledgments . xi

Abstract . xiv

1 Introduction . 1
1.1 Computing in Cyber-Physical Systems . 1
1.2 Power-efficient Computing . 3
1.3 Performance-efficient Computing . 4
1.4 Scalability and Layered Solutions . 6
1.5 Dissertation Contributions . 8

2 Circuit Layer: Early-Stage Modeling and Evaluation of IVR-assisted Pro-
cessor Power Delivery System . 10
2.1 Introduction . 11
2.2 Background and Related Work . 14

2.2.1 Conventional Power Delivery System and Efficiency 14
2.2.2 Integrated Voltage Regulator . 16
2.2.3 IVR-enabled Power Delivery System and Efficiency 17
2.2.4 Related Work . 17

2.3 Modeling Methodology . 19
2.3.1 System-Level Modeling Framework 19
2.3.2 Power/ Area/ Ripple Static Module 21
2.3.3 Dynamic Response Module . 24

2.4 Model Validation . 31
2.5 Case Study I: Many-core GPU PDS . 34

2.5.1 System Configuration . 35
2.5.2 IVR Design Space Exploration . 36
2.5.3 Power Delivery System Dynamic Behaviors 36
2.5.4 Putting It Together: Power Efficiency Analysis 40

2.6 Case Study II: PDS with Fast Per-Core DVFS 40
2.6.1 System Configuration . 41

ii

2.6.2 IVR Support for Fast DVFS . 43
2.6.3 Power Delivery System and Architecture Co-Design 44

2.7 Conclusions . 46

3 Circuit and Architecture Layers: Voltage-Stacked Power Delivery Sys-
tems: Reliability, Efficiency, and Power Management 48
3.1 Introduction . 49
3.2 Background and Related Work . 51

3.2.1 Power Delivery System . 51
3.2.2 Voltage Stacking . 52
3.2.3 Supply Voltage Noise . 53
3.2.4 Power Delivery Efficiency . 54
3.2.5 Related Work . 56

3.3 System Configuration . 57
3.3.1 Power Grid Routing and PDN Modeling of VS 58
3.3.2 Communication Across Layers . 59

3.4 Supply Voltage Noise Analysis . 59
3.4.1 Supply Voltage Noise Characterization 59
3.4.2 Dominating Supply Voltage Noise . 64
3.4.3 Worst-Case Supply Voltage Noise . 65

3.5 Noise Mitigation by Hybrid Regulation . 68
3.5.1 Hybrid Regulation Framework . 68
3.5.2 Centralized and Distributed Integrated Voltage Regulator 70
3.5.3 Off-Chip Charge-Recycling VR . 72
3.5.4 Charge-Recycling VR Power Loss . 74
3.5.5 Hybrid Regulated VS Power Delivery Efficiency 76

3.6 Architectural Support for VS . 77
3.6.1 Control Theoretic Formulation . 78
3.6.2 Control Stability and Performance 81
3.6.3 Voltage Smoothing Actuation . 82
3.6.4 Implementation Considerations . 85

3.7 Advanced Power Management . 90
3.7.1 Dynamic Voltage and Frequency Scaling 91
3.7.2 Power Gating . 92
3.7.3 Power Management Hypervisor in Voltage Stacking 92

3.8 Evaluation of Hybrid Regulation . 94
3.8.1 Supply Voltage Noise Evaluation . 95
3.8.2 Efficiency in Real Applications . 96
3.8.3 Compatibility with Advanced Power Management 97
3.8.4 Comparison with Other Power Delivery Systems 100

3.9 Evaluation of Architecture Support . 101

iii

3.9.1 System-level Efficiency . 102
3.9.2 Supply Reliability . 103
3.9.3 Performance Tradeoffs . 105
3.9.4 Collaborative Power Management . 108

3.10 Conclusion . 109

4 Architecture and Operating System Layers: Real-Time GPU Scheduling
of Hard Deadline Parallel Tasks with Fine-Grain Utilization 110
4.1 Introduction . 111
4.2 Background and Related Work . 115

4.2.1 Background on GPU Systems . 115
4.2.2 Background on Multi-Segment Self-Suspension 116
4.2.3 Related Work . 118

4.3 CPU and Memory Model . 120
4.3.1 CPU Modelling . 120
4.3.2 Memory Modeling . 121

4.4 GPU Parallel Kernel Execution Model . 122
4.4.1 Kernel-granularity and SM-granularity Scheduling 122
4.4.2 Kernel Execution Model . 125
4.4.3 Interleaved Execution and Virtual SM 126
4.4.4 Workload Pinning and Self-Interleaving 130

4.5 Practical RT-GPU Tasks Scheduling . 131
4.5.1 Task Model . 132
4.5.2 Federated Scheduling for GPU Segments 133
4.5.3 Fixed-Priority Scheduling for memory copy Segments with Self-Suspension

and Blocking . 135
4.5.4 Fixed-Priority Scheduling for CPU Segments 139
4.5.5 RT-GPU Scheduling Algorithm and Analysis 141

4.6 Full-System Evaluation . 144
4.6.1 Experiment Setup . 144
4.6.2 Schedulability Analysis . 146
4.6.3 GPU Experiment . 150

4.7 Conclusion . 154

5 Circuit, Architecture, and Operating System Layers: Fast Learning-based
Energy Management for Multi-/Many-core Processors 156
5.1 Introduction . 157
5.2 Background and Related Work . 161

5.2.1 Dynamic Voltage Frequency Scaling (DVFS) 161
5.2.2 Adpative Power Management . 162
5.2.3 Integrated Voltage Regulators . 163
5.2.4 Related Work . 164

iv

5.3 Methodology . 165
5.3.1 Power Delivery System for Fast DVFS 167
5.3.2 Hierarchical Power Management Framework 170
5.3.3 Global Controller . 172
5.3.4 Learning Controller . 173
5.3.5 Swift Controller . 176

5.4 Quantitative Study of Internal Metrics with Synthetic Benchmarks 177
5.5 Online Learning and System Implementation 183
5.6 Evaluation Results . 186

5.6.1 System Setup . 186
5.6.2 Hierarchical Fast Learning Approach 187
5.6.3 Hierarchical Layered Approach with Ablation Study 190
5.6.4 Workload Transition and Scalability 191

5.7 Conclusion . 194

6 Conclusion . 196

References . 198

v

List of Figures

1.1 The cyber-physical systems and their computing systems. 2
1.2 Computing impacts on self-driving cars. 5

2.1 Overview of the power delivery subsystem (PDS) in modern microprocessors
with distributed integrated voltage regulators (IVRs). 12

2.2 Block diagram of the IVR and IVR-enabled PDS system-level modeling frame-
work. 19

2.3 Three types of converter topologies. 21
2.4 Hierarchical power delivery system with integrated voltage regulator (IVR)

dynamic models. 24
2.5 Interleaved (multi-phase) buck converter. 25
2.6 Periodical linear time-varying (PLTV) systems. 27
2.7 Efficiency validation for SC converters. 33
2.8 Efficiency validation for buck converters. 33
2.9 Interleaved (multi-phase) buck converter dynamic responses in time domains. 34
2.10 Interleaved (multi-phase) buck converter frequency responses in frequency do-

mains. 35
2.11 Voltage noise across benchmarks and VR config. 37
2.12 Voltage noise waveforms (CFD) with VR config. 39
2.13 Supply voltage noise effective impedance. 39
2.14 IVR efficiency trade-off with area. 40
2.15 Power delivery system optimization. 40
2.16 Hierarchical power delivery system for SoC systems. 42
2.17 CPU and GPU power activity frequency analysis in executing benchmark

blackscholes and backp. 43
2.18 Inductor and capacitor sizes for different voltage scaling speeds. 45
2.19 CPU Energy benefit from different speed fast DVFS. 45
2.20 GPU Energy benefit from different speed fast DVFS. 46

3.1 Conventional single-layer and voltage-stacked multi-layer power delivery sys-
tem. (PCB board voltage: 4V; each core requires 1V voltage and 1A current) 51

3.2 Illustration of on-chip power routing for conventional and voltage-stacked
power delivery configurations. 53

3.3 Power delivery network (PDN) of a 2x4 voltage-stacked many-core processor. 57
3.4 Supply voltage noise decomposition. 60

vi

3.5 Illustrative example for noise decomposition using 2ˆ 3 voltage stacking net-
work: (a) simplified 2ˆ 3 network; (b) equivalent network for IG; (c) voltage
response with IG; (d) equivalent impedance for IG; (e) equivalent network
for IST ; (f) voltage response with IST ; (g) equivalent impedance for IST ; (h)
equivalent network for IR. 60

3.6 Effective impedance of current components. 65
3.7 An example instruction trace contributing to worst-case supply noise. 65
3.8 Histogram comparison between analytically derived worst case and other heuris-

tic core activation patterns. 66
3.9 Hybrid voltage regulation based on distributed on-chip CR-IVRs and off-chip

CR-VRM. 68
3.10 Voltage distribution among the 16 SMs. 69
3.11 Supply voltage noise distribution. 72
3.12 Effective impedance after employing CR-VRM. 73
3.13 Simplified circuit of (a) the 4ˆ 4 VS GPU, (b) a single VS stack. 78
3.14 Timescales of different power actuation mechanisms. 82
3.15 SM microarchitecture and operation of dynamic issue width scaling. 84
3.16 Implementation of the proposed cross-layer VS GPU solution with architec-

tural support for voltage smoothing and VS-aware PM hypervisor. 86
3.17 Evaluation of the supply voltage noise in hybrid regulated voltage stacking

system. 95
3.18 Power delivery efficiency comparison between voltage-stacked system with

SC/LDO hybrid regulation and conventional single-layer system across ten
benchmarks. 96

3.19 DVFS power saving comparison between conventional single-layer system and
voltage-stacked system with hybrid regulation across benchmarks. 98

3.20 Normalized system energy consumption under DVFS. 99
3.21 Power delivery efficiency under PDE guided power gating and original power

gating on voltage stacking. 100
3.22 Power delivery efficiency and power breakdown across benchmarks and power

delivery subsystems configurations. 102
3.23 Transient voltage waveforms under worst imbalance scenarios. 103
3.24 Worst supply noise in response to worst imbalance as a function of CR-IVR

area and control latency. 104
3.25 Noise distribution across benchmarks and the worst-case imbalance. 105
3.26 Performance penalty varies with controller voltage threshold. 105
3.27 Energy saving and performance penalty tradeoff space. 105
3.28 Performance penalty and energy saving across benchmarks. 106
3.29 Applying DFS on conventional and proposed voltage-stacked GPU. 107
3.30 Applying PG on conventional and proposed voltage-stacked GPU. 107

vii

3.31 Distribution of imbalanced currents by their normalized magnitudes when
no power management (No PM), DFS with different performance goals, and
power gating are applied in a VS GPU. 107

4.1 RTGPU framework. 113
4.2 Typical GPU task execution pattern. 116
4.3 Comparison of three different GPU application scheduling approaches. 123
4.4 Kernel execution time trends. 124
4.5 Virtual SM model for interleaved execution 128
4.6 Characterization of the latency extension ratios of interleaved execution. . . 128
4.7 GPU tasks real-time scheduling model. 132
4.8 Schedulability under different computation (CPU) and suspension (memory+

GPU) lengths. 145
4.9 Schedulability under different numbers of subtasks. 145
4.10 Schedulability under different numbers of tasks. 148
4.11 Schedulability under different numbers of SMs. 149
4.12 CPU to GPU memory copy time distribution. 151
4.13 GPU kernel execution time distribution. 151
4.14 Schedulability under different numbers of SMs with schedulability analysis

and Real GPU experiments (with worst case execution time model). 153
4.15 Schedulability under different numbers of SMs with schedulability analsysis

and Real GPU experiments (with average execution time model). 153
4.16 RTGPU Throughput improvements. 153

5.1 Microsecond-Level hierarchical fast power management (DVFS) for multi-core
and many-core processors. 158

5.2 The integrated voltage regulator based power delivery system. 162
5.3 Workload power and throughput traces in many-core processors. 166
5.4 Normalized energy consumption of throughput (IPC) guided DVFS at differ-

ent microsecond timescales. 170
5.5 Reinforcement learning and swift controllers. 172
5.6 Quantitative study of the DVFS on energy saving 180
5.7 Quantitative study of the DVFS on performance loss. 180
5.8 Learning progress under different reward functions. 185
5.9 Normalized energy consumption of F-LEMMA. 189
5.10 Normalized performance of F-LEMMA. 190
5.11 Energy delay product of F-LEMMA. 190
5.12 Normalized energy consumption of F-LEMMA. 191
5.13 Normalized performance of F-LEMMA. 191
5.14 Learning under Workload Transitions. 192
5.15 Normalized energy consumption of F-LEMMA DVFS with the swift controller

at different microsecond timescales. 192

viii

5.16 Normalized performance of F-LEMMA DVFS with the swift controller at
different microsecond timescales. 192

5.17 Normalized energy of F-LEMMA on multi-core and many-core processors. . 193
5.18 Normalized performance of F-LEMMA on multi-core and many-core processors.193

ix

List of Tables

2.1 Summary of Ivory input parameters. 36
2.2 Summary of design space exploration. 36
2.3 CPU GPU many-core system. 41
2.4 CPU core DVFS frequency and voltage pairs. 42
2.5 GPU core DVFS frequency and voltage pairs. 43
2.6 Summary of design space explorations of 16-phase buck IVRs. 43

3.1 GPU voltage-stacked system configuration 57
3.2 Freq. Distribution of decomposed core current 67
3.3 Switched Cap. Regulator Parameters . 72
3.4 Voltage Detector Options . 87
3.5 LDO Regulator Parameters . 92
3.6 SM Core DVFS Frequency and Voltage Pairs 97
3.7 Power delivery system comparison . 100
3.8 Comparison of Different Power Delivery Subsystems (PDS) 102

4.1 Parameters for the taskset generation . 146

5.1 Summary of design space explorations of 16-phase buck IVRs. 169
5.2 RL terminology. RL’s goal is to an find optimal policy πpa|sq˚ 173
5.3 Action space of the actor neural network. 176
5.4 Pearson correlation coefficients be-tween input features and output weights . 184
5.5 Architecture parameters and hyperparameters for the hierarchical controller. 187

x

Acknowledgments

During my Ph.D. study at Washington University in St. Louis, I have received enormous

help and support in study, research, and living from many people, and this thesis would not

have been possible without all of them.

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Xuan

Zhang, for her guidance, advice, and support throughout my Ph.D. study. She not only

guides me to conduct high-quality research but also helps me develop critical thinking habits

and relevant soft skills such as writing, presentation, and communication skills. She always

believes in me, helps me to get through difficulties, and encourages me to pursue higher

goals. The invaluable knowledge, research methodologies, and attitudes from her, as well as

all her full support and kind suggestions for my career, lead to my countless respects and

thanks to her.

I would like to thank my advisory committee members and collaborators, Prof. Christopher

D. Gill, Prof. Jing Li, Prof. Shantanu Chakrabartty, Prof. Chuan Wang, Prof. Vijay Janapa

Reddi, Prof. Jingwen Leng, Prof. Sanjoy Baruah, Prof. Kunal Agrawal, Prof. Zhishan Guo,

Prof. Jinghao Sun, and Prof. Benjamin C. Lee. Thanks for their supportive and excellent

collaboration work that improves and expedites my research.

I was fortunate to have worked and interacted closely with many postdocs and students,

Dr. Xin He, Dr. Wei Yan, Weidong Cao, Huifeng Zhu, Adith Jagadish Boloor, Karthik

xi

Garimella, Chenfeng Zhao, Liu Ke, and Tianrui Ma, and all others who have graduated and

may not be listed here. Thanks for their support and companies.

I am also thankful for the support from SRC task 2810.003 and NSF CCF 1646579. Mean-

while, I would like to express my gratitudes to James Ballard at the Communication Center,

Francesca Allhoff, other staff, and faculty members at the Department of Electrical and

System Engineering, and staff at graduate school at Washington University in St. Louis. I

have greatly enjoyed my graduate study here and received all kinds of help from the friendly

staff and faculty members.

I would like to thank all my friends, whom I can not list here, for all the time we spent

together. It is you guys who make my study a really pleasant and enjoyable experience.

Thank you for making my life so colorful and so many sweet memories we have together.

I would like to thank my mother, Chunjuan Wang, and my father, Runmin Zou, for their

unconditional and endless love and support. Special thanks to my wife, Yehan Ma, my

daughter, Luyi Zou, and my parents-in-law, for their selfless love, company, and support

all the time, which make me a better person in my life. None of this could have happened

without them.

An Zou

Washington University in St. Louis

May 2021

xii

Dedicated to my family.

xiii

ABSTRACT OF THE DISSERTATION

Efficient and Scalable Computing for Resource-Constrained Cyber-Physical Systems: A

Layered Approach

by

An Zou

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, May 2021

Research Advisor: Professor Xuan Zhang

With the evolution of computing and communication technology, cyber-physical systems

such as self-driving cars, unmanned aerial vehicles, and mobile cognitive robots are achiev-

ing increasing levels of multifunctionality and miniaturization, enabling them to execute

versatile tasks in a resource-constrained environment. Therefore, the computing systems

that power these resource-constrained cyber-physical systems (RCCPSs) have to achieve

high efficiency and scalability. First of all, given a fixed amount of onboard energy, these

computing systems should not only be power-efficient but also exhibit sufficiently high perfor-

mance to gracefully handle complex algorithms for learning-based perception and AI-driven

decision-making. Meanwhile, scalability requires that the current computing system and its

components can be extended both horizontally, with more resources, and vertically, with

emerging advanced technology. To achieve efficient and scalable computing systems in RC-

CPSs, my research broadly investigates a set of techniques and solutions via a bottom-up

layered approach. This layered approach leverages the characteristics of each system layer

xiv

(e.g., the circuit, architecture, and operating system layers) and their interactions to discover

and explore the optimal system tradeoffs among performance, efficiency, and scalability. At

the circuit layer, we investigate the benefits of novel power delivery and management schemes

enabled by integrated voltage regulators (IVRs). Then, between the circuit and microarchi-

tecture/architecture layers, we present a voltage-stacked power delivery system that offers

best-in-class power delivery efficiency for many-core systems. After this, using Graphics

Processing Units (GPUs) as a case study, we develop a real-time resource scheduling frame-

work at the architecture and operating system layers for heterogeneous computing platforms

with guaranteed task deadlines. Finally, fast dynamic voltage and frequency scaling (DVFS)

based power management across the circuit, architecture, and operating system layers is

studied through a learning-based hierarchical power management strategy for multi-/many-

core systems.

xv

Chapter 1

Introduction

1.1 Computing in Cyber-Physical Systems

A cyber-physical system integrates computing and physical processes. Computing platforms

and networks monitor and control the physical processes, usually with feedback loops where

computing affects physical processes and vice versa. As an intellectual challenge, the cyber-

physical system involves the intersection and cooperation, not just the union, of the comput-

ing and the physical processes [1]. Examples of cyber-physical systems include smart grids,

autonomous automobile systems, medical monitoring, industrial control systems, robotics

systems, and autonomously piloted vehicles [2]. If we liken cyber-physical systems to human

beings, computing platforms act like human brains, fundamentally determining the perfor-

mance of the cyber-physical systems. The computing platforms in modern cyber-physical

systems range from small microcontroller units, usually integrated as one of the components

in today’s system on a chip (SoC) architecture, up to large server computers.

New technologies such as artificial intelligence (AI) and machine learning (ML) are increas-

ingly implemented, and people’s lives are being improved by complex technology such as

1

Figure 1.1: The cyber-physical systems and their computing systems.

the internet of things (IoT), the smart city and home, healthcare intelligence, self-driving

cars, mobile cognitive robots, and wearable devices. As shown in Fig. 1.1, these develop-

ments synergistically benefit from increasing levels of multifunctionality and miniaturization

as they execute versatile tasks in a resource-constrained environment, Computing platforms

that intelligently control these resource-constrained cyber-physical systems have to achieve

high power and performance efficiency. Many high-tech companies are seeking to provide

high-performance, low-power computing platforms for cyber-physical systems. For example,

Apple announced the M1, a powerful processor [3] that provides up to 2x longer battery

life, allowing mobile devices to use smaller and lighter batteries. Tesla built a computing

platform called Autopilot Hardware [4] that supports full self-driving from the ground up,

taking into account every small architectural and micro-architectural improvement while

pushing hard to squeeze maximum silicon performance-per-watt. Besides such efforts from

industry, many researchers [5] have proposed (ultra-)high performance or (ultra-)low energy

2

consumption requirements for the embedded computing in the modern cyber-physical system

applications, especially in resource-constrained environments [6–9].

1.2 Power-efficient Computing

Power efficiency in computing not only directly impacts the operation time of cyber-physical

systems but also imposes a ceiling on their computing capacity, which further limits perfor-

mance.

Most cyber-physical systems, from micro/nano robots to wireless sensors in industrial plants,

are powered by a battery with a limited density and capacity. Some cyber-physical systems,

such as wireless sensor nodes [10–12], can require years of battery life. For example, the

Emerson Smart Wireless Solution [13] for web-based monitoring has an estimated battery

life of up to six years with a solar power recharging option. For cyber-physical systems

chasing high performance, the energy consumed by computing is also increasing significantly.

For example, AI and ML are being widely adopted in modern cyber-physical systems with

startling results. The computing power required for key AI benchmarks has doubled roughly

every 3.4 months, increasing by 300,000 times between 2012 and 2018 [14]. However, the

battery energy density has improved by only 5-8% per year [15,16].

Power efficiency also limits computing performance. Since the last decade, with the failure of

Dennard scaling [17], processors have been gradually entering an era of dark silicon [18]. In

dark silicon, the thermal design power (TDP) constraint means that not all the computing

resources in a multi-core or many-core processor can be energized at the same time. As

discussed in the Landscape of the New Dark Silicon Design [19], transistor density continues

3

to double every two years, and native transistor speeds improve by 1.4. But transistor

energy efficiency also improves by only 1.4, which, under constant power budgets, causes a

2ˆ shortfall in the energy budget for powering a chip at its native frequency. Because power

and energy deficits impede computing performance by degrees, improving power and energy

efficiency pays obvious dividends.

1.3 Performance-efficient Computing

In the past decades, we have witnessed the impact of rapidly increased computing on cyber-

physical systems in almost every field, especially with the emerging powerful algorithms like

AI and ML algorithms on the cyber-physical systems.

Boroujerdian et al. [20,21] comprehensively evaluated the role of computing in autonomous

and mobile cyber-physical systems. Based on optimization case studies of co-designs of com-

puting platforms and cyber-physical systems, they found that cyber-physical systems can

achieve up to 2ˆ faster mission times and use 1.8ˆ less mission energy. Ma et al. [22] used

the improved computing performance in edge computing platforms to improve the perfor-

mance of industrial cyber-physical systems. Besides its direct impacts on the whole cyber-

physical system, computing performance also impacts the modules inside. For example,

computer vision and natural language processing are two of the most widely used modules

in cyber-physical systems that interact with the surrounding environment and human be-

ings. Agrawal [23] quantified the relationship between recognition completion performance

(recognition accuracy) and the computing size of convolutional neural network (CNN) based

object recognition. On all tested objects, up until resource saturation, the completion per-

formance significantly increased with computing size. Similarly, Sharir [24] and Strubell [25]

4

Embedded Desktop Server

Computing ability

0

20

40

60
P

e
rf

o
rm

a
n

c
e

 s
c
o

re

(a) Simple environments

Embedded Desktop Server

Computing ability

0

5

10

15

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

(b) Complex environments

Figure 1.2: Computing impacts on self-driving cars.

quantified the approximate computing performance and energy costs of training a variety of

recent successful neural network models used for natural language processing.

To demonstrate how vitally computing affects an entire autonomous cyber-physical system,

we tested the impacts of computing ability on the performance of self-driving cars. We used

CARLA [26], an open source driving simulator, to model the environments and the self-

driving cars, and used self-driving algorithms from the open-source CARLA Autonomous

Driving Challenge [27]. We evaluated self-driving performance under different computing

capabilities in different street environments. The scores of the self-driving cars came from

multiple metrics, including the driving score, route completion percentage, and an infraction

penalty. The self-driving algorithms were executed with increasing amounts of computing

ability, ranging from embedded systems [28] to server systems [29], evenly divided into nine

levels. Fig. 1.2 shows performance scores for the self-driving algorithms’ execution with

these levels of computing ability. Clearly, greater computing ability allows the self-driving

system to perceive the environment better and to respond faster. The self-driving car with a

higher computing ability usually achieves a higher performance score, which means it drives

longer and is more stable and reliable.

5

1.4 Scalability and Layered Solutions

Scalability can be categorized into horizontal scalability and vertical scalability. Horizontal

scalability is the property of a system to handle a growing amount of work by adding resources

to the system [30]. Vertical scalability means the system designs are scalable and compatible

with emerging advanced technology. At this point in its history, computing is evolving from

multi-core through many-core to heterogeneous architectures. Techniques and solutions to

improve the energy efficiency and performance of computing systems should not only achieve

good savings and performance improvements, but also should be generally universal, able to

adapt to diverse computing platforms and future developments.

A complete computing platform is made up of multiple layers, from the circuit layer, through

the micro-architecture and architecture layers, and up to the kernel, operating system, and

application layers. On the one hand, each layer has unique functions, characteristics, and

response times. For example, more power- and energy-efficient techniques and solutions

are proposed on the lower layers, because these layers are close to the physical transistors

where power and energy are consumed. Performance-efficient techniques and solutions are

typically applied on high layers, because they are closer to user applications, where perfor-

mance attracts more attention. On the other hand, these layers are all closely connected and

interact with each other to finish computing tasks. Lower layers provide implementations

for higher-layer functions, and higher layers abstract and manage lower-layer resources. For

example, the circuit layer directly performs digital logic operations on the physical devices

at nanosecond timescales. The architecture layer abstractly describes the functionality, or-

ganization, and implementation of computing platforms with a timescale of microseconds to

milliseconds. The operating system layer manages the resources abstracted by architectures

and allocates and schedules tasks to these resources, usually at the millisecond scale. As a

6

complex system, a high-performance and low-power computing platform requires close co-

operation among different layers to make better use of its potential while keeping power and

energy consumption low.

A complete computing platform is made up of multiple layers from the circuit layer, via the

micro-architecture, architecture layers, up to the kernel, operating system, and application

layers. On one hand, each layer has its own unique functions, characteristics, and response

time. For example, more power and energy efficient techniques and solutions are proposed

on lower layers as low layers are close to the physical transistors where the power and en-

ergy consumption happen. More performance-efficient techniques and solutions are applied

on high layers as they are closer to user applications where the performance attracts more

attention. On the other hand, these layers are closely connected and interact with each

other to finish the computing tasks. Lower layers provide implementations for higher-layer

functions and the higher layers abstract and manage the lower-layer resources. For exam-

ple, the circuit layer directly performs the digital logic operation on the physical devices at

nanosecond timescales. The architecture layer abstractly describes the functionality, orga-

nization, and implementation of computing platforms with a timescale of microseconds to

milliseconds. The operating system layer manages the resources abstracted by architectures

and allocates and schedules works to these resources usually at milliseconds. As a complex

system, the high-performance and low-power computing platform requires close coopera-

tion among different layers to make better use of the potentials with low power and energy

consumption.

7

1.5 Dissertation Contributions

As discussed above, computing, especially power and performance-efficient computing, plays

an important role in resource-limited cyber-physical systems. Power delivery efficiency, com-

puting power efficiency, and computing resource utilization are the three key parts in efficient

computing. Therefore, in this dissertation, we propose a layered co-design approach by pre-

senting detailed and scalable techniques and solutions from the circuit layer through the

architecture layer to the operating system layer to improve the computing energy and per-

formance efficiency for the requirements of nowadays and future cyber-physical systems.

With this bottom-up layered approach, we choose four representative cases, to improve the

computing energy and performance efficiency from the dominant modules like power deliv-

ery efficiency, the real-time resource scheduling, and the power management perspectives,

targeting the multi-core and many-core CPU and GPU systems which are the most widely

used computing systems in cyber-physical systems.

This dissertation makes four main contributions:

1. First, at the circuit layer, we propose an early-stage modeling and evaluation of the inte-

grated voltage regulator (IVR)-assisted processor power delivery system. The work demon-

strates that the IVR-assisted power delivery solution can improve the efficiency of power

delivery to the processor and support microsecond scale power management.

2. Next, at the circuit and architecture layers, we present two voltage-stacked power de-

livery systems that are reliable, efficient, and compatible with typical power management

techniques. Both systems achieve state-of-the-art power delivery efficiency for a many-core

processor. An improved power delivery efficiency directly contributes to a longer operating

time of both the computing system and cyber-physical systems.

8

3. Then, at the architecture and operating system layers, to execute multiple parallel real-

time applications for the cyber-physical systems which have hard deadlines, we use a GPU,

which is the main computing platform for self-driving cars, as a representative of heteroge-

neous computing systems to study the real-time scheduling of hard deadline parallel tasks,

employing fine-grain resource utilization to boost the computing performance for the au-

tonomous cyber-physical systems.

4. Finally, across the circuit, architecture, and operating system layers, we design a hier-

archical fast integrated voltage and frequency scaling technique for energy-efficient multi-

/many-core processors, leveraging the microsecond scale power management supported by

integrated voltage regulators. Effective power management not only improves the power

efficiency but also eases the restrictions on computing performance, allowing the comput-

ing platforms have a longer operating time and a higher computing performance for the

cyber-physical systems.

On the one hand, each contribution either opens new opportunities at other layers or lever-

ages co-designs across several layers. On the other hand, the four contributions work together

to form a complete, layered approach, spanning from the circuit layer, through the archi-

tecture layer, to the operating system and application layers. This layer-spanning approach

successfully improves both power and performance efficiencies of the computing systems,

which further strengthens whole cyber-physical systems.

9

Chapter 2

Circuit Layer: Early-Stage Modeling

and Evaluation of IVR-assisted

Processor Power Delivery System

First of all, the computing systems in resource-constrained cyber-physical systems require

an efficient power delivery. Despite being employed in numerous efforts to improve power

delivery efficiency for the computing systems, the integrated voltage regulator (IVR) has

yet to be evaluated in a rigorous or quantitative manner in a full power delivery system

(PDS) setting. To fulfill this need, we present a system-level modeling and design space

exploration tool Ivory 2.0 for IVR-enabled PDSs. With a novel modeling methodology,

it can accurately estimate power delivery efficiency, static performance characteristics, and

dynamic transient responses under different load variations and external voltage/frequency

scaling conditions. We validate the model over a wide range of IVR topologies with silicon

measurement and SPICE simulation. Finally, we present two case studies in combination

with architecture-level performance and power simulators. The first case study focuses on

optimal PDS design for multi-core systems which achieves 9.5% power efficiency improvement

10

over conventional off-chip voltage regulator module (VRM)-based PDS. The second case

study explores the design trade-offs for IVR-enabled PDSs in CPU and GPU systems with

fast per-core dynamic voltage and frequency scaling (DVFS). We find 2 µs to be the optimal

DVFS time scale, which not only reaps the energy benefits (12.5% improvement in CPU and

50.0% improvement in GPU), but also avoids costly IVR overheads. The improved power

and power delivery efficiency allow the computing system to lower the power consumption

which is a must in resource-constrained cyber-physical system applications.

2.1 Introduction

With the decline of Dennard scaling, thermal design power and energy efficiency restrict

single thread performance [18], and designers are looking for more efficient ways to deliver

power to microprocessors. Integrated voltage regulators (IVRs) can enhance supply integrity

and enable flexible voltage scaling by moving power conversion closer to the point-of-load.

Distributed IVRs (shown in Fig. 2.1) can further provide per-core, fine-grain, and fast dy-

namic voltage and frequency scaling (DVFS) [31] and effective supply noise suppression [32]

at a level unattainable with traditional off-chip regulators. These benefits lead to both im-

proved performance and efficiency. Also, IVR solutions save precious board/package area

compared to bulky off-chip regulators with large discrete passive components, making them

especially attractive for mobile SoCs [33]. As IVRs become viable solutions for power de-

livery in modern microprocessors, it is important to explore various design alternatives and

thoroughly evaluate their impacts on performance and efficiency at the system level.

11

Figure 2.1: Overview of the power delivery subsystem (PDS) in modern microprocessors
with distributed integrated voltage regulators (IVRs).

Despite the recent proliferation of IVR research, prior studies often focus on circuit-level

implementation to improve conversion efficiency [34]. Real implementation benefits in IVR-

enabled power delivery subsystems remain elusive due to the lack of modeling tools and

evaluation frameworks to explore the design space and investigate the performance and

efficiency implications of IVRs in a full system setting. Given the absence of high-level user-

friendly IVR models, previous studies resort to either over-simplified assumptions of IVR

efficiency [35–37] that overlook important design considerations such as dynamic response,

or a fixed IVR design covering only a fraction of the entire design space [31].

To address these shortcomings, we propose an analytical modeling framework for early-

stage design space exploration that is compatible with architecture-level performance and

power simulators. Our system-level model captures the complex yet subtle design trade-offs

among different IVR typologies to evaluate the performance benefits and implementation

costs in a full power delivery subsystem settings. It abstracts away the details of low-level

IVR circuit implementation to enable architects, system engineers, and other experts at the

12

upper levels of the system stack to effectively explore new design spaces enabled by IVR’s fine-

grain voltage regulation capability, similar to what Cacti [38] did for memory systems and

ORION [39] did for network-on-chip designs. Our modeling framework incorporates several

advanced features that were previously lacking and makes the following key contributions:

• A fast, accurate, and validated (using both SPICE simulations and measured silicon

data) parameterized IVR static model is introduced to estimate the static character-

istics such as conversion efficiency, static voltage ripple/droop, and die/board area of

multiple IVR topologies in different technology nodes or processes.

• A novel method to derive an IVR’s dynamic model as a two-port network allows direct

drop-in of IVR modules into the power delivery system. This model facilitates the

complete capture of an IVR-enabled PDS’s dynamic voltage/current waveform, noise

characteristics, and power efficiency, given power traces from real-world workloads or

voltage scaling.

• As a comprehensive design exploration tool, Ivory covers a wide spectrum of IVR

topologies and a variety of IVR metrics for hierarchical composition of multi-stage

on-chip and off-chip power delivery networks and provides compatible interfaces with

architecture simulators.

Two case studies with the system-level design exploration tool Ivory are presented:

• Case study I investigates the optimal power delivery system in a many-core GPU archi-

tecture, and reveals that a distributed IVR configuration can outperform a conventional

off-chip VRM’s output efficiency by 9.5%.

13

• Case study II explores the IVR-enabled hierarchical power delivery with a microsecond

level DVFS for a heterogeneous CPU-GPU system. This DVFS can achieve 12.5% and

50.0% net energy improvement for CPU and GPU respectively.

2.2 Background and Related Work

The benefits of integrated fine-grain voltage regulation [31] have driven recent advancements

in device fabrication [34, 40], circuit implementation [33, 41], and system integration of in-

tegrated voltage regulators (IVRs) [35, 37]. In this section, we review the current state of

IVR designs and implementations, especially in the context of the entire PDS of modern

processors.

2.2.1 Conventional Power Delivery System and Efficiency

The underlying physical mechanism to convert and transfer electron charges from the higher

supply voltage on the motherboard to the much lower supply voltage on the microprocessor

chip invariably causes energy loss. The energy loss in power delivery can be broken down

into three parts:

First, energy is lost in voltage conversion to step down the supply voltage [42]. We define the

conversion efficiency of a voltage regulator (ηV R) as the ratio between the power it delivers

at the voltage regulator output over the power it consumes at the input. ηV R is usually a

function of the step-down conversion ratio α. A high performance off-chip switching VRM

can deliver over 90% conversion efficiency, but the efficiency is degraded at a lower output

voltage with a higher step-down ratio [43].

14

The second part of the energy loss occurs in the power delivery networks mostly because

of heat dissipation when current runs through the parasitic resistance that exists along the

path of the power delivery network. This loss is related to the IR-drop component of the

supply voltage noise [44,45]:

ηPDN “
RcorepVcoreq

pRPDN `RcorepVcoreqq
, (2.1)

where RPDN represents the total parasitic resistance contributed by the power delivery net-

work, and Rcore represents the equivalent resistive impedance of the computational load as

a function of Vcore. The definition of Rcore suggests that Rcore “ Vcore{Icore. For a fixed Vcore

value, Rcore is a measure of the power rating.

The third and often overlooked part is the energy overhead incurred by raising the supply

by a non-negligible voltage margin, ∆V “ Vcore ´ Vmin, to accommodate the supply voltage

noise and sustain fault-free operation [46,47]. We can express this component as η∆V :

η∆V “
PcorepVminq

PcorepVcoreq
“
VminIcorepVminq

VcoreIcorepVcoreq
, (2.2)

where Pcore and Icore represent the power consumption and the current load of the processor

core as a function of the core supply voltage (Vcore and Vmin).

Based on above analysis, the full power delivery efficiency can be expressed as

ηPDS “
PcorepVminq

Psrc
“ ηV R ¨ ηPDN ¨ η∆V , (2.3)

where Psrc is the total power drawn from the source.

15

2.2.2 Integrated Voltage Regulator

A voltage regulator converts an input voltage to an output voltage at a different level that

serves as the supply to load circuits. Linear and switching regulators are the two main types,

and they differ most notably in their efficiency ranges. The linear regulator’s efficiency is

determined by the input/output voltage ratio, whereas the switching regulator yields higher

efficiency even with a higher conversion ratio.

Due to their lower switching frequencies (ă 10MHz), switching regulators usually require

large discrete passive components such as capacitors and inductors to mitigate static ripples.

Recent technology advances make it possible for switching regulators to operate at much

higher frequencies and to be integrated on the same die as processors [34,40]. Buck convert-

ers [48] and switched-capacitor converters [33, 34, 49] are two types of topologies commonly

adopted for such IVRs, in addition to low dropout linear regulators (LDO). While a buck

converter requires both an inductor and a capacitor, it can sustain a relatively constant con-

version efficiency over a wide output range. In contrast, the inductor-free switched-capacitor

topology benefits from higher capacitor density with technology scaling but incurs a linear

drop in efficiency when its output voltage deviates from its peak efficiency points. The

efficiencies of both the switched-capacitor and the buck converter are sensitive to device

parameters that depend on technology and process options.

Prior work on the system-level impact of IVR provides fragmented evaluations on a few

fixed configurations of technology/ processes, topologies, input/output voltage ratios, and

load current levels [31,32]. Therefore, the findings cannot easily be extended to different use

cases. While analytical models of the buck [50] and switched-capacitor converters [49, 51]

16

exist, they primarily focus on modeling individual IVRs as stand-alone blocks, and thus are

unable to handle integration with the entire PDS.

2.2.3 IVR-enabled Power Delivery System and Efficiency

As shown in Fig. 2.1, in an IVR-enabled PDS, voltage conversion is moved from off-chip to

on-chip. Because the on-chip die space is limited, IVRs adopt high frequency switches to

compensate for the reduced size of passive components like capacitors and inductors. As the

high frequency switches may cause more power loss, IVRs usually suffer from lower conversion

efficiencies than the conventional off-chip voltage regulator modules (VRMs). After moving

voltage conversion on chip, the current that goes through power delivery network and the

current that loses power to parasitic resistance are reduced by 1
α

and 1
α2 respectively.

As voltage regulation is now located closer to the load, an IVR-enabled PDS enjoys multiple

intrinsic benefits. In a conventional PDS with an off-chip VRM, the voltage margin, ∆V “

Vcore´ Vmin, causes a non-negligible power loss. In an IVR-enabled PDS, we can potentially

reduce the voltage margin to mitigate the energy overhead. Besides, IVRs open up the

opportunity to faster power management at the microsecond level. In this chapter, we

present two case studies to reveal the benefits of IVR-enabled PDS.

2.2.4 Related Work

Proof-of-concept circuits [52–56] and silicon prototypes [57–62] have been presented previ-

ously to explore the designs and benefits of integrated voltage regulators (IVRs) and IVR-

enabled PDSs. Burton et al. [63] presented a fully integrated voltage regulator design (FIVR)

17

on commercial 4th generation Intel® Core™ SoCs with improved power delivery efficiency.

Fluhr et al. [64] presented the design of POWER8™ Processor powered by integrated voltage

regulation. Zimmer et al. [65] designed integrated switched capacitor voltage regulator that

can support a sub-microsecond scale fast DVFS power management.

On the system side, Zhuo et al. [66] and Zhou et al. [32] proposed cross-layer infrastructures

for the co-exploration of power delivery and system architecture, especially focusing on the

power delivery network supply noises from parasitic components. Kim et al. [31] evaluated

the system-level benefits from fast DVFS supported by a fixed IVR-enabled PDS. Zeng et

al. [67] studied the system dynamic stability of integrating a large number of LDO on-chip

voltage regulators, and found the design offers a strong local load regulation and facilitates

system-level power management. Wang et al. [68] developed PowerSoc which is a model-

ing, analysis, and optimization platform for buck converter based PDS. Based on analytical

models, PowerSoc provides an accurate and fast evaluation of static characteristics, such as

power efficiency, transient response, and cost. Zhan et al. [69] proposed a heterogeneous

voltage regulation (HVR) architecture, exploring the rich heterogeneity and tunability of

HVR. They developed systematic workload-aware power management policies to adapt het-

erogeneous VRs with respect to workload change at multiple temporal scales. These policies

significantly improved the system’s power efficiency while providing a guarantee for power

integrity. However, none of these previous works are able to have a comprehensive study

and fair comparison across different IVR typologies and IVR-enabled PDSs in either static

or dynamic characteristics from a system-level. To fill this need, we present Ivory 2.0 a

system-level early stage modeling framework, which can accurately estimate both the static

and dynamic behaviors of IVRs and IVR-enabled PDSs.

18

Architecture Parameters

 Range of Vin, Vout,

 Average and Max Iload

Technology Parameters

 MOS device, Cap,

 Inductor, Wire

PDN Parameters

 LPCB, RPCB, Lpkg, Rpkg

Optimization Target

 Max efficiency

 Min Power/area/cost

Model Interface

C
o

n
fi

g
u

ra
ti

o
n

Exploration Environment

Ripple

Area

Power

Dynamic

Characters

Results

O
p

ti
m

iz
a

ti
o

n

Design

Parameter

Module
Power /Area

/Ripple

Module

Design

Optimizer

Module

Arch. Tech.

Optimized Integrated Voltage Regulator

Dynamic Response Module

In
te

rf
a
c
e

Power Trace

 Core/Cache

 …...

User Input

Architecture

Simulation SPICE 3 Circuit Simulator

W
o

rk
lo

a
d

Transient

Voltage

Current

Efficiency

...

Dynamic

Static

Optimized IVR-enable Power Delivery System

Figure 2.2: Block diagram of the IVR and IVR-enabled PDS system-level modeling frame-
work.

2.3 Modeling Methodology

Ivory’s system-level model enables rapid design exploration of IVR-enabled PDSs for com-

puting systems with diverse configurations. Towards this end, it is crucial to capture the

main parameters that critically determine the overall PDS characteristics such as the power

consumption (loss) of each component in the PDS under static load conditions, and the

dynamic transient voltage, current and power variations and the system’s responses under

different scenarios. Here, we present a detailed description of the modeling framework and

methodology to obtain accurate estimates of these characteristics.

2.3.1 System-Level Modeling Framework

An overview of IVR system-level modeling framework is shown in Fig. 2.2. Users input

high-level parameters, such as the input/output voltage range and maximum load current.

19

Technology parameters that characterize CMOS switches, capacitors, and inductors in the

IVR are built-in and extensible when necessary, with a comprehensively-compiled database

containing MOSFET and capacitor data from 130 nm down to 10 nm, based on ITRS and

PTM models [70] as well as surface-mounted-inductor and integrated-inductor data recently

published [40,48]. By default, the static module optimizes for maximum conversion efficiency

(to reduce power delivery overhead); it also allows users to specify a different optimization

target, such as area. The dynamic module considers the dynamic responses in IVR-enabled

PDSs. The internal structure of system-level modeling consists of the following key modules:

• Design parameter module reads in user input and technology information, such as

input/output voltage, load power, power switch width, capacitor/inductor density and

so on.

• Power/ area/ ripple static module calculates power consumption, static voltage

ripple, and die/board area for various building blocks accross different IVR topologies,

based on design parameters.

• Design optimizer module calculates the optimal IVR designs based on the specified

technology, architecture configurations and basic circuit design guidelines. The system-

level modeling can further support run-time optimization to achieve the desired power

delivering performance considering the PDS dynamic responses.

• Dynamic response module rapidly models the dynamic responses of IVRs and IVR-

enabled full PDSs under load current transients and/or external commands with the

help with SPICE 3 circuit simulator.

Advanced users familiar with IVR design trade-offs can leverage built-in interfaces to spec-

ify design parameters directly. Our model not only considers both the static performance

20

Drivers
Power

Switch

Feedback

SC Converter

Controller

Clock
Generator

CFLY

Cd,ext

ILoad

Interleaved xN

(a) Switched-Cap. Converter

Drivers
Power

Switch

Feedback

Buck Converter

L
Controller

Clock
Generator

Cd,ext

ILoad

Interleaved xN

(b) Buck Converter

Drivers
Power

Switch

Feedback

Linear Regulator

FLYC

Controller

Clock
Generator

Cd,ext

ILoad

Interleaved xN

(c) Linear Regulator

Figure 2.3: Three types of converter topologies.

characteristics of the IVR-enabled PDSs, but also applies distinctive modeling strategies to

accurately capture the system dynamic behaviors, which we will elaborate in the remaining

sections.

2.3.2 Power/ Area/ Ripple Static Module

By power/ area/ ripple static modeling, we refer to the calculation of the IVR conversion

efficiency, area, and voltage ripples based on static assumption of average load conditions

and statistics. In contrast, the dynamic module described in Section 2.3.3 deals with an

IVRs and response to load current transients from dynamic power traces. The static model

applies to switched-capacitor converters, buck converters, and linear regulators, which are

the most commonly used IVR topologies in processor’s PDSs.

Switched-capacitor converters: Fig. 2.3(a) illustrates a basic switched-capacitor circuit.

The system-level modeling adopts the analytical model introduced by Seeman [51] and Le

[49]. The model derives the charge multiplier vectors (ac,i and ar,i) based on the switch

topology, and uses these vectors to calculate both the slow (RSSL) and fast switching (RFSL)

21

limit output impedances. RSSL and RFSL can be expressed as:

RSSL “
p
ř

i |ac,i|q
2

Ctotfsw
RFSL “

p
ř

i |ar,i|q
2

GtotDcyc

. (2.4)

Ctot is the total amount of fly capacitance, Gtot is the total amount of switch resistance,

fsw is the switching frequency, and Dcyc is the duty cycle of the switching phase signals

in a switched-capacitor IVR. The power losses due to the series of output impedances is

I2
load

a

R2
SSL `R

2
FSL. The losses due to the switch parasitic capacitance, bottom plate par-

asitic capacitance, and the gate leakage current from the fly capacitors are calculated to

model the total power loss from the switching cells. Our model considers the commonly

used Series-Parallel and Symmetric Ladder switched-capacitor topologies because both re-

quire capacitors with the same voltage rating and thus are suitable for on-chip implementa-

tion [51]. Researchers can plug in their own switched-capacitor topology by providing the

charge multiplier vectors explicitly.

Buck converters: A typical buck converter is shown in Fig. 2.3(b). We adopt an existing

validated analytical model that calculates the power loss of buck converters can be found

in previous work on off-chip voltage regulators [50]. This model is based on the high-side

and low-side switch resistance/capacitance, inductor size, parasitic resistance, capacitance,

switching frequency, and PWM signal duty cycle. We extend this model to on-chip regulators

by deriving the required parameters from the technology characteristics of switches and

inductors, using parameters stored in its internal device database. Compared to an off-chip

voltage regulator with a low switching frequency, the change of inductor characteristics with

frequency is more pronounced in buck IVRs, and this effect is considered in the proposed

system-level model by a polynomial-fitted frequency-dependent coefficient of the inductance.

22

Linear regulators: Analog Gm amplifiers have been traditionally used in linear regulators.

Recent design trends [71] have increasingly adopted digital comparators and controllers to

achieve faster transient responses. Therefore, our Ivory model evaluates linear regulators

with a digital feedback path, as illustrated in Fig. 2.3(c). Since a current efficiency close to

99% can usually be achieved by state-of-the-art linear regulator design for moderate load

currents, the conversion efficiency of a linear regulator in this load range will closely follow

a linear relationship satisfying Vout{Vin.

Common building blocks: As illustrated in Fig. 2.3, different IVR topologies share many

of the same circuit building blocks, such as power switches, drivers, comparators, adigital

controller, and a clock generator – not to mention the basic capacitor and inductor devices.

By commensurately modeling these shared building blocks across all topologies, the system-

level modeling guarantees fair comparisons between different topologies, given the same

technology and design constraints, which is of paramount importance for the efficiency-

driven design exploration discussed in Section 2.5.2. For advanced digital technology, the

power consumed and the area occupied by the digital feedback system are minimal compared

to the moderate load current (10s of mA) and the on-chip capacitor and inductor needed

for IVRs. Despite its insignificant power and area proportion, such peripheral circuitry is

still important for transient response analysis and the scalability studies of IVR designs, and

therefore is taken into account in the dynamic module of this system-level modeling.

In the design optimization, we adopt the traditional hyperparameter optimization called

grid search, or parameter sweep, which is simply an exhaustive searching through a manu-

ally specified subset of the hyperparameter space of a learning algorithm. The grid search

algorithm is guided by performance metrics such as conversion efficiency or die area.

23

R

Load

SC IVR 2-2

R

Load

Buck IVR 2-1

R

Load

Local Power Grid 1

Buck IVR 1-1

VRM

Buck two-way averaging

switch-free model

Req

Cout

L

 inV

Req L/D

CD

R/D

Switched-capacitor two-way

averaging switch-free model

Req 1

C
o

u
t

C
e

q

Req 2

 inV

PCB/

PKG

Paras

itics

Local Power Grid 2

Local Power Grid 3

Figure 2.4: Hierarchical power delivery system with integrated voltage regulator (IVR) dy-
namic models.

2.3.3 Dynamic Response Module

Besides static characteristics, the dynamic responses of IVRs also determine critical proper-

ties of the PDS, such as system reliability, efficiency and power management flexibility. The

dynamic module models the dynamic responses of the three main types of IVRs in PDSs.

Fig. 2.4 shows a hierarchical IVR-enabled PDS where the supply voltage is stepped down

by multiple off-chip VRMs and on-chip IVRs before reaching the workloads. To effectively

model these coexisting “serial and parallel” voltage regulators and the dynamic responses of

the full PDSs, we propose a two-way average switch-free model which models each voltage

regulator as a two port network without periodic switches. This model not only can cap-

ture all the critical dynamic responses but also can filter out the static voltage ripples from

periodic switches, whose magnitudes are negligible in modern multi-phase IVR designs.

24

Figure 2.5: Interleaved (multi-phase) buck converter.

The two-way average switch-free model uses a power delivery network side and a load side to

model each IVR as shown in the dynamic models of Fig. 2.4. As it models IVR as a switch-

free two-port network, the model can be directly plugged into the power delivery network. In

this model, the IVR switch dynamics are considered as average values of currents and voltages

within a switching period by employing a weighted combination of the state equations of

switching phases in pulse-width modulated (PWM) converters. By avoiding the periodic

switches in the dynamic model, this model improves the simulation speed by 1000x than

the direct SPICE simulation, and also supports the AC analysis of the hierarchical PDS

including multiple IVRs. Compared with a real voltage regulator, this average approach

only neglects the static voltage ripple effects by using switching state-space averaging (SSA)

method [72]. Generalized transfer function (GTF) can be further deployed to evaluate the

influence from this periodic switches ripples. Here, we use a classic buck converter to derive

and demonstrate how the this model captures the IVR dynamic responses in the PDS. The

derivation and demonstration are not limited to buck converters, and can also be applied to

other switching voltage regulators. We will start with the two-way average model and then

present the GTF analysis for the static voltage ripples.

25

An integrated buck converter is shown in Fig. 2.5. Its single-phase state space model can

be described as:
9X “ AXptq `Biuptq, i “ 1, 2,

y “ CXptq `Duptq,

(2.5)

where

Xptq “

»

—

—

–

VCptq

ILptq

fi

ffi

ffi

fl

, A “

»

—

—

–

´ 1
RC

1
C

´ 1
L

0

fi

ffi

ffi

fl

, B1 “

»

—

—

–

0

1
L

fi

ffi

ffi

fl

, B2 “

»

—

—

–

0

0

fi

ffi

ffi

fl

,

yptq “ Voptq, C “

„

1 0

, D “

„

0

, uptq “ Vinptq.

Modeling the switch period with the average model, the input matrix B is written as:

B “ αB1 ` p1´ αqB2 “

»

—

—

–

0

α
L

fi

ffi

ffi

fl

,

where α is the duty ratio of the periodic switch, which is also the voltage conversion ratio

of the integrated buck converter.

Thus, the above system can be modeled as an average model free system with input V
1

in and

B
1

.

V
1

in “ αVin, B “

»

—

—

–

0

1
L

fi

ffi

ffi

fl

,

Similarly, from power delivery network to the IVR and its loads, the IVR and its loads can

be modeled as Eq. (2.6).

9X “ AXptq `Buptq, (2.6)

26

(a) PLTV system. (b) Output of PLTV system.

Figure 2.6: Periodical linear time-varying (PLTV) systems.

where

Xptq “

»

—

—

–

VCptq
α

ILptq

fi

ffi

ffi

fl

, A “

»

—

—

–

´ 1
R
α
Cα

1
Cα

´ 1
L
α

0

fi

ffi

ffi

fl

, B “

»

—

—

–

0

1
L
α

fi

ffi

ffi

fl

, uptq “ Vinptq.

This two-way average model supports the analysis and simulation of hierarchical power

delivery networks by bridging the lower level and higher level power delivery network through

IVRs. Similarly, the dynamic model of switched capacitor IVRs can be derived from the

two-way average model [51].

This two-way average switch-free model discussed above ignores the static voltage ripples

from periodic switches. The GTF analysis is derived to include the disturbances of periodic

switches filtered out in the two-way average switch-free model. Continued from Eq. (2.5),

the time domain solution of the integrated buck converter is

xptq “ eApt´t0qx0 `

ż t

t0

eApt´τqBiupτq dτ, t ě t0. (2.7)

27

Phase 1 (switch on): When t P rkT, kT `DT q,

xpkT`DT q“eADTxpkT q̀

ż kT`DT

kT
eApkT`DT´τqB1upτq dτ. (2.8)

Phase 2 (switch off): When t P rkT `DT, pk ` 1qT q,

xptq “ eApt´kT´DT qxpkT `DT q. (2.9)

At the end of period t “ pk ` 1qT ,

xppk`1qT q“eATxpkT q`eApk`1qT

ż kT`DT

kT
e´AτB1upτq dτ (2.10)

Because the buck converter is a non-linear system, small signal analysis is used in analyzing

its dynamic response. The input can be expressed as the combination of a DC value and

a AC component of frequency ω. uptq “ u0 ` ruejωt. The output at steady-state contains a

DC component and an AC component of the same frequency. The GTF for above system is

given by

HGTF pjΩq “ CpejΩT I ´ eAT qeAT
ż DT

0
e´AτB1e

jΩτ dτ, (2.11)

where I is the identity matrix. The impulse response and transfer function can be extended

to time-varying systems. The output is

yptq “

ż 8

´8

hpt, τqupτq, dτ, hpt, τq “ Rrδpt´ τqs, (2.12)

where hpt, τq is the generalized impulse response, R is an operator describing the system

behavior, t is the observation time, and τ is the excitation time.

28

The bi-frequency transfer function is

Hpω,Ωq “

ż 8

´8

ż 8

´8

hpt, τqe´jpωt´Ωτq,dtdτ , (2.13)

where Ω and ω are the input and output frequencies.

The time-varying transfer function can be written as

Hpt,Ωq “

ż 8

´8

hpt, τqe´jΩpt´τq,dτ . (2.14)

Here, Hpt,Ωq is a periodic function of t, w.r.t. ωs “
2π
T

, and the system is a periodic linear

time-varying (PLTV) system [73] as shown in Fig. 2.6. The LTI relationship can be recovered

for n “ 0, which is exactly modelled by the two-way average switch-free model.

Hpt,Ωq “
n“8
ÿ

n“´8

HnpΩqe
jnωst. (2.15)

The frequency-dependent Fourier coefficients HnpΩq are called aliasing transfer functions:

HnpΩq “
1

T

ż T

0
Hpt,Ωqejnωst. (2.16)

The switches in the buck converter make the system non-linear by introducing new har-

monics at multiples of ωs, which can be evaluated by GTF analysis.

Based on the model of single-phase buck converter, the dynamic model of the modern inter-

leaved buck converter (also called a multi-phase buck converter) can be derived as follows.

29

For a N-phase buck converter, its state space model is

9X “ AXptq `Biuptq, i “ 1, 2, ..., 2N,

y “ CXptq `Duptq,

(2.17)

where

Xptq “

»

—

—

—

—

—

—

—

—

—

—

–

VCptq

IL1ptq

...

ILN ptq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, A “

»

—

—

—

—

—

—

—

—

—

—

–

´ 1
RC

1
C
¨ ¨ ¨ 1

C

´ 1
NL

0 ¨ ¨ ¨ 0

¨ ¨ ¨

´ 1
NL

0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

B1 “

»

—

—

—

—

—

—

—

—

—

—

–

1
NL

0

¨ ¨ ¨

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B2 “

»

—

—

—

—

—

—

—

—

—

—

–

1
NL

1
NL

¨ ¨ ¨

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, ¨ ¨ ¨ , BN “

»

—

—

—

—

—

—

—

—

—

—

–

1
NL

1
NL

¨ ¨ ¨

1
NL

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

BN`1 “

»

—

—

—

—

—

—

—

—

—

—

–

0

1
NL

¨ ¨ ¨

1
NL

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, BN`2 “

»

—

—

—

—

—

—

—

—

—

—

–

0

0

¨ ¨ ¨

1
NL

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, ¨ ¨ ¨ , B2N “

»

—

—

—

—

—

—

—

—

—

—

–

0

0

¨ ¨ ¨

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

C “

„

1 ¨ ¨ ¨ 0

, D “

„

0

,

30

yptq “ Voptq, uptq “ Vinptq.

According to the state-space description of the multi-phase interleaved buck converter in

Eq. (2.17), it has the same two-way average model with the conventional single phase

buck converter. For an N phase interleaved buck converter, the GTF model can be derived

with 2N phases in Eq. (2.7) - (2.10). In modern multi-phase interleaved voltage regulator

designs, the static voltage ripple effects from periodic switches are sufficiently mitigated.

When the number of interleaved phases N Ñ 8, which is the ideal voltage regulator, there

will not be any ripple effects from periodic switches and two-way average switch model will

reflect all the dynamic behaviors. Now, we have presented a general IVR dynamic model.

Besides, any customized feedback laws for IVRs could also be easily reflected in this model

by adjusting the duty ratio α, which is a part of IVR dynamic module. For example in the

voltage regulator with PID control, duty ratio is controlled by the PID controller so that the

expression of duty ratio in a dynamic model will be expressed by α ` kPIDpVref ´ Voutq.

2.4 Model Validation

We validate Ivory’s analytical model against both SPICE simulation results and measure-

ment data from recent publications, spanning different technology nodes, input/output volt-

age ranges, and power levels. All these results demonstrate that the system-level model can

faithfully model and explore the design space of voltage regulator configurations in realistic

PDS settings.

31

For the static model, validation data for the switched-capacitor IVR model is presented

in Fig. 2.7. On the left, Ivory is compared against silicon measurements taken from a

reconfigurable switched-capacitor implemented in 32nm SOI process [49]. It is clear that

Ivory adequately models the measured data for the 3:2 and the 2:1 configurations until an

efficiency drop occurs past the peak efficiency. Normal switched-capacitors do not function

past the efficiency cliff region. Given that these points are non-functional and are mostly

likely caused by aggravated leakage current when the power switch exceeds its intended

operating range, we conclude that Ivory is sufficiently accurate over the realistic, functional

range of operation. Data points on the right plot were generated by SPICE simulations of

two sets of 2:1 and 3:1 switched-capacitor converter designs in 40nm CMOS process [33].

Regular CMOS capacitors are used for the low-power density design, whereas embedded

trench capacitors [34] are used for the high-power density design. The data validates Ivory’s

ability to model the conversion efficiency across all four designs. The buck converter IVR

topologies are validated in Fig. 2.13. The measured data on the left is obtained from a

2.5D buck converter using an integrated inductor-on-silicon interposer, a 45nm SOI process

and an embedded trench capacitor. The buck converter operates at different load current

levels [48]. On the right data is from our buck design simulated in a 40nm CMOS process.

Ivory again proves capable of modeling voltage regulator efficiency, validating its internal

buck converter modeling framework. Additionally, the analytical buck model used in Ivory

has previously been validated against off-chip VRMs [50].

For the dynamic model, we validate the IVR two-way switch-free average model with SPICE

simulations of recent IVR designs in both the time domains and frequency domains. Fig. 2.9

shows the comparison of the step responses from the proposed two-way switch-free average

model and the measurements of integrated buck voltage regulators [74] SPICE simulation

with L “ 0.1uH, C “ 0.5uF , fsw “ 20MHz, D “ 0.2, load R “ 0.5Ω and different phases.

32

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Output Voltage (V)

40

50

60

70

80

E
ff

ic
ie

n
cy

 (
%

)

3:2 Ivory

2:1 Ivory

3:2 Cadence

2:1 Cadence

(a) Silicon measurements.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Output Voltage (V)

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
cy

 (
%

)

low 3:1 Ivory

high 3:1 Ivory

low 2:1 Ivory

high 2:1 Ivory

low 3:1 Cadence

high 3:1 Cadence

low 2:1 Cadence

high 2:1 Cadence

(b) SPICE simulations.

Figure 2.7: Efficiency validation for SC converters.

0.0 0.2 0.4 0.6 0.8 1.0
Output Voltage (V)

0

10

20

30

40

50

60

70

80

E
ff

ic
ie

n
cy

 (
%

)

1A Ivory

3A Ivory

4A Ivory

1A Measured

3A Measured

4A Measured

(a) Silicon measurements.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Output Voltage (V)

40

45

50

55

60

65

70

75

80

85

E
ff

ic
ie

n
cy

 (
%

)

1A Ivory

2A Ivory

1A Cadence

2A Cadence

(b) SPICE simulations.

Figure 2.8: Efficiency validation for buck converters.

33

0 1 2 3 4 5

Time (µs)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

V
o

lt
a

g
e

 (
V

)

1-phase buck IVR(SPICE)

10-phase buck IVR(SPICE)

buck IVR switch free average model

0.6 0.8 1 1.2 1.4

1

1.1

1.2

Figure 2.9: Interleaved (multi-phase) buck converter dynamic responses in time domains.

Although the 1-phase buck converter has voltage ripples from the periodic switches, the

voltage ripples are effectively mitigated in the interleaved multi-phase (10-phase) designs.

This kind of static voltage ripples become trivial in real designs as interleaved multi-phase

designs are widely used in modern IVRs. The two-way switch-free average model naturally

filters out the ripples from periodic switches but accurately captures all critical dynamic

responses. Fig. 2.10 shows the output and input frequency responses of recent integrated

buck voltage regulator designs (case 1 [75], case 2 [74], and case 3 [76]). The two-way

switch-free average models (plotted with curves) match the SPICE simulations (plotted by

points) of the full integrated buck converters below half of the switching frequency. The

generalized transfer function (GTF) can further analyze the interference of these voltage

ripples as described in Section 2.3.3 when needed.

2.5 Case Study I: Many-core GPU PDS

To demonstrate how Ivory enables early stage design exploration at upper levels of the

system stack, we present a case study on finding the optimum PDS configuration in the

context of a GPU style many-core processor. Our goal is not to champion any one particular

34

Figure 2.10: Interleaved (multi-phase) buck converter frequency responses in frequency do-
mains.

configuration, rather it is to demonstrate how Ivory can be used for the early stage design

exploration of the PDS.

2.5.1 System Configuration

In this case study, we focus on the comparison between the IVR-based and a conventional off-

chip VRM-based PDS. We assume an embedded GPU system with four cores (i.e. Streaming

Multiprocessors, SMs) that form a 2ˆ2 grid, but note that Ivory allows an arbitrary number

of cores and layout. The Fermi architecture based SM has an average power of 5 W and

a peak power of 14 W. This system uses the same off-chip and on-chip PDN equivalent

circuit as in GPUVolt [77], with a 3.3 V supply at the board and a 0.85 V SM nominal

voltage + 0.15 V voltage guardband. The four SMs are modelled with 12ˆ12 on-chip power

grids, where each SM is modelled with 3ˆ3 grid points. The maximum area budget for the

IVR is 200 mm2, scaled to be similar to the IVR area in a 4-core Intel CPU with 45 nm

technology [63]. The other input parameters of Ivory are summarized in Table 2.1.

35

Table 2.1: Summary of Ivory input parameters.

Configuration Value
Max. Area(mm2) 200

Total Average Power(W) 20
Total Peak Power(W) 56

Input Voltage(V)/Output Voltage(V) 3.3/1
Max Number of Distributed IVRS 4

Rsw(Ω¨µm)/L(nH/mm2)/C(nF/mm2) 40/1/10
Off/On-Chip PDN parameter Roff,on/Loff,on

Table 2.2: Summary of design space exploration.

Topology 3:1 SC Buck LR
Distri. No. 1/2/4 1/2/4 1/2/4

Eff.(%) 81.3/81.2/81/ 80.4/80.2/80 33.2/30.1/30
Ripple(mV) 1.6/1.6/1.5 1.6/1.5/1.2 5.1/4.7/4.1
fsw(MHz) 141/139/137 59/57/56 300/300/300

2.5.2 IVR Design Space Exploration

In this study, we set the maximum efficiency as the optimization target, and use Ivory to

find the optimal IVR design (Fig. 2.14). We find the buck has higher efficiency than the

SC converter with a more stringent area budget, although a high capacitor density process

can be used to alleviate such hurdles. With the design constraints shown in Table 2.1, Ivory

performs the design space exploration and gives the optimal IVR solution shown in Table

2.2.

2.5.3 Power Delivery System Dynamic Behaviors

We find that a 32-phase interleaved 3:1 switched-capacitor converter has the highest efficiency

for this GPU system, and use it to optimize the dynamic response and PDS optimization.

We use the dynamic module to explore the centralized and distributed IVR designs, and we

36

0.9

0.95

1

1.05

1.1
V

o
lt

ag
e

N
o

is
e(

V
)

BACKP (O
ff V

RM)

BACKP (1
 Cen IV

R)

BACKP (2
 Dis IV

Rs)

BACKP (4
 Dis IV

Rs)

BFS2 (O
ff V

RM)

BFS2 (1
 Cen IV

R)

BFS2 (2
 Dis IV

Rs)

BFS2 (4
 Dis IV

Rs)

CFD (O
ff V

RM)

CFD (1
 Cen IV

R)

CFD (2
 Dis IV

Rs)

CFD (4
 Dis IV

Rs)

HOTSP (O
ff V

RM)

HOTSP (1
 Cen IV

R)

HOTSP (2
 Dis IV

Rs)

HOTSP (4
 Dis IV

Rs)

KMN (O
ff V

RM)

KMN (1
 Cen IV

R)

KMN (2
 Dis IV

Rs)

KMN (4
 Dis IV

Rs)

LUD (O
ff V

RM)

LUD (1
 Cen IV

R)

LUD (2
 Dis IV

Rs)

LUD (4
 Dis IV

Rs)

MGST (O
ff V

RM)

MGST (1
 Cen IV

R)

MGST (2
 Dis IV

Rs)

MGST (4
 Dis IV

Rs)

Benchmark Name (VR Configuration)

Lower voltage noise with distributed IVRs

Figure 2.11: Voltage noise across benchmarks and VR config.

compare the results from previous default setting with the conventional off-chip VRM design

which adopts a 6-phase buck converter [78]. The dynamic response analysis compares the

IVR designs through a workload-dependent analysis. We feed Ivory with GPU SM power

traces from performance and power simulation infrastructures (GPGPUSim 3.2.0 [79] and

GPUWattch [80]) in running large programs from the Rodinia suite [81] and NVIDIA CUDA

SDK.

Ivory allows us to compare the run-time voltage noise of all centralized and distributed IVR

configurations. In the centralized IVR configuration, the IVR is located in the middle of

the 12x12 on-chip power grids, while in the distributed IVR configurations, the four IVRs

are evenly distributed in the 12x12 on-chip power grids. The voltage statistics of the GPU

system running different workloads are shown in box plots in Fig. 2.11. As indicated by

the tight boxes with short whiskers, the design with four distributed IVRs is the optimal

solution in supply voltage noise mitigation. Fig. 2.12 shows the supply voltage trace of the

workload “CFD” with different VR designs. The voltage noise range in the off-chip VRM,

the centralized IVR, the two distributed IVRs, and the four distributed IVRs scenarios are

125 mV, 59 mV, 55 mV, and 25 mV, respectively.

37

Besides the exhaustive time domain simulation of supply voltage noise with a run-time

workload power trace, Ivory also supports the AC analysis of the full PDS including VRMs

and IVRs and customized feedback controls. Fig. 2.13(a) from Ivory presents the effective

impedance to load variations of off-chip VRM-based, centralized IVR-based, and distributed

IVRs-based PDSs. For a closer examination of each point, we index the 12ˆ12 on-chip

power grid with 12ˆ12 X-Y coordinates where (x6,y6) is the middle grid point of the power

delivery network. The effective impedance plot directly demonstrates that the distributed

IVR configuration has a lower effective impedance and less supply voltage noise than the

centralized IVR configuration, especially for load points located far away from the IVRs, like

the grid point (x2,y2).

The constant values in the low frequency range are from the voltage regulator’s internal resis-

tance and the power delivery network’s parasitic resistance, which were ignored in previous

works. In previous work such as [44], VRMs are directly modeled as a fixed voltage source

for simplicity. To account for the voltage regulator’s internal resistances and power delivery

network parasitic resistance which is also called IR drop, an extra voltage margin is added

to the fixed voltage source as load line compensation. However, in real voltage regulator

designs and PDSs, feedback control plays an important role in mitigating the static volt-

age drop and the low frequency voltage noise within the regulation frequency. Fig. 2.13(b)

shows the effective impedance after introducing feedback control (for example proportional

feedback control k=3). In the high frequency range, the resonant impedance in an off-chip

VRM-based PDS exceeds the feedback regulation frequency, but it can be mitigated by IVR,

especially by a distributed IVR-based PDS. Furthermore, the distributed IVR-based PDS

has a lower supply noise impedance over the full range, especially at the resonant frequency.

In the medium and low frequency ranges, and within the regulation frequency ranges, the

feedback control can further help mitigate static IR drop and low frequency voltage noise.

38

0 1 2 3 4 5 6 7 8 9 10
0

5

10

P
o

w
er

(W
) GPU workload power trace

0 1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

V
o

lt
ag

e(
V

)

Off-Chip VRM

0 1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

V
o

lt
ag

e(
V

)
Centralized IVR

0 1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

V
o

lt
ag

e(
V

)

2 Distributed IVRs

0 1 2 3 4 5 6 7 8 9 10
Time (7s)

0.9

1

1.1

V
o

lt
ag

e(
V

)

4 Distributed IVRs

Figure 2.12: Voltage noise waveforms (CFD) with VR config.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Frequency (Hz)

0

0.01

0.02

0.03

0.04

0.05

Im
p

e
d

a
n

c
e

off-chip VRM

Centralized IVR(x2y2)

Distributed IVR(x2y2)

Centralized IVR(x6y6)

Distributed IVR(x6y6)

(a) Effective impedance in VRM-based, centralized and dis-
tributed IVRs-based PDS.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Frequency (Hz)

0

0.01

0.02

0.03

0.04

0.05

Im
p
e
d
a
n
c
e

Centralized IVR(x2y2)

Distributed IVR(x2y2)

Centralized IVR(x6y6)

Distributed IVR(x6y6)

Centralized IVR(k=3, x2y2)

Distributed IVR(k=3, x2y2)

Centralized IVR(k=3, x6y6)

Distributed IVR(k=3, x6y6)

(b) Effective impedance in centralized and distributed IVRs
with feedback.

Figure 2.13: Supply voltage noise effective impedance.

39

Figure 2.14: IVR efficiency trade-off
with area.

Figure 2.15: Power delivery system
optimization.

2.5.4 Putting It Together: Power Efficiency Analysis

Ivory lets designers rapidly evaluate the final PDS efficiency through combined static and

dynamic analysis. The static converter design analysis finds the optimal converter with high

converter efficiency and low IR-drop loss. Ivory further optimizes the voltage margin by

identifying the IVR design with the minimal voltage noise that accounts for most of the

voltage margin [82]. Fig. 2.15 shows the power delivery efficiency breakdowns of different

PDS designs. The power efficiency is the percentage of power consumed by cores that perform

the actual computation over total power input to the PDS. The optimal PDS solution by

Ivory achieves a 9.5% power efficiency improvement over the previous off-chip VRM-based

PDS, without any performance loss.

2.6 Case Study II: PDS with Fast Per-Core DVFS

Another significant benefit of an IVR-enabled PDS is fast power management, such as mi-

crosecond level fast DVFS. Computer architects keep pursuing faster power management,

40

Table 2.3: CPU GPU many-core system.

Configuration Value Configuration Value

PCB Supply Volt. 5 V Process Tech. 40 nm

CPU PDN Para. DisPDN GPU PDN Para. GPUvolt

CPU Core Arch. Nehalem GPU Core Arch. Fermi

CPU Core Volt. 0.6-1 V GPU Core Volt. 0.8-1 V

CPU Core Power 0-5 W GPU Core Power 0-14 W

CPU Core L1$. 32 KB Threads per SM 1536

CPU Core L2$. 512 KB Registers per SM 128 KB

CPU Core L3$. 8 MB Threads per warp 32

Execution Order OoOE Mem Bandwidth 179.2GB/s

because faster voltage scaling means higher power and energy efficiency. Voltage regulator

circuit designers usually focus on voltage conversion efficiency under area constraints. In

this case study, we will demonstrate Ivory as the downstream platform, after architecture

level performance analysis and power simulation, to analyze power delivery for many-core

computing systems and bridge the gap between computer architects and voltage regulator

circuit designers.

2.6.1 System Configuration

We consider applying the fast DVFS supported by IVR-enabled PDS on both CPU cores

with an Intel Nehalem (x86) architecture and GPU streaming multi-processors (SMs) with

NVIDIA Fermi architecture. The detailed specifications of this CPU and GPU system are

shown in Table 2.3. The system is powered with a hierarchical IVR-based PDS [31, 68, 69],

shown in Fig. 2.16. The hierarchical IVR-enabled PDS [68, 69] is proposed to adopt an

off-chip VRM to step down the voltage from board level to a intermediate level (for example

1.8V) with higher efficiency. Then the per-core IVR further regulates the intermediate

voltage to the desired core voltage with more flexibility. The off-chip VRM is modeled based

41

Figure 2.16: Hierarchical power delivery system for SoC systems.

Table 2.4: CPU core DVFS frequency and voltage pairs.

Core Freq. (MHz) 2000 1800 1500 1000 800
Core Voltage (V) 1.2 0.9 0.8 0.7 0.6

on a commercial product [78]. The CPU on-chip power grid is scaled from the distributed

power delivery network [44], and the GPU on-chip power grid is from GPUVolt [77], which

are validated with CPU and GPU systems respectively. We will use Ivory to find the IVR

designs that can support the desired microsecond per-core DVFS.

On the architecture side, we use Sniper [83] (with Mcpat) and GPGPUsim [79] (with

GPUWattch) to simulate the architecture level performance and power activities of CPU and

GPU systems. Sniper (with Mcpat) simulates the CPU part, generating run-time statistics

with a granularity of 100 ns, and GPGPUsim (with GPUWattch) simulates the GPU part

at 700 MHz. We use representative benchmarks that cover a wide range of scientific and

computational domains from CPU benchmarks parsec and splash2, and also the GPU bench-

marks from the Rodinia suite [81] and NVIDIA CUDA SDK. The CPU and GPU voltage

and frequency scaling pairs are shown in Table 2.4 and Table 2.5, respectively.

42

Table 2.5: GPU core DVFS frequency and voltage pairs.

Core Freq. (MHz) 700 650 600 550 300
Core Voltage (V) 1.00 0.95 0.91 0.87 0.46

10
5

10
6

10
7

10
8

Frequency (Hz)

0

0.05

0.1

0.15

0.2

0.25

P
o

w
e

r/
F

re
q

u
e

n
c
y
 (

W
/H

z
)

(a) CPU frequency analysis

10
5

10
6

10
7

10
8

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

P
o
w

e
r/

F
re

q
u
e
n
c
y
 (

W
/H

z
)

(b) GPU frequency analysis

Figure 2.17: CPU and GPU power activity frequency analysis in executing benchmark
blackscholes and backp.

2.6.2 IVR Support for Fast DVFS

To guide the IVR designs, we perform a frequency analysis on the power activities of the

CPU and GPU cores in running benchmarks. For example, the CPU and GPU core power

frequency analyses in executing the system benchmarks blackscholes and backp are shown

in Fig. 2.17, where both the CPU and GPU power and performance can reach MHz. We

correspondingly explore the IVR designs that can support fast DVFS, up to microseconds.

Table 2.6: Summary of design space explorations of 16-phase buck IVRs.

DVFS Speed 500ns 2µs 5µs 50µs
Efficiency (%) 77.0 83.3 83.4 84.8

Switch Freq. fsw (MHz) 189 62 53 44
L per-phase (nH) 0.25 0.5 0.75 0.5
C per-phase (µF) 0.125 0.56 0.56 1.125

Area (mm2) 42.9 184.9 187.0 365.9

43

Based on the hierarchical IVR-based PDS in Fig. 2.16, we use the Ivory dynamic module

to explore the design spaces of IVRs with hierarchical PDSs that can support different fast

DVFS. Here, we set the voltage scaling rise time to within 1% of DVFS intervals [58,68,69,84]

and the voltage overshoot to less than 5%. In the design space of an integrated buck voltage

regulator, the passive inductors and capacitors directly and significantly affect the voltage

scaling speed. Fig. 2.18 shows the design space explorations of the inductor and capacitor

sizes for desired voltage scaling speeds, where the blue points indicate that the inductor and

capacitor design parameters can support the desired the CPU fast DVFS. These parameters

further form new constraints and are passed to the static module to find proper IVR design

configurations. Similar approaches are also applied to the GPU SM cores. The key design

parameters for the IVRs that support different speeds of DVFS are summarized in Table 5.1.

When supporting fast DVFS, IVR designs keep reducing the size of on-die inductors and

capacitors to achieve a faster voltage transition, and one prominent side effect is pushing the

switching frequency from tens to hundreds of MHz by increasing the switching frequency.

The higher frequency switching comes at the cost of degrading the conversion efficiency of

the IVRs as the switching loss becomes more significant.

2.6.3 Power Delivery System and Architecture Co-Design

Finally, we evaluate the system’s energy efficiency with fast per-core voltage scaling sup-

ported by this hierarchical PDS. For a fair comparison of the raw benefit from the fast

per-core DVFS given by an IVR, we use a native DVFS mechanism where the instructions-

per-cycle (IPC) value is monitored to adjust the frequency and voltage at run-time. The

energy benefits for different speeds of fast DVFS supported by IVRs on CPU and GPU are

shown in Fig. 2.19 and Fig. 2.20 respectively. The fast DVFS supported by IVR can reach

44

-9 -8.5 -8 -7.5 -7 -6.5 -6

C Capacitor Size (log
10

(x) F)

-9

-8

-7

-6

L
 I
n
d
u
c
to

r
S

iz
e
 (

lo
g 1

0
(y

)
H

) success

fail

(a) 0.5µs voltage scaling

-9 -8.5 -8 -7.5 -7 -6.5 -6

C Capacitor Size (log
10

(x) F)

-9

-8

-7

-6

L
 I

n
d

u
c
to

r
S

iz
e

 (
lo

g 1
0
(y

)
H

) success

fail

(b) 2µs voltage scaling

-9 -8.5 -8 -7.5 -7 -6.5 -6

C Capacitor Size (log
10

(x) F)

-9

-8

-7

-6

L
 I

n
d

u
c
to

r
S

iz
e

 (
lo

g 1
0
(y

)
H

) success

fail

(c) 5µs voltage scaling

-9 -8.5 -8 -7.5 -7 -6.5 -6

C Capacitor Size (log
10

(x) F)

-9

-8

-7

-6

L
 I
n
d
u
c
to

r
S

iz
e
 (

lo
g 1

0
(y

)
H

) success

fail

(d) 50µs voltage scaling

Figure 2.18: Inductor and capacitor sizes for different voltage scaling speeds.

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a

liz
e

d
 E

n
e

rg
y

 C
o

n
s
u

m
p

ti
o

n

Blackscholes

Bodytra
ck

Canneal

Fluidanim
ate

Freqmine

Barnes

Cholesky
Ffm

Radiosity
Radix

No DVFS

50000ns DVFS

2000ns DVFS

500ns DVFS

Figure 2.19: CPU Energy benefit from different speed fast DVFS.

45

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a

liz
e

d
 E

n
e

rg
y

C
o

n
s
u

m
p

ti
o

n

Backp

Hotspot

LavaMD

Pathfin
der

Srad

Blackscholes

Convolutio
n

Dxtc

Mergesort

Sortin
gnetw

orks

No DVFS

50000ns DVFS

2000ns DVFS

500ns DVFS

Figure 2.20: GPU Energy benefit from different speed fast DVFS.

finer granularity and save more energy for CPUs and GPUs. On the CPU side, the 50 µs,

2 µs, and 500ns DVFS have energy saving of 7.65%, 12.5%, and 15.7% on average, and

20.7%, 33.5%, and 43.2% on specific workloads like Canneal. Also, at the GPU side, the

50 µs, 2 µs, and 500 ns DVFS offer energy savings of 18.2%, 50.0%, and 55.4% on average

and 55.8%, 66.6% and 66.9% on specific workloads like Srad and LavaMD. Together with the

results from Ivory, although the fastest DVFS (0.5µs DVFS) achieves the greatest energy

saving, the implementation overheads of IVRs offset the fast DVFS benefits. The 2µs DVFS

is the proper candidate for this hetergenous system especially for the GPU SMs, because

it not only reaps the energy benefits from fast DVFS and the power delivery efficiency im-

provement seen in case study I, but also avoids the costly IVR overheads. Besides the power

and energy analysis of the CPU/GPU systems, Ivory can guide the designs of both IVRs,

such as re-configurable IVR designs for various frequencies of fast DVFS, and IP core designs

with customized fast power management mechanisms.

2.7 Conclusions

The computing systems especially computing systems in the resource-constrained cyber-

physical systems, require an efficient power delivery solution to reduce power consumption.

46

The IVR is one of the attractive solutions. However, subtle trade-offs and topology choices in

IVRs make efficiency decisions unintuitive, forcing researchers to use inaccurate or incomplete

models. As IVRs continue to grow in popularity and become more beneficial, the system-level

model exposes design space trade-offs and supports dynamic response optimization without

manual effort and without the circuit expertise otherwise required, making the system-level

model and tool useful to system architects. Using the design space exploration tool Ivory,

we show cases where optimizing across technologies, topologies, and dynamic responses can

yield area and efficiency savings that would otherwise be missed without such a high-level

model. The saved power and energy can be either used to extend the operating time or

allocated to other critical components in cyber-physical systems to boost performance.

47

Chapter 3

Circuit and Architecture Layers:

Voltage-Stacked Power Delivery

Systems: Reliability, Efficiency, and

Power Management

In today’s computing systems, energy loss of more than 25% may result from inherent inef-

ficiencies of conventional power delivery system (PDS) design. This wasted energy is critical

when the computing system is used in a resource-constrained scenario such as the resource-

constrained cyber-physical systems. The wasted energy directly degrades the operating time,

one of the most important metrics, of the computing system and cyber-physical systems. By

stacking multiple voltage domains in series to lower the step-down conversion ratio of the

off-chip voltage regulator module (VRM) and reduce energy loss along the path of the power

delivery network (PDN), voltage stacking (VS) offers a novel alternative power delivery tech-

nique to fundamentally improve power delivery efficiency (PDE). However, voltage stacking

48

suffers from aggravated supply voltage noise from current imbalance, which hinders its adop-

tion. In this chapter, we investigate practical voltage stacking implementation in many-core

processors to improve power delivery efficiency (PDE) and achieve reliable performance,

while maintaining compatibility with advanced power management techniques. We first

present the system configuration of a voltage-stacked many-core processor. We then system-

atically characterize supply voltage noise in voltage stacking, identify global and residual

differential currents as its dominant contributors, and calculate the possible worst supply

voltage noise. We next propose two practical solutions to limit the supply voltage noise

within safe range with high power delivery efficiency at the same time. The first solution is

a hybrid voltage regulation solution, based on a charge-recycling off-chip voltage regulator

and distributed integrated voltage regulators, to mitigate supply voltage noise effectively.

The second solution is a control theory driven cross-layer solution which leverage the archi-

tecture level power management with feedback control to prevent serious current imbalance

and supply voltage noise. We also study the compatibility of voltage stacking with higher

level power management techniques. Finally, the performance of a voltage-stacked GPU sys-

tem is comprehensively evaluated. Simulation results show that our approach can achieve

93.5% power delivery efficiency, reducing the power loss by 13.6% compared to conventional

single-layer power delivery system. The 13.6% may be ignorable for power-plugin systems

but it is a must for the resource-constrained cyber-physical systems.

3.1 Introduction

A closer examination of the power delivery path in modern computing systems reveals a

provocative finding: delivering the power from the PCB board to the processor chip can

49

waste more than 25% of the power [85–87]. Thus, improving the efficiency of the last power

delivery stage of today’s processors is critically important especially when they are used in

an energy-limited environment such as in resource-constrained cyber-physical systems.

Despite the importance of improving processor power delivery efficiency (PDE), the energy

loss in a conventional single-layer power delivery system (PDS), such as that shown in Fig.

3.1(a) is difficult to eliminate. Three main inefficiency sources are directly associated with the

PDS. The first is the voltage conversion loss incurred in converting a higher supply voltage

at the board level to a lower supply voltage required by the microprocessor [42]. The second

is the power delivery network (PDN) loss in parasitic resistance in transferring the electron

charges from the off-chip power source to the distributed on-chip computing units [44, 45].

The third is the supply voltage margin to accommodate supply voltage noise and process

variation. Generally speaking, the three inefficiencies become worse with lower supply volt-

ages, increasing power density, and higher power ratings. Although various techniques have

been proposed in prior work to reduce PDN loss by moving the voltage regulation closer

to the point-of-load [88, 89], they are not capable of addressing the inefficiencies from the

voltage regulator simultaneously, and thus are fundamentally unable to close the efficiency

gap.

Voltage stacking shown in Fig. 3.1(b), also known as charge recycling [90] or multi-story

power delivery [91], is a novel technique that allows efficient power delivery through a sin-

gle high voltage source to multiple serially-stacked voltage domains. Due to the inherent

voltage division among the voltage domain in series, it obviates the need for step-down volt-

age conversion and reduces the currents flowing through the PDN. Ideally, if the current

loads from all the voltage domains are perfectly balanced, then the input voltage is evenly

divided with no supply voltage noise fluctuation. Voltage stacking’s theoretical peak power

50

(a) Conventional single-layer (b) Voltage-stacked multi-layer

Figure 3.1: Conventional single-layer and voltage-stacked multi-layer power delivery system.
(PCB board voltage: 4V; each core requires 1V voltage and 1A current)

delivery efficiency under balanced power activity is close to 100%, making it an attractive

solution. However, in real applications, voltage stacking is seriously limited by its exac-

erbated supply voltage noise caused by the current imbalance between the serially-stacked

voltage domains [92]. This limitation prevents wide adoption in practical systems that re-

quire consistent and reliable operation. In this chapter, we systematically investigate the

feasibility and potential benefits of applying voltage stacking to a graphic processing unit

(GPU) processor to improve its power delivery efficiency.

3.2 Background and Related Work

3.2.1 Power Delivery System

The power delivery system (PDS) in modern processors consists of a step-down voltage

regulation module (VRM) on the motherboard; sockets, off-chip decoupling capacitors and

electrical connections at the board, package, and chip levels in the form of PCB traces; and

51

socket bumps and C4 bumps, where undesirable parasitic resistance and inductance reside.

The decoupling capacitors (C) and the parasitic resistance (R) and inductance (L) along

the connection path form the electrical model of the PDN in a computing system with a

conventional PDS. To study the power delivery efficiency and system reliability, it is usually

sufficient to assume the output of board level VRM is an ideal voltage source, and we adopt

this convention in this work.

In a conventional setting, voltage conversion using a step-down VRM is necessary because

the voltage level at the board is higher than the digital supply of a processor. Yet due

to inherent inefficiency of step-down VRMs, energy is lost during the voltage conversion.

Resistive parasitics along the PDN path also contribute to energy loss and incur voltage

drop across the resistance, which is known as IR-drop. These two major efficiency losses can

approach 20% or more in advanced technology nodes and under peak power operations.

Moreover, because of the non-ideal effect of the parasitic RLC network, electrons cannot be

delivered instantaneously from the VRM output to immediately satisfy the fast changing

current loads of various on-chip components. This lag results in on-chip voltage fluctuations

and causes supply voltage noise reliability issues during operation.

3.2.2 Voltage Stacking

In voltage stacking (VS), the step-down VRM can be eliminated by serially stacking the volt-

age domains. It can be intuitively understood as allowing electron charges to recycle through

the stacking layers in series. In addition to eliminating step-down conversion loss, voltage

stacking lowers the PDN loss due to resistive parasitics, because in a N-layer voltage-stacked

52

(a) Power routing hierarchy (b) Conventional power grid
routing

(c) Power grid routing of voltage stacking

Figure 3.2: Illustration of on-chip power routing for conventional and voltage-stacked power
delivery configurations.

system, the PDN path current is reduced by Nˆ, which corresponds to N2ˆ reduction in

power loss. These efficiency improvements have been demonstrated in prior work [93,94].

A theoretical peak PDE close to 100% can be achieved using voltage stacking [94] when all

the stacking layers have balanced activities, and hence the same transient current demands.

In practice, though, applying voltage stacking in real computing systems, where activity

mismatches abound both spatially and temporally, proves to be challenging. As has been

shown in previous studies, such activity mismatches can cause severe voltage fluctuations in

a voltage-stacked system [87,95–99]. The aggravated noise problem remains one of the most

obstinate obstacles preventing voltage stacking adoption in the mainstream.

3.2.3 Supply Voltage Noise

Due to its impact on system reliability, supply voltage noise has been diligently studied and

characterized for conventional single-layer PDS in single-core [100,101] , multi-core [102,103],

and many-core GPU processors [77, 97, 104–106]. While circuit techniques such as load line

compensation are effective at taming IR-drop induced noise [107], dynamic Ldi{dt noise, and

resonance noise in particular, are more dominant and harder to tackle [108, 109], and often

53

demand a cross-layer solution. However, a voltage-stacked many-core processor experiences

more serious and complex supply voltage noise behavior due to the interactions between

the cores that can lead to constructive or destructive noise composition. This aggravated

supply voltage noise prevents the wide adoption of voltage stacking in mainstream computing

systems, despite its higher power delivery efficiency. Up until now, it has been only intuitively

understood that the supply voltage noise in voltage stacking is from an imbalanced workload,

and a systematic supply voltage noise study of many-core processors with multi-layer voltage-

stacked PDS is still lacking.

3.2.4 Power Delivery Efficiency

The underlying physical mechanism to convert and transfer electron charges from the higher

supply voltage on the motherboard to the much lower supply voltage on the microprocessor

chip invariably causes energy loss. The energy loss can be broken down into three parts:

First, energy is lost in voltage conversion to step down the supply voltage [42]. We define the

conversion efficiency of a voltage regulator (ηV R) as the ratio between the power it delivers

at the voltage regulator output over the power it consumes at the input. ηV R is usually

a function of the step-down conversion ratio. A high performance off-chip switching VRM

can deliver over 90% conversion efficiency, but the efficiency is degraded at a lower output

voltage with a higher step-down ratio [43].

The second part of the energy loss occurs in the power delivery network mostly because

of heat dissipation when current runs through the parasitic resistance that exists along the

path of the PDN, which is related to the IR-drop component of supply voltage noise [44,45]:

54

ηPDN “
RcorepVcoreq

pRPDN `RcorepVcoreqq
(3.1)

where RPDN represents the total parasitic resistance contributed by the PDN, and Rcore

represents the equivalent resistive impedance of the computational load as a function of

Vcore. The definition of Rcore suggests that Rcore “ Vcore{Icore. For fixed Vcore value, Rcore is

a measure of the power rating.

The final and often overlooked part is the energy overhead incurred by raising the supply by

a non-negligible voltage margin, ∆V “ Vcore ´ Vmin, to accommodate and sustain fault-free

operation [46,47]. We can express this component as η∆V :

η∆V “
PcorepVminq

PcorepVcoreq
“
VminIcorepVminq

VcoreIcorepVcoreq
(3.2)

Pcore and Icore represent the power consumption and the current load of the processor core

as a function of the core supply voltage (Vcore and Vmin);

Based on above analysis, the full power delivery system efficiency can be expressed as

ηPDS “
PcorepVminq

Psrc
“ ηV R ¨ ηPDN ¨ η∆V (3.3)

where Psrc is the total power drawn from the source.

Voltage stacking can reduce the power loss in step-down voltage regulator by eliminating

supply voltage conversion and power loss in power delivery network parasitic resistance by

reducing path current. Besides, previous works [97, 110] further prove that voltage stacking

can also diminish the voltage margin to further improve power delivery efficiency. In this

work, for a fair comparison, we assume voltage stacking has a same voltage margin with

55

conventional single-layer power delivery system and mainly focus on its improvements in

conversion efficiency (ηV R) and PDN efficiency (ηPDN).

3.2.5 Related Work

Proof-of-concept circuits [91, 111] and silicon prototypes [90, 93, 94, 112, 113] have been

presented previously to explore voltage stacking using low-power microcontrollers, along

with design methodology for floorplanning and placement [114, 115]. These pioneering

works demonstrate the feasibility of voltage stacking, but they are often limited to simple

assembly of uncorrelated cores with low power density. Inter-layer current imbalance has

been discussed qualitatively [92] as a contributor to the supply voltage noise in voltage-

stacked systems, but without rigorous quantitative derivation of worst-case conditions. To

overcome supply voltage noise, most voltage stacking prototypes [90, 93, 94, 112, 113] resort

to employing charge-recycling integrated voltage regulators (CR-IVR) to actively balance

the current mismatches. However, the overhead and trade-offs from CR-IVR require further

discussion and should be reduced.

Built upon these early prototypes, a number of novel approaches have been proposed to take

advantage of voltage stacking under different scenarios, such as 3D-IC with varying TSV, on-

chip decoupling capacitance, and package parameters [116,117]; optimal system partitioning

to unfold CPU cores [96,110]; and GPU systems with supercapacitors [118] operating under

near-threshold voltages [97,110]. CoreUnfolding [96] is a novel method that voltage stacking

can be used within each core. However, it is highly invasive as it requires separating function

units inside the core to balance the groups of units. Voltage-Stacked GPUs [119–121] models

the power grid of the voltage-stacked GPU as a linear dynamic system to derive the power

56

Table 3.1: GPU voltage-stacked system configuration

Configuration Value Configuration Value

PCB supply voltage 4.1V SM core voltage 1V

No. of SM cores 16 Clock frequency 700M

Voltage-stacked layers 4 SM cores per layer 4

SM core ave power 5W SM core max power 14W

Threads per SM core 1536 Threads per warp 32

Registers per SM core 128KB Shared memory 48KB

Figure 3.3: Power delivery network (PDN) of a 2x4 voltage-stacked many-core processor.

control strategy for supply noise guarantee, but the architecture-level power control scheme

sacrifices the system performance for reliability.

3.3 System Configuration

In this work, we use the GPU system with a NVIDIA Fermi architecture as a representative

many-core processor. Table I lists the configuration details of Fermi architecture. The Fermi

architecture GPU has 16 streaming multiprocessor (SM) cores [122]. We use a 4ˆ 4 voltage

stacking structure: 16 SM cores are stacked in 4 layers and each layer has 4 SM cores, as 4V

is generally available on the board and SM cores require 1V. Our analysis and solutions are

not limited to this 4ˆ4 voltage stacking configuration and can be applied to other many-core

processors with arbitrary voltage stacking configurations.

57

3.3.1 Power Grid Routing and PDN Modeling of VS

Voltage stacking can be implemented in both 2D and 3D-IC chips, but for a fair comparison

with conventional power delivery methods, we focus on voltage stacking implementation in a

2D planar technology. To properly isolate the transistors in each voltage layer from the global

substrate, voltage stacking often relies on advanced process technology such as triple wells

or Silicon on Insulator (SOI) to establish local body biasing voltages [92, 98, 99, 123, 124].

A hierarchical structure is used in 2D power routing, as shown in Fig. 3.2(a). The top

metal layers are for global power grid which connects cores or modules. The next layers

are local power grids connecting the function blocks such as ALU and Reg. Finally local

power grids in the bottom metal layers connect to the logic gates. As illustrated by the

power/ground routing scheme in Fig. 3.2(b) and 3.2(c), topologically stacking the voltage

domains on a 2D chip can be achieved with minimal modifications by re-routing the top

metal layers from parallel connections to series connections, leaving the local power/ground

grids in the lower metals and the physical floorplans of the underlying blocks largely intact.

Assuming this minimally-invasive routing method, we derive the voltage stacking PDN model

shown in Fig. 3.3 based on the typical RLC circuits and parameters introduced previously

to study GPU many-core processors [77, 106]. Note that there is parasitic resistance (RS)

between the vertically-connected cores (modeled by current sources), as depicted in Fig. 3.3.

Our study focuses on the SM core power grid to clearly demonstrate the benefit of voltage

stacking and evaluate the proposed hybrid regulation methodology, since its peak and average

powers account for 80% and 93% of the total GPU chip power consumption [80]. Similar

scheme can also be adapted to other on-chip components like SRAM in a voltage-stacked

configuration [111].

58

3.3.2 Communication Across Layers

A voltage-stacked system suffers inherently complex communications across different voltage

layers: instructions and data are communicated among memory, cache, and core registers,

which are in different voltage layers. In the GPU system, SM cores do not directly com-

municate with each other, and the cross-layer communication mainly happens between SM

cores and Memory Partition Units through an interconnection network. There are two in-

terconnection networks with butterfly topology and 22 nodes: one for traffic from SM cores

to Memory Partitions, and one for traffic from Memory Partitions back to SM cores. Cross

layer communication requires extra level shifters added to the interconnection network. Sev-

eral level shifter designs are suitable for a stacked architecture, such as capacitive-coupling-

based (conventional) [125], two-stage cross-coupled (TSCC) [126–130], Wilson current mir-

ror (WCM) [127,129,131], stacked Wilson current mirror (Stacked) [132], switched-capacitor

(Tong) [98] and modified switched-cap (Mod-Tong). Tested by Ebrahimi [133] with input

signal at 1GHz, Tong has the best energy-delay trade-off.

3.4 Supply Voltage Noise Analysis

3.4.1 Supply Voltage Noise Characterization

Unlike previous empirical approaches [77,106], we develop an analytical modeling framework

to study and characterize supply voltage noise responses in voltage stacking PDN, especially

in the presence of both correlated and uncorrelated core activities. The cornerstone of

59

0 0.5 1 1.5 2 2.5 3

Time(us)

-0.2

-0.1

0

0.1

0.2

S
u
p
p
ly

 V
o
lt
a
g
e

N
o
is

e
(V

)
 V V

G
 V

ST
 V

R

Figure 3.4: Supply voltage noise decomposition.

Figure 3.5: Illustrative example for noise decomposition using 2ˆ3 voltage stacking network:
(a) simplified 2ˆ3 network; (b) equivalent network for IG; (c) voltage response with IG; (d)
equivalent impedance for IG; (e) equivalent network for IST ; (f) voltage response with IST ;
(g) equivalent impedance for IST ; (h) equivalent network for IR.

60

our analytical approach lies upon the decomposition and superposition principles in the

fundamental circuit theory.

Noise Decomposition & Superposition

Since the basic electrical model of voltage stacking PDN consists of only linear components,

including the RLC and ideal voltage and current sources, the superposition principle in linear

systems generally holds, allowing us to decompose the core current to different components

to reveal their distinctive characteristics. Without loss of generality, let us assume a voltage-

stacked system that consists of NLvertically-stacked layers with NV cores on each layer. For

example, Fig. 3.3 shows a NL “ 2 and NV “ 4 voltage-stacked system. The cores that align

vertically are defined as a voltage stack. To facilitate later analysis, we adopt the s-domain

expressions for current sources and give the following definitions:

Icorei,j psq “ IGpsq ` ISTi psq ` IRi,jpsq (3.4)

IGpsq “

řNV
i“1

řNL
j“1 I

core
i,j psq

NVNL
(3.5)

ISTi psq “

řNL
j“1 I

core
i,j psq

NL
´ IGpsq (3.6)

IRi,jpsq “
pNL ´ 1qIcorei,j psq ´

řNL
k“1,k‰j I

core
i,k psq

NL
(3.7)

where Icorei,j psq is the current contributed by the core in the ith stack and the jth layer.

It is decomposed into three components: IGpsq, ISTi psq, and IRi,jpsq, in Eq. (3.4) - (3.7).

IGpsq represents the global current component shared by all the cores, ISTi psq represents the

61

common current components shared by the cores in the ith stack, and IRi,jpsq is the residual

current components after removing the global and per-stack common terms. Now, the supply

voltage noise at the core (in the ith stack and the jth layer) can be expressed by the current

components working on their respective effective impedances, ZGeff , ZSTeff,i, and ZReff,i,j, and

causing superimposed supply voltage noises, ∆V G
corei,j , ∆V ST

corei,j , and ∆V R
corei,j, as described in

Eq. (3.8) and Fig. 3.4.

∆Vcorei,j“∆V G
corei,j`∆V ST

corei,j`∆V R
corei,j“I

GZGeff ÌSTi Z
ST
effi`

NV
ÿ

i“1

NL
ÿ

j“i

IRi,jZ
R
effi,j

(3.8)

To illustrate how the decomposition and superposition in Eq. (3.4) - Eq. (3.8) help us

analyze and characterize supply voltage noise effects in voltage stacking, we use a simplified

RLC network of a 2ˆ 2 voltage stacking PDN, as shown in Fig. 3.5.

Global Uniform Current

Since IGpsq is a uniform component across all the cores, the effective network can then be

transformed by removing the path between equal-potential nodes and merging the parallel

components as in Fig. 3.5(b) according to our 2 ˆ 2 example. We can derive the supply

voltage noise caused by IG with an analytical expression for a general NL ˆNV network:1.

∆V G
i,j“I

G
i,jZ

G
eff “I

G
i,jp

ZC4

NL
`
ZS
NL
`
NV

NL
Zoffq{{ZC (3.9)

Due to the uniform nature of the global current, all cores share the same common mode,

ZGeff , and thus the same ∆V G
corei,j. Eq. 3.9 also applies to the case when NL “ 1, which is

1symbol // is the circuit symbol for parallel connection

62

a conventional single-layer PDN. From Eq. 3.9 and the typical impedance profile of ZG
eff

shown in Fig. 3.5(c), we can see that in a NL ˆ NV voltage stacking PDN, ∆V G
corei,j peaks

at the dominant resonant frequency of Zoff , similar to the conventional single-layer, but its

magnitude is reduced by NLˆ when stacked.

Local Uniform Through-stack Current

Following our definition of ISTi psq, we can see that since
řNV
i“1 I

ST
i psq “ 0, there is no current

going through Zoff according to Kirchhoff’s Current Law (KCL) and the entire branch

can be eliminated. The linear circuit network is again transformed to a simpler form as

in Fig. 3.5(d). For example, in our 2 ˆ 2 example, we can derive ∆V ST
corei,j, for i “ 1, 2 and

j “ 1, 2 respectively, as a function of the unit current stimulus ISTi and complex impedances

in the form of ZL and ZC :

∆V ST
corei,j “ ISTi ZSTeffpiq “ ISTi

1

NL
rZC{{ZLs (3.10)

where ∆V ST
corei,j represents the supply voltage noise induced by ISTi , the common current

components shared by all the cores in the ith stack. All cores in the ith stack share the

same common-mode ∆V ST
corei,j disturbance. The resulting expression suggests that on the

first order, the combined effect of all the ISTi exerts differential voltage fluctuations between

the vertical stacks, and it is further voltage divided across the cores in the same stack, as

illustrated in Fig. 3.5(d). The dividing ratio depends on the ratio of ZL{ZC , and in its

high-frequency limit asymptotically approaches ZL{NL. The analytical results of the local

uniform through-stack current again suggest that by moving from single-layer to multi-layer,

the supply voltage noise experienced at each core level and contributed by this current

component is reduced by NLˆ on average.

63

Residual Per-Core Differential Current

On closer inspection of Eq. 3.7, IRi,j can be rearranged as the summation of differential currents

in the form of Icorei,j ´Icorei,k , where k ‰ j. The summation suggests that the remaining voltage

noise effect, unaccounted for by the global and the local terms, ∆V G and ∆V ST
i , are induced

by the aggregated differential currents. This differential current represents the mismatched

part of current between cores which will not only cause voltage noise at itself but also cause

noise at other cores. For example, at corepi, jq, the noise from residual current is from its

own residual current and other cores’ residual current:

∆V R
corei,j “ IRi,jZ

R
effi,j `

NV
ÿ

n‰i

NL
ÿ

m‰j

IRn,mZ
R
effn,m (3.11)

where IRi,jZ
R
effi,j is the supply voltage noise caused by its own residual current, and

řNV
n‰i

řNL
m‰j I

R
n,mZ

R
effn,m

is the supply voltage noise caused by residual current from other cores. Most importantly,

this type of residual per-core differential current is unique to voltage stacking, since these

terms simply vanish when NL “ 1.

3.4.2 Dominating Supply Voltage Noise

Based on the above system configuration, we characterize the effective impedances, ZGeff ,

ZSTeffi, and ZReffi,j, of each current component defined in Eq. (3.8). The effective impedance

for corep1, 1q is shown in Fig. 3.6. Due to location symmetry, the effective impedances

of other cores are similar to corep1, 1q. We divide the frequency range into low frequency

(ă 10MHz), medium frequency (10MHz´50MHz), and high frequency (ą 50MHz). From

the effective impedance curve, we can see that both ZReffi,j at low frequency and ZGeff at high

frequency (especially at resonance), have relatively large magnitudes. The corresponding

64

1 5 10 50 100 500

Frequency (MHz)

0

0.05

0.1

0.15

0.2

0.25

Im
p

e
d

a
n

c
e

(O
h

m
)

Z
eff

G
Z

eff

ST
Z

eff(i,1)

R
Z

eff(i,2)(i,3)(i,4)

R

Low

frequency
Medium

frequency
High frequency

Figure 3.6: Effective impedance of current components.

(a) Icorei,j“npsq (b) Icorei,j‰npsq

Figure 3.7: An example instruction trace contributing to worst-case supply noise.

low frequency residual current components and high frequency (resonance) global current

components that excite these effective impedances can thus cause large supply voltage noise,

and we identify them as the dominant causes of voltage noise in voltage stacking.

3.4.3 Worst-Case Supply Voltage Noise

Identifying the root cause of noise is not sufficient for rigorous reliability analysis. We must

also consider what core activity conditions can result in the worst-case supply voltage noise.

Understanding the condition and the magnitude of worst-case would help us determine the

65

(a) Worst case (b) Residual (c) Global (d) Random

Figure 3.8: Histogram comparison between analytically derived worst case and other heuris-
tic core activation patterns.

necessary and sufficient noise mitigation strategy to guarantee reliable operation in real-world

voltage-stacked systems.

After characterizing ZG
eff , Z

STeff and ZR
eff , and establishing the relationship between ∆Vcore

as a function of these impedances, searching for the load current conditions that would

result in worst-case supply voltage noise can now be performed in the frequency domain. We

formulate it as an optimization problem of finding the optimal frequency distribution of each

core current Icorei,j to maximize their combined effects ∆V core
m,n on corepm,nq. This optimization

can be solved as a linear programming problem, and the process is described in Algorithm

1. The optimization variables are each core current distribution at different frequency range

Icorei,j psq. The optimization objective function is the supply voltage noise ∆V core
m,n at corepm,nq

and the constraints are from voltage noise decomposition Eq. (3.4) - (3.7) and peak GPU

SM core power, as shown in Table 3.1. This linear optimization formulation with a general

constraint of max power/current allows us to search the vast space of arbitrary synthetic core

current stimuli from all possible activity combinations, including the effects cause by clock

gating and power gating, and therefore can quantitatively represent the worst-case supply

voltage noise for rigorous reliability analysis.

66

Algorithm 1 Maximize supply voltage noise

Optimization Variables:
Each core current frequency distribution Icorei,j psq

Objective Function:
∆Vcorei,j “ ∆V G

corei,j `∆V ST
corei,j `∆V R

corei,j in Eq. (3.8)
Subject to:
1: @i, j; 0 ď Icorei,j psq
2: @i, j; Icorei,j ptq “ F´1pIcorei,j psqq ď peak current (14A)
3: @i, j; Icorei,j psq, 0 ď s ď clock frequency (700MHz)
4: Eq. (4) - (7): current decomposition rules

Table 3.2: Freq. Distribution of decomposed core current

Core Current Frequency Major Component

Icorei,j“npsq
low frequency
pă 10MHzq

residual current

Icorei,j‰npsq
high frequency
pą 50MHzq

global current

The numerical solution of the linear programming problem based on the GPU configurations

in Table 3.1 gives us a glimpse of the core current distribution and combination that act

together and cause the largest supply voltage fluctuation at corepm,nq, as shown in Table

3.2. The currents, Icorei,j“npsq, are distributed at low frequency with major components of

residual currents, while the currents, Icorei,j‰npsq, are distributed at the resonant frequency of

ZG
eff with major components the global currents. This worst-case scenario is plausible in

real GPU applications shown in Fig. 3.7 when the Icorei,j‰npsq are alternating between idle and

Sine/Cosine special function instructions (SF Inst) at the resonant frequency, while Icorei,j“npsq

are at peak power executing Sine/Cosine special function instructions (SF Inst). We compare

the worst-case noise derived by our optimization algorithm with three other scenarios based

only on heuristics: (1) all cores have low frequency residual currents, (2) all cores have high

frequency global currents, and (3) all cores have randomly distributed currents. From the

supply voltage noise histograms in Fig. 3.8, we can see that the worst-case rigorously derived

67

Figure 3.9: Hybrid voltage regulation based on distributed on-chip CR-IVRs and off-chip
CR-VRM.

by our method is more severe than the heuristic ones, and therefore is more representative

as a stressmark for supply voltage noise reliability analysis.

3.5 Noise Mitigation by Hybrid Regulation

3.5.1 Hybrid Regulation Framework

To combat elevated and hard-to-predict supply voltage noise and guarantee reliable opera-

tion in spite of worst-case conditions in voltage-stacked many-core processors, we explore a

hybrid voltage regulation mechanism using both on-chip charge-recycling integrated voltage

regulators (CR-IVRs) and an off-chip charge-recycling voltage regulator module (CR-VRM).

Fig. 3.9 shows the framework of the proposed hybrid regulated voltage stacking using either

switched-capacitor or low dropout voltage regulators. This hybrid approach takes advantage

of the unique merits of on-chip and off-chip voltage regulators and simultaneously avoids

their individual defects.

Unlike step-down voltage regulators converting supply voltage, charge-recycling voltage reg-

ulators move extra charge between different layers to balance current and maintain a stable

68

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14 SM15 SM16
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

S
u

p
p

ly
 V

o
lt
a

g
e

(V
)

Default voltage stackingVoltage stacking + IVR

(a) Voltage distribution among the 16 SMs during execution of the backp benchmark

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

S
u
p
p
ly

 V
o
lt
a
g
e
(V

)

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10 SM11 SM12 SM13 SM14 SM15 SM16

Voltage stacking + IVR Default voltage stacking

(b) Voltage distribution among the 16 SMs during execution of the blackscholes benchmark

Figure 3.10: Voltage distribution among the 16 SMs.

voltage of each layer. Because the direction and amplitude of extra charge keeps changing

with core workload conditions, charge-recycling voltage regulators should support bidirec-

tional fast switching current. Voltage regulators, such as low drop-out voltage regulators

and switched capacitor voltage regulators, can be used as charge-recycling voltage regu-

lators, while inductor based voltage regulators, such as buck converters, do not support

bidirectional fast switching of current movement and incur extra Ldi/dt noise. Multi output

switched capacitor (SC) voltage regulators are the most widely used charge-recycling voltage

regulators, because they have higher power efficiency, but they require each layer to have the

same voltage. Previous work has demonstrated a multi-output switched-capacitor integrated

voltage regulator [112] that balances the layer currents in voltage-stacked systems. Although

low drop-out voltage regulators have lower power efficiency, they do not force each layer to

have exactly the same voltage, and hence are more suitable to support dynamic voltage and

frequency scaling in voltage stacking.

69

3.5.2 Centralized and Distributed Integrated Voltage Regulator

Located closer to the point-of-load, on-chip integrated voltage regulators enjoy fast regulation

response, but have limited on-die area and capacity, making them suitable for reducing high-

frequency noise of smaller magnitude. According to the analysis in Section 3.4, one of the

dominant causes of worst-case supply voltage noise is high frequency global currents. This

noise can be mitigated by on-chip CR-IVRs.

By moving charges across the stacking layers, the CR-IVR effectively behaves as an additional

parallel impedance connected to the original effective impedance ZG
eff . It thus reduces the

supply voltage noise caused by global current:

∆V G
corei,j “ IGrZGeff{{pZ

CR´IV R ` ZCR´IV R´pathqs (3.12)

Here, ZCR´IV R is the impedance of the on-chip charge-recycling voltage regulator, and

ZCR´IV R´path is the parasitic impedance of the on-chip power grid between the core and

voltage regulator. By deploying CR-IVR with the desired impedance, ∆V G
corei,j from global

current IG can be effectively mitigated. The effective impedance of a multi-output switched-

capacitor CR-IVR can be expressed:

ZCR´IV R “
b

Z2
SSL ` Z

2
FSL (3.13)

ZSSL“
1

CtotalfSW

˜

n
ÿ

1

|ac,i |

¸2

ZFSL“
Gtotal
Dcycle

˜

n
ÿ

1

|ar,i |

¸2

(3.14)

where, Ctotal is the fly capacitance, Gtotal is the total switch conductance, fSW is the switching

frequency, and Dcycle is the duty cycle, Further, ac,i and ar,i are charge multiplier vectors

[116, 134]. ZCR´IV R´path is the other important factor that determines the supply voltage

70

noise mitigation. It is related to the distance between the core and the voltage regulator. As

the regulator is located far from the load, the noise mitigation effect will be reduced because

the parasitic impedance between the core and the voltage regulator contributes to a larger

ZCR´IV R´path. One effective way to enhance the noise mitigation is by distributing a large

centralized voltage regulator to smaller distributed ones, because the distributed voltage

regulators can be located closer to each core.

We next will demonstrate the effectiveness of hardware regulation by on-chip charge-recycling

integrated voltage regulators (CR-IVRs) and compare the regulation effects of centralized

and distributed CR-IVRs. We first simulate the transient voltage waveforms of all the SMs

with one centralized CR-IVRs physically located in the middle of each layer and plot their

voltage distribution using box plots. The statistics presented in Fig. 3.10 were collected

from the benchmark backp and benchmark blackscholes, but similar results are observed

for all the benchmarks from both NVIDIA CUDA SDK and Rodinia 2.0 benchmark suites.

Comparing the standard deviations and peak-to-peak values of all the SM core voltages in

the proposed voltage-stacked GPU, with centralized CR-IVR and without CR-IVR, reveals

that the regulation effect is uneven among the SMs. This phenomenon is highlighted in the

histograms in Fig. 3.11(a). We have the histogram of the voltage distribution across SM1

and SM2, collected with 500, 000 samples over a typical 10µs period from the benchmark

backp. SM2 exhibits the smallest supply voltage noise spread, yet noise worsens at SM1,

because SM2 is closer to the centralized CR-IVR and has a smaller ZCR´IV R´path than SM1.

Now, we leverage the scalability of CR-IVR in a distributed design. The distributed CR-IVR

divides the original centralized design into four equal sub-IVRs and connects each sub-IVR

directly to the SMs in each layer, with each sub-IVR consisting of 1{4 of the total switched

capacitance. The extra implementation overhead of the distributed design is mainly due to

71

(a) Centralized CR-IVR (b) Distributed CR-IVRs

Figure 3.11: Supply voltage noise distribution.

Table 3.3: Switched Cap. Regulator Parameters

Design Parameters CR-IVR CR-VRM

Topology of VR Multi-output SC Multi-output SC

Number of VR 4 1

Switch frequency 50MHz 1MHz

Total capacitor / VR 1.24uF 624uF

Capacitor density 50nF {mm2 0.2uF {mm2

Switch on resistance 130Ω ¨ um 37600Ω ¨ um

Area per VR 24.8mm2(Die) 3.12cm2(Board)

the duplication of control logic, which accounts for negligible area and power consumption

compared to the rest of the CR-IVR circuitry. The resulting SM voltage distribution using

the distributed regulation is presented in Fig. 3.11(b). The location dependence is now

completely removed and the same regulation effect is achieved across the board. A optimal

design parameters [135] of distributed CR-IVR are shown in Table 3.5.

3.5.3 Off-Chip Charge-Recycling VR

Compared with CR-IVR, off-chip CR-VRMs have slower response time, but they offer better

efficiency [68, 136] and do not consume expensive die area. It is important to note that

although on-chip CR-IVRs can be designed to provide similar regulating capacity as an

72

1 5 10 50 100 500
Frequency (MHz)

0

0.05

0.1

0.15

0.2

0.25

Im
p

e
d

a
n

c
e

[Z
eff

G // ZCR-IVR] [Z
eff(i,j)

R // (ZCR-VRM+ZC4+Zpkg+ZPCB)] Z
eff

G Z
eff

R

High frequencyMedium frequency

Low frequency

Figure 3.12: Effective impedance after employing CR-VRM.

off-chip counterpart, they incur large area overhead, sometimes exceeding the total area of

the logic cores, making them impractical in real systems. Therefore, off-chip CR-VRM is

a better and more economical choice for regulating supply voltage noise at low frequency.

Similarly, the addition of the CR-VRM results in an effective parallel impedance connected

with the original ZR
effpi,jq through the C4 pad, package, and PCB. In this case, the supply

voltage noise caused by residual current becomes

∆V R
corei,j“

NV
ÿ

i

NL
ÿ

j

IRi,jrZ
R
effpi,jq{{pZ

CR´V RM ` ZCR´V RM´pathqs (3.15)

where ZCR´V RM is the impedance of the off-chip charge-recycling voltage regulator module;

ZCR´V RM´path includes the parasitic impedances of not only the on-chip power grid but

also the C4 pads, package, and PCB board between the CR-VRM and the cores. A design

optimization similar to that for CR-IVR is applied to arrive at an optimal set of design

parameters, as summarized in Table 3.5. The new effective impedance of the residual cur-

rent after employing on-chip CR-IVR and off-chip CR-VRM is shown in Fig. 3.12. With

reduced effective impedance, the supply voltage noise, ∆V G
corei,j and ∆V R

corei,j, are significantly

mitigated.

73

3.5.4 Charge-Recycling VR Power Loss

In voltage stacking, most of the current goes through the stacked layers, the occasional

residual current is absorbed by decoupling capacitors, and only the accumulated residual

current components goes through the CR-IVR or CR-VRM. For the accumulated residual

current, we call it imbalanced current. When imbalanced current is recycled by charge-

recyling VR, power losses in these VRs are unavoidable.

Switched-capacitor charge-recycling VR

A switched capacitor voltage regulator suffers mainly from the following four types of power

losses:

Intrinsic switched-capacitor loss: A switched capacitor voltage regulator delivers current to

a synchronous digital system, whose frequency is determined by the clock frequency, set by

the minimum voltage over a clock period. Power loss in the voltage ripple over the minimum

voltage is the intrinsic switched-capacitor loss [49], which is

Pintrinsic “ Iimbalance
∆V

2
“

I2
imbalance

McapCflyfsw
(3.16)

Switching conductance Loss: Also, the finite conductance of the transistor switch has a series

power loss:

PRsw “ NI2
imbalanceRswD (3.17)

Plate Parasitic Capacitance Loss: In steady-state operation, both the top and the bottom

plates experience approximately equal voltage swings, and parasitic capacitance causes extra

74

power loss:

Pplate´cap “MbottV
2Cplatefsw (3.18)

Switching Parasitic Capacitance Loss: The loss in voltage swings at the switch transistor

parasitic capacitance, which can be expressed as

Psw´cap “ NCswV
2fsw (3.19)

Among these losses, intrinsic switched-capacitor loss and switch conduct loss are the main

components [135].

Low Drop-out Charge-Recycling VR

Low drop-out voltage regulators suffer from following three power losses [137]:

Switch Conduct Loss: The main cause of loss in low drop-out voltage regulators is the power

dissipated as heat on the transistor switch resistance. It is highly dependent on the difference

between the input and output voltage:

PRsw “ I2
imbalanceRsw (3.20)

Switching Parasitic Capacitance Loss: The gate parasitic capacitance switching loss is similar

to the loss happens in switched capacitor charge recycle voltage regulator.

Control Logic Loss: In LDO, a feedback control logic circuitry is used to control the voltage at

the reference value. The loss is due to the current flowing through the operational amplifier,

75

the resistive voltage divider, and the voltage reference generator in the control logic circuitry;

the sum of these currents is called quiescent current. The quiescent current can be reduced

by optimizing the components, making it negligible when compared to the load current

consumption.

3.5.5 Hybrid Regulated VS Power Delivery Efficiency

The power delivery efficiency of hybrid regulated many-core voltage stacking can be described

as

ηPDS “
Pcore

Pcore ` PPDN ` PCR´IV R ` PCR´V RM
(3.21)

“
IcoreVcore

IcoreVcorè p
Icore
N
q

2

RPDN P̀CR´IV R P̀CR´V RM

where, Pcore is the power consumed by cores, and PPDN is the power loss in the parasitic

resistance along the power delivery network. PCR´IV R and PCR´V RM are the power loss in

CR-IVR and CR-VRM, derived in Eq. (4.4) - (3.20).

In the ideal case, if there is no residual current, the power losses in CR-IVR and CR-VRM

are negligible and the power delivery efficiency can approach nearly 100%. In the normal

case, most of the current goes through the stacked layers, and only the accumulated residual

current components goes through the CR-IVR or CR-VRM where it introduces a small

amount of power loss. In the worst-case, when cores in one layer are powered off and cores in

the other layers are powered on, all the current consumed by cores is imbalanced current and

goes through the CR-IVR and CR-VRM, causing significant power loss. However, this worst

case seldom happens, and the system on average achieves high power delivery efficiency.

76

Consequently, the hybrid regulation scheme not only mitigates the supply voltage noise but

also maintains the high power delivery efficiency.

3.6 Architectural Support for VS

Based on above analysis, some important insights are revealed—the highest impedance peak

in a VS system happens in the low frequency range and contributes the largest supply

fluctuations in the worst case scenarios. This finding opens the possibility for architecture-

level techniques to suppress low frequency supply noise. In this section, we explore such

opportunities by proposing control-theory-driven architectural support for VS.

The motivation to leverage control theory in the architecture-level technique is to provide

strong guarantees of worst case behavior and control stability, which (unlike its conventional

PDS counterpart) are necessary in a voltage stacked system. In a conventional system

with single-layer PDS, the worst case supply noise is often induced by repetitive execution

sequences or sudden trigger events near its peak resonance impedance. These execution

activities over a short period of time (tens or hundreds of clock cycles) can be predicted and

rearranged either at compile time or runtime. Such predictability does not readily apply

to voltage stacking, however, because its impedance profile may exhibit a high plateau over

a wide low frequency range due to the imbalanced residual current components that could

span from hundreds to tens of thousands of clock cycles. In light of the intractability of the

root causes of current imbalance/misalignment in the GPU, we resort to a control theory

based approach to stabilizing the layer voltages in voltage stacking. We first present the

control theoretic formulation of our proposed architectural support for VS, modeling the layer

voltages as a four dimensional linear dynamic system. We then discuss the available voltage

77

(a) (b)

Figure 3.13: Simplified circuit of (a) the 4ˆ 4 VS GPU, (b) a single VS stack.

smoothing techniques and identify dynamic issue width scaling (DIWS), fake instruction

injection (FII), and dynamic current compensation (DCC) as suitable actuation mechanisms.

Finally, the detailed implementation is considered, to account for potential performance

impacts and power/area overheads of the proposed techniques.

3.6.1 Control Theoretic Formulation

In order to apply control theory to mitigate severe voltage droops caused by current imbal-

ance, and to stabilize layer voltages, we model the on-chip power grid of the voltage-stacked

GPU as a linear dynamic system and then formally derive the control strategy in response

to the measured state of the system. Fig. 3.13(a) illustrates the simplified on-chip power

grid of the example GPU system with 4 ˆ 4 VS configuration. Here, we simplify the PDS

by neglecting the parasitics impedance and assume an ideal 4V supply voltage (VDD). We

further simplify the model by only looking at the voltages and corresponding current terms

in a single stack (or column) of the 4ˆ4 array and ignoring the small parasitic on-chip induc-

tance, as shown in Fig. 3.13(b). Assuming that the system reaches equilibrium when all the

78

layer voltages are evenly divided and using that equilibrium point as the initial condition,

we can write down the differential equation for each layer voltage at time t as:

Viptq “ Vi´1ptq `
1

4
V DD `

1

C

ż t

0
pIi`1 ´ Ii `∆Iiqdτ (3.22)

in which Viptq represents the absolute voltage level at layer i. Assuming VDD is an ideal

voltage source, V4ptq “ VDD and is a constant value. The systems of equations depicted by

(4.3) can be expressed in matrix form as:

»

—

—

—

—

—

—

—

–

9V1

9V2

9V3

9V4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

V1

V2

V3

VDD

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

´1
C

1
C0 0

´1
C 0 1

C 0

´1
C 0 0 1

C

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

I1

I2

I3

I4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

∆I1
C

∆I2
C

∆I3
C

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.23)

where Ii represents the current of the SM in the ith layer. Replacing Ii as the SM power

(Pi) divided by the layer voltage across the SM, i.e., Ii “
Pi

Vi ´ Vi´1

, we have the dynamic

system describing the relation between voltage and power as:

»

—

—

—

—

—

—

—

–

9V1

9V2

9V3

9V4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

V1

V2

V3

VDD

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

´1
C

1
C0 0

´1
C 0 1

C 0

´1
C 0 0 1

C

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

P1

V1 ´ VGND
P2

V2 ´ V1
P3

V3 ´ V2
P4

V4 ´ V3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

∆I1
C

∆I2
C

∆I3
C

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.24)

Assuming small voltage disturbance, we can linearize the above system around its equilibrium

point where rV1 V2 V3 V4s
1

“ r1 2 3 4s
1

, resulting in the final linear dynamic system equation

79

(3.25) which has the classic form (5.4).

»

—

—

—

—

—

—

—

–

9V1

9V2

9V3

9V4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

V1

V2

V3

VDD

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

´1
C

1
C0 0

´1
C 0 1

C 0

´1
C 0 0 1

C

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

P1

P2

P3

P4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

∆I1
C

∆I2
C

∆I3
C

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.25)

9X “ AX `BU `∆F (3.26)

where X “ rV1V2V3V4s
1

is the state of the above linear dynamic system; A is the state matrix;

B is the control input matrix; and U “ rP1P2P3P4s
1

gives the SM power levels, which are the

control inputs of the system. ∆F captures the current disturbance that incurs supply noise.

We consider a classic proportional state feedback controller U “ KX as an illustrative

example, as it is considered an effective stabilization technique with both computational

advantages and satisfactory regulation results. In a proportional state feedback controller

the SM power is a function of SM voltage:

Pi “ kVi (3.27)

where k is the proportional feedback coefficient. Hence, the system with feedback control

can be represented as:

9X “ AX `BKX `∆F “ pA`BKqX `∆F (3.28)

80

3.6.2 Control Stability and Performance

The control delay plays an important role in determining the system stability and control

performance in real applications. We express the total delay as T , which includes the sen-

sor/actuator delay, communication and computation latencies along the feedback loop. We

discretize the system with a sampling period of T :

Xpn` 1q “ ZpA`BKqXpnq `∆F (3.29)

where ZpA`BKq is the discretization of matrix A`BK with sampling rate T . The system

model depicted by (3.29) suggests that V1V2V3 is controllable and V4 is equal to VDD. We

use MATLAB(R2018a) SIMULINK to examine the system dynamic response and select the

proper coefficient k. It can be shown that the largest voltage deviations are caused by the

worst case disturbance ∆F . When the disturbance frequency falls within half of the discrete

system sampling frequency 1
2T

, the voltage deviations are guaranteed to be suppressed within

a fixed range (i.e.0.2V), and a formal proof can be obtained by analyzing the Bode plot of

the discrete system described by (3.29). In this way, we can rigorously prove that our control

scheme is not only stable but also guaranteed to constrain the supply noise within the bound

of the predetermined voltage margin. In addition to the theoretical proof, we are able to

experimentally verify the system’s stability and control performance under both worst case

disturbances and representative benchmark workloads in Section VI-B.

In essence, formulating the on-chip VS power grid as a discrete-time linear dynamic sys-

tem allows us to employ rigorous voltage smoothing mechanisms in the VS setting. The

sampling rate T of the discretized system accounts for various latencies introduced by real

implementations of the front-end detector, the controller, and the back-end actuator in real

implementations. To effectively mitigate the dominant low frequency plateau exhibited by

81

5005010510.50.10.05 100Frequency (MHz)
Time 100ns 10ns1us10us

Cycle 100 10100010000

700

1

Dynamic Current Compensation (DCC)

Dynamic Instruction Issue Width Scaling (DIWS)

Dynamic Frequency Scaling (DVFS)

Power Gating

Thread Migration

Low Frequency Medium Frequency High Frequency

Fake Instruction Injection (FII)

Figure 3.14: Timescales of different power actuation mechanisms.

the effective impedance of the VS GPU, we need the total latency to be such that the low

frequency peaks can safely fall within 1
2T

. Detailed choice of actuation mechanisms and

implementation considerations of the voltage smoothing scheme are discussed next.

3.6.3 Voltage Smoothing Actuation

As described by equation (3.25), the power consumption by the SM in each VS layer can

be used as a control input, which suggests that any mechanism that actively modulates

SM power can be considered a type of voltage smoothing actuator. Fig. 3.14 surveys several

typical power management techniques in a GPU together with their respective response time

scales. To achieve effective control, the actuator response time generally has to be at least

an order of magnitude faster than the time scale of the relevant disturbance. In the case

of a voltage-stacked GPU, we have shown earlier through impedance analysis that the part

of the noise to be suppressed using architecture-level techniques is associated with the low

frequency impedance caused by the residual current components. Therefore the maximum

response time required of the voltage smoothing actuator is on the order of hundreds of clock

cycles or around tens of MHz. Techniques such as Thread Migration [138–140] and Power

Gating [141,142] require content migration or state saving and operate at slower time scales

82

(longer than 1000 clock cycles). The speed of Dynamic Frequency Scaling is determined by

the re-locking time of the digital phase-locked loop (DPLL) and is typically on the order of

ms [143, 144]. Our survey rules out these slower techniques and identifies three promising

candidates for voltage smoothing actuation: dynamic issue width scaling, fake instruction

injection, and dynamic current compensation.

Dynamic Issue Width Scaling (DIWS): In the Fermi architecture, each SM has a 2

warp/cycle issue width. Each warp includes 16 instructions. Either one or two warps can

be dispatched in each cycle to any two of the four execution blocks within a Fermi SM—

two blocks of 16 cores each, one block of four special function units (SFU), and one block

of 16 load/store units (LSU), as shown in Fig. 3.15. To reduce the SM power, its warp

issue width can be reduced, which can later be restored up to 2 warp/cycle, when voltage

smoothing is no longer needed. One appealing advantage of DIWS is its low performance

penalty when dynamically scaled. Before a warp is issued, the warp scheduler first checks

with the scoreboard. Only when the warp is marked ready in the scoreboard, can it then

be issued. Therefore, although each SM has a 2 warp/cycle issue width, the number of

warps issued at each cycle varies at runtime. In our experiments with benchmarks from

Rodinia and NVIDIA Cuda SDK, the average issue rate is 0.8´ 1.8 warps per cycle due to

data dependences, memory stalls, compute stalls and idle cycles. When DIWS is applied,

even though the peak issue rate is reduced, which thus throttles the performance in certain

cycles, it may result in more “ready” warps being accumulated in the warp pool. These

accumulated “ready” warps can be issued opportunistically later, to fully occupy the issue

width, offering a speedup that partly compensates for the performance loss from previous

issues. For example in Fig.3.15, the warps in cycles 1 to i are issued without DIWS; during

cycles i to k ´ 1 DIWS sets the issue width to 1; and from cycles k to n the issue width is

back up to 2.

83

Warp Scheduler

Instruction Dispatch

Warp Scheduler

Instruction Dispatch

Warp Pool (Instruction-Buffer)

CUDA Cores (x16) CUDA Cores (x16) SFU (x4) LD/ST Units (x16)

FADD

LDMOV

FFMA

SIN

FFMA

Cycle 1 (2 warp)
Cycle 2 (1 warp)

...

...

Cycle i (1 warp)

Cycle k (2 warp)

SI
M

D

B
ac

k
En

d

Sc
al

ar

Fr
o

n
t

En
d

Scoreboard

Fetch and Decode

SIN LD
Cycle k+1 (2 warp) MOVFMUL

Cycle 1->i: no DIWS, issue rate = 1.5;
Cycle i->(k-1): with DIWS set issue width to 1, issue rate = 1;
Cycle k->n: with DIWS sets issue width to 2, issue rate =2;

MOV

Figure 3.15: SM microarchitecture and operation of dynamic issue width scaling.

Fake Instruction Injection (FII): Inserting fake instructions to fill up the issue width

slack also can be used to introduce extra power consumption. Like DIWS, FII operates

at the warp issuing speed, and thus has a fast response time. FII can leverage existing

GPU architectures and does not require extra circuitry or die area to implement, but its

availability is limited by the difference between the number of valid instructions and the

maximum issue width at each cycle: when there are already two valid instructions in the

warp pool, no extra instruction can be injected.

Dynamic Current Compensation (DCC): Finally, dummy digitally controlled current

sources can be added on-chip to provide extra current/power and thus help balance the layer

currents. We refer to this method as dynamic current compensation (DCC). While a similar

method has been implemented using ring oscillator circuits [118], we employ binary-weighted

current ladder circuits that are widely used as digital-to-analog converters (DACs). These

84

DACs can be digitally controlled at runtime to compensate layer current imbalance at the

time scale of a single clock cycle. Compared to DIWS and FII, deploying DCC requires

extra die area and consumes more leakage power, and thus should be used sparingly to avoid

energy and area penalties.

Weighted Control Inputs: Given that each of these three temporally suitable actuation

mechanisms has its own merits and drawbacks, we consider a weighted linear combination

of DIWS, FII, and DCC to exert the control inputs in equation (3.25). Therefore, the actual

control inputs can be expressed as follows:

PSM “ w1Pdyn,ins
IssueWidth

maxpIssueWidthq
` w2Pdyn,insNFII ` w3Pd0NDCC (3.30)

where w1, w2, and w3 are the respective weights for the power components of DIWS, FII,

and DCC; Pdyn,ins represents the dynamic power of the SM while executing the instruction

ins; Pd0 represents the unit power of the least significant bit (LSB) of the DCC current

DAC; NFII P 0, 1, 2 is the number of fake instructions injected; and 0 ď NDCC ď 2nDCC is

the digital code that controls the nDCC-bit current DAC to implement DCC. Formulating

the control input as a weighted sum allows us to explore the design space of our proposed

voltage smoothing method by sweeping different combinations for the same power effect, and

to find optimal control strategies under different optimization objectives.

3.6.4 Implementation Considerations

A number of circuit-level and microarchitecture-level changes have to be made in a GPU

system to accommodate the proposed control theory driven voltage smoothing technique.

Fig. 3.16 illustrates the overall architecture to implement our scheme, which consists of the

85

Fetch
Decode

I-Buffer

Score
Board

Warp Schedule
(Inst Issue)

SM(4,1)

Issue width
controller

Stage 1 Stage 2 Stage 3 Stage 4

CUDA
core

CUDA
core

CUDA
core

CUDA
core

Fetch
Decode

I-Buffer

Score
Board

Warp Schedule
(Inst Issue)

SM(3,1)

Issue width
controller

Stage 1 Stage 2 Stage 3 Stage 4

CUDA
core

CUDA
core

CUDA
core

CUDA
core

Fetch
Decode

I-Buffer

Score
Board

Warp Schedule
(Inst Issue)

SM(2,1)

Issue width
controller

Stage 1 Stage 2 Stage 3 Stage 4

CUDA
core

CUDA
core

CUDA
core

CUDA
core

Fetch
Decode

I-Buffer

Score
Board

Warp Schedule
(Inst Issue)

SM(1,1)

Inst Issue
Adjuster

Stage 1 Stage 2 Stage 3 Stage 4

CUDA
core

CUDA
core

CUDA
core

CUDA
core

Voltage smoothing
controller

SM(1,1)

SM(2,1)

SM(3,1)

SM(4,1)

Voltage
Sensor

LPF

Voltage
Sensor

LPF

Voltage
Sensor

LPF

Voltage
Sensor

LPF

VDD

3/4 VDD

1/2 VDD

1/4 VDD

Architecture Level Circuit Level

GND

Operating System

Higher Level
 Power Optimization

DCC

Max allowed difference
Hypervisor

Performance
loss

f

f

f

Figure 3.16: Implementation of the proposed cross-layer VS GPU solution with architectural
support for voltage smoothing and VS-aware PM hypervisor.

front-end detector and back-end actuator circuits, the voltage smoothing controller, and the

VS-aware power management hypervisor.

Detector and actuator

To monitor spatial and temporal voltage fluctuations, front-end voltage detectors are placed

close to each SM. A RC low pass filter is applied before the voltage detector to filter out high-

frequency noise. The cutoff frequency of the filter is ωc “ 50MHz and it can be implemented

with a 10KΩ resistor and a 2pF capacitor, which together occupy 1120µm2 area. On-

chip voltage detector circuits can be implemented in a number of ways using on-die droop

detector (ODDD) [145–147], critical path monitor (CPM) [148], or analog digital converter

(ADC) [149] approaches, as listed in Table 3.4. All these voltage sensing/inference methods

86

Table 3.4: Voltage Detector Options

Sensor Latency (cycle) Power (mW) Resolution (mV) Output

ODDD 1-2 0-10 10-20 detect indicator

CPM 10-100 30-60 10-100 timing variation

ADC 1-10 10-100 1/2N V N-bit digit signal

are compatible with the front-end detector requirements of our proposed scheme. The back-

end actuators consist of the instruction issue adjuster embedded in the warp scheduler at

each SM to support DIWS and FII, and the binary-weighted current DAC located near the

load of each distributed CR-IVR to support DCC. The instruction issue adjuster arbitrates

the instruction issue width and issues fake instructions to exert power actuation. Since each

SM can issue up to two instructions per cycle, we can adjust the total number of instructions

issued every N cycles to achieve finer-grained control resolution, from 1 to 1/N instructions

per cycle on average. For instance, if the issue width is set to 1.7 instructions per cycle, it

is adjusted by setting the down-counter that arbitrates the instruction issue to 17, with a

reset every 10 cycles.

Voltage smoothing controller

The voltage smoothing controller executes the boundary triggered control algorithm using

measured voltages from the detectors, and sends the updated issue width to the instruction

issue adjuster. Algorithm shows an implementation of the proportional control algorithm.

To reduce the negative effect of voltage smoothing on system performance, the controller

is triggered by real-time supply noise measurements from the voltage detectors and only

intervenes when a voltage droop below a certain threshold is detected. To evaluate the

performance and overhead of the voltage smoothing controller accurately, we implement the

87

Algorithm Algorithm 1: Streaming Multiprocessor Power Controller

Input: Measured voltage from voltage sensor Vpi,jq
Output: Issue Width: IssueSMpi,jq, Fake Rate: Nfake´SMpi,jq

Procedure: The Controller
1: Read in measured voltage: Vp1,1q...VpNlayer,Ncolumnq;
2: for pi ď Nlayer, j ď Ncolumnq do:
3: Calculate SMpi,jq voltage: VSMpi,jq=Vpi,jq-Vpi´1,jq;
4: if pVSMpi,jq ă Vthresholdq then:

Power control enable:
SMpi,jq “ active; nSM “ nSM ` 1;
IssueSMpi,jq “ Issuemax ´ k1 ˆ w1 ˆ p1´ VSMpi,jqq;
Nfake´SMpi`1,jq “ k2 ˆ w2 ˆ p1´ VSMpi,jqq;
Pcurrent´SMpi`1,jq “ k3 ˆ w3 ˆ p1´ VSMpi,jqq;
where k1, k2, k3 are proportional control factors

end if
end for //finish a round of calculation

6: return IssueSMpi,jq, Nfake´SMpi,jq, Pcurrent´SMpi,jq

controller and the SM instruction issue adjusters using VHDL2. We synthesize the VHDL

code in the Synopsys Design Complier with TSMC 40nm technology, which is comparable to

the process used in the NVIDIA Fermi GPU. The voltage smoothing controller and the 16 SM

instruction issue adjusters in total consume 1.634mW power and occupy 3084µm2 area when

operating at the same GPU frequency of 700MHz. Finally, we account for control latency

from several components: the detector response time, the controller computation time, the

actuation delay, and the round-trip communication delay between the detector/actuator

and the controller. We obtain the detector response time from previous work, calculate

the controller computation time and the actuation delay based on our synthesized circuit

model, and estimate the communication delay using an Elmore delay model based on tapered

inverter buffer chains, assuming the controller is situated in the middle voltage stacking layer

near the center of the SM.

2https://github.com/xz-group/gpuvs.git

88

VS-aware power management hypervisor

Algorithm Algorithm 2:: VS-aware Power Management Hypervisor

Input: Command from OS: fSMpi,jq, gateSMpi,jq
Output: Command to SMs: f

1

SMpi,jq, gate
1

SMpi,jq

Procedure: Command Mapping
1: Read in operation system command:
fSMp1,1q...fSMpNlayer,Ncolumnq, gateSMp1,1q...gateSMpNlayer,Ncolumnq
2: for pi ď Nlayer, j ď Ncolumnq do:
3: Calculate ∆fSMpi,jq,∆pleakage´SMpi,jq:

∆fSMpi,jq=fSMpi,jq-fSMpi`Nlayer,jq;
∆pleakage´SMpi,jq=pleakage´SMpi,jq-pleakage´SMpi`Nlayer,jq;

4: Update fthreshold SMpi,jq,pthreshold SMpi,jq;
5: if p|∆fSMpi,jq| ą fthreshold SMpi,jqq then:

Increase the frequency of SMpi`Nlayer, jq:
f

1

SMpi,jq “ minpfSMp‰i,jqq ` fthreshold SMpi,jq;
end if

6: if p|∆pleakage´SMpi,jq| ą pthreshold SMpi,jqq then:
gate

1

SMpi,jq “ 0
end if

end for
7: return f

1

SMpi,jq, gate
1

SMpi,jq

Due to voltage stacking’s unique topology and constraints on layer current imbalance, pre-

vious VS studies have not thoroughly explored its compatibility with higher-level power

optimization techniques such as dynamic frequency scaling (DFS) [150–153] and power gat-

ing (PG) [154–156]. We consider the implications of collaborative power management in

a voltage stacking setting and propose a voltage-stacking-aware hypervisor layer to inter-

face with other power techniques. This hypervisor interface is added between the operating

system layer and the GPU architecture layer as illustrated in Fig. 3.16. Since the voltage

smoothing actuation mechanisms (DIWS, FII, and DCC) used in our cross-layer solution

are orthogonal to the optimization mechanisms (frequency scaling and power gating) used

in other techniques, we can accommodate these higher level mechanisms, which often oper-

ate over longer time scales, in the same control framework. The most significant impact of

89

higher-level power management via frequency scaling and power gating on voltage stacking is

that they may inadvertently introduce current imbalance, due to the different scaling/gating

actions at the SM as determined by the power or performance optimization strategies. In

terms of reliability, since these power-management-induced imbalances do not exceed the

worst case imbalance analyzed previously, system reliability is still guaranteed by our con-

trol theory driven approach. However, a large imbalance could lead to undesirable energy

loss associated with the on-chip CR-IVRs and performance penalties associated with throt-

tling actions in the voltage smoothing mechanism. Here, we propose a heuristic optimization

algorithm to constrain layer current imbalance and alleviate performance penalties as shown

in Algorithm . The VS-aware hypervisor actively maintains balanced power across each

voltage stack by preventing the frequency scaling and power gating requested by the power

optimization techniques from exceeding a maximum power imbalance budget. The budget

is dynamically adjusted according to the SM performance loss, which gauges how many

instructions have been throttled due to voltage smoothing.

3.7 Advanced Power Management

We consider a well-designed power delivery system should be compatible with advanced

high-level power management techniques. Among them, the most common techniques are

dynamic voltage and frequency scaling (DVFS) and power gating. In this section, we will

discuss applying DVFS and power gating together with the proposed hybrid regulation in

voltage-stacked GPU systems.

90

3.7.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) adjusts the supply voltage and frequency

of a voltage domain to boost performance or save power. In voltage stacking each layer

can be divided into different voltage domains and the division should be consistent across

different layers to maintain the stacked power delivery. In this chapter, we assume the SMs

in each layer share one voltage domain in the proposed GPU many-core voltage-stacked

system. When DVFS is applied in voltage stacking, each layer (voltage domain) may have a

different voltage. The low drop-out voltage regulator will be used to recycle the imbalance

current because LDO can support that each layer has its own voltage. We will use LDO

hybrid regulations in following voltage stacking DVFS analysis and evaluations. When one

voltage domain needs to change to a different supply voltage, the low drop-out voltage

regulator can change the reference voltage and conversion ratio to adjust the voltage of each

layer [93,95,157].

Compared to the original voltage stacking, DVFS maintains the stacked power delivery but

may brings more frequent current imbalance. As the current imbalance introduced by DVFS

does not go beyond the worst cases studied in Section 3.4 where one layer is totally powered

off, the proposed hybrid regulation can effectively guarantee the system’s stability under

DVFS operation. Although the amplitude of the imbalanced current does not exceed the

worst case, the extra current imbalance introduced by DVFS will cause more power loss

in CR-IVR and CR-VRM. Compared with the original voltage stacking, part of efficiency

benefit will be sacrificed under DVFS.

91

Table 3.5: LDO Regulator Parameters

Design Parameters CR-IVR CR-VRM

Number of VR 4 1

Switch frequency 50MHz 2MHz

Total capacitor per VR 1.1uF 600uF

Capacitor density 50nF {mm2 0.2uF {mm2

Switch on resistance 130Ω ¨ um 37600Ω ¨ um

Area per VR 22.0mm2(Die) 3.1cm2(Board)

3.7.2 Power Gating

Power gating turns off the circuitry inside a core or the core itself for a while when not in

use. Power gating introduces current imbalance and also causes supply voltage noise. The

most severe imbalance happens when one layer is totally powered off while other layers are

working. This scenario is already captured by supply voltage noise worst case analysis in

Section 3.4 and supply voltage can be also guaranteed by the proposed hybrid regulation

as described in Section 3.5. Similar to DVFS, the extra imbalanced current introduced

by power gating will cause more power loss from CR-IVR and CR-VRM thus degrading

efficiency gains.

3.7.3 Power Management Hypervisor in Voltage Stacking

The DVFS, power gating and other power management techniques optimize the power and

performance tradeoffs based on the commands from software operating system. At the

software commands level, power management techniques should taken voltage stacking into

consideration and many techniques such as fast thread migration [140] can balance the

workload before current imbalance happens. To make the correct decision at the software

level, the power management techniques first need to know the potential power benefit and

92

Algorithm 4 Power Saving from DVFS and Power Gating

Input Variables:
DVFS / power gating command: f corei,j / P core´gate

i,j

Output Variables:
Power estimation of each Core: P core

i,j

Steps:
1: Replace Icorei,j with f corei,j / P core´gate

i,j in Eq. (3.4) - (3.7).

2: Calculate residual frequency / gated power: fRi,j/P
R´gate
i,j .

3: Residual current can be known as:

IRi,j “ αCV fRi,j /
PR´gate
i,j

V
4: Calculate VR loss PCR´IV R/PCR´V RM in Eq. (4.4)-(3.20).
5: Return power estimation:
P core
i,j = αCV 2fi,j / P core´gate

i,j - PCR´IV R - PCR´V RM

performance loss and then find the proper tradeoff point. To estimate the potential power

benefit that each core can earned, we introduce a power management technique estimator

for the software level power management as described in Algorithm 4. The estimator can

evaluate the potential net power consumption of each core considering the extra power loss

in power delivery system.

At the hardware power delivery system, we provide a power delivery efficiency guaranteed

power management hypervisor of DVFS or power gating instructions for voltage stacking.

According to Section 3.4 and 3.5, the power loss in voltage stacking comes from the accu-

mulated residual current component going through charge-recycling voltage regulators. The

hypervisor guarantees the power delivery efficiency by limiting the maximum allowed residual

current, described in Algorithm 5. In the hypervisor, the residual current of each core under

DVFS and power gating is calculated with Eq. (3.4) - (3.7). The residual current threshold

∆Ithreshold is given to limited the residual current IRi,j and guarantee power loss in power

delivery system. Then each core whose residual current exceeds the threshold ∆Ithreshold or

93

Pthreshold will be compensated by IRi,j ´∆Ithreshold to make sure that the residual current IRi,j

and power loss in power delivery system are limited within desired range.

Algorithm 5 Power Management Hypervisor in VS

Input Variables:
Commands in conventional system: f corei,j / P core

i,j

Output Variables:
Commands for Voltage Stacking: f

1core
i,j / P

1core
i,j

Steps:

1: Replace Icorei,j with αCV f corei,j ,
P corei,j

V
in Eq. (3.4) - (3.7).

2: Calculate residual current: IRi,j
3: Dynamic Voltage Frequency Scaling:

for i, j = 1, 2, 3, 4 do
if |IRi,j| ą |∆Ithreshold| then

I
1core
i,j “ Icorei,j ´ pIRi,j ´∆Ithresholdq

f
1core
i,j “

I
1core
i,j

αCV

else then
f

1core
i,j “ f corei,j

Return DVFS commands: f
1core
i,j

4: Power Gating:
for i, j = 1, 2, 3, 4 do

if |IRi,j| ą |∆Ithreshold| then

I
1core
i,j “ Icorei,j ´ pIRi,j ´∆Ithresholdq

P
1core
i,j “ V I

1core
i,j

else then
P

1core
i,j “ P core

i,j

Return power gating commands: P
1core
i,j

3.8 Evaluation of Hybrid Regulation

In this section, we evaluate the hybrid regulated GPU many-core voltage-stacked system

in terms of supply voltage noise, power delivery efficiency, advanced power management

compatibility, and finally compare it with other power delivery systems. We develop an

hybrid simulation infrastructure that combines SPICE3 [158] and GPGPU-Sim 3.1.1 (with

94

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8
2.0

S
u
p
p
ly

 V
o
lt
a
g
e
(V

)

Backp Bfs

Pathfin
der

Hotspot

LavaMD

Blackscholes

Sortn
etw

ork Dxtc

Mergesort

Transpose
Worst

Hybrid regulation(SC) Hybrid regulation(LDO) Default voltage stacking

(a) Supply voltage noise comparison between SC / LDO hybrid regu-
lated and default voltage stacking

(b) Worst supply noise distri-
bution

Figure 3.17: Evaluation of the supply voltage noise in hybrid regulated voltage stacking
system.

GPUWattch) [79, 159]. SPICE3 simulates the circuit transient response of the full voltage-

stacked power delivery system and the charge-recycling voltage regulators as illustrated in

Fig. 3.9, and GPGPU-Sim 3.1.1 simulates the GPU architecture level system specified in

Table 3.1. We use ten representative benchmarks that cover a wide range of scientific and

computational domains from two benchmark suites, five from Rodinia 2.0 [81] and five from

NVIDIA CUDA SDK [160].

3.8.1 Supply Voltage Noise Evaluation

We first evaluate the supply voltage noise across real GPU benchmarks and the worst case

derived by Algorithm 1. As shown in Fig. 3.17(a), in default voltage stacking without any

voltage regulation, the supply voltage suffers huge noise, especially under the worst case. As

demonstrated by the noise histograms in Fig. 3.17(a) and 3.17(b), after deploying hybrid

regulation in the voltage-stacked GPU system, the supply voltage noise across both the

benchmarks and the worse case is limited to a range of 0.2V, comparable to conventional

single-layer power delivery system3. One of the key strengths of our hybrid approach is

30.2V is the voltage margin used in commercial GPU systems for tolerable supply noise [77].

95

Backp Bfs

Pathfin
der

Hotspot

LavaMD

Blackscholes

Sortn
etw

ork Dxtc

Mergesort

Transpose
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

P
o
w

e
r

D
e
liv

e
ry

E
ff
ic

ie
n
c
y
 B

re
a
k
d
o
w

n
Core

PDN

Stepdown/CR-VRM

CR-IVR

Conventional single layer power delivery system
Voltage stacking power delivery system (LDO)

Voltage stacking power delivery system (SC)

Figure 3.18: Power delivery efficiency comparison between voltage-stacked system with
SC/LDO hybrid regulation and conventional single-layer system across ten benchmarks.

its use of the more expensive on-chip regulator for high frequency noise mitigation and the

more economical off-chip regulator for low frequency noise mitigation. This choice avoids

over design of the on-chip CR-IVR, saves significant on-die area, and provides worst-case

guaranteed reliability.

3.8.2 Efficiency in Real Applications

We evaluate the system level power delivery efficiency (PDE) by running a wide range of

real GPU benchmarks on our integrated hybrid simulation infrastructure. We compare our

hybrid regulated voltage-stacked system in Fig. 3.9 with the conventional single-layer power

delivery system with a board-level voltage regulator module (VRM), which is the default

GPU power delivery system [77,161].

The normalized breakdown of the full system power delivery efficiency across benchmarks is

shown in Fig. 3.18. On average, voltage-stacked power delivery system configurations (with

hybrid regulation) can deliver power at close to 93.5% efficiency with switched capacitor

charge-recycling voltage regulators and 92.3% efficiency with LDO charge-recycling volt-

age regulators, as compared to 79% for the single-layer VRM (conventional baseline). The

96

Table 3.6: SM Core DVFS Frequency and Voltage Pairs

Core freq. (MHz) 700 650 600 550 300
Core voltage (V) 1 0.95 0.91 0.87 0.46

charge-recycling voltage regulator in voltage stacking outperforms the step-down voltage

regulator in the single-layer PDS because the former only needs to shuffle the accumulated

imbalanced part, usually within 20% of the layer power, whereas the latter delivers the total

power. For example, in benchmark Transpose, only 11.8% and 2.9% of current are imbal-

anced current that goes through CR-IVR and CR-VRM respectively, and causes 3.7% and

1.1% of power loss in switched capacitor CR-IVR and CR-VRM respectively.

3.8.3 Compatibility with Advanced Power Management

First we leverage the common and classic DVFS algorithm proposed in [152] to explore per-

core DVFS on a voltage-stacked GPU system, which monitors and predicts the application

status (compute bound/memory bound) to adjust each core and memory frequency. The SM

core frequency and voltage pairs are shown in Table 3.6. In conventional single-layer power

delivery system, each cores has its own frequency and voltage. In voltage stacking, the cores

in each layer share a voltage domain and the highest voltage and frequency from the cores in

one layer is used as the voltage and frequency for this layer. We evaluate DVFS on the voltage

stacking and compare with DVFS on conventional single-layer power delivery system in Fig.

3.19. Although DVFS on voltage stacking causes more power loss than normal execution

on voltage stacking, but it still has a higher power delivery efficiency than on conventional

power delivery system at most benchmarks except Transpose. This is because GPU benefits

the single instruction multiple thread (SIMT) architecture causing a synchronized activity

and synchronized DVFS commands for the cores during most of time. Besides, shown in

97

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

P
o

w
e

r
D

e
liv

e
ry

E
ff

ic
ie

n
c
y
 u

n
d

e
r

D
V

F
S

Backp Bfs

Pathfin
der

Hotspot

LavaMD

Blackscholes

Sortn
etw

ork
Dxtc

Mergesort

Transpose

Core

PDN

Stepdown/CR-VRM

CR-IVR

Conventional single layer power delivery system
Voltage stacking power delivery system

PDE guided voltage stacking power delivery system

Figure 3.19: DVFS power saving comparison between conventional single-layer system and
voltage-stacked system with hybrid regulation across benchmarks.

the right bars in Fig. 3.19, the power delivery efficiency guided hypervisor in Algorithm

5 can further prevent the aggravated power loss in CR-IVR and CR-VRM by limiting the

occasional current imbalance from DVFS. Power delivery efficiency guided hypervisor can

help voltage stacking achieve a near 90% power delivery efficiency under DVFS operations.

The normalized energy consumption across benchmarks of conventional single-layer system,

DVFS on conventional single-layer system and DVFS on power delivery efficiency guided

voltage stacking is shown in Fig. 3.20. On conventional single-layer system, DVFS can reduce

the energy consumption of cores across most benchmarks. On power delivery efficiency

guided voltage stacking, the energy consumption of cores are also partly reduced compared

to conventional single-layer system without DVFS, but cannot reach the same amount as

DVFS on single-layer system. This is because power delivery efficiency guided hypervisior

modifies the aggressive DVFS commands which cause current imbalance and low power

delivery efficiency. Although the energy consumption of cores is higher than DVFS on

conventional single-layer system, when the energy loss in power delivery system is taken into

consideration, DVFS on voltage stacking achieves the best overall energy consumption.

For power gating, we manually power off the cores in one layer and leave the cores in the

other layers under normal execution which will cause the most current imbalance, power

98

0
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
o
rm

a
liz

e
d
 E

n
e
rg

y

C
o
n
s
u
m

p
ti
o
n

Backp Bfs

Pathfin
der

Hotspot

LavaMD

Blackscholes

Sortn
etw

ork
Dxtc

Mergesort

Transpose

Core

PDS

Conventional single layer power delivery system
DVFS on conventional single layer power delivery system

DVFS on PDE guided voltage stacking power delivery system

Figure 3.20: Normalized system energy consumption under DVFS.

loss and the worst power delivery efficiency. The residual current threshold ∆Ithreshold in

power delivery efficiency guided hypervisor is set to 25%, 50%, and 75% of the core current

respectively to protect power delivery efficiency. Fig. 3.21 describes the full system power

delivery efficiency across benchmarks. Compared with voltage stacking without power gating

in Fig. 3.18, continuous imbalanced current from power gating causing more power loss in

CR-IVR and CR-VRM. When ∆Ithreshold is set to 25% and 50% the core current, the full

system power delivery efficiency can still maintain 80%. When ∆Ithreshold is set to 75% the

core current, the full system power delivery efficiency is lower than 70%. It means that the

power benefits from gating the cores in one layer, which is about 1/4 of system power, are

all wasted in the power delivery system. Since that when power gating is applied in voltage

stacking, at the software level power gating should prefer powering off the cores in the same

stack with the help of thread migration. When it is inevitable to power off the cores in the

same layer, hardware based power delivery efficiency guided power management hypervisor

will be deployed to prevent gating over 50% of one layer from happening frequently to protect

the voltage stacking power delivery efficiency.

99

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

P
o

w
e

r
D

e
liv

e
ry

 E
ff

ic
ie

n
c
y
 B

re
a

k
d

o
w

n

Backp Bfs

Pathfin
der

Hotspot

LavaMD

Blackscholes

Sortn
etw

ork
Dxtc

Mergesort

Transpose
Core PDN CV-IVR CR-VRM

25% PDE guided power gating on voltage stacking

Power gating on voltage stacking
75% PDE guided power gating on voltage stacking

50% PDE guided power gating on voltage stacking

Figure 3.21: Power delivery efficiency under PDE guided power gating and original power
gating on voltage stacking.

Table 3.7: Power delivery system comparison

Power Delivery System Efficiency Die Area Reliable Compatibility

Single-layer VRM [118] 79.9% N/A
‘ ‘

Single-layer IVR [162] 85.8% 172.3 mm2 ‘ ‘

VS IVR [94] 92% 88.3 mm2 ˆ ˆ

VS IVR (worst) [94] 92% 912 mm2 ‘

ˆ

VS Hybrid (this work) 93.5% 99.2 mm2 ‘ ‘

3.8.4 Comparison with Other Power Delivery Systems

In Table 3.8, we compare the proposed hybrid regulated voltage-stacked power delivery

system with other existing and emerging power delivery system configurations. Although

charge-recycling voltage regulators are employed, the voltage-stacked system does not suffer a

large efficiency penalty, because most currents go through the vertically-stacked grid without

incurring energy loss at the regulators. Validated by benchmarks, the proposed voltage-

stacked system with hybrid regulation can achieve 93.5% power delivery efficiency on average

and can guarantee that the supply voltage noise remains within the reliable region. Besides

efficient power delivery and supply voltage noise mitigation, hybrid regulated voltage-stacked

systems are also compatible with other advanced high level power management techniques,

such as DVFS and power gating. Although when advanced power managements are applied

in voltage-stacked system, huge imbalance current may lead to power delivery efficiency loss,

100

power delivery efficiency guided hypervisor are able to limit the magnitude and frequency of

imbalance and guarantee the improved power delivery efficiency. Furthermore, many other

techniques, like high efficiency charge-recycling circuit, can be explored to further improve

the voltage-stacked power delivery efficiency.

3.9 Evaluation of Architecture Support

In this section, we quantitatively evaluate the efficiency, overhead, and reliability of our

cross-layer voltage-stacked GPU system leveraging control theory. We first examine system-

level power delivery efficiency and compare with alternative PDS configurations. The results

indicate that our cross-layer voltage-stacked PDS is the only practical solution that can

deliver power at 92.3% efficiency–12.3% improvement over the conventional PDS–without

incurring prohibitive area overhead. Next, we evaluate the supply noise behavior of our

solution against both synthetic worst-case scenarios and real-world benchmarks to verify

that it can sustain the specified voltage margin with strong guarantees. We then perform

a sensitivity study and design space exploration to reveal the potential performance and

energy efficiency tradeoffs in the voltage-stacked GPU system. Finally, we demonstrate

collaborative power management operations by combining the cross-layer VS framework

with other higher-level power optimization techniques, which can can yield better overall

system-level efficiency results than any of the individual methods alone.

101

Figure 3.22: Power delivery efficiency and power breakdown across benchmarks and power
delivery subsystems configurations.

Table 3.8: Comparison of Different Power Delivery Subsystems (PDS)

PDS Configuration PDE Die Area Overhead

Single layer VRM [161] 80% N/A

Single layer IVR [63] 85% 172.3mm2 (0.33ˆGPU die)

VS circuit only [94,112] 93.0% 912mm2 (1.72ˆGPU die)

VS cross-layer 92.3% 105.8mm2 (0.2ˆGPU die)

3.9.1 System-level Efficiency

System-level power delivery efficiency (PDE) is evaluated by running a wide range of GPU

benchmarks on our integrated hybrid simulation infrastructure. We compare our cross-

layer VS solution with three alternatives: the conventional single-layer PDS with a board-

level voltage regulator module (VRM), the single-layer IVR PDS with an on-chip switched-

capacitor integrated voltage regulator but without voltage stacking, and the circuit-only

solution to implement VS with the aid of on-chip charge-recycling IVR (CR-IVR).

The normalized breakdown of the total system power across benchmarks is shown in Fig.3.22.

On average, both voltage stacking PDS configurations (circuit-only and cross-layer) can de-

liver power at close to 92.3% efficiency, as compared to 80% for single-layer VRM (conven-

tional baseline) and 85% for single-layer IVR. The reason that IVR in VS outperforms IVR

in single-layer PDS is because the former only needs to shuffle the imbalanced load, which

is usually less than 20%, of the layer power, whereas the latter delivers the total power.

102

2 2.5 3 3.5 4 4.5 5

Time(s) ×10
-6

0.2

0.4

0.6

0.8

1

1.2

V
o

lt
a

g
e

(V
)

Circuit only (2x GPU area)

Circuit only (1x GPU area)

Circuit only (0.2x GPU area)

Cross layer (0.2x GPU area)

Worst imbalance happen

Figure 3.23: Transient voltage waveforms under worst imbalance scenarios.

Table 3.8 summarizes the comparison results. Besides efficiency, it also highlights different

PDS configurations’ die area overhead. Although both VS solutions exhibit high PDE, the

circuit-only approach consumes excessive die area (1.72ˆ the GPU die area) in order for

the CR-IVR to have enough capacity to deal with the worst-case current imbalance. In

contrast, our cross-layer approach that leverages architecture-level support to deal with the

slow-changing part of the current imbalance appears to be the only practical solution known

that can consistently achieve above 90% efficiency.

3.9.2 Supply Reliability

We first construct a synthetic worst case scenario to verify reliable operation of the proposed

VS GPU. At the 3µs mark (Fig. 3.23), we manually turn off SMs in one layer to simulate

extreme current imbalance. In the circuit-only VS systems, the voltage droop worsens as the

CR-IVR area decreases and it takes about 2ˆ the GPU area to stabilize the voltage above

0.8 V. Instead, our cross-layer solution incurs only 0.2ˆ area overhead to achieve a similarly

stable transient SM voltage, which is a nearly 90% area reduction.

103

0 0.5 1 1.5 2

Area Budget(xGPU area)

0

0.2

0.4

0.6

0.8

1

W
o
rs

t
V

o
lt
a
g
e
(V

)
latency=60cycle

latency=80cycle

latency=120cycle

latency=140cycle

(a) CR-IVR area

50 100 150

Latency(cycle)

0.2

0.4

0.6

0.8

1

W
o
rs

t
V

o
lt
a
g
e
(V

)

2x GPU area

0.8x GPU area

0.4x GPU area

0.2x GPU area

(b) Control latency

Figure 3.24: Worst supply noise in response to worst imbalance as a function of CR-IVR
area and control latency.

We also perform a sensitivity study on the impact of CR-IVR area and control latency on

the supply reliability of our cross-layer VS GPU. Fig.3.24 plots the worst voltage droop in

response to the synthetic current imbalance event as a function of CR-IVR area (a) and

control latency (b). In the left plot, when the control latency is greater than 80 cycles, the

worst-case voltage droop becomes highly sensitive to the area budge. Similarly in the right

plot, when the area budge is smaller than 0.8ˆ, the worst-case voltage droop becomes highly

sensitive to the control latency. Since the architecture-level voltage smoothing scheme can

only deal with slow-changing supply fluctuations, a minimal-sized CR-IVR is always required

to handle fast current imbalances. From the sensitivity analysis, we choose a 0.2ˆ sized CR-

IVR and a 60 cycle latency controller as the optimal parameters to implement the cross-layer

VS solution, and use that default setting from now on. We also simulate the distribution

of supply noise across real world benchmarks. Each box in Fig. 3.25 summarizes the noise

distribution of all 16 SMs for a benchmark. We compare noise distribution between the

cross-layer solution and the circuit-only solution, both with 0.2ˆ sized CR-IVR. 9 out of

12 benchmarks experience modest reduction in voltage noise magnitude from the control

theoretic voltage smoothing. The 3 outliers (pathfinder, simpleatomic, fastwalsh) are due to

104

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

V
o

lt
a

g
e

(V
)

BACKP
BFS

heartw
all

hotspot

pathfin
der

sard

blackscholes

scalarprod

sortin
gnet

sim
pleface

fastw
alsh

sim
pleatomic

worst c
ase

Circuit onlyCross layer solution

Figure 3.25: Noise distribution across benchmarks and the worst-case imbalance.

the choice of control parameters and boundary transitions, but their lowest voltage excursions

are still bounded by 0.8V , satisfying the specified 0.2V voltage margin. The rightmost

box plot represents the worst-case noise distribution, which indicates that although the

architecture voltage smoothing is only occasionally trigged for regular benchmarks, it is

essential to provide the worst-case guarantee to ensure supply reliability.

3.9.3 Performance Tradeoffs

0.7 0.8 0.9 1
Threshold Voltage(V)

0

4%

8%

12%

16%

20%

24%

P
e

rf
o

rm
a

n
c
e

 P
e

n
a

lt
y

backprop

bfs

heartwall

hotspot

pathfinder

sard

blackscholes

scalarprod

scalarprod

sortingnet

simpleface

fastwalsh

Figure 3.26: Performance penalty varies
with controller voltage threshold.

14% 12% 10% 8% 6% 4% 2% 0%

Net Energy Saving

0%

1%

2%

3%

4%

5%

P
e
rf

o
rm

a
n
c
e
 P

e
n
a
lt
y

DIWS

FII

DCC

DIWS

DCC

FII

0.8DIWS+0.2DII

0.8DIWS+0.2DCC

Figure 3.27: Energy saving and perfor-
mance penalty tradeoff space.

Due to the throttling nature of voltage smoothing mechanisms such as DIWS, our cross-layer

approach inevitably incurs performance penalties. When evaluating energy efficiency of the

105

0

4%

8%

12%

16%

20%

BACKP
BFS

heartw
all

hotspot

pathfin
der

sard

blackscholes

scalarprod

sortin
gnet

sim
pleface

fastw
alsh

sim
pleatomic

Net energy saving

Performance loss

Figure 3.28: Performance penalty and energy saving across benchmarks.

GPU system, such performance penalties lead to longer total execution times and higher

energy consumption caused by leakage power. We account for such performance penalties

and their resulting increased leakage energy in our total energy savings calculation. The

normalized performance penalty and net energy savings of our proposed cross-layer VS GPU

is presented in Fig.3.28, normalized against the performance and total energy of conventional

PDS with single-layer VRM. The performance penalty is distributed within 2%´ 4% across

benchmarks. After taking the extended execution time and increased leakage energy into

account, voltage-stacked GPUs with the cross-layer solution still enjoy 10%´15% net energy

savings (improved energy efficiency) due to higher power delivery efficiency. We perform

another sensitivity study by varying the voltage threshold (Vthreshold) used in the voltage

smoothing controller, as it determines how often DIWS throttling is triggered. The results

across benchmarks are shown in Fig 3.26. A lower threshold leads to a smaller performance

overhead, but jeopardizes supply reliability. In this work, we set the default Vthreshold at

0.9V , and at this level, less than 20% of the cycles are affected by voltage smoothing during

benchmark execution when the layer voltage is below 0.9V .

In the previous evaluation, we use only DIWS as the voltage smoothing mechanism, and the

performance penalty is a result of its throttling effect. If an even smaller performance penalty

is desired, our cross-layer approach has the flexibility to incorporate other mechanisms using

106

Figure 3.29: Applying DFS on conventional and proposed voltage-stacked GPU.

Figure 3.30: Applying PG on conventional and proposed voltage-stacked GPU.

the weighted control inputs as specified in (3.30). We explore the space of different weight

combinations and the resulting performance penalty and net energy savings in Fig 3.27.

On the Pareto frontier of the design space, we can see that when high net energy saving is

desired, DIWS is generally the better voltage smoothing mechanism to choose, while FII and

DCC can deliver a lower performance penalty. Due to its extra area overhead and leakage

current, DCC is usually an inferior mechanism when FII can be applied to achieve similar

performance.

Figure 3.31: Distribution of imbalanced currents by their normalized magnitudes when no
power management (No PM), DFS with different performance goals, and power gating are
applied in a VS GPU.

107

3.9.4 Collaborative Power Management

Finally, we demonstrate the collaborative operation of voltage stacking with dynamic fre-

quency scaling (DFS) and power gating (PG) for high-level power optimization. Previous

DFS studies [150, 163] find the optimal SM operating frequencies to minimize the compu-

tational power under different performance goals. We apply a similar DFS strategy and

examine the total GPU energy consumption with and without VS. The energy in Fig.3.29 is

normalized by the total GPU energy operating at its peak performance when the power de-

livery inefficiency is taken into account. Since our VS-aware power management hypervisor

may modify the optimal frequency settings to ensure a bounded layer current imbalance, this

negative effect of VS on DFS can be observed in the slight increase of computational energy

(1-2%) in the second bar representing our cross-layer VS GPU solution. However, when the

power delivery loss is considered, the slight energy penalty experienced by the VS GPU is

more than compensated by its superior PDE, resulting in overall energy savings of 7-13%

compared to applying DFS in the GPU with a conventional PDS. We observe similar results

when combining PG techniques (i.e., Warped Gates [155]) with VS. As shown in Fig. 3.30,

although the minimum current imbalance requirement in the VS GPU disrupts the optimal

PG setting, it is more than compensated by improved PDE.

These favorable DFS and PG results can be better understood by carefully examining the

distribution of imbalanced currents between two vertically stacked SMs across cycles. We

normalize the current imbalance by the peak SM current and plot its distribution during the

lifetime of the benchmark execution in Fig.3.31. When no power management is applied,

the benchmark with the most imbalance is BACKUP (left bar) and the benchmark with

the highest uniformity is heartwall (right bar). The middle bar presents the distribution

averaged over all benchmarks and it shows that 50% of the time, the current imbalance

108

is less than 10% of its peak magnitude, and 93% of the time, it is less than 40% of the

peak. Similar exercises can be performed when DFS and PG are applied by evaluating the

imbalance distribution for the worst, best, and average benchmarks. Fig.3.31 suggests that

SM-level activities are overwhelmingly uniform and synchronized, resulting in well-balanced

currents across the stack, and high-level power optimizations such as DFS and PG do not

fundamentally disturb such balanced activities.

3.10 Conclusion

Voltage stacking fundamentally improves many-core processors power delivery efficiency but

suffers aggravated supply voltage noise. According to the analysis using circuit decomposi-

tion and superposition, the contributors to supply voltage noise are high frequency global

current and low frequency residual current. Then the current configuration leading to the

worst supply voltage is derived as an optimization problem. Based on the characteristics of

supply voltage noise, a hybrid regulation, with distributed on-chip and a off-chip charge re-

cycle voltage regulators, is proposed to effectively mitigate supply voltage noise. The supply

voltage noise is guaranteed within a safe range even under the worst case. Also, the proposed

hybrid regulated voltage-stacked system can not only be compatible with other power man-

agement techniques like DVFS and power gating but also maintains a high power delivery

efficiency. Compared with conventional power delivery system, the proposed hybrid regu-

lated voltage-stacked system achieves a 13.6% improvement of power delivery efficiency. The

improved power delivery efficiency can help the computing systems and the cyber-physical

systems have a longer operating time in an energy-limited scenario.

109

Chapter 4

Architecture and Operating System

Layers: Real-Time GPU Scheduling

of Hard Deadline Parallel Tasks with

Fine-Grain Utilization

Many emerging cyber-physical systems, such as autonomous vehicles and robots, rely heav-

ily on artificial intelligence and machine learning algorithms to perform important system

operations. Since these highly parallel applications are computationally intensive, they need

to be accelerated by graphics processing units (GPUs) to meet stringent timing constraints.

However, despite the wide adoption of GPUs for machine learning and artificial intelligence,

efficiently scheduling multiple GPU applications while providing rigorous real-time guar-

antees remains a challenge. In this chapter, we propose RTGPU, which can schedule the

execution of multiple GPU applications in real-time to meet hard deadlines. Each GPU

application can have multiple CPU execution and memory copy segments, as well as GPU

kernels. We start with a model to explicitly account for the CPU and memory copy segments

110

of these applications. We then consider the GPU architecture in the development of a pre-

cise timing model for the GPU kernels and leverage a technique known as persistent threads

to implement fine-grained kernel scheduling with improved performance through interleaved

execution. Next, we propose a general method for scheduling parallel GPU applications

in real time. Finally, to schedule multiple parallel GPU applications, we propose a practi-

cal real-time scheduling algorithm based on federated scheduling and grid search (for GPU

kernel segments) with uniprocessor fixed priority scheduling (for multiple CPU and mem-

ory copy segments). Our approach provides superior schedulability compared with previous

work, and gives real-time guarantees to meet hard deadlines for multiple GPU applications

according to comprehensive validation and evaluation on a real NVIDIA GTX1080Ti GPU

system.

4.1 Introduction

Nowadays, artificial intelligence (AI) and machine learning (ML) applications accelerated

by graphics processing units (GPUs) are widely adopted in emerging autonomous systems,

such as self-driving vehicles and collaborative robotics [164, 165]. For example, Volvo de-

ployed NVIDIA DRIVE PX 2 technology for semi-autonomous driving in 100 XC90 luxury

SUVs [166]. These autonomous systems must simultaneously execute different algorithms

in the GPU in order to perform tasks such as object detection, 3D annotation, movement

prediction, and route planning [167, 168]. The systems must also process images and sig-

nals from various sensors and decide the next action in real time. Therefore, it is essential

to diligently manage the concurrent execution of applications in the GPUs with respect to

111

various timing constraints, since their behaviors can have direct and critical impacts on the

stability and safety of the whole system.

For general purpose computing in non-real-time systems with GPUs, the GPU scheduling

problem has been extensively studied to minimize the makespan of a single application or to

maximize the total throughput of the system [169–172]. Examples include accelerating the

training of an AI algorithm or optimizing the average utilization of GPUs running an ML

inference application. However, many of these techniques do not translate well to scheduling

GPU applications with real-time deadlines. The conventional programming interface that

comes with off-the-shelf desktop and embedded GPUs allows scheduling only at the granu-

larity of GPU kernels. In particular, by default, the first-launched GPU kernel will occupy

all the GPU resources until completion, at which time the next scheduled GPU kernel can

begin executing4, so a GPU scheduler can decide only which of the available GPU kernels

should be launched first even with Multi-Process Service (MPS) [173]. This kernel-granular

scheduling is not sufficient to meet real-time deadlines. For example, consider two real-time

tasks run on the same GPU, one of which has a large GPU kernel with a long deadline, while

the other has a small GPU kernel with a short deadline. If the large GPU kernel arrives

slightly before the small GPU kernel, the large task will take over the entire GPU, leaving

the small task stuck waiting and likely missing its deadline. To overcome this deficiency

and improve the real-time performance of GPU applications, it has been proposed to add

some form of preemption via low-level driver support and to modify CUDA APIs so that the

system’s timing behavior is more predictable [174–181]. However, none of these approaches

4GPU CUDA activity from independent host processes will normally create independent CUDA contexts,
one for each process. Thus, the CUDA activity launched from separate host processes will take place in
separate CUDA contexts, on the same device. CUDA activity in separate contexts will be serialized. The
GPU will execute the activity from one process, and when that activity is idle, it can and will context-
switch to another context to complete the CUDA activity launched from the other process. The detailed
inter-context scheduling behavior is not specified. (Running multiple contexts on a single GPU also cannot
normally violate basic GPU limits, such as memory availability for device allocations.)

112

Figure 4.1: RTGPU framework.

provide fine-grained real-time GPU scheduling and the corresponding schedulability analysis

needed to execute multiple real-time tasks in GPUs.

In this chapte, we propose RTGPU, a general real-time GPU scheduling framework shown

schematically in Fig. 1. This framework includes the GPU partitioning and modeling on

the system side and a scheduling algorithm with schedulability analysis on the theory side.

First, working from an in-depth understanding of GPU kernel execution and profiling syn-

thetic workloads, we leverage a technique called persistent threads to support SM-granularity

scheduling for concurrent GPU applications [182–184]. With the persistent threads tech-

nique, the interleaved execution is proposed to achieve a 10% to 37% improvement in system

utilization. Then we develop a real-time GPU system model that introduces the concept of

virtual streaming multiprocessors (virtual SMs). With this model, we are able to explicitly

assign the desired number of virtual SMs to each GPU kernel of each GPU application,

allowing finer-grained GPU scheduling without any low-level modifications to GPU systems.

Compared with previous kernel-granularity scheduling approaches, this model supports more

flexible parallel execution in the GPUs.

113

As each GPU application has multiple CPU execution, memory copy segments, and GPU

kernels, on the scheduling algorithm side we introduce fixed priority with federated scheduling

strategy for the system. For the GPU segment, based on the proposed real-time GPU system

model, we extend a parallel real-time scheduling paradigm for CPUs, namely federated

scheduling [185], to schedule real-time GPU applications with implicit deadlines. The key

idea behind federated scheduling is to calculate and statically assign the specific computing

resources that each parallel real-time task needs to meet its deadline. Note that preemption

between tasks is not needed if the correct number of fixed-granularity computing resources

can be accurately derived in analysis and enforced during runtime. For the CPU segment and

memory copies between CPU and GPU, a novel uniprocessor fixed priority scheduling method

is then proposed based on calculating the response time upper bounds and lower bounds of

each segment alternately. This scheduling algorithm is not limited to GPU applications and

can be further applied to other applications running on heterogeneous architecture computing

systems.

Compared with previous work, the proposed GPU federated scheduling and CPU and mem-

ory copy fixed priority scheduling techniques collaborate well with each and achieve the

best schedulability known to date. To assess the effectiveness of those techniques on real

platforms, we evaluate and validate our proposed RTGPU framework on real NVIDIA GPU

systems.

114

4.2 Background and Related Work

4.2.1 Background on GPU Systems

GPUs are designed to accelerate compute-intensive workloads with high levels of data paral-

lelism. As shown in Fig. 4.2., a typical GPU program contains three parts — a code segment

that runs on the host CPU (the CPU segment), the host/device memory copy segment, and

the device code segment which is also known as the GPU kernel. GPU kernels are single

instruction multiple threads (SIMT) programs. The programmer writes code for one thread,

many threads are grouped into one thread block, and many thread blocks form a GPU kernel.

The threads in one block execute the same instruction on different data simultaneously. A

GPU consists of multiple streaming multiprocessors (SMs). The SM is the main computing

unit, and each thread block is assigned to an SM to execute. Inside each SM are many

smaller execution units that handle the physical execution of the threads in a thread block

assigned to the SM, such as CUDA cores for normal arithmetic operations, special function

units (SFUs) for transcendental arithmetic operations, and load and store units (LD/ST)

for transferring data from/to cache or memory.

When GPU-accelerated tasks are executed concurrently, kernels from different tasks are

issued to a GPU simultaneously. Standard CUDA streaming supports multiple kernels con-

currently within the same CUDA context. However, it cannot effectively manage concurrent

GPU kernels and tasks in an explicit manner. When kernels are launched, the thread blocks

are dispatched to all the SMs on a first-come, first-served basis. The first-launched kernel

occupies all the GPU resources, and the next kernel begins its execution only when SMs are

freed after completion of the first kernel. Therefore, the execution of the concurrent tasks

remains sequential despite the CUDA streaming mode.

115

Figure 4.2: Typical GPU task execution pattern.

4.2.2 Background on Multi-Segment Self-Suspension

In the multi-segment self-suspension model, a task τi has mi execution segments and mi ´ 1

suspension segments between the execution segments. So task τi with deadline Di and period

Ti is expressed as a 3-tuple:

τi “
`

pL0
i , S

0
i , L

1
i , ..., S

mi´2
i , Lmi´1

i q, Di, Ti
˘

where Lji and Sji are the lengths of the j-th execution and suspension segments, respectively.

rqS j
i ,
pS j
i s gives the upper and lower bounds of the suspension length Sji .

pLji is the upper bound

on the length of the execution segment Lji .

The analysis in [186] bounds the worst-case response time of a task under the multi-segment

self-suspension model, which is summarized below and utilized in this work for analyzing

the response time of CPU-GPU tasks.

116

Lemma 4.2.1 The following workload function W h
i ptq bounds on the maximum amount of

execution that task τi can perform during an interval with a duration t and a starting segment

Lhi :

W h
i ptq “

l
ÿ

j“h

pLj mod mi
i `

min
´

pL
pl`1q mod mi
i , t´

l
ÿ

j“h

`

pLj mod mi
i ` Sipjq

˘

¯

where l is the maximum integer satisfying the following condition:

l
ÿ

j“h

`

pLj mod mi
i ` Sipjq

˘

ď t

and Sipjq is the minimum interval-arrival time between execution segments Lji and Lj`1
i ,

which is defined by:

Sipjq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

qS j mod mi
i if j mod mi ‰ pmi ´ 1q

Ti ´Di else if j “ mi ´ 1

Ti ´
mi´1
ÿ

j“0

pLji ´
mi´2
ÿ

j“0

qS j
i otherwise

Then the response time of execution segment Lji in task τk can be bounded by calculating

the interference caused by the workload of the set of higher-priority tasks hppkq.

Lemma 4.2.2 The worst-case response time pRj
k is the smallest value that satisfies the fol-

lowing recurrence:

pRj
k “

pLjk `
ÿ

τiPhppkq

max
hPr0,mi´1s

W h
i p

pRj
kq

117

Hence, the response time of task τk can be bounded by either taking the summation of the

response times of every execution segments and the total worst-case suspension time, or

calculating the total interference caused by the workload of the set of higher-priority tasks

hppkq plus the total worst-case execution and suspension time.

Lemma 4.2.3 Hence, the worst-case response time pRk of task τk is upper bounded by the

minimum of xR1 k and xR2 k, where:

xR1 k “
mk´2
ÿ

j“0

pS j
k `

mk´1
ÿ

j“0

pRj
k (4.1)

and R2k is the smallest value that satisfies the recurrence:

xR2 k “
mk´2
ÿ

j“0

pS j
k `

mk´1
ÿ

j“0

pLjk `
ÿ

τiPhppkq

max
hPr0,mi´1s

W h
i p

xR2 kq (4.2)

4.2.3 Related Work

Previous work on the general topic of GPU resource management has looked at the prob-

lem at the operating system-level [169, 170, 187] and has used persistent threads to imple-

ment SM-granularity workload assignment for non-real-time systems [182–184]. Meanwhile,

Lin [165] proposed integrated vectorization and scheduling methods to exploit multiple forms

of parallelism for optimizing throughput for synchronous dataflows on memory-constrained

CPU-GPU platforms. Wang [188] implemented a user-mode lightweight CPU–GPU resource

management framework to optimize the CPU utilization while maintaining good Quality of

Service (QoS) of GPU-intensive workloads in the cloud, such as cloud games. For a more

complex system, Kayiran [171] considered GPU concurrency in a heterogeneous setting. For

a large scale server system, Yang [172] studied parallel execution on multicore GPU clusters.

118

Besides, Park [178], Basaran [179], Tanasic [180], and Zhou [181] proposed architecture ex-

tensions and Effisha [189] introduced software techniques without any hardware modification

to support kernel preemption. Chen [190] extended the original Flink on CPU clusters to

GFlink on heterogeneous CPU-GPU clusters for big data applications. The thermal-aware

and energy efficient GPU systems were also studied in [191] and [192].

For real-time systems with GPUs, previous work mainly involves GPU kernel-granularity

scheduling. For example, Kato [176] introduced a priority-based scheduler; Elliott pro-

posed shared resources and containers for integrating GPU and CPU scheduling [177] and

GPUSync [193] for managing multi-GPU multicore soft real-time systems with flexibility,

predictability, and parallelism; Golyanik [194] described a scheduling approach based on

time-division multiplexing in GPU; S3DNN [174] optimized the execution of DNN workloads

on GPU in a real-time multi-tasking environment through scheduling the GPU kernels. How-

ever, these approaches focus on predictable GPU control, they do not allow multiple tasks

to use the GPU at the same time. Thus, the GPU may be underutilized and there may be

a long waiting time for a task to access the GPU. Besides, the kernel-granularity schedul-

ing, researchers also explore other approaches to improve the schedulability. Gerum [195]

and Berezovskyi [196] targeted accurate timing estimation for GPU workloads. Zhou [181]

proposed a technique based on reordering and batching kernels to speed up deep neural

networks. Lee [175] studied how to schedule two real-time GPU tasks. Bakhoda [197],

Wang [198], Xu [199], and Lee [200] studied GPU scheduling on a GPU simulator.

On the scheduling theory side, the CPU-GPU system looks like the self-suspension model,

but it has CPU, memory copy, and GPU segments leading to more unique and compli-

cated features like the interactions and blockings from non-preemptive components in the

suspension segments. Saha [201] used the persistent threads technique and busy-waiting

119

suspension mode, which underrates the system’s performance and causes extra pessimism

in the scheduling ability. Sun [202] proposed a formal scheduling-theoretic representation of

the scheduling problem upon the host-centric acceleration architectures but it cannot handle

the classic sporadic/periodic tasks.

4.3 CPU and Memory Model

4.3.1 CPU Modelling

As represented in Fig. 4.2., a typical GPU application has multiple segments of CPU code,

memory copies between the CPU and GPU, and GPU code (which are also called GPU

kernels). Because a GPU has powerful parallel computational capacity, it is assigned to

execute computationally-intensive workloads, such as matrix operations. The CPU executes

serial instructions, e.g., for communication with IO devices (sensors and actuators) and

launches memory copies and GPU kernels.

When a CPU executes serial instructions, it naturally behaves as a single-threaded appli-

cation without parallelism. When the CPU code launches memory copies or GPU kernels,

these instructions will be added into multiple FIFO buffers called a ”CUDA stream”. The

memory copies and GPU kernels, which are in different CUDA streams, can execute in par-

allel if there are remaining available resources. The execution order of memory copies and

GPU kernels in a single CUDA stream can be controlled by the order in which they are added

to it by the CPU code. After the CPU has launched memory copies and GPU kernels into a

CUDA stream, it will immediately execute the next instruction, unless extra synchronization

is used in the CPU code to wait for the memory copies or GPU kernels to finish. Thus, the

120

CPU segments in GPU applications can be modelled as serial instructions executed by one

thread.

4.3.2 Memory Modeling

Memory copying between the CPU and GPU execution units includes two stages. In the

first stage, data is copied between the CPU memory and the GPU memory through a single

peripheral component interconnect express (PCIe) for a desktop/server GPU, or through a

network on chip (NoC) for an embedded GPU. Because of the hardware protocols for PCIe

and NoC, only one global memory copy can be performed at a time. Also, the memory

copy through PCIe/NoC is non-preemptive once it starts. The memory copy time between

CPU memory and GPU memory is a linear function of the copied memory size. The GPU

and other accelerators mainly provide two types of memory movement between the CPU

and GPU (accelerators) [203,204]: direct memory copy (also called traditional memory) and

unified memory (introduced in CUDA 6.0 and strengthened in CUDA 8.0). Direct memory

copy uses traditional memory to store and access memory, where data must be explicitly

copied from CPU to GPU portions of DRAM. Unified memory is developed from zero-copy

memory where the CPU and the GPU can access the same memory area by using the same

memory addresses between the CPU and GPU. In unified memory, the GPU can access

any page of the entire system memory and then migrate the data on-demand to its own

memory at the granularity of pages. Compared with unified memory, direct memory copy is

faster (higher bandwidth) [205] and is a more universal application, not just limited to GPU

systems but also widely used in any heterogeneous computing systems. In the following

discussion, we focus mainly on direct memory copy, but our approach can also be directly

applied to unified memory by setting the explicit memory copy length to zero.

121

The second stage is the memory access from the GPU’s execution units to the GPU cache or

memory. The GPU adopts a hierarchical memory architecture. Each GPU SM has a local

L1 cache, and all SMs share a global L2 cache and DRAM banks. Although the current

NVIDIA Multi-Process Service (MPS) does not provide any official mechanism for shared

memory hierarchy partitioning, computer architecture researchers have proposed software-

based generic algorithms [206] for partitioning the publicly unknown architectural details of

the GPU L2 cache and DRAM through reverse engineering. These memory accesses actually

happen simultaneously with the kernel’s execution. Thus, the second memory operation is

modeled as part of the critical-path overhead of the kernel execution model, which is discussed

in the following Section 4.4.

4.4 GPU Parallel Kernel Execution Model

This section introduces the modeling of GPU kernels, which are the key components in GPU

accelerated applications. A hard deadline requires an accurate task execution model, built

upon a deep understanding of the GPU architecture and its parallel execution mechanism.

4.4.1 Kernel-granularity and SM-granularity Scheduling

An off-the-shelf GPU supports only kernel-granularity scheduling, as shown in Fig. 4.3(a).

When kernels are launched in the GPU, each kernel fully occupies all the compute resources

(SMs) on the GPU, so even with Multi-Process Service (MPS) by default a GPU is only able

to execute one kernel at a time. The execution order of the kernels of the different tasks

can be changed in kernel-granularity scheduling, as shown in Fig. 4.3(b). Ever since the

122

(a) Default sequential execution (b) Kernel-granularity scheduling

(c) SM-granularity scheduling

Figure 4.3: Comparison of three different GPU application scheduling approaches.

development of the Pascal GP100 architecture, preemption has been supported by swapping

the whole kernel context to GPU DRAM. However, preemption is mainly used for long-

running or ill-behaved applications. It is not suitable for run-time systems [207, 208], since

it introduces intolerable overhead when a whole GPU kernel is swapped in and out.

The persistent threads approach is a new software workload assignment solution proposed to

implement finer and more flexible SM-granularity GPU scheduling. The persistent threads

technique alters the notion of the lifetime of virtual software threads, bringing them closer

to the execution lifetime of the physical hardware thread [183]. Specifically, each persistent

threads block links multiple thread blocks of one kernel and is assigned to one SM to execute

123

(a) with increasing numbers of assigned SMs

(b) comprehensive kernel with increasing size

Figure 4.4: Kernel execution time trends.

for the entire hardware execution lifetime of the kernel. For example, in Fig. 4.3(c), the

first thread block in kernel 1 (K1) links the other thread blocks in K1 to form a big linked

thread block. When this first thread block is executed by one SM, the other thread blocks

in K1, which are linked by the first block, will also be executed in the first SM. Thus, K1

takes one SM to execute. Similarly, in kernel 3 (K3), the first two thread blocks link the

other thread blocks and form two big linked thread locks. Thus, the kernel 3 (K3) takes two

SMs to execute. The detailed persistent threads technique of linking thread blocks to form

linked thread blocks is shown in Algorithm 6.

When the numbers of linked thread blocks are changed, the resulting number of persis-

tent threads blocks controls how many SMs (i.e., GPU resources) are used by a kernel. In

addition, when there are remaining available SMs, CUDA introduces CUDA Streams that

support concurrent execution of multiple kernels. Therefore, by exploiting persistent threads

and CUDA Streams, we can explicitly control the number of SMs used by each kernel and

execute multiple kernels of different tasks concurrently to achieve SM-granularity scheduling.

124

Persistent threads enabled SM-granularity scheduling fundamentally improves the schedula-

bility of parallel GPU applications by exploiting finer-grained parallelism.

4.4.2 Kernel Execution Model

To understand the relationship between the execution time of a kernel and the number

of SMs assigned via persistent threads, we conducted the following experiments. We use

five synthetic kernel benchmarks that utilize different GPU resources: a computation ker-

nel, consisting mainly of arithmetic operations; a branch kernel containing large number of

conditional branch operations; a memory kernel full of memory and register visits; a special-

function kernel with special mathematical functions, such as sine and cosine operations;

and a comprehensive kernel including all these arithmetic, branch, memory, and special

mathematical operations. Each kernel performs 1000 floating-point operations on a 215-long

vector.

We first run each kernel separately with a fixed workload for 1000 times and record its corre-

sponding execution time with increasing numbers of assigned SMs, as shown in Fig. 4.4(a).

From the boxplot, we can see that the kernel execution time t follows the classic formula

t “
C ´ L

m
` L (4.3)

where m is the number of assigned SMs, C is the amount of work of the kernel, and L is the

GPU overhead including on-chip memory visit.

This formula makes it clear that GPU kernels are fully parallel workloads, which can utilize

all the m allocated SMs. The only sequential execution time during a kernel’s execution

125

is when the GPU is copying data and launching the kernel. We can also observe that

the execution time of a GPU kernel has low variation because it benefits from a single-

instruction multiple-threads (SIMT) architecture, in which single-instruction, multiple-data

(SIMD) processing is combined with multithreading for better parallelism.

Next, we examined the kernel execution time with increasing kernel sizes and different num-

bers of assigned SMs. Fig. 4.4(b) shows that the sophisticated kernel and the other types of

kernels have similar trends. The results are again consistent with Eq. (4.3). When the size of

the kernel is significantly larger than the GPU overhead, the execution time is dominated by

the work of the kernel and has a nearly linear speedup. Also, no matter whether the kernel

is large or small, and no matter what types of operations are executed inside the kernel, the

variance of the kernel execution times is consistently small.

4.4.3 Interleaved Execution and Virtual SM

In SM-granularity scheduling with multiple GPU tasks, we can further improve GPU utiliza-

tion by exploiting the interleaved execution of GPU kernels. On a GPU with M SMs, naive

SM-granularity scheduling can first concurrently execute the K1 and K2 kernels, each with

M{2 persistent threads blocks, and then execute the K3 kernel with M persistent threads

blocks, as shown in Fig. 4.5(a). Each persistent threads block requires one SM to execute

one persistent thread at a time.

On the other hand, an SM actually allows the parallel execution of two or more persistent

threads blocks to overlap if they use different components of the SM in the same cycle [209].

This interleaved execution is similar to the hyper-threading in conventional multithreaded

CPU systems that aims to improve computation performance. For example, in an NVIDIA

126

GTX 1080 TI, one SM can hold 2048 software threads, whereas one thread block can have

at most 1024 software threads. Thus, two or more thread blocks can be interleaved and

executed on one SM. One important consequence of interleaved execution is that the exe-

cution time of a kernel increases. Therefore, to improve GPU utilization and efficiency, we

can simultaneously launch all three kernels, as illustrated in Fig. 4.5(b), where kernel 1 and

kernel 2 will simultaneously execute with kernel 3. The execution latency of each kernel

is increased by a factor called the interleaved factor, which ranges from 1.0 to 1.8 in the

following experiments.

We propose a virtual SM model to capture this interleaved execution of multiple GPU ker-

nels, as shown in Fig. 4.5(c). In particular, we double the number of physical SMs to get

the number of virtual SMs. Each virtual SM can execute the same type of instruction from

one persistent threads block in one virtual cycle. Compared with a physical SM, a virtual

SM has a reduced computational ability and hence a prolonged virtual cycle, the length of

which is related to the type of instructions in the interleaved kernel. To understand the

interleaved ratio between the virtual cycle and the actual cycle α “ virtual cycle
actual cycle

, we empiri-

cally measured the execution time of a synthetic benchmark when it was interleaved with

another benchmark. Fig. 4.6 illustrates the minimum, median, and maximum interleaved

execution time, colored from light to dark, normalized over the worst-case execution time of

the kernel without interleaving, where the left bar is without interleaving and right bar is

with interleaving. We can see that the interleaved execution ratio is at most 1.45ˆ, 1.7ˆ,

1.7ˆ, and 1.8ˆ for special, branch, memory and computation kernels, respectively. The

proposed virtual SM model improves the throughput by 11% „ 38% compared to the naive

non-interleaved physical SM model.

127

Figure 4.5: Virtual SM model for interleaved execution

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

ti

m
e Min

Med
Max

Min
Med
Max

(a) On computation ker-
nel

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

ti

m
e Min

Med
Max

Min
Med
Max

(b) On memory kernel

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

ti

m
e Min

Med
Max

Min
Med
Max

(c) On branch kernel

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

ti

m
e Min

Med
Max

Min
Med
Max

(d) On special kernel

Figure 4.6: Characterization of the latency extension ratios of interleaved execution.

128

Algorithm 6 Pseudo Code of Pinned Self-Interleaving Persistent Thread Pseudo Code

// Get the ID of current SM with assemble language

static device inline uint32 t mysmid() {
uint32 t smid;
asm volatile (”mov.u32 %0, %%smid;” : ”=r”(smid));
return smid; }

// Kernel pinned to desired SMs with self-interleaved persistent thread

global void kernel (int desired SMs, ...){
int SM num;
SM num = mysmid(); // Get the ID of current SM

//Excute on desired SMs, otherwise return

if(SM num == desired SMs) {
//Get the global thread index: tid

int tid = threadIdx.x+(SM num desired SM start)*blockDim.x;
//off set links to the next thread block by persistent thread

int off set = blockDim.x*(desired SM end-desired SM start+1);
//Divide N threads inside a kernel to 2 halves [0 N/2) and [N/2 N). [0 N/2) and [N/2 N) from

same kernel interleaved execute with each other. From the kernel perspective, the kernel

interleaved execute with itself.

if(blockIdx.x ă virtual SM/2) {
for(int i = tid; i ă N/2; i += off set) {

Execute on thread i;}}
else {

for(int i = tid + N/2; i ă N; i += off set) {
Execute on thread i;}}

}
return; }

// Kernel launch
void main () {
dim3 gridsize (number of virtual SM);
dim3 blocksize (Max number of threads per block);
task1 Î gridsize, blocksize, ..., stream Ï (int desired SMs, ...);
kernel(intdesiredSMs, ...);
return; }

129

4.4.4 Workload Pinning and Self-Interleaving

Using the persistent threads and interleaved execution techniques, multiple tasks can be

executed in parallel, and the interleaved execution further improves GPU performance. In

real GPU systems, such as NVIDIA GPUs, a hardware scheduler is implemented that al-

locates the thread blocks to SMs in a greedy-then-oldest manner [197]. Thus, at run time,

the thread blocks from a kernel are interleaved and executed with thread blocks from other

possible kernels, and the interleaved execution ratio is different when different kernels are

interleaved and executed, as shown in Fig. 4.6. To guarantee a hard deadline, each kernel has

to adopt the largest interleaved execution ratio when this kernel is interleaved and executed

with other possible kernels. However, using the highest interleaved execution ratio cannot

avoid underestimation of the GPU computation ability. Therefore, we introduce workload

pinning which pins the persistent threads blocks to specific SMs, and self-interleaving where

the kernel interleaves with itself on its pinned SMs.

Workload pinning is implemented by launching 2M persistent threads blocks in each kernel,

which is also the number of virtual SMs, so that all virtual SMs will finally have one persistent

threads block to execute. If the SM is the targeted pinning SM, the thread block will begin

to execute. For persistent threads blocks are assigned to undesired SMs (untargeted pinning

SMs), they will simply be returned, which takes only about 10 µs. When a persistent

threads block is assigned to the correct SM, it will not only execute its own workload, but

will also execute the workloads from blocks assigned to the undesired SMs. Thus, the kernel

is actually executed on the desired SMs, and the undesired SMs execute an empty block

within an negligible time.

130

The self-interleaving technique evenly divides the original kernel into two small kernels, which

are assigned to the same specific SMs using workload pinning. The two small kernels are then

interleaved and executed on the pinned SMs. From the perspective of the original kernel,

it is self-interleaved on the pinned SMs. A persistent threads with pinned self-interleaving

design and implementation is described in Alg. 6.

4.5 Practical RT-GPU Tasks Scheduling

In this section, we first introduce the task model for real-time GPU tasks, then propose

the RT-GPU scheduling algorithm, and develop the corresponding response time analysis.

RT-GPU algorithm uses federated scheduling to execute GPU kernels on virtual SMs and

uses fixed-priority scheduling to schedule CPU and memory copy segments.

One of the key challenges of deriving the end-to-end response times for CPU-GPU tasks

is to simultaneously bound the interference on CPU, GPU, and bus without being too

pessimistic. Extending federated scheduling allows us to achieve efficient and predictable

execution of GPU kernels and to analyze the response times of GPU kernels independently.

When analyzing the response times of the CPU segments, we view the CPU segments as

execution and the response times of GPU and memory copy segments as suspension; similarly,

when analyzing the response times of the memory copy segments, we switch the view and

consider the memory copy segments as execution and the response times of GPU and CPU

segments as suspension. By analyzing in this double-view, we can exploit the response time

analysis in [186] for multi-segment self-suspension tasks, which allows us to achieve better

schedulability for CPU-GPU tasks. Our proposed end-to-end response time analysis is not

131

Figure 4.7: GPU tasks real-time scheduling model.

limited to CPU-memory-GPU system. It can also be applied to other heterogeneous systems,

like CPU-memory-FPGA and CPU-memory-TUP systems.

4.5.1 Task Model

Leveraging the platform implementation and the resulted CPU, memory and GPU models

discussed in previous sections, we now formally define the parallel real-time tasks executing

on a CPU-GPU platform. We consider a task set τ comprised of n sporadic tasks, where

τ “ tτ1, τ2, ¨ ¨ ¨ , τnu. Each task τi, where 1 ď i ď n, has a relative deadline Di and a period

(minimum inter-arrival time) Ti. In this work, we restrict our attention to constrained-

deadline tasks, where Di ď Ti, and tasks with fixed task-level priorities, where each task

is associated with a unique priority. More precisely, when making scheduling decisions on

any resource, such as CPU and bus, the system always selects the segment with the highest

priority among all available segments for that resource to execute. Of course, a segment of

a task only becomes available if all the previous segments of that task have been completed.

132

On a CPU-GPU platform, task τi consists of mi CPU segments, 2mi ´ 2 memory copy

segments, and mi ´ 1 GPU segments. As discussed in Section 4.4.2, a GPU segment Gj
i

models the execution of a GPU kernel on interleaved SMs using total work GW j
i , critical-

path overhead GLji , and interleaved execution ratio αji , i.e., Gj
i “ pGW j

i ,GLji , α
j
i q. Thus,

task τi can be characterized by the following 3-tuple:

τi “
´

`

CL0
i ,ML0

i , G
0
i ,ML1

i ,CL1
i ,ML2

i , G
1
i ,ML3

i ,

¨ ¨ ¨ ,CLji ,ML2j
i , G

j
i ,ML2j`1

i , ¨ ¨ ¨ ,CLmi´2
i ,

ML2mi´4
i , Gmi´2

i ,ML2mi´3
i ,CLmi´1

i

˘

, Di, Ti

¯

(4.4)

where CLji and MLji are the execution times of the pj ` 1q-th CPU and memory copy seg-

ments, respectively. In addition, we use q and p to denote the lower and upper bound on a

random variable. For example, xCL
j

i and |CL
j

i are the upper and lower bounds on execution

times of the pj ` 1q-th CPU segment of τi, respectively.

To derive the end-to-end response time Ri of task τi, we will analyze the response times GRj
i ,

MRj
i , and CRj

i of each individual GPU, memory copy, and CPU segments, respectively, and

calculate their lower and upper bounds in the following subsections.

4.5.2 Federated Scheduling for GPU Segments

For executing the GPU segments of the n tasks on the shared GPU with 2GN virtual SMs

(i.e., GN physical SMs), we propose to generalize federated scheduling [185], a scheduling

paradigm for parallel real-time tasks on CPU, to scheduling parallel GPU segments. The key

insight of federated scheduling is to calculate and assign the minimum number of dedicated

resources needed for each parallel task to meet its deadline.

133

Specifically, we allocate 2GN i dedicated virtual SMs to each task τi, such that its GPU seg-

ment Gj
i can start executing immediately after the completion of the corresponding memory

copy ML2j
i . In this way, the mapping and execution of GPU kernels to SMs are explicitly

controlled by the platform via the persistent thread and workload pinning interfaces, so the

effects caused by the black-box internal scheduler of a GPU are minimized. Additionally,

tasks do not need to compete for SMs, so there is no blocking time on the non-preemptive

SMs. Furthermore, via the self-interleaving technique, we enforce that GPU kernels do not

share any physical SMs. Therefore, the interference between different GPU segments is

minimized, and the execution times of GPU segments are more predictable.

In summary, each task τi is assigned with 2GN i dedicated virtual SMs where each of its

GPU segments self-interleaves and has an interleaved execution ratio αji . In Section 4.5.5,

we will present the algorithm that determines the SM allocation to tasks. Here, for a given

allocation, we can easily extend the formula in Section 4.4.2 to obtain the following lemma

for calculating the response time GRj
i of a GPU segment Gj

i .

Lemma 4.5.1 If the GPU segment Gj
i has a total work in range r~GW

j

i ,
zGW

j

i s, a critical-

path overhead in range r0, xGL
j

i s and an interleaved execution ratio in range r1, αji s, then when

running on 2GN i dedicated virtual SMs, its response time is in r}GR
j

i ,
yGR

j

i s where

}GR
j

i “
~GW

j

i

2GN i

, and yGR
j

i “
zGW

j

iα
j
i ´

xGL
j

i

2GN i

` xGL
j

i .

The lower bounds }GR
j

i is the shortest execution time of this GPU segment on 2GNi virtual

SMs. In the best case, there is no critical-path overhead and no execution time inflation due

to interleaved execution. The minimum total virtual work ~GW
j

i is executed in full parallelism

on 2GNi virtual SMs, which gives the formula of }GR
j

i . In the worst case, the maximum total

134

virtual work is zGW
j

iα
j
i , and the maximum critical-path overhead xGL

j

i captures the maximum

overhead of launching the kernel. Since xGL
j

i is a constant overhead and is not affected by

self-interleaving and multiple virtual SMs, we do not need to apply the interleaved execution

ratio αji to xGL
j

i . After deducting the critical-path overhead, the remaining GPU computation

is embarrassingly parallel on 2GNi virtual SMs, which results the formula of yGR
j

i .

Note that the above Lemma 4.5.1 calculates both the lower and upper bounds on the response

time of GPU segment Gj
i , because both bounds are needed when analyzing the total response

time of task τi. Both the lower and upper bounds can be obtained by profiling the execution

time of GPU segments many times.

To ensure that tasks do not share SMs, the total number of virtual SMs assigned to all tasks

must be no more than the number of available virtual SMs, i.e.,
ř

i GN i ď GN ; otherwise,

the task set is unschedulable. During runtime execution of schedulable task sets, our platform

will generate 2GN i persistent threads blocks for each GPU segment of task τi to execute on

its assigned 2GN i virtual SMs.

4.5.3 Fixed-Priority Scheduling for memory copy Segments with

Self-Suspension and Blocking

Our proposed algorithm, which will be explained in detail in Section 4.5.5, schedules the CPU

and memory segments according to fixed-priority scheduling. In this subsection, we will focus

on analyzing the fixed-priority scheduling of the memory copy segments on the bus. Looking

from the perspective of executing memory-copies over the bus, memory copy segments are

“execution segments”; the time intervals where task τi spends on waiting for CPU and GPU

to complete the corresponding computation are “suspension segments”, since the bus can be

135

used by other tasks during these intervals of τi even if τi has higher priority. The analysis uses

the lower bounds on the lengths of suspension segments, i.e., the lower bounds on response

times of CPU and GPU segments. For a GPU segment, the lower bound }GR
j

i has been

obtained in Section 4.5.2, since our proposed algorithm uses federated scheduling on the

GPU. Since the CPU segments are executed on a uniprocessor, the response time of a CPU

segment is lower bounded by the minimum execution time of this segment, i.e., }CR
j

i “
|CL

j

i .

However, compared with the standard self-suspension model in Section 4.2.2, the execution

of memory copy over bus has the following differences. (1) Because memory copy is non-

preemptive, a memory copy segment of a high-priority task can be blocked by at most one

memory copy segment of any lower-priority task if this lower-priority segment has already

occupied the bus. (2) The length of suspension between two consecutive memory-copies

depends on the response time of the corresponding CPU or GPU segment. (3) The response

times of CPU segments are related to the response times of memory copy segments, which

will be analyzed in Section 4.5.4. (4) Moreover, the lower bounds on the end-to-end response

times of a task are related to the response times of all types of segments, which requires a

holistic fixed-point calculation to be presented in Section 4.5.5.

We now define the following memory copy workload function MW h
i ptq, which is similar to

the workload function defined for standard self-suspension tasks in Lemma 4.2.1.

136

Lemma 4.5.2 MW h
i ptq bounds the maximum amount of memory copy that task τi can per-

form during an interval with a duration t and a starting memory copy segment MLhi , where:

MW h
i ptq “

l
ÿ

j“h

yML
j mod 2mi´2

i `min
´

yML
pl`1q mod 2mi´2

i ,

t´
l
ÿ

j“h

`

yML
j mod 2mi´2

i `MS ipjq
˘

¯

where l is the maximum integer satisfying the following condition:

l
ÿ

j“h

`

yML
j mod 2mi´2

i `MS ipjq
˘

ď t

and MS ipjq is defined as follow:

• If j mod p2mi ´ 2q ‰ p2mi ´ 3q and j mod 2 “ 0, then MS ipjq “}GR

`

j mod p2mi´2q
˘

{2

i ;

• Else if j mod p2mi´2q ‰ p2mi´3q and j mod 2 “ 1, then MS ipjq “ |CL

`

pj mod p2mi´2qq`1
˘

{2

i ;

• Else if j “ 2mi ´ 3, then MS ipjq “ Ti ´Di ` |CL
mi´1

i ` CL0
i ;

• Else MS ipjq “ Ti ´
ř2mi´3
j“0

yML
j

i ´
řmi´2
j“1

|CL
j

i ´
řmi´2
j“0

}GR
j

i ;

From the perspective of executing memory-copies over the bus, the 2mi ´ 2 memory copy

segments are the execution segments by the definition of self-suspension task in Section 4.2.2.

So the definition of MW h
i ptq and l directly follows those in Lemma 4.2.1 by applying yML to

pL and changing from mi to 2mi ´ 2.

The key difference is in the definition of MS ipjq, which is the minimum “interval-arrival

time” between execution segments MLji and MLj`1
i . By the RT-GPU task model, when

j mod p2mi ´ 2q ‰ p2mi ´ 3q, there is either a GPU or CPU segment after MLji , depending

137

on whether the index is even or odd. So the lower bound on the response time of the

corresponding GPU or CPU segment is the minimum interval-arrival time on the bus. For

the latter case, the response time of a CPU segment is lower bounded by its minimum

execution time. When j “ 2mi ´ 3, MLji is the last memory copy segment of the first job

of τi occurring in the time interval t. In the worst case, all the segments of this job are

delayed toward its deadline, so the minimum interval-arrival time between MLji and MLj`1
i

is the sum of Ti ´ Di, the minimum execution time of the last CPU segment |CL
mi´1

i , and

the minimum execution time of the first CPU segment CL0
i of the next job. The last case

calculates the minimum interval-arrival time between the last memory copy segment of a

job that is not the first job and the first memory copy segment of the next job. Since these

two jobs have an inter-arrival time Ti between their first CPU segments, intuitively, MS ipjq

is Ti minus all the segments of the previous job plus the last CPU segment |CL
mi´1

i of the

previous job plus the first CPU segment CL0
i of the next job, which is the above formula.

Hence, the response time of memory copy segment MLjk can be bounded by calculating the

interference caused by the workload of tasks hppkq with higher-priorities than task τk and

the blocking term from a low-priority task in lppkq.

Lemma 4.5.3 The worst-case response time yMR
j

k is the smallest value that satisfies the

following recurrence:

yMR
j

k “
yML

j

k `
ÿ

τiPhppkq

max
hPr0,2mi´3s

MW h
i p
yMR

j

kq

` max
τiPlppkq

max
hPr0,2mi´3s

yML
h

i

(4.5)

138

Because the execution of memory copy segments is non-preemptive, the calculation of yMR
j

k

extends Lemma 4.2.2 by incorporating the blocking due to a low-priority memory copy

segment that is already under execution on the bus. Under non-preemptive fixed-priority

scheduling, a segment can only be blocked by at most one lower-priority segment, so this

blocking term is upper bounded by the longest lower-priority segment.

4.5.4 Fixed-Priority Scheduling for CPU Segments

Now, we will switch the view and focus on analyzing the fixed-priority scheduling of the

CPU segments. Looking from the perspective of the uniprocessor, CPU segments become

the “execution segments”; the time intervals where task τi spends on waiting for memory

copy and GPU to complete now become the “suspension segments”, since the processor can

be used by other tasks during these intervals.

For now, let’s assume that the upper bounds yMR
j

i and lower bounds }MR
j

i on response times

of memory copy segments are already given in Section 4.5.3. As for GPU segments, the

upper bounds yGR
j

i and lower bounds }GR
j

i have been obtained in Section 4.5.2. Similarly,

we define the following CPU workload function CW h
i ptq.

Lemma 4.5.4 CW h
i ptq bounds the maximum amount of CPU computation that task τi can

perform during an interval with a duration t and a starting CPU segment CLhi , where:

CW h
i ptq “

l
ÿ

j“h

xCL
j mod mi

i `min
´

xCL
pl`1q mod mi

i ,

t´
l
ÿ

j“h

`

xCL
j mod mi

i ` CS ipjq
˘

¯

139

where l is the maximum integer satisfying the following condition:

l
ÿ

j“h

`

xCL
j mod mi

i ` CS ipjq
˘

ď t

and CS ipjq is defined as follow:

• If j mod mi ‰ pmi ´ 1q, then CS ipjq “}ML
2pj mod miq

i `}GR
j mod mi

i `}ML
2pj mod miq`1

i ;

• Else if j “ mi ´ 1, then CS ipjq “ Ti ´Di;

• Else CS ipjq “ Ti ´
řmi´1
j“0

xCL
j

i ´
ř2mi´3
j“0

}ML
j

i ´
řmi´2
j“0

}GR
j

i ;

From the perspective of the uniprocessor, the mi CPU segments are the execution segments

by the definition of self-suspension task in Section 4.2.2. So the definition of CW h
i ptq and

l directly follows those in Lemma 4.2.1 by applying xCL to pL. For the minimum “interval-

arrival time” CS ipjq, there are two memory copy and one GPU segments between segments

CLji and CLj`1
i by the RT-GPU task model, when j mod mi ‰ pmi ´ 1q. So CS ipjq is the

sum of the minimum response times of these segments, where the response time of a memory

copy segment is lower bounded by its minimum length. The case of j “ mi ´ 1 is the same.

The last case considers for a job that is not the first job in interval t. The calculation is

similar to the one in Lemma 4.2.1, except that both the 2mi ´ 2 memory copy and mi ´ 1

GPU segments constitute the suspension time.

Hence, the response time of CPU segment CLjk can be bounded by calculating the interference

caused by the CPU workload of tasks hppkq with higher-priorities than task τk.

140

Lemma 4.5.5 The worst-case response time yCR
j

k is the smallest value that satisfies the

following recurrence:

yCR
j

k “
xCL

j

k `
ÿ

τiPhppkq

max
hPr0,mi´1s

CW h
i p
yCR

j

kq (4.6)

The formula is directly extended from Lemma 4.2.2.

4.5.5 RT-GPU Scheduling Algorithm and Analysis

For a particular virtual SM allocation 2GN i for all tasks τi, we can calculate the response

times of all GPU, memory copy, and CPU segments using formulas in Section 4.5.2 to 4.5.4.

Note that a task starts with the CPU segment CL0
i and ends with the CPU segment CLmi´1

i .

Therefore, we can upper bound the end-to-end response times for all tasks using the following

theorem, by looking at the perspective from CPU.

Theorem 4.5.6 The worst-case end-to-end response time pRk of task τk is upper bounded by

the minimum of xR1 k and xR2 k, i.e., pRk “ minpxR1 k, xR2 kq, where:

xR1 k “
mk´2
ÿ

j“0

yGR
j

k `

2mk´3
ÿ

j“0

yMR
j

k `

mk´1
ÿ

j“0

yCR
j

k (4.7)

and R2k is the smallest value that satisfies the recurrence:

xR2 k “
mk´2
ÿ

j“0

yGR
j

k `

2mk´3
ÿ

j“0

yMR
j

k `

mk´1
ÿ

j“0

xCL
j

k

`
ÿ

τiPhppkq

max
hPr0,mi´1s

CW h
i p
xR2 kq

(4.8)

141

The calculations for xR1 k and xR2 k are extended from Lemma 4.2.3 by noticing that the time

spent on waiting for GPU and memory copy segments to complete are suspension segments

from the perspective of CPU execution.

With the upper bound on the response time of a task, the following corollary follows imme-

diately.

Corollary 4.5.6.1 A CPU-GPU task τk is schedulable under federated scheduling on virtual

SMs and fixed-priority scheduling on CPU and bus, if its worst-case end-to-end response time

pRk is no more than its deadline Dk.

Computational complexity. Note that the calculations for the worst-case response times

of individual CPU and memory copy segments, as well as one upper bound on the end-to-end

response time, involves fixed-point calculation. Thus, the above schedulability analysis has

pseudopolynomial time complexity.

Note that the above schedulability analysis assumes a given virtual SM allocation under fed-

erated scheduling. Hence, we also need to decide the best virtual SM allocation for task sets,

in order to get better schedulability. The following RT-GPU Scheduling Algorithm adopts

a brute forth approach on deciding the virtual SM allocation. Specifically, it enumerates all

possible allocations for a given task set on a CPU-GPU platform and uses the schedulability

analysis to check whether the task set is schedulable or not. Alternatively, one could easily

apply a greedy approach by assigning the minimum numbers of virtual SMs to tasks and

increasing the numbers for tasks that miss their deadline according to the schedulability

analysis, if one needs to reduce the running time of the algorithm while a slight loss in

schedulability is affordable.

142

The full procedure of scheduling GPU tasks can be described as follows: (1) Grid search

a federated scheduling for the GPU codes and calculate the GPU segment response time

r}GR
j

i
yGR

j

i s, details in Section 4.5.4. (2) The CPU segments and memory copy segments

are scheduled by fixed priority scheduling. (3) If all the tasks can meet the deadline, then

they are schedulable and otherwise go back to step (1) to grid search for a next federated

scheduling. This schedulability test for hard deadline parallel GPU tasks can be summarized

in Algorithm 7.

Algorithm 7 Fixed Priority Self-Suspension with Grid Searched Federated Scheduling

Input Variables:
Parameters for tasks and sub-tasks

Output Variables:
Scheduability, SM allocation: GNi

Steps:
void main(){

//1: GPU kernel federated scheduling grid search:

for GN1 = 1, ..., GN do
for GNi = 1, ..., GN do

for GNn = 1, ..., GN do
//2: Calculate response times of GPU segments:

if (
řn
i“1GNi ď GN) then

}GR
j

i “
~GW

j

i

2GN i
, 1 ď i ď n

yGR
j

i “
zGW

j

iα
j
i´

yGL
j

i

2GN i
` xGL

j

i , 1 ď i ď n

3:Calculate worst-case response time yMR
j

k for memory copy segments using Eq.(4.5)

4:Calculate worst-case response time yCR
j

k for CPU segments using Eq.(4.6)

5:Calculate worst-case end-to-end response time pRk for all tasks using Theorem 4.5.6

if (pRk ď Dk for all τk) then
Scheduability “ 1; break out of all for loops

end for
end for

end for
return;

143

4.6 Full-System Evaluation

4.6.1 Experiment Setup

In this section, we describe extensive experiments using synthesized tasksets to evaluate the

performance of the proposed RTGPU real-time scheduling approach, via both schedulability

tests and a real system. We choose self-suspension [186] and STGM [201]: Spatio-Temporal

GPU Management for Real-Time Tasks as baselines to compare with, as they represent the

state-of-the-art in fine-grained (SM-granularity) GPU real-time scheduling algorithms and

schedulability tests. The names for the three approaches used in our experiments are given

below.

1. Proposed RTGPU: the proposed real-time GPU scheduling of hard deadline parallel

tasks with fine-grain utilization of persistent threads, interleaved execution, virtual SM, and

fixed-priority federated scheduling.

2. Self-Suspension: real-time GPU scheduling of hard deadline parallel tasks with the

persistent threads with self-suspension scheduling, as in [186].

3. STGM: real-time GPU scheduling of hard deadline parallel tasks with the persistent

threads and busy-waiting scheduling, as in [201].

To compare the schedulability results of the three approaches, we measured the acceptance

ratio in each of four simulation setups with respect to a given goal for taskset utilization. We

generated 100 tasksets for each utilization level, with the following task configurations. The

acceptance ratio of a level was the number of schedulable tasksets, divided by the number of

tasksets for this level, i.e., 100. According to the GPU workload profiling and characterization

144

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

(a) computation:suspension=2:1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(b) computation:suspension=1:2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(c) computation:suspension=1:8

Figure 4.8: Schedulability under different computation (CPU) and suspension (memory+
GPU) lengths.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

(a) 3 subtasks

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(b) 5 subtasks

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(c) 7 subtasks

Figure 4.9: Schedulability under different numbers of subtasks.

[210], the memory length upper bound was set to 1/4 of the GPU length upper bound. We

first generated a set of utilization rates, Ui, with a uniform distribution for the tasks in the

taskset, and then normalized the tasks to the taskset utilization values for the given goal.

Next. we generated the CPU, memory, and GPU segment lengths, uniformly distributed

within their ranges in Table 4.1. The deadline Di of task i was set according to the generated

segment lengths and its utilization rate: Di “ p
řmi´1
j“0

xCL
j

i `
ř2mi´3
j“0

yML
j

i `
řmi´2
j“0

xGL
j

i q{Ui.

In the configuration setting, the CPU, memory, and GPU lengths were normalized with one

CPU, one memory interface, and one GPU SM. When the total utilization rate, U , is 1, the

one CPU, one memory interface, and one GPU SM are fully utilized. As there are multiple

SMs available (and used), the total utilization rate will be larger than 1. The period Ti

is equal to the deadline Di. The task priorities are determined with deadline-monotonic

priority assignment.

145

Table 4.1: Parameters for the taskset generation

Parameters Value
Number of tasks N in taskset 5

Task type periodic tasks
Number of subtasks M in each task 5

Number of tasksets in each experiment 100
CPU segment length (ms) [1 to 20]

Memory segment length (ms) [1 to 5]
GPU segment length5 (ms) [1 to 20]
Task period and deadline pTi{Diq

GPU kernel launch overhead pεq 12%
Number of physical GPU SMs NSM{2 10

Priority assignment D monotonic

Meanwhile, in each experiment we evaluate two models. The first model has two memory

copies: one memory copy from CPU to GPU and one memory copy back from GPU to

CPU between a CPU segment and a GPU segment, which is exactly the execution model we

introduced in section 4.4. The second model has one memory copy between a CPU segment

and a GPU segment, which combines the memory copy from CPU to GPU and the memory

copy from GPU to CPU. These two models can capture not only the CPU-GPU systems

but also general heterogeneous computing architectures.

4.6.2 Schedulability Analysis

Our first evaluation focused on the schedulability of tasksets as the overall utilization in-

creased, with respect to different parameters pertinent to schedulability. The following

146

sub-subsections present the results of four simulations that each varied the different param-

eters we examined: the ratios of CPU, memory, and GPU segment lengths; the number of

subtasks; the number of tasks; and the number of total SMs.

CPU, Memory, and GPU Lengths

We first investigated the impact of CPU, memory, and GPU segment lengths on the ac-

ceptance ratio. To study this quantitatively, We tested the acceptance ratio under different

length range ratios. The CPU length is shown as Table 4.1 and we changed the memory, and

GPU lengths according to the length ratio. Fig. 4.8 shows taskset acceptance ratio when

the CPU, memory, and GPU length range ratios were set to 2:1, 1:2, and 1:8, which give an

exponential scale.

Not surprisingly, the STGM approach is effective only when the memory and GPU segment

(suspension segment) lengths are short enough: the STGM approach was developed based

on ”busy waiting”. When tasks are being processed in memory copy and GPU segments, the

CPU core is not released and remains busy waiting for the memory copy and GPU segments

to finish. Although this is the most straightforward approach, its pessimistic aspect lies

in the CPU waiting for the memory copy and GPU segments to finish. Thus, it will be

ineffective and hugely pessimistic when the memory copy and GPU segments are large.

Self-suspension scheduling in [186] increases the schedulability performance compared with

the straight forward STGM approach. Self-suspension models the memory and GPU seg-

ments as being suspended, and the CPU is released during this suspension. The theoretical

drawback of this approach is that the suspension does not distinguish between the memory

segments and GPU segments. Instead, they are modelled as non-preemptive and will block

147

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

(a) 3 tasks

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

(b) 5 tasks

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(c) 7 tasks

Figure 4.10: Schedulability under different numbers of tasks.

higher priority tasks. However, in real systems, each task is allocated its own exclusive GPU

SMs, and the GPU segments in one task will not interfere the GPU segments in other tasks.

The RTGPU schedulability analysis proposed in this work is effective even when the memory

and GPU segment (suspension segment) lengths are long. In this approach, we distinguish

the CPU, memory, and GPU segments based on their individual properties. For example,

if the CPU cores are preemptive, then no blocking will happen. Blocking happens only in

non-preemptive memory segments. Meanwhile, because federated scheduling is applied for

the GPU segments and each task is allocated its own exclusive GPU SMs, the GPU segments

can be executed immediately when they are ready, without waiting for higher priority GPU

segments to finish or being blocked by lower GPU segments.

Also, by comparing the models with one memory copy and two memory copies, we notice

that the memory copy is the bottleneck in the CPU-GPU systems because of limited resource

(bandwidth) and non preemption. Reducing the numbers of memory copies or combining

memory copies can increase the system schedulability, especially when the memory copy

length is large shown in Fig. 4.8 (b) and (c).

148

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

(a) 5 SMs

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

(b) 8 SMs

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(c) 10 SMs (in progress)

Figure 4.11: Schedulability under different numbers of SMs.

Number of Subtasks

We then evaluated the impact of the number of subtasks in each task on the acceptance

ratio. From the possible values in Table 4.1, the number of subtasks, M , in each task was

set to 3, 5, or 7. The corresponding acceptance ratios are shown in Fig.4.9. The results show

that with more subtasks in a task, schedulability decreases under all approaches but the

proposed RTGPU approach still outperforms all other approaches. Compared with STGM,

the proposed RTGPU approach and the self-suspension approach are the most robust as the

number of subtasks increases.

Number of Tasks

In a third simulation, we evaluated the impact of the number of tasks in each taskset on the

acceptance ratio. Again, from the possible values in Table 4.1, the number of tasks, N , in

each task was set to 3, 5, or 7. The corresponding acceptance ratios are shown in Fig.4.10.

As with subtasks, schedulability decreases under all the approaches as the number of tasks

increases, but the proposed RTGPU approach outperformed the other two.

149

Number of SMs

Finally, we examined the impact of the number of total SMs on the acceptance ratio. Based

on the possible values in Table 4.1, the number of tasks, N, in each task was again set to 3, 5,

or 7. The corresponding acceptance ratios are shown in Fig.4.10. All three approaches have

better schedulability as the number of available SMs increases. From this set of experiments

we can see that adding two more SMs will cause the utilization rate to increase for all three

approaches. Meanwhile, among the three approaches, the proposed RTGPU approach again

achieved the best schedulability across different numbers of SMs. As shown in Fig.4.10

(a), when the computation resources (GPU SMs) are limited, the bottleneck from memory

copy is more obvious and serious. The two memories model has a poor scheduability in all

approaches and the one memory model has a significant improved performance.

4.6.3 GPU Experiment

We also empirically evaluated the proposed RTGPU scheduling framework on a real system

with an NVIDIA 1080TI GPU, which has 28 SMs modeled as 56 virtual SMs. (There are 28

physical streaming multiprocessors (SMs) in an NVIDIA GTX 1080Ti: 27 SMs can be used

for executing parallel tasks, and 1 SM is reserved for handling default system applications.)

The CPU was an Intel(R) Core(TM) i7-3930K CPU operating at 3.20GHz with 12 cores

and 12,288 KB of on-chip cache. We implemented the synthetic benchmarks described in

Section 4.4 in a common real-time scheduling context, since multiple GPU kernel concurrency

is supported only within the same CUDA context. To run multiple kernels from different

tasks simultaneously, we created a single parent process and launched each kernel using a

separate CPU thread of that parent process. For parallel kernel execution, CUDA streams

150

(a) Memory copy of
100KB data

(b) Memory copy of 1MB
data

(c) Memory copy of
10MB data

(d) Memory copy of
100MB data

Figure 4.12: CPU to GPU memory copy time distribution.

(a) Kernel thread length:
10

(b) Kernel thread length:
100

(c) Kernel thread length:
1000

(d) Kernel thread length:
10000

Figure 4.13: GPU kernel execution time distribution.

were used to allow asynchronous copy and kernel execution. By default, the NVIDIA GPU

adopts ”adaptive power setting”, in which the firmware adaptively throttles the clock speeds

of SM cores and memory when they experience a low utilization rate. To avoid interference

from this adaptive power setting and guarantee the hard deadlines, we manually fixed the

SM core and memory frequencies respectively using the nvidia-smi command. We also set

the GPUs to persistence mode to keep the NVIDIA driver loaded even when no applications

are accessing the cards. This is particularly useful when you have a series of short jobs

running.

As in the previous schedulability analysis experiments, each task in a taskset was randomly

assigned one of the values in Table 4.1. The deadline was set to the same value as the period.

Theoretically, the memory copy and GPU kernels are modeled by their worst execution times.

The execution time distributions of different sizes of memory copies through PCIe from CPU

151

to GPU and from GPU to CPU are shown in Fig. 4.12, where each size of memory copies is

executed 10,000 times. Meanwhile, the execution time distributions of different GPU kernel

thread lengths (number of floating-point addition operations in one thread) are shown in

Fig. 4.13, where each thread of each GPU kernel is executed 10,000 times. Using the real

GPU system, we examined schedulability using different numbers of SMs and compared the

results from the schedulability analysis and from the real GPU experiments (with the worst

case execution time model). Fig. 4.14 presents the acceptance ratio results of the RTGPU

schedulability analysis and experiments on the real GPU system. Both of them have better

schedulability as the number of available SMs increases. The gaps between the schedulability

analysis and real GPU system arise from the pessimistic aspect of the schedulability analysis

and the model mismatches between worst execution time and acutual execution time. In the

limited computation resource scenarios (5 SMs and 8 SMs), the bottlenecks from memory

copy exist in both schedulability test and experiments with real GPU systems. Reducing

the numbers of memory copies or combining memory copies are proper methods to deal

with the bottlenecks. After this, the memory copy and GPU kernels are modeled by their

average execution times. The results from the RTGPU schedulability analysis and real

GPU system are presented in Fig.4.15. Because the segments are modeled by their average

execution times, which is much tighter than the worst execution time, the gaps between the

schedulability analysis and experiments on the real GPU system are further reduced.

Finally, we quantified the GPU throughput gained by the virtual SM model on the synthetic

and real benchmark tasksets:

η1 “

N“5
ÿ

i“1

Numbers of SM taskpiq

GPU Total Numbers of SMs
ˆ p

2

αpiq
´ 1q (4.9)

152

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Ultilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

Sche analysis(2mem 5SMs)

Sche analysis(1mem 5SMs)

Real GPU(2mem 5SMs)

Real GPU(1mem 5SMs)

Sche analysis(2mem 8SMs)

Sche analysis(1mem 8SMs)

Real GPU(2mem 8SMs)

Real GPU(1mem 8SMs)

Sche analysis(2mem 10SMs)

Sche analysis(1mem 10SMs)

Real GPU(2mem 10SMs)

Real GPU(1mem 10SMs)

Figure 4.14: Schedulability under different numbers of SMs with schedulability analysis and
Real GPU experiments (with worst case execution time model).

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Ultilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

Sche analysis(2mem 5SMs)

Sche analysis(1mem 5SMs)

Real GPU(2mem 5SMs)

Real GPU(1mem 5SMs)

Sche analysis(2mem 8SMs)

Sche analysis(1mem 8SMs)

Real GPU(2mem 8SMs)

Real GPU(1mem 8SMs)

Sche analysis(2mem 10SMs)

Sche analysis(1mem 10SMs)

Real GPU(2mem 10SMs)

Real GPU(1mem 10SMs)

Figure 4.15: Schedulability under different numbers of SMs with schedulability analsysis and
Real GPU experiments (with average execution time model).

(a) Improvement over whole GPU
system

(b) Improvement over used resources

Figure 4.16: RTGPU Throughput improvements.

153

η2 “

N“5
ÿ

i“1

Numbers of SM taskpiq

Total Numbers of SMs used in taskset
ˆ p

2

αpiq
´ 1q (4.10)

whereNumbers of SM taskpiq is the number of SMs used by task(i) and αpiq is the interleaved

ratio of task(i). Fig. 4.16(a) shows the throughput improvement over the whole GPU system

according to E.q. (4.9). At low utilization, the actual used SMs are few so that it has

small throughput over the whole GPU system. With the increase of utilization rate, more

SMs are in use and bring more throughput over the whole system. To better quantify the

throughput improvement, we compare it with the actual used SMs as described in E.q. (4.10),

in Fig. 4.16(b). We can see that there are over 20% and 11% throughput improvement in

synthetic benchmarks and real benchmarks. This throughput improvement can be achieved

with any GPU systems which different number of SMs. The reason why the synthetic

benchmark has more throughput improvement than the real benchmark is that the special

function kernel in the synthetic benchmark has a low interleaved ratio α. The special kernel

is ”better” interleaved and has a low interleaved ratio, as it uses the special function units

(SFUs) while other kernels rarely use these units.

4.7 Conclusion

To execute multiple parallel real-time applications especially for the cyber-physical systems

which have hard deadlines on GPU systems, we propose RTGPU —a real-time scheduling

method including both system work and and a real-time scheduling algorithm with schedu-

lability analysis. RTGPU leverages a precise timing model of the GPU applications with

the persistent threads technique and achieves improved fine-grained utilization through in-

terleaved execution. The RTGPU real-time scheduling algorithm is able to provide real-time

154

guarantees of meeting deadlines for GPU tasks with better schedulability compared with

previous work. We empirically evaluate our approach using synthetic benchmarks on both

schedulability analysis and real Nvidia GTX1080Ti GPU systems and demonstrate signifi-

cant performance gains compared to existing methods. The improved performance and re-

source utilization rates accelerate the artificial intelligence and machine learning algorithms

executed in GPU for many emerging cyber-physical systems, such as autonomous vehicles

and robots to perform important system operations.

155

Chapter 5

Circuit, Architecture, and Operating

System Layers: Fast Learning-based

Energy Management for

Multi-/Many-core Processors

Over the last two decades, as microprocessors have evolved to achieve higher computational

performance, their power density has also increased at an accelerated rate. Improving energy

efficiency and reducing power consumption is therefore critically important to the comput-

ing systems especially for the computing systems used in cyber-physical systems, which have

strong requirements on high performance and low power consumption. One effective tech-

nique for improving energy efficiency is dynamic voltage and frequency scaling (DVFS). With

the emergence of integrated voltage regulators, the speed of DVFS can reach up to microsec-

ond (µs) timescales. However, a practical and effective strategy to guide fast DVFS remains

a challenge. In this chapter, we propose F-LEMMA: a fast, learning-based, hierarchical

DVFS framework consisting of a global power allocator in the kernel space, a reinforcement

156

learning-based power management scheme at the architecture level, and a swift controller at

the digital circuit level. This hierarchical approach leverages computation at the system and

architecture levels with the short response time of the swift controller to achieve effective and

rapid µs-level power management supported by the integrated voltage regulator. Our exper-

imental results demonstrate that F-LEMMA can achieve significant energy-savings (35.2%)

across a broad range of workloads. Conservatively compared with existing state-of-the-art

DVFS-based power management schemes that can only operate at millisecond timescales,

F-LEMMA can provide notable (up to 11%) Energy-Delay Product (EDP) improvements

across benchmarks. Compared with state-of-the-art non-learning-based power management,

our method has a universally positive effect on all of the evaluated benchmarks, proving its

adaptability.

5.1 Introduction

Multi-/many-core processors have become mainstream computing workhorses for cyber-

physical systems, especially the multi-core and manycore embedded systems [28] are widely

used in the resource-constrained environments. With the demise of Dennard scaling [211,212]

and the increasing level of integration of digital logic on a single die, high power density

has become a key design constraint and performance-limiting bottleneck for future genera-

tions of computing systems used in resource-constrained cyber-physical systems, which needs

not only high performance but also low power consumption. Dynamic power management

(DPM) techniques, such as dynamic voltage and frequency scaling (DVFS) and power gat-

ing, are widely used in the state-of-the-art processor systems to save power and improve

energy efficiency. For example, Intel’s Enhanced Intel Speed- Step Technology (EIST) [213],

157

Swift Controller

Learning Controller

Agent Environment

Global Controller

User Applications/
Operating System

Memory

Cache

Cache

Cache

Core Cache

Cache

Cache

MC
MP

MC
MP

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Computer Architecture

Workload
Allocation

Run-time
Performance

Counter

Power/Energy
Budget

Run-time
Voltage
Power...

Configuration

Weight

Voltage
FrequencyX1

X2

θ1

θ2

Y

R
e

sp
o

n
se

 t
im

e

Milliseconds

Milliseconds
to

Microsecond

Microsecond

D0 Di Dn

IN OUT

IN OUT

IN OUT

Digital Circuit

Figure 5.1: Microsecond-Level hierarchical fast power management (DVFS) for multi-core
and many-core processors.

AMD’s PowerNow! [214], ARM’s Intelligent Energy Controller (IEC) [215] and NVIDIA’s

Power Management Mode [216] provide the utility for the voltage and frequency (clock

speed) of the processor to be dynamically changed to different power states by software.

This capability allows the processor to meet the instantaneous performance demands from

diverse computational workloads while minimizing power consumption and heat generation.

In a typical setting, voltage and frequency are decreased as the processor enters an idle stage

and increased as it enters an active stage.

Seeking a more effective power management strategy is critically important for the com-

puting systems used in cyber-physical systems, many adaptive solutions have been explored

recently by leveraging control theory and machine learning approaches. In these adaptive

power management schemes, the control/learning agent can monitor the workload status at

run-time and adjust the voltage and frequency settings according to its online estimation

158

model [217–220]. In conventional power delivery systems for multi-core and many-core pro-

cessors, a cluster of cores (or even all the cores) may reside in one voltage domain and share

one voltage rail from an off-chip voltage regulator. Due to the long physical distance and

associated parasitic loading effect, the voltage transition time of an off-chip voltage regulator

generally exceeds a millisecond, which fundamentally limits how quickly the power manage-

ment settings can be adjusted in response to transient workload events that can happen in

several microseconds. Although integrated voltage regulation provides much finer spatial

(per-core) and temporal (tens to hundreds of nanoseconds) granularity in supply voltage

allocation and delivery, [31, 65], there still lacks a practical and effective method to real-

ize adaptive power management at the microsecond timescale and take advantage of such

fast integrated voltage and frequency scaling ability. Meanwhile, as the computational com-

plexity of the control and machine learning algorithms and their execution costs in software

increase, the latency and response time of many adaptive power management schemes cannot

be readily scaled to meet the demands of microsecond-level DVFS.

In this chapter, we present F-LEMMA, a fast learning-based voltage and frequency scaling

approach for energy-efficient multi-core and many-core processors. To reap the previously

unattainable benefits of microsecond timescale power management, we propose a hierarchical

learning-based approach, illustrated in Fig. 5.1. This hierarchical power management ap-

proach has three layers: a global controller works as the kernel space interface to a userspace

energy and power management methodology; an intermediate learning-based controller takes

in the architectural information and utilizes a reinforcement learning agent to update the

configuration of a lower-level swift controller; finally, the swift controller uses a fast linear

classifier to generate voltage and frequency pairs for each core at the microsecond timescale.

Here, we validate the proposed F-LEMMA approach, under different configurations and using

159

several benchmark applications, and compare it with previous related work. Our experimen-

tal results show that F-LEMMA achieves a 35.2% energy savings on average across a wide

range of benchmarks. Compared with state-of-the-art power management at the millisec-

ond timescale, the microsecond-level fast power management in F-LEMMA saves significant

amounts of energy with only minimal performance loss.

This chapter makes the following contributions to the state-of-the-art in power and energy

management:

• An illustration of the potential benefits of microsecond timescale per-core DVFS and

a comparison study of integrated voltage regulators and power delivery systems sup-

porting this fast DVFS.

• A hierarchical power management strategy, including a global controller as the inter-

face to the operating system, a learning controller at the architecture layer, and a

swift controller at the circuit layer. This architecture provides adaptive, microsecond

timescale, per-core, fast DVFS.

• A quantitative study methodology proposed and applied to F-LEMMA with OpenMP

synthetic benchmarks. F-LEMMA power management achieves over 90% of the ideal

DVFS and the learning-based program phase prediction is critical to the power man-

agement.

• An evaluation of the run-time adaptive hierarchical power management approach, and

an implementation of its learning controller with High-Level Synthesis (HLS).

160

• A comprehensive experimental study of the proposed F-LEMMA approach, which

demonstrates extra energy savings from fast power management. The evaluation in-

cludes comparisons to previous related work, ablation studies of different layers, and

assessments of performance with different system configurations and scales.

5.2 Background and Related Work

5.2.1 Dynamic Voltage Frequency Scaling (DVFS)

Dynamic voltage and frequency scaling (DVFS) is a technique to manage processor power

consumption. Run-time dynamic power has a squared and linear relationship with frequency

and voltage (Pdynamic „ CV 2f), respectively, whereas static power has a relationship with

voltage (Pstatic „ V NtrIstatic) where where Ntr is the number of transistors and Is is the

normalized static current for each transistor.

Effective DVFS for multi-core processors requires multiple voltage domains. The circuitry

within one voltage domain shares a common voltage rail, hence opportunities to reduce the

domain’s voltage are limited by the unit that needs the highest supply voltage. Voltage

levels are scaled in fixed, discrete steps and are typically selected using tables that map

frequency to voltage. Voltage and frequency scaling is based on the application’s performance

requirements. For example, when one core is waiting for synchronization, its voltage and

frequency are reduced to save power and energy.

161

PCB Board

Off-Chip
VR

Package

VCC

Cavity Caps

Socket

Board Caps

IVR
Core

Voltage

Time

ms

Voltage

Time

μs

Figure 5.2: The integrated voltage regulator based power delivery system.

5.2.2 Adpative Power Management

In recent years, as the workloads in multi-core and many-core systems have become more

diverse and variable, adaptive power management has replaced previous fixed models. To

achieve effective power management, workloads are predicted at run-time using adaptive

models. There are two general strategies. On one hand, control theoretic mechanisms, such

as Kalman filters [150] and model predictive control [221], use dynamically updated models

to scale voltage and frequency under power or performance constraints. On the other hand,

learning mechanisms predict application phases and control decisions without knowing an

accurate workload model in advance [222,223]. With reinforcement learning, an agent learns

to act optimally in an environment by evaluating and selecting actions that optimize for

desired rewards. Reinforcement learning can be adapted for power management by training

a per-core DVFS agent that selects the appropriate voltage and frequency levels by observing

system conditions [217]. Because both the adaptive control and learning algorithms are

relatively complex with considerable execution time, such adaptive power management can

operate only at low frequencies. This problem can be mitigated by introducing a hierarchical

design in which adaptive power management techniques are constrained at the software level

and supply information to fast controllers.

162

5.2.3 Integrated Voltage Regulators

In a conventional power delivery system for multi-core or even many-core processors, cores

share a common voltage rail and a centralized voltage regulator is located off-chip to step

down the supply voltage from the PCB board level (5-12V) to the core level (0.8-2V). Because

the off-chip voltage regulator uses large inductors and capacitors, together with the board-

level decoupling capacitors and prominent parasitic inductance, there is an unavoidable long

transition time (rise time and fall time) before the voltage reaches a desired level. It limits

the dynamic voltage and frequency scaling in processors with off-chip VRM based power

delivery systems to the millisecond timescales.

Emerging power delivery systems use integrated voltage regulators, moving the step-down

voltage regulator on-chip, as shown in Fig. 5.2. Integrated regulator design strives to

reduce the size of inductors and capacitors to a small on-die area. One prominent side effect

of this design strategy is pushing the switching frequency from tens to hundreds of MHz.

Such a higher switching frequency incurs significant switching losses and degrades conversion

efficiency.

The integrated voltage regulator naturally has a much shorter transition time than con-

ventional off-chip voltage regulators. This advantage comes from smaller inductors and

capacitors, faster switching, and reduced parasitic inductance thanks to its closer location to

the core. Measured results from prototype silicon chips [224–227] suggest that power delivery

with integrated regulators can easily switch between voltage levels at tens to hundreds of

nanosecond timescales. Furthermore, integrated on-chip regulators support multiple, flexible

163

voltage domains, which would incur expensive design overhead when using off-chip regula-

tors. In summary, integrated voltage regulators permit fast, per-core power management

which was previously unattainable.

5.2.4 Related Work

While more transistors are integrated on die and the limits of Dennard scaling are being re-

alized, power and energy have become major constraints on processors‘ development. Many

power management techniques have been proposed to improve power efficiency according

to different objectives. Winter et al. [228] presented a thread scheduling and global power

management co-design for a heterogeneous many-core processor. Sartori et al. [229] studied

peak power management in a distributed hierarchical configuration, given a power budget.

Haghbayan et al. [211], Rahmani et al. [212] and Shafique et al. [218] used a PID controller,

a multi-objective controller, and an adaptive controller based dynamic power management

method to improve system power efficiency. Jung et al. [219], Shen et al. [222,230], Chen et

al. [217, 231], Rapp et al. [232] and Yu et al. [233] used a learning-based predictor and con-

troller to find optimal power and performance. Rahmani et al. [234,234], Ebi et al. [235], Lai

et al. [236] and Kanduri et al. [237] explored reliability/variability, thermal, latency or accu-

racy aware solutions. Hierarchical power management [238] has been widely adopted from

mobile devices [239] to cloud computers [240]. Muthukaruppan et al. [241] and Ren et al. [220]

used hierarchical frameworks for adaptive power managements. More techniques [242–244]

target multi-core than many-core processors. Limited by the supply voltage transition time

in processor power delivery systems and the complexity of effective power managements

algorithm, the managements operate at millisecond timescales.

164

With the development of integrated voltage regulators, per-core microsecond level fast DVFS

has become practical. Kim et al. [224], Toprak-Deniz et al. [225], Meinerzhagen et al. [245],

Kim et al. [58], and Keller et al. [227] designed integrated voltage regulators that can sup-

port sub-microsecond level dynamic voltage scaling. Kim et al. [31] and Eyerman et al. [246]

studied the potential system level energy benefits from microsecond level dynamic voltage

scaling supported by on-chip integrated voltage regulators. Höppner et al. [247] and Tseng

et al. [226] studied fast DVFS on MPSoCs and SRAMs respectively. Kasture et al. [248]

proposed a fine-grain DVFS scheme for latency-critical workloads. Bai et al. [249] proposed

a voltage regulator efficiency aware power management strategy, which relied upon reinforce-

ment learning. Although the fast per-core DVFS supported by integrated voltage regulators

offers a potential means to improve power and energy efficiency, effective power management

strategies are still missing. Our learning-based hierarchical power management approach not

only can leverage run-time information to make optimal decisions adaptively, but also can

reach microsecond timescales to adjust voltage and frequency.

5.3 Methodology

In this section, we first reveal the potential benefits of microsecond timescale per-core DVFS

and compare the integrated voltage regulator and power delivery system designs to study the

possible speeds of the fast DVfS. Then we introduce the proposed fast hierarchical learning-

based power management strategy with the global controller as the interface to users, the

learning controller at the architecture level, and the swift controller at digital circuits.

Fig. 5.3 illustrates the potential benefits of microsecond-level power management. Here, the

power consumption of a core is shown in black lines and its throughput (instruction per cycle

165

0 50 100 150 200 250 300 350 400 450 500
0

10

20

P
o

w
e
r(

W
)

0

5

IP
C

 (a) FFT (core 1)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

P
o

w
e
r(

W
)

0

5

IP
C

 (b) Radix (core 1)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

P
o

w
e
r(

W
)

0

5

IP
C

 (c) Radix (core 2)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

P
o

w
e
r(

W
)

0

5

IP
C

 (d) Radix (core 4)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

P
o

w
e
r(

W
)

0

5

IP
C

 (e) Water (core 1)

Figure 5.3: Workload power and throughput traces in many-core processors.

IPC) in blue lines during microsecond intervals for representative workloads on a simulated

16-core Intel Nehalem CPU processor. An interval with fewer instructions per cycle (IPC)

transitions could be a candidate DVFS interval, in which the core can reduce the frequency

and voltage to save power with only rare instances of performance degradation. In addition

to intervals that have transitions at millisecond timescales, we find there exist many more

transitions at microsecond timescales, exhibiting distinctive traits. First, such transitions

often appear irregularly within the workloads. For example, the transitions indicated in

Fig. 5.3 (a) are occasional power and activity peaks and valleys in the power-light “FFT”

benchmark, providing opportunities to apply DVFS to lower the voltage and frequency

during the low-activity period without incurring performance loss. Secondly, transitions

arise from interactions among threads. In running the power-hungry ”Radix” benchmark,

Core 1 and core 4 (in Fig. 5.3 (b) and (d)) are in synchronization stalls, waiting for core

2 (in Fig. 5.3 (c)). Thirdly, transitions occur from periodic power and activity within

a workload, and between the completion of one workload and the start of another. Fig.

166

5.3 (e) shows the periodic power and activity in the workload ”Water”. In addition to

computation in the user space, the majority of request service times in the kernel space

require less than 250 microseconds, even with the millisecond tail latencies [250]. Based on

the observation from benchmark executions on the architecture simulators and the program

execution patterns (under the scenarios of fast DVFS) discussed in related works [31, 246],

typical DVFS opportunities generally fall into two classes– One originates from the periodic

or occasional execution period with low computation and memory intensity, and the other

can be attributed to stalls from synchronization, thread scheduling, periodic activities and

so on. Since conventional power delivery systems with off-chip voltage regulators can only

support millisecond voltage scaling, many energy-saving opportunities are lost. In contrast,

integrated voltage regulators can adjust voltages within microseconds and offers flexible per-

core implementation, thus opening the door for fast and adaptive power management at the

system level.

5.3.1 Power Delivery System for Fast DVFS

As the first step in building the foundation for our hierarchical power management approach

with online learning, we explore the state-of-the-art power delivery systems designed to

enable fast, per-core DVFS.

In conventional power delivery systems that use off-chip voltage regulators, a buck converter

is deployed for its high efficiency across a wide input and output range. However, it requires

more than 10 microseconds to scale voltage, due to the passive components like inductors

and capacitors in off-chip voltage regulators, parasitic inductance along the power delivery

networks, and bloated decoupling capacitance at the PCB board and package levels. Recent

167

technology advances make it possible for switching regulators to operate at much higher

frequencies. At the higher switching frequency, the passive components can be much smaller

and integrated on the same die as processors. Given these advantages, integrated voltage

regulators have been adopted in both academic prototypes and industrial and commercial

processors. Although IVRs have a slightly lower voltage conversion efficiency than off-chip

voltage regulators, they enjoy lower supply voltage noise, which compensates for the voltage

conversion loss. Most importantly, the IVR naturally has a much shorter transition time

because of the smaller passive components, reduced parasitics, and the avoidance of PCB

and package-decoupling capacitance.

As the starting point for exploring hierarchical fast in- integrated voltage and frequency

scaling for energy-efficient multi-/many-core processors, we begin with the power delivery

systems that determine the possible DVFS speeds. To maximize the versatility of the pro-

posed hierarchical learning-based power management, we choose mainstream two-stage het-

erogeneous power delivery systems with both off-chip and on-chip integrated buck voltage

regulators. A buck-based two-stage heterogeneous power delivery system can fully represent

mainstream power delivery systems with integrated voltage regulators because it offers high

power delivery efficiency and flexible, fast voltage scaling [68,251].

Alternatives for the on-chip regulator suffer from several limitations. A switched capacitor

has a fixed conversion ratio and cannot support fine-grained voltage scaling. A low drop

out (LDO) voltage regulator offers fast voltage scaling, but its power conversion efficiency

is determined by the ratio of output to input voltages. As voltage and frequency scale

down, the conversion losses in an LDO more than offset any power and energy savings in

the processor. Customized reconfigurations of IVR-based power delivery systems are studied

in [252], but they lack the needed versatility.

168

Table 5.1: Summary of design space explorations of 16-phase buck IVRs.

DVFS Speed 1µs 2µs 4µs 8µs 16µs

Efficiency (%) 79.1 80.6 82.8 82.8 82.8

Switch Freq. (MHz) 146 119 60 60 60

L per-phase (nH) 0.188 0.188 0.75 0.75 0.75

C per-phase (µF) 0.281 0.422 0.422 0.422 0.422

Area (mm2) 92 137 142 142 142

Having decided to use heterogeneous power delivery systems with both off- and on-chip

integrated buck voltage regulators, we proceed to determine the proper DVFS speeds. As

we discussed before, the passive components like inductors and capacitors in integrated

voltage regulators and power delivery networks limit the voltage transition time. For a

heterogeneous power delivery system, we use the open-source integrated voltage regulator

modeling tool Ivory [162] and the power delivery networks for manycore systems [44] to

explore the design spaces of IVRs in heterogeneous power delivery systems that can support

different fast DVFS. The loads are the processor cores described in Section 5.6.1. Here, we

set the voltage scaling rise time to within 0.5% of the DVFS interval durations [58,68,69,84]

and the voltage overshoot to less than 5%. The key design parameters for IVRs that support

different DVFS speeds are summarized in Table 5.1. When the DVFS speeds are faster than

8 mus, the DVFS speed is one of the constraints of IVR design. When supporting faster

DVFS, IVR designs keep reducing the size of on-die inductors and capacitors to achieve a

faster voltage transition, and one prominent side effect is pushing the switching frequency

from tens to hundreds of MHz. The higher frequency switching comes at the cost of degrading

the conversion efficiency of the IVRs as the switching loss becomes more significant. When

the DVFS speeds are slower than 4 µs, the DVFS speed is not the constraints of IVR design,

which means the optimal IVR that targets high efficiency can naturally support the DVFS

speeds no faster than 4 µs.

169

fft
radix

lu.cont
ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp
0

5%

10%

15%

20%

25%

30%

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

S
a

v
in

g

1us 2us 4us 8us 16us 32us 64us 128us

Figure 5.4: Normalized energy consumption of throughput (IPC) guided DVFS at different
microsecond timescales.

Unlike conventional millisecond timescale power management, at microsecond timescales, the

DVFS controller has limited computational ability, and only simple arithmetical operations

can be applied to control the DVFS. Fig. 5.4 shows the normalized energy consumption

of throughput-guided DVFS (measured in IPC, instructions per cycle [253]) at different

microsecond timescales of the system described at Section 5.6. In this DVFS strategy, if the

run-time IPC at the DVFS interval is larger than 0.8 ˆ times the average run-time IPC, the

voltage and frequency will increase by a level. If the run-time IPC at the DVFS interval is

smaller than 0.6 ˆ the average run-time IPC, the voltage and frequency will decrease by a

level. From the experimental results, we can see that the microsecond level fast DVFS based

on throughput IPC can save more energy when the DVFS runs faster. However, limited by

the computational ability at the microsecond timescale, the fast DVFS cannot be effective

on all the benchmarks, e.g., radix, lu.cont, cholesky, blackscholes, and cg.

5.3.2 Hierarchical Power Management Framework

Conventional DVFS control algorithms can be implemented in the processor microarchitec-

ture, in the scheduler, or through compiler algorithms [254,255]. Most prior research in DVFS

170

control has been implemented in the operating system with coarse temporal granularity, a

sensible approach when off-chip regulators have slow response times and voltages change

on the order of several milliseconds. Integrated voltage regulators enable more responsive

DVFS, saving power and energy at microsecond granularity, but effective mechanisms are

required to guide such fine-grained DVFS. Directly increasing the execution frequency of

previous conventional DVFS control algorithms is not applicable, not only because it is hard

to finish the computation within microseconds but also because the kernel module overhead

(such as thread switching) has already taken more than microseconds.

To guide the microsecond timescale fast DVFS effectively within the computational con-

straints, we propose a hierarchical DVFS management that implements three control layers.

First, a global controller in the kernel space specifies the power budget and energy perfor-

mance weights. This global controller also works as the interface with computer users. Users

can use their own power budget and energy performance weights, based on the applications

they are running. Next, a per-core learning controller in the architectural layer is imple-

mented with reinforcement learning to pass the refined run-time architectural information

to a swift controller. Finally, the fast swift controller then makes decisions based on the

refined architectural information and run-time power and performance. This hierarchical

layered approach not only acts fast, at the swift controller frequency, but also adapts as the

application progresses at the learning controller frequency.

171

11. L2 Stores

12. L2 Store Misses

13. L2 Loads

14. L2 Load Misses

15. L3 Stores

16. L3 Store Misses

17. L3 Loads

18. L3 Load Misses

19. Memory Loads

01. IPC

02. Branch Predictor Misses

03. Voltage Level

04. Power Consumption

05. D-TLB Misses

06. D-TLB Accesses

07. L1-D Stores

08. L1-D Store Misses

09. L1-D Loads

10. L1-D Load Misses

EnvironmentPer-Core RL Agent

State (500 μs)

ACTOR-CRITIC NETWORK
4 Layer Network (19,32,32,|A|+1)

Reward (500 μs)

BackProp (25 x 500 μs)

Per-Core
Swift

Controller Core

01. IPC

02. Power Consumption Swift Input Features (4 μs)

V/F Pair (4 μs)

Figure 5.5: Reinforcement learning and swift controllers.

5.3.3 Global Controller

The top controller in this hierarchical framework is the global controller. The global con-

troller runs at the kernel level and provides a programmable interface for the users of multi-

/many-core system to adjust the features of power management. The global controller can

accept energy and performance weights and power budgets from user inputs that guide the

learning controller as it navigates varied modes that favor battery life, favor performance, or

balance the two. The global controller updates the reward function of the learning controller

with to the user inputs, as shown in Eq. 5.1.

R “ ´WE ˆ
energy

peak energy
`WI ˆ

IPC

peak IPC
´WB ˆ

|power´ budget|

peak energy
(5.1)

where WE is the weight for energy, WI is the weight for performance, and WB is the weight for

power budget. The energy is calculated at the frequency of learning controllers. By adjusting

the weights in the reward functions, the corresponding features of the power management

will be selected.

172

5.3.4 Learning Controller

The learning controller, at the architectural layer, leverages reinforcement learning (RL)

to help the DVFS adapt to applications. RL is a subset of machine learning built upon a

Markov Decision Process, which describes interactions between an agent and its environment

over time. The environment is represented by states. At each time step, the agent selects

an action that changes the environment and thus the state. After selecting this action, the

agent transitions to a new state and receives a reward associated with this state.

Table 5.2 lists the components of a RL model. Note that actions or elements of the state

space can be either continuous or discrete.

Table 5.2: RL terminology. RL’s goal is to an find optimal policy πpa|sq˚

Terminology Symbol
Action Space a P A
State Space s P S
Reward Function R P R1

Return G “
řk
t“0R

Policy πpa|sq˚

State Value Function V psq
State-Action Value Function Qps, aq

The value functions describe the expected return for being in some state or for taking an

action in a state when following policy π:

V psq “ Eπ rG|St “ ss (5.2)

Qps, aq “ Eπ rG|St “ s, At “ as (5.3)

173

The agent’s goal is to learn policy πpa|sq˚, which maps each state to an action that maximizes

the expected return G over k time-steps and future time-steps are discounted by factor γ.

Policy gradient methods, such as Actor-Critic, directly optimize the policy by approximating

the policy π and value function (Q or V) using approximators such as neural networks [256].

The actor consumes the state and produces a probability distribution over the action space.

The critic learns a real-valued number that approximates the value function, V psq. The

actor-critic network reaps the benefits of both value based reinforcement learning methods

which are more sample efficient and steady and the policy-based methods which are better

for continuous and stochastic environments. In this project, we use the actor-critic network

in the learning engine as a modest spur and start point to induce researchers to come forward

with this valuable contributions with more powerful learning engines.

If the action space is discrete with size |A|, the final layer in the approximator network is

a flattened vector of size |A| that is passed through a softmax layer to produce a discrete

probability distribution. If the action space is continuous (e.g., a P r0, 1s), the final layer

approximates a probability distribution by predicting its parameters. For example, a layer

that approximates a normal distribution must predict the mean µ and variance σ of a,

increasing the number of outputs required for the approximation function [257].

In each time step, the actor takes a normalized state as input, then forward propagates the

neural network approximator and selects an action by sampling from the output distribution.

A trajectory is built by saving actions, states, and rewards over several time steps. The actor

and critic networks share weights and are trained jointly by back propagating them with the

appropriate loss functions and utilizing stored trajectories.

174

Algorithm 8 Learning Controller (with Swift) p„ 500µsq

Input: Ncores, fps; θ1q, ¨ ¨ ¨ , fps; θN´1q, ŝmean, ŝstd

iÐ 0
while (i ă Ncores) do
sÐ get core state(i)
sÐ ps´ ŝmeanq {ŝstd

Forward propagation µpolicy, σpolicy, V psq Ð fps; θiq
Construct πpa|sq Ð N pµpolicy, σpolicyq

Sample weights ~wi „ πpa|sq
Update swift controller (i, ~wi)
RÐ observe reward(i)
Store µpolicy, σpolicy, R, V psq
iÐ i` 1

end while

For power management, the environment is the processor core’s activity, and the state space

is defined by 19 normalized performance counters, including instruction throughput, branch

prediction misses, cache misses, and reads, as well as the current power and voltage levels.

To collect samples of the state space, each benchmark is run with a random DVFS policy

that performs DVFS every 500 µs. The performance counter values are stored at each of the

VF transitions. This process is repeated until roughly 1, 000 samples for each benchmark

are collected. When a particular benchmark is studied, the corresponding stored samples

are then used to normalize inputs to the learning controller. See Fig. 5.5 for details.The

reward function is a linear combination of instruction throughput, energy, and the power

budget determined by the global controller [249].

The learning controller can manage the DVFS settings either independently or in coordina-

tion with the swift controller at a lower level. During independent management, it directly

maps the core’s state to a voltage-frequency pair. During coordinated management, it sends

175

Table 5.3: Action space of the actor neural network.

Experiment Type Action Space
Without Swift Controller. a P tV F1, ¨ ¨ ¨ , V F4u

With Swift Controller ~a P r0, 1s2

an intermediate weight vector to the swift controller as described in Algorithm 8. Table 5.3

summarizes the action spaces of these two operations.

5.3.5 Swift Controller

The swift controller for each core is implemented at the digital circuit layer, managing

its power and energy consumption by adjusting its voltage and frequency on microsecond

timescales, which is supported by the integrated voltage regulator. First, the swift controller

monitors current drawn by its core during each fine-grained monitoring interval (e.g., 100

ns in our study) to calculate power consumption. Second, it accesses hardware performance

counters. These measurements together guide voltage and frequency settings at microsecond

timescales.

The swift controller uses a linear classifier as described in Eq. 5.4, where X is the input

feature vector, W is the weight vector for the input feature, and b is the bias. When

fpX,W, bq is greater than threshold Ri, the swift controller sets voltage and frequency to Vi

and Fi.

fpX,W, bq “ WX ` b (5.4)

Operating at microsecond timescales, the linear classifier must be computationally simple

yet effective. The classifier takes only two run-time parameters, power consumption and

instruction throughput IPC, to define input X “ rP ptq, IPCptqs. Beyond the instruction

176

throughput, we consider and test other performance counters, such as cache hits and misses.

At conventional millisecond timescales, these counters improve the model’s accuracy when

estimating system dynamics. However, at the microsecond timescales we consider, these

counters exhibit rapid and large fluctuations that can cause the system to oscillate and fail

to converge.

We propose a hierarchical management strategy in which the global and learning controllers

dynamically update the weight vector W . Updated weights help the swift controller capture

diverse workload phases and variations adaptively. Depending on the workload phase, power

and IPC have different roles in estimating system behavior. For example, suppose the fixed-

point unit dissipates less power and the floating-point unit dissipates more power. As a

workload performs a varying mix of fixed and floating-point operations, simply using power

or instruction throughput alone cannot accurately classify the system behavior, even with

offline trained weights.

5.4 Quantitative Study of Internal Metrics with Syn-

thetic Benchmarks

In this section, to quantitatively study the internal metrics and behaviors of hierarchical

learning-based fast power management, we propose a rigorous methodology with synthetic

benchmarks. We generate synthetic benchmarks with manually defined “ideal” DVFS op-

portunities. Theoretically, in these DVFS opportunities, the voltage and frequency should

be immediately reduced to the lowest levels, with no performance loss. By comparing the

behaviors of the DVFS controller with the ideal strategy where the voltage and frequency

177

should be set to the lowest level without performance loss, we can quantitatively describe

the distance between the proposed F-LEMMA DVFS controller and the ideal DVFS con-

trollers at microseconds and find out what contributes to and dominates the “less than ideal”

mismatch.

To cover the two categories of fast DVFS opportunities (computation/memory intensity

variations and long stalls in thread’s activities), we generate benchmarks of computation,

memory, and combination, based on OpenMP for multi-core and many-core systems. We

manually create ideal opportunities for the microsecond timescale DVFS by inserting mi-

crosecond timescale sleep intervals between the operations. In benchmark computation and

memory, we use the sleep to create the DVFS opportunities by adjusting the computation

and memory intensity. In combination benchmark shown in Algorithm 9, we not only use

the inner loop sleep to create the DVFS opportunities by adjusting the computation and

memory intensity, but also use the outer loop sleep to emulate long stalls, such as thread syn-

chronization and scheduling. Meanwhile, the switching between computation and memory

parts represents the program phase changes, which always happen with the long stalls.

In these synthetic benchmarks, the voltage and frequency should be reduced during the sleep

intervals without adding performance loss. With these synthetic benchmarks, any power and

performance patterns with a microsecond timescale resolution can be generated easily and

their DVFS theoretical boundaries can be obtained. After applying F-LEMMA on these

three synthetic benchmarks, we quantitatively evaluate the energy saving and performance

loss of F-LEMMA against the theoretically ideal DVFS strategy for each benchmark. We ap-

ply F-LEMMA with the swift controller at different speeds (1µs and 4µs) on the benchmarks

with different DVFS interval lengths. Fig. 5.6 shows the normalized energy consumption

of F-LEMMA applied on the three synthetic benchmarks. Fig. 5.7 shows the normalized

178

Algorithm 9 Combination Benchmark Example

void main (int argc, char* argv[]){
int threads;
double x[length], y[length];
//OpenMP parallel execution

#pragma omp parallel
for(int i=0; i ă threads 1; i++) {

// The computation part:

for(int j=0; j ă computation length; j++) {
x[j] = (i+j)*0.5/(threads+0.1);

}
usleep(low computation interval);
// The memory part:

for(int j=0; j ă memory length; j++) {
x[j] = y[j];

}
usleep(low memory interval);
// The next computation/memory part

}
usleep(iteration interval);
for(int i=0; i ă threads 2; i++) {

//

}
return;

179

2 4 8 16 32 64 128 256

DVFS intervals in microseconds

50%

60%

70%

80%

90%

100%

110%

120%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

1us DVFS

4us DVFS

(a) Computation benchmark

2 4 8 16 32 64 128 256

DVFS intervals in microseconds

50%

60%

70%

80%

90%

100%

110%

120%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

4us DVFS

1us DVFS

(b) Memory benchmark

2 4 8 16 32 64 128 256

DVFS intervals in microseconds

50%

60%

70%

80%

90%

100%

110%

120%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

4us DVFS

1us DVFS

(c) Combination benchmark

Figure 5.6: Quantitative study of the DVFS on energy saving

2 4 8 16 32 64 128 256

DVFS intervals in microseconds

76

78

80

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

(I
n

s
t.

 p
e
r

S
e
c
o

n
d

)

1us DVFS

4us DVFS

(a) Computation benchmark

2 4 8 16 32 64 128 256

DVFS intervals in microseconds

76

78

80

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

(I
n

s
t.

 p
e
r

S
e
c
o

n
d

)

1us DVFS

4us DVFS

(b) Memory benchmark

2 4 8 16 32 64 128 256

DVFS intervals in microseconds

76

78

80

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

(I
n

s
t.

 p
e
r

S
e
c
o

n
d

)

1us DVFS

4us DVFS

(c) Combination benchmark

Figure 5.7: Quantitative study of the DVFS on performance loss.

performance of F-LEMMA applied on the three synthetic benchmarks, and the ideal bound-

aries are 100%. The X axis is the DVFS intervals, and the boxplots at each interval indicate

the performance of F-LEMMA with swift controllers of different speeds.

The accurate detection and fast action are the most important two internal metrics of the

DVFS, which are from the cooperating between the learning controller and the swift con-

troller. The fast action is determined by how long the swift controller can detect the DVFS

intervals with the linear classifier and adjust voltage and frequency. The accurate detection

is mainly determined by how accurate the learning controller can give out the weights to

capture the status of program and processor for swift controllers.

We first take a look at the fast action given an accurate prediction. We choose synthetic

benchmark computation and memory because in these two benchmarks, there is only one

180

type of operations, no program phase changes, and an accurate prediction can be obtained

after a long enough training process. We use the energy saving and performance loss under

different swift controller speeds inside of each synthetic benchmarks to evaluate the impacts

of the fast action on the DVFS. In the computation and memory benchmarks shown in

sub-figure (a) and (b) in Fig. 5.6 and Fig. 5.7, when the swift controller operates at 1

µs, the voltage and frequency will be adjusted to save energy since the DVFS interval is

over 2 µs. The swift controller operating at 4 µs can only have the energy saving when the

DVFS interval reaches 32 µs. This is because if the swift controller operating at 4 µs is used

to adjust voltage and frequency to save energy for intervals smaller than 32 µs, significant

performance loss will be introduced. For both the swift controllers operating at 1µs and 4µs

the wider distribution will be more obvious when the DVFS interval is short and immediate

voltage and frequency changes are not always possible. When the arrival or finish of DVFS

intervals are detected just before the swift controller’s action, then the swift controller can act

quickly and more energy will be saved. However, when the arrival or finish of DVFS intervals

are detected just after the swift controller’s action, the voltage and frequency can only be

adjusted until the swift controller’s next action. On one hand, lately reducing the voltage

and frequency will cause less energy saving. On the other hand, if the swift controller is not

able to immediately increase the voltage and frequency because of action time, performance

loss will be introduced.

Next, we consider the accurate prediction. We use the synthetic benchmark combination

to test the prediction shown in sub-figure (c) in Fig. 5.6 and Fig. 5.7. We choose the

combination benchmark because it contains two representative program phases (computa-

tion intensive and memory intensive) and these two phases keep switching as the benchmark

executes. Previous, in the computation and memory benchmarks shown in sub-figure (a)

and (b) in Fig. 5.6 and Fig. 5.7, there is only one type of operations and no program phase

181

changes. Therefore, the learning controller only needs to give out an accurate prediction

after training. However, in the combination benchmarks, there does not exist an 100% ac-

curate prediction especially when the program phases change within the period of learning

controller. This is because the learning controller cannot update the prediction when the

phase changes are faster than the prediction of the learning controller. The best prediction

from the learning controller is the compromise prediction considering all the phases. For ex-

ample in this synthetic benchmarks, the learning controller needs to give out the compromise

prediction considering both the computation intensive and memory intensive. Previously in

computation and memory benchmarks, the accurate prediction lets the 1us swift controller

and the 4us swift controller to adjust the voltage and frequency when the DVFS interval

is longer than 2µs and 32µs, which successfully saves energy. However, in this compromise

prediction of the combination benchmark, the 4us swift controller changes voltage and fre-

quency even when DVFS interval is only 2 µs which is even faster than switch controller’s

speed. This means the changed voltage and frequency cannot catch up the DVFS and the

voltage and frequency should not be changed at all. Therefore, not only the performance

loss is introduced but also more energy is consumed with this compromise prediction.

To summarize, both the fast action and accurate prediction are critical to the hierarchical

learning-based fast power management. Under the accurate prediction, the action speed

determines the speeds of DVFS intervals the controller can catch up. However, because of

the physical limitation (learning rate given the computation size) of the learning controller,

it has to give an compromise prediction. This compromise prediction impacts the DVFS

effects or even causes extra energy consumption, which rarely happens but exists.

182

5.5 Online Learning and System Implementation

In this section, we first demonstrate the necessity of online learning control and then validate

the functionality of learning controllers and test them with different reward functions. Then

we use high-level synthesis (HLS) to implement the online learning controller and estimate

its latency and power cost.

To demonstrate the necessity of online learning control, we examine the impacts of the

input features (19 performance counters) on the output weights for the IPC and power.

We measure the average Pearson correlation coefficients between input features and output

weights, where the reward function has IPC, energy, and power budget terms with the same

weight during 100 epochs. Table 5.4 shows the average Pearson correlation coefficients of the

most power-light and power-hungry benchmarks, fft and radix, in the splash-2 benchmark

set. From the results of the fft benchmark, the weight of the performance indicator IPC has

a higher correlation coefficient with the input features than the weight of power. Conversely,

for the benchmark radix, the weight of power has a higher correlation coefficient than the

weight of the performance indicator IPC. In the power-light application fft, the performance

indicator is more critical in guiding the DVFS. Not surprisingly, the misses, like TLB misses

and cache misses, have a negative correlation with the weight for the performance indicator

IPC. Meanwhile, the correlation coefficients for the same input feature vary greatly across

different benchmarks. Using an offline trained learning controller, it is hard to balance the

variations across benchmarks and adapt to different benchmarks with a convincing energy

saving.

The online-learning based power management solution can adapt to these variations. Fig.

5.8 shows the learning (convergence) progress for three representative benchmarks, where

183

Table 5.4: Pearson correlation coefficients be-tween input features and output weights

Benchmark fft radix

Weight for IPC power IPC power

IPC 0.054 0.0161 0.0574 0.3794

Branch Pred. Misses 0.085 0.0035 0.0055 0.2174

Voltage Levels -0.0251 0.0098 0.0017 -0.2725

Power Consumption -0.0146 0.0123 -0.0232 -0.1653

D-TLB Misses -0.0219 0.0190 -0.0249 0.3244

D-TLB Accesses 0.0026 0.0143 -0.0544 0.4350

Memory Loads -0.0310 -0.0290 0.0185 0.2091

L1 D $ Stores 0.0032 0.0166 -0.0541 0.4381

L1 D $ Store Misses -0.0223 0.0099 -0.0195 0.2272

L1 D $ Loads 0.0023 0.0126 -0.0550 0.4326

L1 D $ Load Misses -0.0042 -0.0260 -0.0510 0.4955

L2 Stores -0.0223 0.0099 -0.0195 0.2272

L2 Store Misses -0.0223 0.0099 -0.0184 0.2335

L2 $ Loads -0.0032 -0.0256 -0.0491 0.4999

L2 $ Load Misses -0.0059 -0.0218 -0.0497 0.5032

L3 Stores -0.0261 0.0098 -0.0189 0.2350

L3 Store Misses -0.0243 0.0159 0.0051 0.2175

L3 $ Loads -0.0073 -0.0217 -0.0497 0.5045

L3 $ Load Misses -0.0097 -0.0234 0.0101 0.2259

the reward function has IPC, energy, and power budget terms with the same weight. For

comparison, the progress of the reward function with only the energy term is also shown,

(where we set the weights for IPC and power budget to 0). In these experiments, each learn-

ing controller for each benchmark is started from randomly generated weights of the learning

controller, meaning the learning controller starts from a random position. Fig. 5.8 shows

that energy consumption in both scenarios is reduced as the benchmark progresses, which

means the online learning controller can keep adjusting to adapt to the current benchmarks

and save more energy. Also as expected, the reward function with only the energy term

makes the system energy consumption fall further and even faster over epochs. By adjusting

184

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

ocean(IPC+energy+budget)

water.nsq(IPC+energy+budget)

cg(IPC+energy+budget)

ocean(energy)

water.nsq(energy)

cg(energy)

Figure 5.8: Learning progress under different reward functions.

the weights in the reward learning controller, the user can customize F-LEMMA to favor

either performance or energy.

In our design, the learning controller is executed on an application-specific integrated circuit

(ASIC) located close to the core. Compared with execution at the software level of general-

purpose CPUs, execution in an ASIC avoids redundancy from middleware, which increases

both performance and energy efficiency. We experimentally compared the learning controllers

using both software and ASIC designs. In software, the learning controller took over 40

microseconds (about 40µs/500µs = 8% performance overhead) to execute on a 2.3 GHz Dual-

Core Intel Core i5 processor. To estimate the performance of the ASIC design, we synthesized

the learning controller on a Zynq- 7000 FPGA using Xilinx Vivado HLS 2019.1, with a

pipeline applied to optimize the design. The learning controller took 1464 cycles at 100MHz

to execute, with an average power consumption of 1.38 W. Scaled from the 28nm technology

used in the Zynq-7000 FPGA to the state-of-the-art 10nm technology [258, 259] used in

mainstream processors, this online learning controller can execute within 10 microseconds

and introduces less than 2% overhead with lower power consumption. The ASIC design

thus speeds up the learning controller by 4 times over execution in software. The swift

185

controllers operate at microsecond timescales, and each swift controller operation has 2 fixed

point multiplications, 1 addition, and up to 3 comparisons. The overheads from the swift

controllers are negligible compared with those from the learning controller.

5.6 Evaluation Results

In the section, we test F-LEMMA (the proposed hierarchical learning-based fast DVFS) via

architecture-level performance and power simulators. We compare F-LEMMA with state-

of-the-art power and management solutions and evaluate F-LEMMA with an ablation study

and under different system configurations across real benchmarks.

5.6.1 System Setup

We evaluate the proposed hierarchical learning-based power management scheme with ex-

periments on an Intel Nehalem x86 processor, which is detailed in Table 5.5. We use Sniper

v7.3 [83] (with Mcpat [260]) to simulate the system performance and power (dynamic power

and leakage power) for this multi-/many-core processor, generating run-time statistics with

a granularity of 100 ns. We integrate both the Numpy and PyTorch packages with Sniper to

implement the hierarchical learning design. Sniper performs timing simulations for multi-

threaded, shared-memory applications with tens to hundreds of cores, and has been validated

for Intel Core2 and Nehalem systems. From the parsec, splash2, and NPB benchmark suites,

we select representative power-light, power-moderate, and power-hungry benchmarks that

cover a wide range of scientific and computational domains. The global controller operates in

186

Table 5.5: Architecture parameters and hyperparameters for the hierarchical controller.

Configurations Value

Number of cores 2-128

Core architecture Intel Nehalem (x86)

V/F Levels (V/GHz) 1.20/2.0,1.08/1.8,0.96/1.6,0.84/1.4

Nominal V/F 1.20/2.0

DVFS transition overhead 40 cycles

L1-I/D cache 32KB, 4-way, LRU

L2 cache 512KB, 8-way, LRU

L3 cache 8MB, 16-way, LRU

Global/learning/swift ctrl. 10 ms, 500µs, 4µs

NN Architecture 4-layer (19,32,32,|A| + 1)

Learning rate 1ˆ 10´3

Discount reward factor γ “ 0.95

Trajectory size for backprop 25

Optimizer Adam (β1,2 “ 0.9, 0.999)

kernel space and is triggered by userspace power management. The learning controllers op-

erate every 500 microseconds, a rate limited by the computational complexity of the learning

algorithm. To accurately estimate the DVFS transition overhead, each voltage and frequency

switch is set to 40 cycles by the Sniper simulator. For a conservative consideration, the swift

controllers work at 4 microseconds scales, as determined by the voltage transition times

of the integrated voltage regulators. Later we will examine the swift controllers working

at different DVFS speeds supported by integrated voltage regulators, as studied in Section

5.3.1.

5.6.2 Hierarchical Fast Learning Approach

We compare F-LEMMA to the two state-of-the-art DVFS techniques on multi-/many-core

processors: Profit, Priority and Power/Performance Optimization for Many-Core Systems,

187

and Grape, Minimizing Energy for GPU Applications with Performance Requirements. Our

methods are normalized to the default race-to-idle execution mode. F-LEMMA and previous

techniques are implemented in the same Sniper and Mcpat simulation platforms as described

above. For fairness, F-LEMMA (the learning controller), Profit, and Grape all operate at

a fixed timescale of 500 microseconds. Profit and Grape are implemented with the best

knowledge found in their papers. The names of the approaches used in our experiments are

given below.

• Default Race-to-Idle. Runs each benchmark as fast as possible. All other method-

ologies are normalized to this.

• F-LEMMA: The proposed learning-based fast power and energy management in a

hierarchical layered approach.

• Profit: State-of-the-art reinforcement learning-based power, and energy management

for multi-core and many-core systems [217].

• Grape: State-of-the-art feedback control based power and energy management for

multi-core and many-core systems with performance constraints [150].

We evaluate energy consumption, not power dissipation, for a standard comparison against

workloads and configurations. The energy consumption metric evaluates net benefits and

accounts for potential losses due to extended execution times when lowering frequency. We

normalize energy and performance results to the energy consumed in the Default Race-to-Idle

case.

Fig. 5.9 shows the normalized energy consumption, and Fig. 5.10 shows the normalized

performance loss (instructions per second). F-LEMMA achieves a 35.2% energy saving with

188

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

fft
radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

F-LEMMA

Profit

GRAPE

Figure 5.9: Normalized energy consumption of F-LEMMA.

an 11.8% performance penalty, on average, compared to the Default Race-to-Idle. The best

case is the fft benchmark, which saves 30.4% energy with only a 1.0% performance loss. The

worst case is the radix benchmark, which saves 30.4% energy with a 25.3% performance loss.

Compared to Profit and Grape, F-LEMMA achieves 6.6% and 11.5% extra energy savings

with 3.5% and 2.6% performance penalties, respectively. For the For the fft, lu.cont, cholesky,

water.nsq, blackscholes and ft benchmarks, DVFS saves significant amounts of energy with a

minimal performance penalty across all three power management approaches. In the Grape

results, although using a feedback control improves the effectiveness compared with the

throughput-based DVFS in Section 5.3 on benchmarks radix, bt, and cg, it is still hard to

achieve consistent effects across all the benchmarks.

Fig. 5.11 shows the Energy-Delay Product normalized to Default Race-to-Idle. Across most

benchmarks, F-LEMMA has the highest energy efficiency and smallest energy-delay product,

after accounting for potential performance losses. On average, F-LEMMA, Profit and Grape

have normalized energy- delay products of 0.73, 0.78, and 0.84, respectively.

189

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

(I
n

s
t.

 p
e
r

S
e
c
o

n
d

)
fft

radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

F-LEMMA

Profit

GRAPE

Figure 5.10: Normalized performance of F-LEMMA.

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

D
e

la
y

 P
ro

d
u

c
t

fft
radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

F-LEMMA

Profit

GRAPE

Figure 5.11: Energy delay product of F-LEMMA.

5.6.3 Hierarchical Layered Approach with Ablation Study

As the ablation study, Fig. 5.12–5.13 compare the energy savings and performance penalties

from F-LEMMA and alterna- tives that use only a subset of the layered global, learning, and

swift controllers. In the configurations with learning controller, the learning controllers works

like online learning. In the only swift controller configuration, the weights for the controller

inputs are from off-line trained learning controller. F-LEMMA outperforms a framework with

only global and learning controllers (i.e., the second bar), achieving significant energy savings

with only a tiny performance loss. For example, on the lu.cont, ocean, and ft benchmarks,

F-LEMMA achieves 9%, 8%, and 6% energy saving respectively, while reducing performance

by less than 1%. F-LEMMA also outperforms a framework with only the swift controller

(i.e., the third bar).

190

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

fft
radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

F-LEMMA (Energy)

Global+Learning (Energy)

Swift Only (Energy)

Global(1,0,0)+Learning+Swift (Energy)

Global+Learning+Swift(power) (Energy)

Figure 5.12: Normalized energy consumption of F-LEMMA.

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

(I
n

s
t.

 p
e

r
S

e
c

o
n

d
)

fft
radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

F-LEMMA (Performance)

Global+Learning (Performance)

Swift Only (Performance)

Global(1,0,0)+Learning+Swift (Performance)

Global+Learning+Swift(power) (Performance)

Figure 5.13: Normalized performance of F-LEMMA.

We also compare full hierarchical management with different configurations at each layer.

Suppose the learning controller only pursues energy savings because the global controller

specifies weights (1,0,0) for its reward function (i.e., the fourth bar). The system achieves

more energy saving but with slightly greater performance penalties. Finally, suppose the

swift controller uses only power as the input feature and neglects instruction throughput

(i.e., the fifth bar). Compared to F-LEMMA, this configuration induces larger performance

penalties for the same energy savings. With only power measurements, the swift controller

predicts the effects of DVFS less accurately. These effects were discussed in Section 5.3.3.

5.6.4 Workload Transition and Scalability

Finally, we examine the unique features needed or per- formed by F-LEMMA. The learning

controller must be effective, or converge quickly, when the processor transitions from one

191

Figure 5.14: Learning under Workload Transitions.

fft
radix

lu.cont
ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

1us 2us 4us 8us 16us 32us 64us 128us

Figure 5.15: Normalized energy consumption of F-LEMMA DVFS with the swift controller
at different microsecond timescales.

fft
radix

lu.cont
ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp0
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

(I

n
s

t.
 p

e
r

S
e

c
o

n
d

)

1us 2us 4us 8us 16us 32us 64us 128us

Figure 5.16: Normalized performance of F-LEMMA DVFS with the swift controller at dif-
ferent microsecond timescales.

192

0
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

fft
radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

2 core

4 core

8 core

16 core

32 core

64 core

128 core

Figure 5.17: Normalized energy of F-LEMMA on multi-core and many-core processors.

0
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

N
o

rm
a
li
z
e

d
 P

e
rf

o
rm

a
n

c
e

(I
n

s
t.

 p
e

r
S

e
c
o

n
d

)

fft
radix

lu.cont

ocean

cholesky

water.n
sq

blackscholes bt cg ft lu sp

2 core

4 core

8 core

16 core

32 core

64 core

128 core

Figure 5.18: Normalized performance of F-LEMMA on multi-core and many-core processors.

workload to another. Fig. 5.14 compares energy consumption when control starts from

randomly generated weights (i.e., no prior epoch) and starts from weights learned for the fft

benchmark in the first two epochs before the workload transition. The energy is normalized to

the first execution of each benchmark. Compared with starting from scratch, the benchmarks

switching from fft inherit a learning controller configuration that was trained under fft, and

present a significant energy saving at the beginning. Benchmarks other than radix save more

energy as the execution proceeds. The same phenomena are also observed in transitions for

other benchmarks. Then we change the swift controller frequency to control the DVFS at

different speeds as shown in Table 5.1. Fig. 5.15 and Fig. 5.16 show the normalized energy

consumption and performance across benchmarks. Generally, the proposed F-LEMMA is

effective with different swift controller speeds. Meanwhile, a faster DVFS could achieve

more energy savings with a small performance loss. Last but not least Fig. 5.17 and Fig.

5.18 show the energy and performance when scaling from 2 cores to 128 cores; some bars

193

are blank because the benchmark does not support that configuration. Overall, as the core

numbers scale from 2 to 128, F-LEMMA achieves from 35.2% to 41.1% energy saving at a

cost from 12.1% to 5.4% performance loss overhead on average for 2, 4, 8, 16, 32, 64, and

128-core systems. As the number of cores increases, the performance penalty decreases as

more DVFS opportunities are created by more thread synchronizations.

To summarize, F-LEMMA achieves an effective power management at microsecond timescale

with significant energy saving and only moderate performance loss. The global and learning

controllers help the swift controller make better decisions, saving more energy across bench-

marks. F-LEMMA is also effective during workload transitions and supports user space

inputs to balance energy and performance according to specified weights. Furthermore,

F-LEMMA can be applied on from multi-core systems scaling up to many-core systems.

5.7 Conclusion

The low power consumption and high computing performance are the essential requirements

of the computing systems used in a resource-constrained cyber-physical system. In this

chapter, we proposed F-LEMMA, a hierarchical fast integrated voltage and frequency scal-

ing approach for multi-core and many-core processors. With integrated voltage regulators,

DVFS power management can reach microsecond timescales. A learning-based hierarchical

approach, including a global controller in userspace, a learning controller at the architec-

ture level, and swift controllers at the digital circuit level, is presented to guide microsecond

level power management. Experimental results show that on average F-LEMMA can save

35.2% of energy with a 11.8% performance decrease. Compared with two classic millisec-

ond timescale DVFS techniques using control theory and reinforcement learning, F-LEMMA

194

achieves 5% and 11% Energy-Delay Product (EDP) improvements, respectively. F-LEMMA

is readily applied to the computing systems allowing both the multi-core and many-core

computing platforms in cyber-physical systems to have a lower power consumption and a

higher computing performance.

195

Chapter 6

Conclusion

This dissertation has explored techniques and solutions for improving the power and perfor-

mance efficiency of computing in contemporary and future cyber-physical systems, especially

in resource-constrained environments. In cyber-physical systems, both power efficiency and

performance efficiency directly impact the operation time and performance of the whole

system. We proposed a layered approach to improve computing power and performance

efficiency, leveraging the characteristics of each layer, from the circuit layer, through the

architecture layer, up to the operating system and application layers. With a bottom - up

layered approach, we presented four representative case studies on mainstream computing

systems used in cyber-physical systems, exploring each study from the three perspectives

of power delivery efficiency, resource and task real-time scheduling, and power manage-

ment. At the circuit layer, we provided early-stage modeling and evaluation of IVR-assisted

processor power delivery systems, with two case studies that demonstrate the significant

power efficiency improvements realized from supply voltage noise mitigation and microsec-

ond timescale power management. Next, at the circuit and architecture layers, we provided a

practical voltage-stacked power delivery system with guaranteed reliability and power man-

agement functions. Compared with a conventional power delivery system, the proposed

196

hybrid regulated voltage-stacked system achieves over 90% power delivery efficiency, which

directly extend the operating time of the computing systems and cyber-physical systems.

Then, at the architecture and operating system layers, we used a CPU-GPU system as a

representative of heterogeneous computing systems for autonomous cyber-physical systems

like self-driving cars, and we presented real-time scheduling of hard deadline parallel tasks

with fine-grain utilization, which offers higher schedulability than current state-of-the-art

solutions. Finally, across the circuit, architecture, and operating system layers, we designed

and presented a hierarchical, learning-based fast power management strategy operating at

microsecond timescales. Each of these innovations opens the door to new opportunities

at other layers or leverages the characteristics of several neighboring layers. Although the

cyber-physical systems put a tough challenge on the computing performance and power con-

sumption on their computing platforms, all the techniques form a complete layered approach

from the circuit layer through the architecture layer to the operating system and application

layers to improve both power and performance efficiency for the computing systems that are

used in cyber-physical systems especially in a resource-constrained environment.

There is no limit in improving the performance and reducing the power consumption of the

computing system. Many amazing solutions and techniques have been proposed in the past,

are being proposed now, or will be proposed in the future. We hope our layered approach

and proposed techniques can serve as a modest spur to induce later researchers to come

forward with valuable contributions to improve computing and cyber-physical systems and

help people build a better life together.

197

References

[1] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2017.

[2] Siddhartha Kumar Khaitan and James D McCalley. Design techniques and applications
of cyberphysical systems: A survey. IEEE Systems Journal, 9(2):350–365, 2014.

[3] Apple unleashes m1. https://www.apple.com/newsroom/2020/11/apple-unleashes-
m1/.

[4] https://www.tesla.com/autopilotai.

[5] Lech Jóźwiak. Embedded computing technology for highly-demanding cyber-physical
systems. IFAC-PapersOnLine, 48(4):19–30, 2015.

[6] Stefano Zanero. Cyber-physical systems. Computer, 50(4):14–16, 2017.

[7] Jin Ho Kim. A review of cyber-physical system research relevant to the emerging
it trends: industry 4.0, iot, big data, and cloud computing. Journal of industrial
integration and management, 2(03):1750011, 2017.

[8] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical sys-
tems: the next computing revolution. In Design automation conference, pages 731–736.
IEEE, 2010.

[9] Yansheng Zhang, I-L Yen, Farokh B Bastani, Ann T Tai, and S Chau. Optimal adap-
tive system health monitoring and diagnosis for resource constrained cyber-physical
systems. In 2009 20th International Symposium on Software Reliability Engineering,
pages 51–60. IEEE, 2009.

[10] Bo Li, Yehan Ma, Tyler Westenbroek, Chengjie Wu, Humberto Gonzalez, and
Chenyang Lu. Wireless routing and control: a cyber-physical case study. In 2016
ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pages
1–10. IEEE, 2016.

[11] Yehan Ma, Dolvara Gunatilaka, Bo Li, Humberto Gonzalez, and Chenyang Lu. Holistic
cyber-physical management for dependable wireless control systems. ACM Transac-
tions on Cyber-Physical Systems, 3(1):1–25, 2018.

198

[12] Yehan Ma, Chenyang Lu, and Yebin Wang. Efficient holistic control: Self-awareness
across controllers and wireless networks. ACM Transactions on Cyber-Physical Sys-
tems, 4(4):1–27, 2020.

[13] Power management plantweb university. https://www.emerson.com/documents/automation/training-
power-management-en-41156.pdf.

[14] Ai can do great things—if it doesn’t burn the planet. https://www.wired.com/story/ai-
great-things-burn-planet/.

[15] Scaling battery technology. https://semiengineering.com/scaling-battery-technology/.

[16] Elon musk: Battery energy density to increase 50 percent by 2024.
https://www.pcmag.com/news/elon-musk-battery-energy-density-to-increase-50-
percent-by-2024.

[17] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideovt, Ernest Bassous,
and Andre R Leblanc. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Solid-State Circuits Society Newsletter, 12(1):38–50, 2007.

[18] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In 2011 38th Annual
international symposium on computer architecture (ISCA), pages 365–376. IEEE, 2011.

[19] Michael B Taylor. A landscape of the new dark silicon design regime. IEEE Micro,
33(5):8–19, 2013.

[20] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Bardienus Pieter Duisterhof,
Brian Plancher, Kayvan Mansoorshahi, Marcelino Almeida, Wenzhi Cui, Aleksandra
Faust, and Vijay Janapa Reddi. The role of compute in autonomous aerial vehicles.
arXiv preprint arXiv:1906.10513, 2019.

[21] Behzad Boroujerdian, Hasan Genc, Srivatsan Krishnan, Wenzhi Cui, Aleksandra Faust,
and Vijay Reddi. Mavbench: Micro aerial vehicle benchmarking. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 894–907.
IEEE, 2018.

[22] Yehan Ma, Chenyang Lu, Bruno Sinopoli, and Shen Zeng. Exploring edge computing
for multitier industrial control. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(11):3506–3518, 2020.

[23] Pulkit Agrawal, Ross Girshick, and Jitendra Malik. Analyzing the performance of
multilayer neural networks for object recognition. In European conference on computer
vision, pages 329–344. Springer, 2014.

199

[24] Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

[25] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consid-
erations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[26] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. Carla: An open urban driving simulator. In Conference on robot learning,
pages 1–16. PMLR, 2017.

[27] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheat-
ing. In Conference on Robot Learning, pages 66–75. PMLR, 2020.

[28] Jetson agx xavier developer kit. https://developer.nvidia.com/embedded/jetson-agx-
xavier-developer-kit.

[29] Nvidia graphics card specification chart. https://www.studio1productions.com/Articles/NVidia-
GPU-Chart.htm.

[30] André B Bondi. Characteristics of scalability and their impact on performance. In
Proceedings of the 2nd international workshop on Software and performance, pages
195–203, 2000.

[31] Wonyoung Kim, Meeta S Gupta, Gu-Yeon Wei, and David Brooks. System level
analysis of fast, per-core dvfs using on-chip switching regulators. In 2008 IEEE 14th
International Symposium on High Performance Computer Architecture, 2008.

[32] Pingqiang Zhou, Dong Jiao, Chris H Kim, and Sachin S Sapatnekar. Exploration of
on-chip switched-capacitor dc-dc converter for multicore processors using a distributed
power delivery network. In Custom Integrated Circuits Conference (CICC), 2011 IEEE,
pages 1–4. IEEE, 2011.

[33] Tao Tong, Xuan Zhang, Wonyoung Kim, David Brooks, and Gu-Yeon Wei. A fully
integrated battery-connected switched-capacitor 4: 1 voltage regulator with 70% peak
efficiency using bottom-plate charge recycling. In Custom Integrated Circuits Confer-
ence (CICC), 2013 IEEE, pages 1–4. IEEE, 2013.

[34] Leland Chang, Robert K Montoye, Brian L Ji, Alan J Weger, Kevin G Stawiasz, and
Robert H Dennard. A fully-integrated switched-capacitor 2 1 voltage converter with
regulation capability and 90% efficiency at 2.3 a/mm 2. In VLSI Circuits (VLSIC),
2010 IEEE Symposium on, pages 55–56. IEEE, 2010.

[35] Hamid Reza Ghasemi, Abhishek A Sinkar, Michael J Schulte, and Nam Sung
Kim. Cost-effective power delivery to support per-core voltage domains for power-
constrained processors. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 56–61. IEEE, 2012.

200

[36] Ulya R Karpuzcu, Abhishek Sinkar, Nam Sung Kim, and Josep Torrellas. Energysmart:
Toward energy-efficient manycores for near-threshold computing. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium on,
pages 542–553. IEEE, 2013.

[37] Guihai Yan, Yingmin Li, Yinhe Han, Xiaowei Li, Minyi Guo, and Xiaoyao Liang.
Agileregulator: A hybrid voltage regulator scheme redeeming dark silicon for power
efficiency in a multicore architecture. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pages 1–12. IEEE, 2012.

[38] Steven JE Wilton and Norman P Jouppi. Cacti: An enhanced cache access and cycle
time model. IEEE Journal of Solid-State Circuits, 31(5):677–688, 1996.

[39] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion: a
power-performance simulator for interconnection networks. In Microarchitecture,
2002.(MICRO-35). Proceedings. 35th Annual IEEE/ACM International Symposium
on, pages 294–305. IEEE, 2002.

[40] Donald S Gardner, Gerhard Schrom, Fabrice Paillet, Brice Jamieson, Tanay Karnik,
and Shekhar Borkar. Review of on-chip inductor structures with magnetic films. IEEE
Transactions on Magnetics, 45(10):4760–4766, 2009.

[41] Wonyoung Kim, David Brooks, and Gu-Yeon Wei. A fully-integrated 3-level dc-dc
converter for nanosecond-scale dvfs. IEEE Journal of Solid-State Circuits, 47(1):206–
219, 2012.

[42] Rinkle Jain, Bibiche M Geuskens, Stephen T Kim, Muhammad M Khellah, Jaydeep
Kulkarni, James W Tschanz, and Vivek De. A 0.45–1 v fully-integrated distributed
switched capacitor dc-dc converter with high density mim capacitor in 22 nm tri-gate
cmos. IEEE Journal of Solid-State Circuits, 49(4):917–927, 2014.

[43] Texus Instruments. LMZ10501 1-A SIMPLE SWITCHER® Nano Module With 5.5-V
Maximum Input Voltage. http://www.ti.com/product/LMZ10501.

[44] Meeta S Gupta, Jarod L Oatley, Russ Joseph, Gu-Yeon Wei, and David M Brooks.
Understanding voltage variations in chip multiprocessors using a distributed power-
delivery network. In 2007 Design, Automation & Test in Europe Conference & Exhi-
bition, pages 1–6. IEEE, 2007.

[45] Intel Corp. Voltage Regulator Module, Enterprise Voltage Regulator-Down 10.0. http:
//www.intel.com/content/www/us/en/power-management/voltage-regulator-

module-enterprise-voltage-regulator-down-10-0-guidelines.html.

[46] Reddi, V.J. and Kanev, S. and Campanoni, S. and Smith, M.D. and Wei, G.Y.
and Brooks, D. Voltage Smoothing: Characterizing and Mitigating Voltage Noise

201

http://www.ti.com/product/LMZ10501
http://www.intel.com/content/www/us/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-10-0-guidelines.html
http://www.intel.com/content/www/us/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-10-0-guidelines.html
http://www.intel.com/content/www/us/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-10-0-guidelines.html

in Production Processors Using Software-Guided Thread Scheduling. In Proc. Annual
IEEE/ACM Int. Symp. on Microarchitecture, 2010.

[47] Youngtaek Kim and Lizy Kurian John. Automated di/dt stressmark generation for mi-
croprocessor power delivery networks. In Low Power Electronics and Design (ISLPED)
2011 International Symposium on. IEEE, 2011.

[48] Noah Sturcken, Eugene J O’Sullivan, Naigang Wang, Philipp Herget, Bucknell C Webb,
Lubomyr T Romankiw, Michele Petracca, Ryan Davies, Robert E Fontana, Gary M
Decad, et al. A 2.5 d integrated voltage regulator using coupled-magnetic-core induc-
tors on silicon interposer. IEEE Journal of solid-state circuits, 48(1):244–254, 2013.

[49] Hanh-Phuc Le, Seth R Sanders, and Elad Alon. Design techniques for fully integrated
switched-capacitor dc-dc converters. IEEE Journal of Solid-State Circuits, 46(9):2120–
2131, 2011.

[50] Yongseok Choi, Naehyuck Chang, and Taewhan Kim. Dc–dc converter-aware power
management for low-power embedded systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(8):1367–1381, 2007.

[51] Michael D Seeman. Analytical and practical analysis of switched-capacitor dc-dc con-
verters. Technical report, CALIFORNIA UNIV BERKELEY DEPT OF ELECTRI-
CAL ENGINEERING AND COMPUTER SCIENCE, 2006.

[52] Hanh-Phuc Le, John Crossley, Seth R Sanders, and Elad Alon. A sub-ns response
fully integrated battery-connected switched-capacitor voltage regulator delivering 0.19
w/mm 2 at 73% efficiency. In 2013 IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pages 372–373. IEEE, 2013.

[53] Noah Sturcken, Michele Petracca, Steven Warren, Paolo Mantovani, Luca P Carloni,
Angel V Peterchev, and Kenneth L Shepard. A switched-inductor integrated voltage
regulator with nonlinear feedback and network-on-chip load in 45 nm soi. IEEE Journal
of Solid-State Circuits, 47(8):1935–1945, 2012.

[54] Robert J Milliken, Jose Silva-Mart́ınez, and Edgar Sánchez-Sinencio. Full on-chip cmos
low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I: Regular
Papers, 54(9):1879–1890, 2007.

[55] Toke Meyer Andersen, Florian Krismer, Johann Walter Kolar, Thomas Toifl, Christian
Menolfi, Lukas Kull, Thomas Morf, Marcel Kossel, Matthias Brändli, Peter Buchmann,
et al. 4.7 a sub-ns response on-chip switched-capacitor dc-dc voltage regulator deliv-
ering 3.7 w/mm 2 at 90% efficiency using deep-trench capacitors in 32nm soi cmos. In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 90–91. IEEE, 2014.

202

[56] Edward NY Ho and Philip KT Mok. A capacitor-less cmos active feedback low-dropout
regulator with slew-rate enhancement for portable on-chip application. IEEE Trans-
actions on Circuits and Systems II: Express Briefs, 57(2):80–84, 2010.

[57] James Myers, Anand Savanth, Rohan Gaddh, David Howard, Pranay Prabhat, and
David Flynn. A subthreshold arm cortex-m0+ subsystem in 65 nm cmos for wsn
applications with 14 power domains, 10t sram, and integrated voltage regulator. IEEE
Journal of Solid-State Circuits, 51(1):31–44, 2015.

[58] Stephen T Kim, Yi-Chun Shih, Kaushik Mazumdar, Rinkle Jain, Joseph F Ryan,
Carlos Tokunaga, Charles Augustine, Jaydeep P Kulkarni, Krishnan Ravichandran,
James W Tschanz, et al. Enabling wide autonomous dvfs in a 22 nm graphics execution
core using a digitally controlled fully integrated voltage regulator. IEEE Journal of
Solid-State Circuits, 51(1):18–30, 2015.

[59] Harish K Krishnamurthy, Vaibhav Vaidya, Pavan Kumar, Rinkle Jain, Sheldon Weng,
Stephen T Kim, George E Matthew, Nachiket Desai, Xiaosen Liu, Krishnan Ravichan-
dran, et al. A digitally controlled fully integrated voltage regulator with on-die solenoid
inductor with planar magnetic core in 14-nm tri-gate cmos. IEEE Journal of Solid-
State Circuits, 53(1):8–19, 2017.

[60] George Patounakis, Yee William Li, and Kenneth L Shepard. A fully integrated on-
chip dc-dc conversion and power management system. IEEE Journal of Solid-State
Circuits, 39(3):443–451, 2004.

[61] Noah Sturcken, Eugene J O’Sullivan, Naigang Wang, Philipp Herget, Bucknell C Webb,
Lubomyr T Romankiw, Michele Petracca, Ryan Davies, Robert E Fontana, Gary M
Decad, et al. A 2.5 d integrated voltage regulator using coupled-magnetic-core induc-
tors on silicon interposer. IEEE Journal of solid-state circuits, 48(1):244–254, 2012.

[62] Tom Van Breussegem and Michiel Steyaert. A 82% efficiency 0.5% ripple 16-phase
fully integrated capacitive voltage doubler. In 2009 Symposium on VLSI Circuits,
pages 198–199. IEEE, 2009.

[63] Edward A Burton, Gerhard Schrom, Fabrice Paillet, Jonathan Douglas, William J
Lambert, Kaladhar Radhakrishnan, and Michael J Hill. Fivr—fully integrated voltage
regulators on 4th generation intel® core™ socs. In Applied Power Electronics Confer-
ence and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pages 432–439. IEEE,
2014.

[64] Eric J Fluhr, Steve Baumgartner, David Boerstler, John F Bulzacchelli, Timothy
Diemoz, Daniel Dreps, George English, Joshua Friedrich, Anne Gattiker, Tilman
Gloekler, et al. The 12-core power8™ processor with 7.6 tb/s io bandwidth, inte-
grated voltage regulation, and resonant clocking. IEEE Journal of Solid-State Circuits,
50(1):10–23, 2015.

203

[65] Brian Zimmer, Yunsup Lee, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtić, Ben Keller,
Steven Bailey, Milovan Blagojević, Pi-Feng Chiu, Hanh-Phuc Le, et al. A risc-v vector
processor with simultaneous-switching switched-capacitor dc–dc converters in 28 nm
fdsoi. IEEE Journal of Solid-State Circuits, 2016.

[66] Cheng Zhuo, Kassan Unda, Yiyu Shi, and Wei-Kai Shih. From layout to system:
Early stage power delivery and architecture co-exploration. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(7):1291–1304, 2018.

[67] Zhiyu Zeng, Xiaoji Ye, Zhuo Feng, and Peng Li. Tradeoff analysis and optimization
of power delivery networks with on-chip voltage regulation. In Proceedings of the 47th
Design Automation Conference, pages 831–836. ACM, 2010.

[68] Xuan Wang, Jiang Xu, Zhe Wang, Kevin J Chen, Xiaowen Wu, Zhehui Wang, Peng
Yang, and Luan HK Duong. An analytical study of power delivery systems for many-
core processors using on-chip and off-chip voltage regulators. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34(9):1401–1414, 2015.

[69] Xin Zhan, Jianhao Chen, Edgar Sánchez-Sinencio, and Peng Li. Power management
for multicore processors via heterogeneous voltage regulation and machine learning en-
abled adaptation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2019.

[70] Saurabh Sinha, Greg Yeric, Vikas Chandra, Brian Cline, and Yu Cao. Exploring sub-
20nm finfet design with predictive technology models. In Design Automation Confer-
ence (DAC), 2012 49th ACM/EDAC/IEEE, pages 283–288. IEEE, 2012.

[71] Mohammad Al-Shyoukh, Hoi Lee, and Raul Perez. A transient-enhanced low-quiescent
current low-dropout regulator with buffer impedance attenuation. IEEE journal of
solid-state circuits, 42(8):1732–1742, 2007.

[72] Richard D Middlebrook and Slobodan Cuk. A general unified approach to modelling
switching-converter power stages. In 1976 IEEE Power Electronics Specialists Confer-
ence, pages 18–34. IEEE, 1976.

[73] Riccardo Trinchero. Emi analysis and modeling of switching circuits. In PhD thesis.
Politecnico di Torino, 2015.

[74] Ashis Maity, Amit Patra, Norihisa Yamamura, and Jonathan Knight. Design of a 20
mhz dc-dc buck converter with 84 percent efficiency for portable applications. In 2011
24th Internatioal Conference on VLSI Design, pages 316–321. IEEE, 2011.

[75] Siamak Abedinpour, Bertan Bakkaloglu, and Sayfe Kiaei. A multistage interleaved
synchronous buck converter with integrated output filter in 0.18 mu m sige process.
IEEE Transactions on Power Electronics, 22(6):2164–2175, 2007.

204

[76] Gerhard Schrom, P Hazucha, Fabrice Paillet, DJ Rennie, ST Moon, DS Gardner,
T Kamik, P Sun, TT Nguyen, MJ Hill, et al. A 100mhz eight-phase buck converter
delivering 12a in 25mm2 using air-core inductors. In APEC 07-Twenty-Second Annual
IEEE Applied Power Electronics Conference and Exposition, pages 727–730. IEEE,
2007.

[77] Jingwen Leng, Yazhou Zu, Minsoo Rhu, Meeta Gupta, and Vijay Janapa Reddi. Gpu-
volt: Modeling and characterizing voltage noise in gpu architectures. In Proceedings of
the 2014 international symposium on Low power electronics and design, pages 141–146.
ACM, 2014.

[78] CHL8266. Digital multi-phase gpu buck controller. Technical report, infineon, 2011.

[79] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 163–174. IEEE,
2009.

[80] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M Aamodt, and Vijay Janapa Reddi. Gpuwattch: enabling energy optimizations in
gpgpus. In ACM SIGARCH Computer Architecture News, volume 41, pages 487–498.
ACM, 2013.

[81] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In International Symposium on Workload Characterization, 2009.

[82] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, and Vijay Janapa
Reddi. Safe limits on voltage reduction efficiency in gpus: A direct measurement
approach. In Proceedings of the 48th International Symposium on Microarchitecture,
pages 294–307. ACM, 2015.

[83] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, 2011.

[84] Ben Keller, Martin Cochet, Brian Zimmer, Jaehwa Kwak, Alberto Puggelli, Yunsup
Lee, Milovan Blagojević, Stevo Bailey, Pi-Feng Chiu, Palmer Dabbelt, et al. A risc-v
processor soc with integrated power management at submicrosecond timescales in 28
nm fd-soi. IEEE Journal of Solid-State Circuits, 52(7):1863–1875, 2017.

[85] Xuan Zhang, Tao Tong, S. Kanev, Sae Kyu Lee, Gu-Yeon Wei, and D. Brooks. Char-
acterizing and evaluating voltage noise in multi-core near-threshold processors. In Low

205

Power Electronics and Design (ISLPED), 2013 IEEE International Symposium on,
pages 82–87, 2013.

[86] Wonyoung Kim et al. System level analysis of fast, per-core dvfs using on-chip switching
regulators. In HPCA, 2008.

[87] Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. Evaluation of voltage stacking for near-
threshold multicore computing. In Proceedings of the 2012 ACM/IEEE international
symposium on Low power electronics and design, pages 373–378. ACM, 2012.

[88] Kazuhiro Ueda, Fukashi Morishita, Shunsuke Okura, Leona Okamura, Tsutomu Yoshi-
hara, and Kazutami Arimoto. Low-power on-chip charge-recycling dc-dc conversion
circuit and system. IEEE Journal of Solid-State Circuits, 48(11):2608–2617, 2013.

[89] Pablo Castro Lisboa, Pablo Pérez-Nicoli, Francisco Veirano, and Fernando Silveira.
General top/bottom-plate charge recycling technique for integrated switched capaci-
tor dc-dc converters. IEEE Transactions on Circuits and Systems I: Regular Papers,
63(4):470–481, 2016.

[90] Saravanan Rajapandian, Zheng Xu, and Kenneth L Shepard. Implicit dc-dc downcon-
version through charge-recycling. IEEE journal of solid-state circuits, 40(4):846–852,
2005.

[91] Pulkit Jain, Tae-Hyoung Kim, John Keane, and Chris H Kim. A multi-story power
delivery technique for 3d integrated circuits. In Low Power Electronics and Design
(ISLPED), 2008 ACM/IEEE International Symposium on, pages 57–62. IEEE, 2008.

[92] Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. Evaluation of voltage stacking for near-
threshold multicore computing. In Proceedings of the 2012 ACM/IEEE international
symposium on Low power electronics and design, pages 373–378. ACM, 2012.

[93] Kristof Blutman, Ajay Kapoor, Arjun Majumdar, Jacinto Garcia Martinez, Juan
Echeverri, Leo Sevat, Arnoud P van der Wel, Hamed Fatemi, Kofi AA Makinwa,
and José Pineda de Gyvez. A low-power microcontroller in a 40-nm cmos using charge
recycling. IEEE Journal of Solid-State Circuits, 52(4), 2017.

[94] Sae Kyu Lee, Tao Tong, Xuan Zhang, David Brooks, and Gu-Yeon Wei. A 16-core
voltage-stacked system with adaptive clocking and an integrated switched-capacitor
dc–dc converter. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(4):1271–1284, 2017.

[95] Kristof Blutman, Ajay Kapoor, Jacinto Garcia Martinez, Hamed Fatemi, and
José Pineda de Gyvez. Lower power by voltage stacking: A fine-grained system design
approach. In Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE,
pages 1–5. IEEE, 2016.

206

[96] Ehsan K Ardestani, Rafael Trapani Possignolo, Jose Luis Briz, and Jose Renau. Man-
aging mismatches in voltage stacking with coreunfolding. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 12(4), 2016.

[97] Rafael Trapani Possignolo, Elnaz Ebrahimi, Ehsan Khish Ardestani, Alamelu Sankara-
narayanan, Jose Luis Briz, and Jose Renau. Gpu ntc process variation compensation
with voltage stacking. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, (99):1–14, 2018.

[98] Sae Kyu Lee, Tao Tong, Xuan Zhang, David Brooks, and Gu-Yeon Wei. A 16-core
voltage-stacked system with an integrated switched-capacitor dc-dc converter. In VLSI
Circuits (VLSI Circuits), 2015 Symposium on, pages C318–C319. IEEE, 2015.

[99] Tao Tong, Sae Kyu Lee, Xuan Zhang, David Brooks, and Gu-Yeon Wei. A fully
integrated reconfigurable switched-capacitor dc-dc converter with four stacked out-
put channels for voltage stacking applications. IEEE Journal of Solid-State Circuits,
51(9):2142–2152, 2016.

[100] Ed Grochowski, David Ayers, and Vivek Tiwari. Microarchitectural simulation and
control of di/dt-induced power supply voltage variation. In High-Performance Com-
puter Architecture, 2002. Proceedings. Eighth International Symposium on, pages 7–16.
IEEE, 2002.

[101] Meeta S Gupta, Vijay Janapa Reddi, Glenn Holloway, Gu-Yeon Wei, and David M
Brooks. An event-guided approach to reducing voltage noise in processors. In Design,
Automation & Test in Europe Conference & Exhibition, 2009. DATE’09., pages 160–
165. IEEE, 2009.

[102] Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael D
Smith, Gu-Yeon Wei, and David Brooks. Voltage smoothing: Characterizing and miti-
gating voltage noise in production processors via software-guided thread scheduling. In
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International Symposium
on, pages 77–88. IEEE, 2010.

[103] Vijay Janapa Reddi, Meeta S Gupta, Glenn Holloway, Gu-Yeon Wei, Michael D Smith,
and David Brooks. Voltage emergency prediction: Using signatures to reduce operating
margins. In High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on. IEEE, 2009.

[104] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. Gpu voltage noise: Characteriza-
tion and hierarchical smoothing of spatial and temporal voltage noise interference in
gpu architectures. In High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium on, pages 161–173. IEEE, 2015.

207

[105] Renji Thomas, Kristin Barber, Naser Sedaghati, Li Zhou, and Radu Teodorescu. Core
tunneling: Variation-aware voltage noise mitigation in gpus. In High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium on, pages 151–
162. IEEE, 2016.

[106] Renji Thomas, Naser Sedaghati, and Radu Teodorescu. Emergpu: Understanding
and mitigating resonance-induced voltage noise in gpu architectures. In Performance
Analysis of Systems and Software (ISPASS), 2016 IEEE International Symposium on,
pages 79–89. IEEE, 2016.

[107] Jae-Pyo Lee, Ho-Sik Jeon, Dong-Sung Moon, and Byung Seong Bae. Threshold voltage
and ir drop compensation of an amoled pixel circuit without a vDD line. IEEE Electron
Device Letters, 35(1):72–74, 2014.

[108] Xuan Zhang, Tao Tong, David Brooks, and Gu-Yeon Wei. Supply-noise resilient adap-
tive clocking for battery-powered aerial microrobotic system-on-chip in 40nm cmos.
In Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, pages 1–4.
IEEE, 2013.

[109] Xuan Zhang, Tao Tong, David Brooks, and Gu Yeon Wei. Evaluating adaptive clocking
for supply-noise resilience in battery-powered aerial microrobotic system-on-chip. IEEE
Transactions on Circuits and Systems I: Regular Papers, 61(8):2309–2317, 2014.

[110] Rafael T. Possignolo. Gpu ntc process variation compensation with voltage stacking. In
Parallel Architectures and Compilation Techniques (PACT), International Conference
on., 2015.

[111] Elnaz Ebrahimi, Rafael Trapani Possignolo, and Jose Renau. Sram voltage stacking. In
Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, pages 1634–
1637. IEEE, 2016.

[112] Tao Tong, Sae Kyu Lee, Xuan Zhang, David Brooks, and Gu-Yeon Wei. A fully
integrated reconfigurable switched-capacitor dc-dc converter with four stacked out-
put channels for voltage stacking applications. IEEE Journal of Solid-State Circuits,
51(9):2142–2152, 2016.

[113] Kristof Blutman, Ajay Kapoor, Arjun Majumdar, Jacinto Garcia Martinez, Juan
Echeverri, Leo Sevat, Arnoud Van Der Wel, Hamed Fatemi, José Pineda de Gyvez, and
Kofi Makinwa. A microcontroller with 96% power-conversion efficiency using stacked
voltage domains. In VLSI Circuits (VLSI-Circuits), 2016 IEEE Symposium on, pages
1–2. IEEE, 2016.

[114] Kristof Blutman, Hamed Fatemi, Andrew B Kahng, Ajay Kapoor, Jiajia Li, and
José Pineda de Gyvez. Floorplan and placement methodology for improved energy

208

reduction in stacked power-domain design. In Design Automation Conference (ASP-
DAC), 2017 22nd Asia and South Pacific, pages 444–449. IEEE, 2017.

[115] Kristof Blutman, Hamed Fatemi, Ajay Kapoor, Andrew B Kahng, Jiajia Li, and
José Pineda de Gyvez. Logic design partitioning for stacked power domains. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2017.

[116] Runjie Zhang, Kaushik Mazumdar, Brett H Meyer, Ke Wang, Kevin Skadron,
and Mircea Stan. A cross-layer design exploration of charge-recycled power-
delivery in many-layer 3d-ic. In Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

[117] Kaushik Mazumdar and Mircea Stan. Breaking the power delivery wall using voltage
stacking. In Proceedings of the great lakes symposium on VLSI, pages 51–54. ACM,
2012.

[118] Qixiang Zhang, Liangzhen Lai, Mark Gottscho, and Puneet Gupta. Multi-story power
distribution networks for gpus. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2016, pages 451–456. IEEE, 2016.

[119] An Zou, Jingwen Leng, Xin He, Yazhou Zu, Vijay Janapa Reddi, and Xuan Zhang.
Efficient and reliable power delivery in voltage-stacked manycore system with hybrid
charge-recycling regulators. In 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC), pages 1–6. IEEE, 2018.

[120] An Zou, Jingwen Leng, Xin He, Yazhou Zu, Christopher D Gill, Vijay Janapa Reddi,
and Xuan Zhang. Voltage-stacked gpus: A control theory driven cross-layer solution
for practical voltage stacking in gpus. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 390–402. IEEE, 2018.

[121] Weidong Cao, Xin He, Ayan Chakrabarti, and Xuan Zhang. Neuadc: Neural network-
inspired synthesizable analog-to-digital conversion. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2019.

[122] NVIDIA. Whitepaper nvidia’s next generation cudatm compute architecture: Fermi.

[123] Joseph Ervin, Asha Balijepalli, Punarvasu Joshi, Vadim Kushner, Jinman Yang, and
Trevor J Thornton. Cmos-compatible soi mesfets with high breakdown voltage. IEEE
Transactions on Electron Devices, 53(12):3129–3135, 2006.

[124] Andrew Suchanek, Zhong Chen, and Jia Di. Asynchronous circuit stacking for simpli-
fied power management. IEEE, 2018.

[125] Jie Gu and Chris H Kim. Multi-story power delivery for supply noise reduction and
low voltage operation. In Proceedings of the 2005 international symposium on Low
power electronics and design, pages 192–197. ACM, 2005.

209

[126] Jun Zhou, Chao Wang, Xin Liu, and Minkyu Je. Fast and energy-efficient low-voltage
level shifters. Microelectronics Journal, 46(1), 2015.

[127] Shien-Chun Luo, Ching-Ji Huang, and Yuan-Hua Chu. A wide-range level shifter using
a modified wilson current mirror hybrid buffer. IEEE Transactions on Circuits and
Systems I: Regular Papers, 61(6), 2014.

[128] Kyoung-Hoi Koo, Jin-Ho Seo, Myeong-Lyong Ko, and Jae-Whui Kim. A new level-up
shifter for high speed and wide range interface in ultra deep sub-micron. In Circuits
and Systems, 2005. ISCAS 2005. IEEE International Symposium on, pages 1063–1065.
IEEE, 2005.

[129] Tejas S Joshi and Priya M Ravale Nerkar. A wide range level shifter using a self
biased cascode current mirror with ptl based buffer. In IJCA Proceedings on National
Conference on Emerging Trends in Advanced Communication Technologies, pages 8–
12, 2015.

[130] Amir Hasanbegovic and Snorre Aunet. Low-power subthreshold to above threshold
level shifters in 90nm and 65nm process. Microprocessors and Microsystems, 35(1):1–
9, 2011.

[131] Bhawna Aggarwal, Maneesha Gupta, and Anil Kumar Gupta. A comparative study of
various current mirror configurations: Topologies and characteristics. Microelectronics
Journal, 53:134–155, 2016.

[132] Manoj Kumar, Sandeep K Arya, and Sujata Pandey. Level shifter design for low power
applications. arXiv preprint arXiv:1011.0507, 2010.

[133] Elnaz Ebrahimi, Rafael Trapani Possignolo, and Jose Renau. Level shifter design for
voltage stacking.

[134] Michael Douglas Seeman. Analytical and practical analysis of switched-capacitor dc-dc
converters. Master’s thesis, EECS Department, University of California, Berkeley, Sep
2006.

[135] Michael Douglas Seeman. A design methodology for switched-capacitor DC-DC con-
verters. University of California, Berkeley, 2009.

[136] Haoran Li, Jiang Xu, Zhe Wang, Rafael KV Maeda, Peng Yang, and Zhongyuan
Tian. Workload-aware adaptive power delivery system management for many-core
processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2017.

[137] Pablo Mendoza Ponce, Dietmar Schröder, and Wolfgang H Krautschneider. Trade-off
study on switched capacitor regulators for implantable medical devices.

210

[138] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M Sleiman, Ronald
Dreslinski, Thomas F Wenisch, and Scott Mahlke. Composite cores: Pushing hetero-
geneity into a core. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on, pages 317–328. IEEE, 2012.

[139] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-grained
power management for multi-core systems. In ACM SIGARCH Computer Architecture
News, volume 37, pages 302–313. ACM, 2009.

[140] Miguel Rodrigues, Nuno Roma, and Pedro Tomás. Fast and scalable thread migration
for multi-core architectures. In 2015 IEEE 13th International Conference on Embedded
and Ubiquitous Computing. IEEE, 2015.

[141] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban, Hans Jacobson,
and Pradip Bose. Microarchitectural techniques for power gating of execution units. In
Proceedings of the 2004 international symposium on Low power electronics and design.
ACM, 2004.

[142] Manish Arora, Srilatha Manne, Indrani Paul, Nuwan Jayasena, and Dean M Tullsen.
Understanding idle behavior and power gating mechanisms in the context of modern
benchmarks on cpu-gpu integrated systems. In High Performance Computer Archi-
tecture (HPCA), 2015 IEEE 21st International Symposium on, pages 366–377. IEEE,
2015.

[143] Jaehyun Park, Donghwa Shin, Naehyuck Chang, and Massoud Pedram. Accurate
modeling and calculation of delay and energy overheads of dynamic voltage scaling
in modern high-performance microprocessors. In Proceedings of the 16th ACM/IEEE
international symposium on Low power electronics and design, pages 419–424. ACM,
2010.

[144] Amir Bashir, Jing Li, Kiran Ivatury, Naveed Khan, Nirav Gala, Noam Familia, and
Zulfiqar Mohammed. Fast lock scheme for phase-locked loops. In Custom Integrated
Circuits Conference. CICC’09. IEEE, 2009.

[145] Ali Muhtaroglu, Greg Taylor, and Tawfik Rahal-Arabi. On-die droop detector for
analog sensing of power supply noise. IEEE Journal of solid-state circuits, 39(4):651–
660, 2004.

[146] Russ Joseph, David Brooks, and Margaret Martonosi. Control techniques to eliminate
voltage emergencies in high performance processors. In High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International Symposium
on, pages 79–90. IEEE, 2003.

[147] Jaeha Kim and Mark A Horowitz. An efficient digital sliding controller for adaptive
power-supply regulation. IEEE Journal of solid-state circuits, 37(5):639–647, 2002.

211

[148] Bruce Fleischer, Christos Vezyrtzis, Karthik Balakrishnan, and Keith A Jenkins. A
statistical critical path monitor in 14nm cmos. In Computer Design (ICCD), 2016
IEEE 34th International Conference on, 2016.

[149] maxim integrated. Max19506 data sheet. https://www.maximintegrated.com/en/

products/analog/data-converters/analog-to-digital-converters/MAX19506.

html/.

[150] Muhammad Husni Santriaji and Henry Hoffmann. Grape: Minimizing energy for
gpu applications with performance requirements. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

[151] Pietro Mercati, Raid Ayoub, Michael Kishinevsky, Eric Samson, Marc Beuchat,
Francesco Paterna, and Tajana Šimunić Rosing. Multi-variable dynamic power man-
agement for the gpu subsystem. In Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE, pages 1–6. IEEE, 2017.

[152] Rong Ge, Ryan Vogt, Jahangir Majumder, Arif Alam, Martin Burtscher, and Ziliang
Zong. Effects of dynamic voltage and frequency scaling on a k20 gpu. In Parallel
Processing (ICPP), 2013 42nd International Conference on, pages 826–833. IEEE,
2013.

[153] Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das. Neither
more nor less: optimizing thread-level parallelism for gpgpus. In Proceedings of the
22nd international conference on Parallel architectures and compilation techniques.
IEEE Press, 2013.

[154] Po-Han Wang, Chia-Lin Yang, Yen-Ming Chen, and Yu-Jung Cheng. Power gat-
ing strategies on gpus. ACM Transactions on Architecture and Code Optimization
(TACO), 8(3):13, 2011.

[155] Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram. Warped gates:
gating aware scheduling and power gating for gpgpus. In Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 111–122.
ACM, 2013.

[156] Yue Wang, Soumyaroop Roy, and Nagarajan Ranganathan. Run-time power-gating in
caches of gpus for leakage energy savings. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012, pages 300–303. IEEE, 2012.

[157] Enver Candan. A series-stacked power delivery architecture with isolated converters
for energy efficient data centers. 2014.

[158] Ngspice, howpublished = http://ngspice.sourceforge.net/, note = Accessed:
2018-12-31.

212

https://www.maximintegrated.com/en/products/analog/data-converters/analog-to-digital-converters/MAX19506.html/
https://www.maximintegrated.com/en/products/analog/data-converters/analog-to-digital-converters/MAX19506.html/
https://www.maximintegrated.com/en/products/analog/data-converters/analog-to-digital-converters/MAX19506.html/
http://ngspice.sourceforge.net/

[159] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M. Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy optimizations
in gpgpus. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 487–498, New York, NY, USA, 2013. ACM.

[160] NVIDIA, howpublished = https://developer.nvidia.com/, note = Accessed: 2018-
12-31.

[161] Graphics cards voltage regulator modules (vrm) explained.
https://www.geeks3d.com/20100504/tutorial-graphics-cards-voltage-regulator-
modules-vrm-explained.

[162] An Zou, Jingwen Leng, Yazhou Zu, Tao Tong, Vijay Janapa Reddi, David Brooks,
Gu-Yeon Wei, and Xuan Zhang. Ivory: Early-stage design space exploration tool for
integrated voltage regulators. In Proceedings of the 54th Annual Design Automation
Conference 2017, pages 1–6, 2017.

[163] Abhinandan Majumdar, Leonardo Piga, Indrani Paul, Joseph L Greathouse, Wei
Huang, and David H Albonesi. Dynamic gpgpu power management using adaptive
model predictive control. In 2017 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 613–624. IEEE, 2017.

[164] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[165] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia
Tang, and Jason Mars. The architectural implications of autonomous driving: Con-
straints and acceleration. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
751–766. ACM, 2018.

[166] Nvidia accelerates race to autonomous driving at ces.
https://blogs.nvidia.com/blog/2016/01/04/drive-px-ces-recap/ note = Accessed:
2019-11-23.

[167] Omid Hosseini Jafari, Dennis Mitzel, and Bastian Leibe. Real-time rgb-d based peo-
ple detection and tracking for mobile robots and head-worn cameras. In 2014 IEEE
international conference on robotics and automation (ICRA), pages 5636–5643. IEEE,
2014.

[168] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

[169] Christopher J Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett
Witchel. Ptask: operating system abstractions to manage gpus as compute devices. In

213

https://developer.nvidia.com/

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
pages 233–248, 2011.

[170] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. Gdev: First-
class tGPUu resource management in the operating system. In Presented as part of the
2012 tUSENIXu Annual Technical Conference (tUSENIXutATCu 12), pages 401–412,
2012.

[171] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R
Das. Managing gpu concurrency in heterogeneous architectures. In Microarchitecture
(MICRO), 2014 47th Annual IEEE/ACM International Symposium on, pages 114–126.
IEEE, 2014.

[172] Chao-Tung Yang, Chih-Lin Huang, and Cheng-Fang Lin. Hybrid cuda, openmp, and
mpi parallel programming on multicore gpu clusters. Computer Physics Communica-
tions, 182(1):266–269, 2011.

[173] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita, James H Anderson, and
F Donelson Smith. Avoiding pitfalls when using nvidia gpus for real-time tasks in
autonomous systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[174] Husheng Zhou, Soroush Bateni, and Cong Liu. Sˆ 3dnn: Supervised streaming and
scheduling for gpu-accelerated real-time dnn workloads. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 190–201. IEEE,
2018.

[175] Hyeonsu Lee, Jaehun Roh, and Euiseong Seo. A gpu kernel transactionization scheme
for preemptive priority scheduling. In 2018 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 202–213. IEEE, 2018.

[176] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. Timegraph:
Gpu scheduling for real-time multi-tasking environments. In Proc. USENIX ATC,
pages 17–30, 2011.

[177] Glenn A Elliott and James H Anderson. Globally scheduled real-time multiprocessor
systems with gpus. Real-Time Systems, 48(1):34–74, 2012.

[178] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collaborative
preemption for multitasking on a shared gpu. ACM SIGARCH Computer Architecture
News, 43(1):593–606, 2015.

214

[179] Can Basaran and Kyoung-Don Kang. Supporting preemptive task executions and
memory copies in gpgpus. In 24th Euromicro Conference on Real-Time Systems
(ECRTS 2012), pages 287–296. IEEE, 2012.

[180] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and Mateo
Valero. Enabling preemptive multiprogramming on gpus. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 193–204. IEEE,
2014.

[181] Husheng Zhou, Guangmo Tong, and Cong Liu. Gpes: A preemptive execution sys-
tem for gpgpu computing. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2015 IEEE, pages 87–97. IEEE, 2015.

[182] Chao Yu, Yuebin Bai, Hailong Yang, Kun Cheng, Yuhao Gu, Zhongzhi Luan, and
Depei Qian. Smguard: A flexible and fine-grained resource management framework
for gpus. IEEE Transactions on Parallel and Distributed Systems, 2018.

[183] Kshitij Gupta, Jeff A Stuart, and John D Owens. A study of persistent threads style
gpu programming for gpgpu workloads. In Innovative Parallel Computing-Foundations
& Applications of GPU, Manycore, and Heterogeneous Systems (INPAR 2012), pages
1–14. IEEE, 2012.

[184] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. Enabling and
exploiting flexible task assignment on gpu through sm-centric program transformations.
In Proceedings of the 29th ACM on International Conference on Supercomputing, pages
119–130. ACM, 2015.

[185] J. Li, Jian-Jia Chen, K. Agrawal, C.Lu, C.D. Gill, and Abusayeed Saifullah. Analysis
of federated and global scheduling for parallel real-time tasks. In Real-Time Systems
(ECRTS), 26th Euromicro Conference on, pages 85–96, 2014.

[186] Wen-Hung Huang and Jian-Jia Chen. Schedulability and priority assignment for multi-
segment self-suspending real-time tasks under fixed-priority scheduling. In Technical
report. Technical University of Dortmund, 2015.

[187] Olivier Valery, Pangfeng Liu, and Jan-Jan Wu. A collaborative cpu–gpu approach for
principal component analysis on mobile heterogeneous platforms. Journal of Parallel
and Distributed Computing, 120:44–61, 2018.

[188] Bin Wang, Ruhui Ma, Zhengwei Qi, Jianguo Yao, and Haibing Guan. A user mode
cpu–gpu scheduling framework for hybrid workloads. Future Generation Computer
Systems, 63:25–36, 2016.

[189] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. Effisha: A software
framework for enabling effficient preemptive scheduling of gpu. In Proceedings of the

215

22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 3–16, 2017.

[190] Cen Chen, Kenli Li, Aijia Ouyang, Zeng Zeng, and Keqin Li. Gflink: An in-memory
computing architecture on heterogeneous cpu-gpu clusters for big data. IEEE Trans-
actions on Parallel and Distributed Systems, 29(6):1275–1288, 2018.

[191] Muhammad Husni Santriaji and Henry Hoffmann. Merlot: Architectural support for
energy-efficient real-time processing in gpus. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 214–226. IEEE, 2018.

[192] Seyedmehdi Hosseinimotlagh and Hyoseung Kim. Thermal-aware servers for real-time
tasks on multi-core gpu-integrated embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 254–266. IEEE,
2019.

[193] Glenn A Elliott, Bryan C Ward, and James H Anderson. Gpusync: A framework for
real-time gpu management. In 2013 IEEE 34th Real-Time Systems Symposium, pages
33–44. IEEE, 2013.

[194] Vladislav Golyanik, Mitra Nasri, and Didier Stricker. Towards scheduling hard real-
time image processing tasks on a single gpu. In 2017 IEEE International Conference
on Image Processing (ICIP), pages 4382–4386. IEEE, 2017.

[195] Christoph Gerum, Oliver Bringmann, and Wolfgang Rosenstiel. Source level perfor-
mance simulation of gpu cores. In Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, pages 217–222. EDA Consortium, 2015.

[196] Kostiantyn Berezovskyi, Konstantinos Bletsas, and Björn Andersson. Makespan com-
putation for gpu threads running on a single streaming multiprocessor. In Real-Time
Systems (ECRTS), 2012 24th Euromicro Conference on, pages 277–286. IEEE, 2012.

[197] Bakhoda, A. and Yuan, G.L. and Fung, W.W.L. and Wong, H. and Aamodt, T.M.
Analyzing CUDA workloads using a detailed GPU simulator. In Proc. Annual IEEE
Int. Symp. on Int.Performance Analysis of Systems and Software, 2009, 2009.

[198] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi
Guo. Simultaneous multikernel gpu: Multi-tasking throughput processors via fine-
grained sharing. In High Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on, pages 358–369. IEEE, 2016.

[199] Yunlong Xu, Rui Wang, Tao Li, Mingcong Song, Lan Gao, Zhongzhi Luan, and Depei
Qian. Scheduling tasks with mixed timing constraints in gpu-powered real-time sys-
tems. In Proceedings of the 2016 International Conference on Supercomputing, page 30.
ACM, 2016.

216

[200] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon Cho, and
Soojung Ryu. Improving gpgpu resource utilization through alternative thread block
scheduling. In High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, pages 260–271. IEEE, 2014.

[201] Sujan Kumar Saha, Yecheng Xiang, and Hyoseung Kim. Stgm: Spatio-temporal gpu
management for real-time tasks. In 2019 IEEE 25th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–
6. IEEE, 2019.

[202] Jinghao Sun, Jing Li, Zhishan Guo, An Zou, Xuan Zhang, Kunal Agrawal, and San-
joy Baruah. Real-time scheduling upon a host-centric acceleration architecture with
data offloading. In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 56–69. IEEE, 2020.

[203] Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and F Donelson
Smith. Gpu scheduling on the nvidia tx2: Hidden details revealed. In 2017 IEEE
Real-Time Systems Symposium (RTSS), pages 104–115. IEEE, 2017.

[204] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park, James H Anderson,
F Donelson Smith, Alex Berg, and Shige Wang. An evaluation of the nvidia tx1 for sup-
porting real-time computer-vision workloads. In 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 353–364. IEEE, 2017.

[205] Steven Chien, Ivy Peng, and Stefano Markidis. Performance evaluation of advanced
features in cuda unified memory. In 2019 IEEE/ACM Workshop on Memory Centric
High Performance Computing (MCHPC), pages 50–57. IEEE, 2019.

[206] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar. Fractional gpus:
Software-based compute and memory bandwidth reservation for gpus. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 29–
41. IEEE, 2019.

[207] NVIDIA. Nvidia tesla p100: The most advanced datacenter accelerator ever built
featuring pascal gp100, the world’s fastest gpu. Whitepaper, 2016.

[208] How to utilize compute preemption in the new pascal architecture (tesla p100 and
gtx1080)? https://devtalk.nvidia.com/default/topic/973140/how-to-utilize-compute-
preemption-in-the-new-pascal-architecture-tesla-p100-and-gtx1080-/.

[209] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark Stephenson. Automatically exploit-
ing implicit pipeline parallelism from multiple dependent kernels for gpus. In Parallel
Architecture and Compilation Techniques (PACT), 2016 International Conference on,
pages 339–350. IEEE, 2016.

217

[210] Huixiang Chen, Meng Wang, Yang Hu, Mingcong Song, and Tao Li. Gaas workload
characterization under numa architecture for virtualized gpu. In 2017 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS), pages
65–76. IEEE, 2017.

[211] Mohammad-Hashem Haghbayan, Amir-Mohammad Rahmani, Awet Yemane
Weldezion, Pasi Liljeberg, Juha Plosila, Axel Jantsch, and Hannu Tenhunen. Dark
silicon aware power management for manycore systems under dynamic workloads. In
32nd International Conference on Computer Design (ICCD). IEEE, 2014.

[212] Amir-Mohammad Rahmani, Mohammad-Hashem Haghbayan, Anil Kanduri, Awet Ye-
mane Weldezion, Pasi Liljeberg, Juha Plosila, Axel Jantsch, and Hannu Tenhunen.
Dynamic power management for many-core platforms in the dark silicon era: A multi-
objective control approach. In 2015 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED). IEEE, 2015.

[213] Wikipedia. Speedstep. [EB/OL]. https://en.wikipedia.org/wiki/SpeedStep/.

[214] AMD Staff. Amd powernow! technology brief. Advanced Micro Devices, Inc.

[215] Teodor Neagoe, Ernest Karjala, and Logica Banica. Why arm processors are the
best choice for embedded low-power applications? In 2010 IEEE 16th International
Symposium for Design and Technology in Electronic Packaging (SIITME).

[216] The FPS Review. Nvidia power. [EB/OL]. https://www.thefpsreview.com/2019/

12/04/nvidia-geforce-driver-power-mode-settings-compared/.

[217] Zhuo Chen, Dimitrios Stamoulis, and Diana Marculescu. Profit: priority and
power/performance optimization for many-core systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2017.

[218] Muhammad Shafique, Benjamin Vogel, and Jörg Henkel. Self-adaptive hybrid dynamic
power management for many-core systems. In 2013 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 51–56. IEEE, 2013.

[219] Hwisung Jung and Massoud Pedram. Supervised learning based power management
for multicore processors. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 29(9):1395–1408, 2010.

[220] Zhiyuan Ren, Bruce H Krogh, and Radu Marculescu. Hierarchical adaptive dynamic
power management. IEEE Transactions on Computers, 54(4):409–420, 2005.

[221] Abhinandan Majumdar, Leonardo Piga, Indrani Paul, Joseph L Greathouse, Wei
Huang, and David H Albonesi. Dynamic gpgpu power management using adaptive
model predictive control. In 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 613–624. IEEE, 2017.

218

https://en.wikipedia.org/wiki/SpeedStep/
https://www.thefpsreview.com/2019/12/04/nvidia-geforce-driver-power-mode-settings-compared/
https://www.thefpsreview.com/2019/12/04/nvidia-geforce-driver-power-mode-settings-compared/

[222] Hao Shen, Jun Lu, and Qinru Qiu. Learning based dvfs for simultaneous tempera-
ture, performance and energy management. In Thirteenth International Symposium
on Quality Electronic Design (ISQED), pages 747–754. IEEE, 2012.

[223] Yanzhi Wang, Qing Xie, Ahmed Ammari, and Massoud Pedram. Deriving a
near-optimal power management policy using model-free reinforcement learning and
bayesian classification. In Proceedings of the 48th Design Automation Conference,
pages 41–46, 2011.

[224] Wonyoung Kim, David M Brooks, and Gu-Yeon Wei. A fully-integrated 3-level dc/dc
converter for nanosecond-scale dvs with fast shunt regulation. In 2011 IEEE Interna-
tional Solid-State Circuits Conference, pages 268–270. IEEE, 2011.

[225] Zeynep Toprak-Deniz, Michael Sperling, John Bulzacchelli, Gregory Still, Ryan Kruse,
Seongwon Kim, David Boerstler, Tilman Gloekler, Raphael Robertazzi, Kevin Staw-
iasz, et al. 5.2 distributed system of digitally controlled microregulators enabling per-
core dvfs for the power8 tm microprocessor. In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC).

[226] Chun-Yen Tseng, Li-Wen Wang, and Po-Chiun Huang. An integrated linear regulator
with fast output voltage transition for dual-supply srams in dvfs systems. IEEE journal
of solid-state circuits, 45(11):2239–2249, 2010.

[227] Ben Keller, Martin Cochet, Brian Zimmer, Yunsup Lee, Milovan Blagojevic, Jaehwa
Kwak, Alberto Puggelli, Stevo Bailey, Pi-Feng Chiu, Palmer Dabbelt, et al. Sub-
microsecond adaptive voltage scaling in a 28nm fd-soi processor soc. In ESSCIRC
Conference 2016: 42nd European Solid-State Circuits Conference, 2016.

[228] Jonathan A Winter, David H Albonesi, and Christine A Shoemaker. Scalable thread
scheduling and global power management for heterogeneous many-core architectures.
In 2010 19th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 29–39. IEEE, 2010.

[229] John Sartori and Rakesh Kumar. Distributed peak power management for many-core
architectures. In 2009 Design, Automation & Test in Europe Conference & Exhibition,
pages 1556–1559. IEEE, 2009.

[230] Hao Shen, Ying Tan, Jun Lu, Qing Wu, and Qinru Qiu. Achieving autonomous power
management using reinforcement learning. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 18(2):1–32, 2013.

[231] Zhuo Chen and Diana Marculescu. Distributed reinforcement learning for power limited
many-core system performance optimization. In 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2015.

219

[232] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. Prediction-based task
migration on s-nuca many-cores. In 2019 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 1579–1582. IEEE, 2019.

[233] Zheqi Yu, Pedro Machado, Adnan Zahid, Amir M Abdulghani, Kia Dashtipour, Hadi
Heidari, Muhammad A Imran, and Qammer H Abbasi. Energy and performance trade-
off optimization in heterogeneous computing via reinforcement learning. Electronics,
9(11):1812, 2020.

[234] Amir M Rahmani, Mohammad-Hashem Haghbayan, Antonio Miele, Pasi Liljeberg,
Axel Jantsch, and Hannu Tenhunen. Reliability-aware runtime power management for
many-core systems in the dark silicon era. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(2):427–440, 2016.

[235] Thomas Ebi, Mohammad Abdullah Al Faruque, and Jörg Henkel. Tape: Thermal-
aware agent-based power econom multi/many-core architectures. In 2009 IEEE/ACM
International Conference on Computer-Aided Design-Digest of Technical Papers, pages
302–309. IEEE, 2009.

[236] Zhiquan Lai, King Tin Lam, Cho-Li Wang, and Jinshu Su. Latency-aware dvfs for
efficient power state transitions on many-core architectures. The Journal of Supercom-
puting, 71(7):2720–2747, 2015.

[237] Anil Kanduri, Mohammad-Hashem Haghbayan, Amir M Rahmani, Pasi Liljeberg, Axel
Jantsch, Hannu Tenhunen, and Nikil Dutt. Accuracy-aware power management for
many-core systems running error-resilient applications. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 25(10), 2017.

[238] Peng Rong and Massoud Pedram. Hierarchical power management with application to
scheduling. In ISLPED’05. Proceedings of the 2005 International Symposium on Low
Power Electronics and Design, 2005., pages 269–274. IEEE, 2005.

[239] Jacob Sorber, Nilanjan Banerjee, Mark D Corner, and Sami Rollins. Turducken: hier-
archical power management for mobile devices. In Proceedings of the 3rd international
conference on Mobile systems, applications, and services, 2005.

[240] Nikolas Ioannou, Michael Kauschke, Matthias Gries, and Marcelo Cintra. Phase-based
application-driven hierarchical power management on the single-chip cloud computer.
In 2011 International Conference on Parallel Architectures and Compilation Tech-
niques, pages 131–142. IEEE, 2011.

[241] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkataramani,
Tulika Mitra, and Sanjay Vishin. Hierarchical power management for asymmetric
multi-core in dark silicon era. In 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–9. IEEE, 2013.

220

[242] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose, and Margaret
Martonosi. An analysis of efficient multi-core global power management policies: Max-
imizing performance for a given power budget. In 2006 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO’06), 2006.

[243] Mohammad Ghasemazar, Ehsan Pakbaznia, and Massoud Pedram. Minimizing the
power consumption of a chip multiprocessor under an average throughput constraint.
In 2010 11th International Symposium on Quality Electronic Design (ISQED), pages
362–371. IEEE, 2010.

[244] Eran Shifer and Shlomo Weiss. Low-latency adaptive mode transitions and hierarchical
power management in asymmetric clustered cores. ACM Transactions on Architecture
and Code Optimization (TACO), 10(3):1–25, 2013.

[245] Pascal Meinerzhagen, Carlos Tokunaga, Andres Malavasi, Vaibhav Vaidya, Ashwin
Mendon, Deepak Mathaikutty, Jaydeep Kulkarni, Charles Augustine, Minki Cho,
Stephen Kim, et al. An energy-efficient graphics processor featuring fine-grain dvfs
with integrated voltage regulators, execution-unit turbo, and retentive sleep in 14nm
tri-gate cmos. In 2018 IEEE International Solid-State Circuits Conference-(ISSCC),
pages 38–40. IEEE, 2018.

[246] Stijn Eyerman and Lieven Eeckhout. Fine-grained dvfs using on-chip regulators. ACM
Transactions on Architecture and Code Optimization (TACO), 8(1):1–24, 2011.

[247] Sebastian Höppner, Chenming Shao, Holger Eisenreich, Georg Ellguth, Mario Ander,
and René Schüffny. A power management architecture for fast per-core dvfs in het-
erogeneous mpsocs. In 2012 IEEE International Symposium on Circuits and Systems.
IEEE, 2012.

[248] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez. Rubik:
Fast analytical power management for latency-critical systems. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 598–610.
IEEE, 2015.

[249] Yuxin Bai, Victor W Lee, and Engin Ipek. Voltage regulator efficiency aware power
management. In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 825–838,
2017.

[250] Chih-Hsun Chou, Laxmi N Bhuyan, and Daniel Wong. µdpm: Dynamic power man-
agement for the microsecond era. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 120–132. IEEE, 2019.

221

[251] Alan Roth, Charlie Zhou, Mei Wong, Eric Soenen, Tze-Chiang Huang, Paul Ranucci,
Ying-Chih Hsu, Hung-Chih Lin, Chester Kuo, Min-Jer Wang, et al. Heterogeneous
power delivery for 7nm high-performance chiplet-based processors using integrated
passive device and in-package voltage regulator. In 2020 IEEE Symposium on VLSI
Technology, pages 1–2. IEEE, 2020.

[252] Waclaw Godycki, Christopher Torng, Ivan Bukreyev, Alyssa Apsel, and Christopher
Batten. Enabling realistic fine-grain voltage scaling with reconfigurable power dis-
tribution networks. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 381–393. IEEE, 2014.

[253] Soraya Ghiasi, Jason Casmira, and Dirk Grunwald. Using ipc variation in workloads
with externally specified rates to reduce power consumption. In In Workshop on
Complexity Effective Design. Citeseer, 2000.

[254] Gregor Von Laszewski, Lizhe Wang, Andrew J Younge, and Xi He. Power-aware
scheduling of virtual machines in dvfs-enabled clusters. In 2009 IEEE International
Conference on Cluster Computing and Workshops, pages 1–10. IEEE, 2009.

[255] Qiang Wu, Margaret Martonosi, Douglas W Clark, Vijay Janapa Reddi, Dan Con-
nors, Youfeng Wu, Jin Lee, and David Brooks. Dynamic-compiler-driven control for
microprocessor energy and performance. IEEE Micro, 26(1):119–129, 2006.

[256] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA, 2018.

[257] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. 2016.

[258] Ilya K Ganusov, Mahesh A Iyer, Ning Cheng, and Alon Meisler. Agilex™ generation
of intel® fpgas. In 2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–26. IEEE
Computer Society, 2020.

[259] Jeffrey Chromczak, Mark Wheeler, Charles Chiasson, Dana How, Martin Langhammer,
Tim Vanderhoek, Grace Zgheib, and Ilya Ganusov. Architectural enhancements in
intel® agilex™ fpgas. In The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 140–149, 2020.

[260] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009.

222

	Efficient and Scalable Computing for Resource-Constrained Cyber-Physical Systems: A Layered Approach
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Computing in Cyber-Physical Systems
	Power-efficient Computing
	Performance-efficient Computing
	Scalability and Layered Solutions
	Dissertation Contributions

	Circuit Layer: Early-Stage Modeling and Evaluation of IVR-assisted Processor Power Delivery System
	Introduction
	Background and Related Work
	Conventional Power Delivery System and Efficiency
	Integrated Voltage Regulator
	IVR-enabled Power Delivery System and Efficiency
	Related Work

	Modeling Methodology
	System-Level Modeling Framework
	Power/ Area/ Ripple Static Module
	Dynamic Response Module

	Model Validation
	Case Study i: Many-core GPU PDS
	System Configuration
	IVR Design Space Exploration
	Power Delivery System Dynamic Behaviors
	Putting It Together: Power Efficiency Analysis

	Case Study ii: PDS with Fast Per-Core DVFS
	System Configuration
	IVR Support for Fast DVFS
	Power Delivery System and Architecture Co-Design

	Conclusions

	Circuit and Architecture Layers: Voltage-Stacked Power Delivery Systems: Reliability, Efficiency, and Power Management
	Introduction
	Background and Related Work
	Power Delivery System
	Voltage Stacking
	Supply Voltage Noise
	Power Delivery Efficiency
	Related Work

	System Configuration
	Power Grid Routing and PDN Modeling of VS
	Communication Across Layers

	Supply Voltage Noise Analysis
	Supply Voltage Noise Characterization
	Dominating Supply Voltage Noise
	Worst-Case Supply Voltage Noise

	Noise Mitigation by Hybrid Regulation
	Hybrid Regulation Framework
	Centralized and Distributed Integrated Voltage Regulator
	Off-Chip Charge-Recycling VR
	Charge-Recycling VR Power Loss
	Hybrid Regulated VS Power Delivery Efficiency

	Architectural Support for VS
	Control Theoretic Formulation
	Control Stability and Performance
	Voltage Smoothing Actuation
	Implementation Considerations

	Advanced Power Management
	Dynamic Voltage and Frequency Scaling
	Power Gating
	Power Management Hypervisor in Voltage Stacking

	Evaluation of Hybrid Regulation
	Supply Voltage Noise Evaluation
	Efficiency in Real Applications
	Compatibility with Advanced Power Management
	Comparison with Other Power Delivery Systems

	Evaluation of Architecture Support
	System-level Efficiency
	Supply Reliability
	Performance Tradeoffs
	Collaborative Power Management

	Conclusion

	Architecture and Operating System Layers: Real-Time GPU Scheduling of Hard Deadline Parallel Tasks with Fine-Grain Utilization
	Introduction
	Background and Related Work
	Background on GPU Systems
	Background on Multi-Segment Self-Suspension
	Related Work

	CPU and Memory Model
	CPU Modelling
	Memory Modeling

	GPU Parallel Kernel Execution Model
	Kernel-granularity and SM-granularity Scheduling
	Kernel Execution Model
	Interleaved Execution and Virtual SM
	Workload Pinning and Self-Interleaving

	Practical RT-GPU Tasks Scheduling
	Task Model
	Federated Scheduling for GPU Segments
	Fixed-Priority Scheduling for memory copy Segments with Self-Suspension and Blocking
	Fixed-Priority Scheduling for CPU Segments
	RT-GPU Scheduling Algorithm and Analysis

	Full-System Evaluation
	Experiment Setup
	Schedulability Analysis
	GPU Experiment

	Conclusion

	Circuit, Architecture, and Operating System Layers: Fast Learning-based Energy Management for Multi-/Many-core Processors
	Introduction
	Background and Related Work
	Dynamic Voltage Frequency Scaling (DVFS)
	Adpative Power Management
	Integrated Voltage Regulators
	Related Work

	Methodology
	Power Delivery System for Fast DVFS
	Hierarchical Power Management Framework
	Global Controller
	Learning Controller
	Swift Controller

	Quantitative Study of Internal Metrics with Synthetic Benchmarks
	Online Learning and System Implementation
	Evaluation Results
	System Setup
	Hierarchical Fast Learning Approach
	Hierarchical Layered Approach with Ablation Study
	Workload Transition and Scalability

	Conclusion

	Conclusion
	References

