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Developmental dysplasia of the hip (DDH) is characterized by abnormal bony anatomy, 

causes pain and functional limitations, and is a prominent risk factor for premature hip 

osteoarthritis. Although the pathology of DDH is believed to be mechanically-induced, little is 

known about how DDH anatomy alters hip biomechanics during activities of daily living, partly 

due to the difficulties with measuring hip muscle and joint forces. Musculoskeletal models 

(MSMs) are useful for dynamic simulations of joint mechanics, but the reliability of MSMs for 

DDH research is limited by an accurate model representation of the unique hip anatomy. To 

address such challenges, this research used subject-specific MSMs to identify how DDH hip 

biomechanics are influenced by the abnormal bony anatomy. First, to determine the importance of 

model specificity, personalized MSMs using image-based bony anatomy and muscle paths were 

compared against MSMs with generic anatomy. MSMs with subject-specific anatomy estimated 

significantly different hip muscle and joint forces compared to generic models, thus are necessary 

for delineating DDH-specific pathomechanics. Next, image-based MSMs were used to calculate 

hip muscle moment arm lengths and lines of action during gait, to determine how DDH alters 

dynamic muscle force production. Hips with DDH had reduced abductor moment arms, which 
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elevated muscle and joint forces in the medial direction. Results confirmed hip muscles’ 

contributions to joint overloading, which could in turn interact with the abnormal anatomy to 

induce pathomechanics at the articular level. To verify this phenomenon, hip loading estimated 

from MSMs was projected to the pelvis anatomy to predict acetabular edge loading during two 

movement tasks, gait and double-legged squat. Results showed that edge loading was elevated by 

the shallow acetabulum of DDH, and was highly dependent on the kinetics and muscle demand of 

task-specific movements. These findings could help explain the prevalence of region-specific 

labral tears in DDH. Overall, this research provided new insights into the relationships among 

bony anatomy, muscle function, and joint biomechanics in hips with DDH. The outcomes can 

refine our understanding of mechanically-induced DDH pathology, and inform patient-specific 

clinical assessments and treatments to improve long-term hip joint health. 
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Chapter 1: Introduction 

1.1 Motivations 
The human hip serves essential biomechanical functions during daily living, supporting the 

body weight while allowing routine ambulation and task-specific movements. A healthy hip is 

maintained by balanced joint mechanical and biological environments. When such balance is 

disrupted due to abnormal joint mechanics, damage to biological tissues may occur, which often 

induces pain and limits joint mobility. Chronically, abnormal hip biomechanics cause detrimental 

biological responses and irreversible changes to the articular tissues, and have been considered the 

primary etiological factor that leads to joint degeneration and osteoarthritis (OA) [1-3]. 

Hip OA is among the most prevalent forms of chronic hip diseases, which affects over 20 

million people in the United States aged 65 or older and may increase to over 40 million by year 

2030 [4,5]. Hip OA causes significant disease burdens, including debilitating symptoms and large 

financial costs for treatments including total hip arthroplasty [4,6]. Such burdens especially impact 

those who develop hip OA prematurely, as functional limitations (including with hip prosthetics) 

and costs affect the patients’ quality of life for a long time [4]. Significant needs thus exist to better 

understand the mechanistic factors that lead to OA development, and improve interventions at an 

early stage to delay the onset of OA and lessen the burdens it take on at-risk populations. 

Premature development of hip OA is often secondary to existing structural abnormalities 

in the hip [1]. Developmental dysplasia of the hip (DDH), also known as hip dysplasia, is one of 

the most common structural diseases that predispose the hip to heightened early OA risks [1,7,8]. 

Despite often routinely screened in infanthood as a pediatric disease, DDH is estimated to affect 1 



2 

 

out of 1000 adults in the United States [7,9]. Evidences of DDH is found in up to 40% of patients 

with hip OA, with 25% to 50% of untreated DDH patients showing radiographic OA signs by the 

age of 50 and requiring a total hip arthroplasty [7,10]. Because abnormal joint biomechanics play 

an integral role in the arthritic etiology, it is likely a key contributor to the high risks of premature 

OA in hips with DDH. 

DDH is characterized by abnormal hip bony anatomy, including a shallow acetabulum that 

does not adequately cover the femoral head during movements [7,11,12]. Severe forms of DDH 

bony deformity can be manifested since infancy, thus diagnosed and treated in early childhood 

[13]. However, a significant portion of moderate or less severe DDH cases often goes undetected, 

and pre-arthritic symptoms such as hip pain only onset in early adulthood, when pathology often 

becomes further aggravated by high levels of physical activity at this age [14]. In adults, DDH is 

typically diagnosed with radiographic signs of hip bony deformity [12,15,16], and accordingly 

treated by surgeries such as the periacetabular osteotomy (PAO) to correct such anatomical 

abnormalities [7,17,18]. However, it has been reported that the presentation of symptoms in young 

adult DDH patients did not always correspond to the radiographic extent of deformity, which often 

delays a definitive diagnosis of the disease [14]. Furthermore, although anatomical corrections via 

PAO surgery can relieve symptoms and improve short-term functions [19,20], long-term surgical 

outcomes have been less than ideal, as a majority of patients still advanced to end-stage hip OA or 

underwent total hip arthroplasty 30 years post-op [21]. These evidences suggest that even as a 

disease defined by anatomical abnormalities, assessing anatomy alone may not be enough to 

predict the chronic pathology secondary to DDH, nor the long-term efficacy of surgical treatments. 

Quantifying the hip joint biomechanical environment in DDH, and its relationships with the known 
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abnormal anatomy, could be the missing link to explain how DDH bony deformity causes 

detrimental joint mechanics, which in turn induce symptoms, tissue damage, and degeneration. 

Despite the needs to understand such relationships among DDH anatomy, biomechanics, 

and pathology, direct quantification of hip mechanics is difficult due to methodological limitations. 

It is currently not possible to directly and non-invasively measure hip joint contact loading or 

muscle forces during activities of daily living. In fact, only a few benchmark experimental datasets 

are available on in-vivo hip joint reaction forces (JRFs) [22,23], recorded with instrumented hip 

prosthetics installed in a small number of older arthritic subjects. Such method cannot be used to 

measure loading in pre-arthritic native hips due to its invasiveness. Computational models can be 

valuable for estimating joint mechanical quantities that are unmeasurable, and many modeling 

studies have demonstrated mechanical behaviors unique to DDH hip anatomy [24,25]. However, 

most of past DDH models are limited by a lack of subject-specific joint loading input, thus may 

not truly represent the hip mechanical profiles unique to the movements of DDH patients [26]. 

Musculoskeletal model (MSM) is a useful computational tool capable of estimating joint 

mechanics specific to individual dynamic movements. MSMs digitize the neuromusculoskeletal 

system elements by detailed representations of body segment, joint and muscle properties, which 

allows dynamic simulations of movements [27]. Conventionally, “generic” MSMs are created 

using cadaveric or imaging benchmark experimental data, which are then “scaled” to each subject 

and used to estimate muscle forces and JRFs using subject-specific optical motion capture data. 

MSM-based simulations have made valuable contributions to a variety of human biomechanics 

research, both on healthy populations and pathological movements of neurological diseases [27]. 

Yet, MSMs have not been widely used to study biomechanics in joint anatomical diseases such as 

DDH. A key reason for this scarcity may be that the unique anatomy of dysplastic hips has not 
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been available in the MSMs, and even for generic MSMs representative of healthy individuals, 

bony anatomy has been coarse. Because generic MSMs do not closely depict the unique bony 

deformity of DDH, hip mechanics estimated from such models might not be accurate and reliable 

enough for DDH research. For this reason, improved anatomical details may be required for MSMs 

to delineate the pathomechanics of DDH and their relationships with the abnormal anatomy. 

A reliable source to acquire patient-specific anatomical data is three-dimensional (3D) 

medical images, including computed tomography (CT) and magnetic resonance (MR) imaging. 

CT and MR data provide an opportunity to create subject-specific MSMs with detailed joint 

anatomy, including abnormal features. Image-based MSMs with personalized bone and muscle 

anatomy could more accurately represent the mechanical properties around the joint, therefore may 

improve the reliability of the model estimates. Specifically, hip-focused studies have demonstrated 

that subject-specific MSMs with detailed 3D anatomy were able to improve hip contact force 

estimates [28], suggesting image-based approach as a promising direction for MSM simulations 

of DDH biomechanics [29]. Considering the importance of quantitative hip biomechanics for 

improved understanding of DDH-related pathology, great scientific values exist to establish and 

standardize image-based, subject-specific MSMs, use such models to estimate hip biomechanics 

in DDH, identify how they deviate from healthy hips, and analyze how they relate to the anatomical 

abnormalities. Such research also has potentials to yield new quantitative information that benefits 

future clinical evaluation and intervention of DDH, as surgeries and rehabilitation can use targeted 

restoration of the hip biomechanical environment to refine and personalize treatment decisions and 

plans, thereby ultimately improve long-term hip joint health for more patients. 
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1.2 Research Aims 
Driven by the aforementioned motivations, the aims of this research were to (1) establish 

and standardize the creation of image-based MSMs for estimation of hip biomechanics in DDH, 

and then to (2) use subject-specific MSMs to estimate hip biomechanics in DDH compared to 

healthy controls, and analyze their relationships with the hip anatomical abnormalities of DDH. 

The aim to establish and standardize subject-specific MSM for DDH focused on 

determining an appropriate level of anatomical details for the models to reliably quantify DDH hip 

biomechanics, while can be feasibly applied in large-scale future research of DDH. On the same 

groups of DDH and control subjects, MSMs with various levels of specificity and complexity were 

created, and hip biomechanical estimates were compared across the MSMs (for both subject 

groups) to determine the influences of using anatomical details, fully or partially. The appropriate 

level of details would be determined by considering both the mechanical influences and the time 

and computational demands of model creation. An optimized and standardized MSM workflow 

would enable reliable investigations of DDH biomechanics in the subsequent research aim. 

In the aim to estimate and analyze hip joint biomechanics in DDH and its relationships to 

abnormal anatomy, a range of factors that can contribute to joint and articular-level mechanics 

were studied. First, the hip JRFs, which are primarily contributed from muscles surrounding the 

hip [30], were analyzed in context with muscle moment arm lengths and lines of action that are 

directly dependent on the DDH bony anatomy and muscle paths. Then, the mechanical effects due 

to DDH bony deformity and muscle-induced JRFs were further specified on an articular level. 

Specifically, MSM-estimated hip JRFs were mathematically projected to subject-specific pelvis 

anatomy to estimate dynamic loading at the acetabular edge, and analyze its relationships with the 

anatomical deformity, with implications to DDH-related labral tears and chondral lesions. The 
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MSM-based acetabular edge loading analyses were applied to multiple tasks, including routine 

gait and high hip flexion double-legged squat, to identify the effects of patient-specific movements 

and lifestyles on the pathomechanics. 

1.3 Summary of Chapters 
This dissertation contains 7 chapters, including the current Chapter 1 that provides an 

overview of the motivations and objectives of the whole research, and an outline of the dissertation. 

Chapter 2, the Background, provides introduction to relevant concepts and literature on the 

current scientific and clinical knowledge of DDH, biomechanics of the hip, and MSMs with an 

emphasis on subject-specific methods and hip-related research. On DDH, backgrounds include 

definition of the clinical problem, its relevance and presentation, current knowledge on etiology, 

risk factors, secondary pathology, evaluation, and treatments. On hip biomechanics, backgrounds 

include functions of normal hips, causes and effects of abnormal hip biomechanics in DDH, and 

current in-vitro, in-vivo, and in-silico methods to quantify hip biomechanics. Then on MSMs, 

fundamental concepts and workflow are introduced, followed by a summary of the limited past 

MSMs for DDH research. An overview of image-based subject-specific MSMs is then described 

with a focus on hip-related studies. Chapter 2 does not necessarily cover all backgrounds relevant 

to DDH, hip biomechanics or subject-specific MSMs, but should provide sufficient contexts to 

support the motivations, aims, and methods used in the subsequent chapters for specific studies. 

Chapters 3 through 6 describes the individual studies within the dissertation research 

conducted according to the overall aims (Section 1.2), each having been or is being reported in 

biomechanics and orthopaedics academic journals. Chapter 3 and Chapter 4 are reprinted from 

published manuscripts that the dissertation author contributed as the primary author, along with 
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other co-authors including the Dissertation Chair (research advisor). Both of these chapters were 

reprinted with rights granted from the publisher (see footnotes under the titles of Chapters 3 and 

4). Chapters 5 and 6 are currently unpublished work under peer review or in preparation. Detailed 

overview of each Chapter is summarized in the following paragraphs. 

Chapter 3 describes a project that addressed the first aim of this research, to establish and 

standardize subject-specific MSMs that can reliably and feasibly estimate DDH hip biomechanics. 

For both DDH and healthy control subjects, MSMs with three types of anatomical details were 

created, with the most subject-specific MSMs including CT-based pelvis bony geometry, hip joint 

center locations, and muscle paths. A second type of moderately-specific MSMs using CT-based 

pelvis scaling, but not the full 3D anatomy, was also created for comparison against the third type, 

generic marker-scaled MSMs. Each model was used to estimate hip JRFs and muscle forces during 

gait, and estimates were compared across the MSMs to determine the mechanical influences of 

model anatomical details. With such comparisons, an appropriate complexity level for the MSMs 

can be decided to facilitate future research of DDH hip biomechanics, for feasible discovery of 

meaningful findings. The study reported in Chapter 3 was published in the Computer Methods in 

Biomechanics and Biomedical Engineering journal. 

With an established workflow to create subject-specific MSMs in Chapter 3, Chapters 4 

through 6 addressed the second research aim to estimate hip bone-muscle mechanics and analyze 

their relationships with DDH anatomy. Chapter 4 describes a study to determine the influences of 

DDH anatomy on hip muscle force production and contributions to JRFs. The hip anatomy-force 

relationships are likely dependent on muscle parameters such as the moment arm lengths (MALs) 

and lines of action (LoAs). Using MSMs that incorporated MR images (distinct from CT-based 

MSMs in Chapter 3), which allowed refined personalization of muscle paths, hip muscle MALs 
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and LoAs were compared between DDH and control subjects along with hip muscle force and JRF 

estimates [29]. Results from these parallel comparisons can help explain how bony abnormalities 

alter muscle force production in hips with DDH and result in potentially detrimental hip joint 

loading. The study in Chapter 4 was published in the Journal of Biomechanics. 

When overall hip joint loading is altered, as represented by the muscle-induced JRFs, the 

next question was how such altered loading leads to mechanically-induced articular damages. Joint 

damages associated with DDH, specifically the acetabular labral tears, may be related to abnormal 

mechanics near the labrum at the edge of the shallow acetabulum, which could be induced by 

aberrant hip JRFs. The studies in Chapters 5 and 6 thus investigated how the abnormal acetabular 

anatomy and dynamic joint loading in hips with DDH contribute to region-specific loading around 

the acetabular edge. MR-based MSMs with detailed acetabular anatomy, aligned with muscle-

induced hip JRF estimates from Chapter 4, allowed mathematical projections to predict how 

acetabular edge loading (AEL) during gait may be different between DDH and healthy hips, and 

associated with the anatomical characteristics of the DDH acetabula. Chapter 5 introduces a novel 

MSM-based AEL analysis, and demonstrated its ability to delineate subject-specific edge loading 

mechanical traits in acetabula with DDH during routine gait motion. The study in Chapter 5 is 

currently in a manuscript under peer review in the Frontiers in Sports and Active Living journal. 

As an extension of Chapter 5, Chapter 6 further investigated how acetabular edge loading 

(AEL) in hips with DDH can be influenced by the interactions of anatomical, movement, and time 

factors during a lifestyle-specific movement task. Other than the acetabular deformity, risks for 

DDH-related labral tears could also depend on subject-specific lifestyles and movement demands. 

Particularly, instead of the antero-superior acetabulum where most labral tears tend to occur [31], 

posterior labral tears may be more common in those who often perform high hip flexion tasks such 
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as squatting [32], indicating the roles of task-specific motion and loading in region-specific tissue 

damage. Thus, the study in Chapter 6 estimated AEL during double-legged squat using MR-based 

MSMs and similar analytical methods to Chapter 5, with DDH-to-control comparisons and 

associations with hip anatomical measures. Findings of Chapter 6 can help clarify the importance 

of task-specific movement patterns, including their acute and chronic effects, on region-specific 

articular-level mechanics. Chapters 5 and 6 may together improve the current understandings of 

DDH labral and chondral pathomechanics, thus potentially inform patient-specific clinical risk 

assessments and personalized treatment decision making (via correction of anatomy or movement) 

to mitigate labral tears and chondral lesions secondary to DDH. The study in Chapter 6 is currently 

in manuscript preparation for submission to the Journal of Orthopaedic Research. 

The final Chapter 7 provides a summary of the conclusions from specific studies towards 

the overall research aims, as well as their significance and novelty regarding contributions to the 

knowledge and research methods of DDH hip biomechanics. The general limitations of this 

dissertation are then discussed, along with potential future directions that can extend from this 

research to further improve our understanding of DDH biomechanics and pathology, as well as the 

efficacy of clinical interventions, in a patient-specific manner. 
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Chapter 2: Background 

2.1 Developmental Dysplasia of the Hip (DDH) 

2.1.1 Clinical Definition 

Developmental dysplasia of the hip (DDH), also known as hip dysplasia, is a joint 

structural disease that includes abnormal development of the hips that are unstable, malformed, or 

dislocated [1-3]. The malformation can range from mild, subtle to severe, and includes 

abnormalities on both acetabular and femoral side of the hip [1,3,4]. The presentation of DDH may 

start during infancy and be treated in early childhood, especially in the severe cases, but also often 

evade childhood screening and become clinically apparent only near early adulthood [2,5,6]. Some 

other congenital or demographic traits, including childbirth position, family history, and female 

sex, are also known risk factors of DDH [2,6]. Hips with DDH, including those not exhibiting 

dislocation or subluxation, typically presents a shallow acetabulum that is deficient in both shape 

and orientation, causing insufficient coverage of the femoral head and lateralization of the hip joint 

center of rotation (HJC) (Figure 2.1) [2,6-8]. Such anatomical abnormalities lead to altered contact 

areas between the shallow acetabulum and the femoral head, which could also exhibit lack of 

sphericity and other shape abnormalities [4,6,9], resulting in abnormal contact forces located 

around the hip joint, including near the acetabular rim and the labrum [9-11]. Such abnormal 

contact mechanics are thought to in turn cause symptoms and secondary damages to the articular 

cartilages, which advance the developments of osteoarthritis (OA) in the hip [6,10,12-14]. 
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Figure 2.1. Representative pelvis and femur anatomy of (A) a healthy adult, and (B) a DDH patient with shallow 

acetabulum and reduced femoral coverage, indicated by the lateral center-edge angle (LCEA) [38]. 

2.1.2 Significance of DDH in Premature Development of Hip OA 

DDH is known as one of the most prominent structural risk factors contributing to hip OA 

[7,12,13,15]. It has been reported that in people who developed advanced hip OA or underwent 

total tip arthroplasty prematurely (under 50 years old), almost half were associated with DDH 

abnormalities [6,16]. Vice versa, hips with DDH are at high risks of developing OA early, as 

longitudinal reports found that in hips with untreated DDH, 25%-50% showed radiographic signs 

of OA by the age of 50 [1,6,7,17]. It was estimated that hips with DDH had a likelihood of OA 

over 4-fold compared to structurally normal hips [18]. Because of chronic joint pain and functional 

limitations, early hip OA affects the patients’ quality of life over a long time. Even with total hip 

arthroplasty, the significant costs of treatments and maintenance of prosthetic hips are undesirable 

for the younger patients due to the longer life expectancy and higher mobility demands [16,19]. 

For such reasons, to prevent the long-lasting disease burdens due to premature hip OA, it is 

important to detect and treat DDH at an early stage, before secondary joint failure onsets. 
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2.1.3 Pre-Arthritic Pathology of DDH 

Despite the needs for early detection and treatments, joint lesions that precede OA 

development are difficult to clinically identify before degenerative changes to the articular 

cartilage have progressed [7]. However, hips with DDH structural deformity often present a range 

of pre-arthritic pathology that already affects the mobility and quality of life of the patients, which 

are potential initiators of more advanced joint damage and degeneration. 

Commonly reported clinical presentation associated with DDH include, but are not limited 

to: hip pain, joint stiffness, abnormal movement patterns including limping, muscle pain and 

weakness, and torn acetabular labrum [6,10,20,21]. Pain is the most common symptom in hips 

with DDH, mostly located in the groin or lateral aspect of hip but can also simultaneously occur 

elsewhere such as in buttock and anterior thigh [10,20]. Such pain is usually insidious and 

aggravated by movements, but may not always correspond to clinical signs of anatomical 

abnormality [20]. The gradual and variable nature of DDH-related pain indicates that the sources 

of pain may be complex. 

Pain and patient adaptation can result in abnormal movements and functional limitations. 

Limping during gait is common in most subjects with DDH, with many showing the Trendelenburg 

sign where the pelvis drops to contralateral [20,22,23]. Some studies also reported reduced hip 

extension during gait for DDH patients [22,24]. Movement deficiencies could also be directly 

contributed by abnormal articulation contacts, with “popping” and “clicking” common in a 

majority of dysplastic hips [20]. Abnormal movements could then limit mobility during tasks that 

demand hip functions such as stair navigation [20], which can be debilitating for young adult 

patients with high activity levels. 
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Despite being characterized by bony deformity, muscle deficiency has been increasingly 

reported in patients with DDH. Muscle soreness is a frequent complaint by DDH patients after 

activities, which may be a primary source of DDH-related hip pain. Recent studies have found 

muscle-related pain reproducible in these patients during clinical tests, and associated with muscle 

weakness as well as imaging signs of tendinopathy, in the hip flexors and abductors [21,25,26]. 

Muscle weakness has also been observed in chronic hip pain patient cohorts that included 

individuals with DDH [27]. Due to the importance of these muscles in actuating hip joint motions 

and stabilization [28], their deficiency could be a contributor to faulty movements (such as the 

Trendelenburg gait) and functional deficits, although their relationships with structural deformity 

or the secondary joint damages in DDH are less clear. 

Lastly, before degenerative changes to the articular cartilage begin, tissue damage could 

occur in pre-arthritic hips with DDH deformity. The most common form of DDH-related hip joint 

damage is acetabular labral tears. Labral frank tears, fraying or hypertrophy can be present in more 

than 90% of symptomatic hips with DDH [29-31], and is a known source of hip pain. In hips with 

DDH, a hypertrophied labrum is often detached from the bony acetabular rim, sometimes together 

with bony fragments [10,29]. Similar to DDH-related pain, the onset of labral tears in dysplastic 

hips is usually insidious and often not linked to a known traumatic event [31-33], which could 

complicate the definitive clinical diagnosis [20]. Labral tears are thought to be associated with 

expedited development of hip OA. It has been reported that a majority of hips with torn labrum 

developed chondral lesions in the same acetabular regions, and such incidences increase with 

patient age [31,33,34]. Because labral tears potentially play a major role towards early hip joint 

degeneration, mitigation of labral damage risks can be an important consideration for clinical 

evaluation and treatments of DDH. 
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2.1.4 Diagnosis and Evaluation of DDH 

Corresponding to the clinical definitions in Section 2.1.1, DDH is typically diagnosed and 

evaluated using a combination of physical examinations of symptoms and imaging examinations 

of anatomy [2,6]. In the pediatric cases with palpable hip instability or subluxation, physical tests 

are commonly used for diagnostic screening, but the reliability of such exams has been questioned 

[2,35]. For pre-arthritic adults with DDH, symptoms reported by the patients can be clinically 

verified using observation of abnormal gait motion [20,23] and range-of-motion tests including a 

combination of hip flexion, adduction and internal rotation [36]. Such physical tests are also used 

to detect DDH-related labral tears along with direct observation via arthroscopy [29,32,33]. 

For hips without extreme instability, imaging of the joint structure is usually needed for a 

definitive diagnosis of DDH [2], including ultrasonic methods for pediatric cases [37]. For 

skeletally mature individuals, such as those in young adulthood with symptoms onset, radiographic 

evaluation of hip anatomy is required. The most standard clinical measure that identifies dysplastic 

hip anatomy is the Wiberg lateral center-edge angle (LCEA) [38], obtained on antero-posterior 

radiographs and quantifies the superolateral coverage of the femoral head by the acetabulum 

(Figure 2.2A) [39]. An LCEA <25° indicates inadequate lateral coverage of the femoral head, 

LCEA <20° considered consistent with DDH, and between 20° and 25° as transitional or 

borderline (Figure 2.1) [6,38-40]. A second commonly used measure is the acetabular inclination 

or index (AI), also known as the Tönnis angle [41], on antero-posterior radiographs and depicts 

the orientation of the weight-bearing portion of the acetabulum (Figure 2.2B) [39]. An AI >10° is 

considered indicative of structural instability in line with DDH [39]. Other metrics used to quantify 

coverage include the acetabular depth-to-width ratio [39,42]. Because DDH acetabular deficiency 

is region-specific, measures that are on other radiographic views or more qualitative are also in 
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clinical use, such as the anterior center-edge angle to evaluate anterior acetabular deficiency 

[39,43], and the crossover and posterior wall signs to assess acetabular orientation and posterior 

deficiency [39,44]. Also, as DDH may involve abnormal femoral anatomy, measures such as the 

femoral neck-shaft angle [45], head sphericity and medio-latearal position have also been used by 

clinicians [39]. A unique trait for DDH is that the femoral head center is usually lateralized and 

shifted away from the pelvis due to the under-coverage [6,7,39,46]. Lastly, radiographs are used 

to evaluate and classify the degenerative signs indicative of hip OA, with the Tönnis grading 

system among the most common [41]. 

 

Figure 2.2. Standard radiographic measures of (A) the lateral center-edge angle (LCEA) to quantify lateral femoral 

coverage; and the (B) acetabular inclination (AI) or Tönnis angle to quantify orientation of the weight-bearing area of 

the acetabulum. (Adapted from Figure 11 in Clohisy et al. J Bone Joint Surg Am. 2008 [39].) 

It should be noted that despite such a variety of physical and radiographic tools available 

for the evaluation of DDH, their use is at the discretion of the clinicians, thus subjectivity exists 

regarding diagnosis, classification and treatment decision making. Especially, it has been found 

that the radiographic extents of anatomical deformity do not fully correspond to the severity of 

DDH-related symptoms, which may have contributed to delayed diagnosis for many young adult 

patients, thus could risk compromising their long-term hip joint health [20]. Standard evaluations 
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may also miss evidences of DDH-related joint damage such as labral tears, which can be difficult 

to confirm without direct arthroscopy or advanced imaging such as the magnetic resonance 

arthrography [29,33,34,47]. These findings suggest that the current standard evaluation methods 

have not been optimal for the early diagnosis of DDH that would allow timely interventions. More 

research is thus needed to identify the clinical metrics that most reliably indicate the risks for 

symptoms and joint damage associated with DDH. 

2.1.5 Treatments for DDH and Clinical Outcomes 

Various surgical and non-surgical treatments of DDH have been used to reduce pain, 

restore mobility, and improve patients’ quality of life. Although DDH patients with mild symptoms 

are sometimes treated conservatively with pain management and avoidance of pain-provoking 

activities, for intervention at its source, direct correction of the abnormal hip anatomy is needed. 

While pediatric DDH in infanthood may be treated non-surgically using splint or harness [48], for 

symptomatic cases in adulthood after skeletal maturity, surgeries are often required. On the other 

end, older DDH patients who already present signs of irreversible joint damage often undergo total 

hip arthroplasty, which can achieve favorable outcomes as recipients live with prosthetic hips 

[6,49]. However, long-term complications such as instability, loosening, and need for revision 

surgeries are undesirable for younger patients who has higher mobility demands [49,50]. 

For better long-term outcomes in young adult hips with DDH and to delay the progression 

of OA or total hip arthroplasty, hip preservation surgeries are often performed, such as osteotomy 

to correct pelvis and femur deformities [6,51,52]. Due to the characteristic acetabular deformity, 

the most common modern surgery for young adults with DDH is the Bernese periacetabular 

osteotomy (PAO), which cuts loose, re-orients and re-fixes the acetabulum to the rest of pelvic 

bones to restore sufficient coverage of the femoral head [53,54]. By modifying the acetabular 
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anatomy to resemble normal femoral coverage, PAO aims to restore functionality of the hip and 

thereby reduce the likelihood of secondary damage. Short-term clinical outcomes of PAO have 

been favorable, as patients report symptom relief, improved functionality, and better quality of life 

[55-58]. Yet, some patients still experience functional limitations 5 years after PAO, and self-

reported healthy status is lower than controls [58,59]. Furthermore, the limited longer-term follow-

up reports have shown less-than-ideal outcomes, as 71% of hips undergoing PAO eventually 

converted to total hip replacements at up to 30 years [60]. Suboptimal post-PAO outcomes and 

limited evidences both demand further research to refine the rationales for hip preservation surgery 

to improve clinical outcomes. 

Labral repairs or debridement can be performed during preservation surgeries, or made via 

concurrent hip arthroscopy [30,61]. Symptoms can be effectively relieved by the repair, and 

patients have improved self-reported outcomes in short terms [61,62]. Yet, recent study found that 

in patients with recurrent pain 3 years after PAO, labral tear was present in over 80% of the hips 

under arthroscopy, a higher incidence rate than at the time of PAO [63]. The increased occurrence 

suggest labral tears may persist or develop even after bony deformity is surgically corrected, thus 

the effectiveness for PAO to mitigate labral damage may have been limited. Quantitative evidences 

are needed to understand how DDH-related labral tear risks are affected by both native dysplastic 

and surgically-altered hip anatomy, in order to reduce such risks during future surgical planning. 

Physical therapy and rehabilitation are often involved in the management of DDH to 

complement surgery, or if surgeries are not recommended. Rehabilitation typically involves hip 

muscle strengthening, improving range of motion, activity modification and movement training, 

which are likewise used to treat patients with other hip disorders, unspecified labral tears, or 

chronic hip pain [33,64-66] Yet to date, the rationales of non-surgical managements have not been 
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clearly defined or validated, nor are they designed specifically for hips with DDH, especially in 

context with the joint deformity and the corresponding surgical treatments. As a result, the efficacy 

for rehabilitation to treat DDH and reduce risks of secondary damage and OA remains unclear. 

2.2 Biomechanics of the Hip Joint 

2.2.1 Hip Biomechanics and Roles in Functionality 

A healthy hip serves essential mobility functions, as it supports body weight and facilitates 

movements through daily living. The hip is a ball-and-socket joint that principally allows 3 

rotational degrees of freedom: flexion-extension, abduction-adduction, and internal-external 

rotation [67]. Relative translations of the femoral head (ball) inside the acetabulum (socket) are 

constrained by the labrum, hip capsule and surrounding muscles, such that the lower extremities 

are stabilized during motions [33,67-69]. The articulation surface at the hip joint can bear 4 times 

of body weight, as inertia, external contact, and muscle forces collectively contribute to movement 

[70,71] Despite high repetitive forces, interface between the healthy acetabulum and femoral head 

is congruent, covered by smooth articular cartilages and surrounded by synovial fluids, which 

allows recoverable viscoelastic responses to loading, with strong support yet minimal friction 

[67,72,73]. Such unique structure provides the hip with stability and mobility at the same time. 

Desired hip motions are primarily driven by forces generated from muscles surrounding 

the joint [70,71]. Depending on their primary roles in movement directions, hip muscles can be 

categorized in six functional groups: flexors, extensors, abductors, adductors, internal rotators, and 

external rotators [28,67]. Outside their primary function, many muscles also serve secondary roles 

to assist 3D hip motions. Mechanically, hip muscle forces can collectively produce over 3 times 

body weight and are the main contributors to articular loading, accounting for 80% to 95% of the 

total joint contact forces [70,71]. During routine movements such as walking, muscle groups that 
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contribute the highest forces toward hip joint loading are the major flexors (iliopsoas), extensors 

(gluteus maximus, hamstrings), and abductors (gluteus medius). While hip flexors and extensors 

are directly responsible for hip sagittal rotations required for ambulation, the abductors such as 

gluteus medius and minimus serve essential roles to maintain frontal-plane stability when hip joint 

is loaded, and make significant contributions to compressional joint contact forces [28,70,71].  

Many factors influence force from muscles surrounding the hip, including their anatomy 

and architecture, volume and strength, tissue composition, fiber and tendon physiology, and 

neurological control [67,74-80]. Many past studies have investigated the influences of each factor 

to hip muscle forces. At the joint and whole-body level, the mechanical impacts of muscle strength, 

activation and anatomical structure have been the focuses, as they influence coordination among 

the whole hip musculature and contributions to joint loading. For example, the anatomical paths 

of hip muscles affect their mechanical moment arms [81] and lines of action [67], which determine 

the muscles’ ability to produce forces in specific directions when actuating a desired joint rotation, 

thus collectively contribute to joint compression and shear forces [82]. 

A clinically important topic unique to the hip is the mechanics of the acetabular labrum. 

The labrum is a horseshoe-shaped fibrocartilage structure located at the rim of the acetabulum, 

covering the anterior, superior, and posterior parts of the rim, with an inferior opening connected 

by ligament [29,33,68,83]. It extends from the bony edge of the acetabulum and thus increases its 

depth, providing additional coverage and stabilization of the femoral head inside the acetabulum 

[29,33], as well as sealing and distribution of synovial fluids between the articulation surfaces 

[68,84]. The labral surface articulating with the femoral head is avascular and therefore incapable 

of self-healing [85], yet has nerve endings that could sense pain [86]. The geometrical and synovial 

constraints provide mechanical aids to the acetabular cartilage, by increasing contact area, securing 
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the synovial fluid buffer against direct contact [85], and thereby reducing mechanical stress at the 

articulation [87]. During walking, the load-bearing area in normally-shaped hips is deep near the 

center of the acetabulum, thus loading borne by the labrum at the acetabular edge should typically 

be minimal [29,87]. However, local regions of the labrum may be subject to higher loads during 

more dynamic movement tasks such as in sports [31]. 

2.2.2 Abnormal Hip Biomechanics: Impacts and Causes in DDH 

A disrupted hip biomechanical environment, either due to traumatic injuries or chronic 

abnormalities, may lead to mechanically-induced articular tissue damage and symptoms that affect 

mobility and quality of life. In a long term, abnormal hip joint mechanics could prompt detrimental 

biological responses by the load-bearing articular cartilage and labrum, and lead to degenerative 

arthritic changes [15,72,88]. Damaged tissues may further interact with altered biomechanics and 

worsen joint degeneration to the point of irreversible disease [15]. Thus, abnormal biomechanics 

have been recognized as the primary reasons for hip OA development [15]. Considering the onset 

of OA is difficult to detect clinically, early identification and correction of abnormal hip joint 

mechanics may be the key to mitigate risks of joint damage before advanced OA progression. 

Abnormal hip biomechanics may be contributed by many acute and chronic risk factors. 

Demographic and intrinsic factors, including age, occupation, and overweight, can directly lead to 

excessive or irregular joint loading [15,89]. Abnormal loading also often occurs in injuries during 

intensive tasks such as sports, especially if faulty movements are involved. The mechanical sources 

of injuries may be acute and traumatic, but can also be insidious when abnormal joint structure 

leads to increased articular focal stress [15], such as in hips with damaged acetabular labrum [84]. 

Also, because hip muscles directly contribute to articular loading [70,71], any muscle geometrical 

or physiological abnormalities could cause joint pathomechanics. Yet, excessive overall joint 
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loading is not the only contributor to articular pathomechanics such as tissue stress. An important 

risk factor for pathomechanics at the hip is the joint anatomical structure, which include DDH and 

femoroacetabular impingement bony deformities. Specifically, pathological anatomy around the 

hip is thought to alter the weight-bearing contact and thereby increase focal stresses [13,15]. The 

following paragraphs thus focus on the current concepts and theories of pathological biomechanics 

in hips with DDH, and their relationships with the abnormal hip anatomy. 

The causes of hip joint pathology and eventual OA due to DDH are widely believed to be 

mechanical. A commonly presented conceptual framework is that the shallow acetabulum and 

poor femoral coverage in hips with DDH decreases contact area between the acetabulum and the 

femoral head, which results in abnormally high focal stresses or shears that exceed the healthy 

tolerance level of the articular cartilage and labrum [9-14]. Especially, a disproportionally high 

amount of stress on the acetabular rim could contribute to high incidences of labral tears or rim 

cartilage lesions [10,11,85]. It has also been theorized that altered hip muscle moment arms and 

lines of action may contribute to higher joint contact forces at the acetabular edge [11]. Labral 

overloading is thought to induce tears through both acute trauma and accumulative micro-damage, 

especially the latter [31-33,90]. Once torn, compromised labral seal leads to increased femoral 

instability [31,68] and disrupted articular contact that could advance chondral lesions [84,91]. 

Apart from labral tears, abnormal hip mechanics can also contribute to other pre-arthritic 

pathology of DDH. For example, aggravated hip pain during activities [20] indicate such symptom 

is mechanically-induced. Movement alterations can be resulted from mechanical symptoms, as 

well as active adaptations to avoid mechanically-induced pain. Muscle-related pain and weakness 

found in recent studies [21,25] can be a source (and also a result) of abnormal muscle force 

production, but their relationships with other DDH-related pathology are less clear. 



25 

 

Although these mechanical theories are widely agreed upon, and used as rationales to 

support surgical treatments of DDH such as the Bernese PAO [52-54], few studies have explicitly 

quantified hip joint biomechanics in DDH (more details in Sections 2.2.3 and 2.3.2). The hip 

biomechanics of DDH during dynamic movements, potential contributions from hip muscles, and 

their interactions with the abnormal anatomy are largely understudied. Instead, most studies of 

DDH focused on clinical radiographic measures (Section 2.1.4), and more recently 3D 

characterization of the bony anatomy [92,93], and their associations with evidences of damage or 

OA. Although such studies support the concept that DDH anatomy contributes to OA [12], without 

quantitative knowledge of hip biomechanics, the mechanistic connections between bony anatomy 

and joint damage remain unclear, which could continue to hinder accurate diagnosis and timely 

treatments for patients whose symptoms does not match bony deformity [20]. 

2.2.3 Quantifying Hip Biomechanics: In-Vitro, In-Vivo, and In-Silico 

Even as substantial needs exist to quantify hip joint and muscle mechanics in DDH, reliable 

quantification of such parameters remain a major challenge. Especially, with current techniques, 

hip joint contact loading and muscle forces during dynamic movements are difficult to measure 

experimentally. To address such challenges, past research has used a variety of in-vitro, in-vivo, 

and in-silico methods to assess the biomechanics of human hips. 

In-vitro studies of hip biomechanics use cadaveric specimens to measure and test hip joint 

mobility, muscle structure, and soft tissue functions. For example, several studies demonstrated 

the roles of hip capsule and acetabular labrum in joint stability in cadaveric hips [68,94], as well 

as the effects of surgical modifications [95]. Other studies quantified hip muscle anatomical paths 

and architecture, and speculated their roles in joint function and loading [28,74,75,96-98]. In-vitro 

hip joint force measurements used pressure films or sensors placed between articular surfaces to 
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acquire contact stresses when the specimens were given known external forces [99,100]. Although 

in-vitro studies can be useful for determining the mechanical behaviors of hip joint under specific 

structural and loading conditions, they are intrinsically limited by dependence to the experimental 

setups, which do not necessarily resemble the in-vivo joint mechanical environment during human 

movements. Moreover, in-vitro studies have rarely been conducted specifically on dysplastic hips, 

possibly due to a scarcity of young pre-arthritic cadaveric specimens. 

Some mechanical factors that directly contribute to joint forces, such as muscle strength 

and anatomical paths, may be quantified non-invasively. Hip muscle strength can be tested with 

manual or machine-operated dynamometers, and strength tests on patient cohorts including DDH 

have detected weakness in the hip flexors, abductors, and external rotators [25,27]. Hip muscle 

lengths and moment arms can be measured from 3D medical images [101,102], which may be 

advantageous over in-vitro methods as they can be made on live subjects. One computed 

tomography study of older subjects with DDH found reduced gluteus medius moment arms 

compared to controls [103], which could be a source of DDH patients’ weakness in hip abduction 

[25]. Yet, although image-based analyses may better describe specific live individuals, measures 

under standard testing or scan positions may not fully represent the muscles in dynamic actions. 

To assess biomechanics true to dynamic hip functions of daily living, in-vivo experimental 

data is needed. Although 2D camera-based analyses were used historically and sometimes as a 

low-cost alternative to quantify in-vivo human motion [104,105], in modern research and clinical 

movement analysis, the most common technique is optical 3D motion capture, which uses multiple 

near-infrared cameras to track the position of retro-reflective markers placed on the skin surface 

[106,107]. Using 3 or more markers nonlinearly located on a rigid body segment [106], and relative 

positions between 2 adjacent bodies, 3D segment positions, joint angles, speeds, and accelerations 
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at a specific time can be determined via inverse kinematics algorithm (details in Section 2.3.1). 

For example, the relative 3D positions between pelvis and femur can be used to resolve the hip 

flexion-extension, abduction-adduction, and internal-external rotation angles. Compared to motion 

analyses with bone-mounted pins or dynamic radiographs to directly track bone movements 

[104,108], skin marker motion capture holds advantages in its ability to assess subject-specific 

kinematics non-invasively, although its accuracy for hip motion may be influenced by soft tissue 

artifacts [109]. Regardless, several studies have used the standard skin marker-infrared camera 

system to quantify kinematics in hips with DDH during a variety of movement tasks, including 

routine walking [22,110,111] and the more dynamic running activity that young patients with DDH 

often participate [24]. Several studies also reported hip kinematics in DDH patients after surgical 

treatments [112-115]. While some common traits were reported in hips with DDH, such as a lower-

than-control hip extension during gait stance, 3D kinematic findings outside the sagittal plane were 

in less consensus [22,24,110,111]. The limited evidences meant more research is needed to 

determine whether patients with DDH exhibit abnormal hip movement patterns. 

Direct measurement of in-vivo hip joint and muscle forces is difficult. To date, the only 

experimental data of in-vivo hip contact forces was acquired using prosthetic femurs instrumented 

with force sensors, then implanted to a few elderly patients who underwent joint replacement after 

traumatic injury or end-stage hip OA [116-118]. These very limited data directly recorded hip joint 

contact loading specific to common movements ranging from routine gait to dynamic jogging and 

cycling [118], thus is highly valued as the “gold standard” reference in hip biomechanics studies. 

However, the subjects’ older age and the small sample size could both limit the utility of these data 

for reference in a younger patient population, such as pre-arthritic adults with DDH. Furthermore, 

no studies to date have reported in-vivo forces in hip muscles during dynamic activities. Because 
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it is not possible to experimentally measure dynamic in-vivo joint and muscle forces in native 

human hips, predictive methods are needed to estimate such quantities, so that their roles in the 

pathological development of DDH can be investigated. 

 

Figure 2.3. Detailed acetabular anatomy have been used to analyze articular and labral contact stresses, but the 

specificity of results may be limited by the generic input loading conditions. (Figure 1 in Henak et al. Osteoarthritis 

Cartilage. 2014 [87].) 

In-silico computational models provide the opportunity to estimate hip joint mechanical 

quantities that cannot be measured in-vivo. Common state-of-the-art models to quantify hip 

biomechanics include finite element (FE) [119] and discrete element (DE) models [120] that use 

3D hip anatomy reconstructed from medical imaging. These image-based FE and DE models 

incorporate detailed hip anatomy and mechanical properties, and have demonstrated their ability 

to predict joint contact stresses comparable to in-vitro measures [119]. FE and DE methods have 

thus been used to model joint contact mechanics in hips with DDH, and have delineated unique 

traits including articular cartilage and labral stresses around either native malformed or surgically-

corrected acetabula [87,121,122] (Figure 2.3). These findings yielded new knowledge on the 

mechanical behaviors of dysplastic hips true to the patient-specific joint anatomy. Yet, a limitation 

of most FE or DE models was that they were usually driven by generic dynamic hip loading input 
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from instrumented prosthetics [117] or model estimates from other studies [71,111]. As such, the 

specificity of predicted hip joint stresses to the dynamic movement patterns of DDH patients, 

which possibly differ from healthy individuals [22,24,110,111], may be limited. 

Movement-specific hip biomechanics may be estimated from optical motion capture using 

whole-body model based inverse dynamics [106,107]. The link-segment model [106] is a standard 

method that uses 3D kinematic data to resolve joint kinetics. Link-segment model considers the 

human body as a linked chain of rigid bodies, each with fixed mass and length while allowed to 

rotate relative to each other (Figure 2.4). The inverse dynamics algorithm (details in Section 2.3.1) 

then considers the forces due to body inertia, gravitation, and external contact to resolve the net 

forces, moments, impulses, and powers at the joints [106,107]. 

 

Figure 2.4. The anatomy of the human leg (A) is simplified to a link-segment model (B), which allows resolution of 

joint kinetics from kinematic data using free-body diagrams (C) and inverse dynamics. By considering forces due to 

body inertia (I), gravitation (m), and external contact (ground reaction force on foot (m3), not shown), joint net forces 

(R) and moments (M) can be resolved. For example, Rx1 and Ry1 represent components of the net hip force, and M1 

represents the net hip moment. (Adapted from Figures 5.2 and 5.3 in Winter: Biomechanics and Motor Control of 

Human Movement, 4th ed. 2009 [106].) 
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Most aforementioned kinematic studies of DDH [22,24,110-115] also performed kinetic 

analyses, and findings included lower hip flexion moment generated in hips with DDH in the 

sagittal plane, although findings in frontal and transverse planes were again mixed 

[22,24,110,111]. These studies provided quantitative evidences on hip kinetics specific to patient’s 

movement patterns, which added to our knowledge on how the dynamic hip biomechanical 

environment may differ due to DDH. Still, the clinical interpretation of such net joint forces 

remains challenging, because they do not differentiate the contributions from active muscle force 

production and passive joint contact (or ligament tension) [106,107]. For this reason, link-segment 

model-based biomechanics still fell short of identifying hip joint contact forces during patient-

specific dynamic movements that may directly lead to mechanically-induced tissue damage. To 

delineate such clinically important mechanical quantities, a computational model that incorporates 

both in-vivo joint motions and muscle actions is needed. 

2.3 Musculoskeletal Model (MSM) 
Dynamic joint biomechanics during coordinated movements are collective outcomes from 

the human neuromusculoskeletal system, including bony anatomy, muscle physiology, joint 

motion, and neural control [123]. Because subject-specific 3D motion can be captured non-

invasively using optical systems, while numerous experimental datasets are available on the 

neuromuscular elements (Section 2.2.3), opportunities exist to synthesize these data for in-silico 

simulations of dynamic movements with muscle activities incorporated, to more precisely quantify 

the subject-specific biomechanics in each active and passive human body component as well as 

their interrelationships. Musculoskeletal models (MSMs) provide such an opportunity. 

MSMs hold unique values in human biomechanics research, as the muscle-driven 

simulations can specify muscle and joint contact forces during dynamic movements, which can be 
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biomechanical quantities of significant clinical importance. The assembly of modifiable 

neuromusculoskeletal components also facilitate investigations of cause-effect relationships, and 

a vast potential to explore “what if” questions that may not be feasible experimentally [123]. In 

recent decades, many MSM software platforms have been developed for dynamic simulation of 

human movements, including proprietary SIMM [124] and AnyBody [125], and the freeware 

OpenSim [123]. Especially, since its launch, OpenSim has provided a platform for open-source 

MSM and algorithm sharing as well as community-based peer support (SimTK, https://simtk.org), 

which enhanced MSM development and customization for specific research questions. For this 

reason, OpenSim was the chosen software for modeling DDH hip biomechanics in this 

dissertation. To provide technical background for the specific studies herein, the following Section 

2.3.1 describes a standard MSM workflow for simulations using OpenSim, followed by focused 

summaries of MSMs for DDH research and image-based model personalization. 

2.3.1 Standard MSM Workflow 

Baseline MSM and Scaling 

Creation of a MSM starts from a baseline model composed of linked rigid body segments, 

joints with anatomy-based coordinate system and idealized degrees of freedom, and muscle-tendon 

units with physiological properties derived from cadaveric experimental data [124-127]. More 

recently, newer baseline models have been developed with updated muscle properties derived from 

imaging data of live, younger subjects [101,128]. Still, the anatomy of bones in most baseline 

models are based on digitized geometric data from cadaveric samples, while muscle paths are 

represented by straight, reflected, or curved line segments (Figure 2.5) [124]. Many baseline 

MSMs have been shared among the research community [123,124,128-130], which are often 

further adjusted to create more baseline models specialized for movements or joints of research 

interest, including the hip [131-133]. 
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Figure 2.5. The hip musculoskeletal anatomy of a baseline MSM [133], which was scaled with marker-based length 

measurements (pink dots) to create the generic MSMs in Chapter 3. Note that the coarse shapes of pelvis and femurs 

do not resemble detailed 3D hip anatomy, especially malformed bones typical of DDH patients (Figure 2.1). 

To calibrate the dimensions of a MSM so it better represents the size of a specific subject, 

each body segment is scaled based on the ratio of experimental-to-baseline model segment size 

[123,134]. The anthropometric measurements of physical dimensions [106] used in the generic 

MSM scaling method is typically derived from distances between skin-mounted markers, of which 

the locations on specific subjects are known from optical experimental data captured while subjects 

stood in a standard “static pose” [123]. Likewise, the distances can be measured between “virtual 

markers” placed on the baseline model (Figure 2.5), which determines the “virtual size” of the 

model segments. The experimental-to-virtual size ratio can be calculated separately in each of the 

3 dimensions, and used for nonuniform scaling of the model segments to match a subject’s segment 

size. A single measured distance, or average of a set of distances on the same segment, can also be 

used for uniform scaling, which is common in studies that use generic MSMs. Because the joint 

(e.g. HJC), muscle origin and insertion locations are defined at specific locations within a body’s 

coordinate system [124], they are moved along with the scaled segment. Segment mass and inertia 

are usually scaled with a uniform factor to match the subject’s body mass, while relative weights 

between segments are preserved [123]. As muscle paths are updated after the origins and insertions 

are moved, in a generic workflow, the muscle architectural parameters including optimal fiber 



33 

 

length and tendon slack length are scaled proportionally to the length of the muscle-tendon path 

[123,135]. Muscle’s maximum isometric force (i.e. strength) is matched to baseline and not scaled 

by default. Recent studies investigated the validity of these muscle property scaling methods and 

found the generic workflow to be appropriate for joint contact force estimation [136]. However, 

questions have been raised on whether marker-based generic scaling of anatomy can sufficiently 

personalize associated joint locations and muscle paths, which can be important parameters of 

muscle function and joint loading [135,137-140]. These questions have motivated the development 

of image-based subject-specific MSMs, which are overviewed later in Section 2.3.3. 

Inverse Kinematics 

On a scaled MSM, virtual marker locations are matched to the experimental markers in 

each subject’s static pose. Then, by finding the best matches between the virtual markers and the 

same skin experimental markers while subjects perform dynamic movements [106,123,141], the 

kinematics of body translation and joint rotation (i.e. positions, angles, speeds, accelerations) can 

be determined and tracked over the duration of captured motion. The algorithm in a standard MSM 

workflow finds the best matches by solving a weighted least-squares sum (Equation 2.1) [123]: 

𝑚𝑖𝑛 [∑ 𝑤𝑖
𝑚𝑎𝑟𝑘𝑒𝑟𝑠
𝑖=1 (𝑥𝑖

𝑠𝑢𝑏𝑗
− 𝑥𝑖

𝑚𝑜𝑑)
2

+ ∑ 𝜔𝑗(𝜃𝑗
𝑠𝑢𝑏𝑗

− 𝜃𝑗
𝑚𝑜𝑑)

2𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒𝑠
𝑗=1 ] Equation 2.1. 

In this equation, the total experimental (subject) to MSM (model) squared errors for all 

marker positions (xi) and all joint angles (θj) were minimized, so the trajectory of the MSM matches 

as close as possible to the experimental data. Note that the weights (wi and ωj) allow modelers to 

track markers and joints of which accurate motions are of the most importance to the research 

question (e.g. pelvis markers and the hip joint). The joint angles can then be decomposed into 
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Cardan angle sequences [106,107,142] that are consistent with clinical kinematic descriptions, 

such as hip flexion-extension, abduction-adduction, and internal-external rotation. 

Inverse Dynamics 

The kinetics (i.e. resultant or net forces, moments, impulses, powers) at each joint can be 

solved using a link-segment model (Section 2.2.3) and the inverse dynamics algorithm [106,107]. 

The equations for inverse dynamics [106,107] can be generalized and simplified as: 

𝐹𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 = 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙(𝑚, 𝑎) − [𝐹𝑑𝑖𝑠𝑡𝑎𝑙 + 𝐺(𝑚) + 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙]   Equation 2.2. 

𝑀𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 = 𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙(𝑚, 𝐼, 𝛼, 𝜔) − [𝑀𝑑𝑖𝑠𝑡𝑎𝑙 + 𝜏𝐺(𝑚) + 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙] Equation 2.3. 

Forces (Equation 2.2) and moments (Equation 2.3) include body weight and inertial 

effects solvable from anthropometry (m, I) and kinematics (a, α, ω), and external forces measured 

from sensors embedded to in-ground platforms, treadmills, etc. that are typical in motion capture 

facilities. By identifying these forces and moments, inverse dynamics resolve the net kinetics that 

include all active and passive contributions from a distal joint to its adjacent proximal joint, thereby 

through all link-segment joints of the human body [107]. 

Due to experimental artifacts, inconsistencies between optical motion and external force 

data, and model assumptions through the prior workflow steps, non-physical “residual” forces may 

be resulted from inverse dynamics that do not represent the kinetics of actual body motion. To 

address this problem, the common OpenSim MSM workflow uses a “residual reduction algorithm” 

[123] to slightly adjust model anthropometric parameters and kinematics, so the residual forces 

and moments are minimized for better dynamic consistency across experimental data, before the 

net joint kinetics are subsequently further resolved into muscle and joint contact forces [134]. 
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Muscle Force Estimation: Static Optimization and Alternatives 

Determining all muscle forces around a joint requires solving the underdetermined 

mechanical system equations of motion [143]. One of the most commonly used standard methods 

for such solution is the static optimization [143], which decomposes the net joint moment 

(Equation 2.4) using a simple performance criterion that minimizes the squared activation 

summed across all muscles (Equation 2.5) [144]: 

∑ [𝑎𝑚(𝑡𝑖)𝐹𝑚
0]𝑟𝑚,𝑗(𝑡𝑖) = 𝜏𝑗(𝑡𝑖)

𝑚𝑢𝑠𝑐𝑙𝑒𝑠
𝑚=1       Equation 2.4. 

𝑚𝑖𝑛{∑ [𝑎𝑚(𝑡𝑖)]2𝑚𝑢𝑠𝑐𝑙𝑒𝑠
𝑚=1 }       Equation 2.5. 

The net moment around a joint (τj) is contributed from all muscles (m) that each generate 

a percentage of its maximal force (Fm
0) according to its relative activation level (am: from 0 (not 

activated) to 1 (maximal contraction)) [123,144]. Articular contact forces are assumed to act 

through the joint center and thus do not generate moments. The moment contributed from each 

muscle is the product of its force (amFm
0) and moment arm length around that joint (rm,j). Because 

static optimization considers muscle forces at each time frame (ti) independently, it is 

computationally efficient, and has been found to be appropriate for gait simulation [144] as well 

as estimation of hip joint contact forces [145]. It is worth noting that the muscle activation (am) 

and moment arms (rm,j) that contribute to joint moments (τj) are both time-dependent (ti), therefore 

the in-vivo force production of the muscles is theoretically reliant upon their moment arms true to 

the dynamic joint positions [138-140]. 

The static optimization approach has several limitations, including sensitivity to kinematic 

error, omission of time-dependent muscle physiological behaviors, and underestimation of muscle 

coordination in highly dynamic movements [144]. Several alternative options exist to estimate or 
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derive muscle activation and forces dynamically, including computed muscle control optimization 

[123,146] and electromyography-driven forward dynamics simulation [147]. Since the studies in 

this dissertation only used static optimization, which was shown to be appropriate for estimating 

hip contact forces during gait and high hip flexion [145], details for the alternative muscle force 

estimation methods are not elaborated herein. 

Muscle-Induced Joint Reaction Forces (JRFs) 

JRFs (or joint contact forces), including 3D force components, can be computed by adding 

the contributions from all muscles to the mechanical force equation at a joint (Equation 2.6) [148]: 

𝐽𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 = 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙(𝑚, 𝑎) − [𝐽𝑑𝑖𝑠𝑡𝑎𝑙 + 𝐺(𝑚) + 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + ∑ 𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠]  Equation 2.6. 

By considering muscle forces (Fmuscles) in the inverse dynamics algorithm (Equation 2.2), 

resolved forces at the joints (J) now only compose of passive (i.e. “reaction”) contributions from 

other joint structures. If passive force contributions from ligaments (e.g. hip capsule tension forces) 

or other soft structures can be assumed negligible (e.g. not at the end range of motion), the resolved 

passive forces (J) can be considered the articular contact forces (or JRFs) during motion.  

Other MSM-based Analyses: Dynamic Muscle Moment Arms and Lines of Action 

Due to its ability to represent a collection of human neuromusculoskeletal elements during 

dynamic movements, MSMs can also be used for many other adjunctive analyses related to the 

musculoskeletal anatomy and motion. Two of such analyses relevant to this dissertation are 

computations of dynamic muscle moment arms and lines of action. In OpenSim [123], muscle 

moment arms can be calculated in the MSMs with a generalized force method [81] that quantifies 

the effectiveness with which a muscle-tendon unit generates joint rotational moments, either at 

prescribed joint poses [96,139] or true to the joint positions during movements [138,140]. 
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Muscle lines of action specific to joint positions can be extracted from MSMs to quantify 

muscles’ roles in 3D dynamic joint function and stability [28,82], as well as force contributions to 

compression, shears, edge loading, etc. that could be beneficial or detrimental to the joint structure 

[82,149]. Past MSM research has established automated methods to extract dynamic muscle lines 

of action including its 3D components (antero-posterior, supero-inferior, medio-lateral) within a 

specified body segment coordinate system [149]. 

MSM Validation 

To ensure the scientific and clinical utility of MSM simulation and their ability to translate 

to real-world meanings, proper validation of the models is essential [134]. Yet, validating MSMs 

is challenging due to the complexity and variability of the neuromusculoskeletal system [134]. For 

this reason, development or derivation of a baseline MSM [123,124,128-133] often involves 

extensive validation using data from benchmark experiments or previously validated models [134], 

including (but not limited to) comparing model-estimated muscle moment arms to cadaveric or 

imaging measurements, and joint moments to strength tests [123,124,128-133]. 

Then, when using MSMs to study specific research questions, validity of the workflow 

used to estimate biomechanics (e.g. scaling and muscle force estimation methods) should also be 

tested. This may include comparing MSM-estimated JRFs to experimental data measured from 

instrumented prosthesis [117,118,150] to validate the approach used for muscle property scaling 

[136] or cost functions used to resolve muscle forces [135,144,145]. Minimizing “residual forces” 

(see Inverse Dynamics) is also important for MSM-based force estimates to be valid [123,134]. In 

the cases when experimental data for direct validation is scarce (e.g. hip contact forces [117,118] 

or muscle forces), indirect validation methods may be used. Other than comparing estimates with 

past validated models, a useful data source for validation is electromyography, which can help 
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determine whether MSM-estimated muscle activation follows similar patterns to experimentally 

observed muscle activities [134]. An important cautionary note is that the validity of MSMs 

depends on the research question, hence a MSM validated to study one clinical population is not 

necessarily valid for other populations [134]. Thus, an iterative validation process is recommended 

for using derived MSMs in new specific research questions [134]. 

2.3.2 Using MSMs for DDH Biomechanics 

MSMs have been applied in numerous studies to estimate hip joint biomechanics, such as 

JRFs and muscle forces during walking in healthy individuals [70,71,151], patients with femoral 

deformities [152-154], femoroacetabular impingement [155,156], among other clinical questions. 

However, very few studies have used MSMs to quantify the biomechanics in hips with DDH. Prior 

to this dissertation, only two studies have used MSMs to estimate JRFs and muscle forces in 

dysplastic hips during gait, and compared them to healthy subjects with anatomically typical hips 

[111,157]. The first study by Skalshøi et al. [111] found generally lower-than-control hip muscle 

forces, as well as lower and more superiorly-directed peak hip JRFs in late stance. In contrast, 

Harris et al. [157] found that DDH subjects had lower early-stance external rotator forces, higher 

late-stance internal rotator forces, and higher medially-directed JRFs at both early and late stance 

when JRFs peaked. Since substantial mismatches exist between the biomechanical findings from 

these studies, especially on hip JRFs, a consensus has not been reached on how dynamic hip joint 

loading during gait is altered in DDH. As such, more MSM studies are needed for clarification. 

A potential key factor that may have contributed to the aforementioned mismatches is the 

different model anatomy these past MSMs used. Skalshøi et al. [111] adapted the generic marker-

scaled MSM anatomy, while Harris et al. [157] used CT-based 3D pelvis anatomy to update HJC 

and hip muscle origin locations. Because the bone shapes in a baseline MSM (Figure 2.5) do not 



39 

 

resemble detailed 3D bony anatomy, especially malformed dysplastic hips (Figure 2.1), they could 

potentially affect the reliability of hip JRF estimates for the DDH population. However, direct 

comparison between the past publications is complicated by the different subject cohorts studied 

[111,157]. Separating the effects due to MSM anatomy from subject demographic factors, and thus 

determining which modeling methods MSMs should use to study DDH biomechanics, requires a 

direct comparison between the MSMs created on the same cohort of DDH subjects. 

2.3.3 Image-Based Subject-Specific MSM 

The musculoskeletal anatomy is known to vary greatly among individuals. For this reason, 

the reliability for scaled generic MSMs to represent individual subject’s joint locations and muscle 

paths has been questioned, especially when used to study populations known to have abnormal 

anatomy [135,158]. Past studies found that MSM-based biomechanical estimates, including hip 

JRFs and muscle moment arms, are sensitive to anatomical deformity traits such as femoral version 

and neck-shaft angle [137-140,152,159]. Therefore, to estimate joint and muscle forces in presence 

of bony deformity, as in the case of DDH, using generic scaled MSMs may be insufficient, while 

a higher level of anatomical details in the models may be required. 

A reliable source to acquire detailed bony anatomy is 3D medical images such as CT and 

MR. Hence, there has been increasing research to include image-based anatomical details in the 

MSMs (Figure 2.6), especially on populations with anatomical abnormalities [135,153,158,160]. 

Several studies have compared CT or MR-based subject-specific MSMs against generic scaled 

MSMs, and found the biomechanical estimates from these models to be substantially different 

[135,137-140]. Notably, a recent study found MR-based MSMs with precise personalization of 

nonlinear muscle paths (Figure 2.6) to estimate hip JRFs closer to experimental data than generic 

models [135]. Based on such evidences, MR-based subject-specific MSMs have been 
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recommended to study joints of which the anatomy is known to deviate substantially from generic 

models [134], as with the case of DDH. 

 

Figure 2.6. Examples of image-based subject-specific MSM creation. (A) 3D-segmented bone and muscle anatomy 

(left) are added to the MSM (middle) to guide updates to joint locations and muscle paths (right). (B) Subject-specific 

images (left) can be used to derive precise anatomical paths for major non-linear muscles such as the iliopsoas (right). 

(Sub-figure A adapted from Figure 1 in Valente et al. PLoS One. 2014 [158]. Sub-figure B adapted from Figure S1 in 

Wesseling et al. Comput Methods Biomech Biomed Engin. 2016 [135].) 
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Yet, the creation of image-based MSMs is known to be a complex and arduous process. 

The anatomical complexity of the MSMs is directly related to the time costs and computational 

demands on the research, as well as uncertainties inherent to model parameters, which could limit 

their utility in larger scales [158,160-162]. Therefore, instead of the highest level of complexity 

possible, MSM research may better benefit from an optimized level of anatomical specificity that 

depends on the research question. An inter-model comparison focused on hip biomechanical 

estimates [135] could help determine such an optimized model complexity level specifically for 

DDH, while addressing the mismatches among past MSM findings [111,157]. A standardized 

proper method to create MSMs for DDH can then provide a framework for reliable yet also feasible 

investigations of the biomechanics in dysplastic hips, including analyses of the influences and 

interrelationships among multiple musculoskeletal components such as bony anatomy, muscle 

actions, and joint motions. 
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Chapter 3: Musculoskeletal Models with 

Generic and Subject-Specific Geometry 

Estimate Different Joint Biomechanics in 

Dysplastic Hips1 

3.1 Abstract 
Optimizing the geometric complexity of musculoskeletal models is important for reliable 

yet feasible estimation of joint biomechanics. This study investigated the effects of subject-specific 

model geometry on hip joint reaction forces (JRFs) and muscle forces in patients with 

developmental dysplasia of the hip (DDH) and healthy controls. For nine DDH and nine control 

subjects, three models were created with increasingly subject-specific pelvis geometry, hip joint 

center locations and muscle attachments. Hip JRFs and muscle forces during a gait cycle were 

compared among the models. For DDH subjects, resultant JRFs from highly specific models 

including subject-specific pelvis geometry, joint locations and muscle attachments were not 

significantly different compared to models using generic geometry in early stance, but were 

significantly higher in late stance (p = 0.03).  Estimates from moderately specific models using 

CT-informed scaling of generic pelvis geometry were not significantly different from low 

specificity models using generic geometry scaled with skin markers. For controls, resultant JRFs 

in early stance from highly specific models were significantly lower than moderate and low 

specificity models (p ≤ 0.02) with no significant differences in late stance. Inter-model JRF 

differences were larger for DDH subjects than controls. Inter-model differences for JRF 

                                                 
1 Reprinted from: Song K, Anderson AE, Weiss JA, Harris MD. Musculoskeletal models with generic and subject-

specific geometry estimate different joint biomechanics in dysplastic hips. Comput Methods Biomech Biomed 

Engin. 2019 Feb;22(3):259-270. Supplemental Tables and Figures cited throSughout Chapter 3 can be found in the 

online version of the article, doi: 10.1080/10255842.2018.1550577. Rights granted from Taylor & Francis Group. 
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components and muscle forces were similar to resultant JRFs. Incorporating subject-specific pelvis 

geometry significantly affects JRF and muscle force estimates in both DDH and control groups, 

which may be especially important for reliable estimation of pathomechanics in dysplastic hips. 

3.2 Introduction 
Developmental dysplasia of the hip (DDH) is a structural disease characterized by a 

shallow acetabulum, insufficient femoral coverage, and abnormal intra-articular loading [1-3]. 

Abnormal hip loads may contribute to acetabular labrum and articular cartilage damage [4], which 

often progresses to early osteoarthritis [5,6]. Reliable quantification of hip loads, including joint 

reaction forces (JRFs) and muscle forces, may improve our understanding of tissue damage and 

the pathogenesis of osteoarthritis among patients with DDH. 

Musculoskeletal models are valuable for quantifying biomechanical variables that are 

difficult to measure in vivo, including JRFs and muscle forces. Model accuracy depends on many 

factors, including kinematics and force input, joint representation, and passive and active muscle 

properties. One major factor that can affect model accuracy is representation of the 

musculoskeletal geometry, which dictates joint center and muscle attachment locations. To reliably 

estimate hip JRFs and muscle forces for specific populations, it is important to understand the level 

of model complexity needed with regard to bone and muscle geometry [7]. The majority of 

musculoskeletal modeling research has used generic bony geometry derived from cadavers, which 

are scaled to match anthropometrics of individuals [8-10]. This generic scaling approach is 

straightforward and may be adequate for investigating healthy adult gait [11,12]. However, for 

populations with structural hip disease, models with subject-specific geometry may be necessary 

due to the potential associations among abnormal geometry, joint biomechanics, and tissue damage 

[13-15]. Yet, there is a direct relationship between model pre-processing time and computational 
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demands with geometric complexity of the models [7,12,16].  Comparing estimates from models 

with varying levels of geometric detail is one method that can help researchers optimize specificity 

and complexity for reliable, yet feasible, estimation of joint biomechanics in a given population. 

Geometric deformities relevant to DDH include lateralized hip joint centers (HJCs), 

abnormal pelvis bony geometry, and associated alterations in muscle paths [17-19], making this 

condition a microcosm for determining the sensitivity of JRF and muscle force estimates to the 

level of geometric detail in a model. However, previously reported biomechanical estimates from 

models of DDH are limited in number, and findings have not been in full agreement [20,21]. A 

study using generic geometry to model gait in patients with DDH [20] reported smaller hip JRFs 

versus controls, whereas a separate study using subject-specific pelvis geometry [21] found no 

difference in resultant hip JRFs, but larger medial JRFs in patients with DDH. The levels of pelvis 

geometry complexity may have contributed to the contrasting findings in these studies. 

Specifically, generic geometry may not adequately represent biomechanical differences in DDH 

compared to healthy hips because they omit the abnormal pelvis geometry and HJCs. Comparison 

between prior studies of DDH is further complicated by the use of different subject demographics 

and data collection protocols. By comparing generic and subject-specific models created for the 

same subject group, we can directly assess the effects of geometric specificity on estimation of hip 

biomechanics in patients with DDH. 

The objective of this study was to compare JRFs and muscle forces among models with 

low, moderate and high levels of pelvis geometry specificity in patients with DDH and healthy 

controls. We hypothesized that hip JRFs and muscle forces would be significantly different for 

models with highly specific pelvis geometry, HJCs, and muscle paths compared to those of lower 

specificity. We also hypothesized that JRFs and muscle forces would be different, but to a lesser 
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extent, for moderately specific models with scaling informed by imaging versus low specificity 

models scaled with skin markers. 

3.3 Methods 

3.3.1 Subjects 

With Institutional Review Board approval and informed consent, eighteen subjects were 

recruited and reported previously [21]. Nine subjects had symptomatic DDH (‘DDH’ group; 6 

female, 3 male, 26 ± 7 years old, body mass index: 22.7 ± 3.1 kg/m2), with lateral center edge 

angles smaller than 20° [22] confirmed by an orthopaedic surgeon and a musculoskeletal 

radiologist. Six patients had radiographic evidence of bilateral DDH, but all patients had unilateral 

symptoms at the time of data collection. The other 9 subjects were healthy controls (‘CONT’ 

group; 6 female, 3 male, 26 ± 4 years old, body mass index: 23.8 ± 4.5 kg/m2) who had no history 

of DDH, hip injury or other hip diseases as confirmed by radiographic inspection.  

3.3.2 CT geometry and Gait Motion Analysis 

Computed tomography (CT) images of each subject’s pelvis and proximal femurs were 

collected, segmented, and reconstructed in 3D with Amira v6.1 software (FEI, Hillsboro, OR, 

USA), using previously reported methods [23]. Kinematic data during gait were collected for each 

subject in a motion capture laboratory and previously reported [21]. Briefly, twenty-one retro-

reflective markers were placed on the pelvis, thighs, shanks, feet and upper trunk and subjects 

walked barefoot at their self-selected speed along a 10m runway, while marker trajectories were 

recorded at 100 Hz and ground reaction forces were recorded at 1000 Hz. A residual analysis [24] 

was performed on marker and force data separately to determine appropriate cutoff frequencies 

and a 4th-order, zero-lag Butterworth low-pass filter was then applied to the signals with 6 Hz and 
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20 Hz cutoffs, respectively. Filtered data were imported to OpenSim musculoskeletal modeling 

software v3.3 [25]. 

3.3.3 Musculoskeletal Modeling 

A 23 degree-of-freedom model with pelvis, lower limbs, torso, head segments and 96 

muscle-tendon actuators was used as the baseline model for this study, with modifications made 

to the path, maximum isometric force and tendon slack length of muscles around the hip [26,27]. 

A virtual marker set corresponding to experimental markers was placed on the model. The baseline 

model (Figure 3.1A) was personalized for each subject in OpenSim via three different methods: 

(1) marker-based isotropic scaling (‘Generic’), (2) imaging-informed anisotropic scaling of the 

pelvis (‘Nonuniform’), or (3) a previous method using subject-specific pelvis geometry, HJCs, and 

muscle paths from CT reconstructions (‘CT-Geometry’) [21]. These methods represented low, 

moderate, and high levels of model geometric specificity, respectively (Table 3.1).  

 ‘Generic’ Model - Marker-Based Isotropic Scaling 

Generic models were created by adjusting the size and inertial properties of the baseline 

model with one isotropic scale factor for each segment, derived from distance ratios between 

experimental and corresponding virtual markers. Specifically for the pelvis, a set of distances were 

measured and averaged between the left and right anterior superior iliac spine (ASIS) and posterior 

superior iliac spine (PSIS) markers (Figure 3.1B). Hip joint center and muscle attachment 

locations were moved automatically as the generic geometry was scaled (Table 3.1). After scaling, 

a least squares optimization was used to fit the model to an experimentally captured static pose, 

and virtual marker positions were adjusted to match experimental marker placement specific to 

each subject. 

‘Nonuniform’ Model - Imaging-Informed Anisotropic Scaling of the Pelvis 
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Nonuniform models were also created by scaling the generic pelvis geometry of the 

baseline model, but used anisotropic scale factors informed by CT-based pelvis reconstructions 

(termed ‘CT pelvis’) instead of skin marker measurements. First, the CT pelvis of each subject 

was adjusted in Amira to match the spatial orientation of the OpenSim model pelvis geometry. 

Then, the anteroposterior (AP, horizontal distance between ASIS and PSIS), superoinferior (SI, 

vertical distance from top of iliac crest to lower border of ischial tuberosity), and mediolateral 

(ML, distance between left and right iliac crests) dimensions of each geometry were measured 

(Figure 3.1B). Three distinct scale factors (AP, SI, and ML) for the model pelvis segment were 

calculated as the ratios of each CT pelvis dimension to the corresponding baseline pelvis 

dimension. The generic pelvis geometry was scaled using the AP, SI, and ML ratios, which again 

moved the HJC and muscle attachment locations automatically with the model pelvis (Table 3.1). 

The other model segments were scaled with marker-based measurements similar to the Generic 

method. By incorporating a CT-informed pelvis size, Nonuniform models were incrementally 

more subject-specific than the Generic models. 

 ‘CT-Geometry’ Model - Subject-Specific Pelvis Geometry, HJCs, and Muscle Paths 

CT-Geometry models built upon the Nonuniform models, by incorporating fully subject-

specific pelvis geometry and HJC locations derived from CT. Specifically, the generic OpenSim 

pelvis was removed from the model and replaced by the exact CT pelvis geometry at the 

corresponding location and orientation in the model. HJCs for both sides were moved to subject-

specific locations, determined in PreView software (https://febio.org/preview/) as the centroid of 

a sphere fit to the 3D-reconstructed femoral head geometry. Attachment locations for twenty-nine 

muscles crossing the hip were then updated using the subject-specific pelvis geometry (Figure 

3.1B; Table 3.1) and anatomical descriptions [28]. A sensitivity analysis was performed to test the 
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robustness of model estimates against uncertainty in muscle attachment point placement (Section 

3.7). The other model segments were scaled with markers, similar to the Generic and Nonuniform 

methods. As the most subject-specific models, CT-Geometry were considered the reference 

standard for inter-model analyses. 

 
Figure 3.1. Flowchart showing development of models with low, moderate, and high levels of geometric specificity. 

(A) Top: The baseline OpenSim model. Bottom: Subject-specific pelvis geometry reconstructed from CT. (B) I: Set 

of experimental (blue) and virtual (pink) marker-based measurements for isotropic pelvis scaling in a Generic model. 

II: 3D measurements on pelvis bony geometry for anisotropic scaling in a Nonuniform model. III: Subject-specific 

pelvis geometry, adjusted HJC and hip muscle attachment locations in a CT-Geometry model. (C) Subsequent 

biomechanical analysis to estimate hip JRFs and muscle forces during gait. 
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Table 3.1. Differences among Generic, Nonuniform, and CT-Geometry model types. 

 Generic Nonuniform CT-Geometry 

Pelvis Geometry Generic Generic 
Subject-specific from CT 

reconstruction  

Pelvis Scaling 

Uniform: 

1 scale factor, derived from 

skin markers 

Nonuniform: 

3 scale factors, derived 

from CT dimensions 

(height, width, depth) 

Step 1: Nonuniform 

Step 2: Substitute in 

subject-specific 

HJC Locations and Hip 

Muscle Attachments  

Automatically moved from 

baseline locations via 

uniform scaling 

Automatically moved from 

baseline locations via 

nonuniform scaling 

Subject-specific from CT 

reconstruction  

3.3.4 Biomechanical Analysis and Data Processing 

For the three models (Generic, Nonuniform, CT-Geometry) created for each subject, hip 

joint angles, moments, muscle forces and JRFs were computed in OpenSim (Figure 3.1C). 

Analyses were performed on a full gait cycle of a representative trial for each subject. Data were 

analyzed for the symptomatic side of DDH subjects, and a randomly chosen side of CONT 

subjects. Hip joint angles were calculated by inverse kinematics, using least squares optimization 

to minimize virtual to experimental marker differences; internal net hip joint moments were then 

calculated by inverse dynamics [24]. A residual reduction algorithm was used to reduce 

nonphysical compensatory forces in the full-body inverse dynamics solution, which may originate 

from marker placement errors, data filtering artifacts and model body-joint assumptions [25]. 

Muscle forces were estimated by static optimization using the minimized total of squared muscle 

activation criterion [29], which has been shown to be appropriate for estimating muscle forces 

during gait [30]. Lastly, hip JRF components were computed from static optimization results [31]. 

Hip JRFs, muscle forces, angles, and moments from each model were extracted and 

processed using Matlab R2016a (MathWorks, Natick, MA, USA).  Data were time-normalized to 
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percentage of a gait cycle. JRFs and muscle forces were normalized by body weight; moments 

were normalized by body mass. JRF components were expressed in the pelvis frame to represent 

hip loads acting on the acetabulum. Individual hip muscles were grouped according to their 

functional roles in gait, and net muscle force magnitudes were summed algebraically for each 

functional group (hip flexors, extensors, abductors, adductors, internal rotators, external rotators). 

Variables were analyzed at the time points when resultant hip JRF peaked, first during early stance 

(termed ‘JRF1’) and again during mid-to-late stance (termed ‘JRF2’). 

3.3.5 Statistical Analysis 

Inter-model differences for each outcome variable were statistically analyzed using SPSS 

Statistics v24 (IBM, Armonk, NY, USA). Resultant hip JRFs and components were the primary 

outcome variables. Secondary outcome variables included HJC locations in each model, as well 

as hip angles, moments, individual and grouped muscle forces at the time of JRF1 and JRF2. 

Normality of data was tested using the Shapiro-Wilk test; variables with normally distributed data 

in all 3 models were compared using one-way ANOVA with repeated measures, while variables 

with any model violating data normality were compared using the Friedman test. Homogeneity of 

variance among inter-model differences (sphericity) was examined using Mauchly’s test, with 

Greenhouse-Geisser corrections for data violating sphericity. Level of significance was set as α = 

0.05 for all statistical tests. For variables with significant differences among the 3 models, post 

hoc pairwise t-tests or Wilcoxon signed-rank tests were performed with Bonferroni corrections. 

Root mean square errors (RMSE) among the three model types were calculated for the resultant 

JRFs, JRF components, and muscle group forces at JRF1 and JRF2.  All statistical tests were 

implemented separately for DDH and CONT subject groups. 
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3.4 Results 

3.4.1 Hip JRFs 

For DDH subjects, CT-Geometry models estimated larger resultant and superior JRFs at 

JRF2 versus Generic and Nonuniform models, while there were no significant inter-model 

differences at JRF1 (Figure 3.2; Table 3.2). In contrast, CT-Geometry models for CONT subjects 

estimated smaller medial JRFs at both JRF1 and JRF2, and slightly yet statistically different 

resultant, superior and posterior JRFs at JRF1 only (Figure 3.3; Table 3.3). Lastly, JRF estimates 

were not different between Nonuniform and Generic models for either group at JRF1 or JRF2. 

Root-mean-square error (RMSE) of hip JRFs between CT-Geometry and the other two models 

(1Supplemental Tables 6 and 7) were generally larger for DDH compared to CONT, especially at 

JRF2, while much smaller between Nonuniform and Generic models. 

 

Figure 3.2. Average resultant hip JRFs and components during gait for DDH subjects, expressed in pelvis frame (i.e. 

acting on acetabulum). Shaded area represents ± 1 standard deviation; highlighted vertical bands indicate time of JRF1 

and JRF2. 
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Table 3.2. Hip JRFs and muscle forces (mean ± 1 standard deviation) at JRF1 and JRF2 for DDH subjects, normalized 

by body weight (xBW). 

 At JRF1    At JRF2    

 Generic Nonuniform CT-Geometry p-value Generic Nonuniform CT-Geometry p-value 

JRF: resultant 3.05 ± 0.40 3.05 ± 0.42 3.19 ± 0.55 n.s. 4.18 ± 1.24 4.15 ± 1.33 *† 5.47 ± 1.27 
* =.033 

† =.023 

JRF: (+) AP (-) <0.01 ± 0.41 0.01 ± 0.42 0.07 ± 0.39 n.s. 1.30 ± 1.02 1.28 ± 1.09 1.59 ± 0.86 n.s. 

JRF: (+) SI (-) 2.97 ± 0.39 2.97 ± 0.40 3.13 ± 0.54 n.s. 3.87 ± 0.94 3.85 ± 0.99 *† 5.14 ± 1.07 
* =.001 

† =.001 

JRF: (+) ML (-) 0.57 ± 0.10 0.57 ± 0.11 0.50 ± 0.15 n.s. 0.56 ± 0.36 0.56 ± 0.35 0.74 ± 0.38 n.s. 

Flexors 0.15 ± 0.18 0.17 ± 0.20 *† 0.48 ± 0.44 

* =.023 

† =.033 

2.31 ± 1.09 2.23 ± 1.16 *† 3.27 ± 1.11 
* =.001 

† =.001 

Extensors 1.05 ± 0.31 1.00 ± 0.27 *† 0.64 ± 0.34 

* <.001 

† <.001 

0.21 ± 0.14 0.22 ± 0.13 0.14 ± 0.14 n.s. 

Abductors 1.79 ± 0.50 1.85 ± 0.48 1.95 ± 0.44 n.s. 1.40 ± 0.34 1.46 ± 0.38 1.85 ± 0.49 n.s. 

Adductors 0.02 ± 0.02 0.01 ± 0.02 0.01 ± 0.02 n.s. <0.01 ± <0.01 <0.01 ± <0.01 <0.01 ± <0.01 n.s. 

Internal rotators 0.84 ± 0.32 0.87 ± 0.31 *† 1.18 ± 0.39 

* =.001 

† =.006 

0.83 ± 0.26 0.87 ± 0.28 *† 1.25 ± 0.44 
* =.025 

† =.026 

External rotators 0.39 ± 0.14 0.40 ± 0.15 *† 0.23 ± 0.08 

* =.010 

† =.010 

0.22 ± 0.17 0.21 ± 0.14 0.14 ± 0.12 n.s. 

Notes: Symbols indicating statistical significance: *CT-Geometry vs. Generic; †CT-geometry vs. Nonuniform. n.s.: not significant. 
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Table 3.3. Hip JRFs and muscle forces (mean ± 1 standard deviation) at JRF1 and JRF2 for CONT subjects, 

normalized by body weight (xBW). 

 At JRF1    At JRF2    

 Generic Nonuniform CT-Geometry p-value Generic Nonuniform CT-Geometry p-value 

JRF: resultant 3.44 ± 0.58 3.47 ± 0.59 *† 3.30 ± 0.55 
* =.024 

† =.009 
4.32 ± 0.81 4.32 ± 0.77 4.71 ± 0.67 n.s. 

JRF: (+) AP (-) -0.28 ± 0.48 -0.28 ± 0.49 † -0.35 ± 0.46 † =.032 1.46 ± 0.68 1.44 ± 0.67 1.33 ± 0.55 n.s. 

JRF: (+) SI (-) 3.34 ± 0.53 3.36 ± 0.54 † 3.24 ± 0.51 † =.023 4.01 ± 0.63 4.02 ± 0.61 4.49 ± 0.62 n.s. 

JRF: (+) ML (-) 0.62 ± 0.15 0.66 ± 0.15 *† 0.37 ± 0.09 
* =.023 

† =.023 
0.52 ± 0.14 0.53 ± 0.10 *† 0.28 ± 0.11 

* =.009 

† =.002 

Flexors 0.06 ± 0.10 0.06 ± 0.07 *† 0.16 ± 0.16 
* =.033 

† =.033 
2.37 ± 0.79 2.32 ± 0.77 *† 2.82 ± 0.66 

* =.019 

† =.035 

Extensors 1.31 ± 0.48 1.33 ± 0.48 *† 0.98 ± 0.43 
* =.033 

† =.023 
0.18 ± 0.09 ‡ 0.21 ± 0.09 *† 0.07 ± 0.06 

* =.004 

† =.002 

‡ =.039 

Abductors 2.17 ± 0.46 2.22 ± 0.46 *† 2.04 ± 0.43 
* =.020 

† =.003 
1.49 ± 0.22 1.55 ± 0.20 1.34 ± 0.36 n.s. 

Adductors 0.02 ± 0.02 0.01 ± 0.02 *† 0.04 ± 0.03 
* =.023 

† =.023 
<0.01 ± <0.01 <0.01 ± <0.01 <0.01 ± <0.01 n.s. 

Internal rotators 0.97 ± 0.26 0.98 ± 0.22 *† 1.05 ± 0.23 

* =.038 

† =.009 
0.95 ± 0.18 0.96 ± 0.16 1.03 ± 0.39 n.s. 

External rotators 0.50 ± 0.15 0.51 ± 0.16 *† 0.23 ± 0.09 
* =.001 

† =.001 
0.16 ± 0.07 ‡ 0.18 ± 0.07 *† 0.07 ± 0.06 

* =.008 

† =.002 

‡ =.033 

Notes: Symbols indicating statistical significance: *CT-Geometry vs. Generic; †CT-geometry vs. Nonuniform; ‡Nonuniform vs. 

Generic. n.s.: not significant. 
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Figure 3.3. Average resultant hip JRFs and components during gait for CONT subjects, expressed in pelvis frame 

(i.e. acting on acetabulum). Shaded area represents ± 1 standard deviation; highlighted vertical bands indicate time of 

JRF1 and JRF2. 

 

Figure 3.4. Average hip muscle group forces during gait for DDH subjects. Shaded area represents ± 1 standard 

deviation; highlighted vertical bands indicate time of JRF1 and JRF2. 
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3.4.2 Hip Muscle Forces 

For DDH, CT-Geometry models estimated larger hip flexor and internal rotator forces at 

both JRF1 and JRF2, as well as smaller forces in the extensors and external rotators at JRF1, 

compared to Generic and Nonuniform models (Figure 3.4; Table 3.2). Similarly for CONT, CT-

Geometry models estimated larger flexor forces at both JRF1 and JRF2 (Figure 3.5; Table 3.3). 

However, CT-Geometry models for CONT estimated smaller extensor and external rotator forces 

at both JRF1 and JRF2 compared to Generic and Nonuniform models, as well as larger internal 

rotator forces, larger adductor forces, and smaller abductor forces at JRF1 (Figure 3.5; Table 3.3). 

Inter-model differences were larger in DDH than CONT for hip flexor, internal rotator and early-

stance extensor forces, but smaller for external rotator and mid-to-late stance extensor forces 

(Tables 3.2 and 3.3). Lastly, compared to Generic, Nonuniform models estimated marginally 

larger hip extensor and external rotator forces at JRF2 for CONT (Table 3.3), and no significant 

differences in hip muscle group forces for DDH. RMSE values of hip muscle group forces 

followed similar trends (1Supplemental Tables 6 and 7). Inter-model differences for individual 

muscle forces are reported in Section 3.8. 

3.4.3 HJC Locations 

For DDH, HJC locations in CT-Geometry models were more lateral than both Generic and 

Nonuniform models, more anterior than Nonuniform, but not significantly different from either 

Generic or Nonuniform in the SI direction (Table 3.4). For CONT, HJCs in CT-Geometry models 

were more anterior and inferior than both Generic and Nonuniform, but not significantly different 

in the ML direction (Table 3.4). HJC locations were not different between Nonuniform and 

Generic models for either subject group. 
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Figure 3.5. Average hip muscle group forces during gait for CONT subjects. Shaded area represents ± 1 standard 

deviation; highlighted vertical bands indicate time of JRF1 and JRF2. 

Table 3.4. HJC locations (cm) relative to pelvis origin for DDH and CONT groups (mean ± 1 standard deviation). 

  Generic Nonuniform CT-Geometry p-value 

DDH (+) AP (-) -6.7 ± 0.4 -7.3 ± 0.7 † -5.9 ± 0.9 † <.001 

 (+) SI (-) -6.3 ± 0.3 -6.5 ± 0.4 -6.9 ± 0.6 n.s. 

 (-) ML (+) 8.0 ± 0.4 8.2 ± 0.6 *† 9.1 ± 0.4 
* <.001 

† =.008 

CONT (+) AP (-) -7.3 ± 0.5 -7.3 ± 0.4 *† -5.9 ± 0.6 
* =.001 

† <.001 

 (+) SI (-) -6.8 ± 0.5 -6.6 ± 0.5 *† -7.3 ± 0.6 
* =.028 

† =.001 

 (-) ML (+) 8.6 ± 0.6 8.7 ± 0.5 8.9 ± 0.5 n.s. 

Notes: Symbols indicating statistical significance: *CT-Geometry vs. Generic; †CT-geometry vs. Nonuniform. n.s.: 

not significant. 
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3.4.4 Hip Angles and Moments 

Inter-model differences in hip angles and moments were found for both DDH and CONT 

groups at JRF1 and/or JRF2 (Section 3.9). Briefly, CT-Geometry models had larger hip adduction 

at JRF1 and a larger flexion moment throughout stance for both groups, but a larger abduction 

moment for DDH only and not for CONT (Section 3.9). Hip angles and moments were not 

significantly different between Nonuniform and Generic models. 

3.5 Discussion 
Optimizing the level of geometric detail needed for musculoskeletal models to reliably 

estimate biomechanics can be challenging, especially when studying hips with structural diseases 

such as DDH. The objective of this study was to compare hip JRFs and muscle forces among 

models with low, moderate and high levels of geometric specificity in patients with DDH and 

healthy controls. Overall, models with highly subject-specific pelvis geometry, hip joint locations, 

and muscle paths (CT-Geometry) estimated significantly different hip JRFs and muscle forces 

compared to models with moderate (Nonuniform) or low specificity (Generic) during gait. 

Specifically, using subject-specific pelvis geometry and HJC resulted in larger resultant and medial 

JRFs at mid-to-late stance for patients with DDH, but smaller medial JRFs for controls. In contrast, 

moderately subject-specific Nonuniform models did not differ substantially from low-specificity 

Generic models. The larger hip JRFs and related muscle forces due to patient-specific geometry 

support theories of pathomechanics in DDH [19,32], and emphasize the importance of accurately 

representing abnormal geometry when modeling joint biomechanics in patients with DDH. 

As hypothesized, a high level of subject-specific geometric detail caused significant 

changes in hip JRF estimates for both subject groups, but there were distinct patterns for each 

group. For controls, CT-Geometry models estimated a slightly smaller resultant hip JRF at its 
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early-stance peak and smaller medial JRFs throughout stance, which might be influenced by HJCs 

being more anterior and inferior than less specific models. HJC location has been reported to 

significantly affect hip JRF estimates [15] due to altered flexor and extensor muscle moment arm 

lengths (MALs) and muscle forces that contribute to joint torques [32]. Indeed, CT-Geometry 

models estimated reduced early-stance extensor forces and net extension moments, as the HJC 

moved anteriorly and away from extensor muscle lines of action. As more anterior HJCs and 

changed hip flexor-extensor forces were also found in CT-Geometry models for DDH subjects, 

we speculate these traits might have not been closely represented by the coarse geometry of the 

generic models, for either healthy or deformed hips. 

The primary effects of subject-specific geometry on models of DDH were larger resultant 

and superior hip JRFs at mid-to-late stance, which were not found for controls. Also unique to 

DDH, CT-Geometry models had significantly more lateral HJCs, which supports radiographic 

studies [17]. The more lateral HJCs reduced hip abductor muscle MALs, which increased demands 

on the abductors to generate larger force and provide stabilizing torque prior to push-off [32]. This 

finding coincided with the DDH-specific trend of increased abductor muscle forces and 

significantly larger net abduction moments. Elevated hip abductor forces, together with increased 

flexor forces, then contributed to larger medial, superior, and resultant hip JRFs (Figure 3.2). If 

we consider models with high geometric specificity as the ‘reference standard’, the generic models 

might have underestimated potentially abnormal JRFs in DDH hips, because they could not 

adequately characterize the aberrant HJC locations or excessive abductor muscle demands. 

Therefore, it may be particularly essential to include structural details to reliably estimate hip 

biomechanics in the DDH population. 
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Significantly different muscle forces caused by subject-specific model geometry were not 

always reflected in changes to hip JRFs, possibly due to the changing function and coordination 

of individual muscles at various joint positions. For example in the DDH group, CT-Geometry 

models estimated larger anterior gluteus medius forces throughout stance (1Supplemental Table 1) 

but larger resultant hip JRFs only in mid-to-late stance. While hip abductor forces increased in 

early stance, simultaneously decreased extensor forces might neutralize the overall effect on peak 

hip JRF. In contrast, during mid-to-late stance, increased hip flexor forces combined with larger 

abductor forces to raise the hip JRF peak. Moreover, effects from other individual muscles 

(1Supplemental Tables 1 and 2) could account for specific changes in hip JRFs as well. As such, 

the effects on muscle force estimates should be interpreted cautiously with regard to their potential 

clinical relevance. 

Joint kinematics can also affect JRF estimates. For instance, changes in hip extension angle 

may alter anterior JRFs during gait [33]. However, neither peak hip extension nor the AP 

component of hip JRF was substantially different among the models in the current study. The CT-

Geometry models did have larger hip adduction during early stance (1Supplemental Figure 1) 

especially for DDH, which could be related to the lateralized HJCs. These inter-model kinematic 

differences demonstrate the influence of subject-specific geometry, in particular HJC locations, on 

motion tracking by the models, which may affect accuracy of model estimation. 

Nonuniform models were created to improve upon marker-based scaling, and represented 

a method that could be feasibly replicated with multi-view 2D radiographic images of the pelvis. 

However, the only notable differences between Nonuniform and Generic models were mid-to-late 

stance hip extensor and external rotator muscle forces, whose functions were minor at that time 

point. Even with improved scaling, the pelvis geometry in Nonuniform models was still derived 
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from a single generic shape, and did not incorporate important geometric traits such as unique 

muscle lines of action relative to HJC locations. Therefore, using 2D radiographs to scale model 

geometry may be inadequate for improving the accuracy of JRF and muscle force estimates. 

Some limitations of this study should be recognized. First, muscle attachment points were 

adjusted on the pelvis using reconstructed bony geometry and canonical descriptions of muscle 

anatomy. As found in the sensitivity analysis, hip JRF estimates were mostly sensitive to 

attachment perturbations of six hip flexor and extensor muscles in ML. Since the attachment 

surface area of those six muscles are either small (e.g. rectus femoris) or primarily along the sagittal 

plane (e.g. iliacus), it was unlikely that uncertainty in muscle placement during CT-Geometry 

model creation meaningfully altered hip muscle force and JRF estimation. Magnetic resonance 

imaging could be used in future studies to improve estimation of subject-specific muscle paths 

[34-36]. Second, we did not acquire subject-specific muscle properties such as physiological cross-

sectional areas or fiber-tendon length. It is not known how muscle properties may differ between 

DDH and healthy groups, but because our DDH subjects were young, capable adults, and were 

similar to control subjects in height, weight and BMI [21], we assumed muscle properties to be the 

same as controls and to the baseline model [26]. Third, full femur geometry was not available from 

CT. Femoral deformities in DDH have been reported in the literature [17], but their influence on 

DDH biomechanics is unknown. Nonetheless, we used image-based femoral head geometry to 

determine subject-specific HJC locations in the CT-Geometry models. Another limitation is a 

relatively small sample size. However, our two groups were matched demographically, inter-

model comparisons were made on the same gait trials for each subject, and the comparisons 

demonstrated statistically significant differences in key biomechanical variables such as JRFs. As 

experimental hip JRF and muscle force data were not available for our subjects, direct validation 
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of the model estimates was not possible. While highly subject-specific models could provide more 

accurate estimation, results should be interpreted with caution in the absence of directly referable 

experimental force data. However, hip JRFs estimates and muscle activations from models similar 

to the CT-Geometry models have been shown to be comparable to electromyography signals and 

published force estimates in healthy hips [21]. Lastly, assumptions inherent to the baseline model 

behavior (e.g. rotation-only hip joint, muscle force objective function) affect the accuracy of any 

simulation [25,37]. Thus, model results should not be considered an exact representation of 

musculoskeletal behavior and may not elucidate all biomechanical differences between healthy 

and pathologic populations. Because the objective of the current study was to quantify changes 

due to increasingly specific model geometry, the inter-model differences could still indicate 

relative improvement in model accuracy. 

In conclusion, models with highly subject-specific, CT-based pelvis geometry, hip joint 

locations and muscle paths estimated significantly different hip JRFs and muscle forces compared 

to models of lower specificity. Moderately specific models with improved image-informed scaling, 

despite being simpler to implement than highly specific models, did not estimate hip biomechanics 

differently than generic models. Inter-model differences due to highly specific model geometry 

were greater for patients with DDH compared to healthy controls. Therefore, we recommend 

incorporating image-based subject-specific geometric details for musculoskeletal models of 

dysplastic hips. Future research may focus on improving automation of image-based subject-

specific musculoskeletal models, and exploring the appropriate levels of model complexity for 

other structural hip diseases. 
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3.7 Appendix 1. Sensitivity of Hip JRFs to Muscle Path in 

CT-Geometry Model 
An analysis was performed to test the sensitivity of hip JRF estimates to the uncertainty in 

muscle attachment point placement during creation of the CT-Geometry model. To demonstrate 

the boundary of sensitivity for both DDH and CONT groups, CT-Geometry models for one DDH 

and one CONT subject were chosen for the analysis, which had the largest inter-model differences 

in estimated resultant hip JRF (versus Generic and Nonuniform). Muscle attachment points on the 

CT pelvis for each of the 16 muscles generating > 0.1 xBW force during gait were perturbed by 

±5 mm in anterior, posterior, superior, inferior, medial, and lateral directions. The ±5 mm 

perturbation followed a 10mm uncertainty range, which was representative of the errors when 

marking muscle origins and insertions with bone pins on cadaveric specimens [38,39]. Static 

optimization analysis was again performed for each perturbed model; hip JRF estimates were then 

recomputed, and compared to the unperturbed CT-Geometry model. 

For the two CT-Geometry models analyzed, a ±5 mm perturbation of muscle attachment 

point in AP, SI or ML direction resulted in a large change of estimated JRFs only for a few muscles 

or muscle portions. Specifically, hip JRF resultant or component values differed by > 0.1 xBW at 

JRF1 or JRF2 among original and perturbed models (1Supplemental Tables 1 and 2) for six major 
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hip flexors and extensors: iliacus (in ML), rectus femoris (in AP, SI and ML), tensor fasciae latae 

(in ML), sartorius (in ML), anterior portion of gluteus medius (in SI), and semimembranosus (in 

SI and ML). JRF estimates at JRF1 or JRF2 were not sensitive to attachment perturbations on other 

hip muscles. 

3.8 Appendix 2. Inter-Model Differences in Individual Hip 

Muscle Forces 
For both DDH and CONT subjects, CT-Geometry models estimated larger forces (than 

Generic and/or Nonuniform) in iliacus and tensor fasciae latae, as well as smaller forces in gluteus 

maximus, posterior gluteus medius, and gluteus minimus, at JRF1 and/or JRF2 (1Supplemental 

Tables 3 and 4). Additionally, CT-Geometry estimated larger forces in gluteus medius (anterior, 

middle, and total) and smaller force in semimembranosus for DDH only (1Supplemental Table 3), 

as well as smaller forces in long head of biceps femoris and piriformis for CONT (1Supplemental 

Table 4). For muscles generating large force (> 0.5 xBW at JRF1 or JRF2), including gluteus 

maximus, gluteus medius, and iliacus, estimates from CT-Geometry were more different from the 

other models in DDH than in CONT, both by value and statistically (1Supplemental Tables 3 and 

4). Lastly, compared to Generic, Nonuniform only estimated marginally smaller forces in the 

middle portion of gluteus maximus at JRF1 for DDH (1Supplemental Table 3). 

3.9 Appendix 3. Inter-Model Differences in Hip Angles and 

Moments 
For DDH, CT-Geometry models had smaller hip flexion and larger adduction at JRF1, as 

well as larger extension at JRF2, compared to Generic and/or Nonuniform models; while for 

CONT, CT-Geometry only had larger hip adduction at JRF1 (1Supplemental Figure 1; 
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Supplemental Table 5). Hip angles were not different between Nonuniform and Generic models at 

JRF1 or JRF2 for either DDH or CONT. 

For DDH, CT-Geometry models had a smaller hip extension moment and larger abduction 

moment at JRF1, as well as a larger flexion moment and larger abduction moment at JRF2, 

compared to Generic and/or Nonuniform (1Supplemental Figure 2; Supplemental Table 5). For 

CONT, CT-Geometry had a smaller extension moment and larger internal rotation moment at 

JRF1, as well as a larger flexion moment at JRF2 (1Supplemental Figure 2; Supplemental Table 

5). Inter-model differences in flexion moments were similar for DDH and CONT, whereas CT-

Geometry models had significantly different abduction moments only for DDH and not for CONT. 

Hip moments were not different between Nonuniform and Generic at JRF1 or JRF2 for either 

group. 

3.10 References 
1. Leunig M, Siebenrock KA, Ganz R. Rationale of periacetabular osteotomy and background 

work. Instr Course Lect. 2001;50:229-38. 

 

2. Gala L, Clohisy JC, Beaulé PE. Hip dysplasia in the young adult. J Bone Joint Surg Am. 

2016 Jan 6;98(1):63-73. 

 

3. Henak CR, Abraham CL, Anderson AE, Maas SA, Ellis BJ, Peters CL, Weiss JA. Patient-

specific analysis of cartilage and labrum mechanics in human hips with acetabular 

dysplasia. Osteoarthritis Cartilage. 2014 Feb;22(2):210-7. 

 

4. Cooperman D. What is the evidence to support acetabular dysplasia as a cause of 

osteoarthritis? J Pediatr Orthop. 2013 Jul-Aug;33 Suppl 1:S2-7. 

 

5. Jessel RH, Zurakowski D, Zilkens C, Burstein D, Gray ML, Kim YJ. Radiographic and 

patient factors associated with pre-radiographic osteoarthritis in hip dysplasia. J Bone Joint 

Surg Am. 2009 May;91(5):1120-9. 

 

6. Harris-Hayes M, Royer NK. Relationship of acetabular dysplasia and femoroacetabular 

impingement to hip osteoarthritis: a focused review. PM R. 2011 Nov;3(11):1055-67.e1. 

 



79 

 

7. Blemker SS, Asakawa DS, Gold GE, Delp SL. Image-based musculoskeletal modeling: 

applications, advances, and future opportunities. J Magn Reson Imaging. 2007 

Feb;25(2):441-51. 

 

8. Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to 

support, forward progression and swing initiation during walking. J Biomech. 2001 

Nov;34(11):1387-98. 

 

9. Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during 

running. J Biomech. 2010 Oct 19;43(14):2709-16. 

 

10. Lenhart RL, Thelen DG, Wille CM, Chumanov ES, Heiderscheit BC. Increasing running 

step rate reduces patellofemoral joint forces. Med Sci Sports Exerc. 2014 Mar;46(3):557-

64. 

 

11. Correa TA, Baker R, Graham HK, Pandy MG. Accuracy of generic musculoskeletal 

models in predicting the functional roles of muscles in human gait. J Biomech. 2011 Jul 

28;44(11):2096-105. 

 

12. Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F. Are subject-

specific musculoskeletal models robust to the uncertainties in parameter identification? 

PLoS One. 2014 Nov 12;9(11):e112625. 

 

13. Heller MO, Bergmann G, Deuretzbacher G, Claes L, Haas NP, Duda GN. Influence of 

femoral anteversion on proximal femoral loading: measurement and simulation in four 

patients. Clin Biomech (Bristol, Avon). 2001 Oct;16(8):644-9. 

 

14. Lenaerts G, De Groote F, Demeulenaere B, Mulier M, Van der Perre G, Spaepen A, Jonkers 

I. Subject-specific hip geometry affects predicted hip joint contact forces during gait. J 

Biomech. 2008;41(6):1243-52. 

 

15. Lenaerts G, Bartels W, Gelaude F, Mulier M, Spaepen A, Van der Perre G, Jonkers I. 

Subject-specific hip geometry and hip joint centre location affects calculated contact forces 

at the hip during gait. J Biomech. 2009 Jun 19;42(9):1246-51. 

 

16. Viceconti M, Testi D, Taddei F, Martelli S, Clapworthy GJ, Jan SV. Biomechanics 

modeling of the musculoskeletal apparatus: status and key issues. Proc IEEE. 2006 Apr 

10;94(4):725-39. 

 

17. Wyles CC, Heidenreich MJ, Jeng J, Larson DR, Trousdale RT, Sierra RJ. The John 

Charnley Award: Redefining the natural history of osteoarthritis in patients with hip 

dysplasia and impingement. Clin Orthop Relat Res. 2017 Feb;475(2):336-50. 

 



80 

 

18. Clohisy JC, Dobson MA, Robison JF, Warth LC, Zheng J, Liu SS, Yehyawi TM, Callaghan 

JJ. Radiographic structural abnormalities associated with premature, natural hip-joint 

failure. J Bone Joint Surg Am. 2011 May;93 Suppl 2:3-9. 

 

19. Maquet P. Biomechanics of hip dysplasia. Acta Orthop Belg. 1999 Sep;65(3):302-14. 

 

20. Skalshøi O, Iversen CH, Nielsen DB, Jacobsen J, Mechlenburg I, Søballe K, Sørensen H. 

Walking patterns and hip contact forces in patients with hip dysplasia. Gait Posture. 2015 

Oct;42(4):529-33. 

 

21. Harris MD, MacWilliams BA, Bo Foreman K, Peters CL, Weiss JA, Anderson AE. Higher 

medially-directed joint reaction forces are a characteristic of dysplastic hips: A 

comparative study using subject-specific musculoskeletal models. J Biomech. 2017 Mar 

21;54:80-7. 

 

22. Wiberg G. Studies on dysplastic acetabula and congenital subluxation of the hip joint with 

special reference to the complication of osteoarthritis. Acta Chir Scand. 1939;83 Suppl 

58:7-135. 

 

23. Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element 

prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012 

Jul;30(7):1133-9. 

 

24. Winter DA. Biomechanics and Motor Control of Human Movement. 3rd ed. Hoboken, NJ: 

John Wiley & Sons; 2004. 

 

25. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen 

DG. OpenSim: open-source software to create and analyze dynamic simulations of 

movement. IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. 

 

26. Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based 

model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed 

Eng. 1990 Aug;37(8):757-67. 

 

27. Shelburne KB, Decker MJ, Krong J, Torry MR, Philippon MJ. Muscle forces at the hip 

during squatting exercise. Poster session presented at: 56th Annual Meeting of the 

Orthopaedic Research Society. 2010 March 6–9; New Orleans, LA. 

 

28. Netter FH. Atlas of Human Anatomy. 6th ed. Philadelphia, PA: W.B. Saunders; 2014. 

 

29. Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction 

in locomotion. J Biomech. 1981;14(11):793-801. 

 



81 

 

30. Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically 

equivalent. J Biomech. 2001 Feb;34(2):153-61. 

 

31. Steele KM, Demers MS, Schwartz MH, Delp SL. 2012. Compressive tibiofemoral force 

during crouch gait. Gait Posture. 35(4):556-60. 

 

32. Delp SL, Maloney W. Effects of hip center location on the moment-generating capacity of 

the muscles. J Biomech. 1993 Apr-May;26(4-5):485-99. 

 

33. Lewis CL, Sahrmann SA, Moran DW. 2010. Effect of hip angle on anterior hip joint force 

during gait. Gait Posture. 32(4):603-7. 

 

34. Wesseling M, De Groote F, Bosmans L, Bartels W, Meyer C, Desloovere K, Jonkers I. 

Subject-specific geometrical detail rather than cost function formulation affects hip loading 

calculation. Comput Methods Biomech Biomed Engin. 2016 Nov;19(14):1475-88. 

 

35. Bosmans L, Wesseling M, Desloovere K, Molenaers G, Scheys L, Jonkers I. Hip contact 

force in presence of aberrant bone geometry during normal and pathological gait. J Orthop 

Res. 2014 Nov;32(11):1406-15. 

 

36. Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower 

limb muscles to height and body mass quantified using MRI. J Biomech. 2014 Feb 

7;47(3):631-8. 

 

37. Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? Best 

practices for verification and validation of musculoskeletal models and simulations of 

movement. J Biomech Eng. 2015 Feb 1;137(2):020905. 

 

38. Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM. 

A model of lower extremity muscular anatomy. J Biomech Eng. 1982 Nov;104(4):304-10. 

 

39. White SC, Yack HJ, Winter DA. 1989. A three-dimensional musculoskeletal model for 

gait analysis. Anatomical variability estimates. J Biomech. 22(8–9):885-93. 

  



82 

 

Chapter 4: Dysplastic Hip Anatomy Alters 

Muscle Moment Arm Lengths, Lines of 

Action, and Contributions to Joint Reaction 

Forces during Gait1 

4.1 Abstract 
Developmental dysplasia of the hip (DDH) is characterized by abnormal bony anatomy, 

which causes detrimental hip joint loading and leads to secondary osteoarthritis. Hip joint loading 

depends, in part, on muscle-induced joint reaction forces (JRFs), and therefore, is influenced by 

hip muscle moment arm lengths (MALs) and lines of action (LoAs). The current study used 

subject-specific musculoskeletal models and in-vivo motion analysis to quantify the effects of 

DDH bony anatomy on dynamic muscle MALs, LoAs, and their contributions to JRF peaks during 

early (~17%) and late-stance (~52%) of gait. Compared to healthy hips (N = 15, 16-39 y/o), the 

abductor muscles in patients with untreated DDH (N = 15, 16-39 y/o) had smaller abduction MALs 

(e.g. anterior gluteus medius, 35.3 vs. 41.6 mm in early stance, 45.4 vs. 52.6 mm late stance, p ≤ 

0.01) and more medially-directed LoAs. Abduction-adduction and rotation MALs also differed for 

major hip flexors such as rectus femoris and iliacus. The altered MALs in DDH corresponded to 

higher hip abductor forces, medial JRFs (1.26 vs. 0.87 × BW early stance, p = 0.03), and resultant 

JRFs (5.71 vs. 4.97 × BW late stance, p = 0.05). DDH anatomy not only affected hip muscle force 

generation in the primary plane of function, but also their out-of-plane mechanics, which 

collectively elevated JRFs. Overall, hip muscle MALs and their contributions to JRFs were 

                                                 
1 Reprinted from: Song K, Gaffney BMM, Shelburne KB, Pascual-Garrido C, Clohisy JC, Harris MD. Dysplastic 

hip anatomy alters muscle moment arm lengths, lines of action, and contributions to joint reaction forces during gait. 

J Biomech. 2020 Sep 18;110:109968. Supplementary data to Chapter 4 can be found in the online version of the 

article, doi: 10.1016/j.jbiomech.2020.109968. Rights granted from Elsevier B.V. 
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significantly altered by DDH bony anatomy. Therefore, to better understand the mechanisms of 

joint degeneration and improve the efficacy of treatments for DDH, the dynamic anatomy-force 

relationships and multi-planar functions of the whole hip musculature must be collectively 

considered. 

4.2 Introduction 
Developmental dysplasia of the hip (DDH) is characterized by abnormal acetabular and 

femoral anatomy [1]. When untreated, these abnormalities alter hip intra-articular loading, cause 

tissue damage, and increase the risk of early secondary osteoarthritis [2,3]. Muscle forces and joint 

reaction forces (JRFs) are major mechanical contributors to hip joint loading [4], and are found to 

be altered in patients with untreated DDH [5,6]. It has been speculated that the abnormal bony 

features of DDH, such as lateralized hip joint centers (HJCs), are the sources of altered muscle-

induced loading [7,8], but the relationships that explain how bony anatomy alters muscle and joint 

forces have not been explicitly established. 

Among factors influencing muscle mechanics, the ability of muscles to generate forces and 

moments around a joint is directly affected by their anatomical paths. Two key mechanical 

parameters that describe the anatomy-force relationships of muscles are their moment arm lengths 

(MALs) and lines of action (LoA). MALs, defined as the perpendicular distance from the joint 

center to the muscle LoA, represent the effectiveness of muscles at generating moments to rotate 

the joint [9,10]. If a muscle MAL is reduced, higher force from that muscle is needed to generate 

the same joint moment. LoAs dictate the direction of muscle forces, which affects muscle 

contributions to loading within the joint [11]. The MALs and LoAs of multiple muscles 

collectively influence compressive and shear forces borne by the joint [11]. A few radiographic 

reports and theoretical models have suggested that abnormal bony anatomy in untreated DDH 



84 

 

reduces hip abductor MALs and alters their medio-lateral LoAs in a way that may increase hip 

articular pressure [8,12]. These studies provided preliminary insight into the links between DDH 

bony anatomy and muscle-induced joint loading, but were limited to the abductor muscles in a 

static position. Because muscle paths vary with joint positions, their dynamic force-generating 

abilities induce variable joint loading during an activity, and therefore lead to motion-specific risks 

for tissue damage. However, no study has reported MALs and LoAs in patients with untreated 

DDH during dynamic motions, and how they collectively contribute to hip JRFs.  

Because muscle forces cannot be measured directly during motion, musculoskeletal 

models have been used to quantify dynamic hip muscle MALs and LoAs [13-15] and their 

contributions to JRFs [16-18]. The default generic geometry in most musculoskeletal models 

represents healthy bony anatomy, which makes such models less reliable for estimating muscle 

mechanics in populations with anatomical deformities [16]. Therefore, including subject-specific 

anatomy is important for estimating hip mechanics in DDH [19], and has helped elucidate 

significant hip JRF differences compared to healthy controls [6]. However, these recent models of 

DDH fell short of establishing the underlying relationships between the muscle-induced hip joint 

loading (e.g. JRFs) of DDH and the bony deformity. As such, the potentially vital roles of muscle 

anatomy-force parameters (MALs, LoAs) in the patho-mechanics of DDH also remain unclear. 

The objective of this study was to quantify how hip muscle MALs, LoAs, and their 

contributions to hip JRFs during gait are altered in patients with untreated DDH compared to 

healthy controls. We hypothesized that patients with DDH would have smaller hip abductor MALs 

and more medially-directed LoAs due to lateralized HJCs [7], which would result in higher 

medially-directed hip muscle forces and JRFs [6]. 
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4.3 Methods 

4.3.1 Subjects and Data Collection 

With Institutional Review Board approval and informed consent, 15 female patients with 

untreated DDH (age: 16-39 y/o) and 15 female healthy controls (age: 16-39 y/o) were included 

(Table 4.1). An a priori power analysis [20] based on prior hip JRF findings [6] indicated 15 

subjects per group could detect inter-group differences with power of 0.8. Patients were diagnosed 

by a single orthopaedic surgeon, had hip pain lasting at least 3 months, and radiographic evidence 

of DDH determined by a lateral center edge angle <20° [21]. For each DDH patient, the 

symptomatic hip was chosen for analysis. Healthy controls had no self-reported history of hip 

pathology, and no pain or discomfort during a flexion-adduction-internal-rotation clinical 

screening exam [22]. A random side was chosen for comparison with DDH patients. Both groups 

had no previous hip surgeries, other lower extremity diseases, or pain that limited functional 

activities. Magnetic resonance (MR) images were collected from the psoas major muscle origin to 

the knees using a 3T scanner (VIDA, Siemens AG; Munich, Germany) with T1-weighted VIBE 

gradient-echo sequences and SPAIR fat suppression (1 × 1 × 1 mm voxels). During imaging, 

subjects were prone with the hip positioned at approximately zero degrees flexion, adduction, and 

rotation. From the MR images, 3D geometries of the pelvis and femurs for each subject were 

reconstructed using Amira software (Thermo Fisher Scientific, Houston, TX). 

Full-body gait data were collected using 70 retro-reflective markers while subjects walked 

at a self-selected speed on an instrumented treadmill (Bertec; Columbus, OH), with a 5-minute 

warm-up [23]. Marker trajectories were collected at 100 Hz using 10 infrared cameras (Vicon; 

Centennial, CO). Ground reaction forces were collected at 2000 Hz by the treadmill. Fourth-order 

Butterworth low-pass filters were applied to marker data using an 8 Hz cutoff determined with 
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residual analysis [24], and a 6 Hz cutoff for force data to reduce analog noise on instrumented 

treadmills [25]. 

Table 4.1. Demographics, gait speed, and normalized HJC ML location (mean ± SD) for Healthy and DDH subjects. 

Demographics Healthy (N = 15) DDH (N = 15) p-value 

Age (years) 24.6 ± 6.3 26.5 ± 7.9 0.62 

Height (m) 1.67 ± 0.06 1.66 ± 0.07 0.85 

Mass (kg) 61.9 ± 7.8 62.7 ± 9.3 0.79 

BMI (kg/m
2
) 22.3 ± 2.3 22.7 ± 2.4 0.64 

Walking speed (m/s) 1.39 ± 0.15 1.37 ± 0.15 0.59 

Normalized HJC ML location (%) 77.2% ± 8.6% 88.4% ± 10.2% < 0.01 

Note: Normalized HJC ML location = ML location of HJC / ML distance between anterior superior iliac spine and 

mid-sagittal plane. 

4.3.2 Musculoskeletal Modeling 

Subject-specific musculoskeletal models were created from an existing OpenSim model 

[26], similar to procedures recently described [19]. The generic model was modified by adding 

torso and hip external rotator muscles (Table 4.2) with experimental-based paths and strengths 

[27,28], yielding 98 muscle-tendon actuators. Then, MR-based 3D pelvis and femur geometries 

were substituted into the model for each subject (Figure 4.1A). HJCs were moved to subject-

specific locations, determined as the centroid of a sphere fit to the 3D-reconstructed femoral head 

[6]. Each MR femur was then rotated about the subject-specific HJC until the femoral shaft axis 

and the distal trans-epicondyle axis were both aligned to the generic geometries. 

Origin and insertion sites of the hip muscles were then updated on the subject-specific 

pelvis and femurs based on reconstructed bone-muscle geometries, MR images, and anatomical 

guidelines [29] (Figure 4.1A). Via points approximating nonlinear muscle paths (e.g. tensor 

fasciae latae) and wrapping objects for the iliacus and psoas major muscles were also updated, 
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using the MR images as a guide [30]. The remaining model segments were non-uniformly scaled 

in antero-posterior (AP), supero-inferior (SI), and medio-lateral (ML) dimensions using 

experimental marker data. Muscle optimal fiber lengths and tendon slack lengths were linearly 

scaled from the generic model according to the total length of updated muscle paths in each 

subject-specific model [30], which assumed no muscle architecture adaptations (e.g. sarcomere 

loss) had occurred due to the DDH anatomy. 

 

Figure 4.1. (A) Example model with subject-specific pelvis and femur geometries, HJC locations, and muscle paths. 

(B) Example hip muscle MAL (anterior gluteus medius, “GMedAnt”, red arrow). Hip flexion, abduction, and rotation 

MALs were extracted across an entire gait cycle. (C) Example hip muscle LoAs. The AP, SI, and ML components of 

each muscle’s LoA represent the percentage of its net force in a certain direction within the pelvis frame. 

Hip and pelvis angles were calculated via inverse kinematics, and internal hip moments 

were calculated via inverse dynamics [24], for each subject across a representative gait cycle. 

Residual reduction was applied to minimize the nonphysical residual forces and moments and 



88 

 

maintain dynamic consistency within inverse dynamics results [31]. Muscle forces were estimated 

using static optimization that minimized the sum-square of muscle activations [32]. The forces of 

individual hip muscles were then summed by functional groups [26,27] (Table 4.2). Lastly, 

resultant hip JRFs and AP, SI, ML directional components were calculated from muscle forces 

[33] and expressed in the pelvis frame to represent loading on the acetabulum. 

Table 4.2. Hip muscle functional group definitions. 

Hip Muscle 

Group 
Individual muscles included (alphabetic order) 

Hip Flexors 

adductor brevis, adductor longus, gluteus minimus (anterior), gracillis, iliacus,  

*pectineus, psoas major, rectus femoris, sartorius, tensor fasciae latae 

Hip Extensors 

adductor magnus (distal and ischial), biceps femoris long head, gluteus maximus,  

gluteus medius (middle and posterior), gluteus minimus (posterior), semimembranosus, semitendinosus 

Hip Abductors 

gluteus maximus (anterior), gluteus medius, gluteus minimus,  

piriformis, sartorius, tensor fasciae latae 

Hip Adductors 

adductor brevis, adductor longus, adductor magnus, gluteus maximus (posterior),  

gracillis, obturator externus, *pectineus, quadratus femoris 

Hip Internal 

Rotators 

adductor brevis, adductor longus, adductor magnus (ischial), gluteus medius (anterior),  

gluteus minimus (anterior), *pectineus, tensor fasciae latae 

Hip External 

Rotators 

*gemelli, gluteus maximus, gluteus medius (posterior), gluteus minimus (posterior),  

*obturator externus, *obturator internus, piriformis, *quadratus femoris 

*Hip muscles added to the generic OpenSim musculoskeletal model. Torso muscles were also added to the model, including erector 

spinae, external oblique, internal oblique, and rectus abdominis [27]. 

Subject-specific MALs and LoAs for all hip muscles were extracted across the entire gait 

cycle. Dynamic muscle MALs (Figure 4.1B) were computed within OpenSim using a generalized 

force approach [10]. Hip muscle LoAs were extracted using an established method [17] and 

expressed as unit vectors with AP, SI, and ML components in the pelvis frame (Figure 4.1C). 

Individual muscle forces were decomposed along each LoA component to determine the 
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proportion of that muscle’s net force in the AP, SI, ML directions. These three muscle force 

components were also each summed by functional groups. 

4.3.3 Model Validation 

The subject-specific models were validated using established methods [34]. First, model-

estimated muscle activations were compared to surface electromyography (EMG) signals. EMG 

during gait was collected from bilateral gluteus maximus, gluteus medius, rectus femoris, tensor 

fasciae latae, biceps femoris long head, vastus lateralis, medial gastrocnemius, and erector spinae, 

following SENIAM guidelines [35]. Signals were recorded at 2000 Hz using a 16-channel system 

(MA300-XVI, Motion Lab Systems Inc.; Baton Rouge, LA), shifted by 1.2 ms to offset wireless 

latency, band-pass filtered with 10-350 Hz cutoffs, rectified, and smoothed with a 10 Hz fourth-

order Butterworth low-pass filter [36]. Model-estimated muscle activations from static 

optimization were reported on a scale of 0 (none) to 1 (maximum). For comparison, EMG signals 

in each trial were also normalized to a 0-to-1 scale relative to the maximum within that trial [33]. 

Second, model errors and residuals were ensured to be within limits recommended for gait 

simulations [34], for both motion tracking (root-mean-square marker error < 2 cm) and static 

optimization (residual force < 5% × BW, moment < 0.5 Nm/kg). Finally, estimated hip JRFs and 

muscle forces were qualitatively compared to recent subject-specific modeling studies to ensure 

they are within 2 standard deviations of previously reported values [6,18,19,30,34]. 

4.3.4 Data Analysis 

Hip muscle LoAs, MALs, individual and grouped muscle forces, hip JRFs, as well as joint 

angles and moments were time-normalized to the gait cycle. JRFs and muscle forces were 

normalized by body weight (× BW), while joint moments were normalized by body mass (Nm/kg) 

[37]. Peak resultant hip JRFs in early stance (~17% of gait cycle, termed ‘JRF1’) and late stance 
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(~52% of gait cycle, termed ‘JRF2’) were determined, as well as joint angles and moments at these 

two time points. LoAs, MALs and forces for all muscles crossing the analyzed hip (Table 4.2) 

were extracted at JRF1 and JRF2. Within each functional group, the muscles that produced the 

maximum force at JRF1 or JRF2 were categorized as the primary dependent variables for statistical 

comparisons. The other individual muscles were categorized as secondary variables. 

All variables were examined with the Shapiro-Wilk test for normality and Levene’s test 

for homogeneity of variance. Normally distributed variables were compared between Healthy and 

DDH groups using independent t-tests, with corrections for unequal variances. Other variables 

were compared non-parametrically using Mann-Whitney U tests. Statistical significance for each 

test was α = 0.05. Effect sizes for inter-group differences were determined with Cohen’s d [38] 

and classified as small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8), or large (d ≥ 0.8). Primary variables 

compared between DDH and Healthy were LoAs, MALs, and forces of muscles selected from 

each functional group, and hip JRFs. Secondary variables were LoAs, MALs, and forces of other 

individual muscles, as well as joint angles and moments. To further quantify the bony features of 

untreated DDH that may directly influence muscle anatomy-force relationships, especially the 

relative lateralization of HJCs [7], the ML location of HJC was normalized by the ML distance 

between the anterior superior iliac spine and the mid-sagittal plane, then compared between 

groups. The depth, height, and width of the pelvises were also compared between the DDH and 

Healthy subjects. 

4.4 Results 

4.4.1 Subject Characteristics and Model Validation 

There were no significant differences between DDH and Healthy groups in age, height, 

mass, body-mass index, walking speed (Table 4.1), and pelvis dimensions. Compared to Healthy 
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subjects, HJCs were significantly lateralized in DDH. Model-estimated muscle activation 

qualitatively agreed with EMG timings (1Supplemental Figure 1). Model motion tracking errors, 

residual forces and moments were under 2 cm, 0.025 × BW and 0.4 Nm/kg, respectively 

(1Supplemental Figure 2). Hip muscle forces and JRFs were in ranges similar to recent subject-

specific modeling studies. 

 

Table 4.3. Dynamic MALs and LoAs (mean ± SD) for major force-generating hip muscles with significant differences 

(shaded) between DDH and Healthy groups. LoA expressed as percentage (%) of net muscle force. 

 At JRF1 At JRF2 

Hip MAL (mm) Healthy DDH p-value Cohen’s d Healthy DDH p-value Cohen’s d 

Gluteus Medius 

(anterior section) 

Flexion 6.3 ± 6.4 6.1 ± 7.6 0.94 0.03 -7.0 ± 7.2 -6.3 ± 9.1 0.82 0.08 

Adduction -41.6 ± 5.9 -35.3 ± 6.4 0.01 1.02 -52.6 ± 4.0 -45.4 ± 4.8 < 0.01 1.63 

Rotation 24.5 ± 5.7 21.9 ± 4.8 0.19 0.49 0.1 ± 3.9 0.2 ± 6.4 0.51 0.03 

Rectus Femoris Flexion 40.6 ± 5.7 40.6 ± 4.8 1.00 0.00 29.4 ± 2.1 29.9 ± 2.5 0.58 0.20 

Adduction -4.4 ± 4.4 1.9 ± 4.6 < 0.01 1.41 -7.9 ± 4.5 -0.4 ± 4.9 < 0.01 1.60 

Rotation -0.5 ± 0.7 0.3 ± 0.9 0.02 0.95 -1.2 ± 0.5 -0.3 ± 0.7 < 0.01 1.41 

Iliacus Flexion 34.0 ± 3.2 35.2 ± 2.6 0.27 0.41 31.6 ± 3.5 31.3 ± 3.1 0.80 0.09 

Adduction 2.0 ± 3.3 6.5 ± 3.6 < 0.01 1.30 -2.4 ± 3.0 2.6 ± 3.7 < 0.01 1.46 

Rotation 6.9 ± 3.1 3.8 ± 3.3 0.01 0.95 8.0 ± 3.4 5.0 ± 3.1 0.02 0.93 

Tensor Fasciae Latae Flexion 54.1 ± 10.2 57.3 ± 6.8 0.32 0.37 27.0 ± 9.4 31.9 ± 9.4 0.16 0.52 

Adduction -38.4 ± 8.4 -27.5 ±10.1 < 0.01 1.19 -47.1 ± 8.6 -34.9 ±10.5 < 0.01 1.28 

Rotation 19.8 ± 4.8 21.0 ± 5.9 0.54 0.23 -0.9 ± 3.6 2.0 ± 4.9 0.07 0.68 

Muscle LoA (%) Healthy DDH p-value Cohen’s d Healthy DDH p-value Cohen’s d 

Gluteus Maximus 

(anterior section) 

(+) AP (-) -51.5 ±15.7 -41.7 ±10.5 0.09 0.73 -37.5 ±13.5 -29.8 ± 8.0 0.17 0.70 

(+) SI (-) 80.4 ±10.1 84.2 ± 4.6 0.57 0.49 78.1 ± 6.1 78.8 ± 4.8 0.72 0.13 

(+) ML (-) 22.1 ±12.0 31.5 ± 7.9 0.02 0.92 47.1 ± 8.6 52.8 ± 6.2 0.05 0.75 

Note: Positive values indicate hip flexion, adduction, or internal rotation MALs. 
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4.4.2 Hip Muscle MALs and LoAs 

Compared to Healthy, DDH subjects had significantly different hip abduction-adduction 

and rotation MALs (Table 4.3, Figure 4.2). Specifically, abduction MALs were smaller for the 

primary hip abductors (e.g. gluteus medius, p ≤ 0.03, d ≥ 0.83), and flipped from abduction to 

adduction roles for the flexors (e.g. iliacus, p < 0.01, d ≥ 1.30) throughout stance. Additionally, 

internal rotation MALs of the iliacus were significantly smaller in DDH (p ≤ 0.02, d ≥ 0.93). Hip 

flexion-extension MALs were not different between groups for any muscle. 

 

Figure 4.2. Average muscle MALs (left and center) and LoAs (right) for major hip abductors, flexors, and external 

rotators. Shades represent ± 1SD. Vertical highlighted areas indicate the times of JRF peaks in early stance (JRF1) 

and late stance (JRF2). “*” indicates statistical inter-group significance. GMedAnt, anterior gluteus medius; TFL, 

tensor fasciae latae; RF, rectus femoris; IL, iliacus; GMaxAnt, anterior gluteus maximus. 
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For DDH subjects, muscle LoAs significantly differed for the gluteus maximus, which was 

directed more medially compared to Healthy (p = 0.02, d = 0.92 at JRF1; Table 4.3, Figure 4.2). 

No other LoAs were significantly different between DDH and Healthy groups, although the 

anterior section of gluteus medius also trended towards a more medial orientation in DDH at JRF1 

(p = 0.06, d = 0.71; 1Supplemental Table 2). 

4.4.3 Hip Muscle Forces and JRFs 

Resultant muscle forces differed between DDH and Healthy for the hip abductors and 

internal rotators. Abductor forces were significantly higher in the DDH group throughout stance 

(p ≤ 0.02, d ≥ 0.88; Figure 4.3). Internal rotator forces were also higher in DDH (p ≤ 0.04, d ≥ 

0.78), as many concurrently served abductor roles (Table 4.2). Muscle force components were 

also higher in the DDH group for both abductors and internal rotators in the superior and medial 

directions (p ≤ 0.05, d ≥ 0.76), as well as for internal rotators in the anterior direction (p = 0.02, d 

= 0.96 at JRF2) (Figure 4.3). Additionally, the flexors and external rotators had higher medial 

forces at JRF1 (p ≤ 0.05, d ≥ 0.52). For individual hip muscles, the DDH group had higher forces 

(resultant and each component) from gluteus medius throughout stance (p ≤ 0.04, d ≥ 0.77; Figure 

4.4), and tensor fasciae latae at JRF2 (p < 0.01, d ≥ 1.32). 

Finally, hip JRFs were different between the DDH and Healthy groups (Figure 4.3). The 

DDH group had significantly higher medial hip JRFs at JRF1 (p = 0.03, d = 0.82), and significantly 

higher resultant and superior JRFs at JRF2 (p ≤ 0.05, d ≥ 0.76). 
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Figure 4.3. Average hip JRF components overlaid with abductor and external rotator muscle forces. Internal rotator 

forces (not shown) followed similar patterns to abductors. Shades represent ± 1SD. Vertical highlighted areas indicate 

the times of hip JRF peaks. “*” indicates statistical inter-group significance. 

4.4.4 Angles and Moments 

During late stance (at JRF2), DDH subjects had a slightly adducted hip, instead of slightly 

abducted for Healthy (1.2° ± 2.8° vs. -1.4° ± 2.6°, p = 0.01, d = 0.95). Also, the pelvis obliquity 

was towards the ipsilateral side for DDH subjects, rather than towards contralateral for Healthy 

(1.2° ± 2.2° vs. -1.1° ± 1.8°, p < 0.01, d = 1.15). Other hip and pelvis angles, and hip moments 

were not different between groups. 
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Figure 4.4. Average forces for the gluteus medius (GMed) and tensor fasciae latae (TFL) muscles. Three individual 

muscles had force differences between DDH and Healthy: gluteus medius, tensor fasciae latae (resultant and superior 

only), and gluteus minimus (similar patterns to gluteus medius). Shades represent ± 1SD. Vertical highlighted areas 

indicate the times of hip JRF peaks. “*” indicates statistical inter-group significance. 

4.5 Discussion 
The objective of this study was to quantify how hip muscle MALs, LoAs, and their 

contributions to hip JRFs during gait are altered in patients with untreated DDH compared to 

healthy controls. Patients with DDH demonstrated differences in both muscle anatomy (MAL, 

LoA) and joint mechanics (muscle force, JRF). The differences were most substantial for the hip 

abductor muscles, where smaller MALs corresponded to higher forces and contributions to JRFs 

especially in the medial direction, which supported our hypothesis. Furthermore, the inter-group 
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differences for hip flexors and rotators exhibited how DDH alters their multi-planar functions, 

which suggested these muscles also contribute to atypical joint loading. 

A prominent effect of the DDH bony anatomy was the shortening of dynamic MALs for 

the hip abductors. The abductor MALs in patients with DDH were smaller than healthy controls 

throughout the gait cycle, which suggest that static image-based measurements of gluteus medius 

MALs hold true during dynamic motions [12]. The primary cause of the shortened MALs was the 

significantly more lateral HJC locations in untreated DDH compared to healthy hips. Shorter 

MALs indicate a mechanical disadvantage for the abductors, which must produce higher forces to 

generate the joint moment needed for hip stabilization during stance [8,39], thereby elevating hip 

JRFs. Thus, to reduce hip loading in DDH, it is important to correct the shortened abductor MALs, 

which can be accomplished by medializing the HJC [40]. 

Higher abductor forces may also be due to the frontal-plane MALs of the surrounding hip 

muscles. Three-dimensional hip motions are dependent on all muscles that span the joint, including 

secondary muscle functions such as the abducting effects of rectus femoris [39]. For DDH subjects, 

almost all hip muscles had less abducting or more adducting MALs compared to healthy (e.g. 

iliacus and rectus femoris; Table 4.3). Such changes in MALs altered the relative demands on 

each muscle to collectively produce the hip-stabilizing abduction moment (which did not differ 

between groups) during single-leg support. For example, while the iliacus and rectus femoris 

produced high forces to propel the hip forward (1Supplemental Table 3), they also had an abnormal 

adducting effect that was then balanced by elevated hip abductor forces. 

The rotation MALs of large hip muscles may also indirectly influence force production by 

adjacent smaller muscles, especially those with multi-planar functions. For example, the force 
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from iliacus primarily contributes to hip flexion moments during gait. However, due to the 

shortened internal rotation MAL of iliacus, the tensor fasciae latae compensated with a higher-

than-normal force to meet the net moment required for late-stance hip rotation [39]. Therefore, 

due to the 3D muscle paths and out-of-plane mechanics, relative contributions among adjacent 

muscles are integral to altered joint mechanics in the presence of DDH anatomy. 

Hip muscle LoAs were less affected by the bony anatomy of untreated DDH compared to 

MALs. Patients with DDH had significantly more medial LoAs compared to healthy only for the 

gluteus maximus, although the LoAs of gluteus medius also trended towards a more medial 

orientation. We attribute these differences to the lateralized HJC and shape variability of the 

proximal femur where the gluteal muscles insert [41]. The altered LoAs of gluteal muscles meant 

a higher percentage of their forces were directed medially. Therefore, to lower the elevated medial 

hip JRFs, reducing the dynamic medial LoAs of these muscles (e.g. via HJC medialization) may 

be important for clinical interventions of DDH. 

The dynamic force-generating ability of hip muscles may also be affected by joint positions 

[13]. For this cohort of patients with untreated DDH, there was a significant yet small (~2-3°) 

difference in hip adduction and pelvis obliquity during late stance. Hip adduction and opposite 

pelvis drop may be related to abductor muscle weakness [42,43], and may further influence their 

abduction MALs. However, it remains inconclusive whether such small kinematic differences are 

generalizable to the DDH population, or if they alter muscle mechanics in a clinically meaningful 

way. 

Altered hip muscle anatomy or forces in DDH may not always propagate to JRF differences 

compared to healthy hips across the whole gait cycle. Our earlier modeling study of untreated 
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DDH also found higher medially-directed JRFs, along with higher hip abductor muscle forces, in 

late stance of barefoot over-ground gait [6]. Harris et al. speculated that abductor MALs were a 

cause of increased medial JRFs, which was confirmed by findings in the current study. In the 

current DDH cohort, increased abductor forces accompanied higher resultant hip JRFs only in late 

stance, and medial JRFs only in early stance. The contrast of hip JRF findings may be related to 

the gait mechanics during treadmill versus over-ground walking [25]. Nonetheless, both studies 

identified simultaneous elevations in hip abductor forces and medial JRFs, indicating such 

mechanical traits of DDH hold true while walking on flat surfaces. 

Several limitations of this study must be considered. First, while we improved upon the 

generic model geometry by using MR-based bone-muscle anatomy, personalization of the muscle 

paths was limited to the static position within the MR images. Thus, inherent uncertainty exists in 

the model-estimated muscle paths through dynamic motions. Second, the models assumed the hip 

to be a rotation-only ball and socket joint. Hips with DDH may have increased instability [1], 

which could induce subtle translations that change dynamic MALs and LoAs. Since hips with 

untreated DDH primarily lack lateral femoral coverage [44], such instability would be most 

evident in the lateral direction, which would further reduce the abductor MALs. Third, we adopted 

and generically scaled muscle architecture parameters (e.g. fiber lengths) in our models, given that 

subject-specific data were unavailable. The altered muscle paths in presence of untreated DDH 

anatomy could potentially lead to architectural changes, which would further affect muscle force 

generation and contributions to joint loading. Likewise, the efficacy of treatments for DDH may 

also depend on their influence on hip muscle architecture. However, our findings suggest that hip 

muscle MALs can already be significantly altered by DDH anatomy even in the absence of 

architectural adaptation. Fourth, our study was limited to gait, which is primarily a sagittal motion. 
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It is possible that the dynamic muscle MALs, LoAs and forces in frontal and transverse planes, 

which were different in hips with DDH, would be further altered during multi-planar tasks such as 

squatting and pivoting. Lastly, while all of our DDH cohort had radiographically confirmed 

dysplasia, there was some heterogeneity in the severity of their bony deformities. Future research 

is needed to specify whether the mechanical roles of muscle MALs and LoAs change with DDH 

severity. 

In conclusion, hip muscle MALs and contributions to JRFs were significantly altered by 

the abnormal bony anatomy of untreated DDH, while muscle LoAs were affected to a lesser extent. 

Patients with DDH demonstrated shorter hip abductor MALs than healthy controls, which 

corresponded to higher abductor forces. Such elevated forces are likely required to stabilize the 

hip in the presence of abnormal bony anatomy. Out-of-plane muscle MALs and medio-lateral 

LoAs also contributed to joint loading primarily in the medial direction. Thus, to better understand 

the mechanisms of joint degeneration and improve the efficacy of treatments for DDH, future 

research and interventions should collectively consider the dynamic anatomy-force relationships 

of the whole hip musculature and their multi-planar functions. 
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Chapter 5: Acetabular Edge Loading during 

Gait is Elevated by the Anatomical 

Deformities of Hip Dysplasia 

5.1 Abstract 
Developmental dysplasia of the hip (DDH) is a known risk factor for articular tissue 

damage and secondary hip osteoarthritis. Acetabular labral tears are prevalent in hips with DDH 

and may result from excessive loading at the edge of the shallow acetabulum. Location-specific 

risks for labral tears may also depend on neuromuscular factors such as movement patterns and 

muscle-induced hip joint reaction forces (JRFs). To evaluate such mechanically-induced risks, we 

used subject-specific musculoskeletal models to compare acetabular edge loading (AEL) during 

gait between individuals with DDH (N=15) and healthy controls (N=15), and determined the 

associations between AEL and radiographic measures of DDH acetabular anatomy. The three-

dimensional pelvis and femur anatomy of each DDH and control subject were reconstructed from 

magnetic resonance images and used to personalize hip joint center locations and muscle paths in 

each model. Model-estimated hip JRFs were projected onto the three-dimensional acetabular rim 

to predict instantaneous AEL forces and their accumulative impulses throughout a gait cycle. 

Compared to controls, subjects with DDH demonstrated significantly higher AEL in the antero-

superior acetabulum during early stance (3.6 vs 2.8 ×BW, p≤0.01), late stance (4.3 vs 3.3 ×BW, 

p≤0.05), and throughout the gait cycle (1.8 vs 1.4 ×BW*s, p≤0.02), despite having similar hip 

movement patterns. Elevated AEL primarily occurred in regions where the shallow acetabular 

edge was in close proximity to the hip JRF direction, and was strongly correlated with the 

radiographic severity of acetabular deformities. The results suggest AEL is highly dependent on 

movement and muscle-induced joint loading, and significantly elevated by the DDH acetabular 
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deformities. Our findings can help refine our understanding of DDH-related pathomechanics, and 

inform clinical assessments of patient-specific risks for labral and chondral damage. 

5.2  Introduction 
Developmental dysplasia of the hip (DDH) is most commonly characterized by a shallow 

acetabulum and is a primary risk factor for premature development of hip osteoarthritis [1,2]. The 

main catalyst of hip osteoarthritis secondary to DDH is articular tissue damage resulting from 

aberrant loading [3], especially near the labrum on the lateral edge of acetabulum [4,5]. Tears to 

the acetabular labrum are highly prevalent in patients with DDH, often painful, and can limit joint 

function [1,4,6]. Such mechanically-induced tears, whether untreated or unresolved after surgery, 

may then induce detrimental mechano-biological changes that advance hip joint degeneration 

[2,5,7]. 

Effectively assessing or treating mechanically-induced labral tears requires first 

understanding the major contributors to acetabular edge loading (AEL). Because direct 

measurement of AEL is not possible, computer simulation of articular loading has been used to 

study both healthy and dysplastic hips. In DDH, contributions of abnormal or surgically-altered 

bones to chondro-labral mechanics have both been demonstrated by finite element models with 

detailed acetabular anatomy [8,9]. While these prior models provided valuable insights about intra-

articular mechanics in hips with DDH, they were driven using generic loading conditions and 

omitted the influence of two major contributors to AEL, namely subject-specific movement 

patterns and muscle-induced joint reaction forces (JRFs) [10]. 

The influence of movement and JRFs on articular mechanics may be assessed using 

dynamic neuromusculoskeletal models [11]. Musculoskeletal modeling studies have previously 
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been used to estimate AEL following total-hip or resurfacing arthroplasty and have helped quantify 

the risks for implant wear with various movement patterns or implant positions [12-15]. Yet to 

date, musculoskeletal models have not been used to estimate AEL in native hips. A reason for the 

lack of such studies could be that the generic anatomy used in most models does not closely 

represent the bony deformities, and hence the joint pathomechanics, of dysplastic hips [16]. 

Recently, we showed that image-based musculoskeletal models can delineate joint and muscle 

mechanical differences between hips with and without DDH [17,18]. By combining subject-

specific bony anatomy, movement patterns and muscle-induced JRFs, image-based models can 

provide refined AEL quantification and advance our understanding of how these factors 

collectively contribute to DDH pathomechanics and hip joint degeneration. 

In addition to understanding the pathomechanics of DDH, it is important to know how 

mechanical variables such as AEL relate to clinically measurable variables. The clinical severity 

of DDH is most commonly assessed using radiographic measures of acetabular anatomy, namely 

the lateral center-edge angle (LCEA) and acetabular inclination (AI) [19,20]. For hips with DDH, 

an LCEA < 20° and AI > 10° are considered clinical indicators of structural instability [21]. 

However, without knowing a clear relationship between radiographic measures and 

pathomechanics, clinical risk assessment of DDH-related labral tears and articular cartilage 

damage remains a challenge. Identifying the associations between AEL and structural 

characteristics such as LCEA and AI can help bridge biomechanical and radiographic evaluation 

of patients to improve personalized risk assessments of mechanically-induced damage. 

Accordingly, the objectives of this study were to (1) use image-based musculoskeletal 

models to estimate AEL in hips with DDH compared to healthy control hips during gait, and (2) 

determine the associations between AEL and radiographic measures of acetabular anatomy (LCEA 
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and AI). We hypothesized that AEL during gait would be higher in antero-superior regions of the 

acetabula with DDH compared to controls, and that AEL magnitude would be associated with the 

radiographic severity of DDH acetabular deformities. 

5.3 Methods 

5.3.1 Subjects and Data Collection 

After Institutional Review Board approval and informed consent, 15 female patients with 

untreated DDH and 15 female healthy control subjects were included, as previously reported [18]. 

Patients were diagnosed by a single orthopaedic surgeon, had unilateral hip or groin pain lasting 

over 3 months, and radiographic evidence of an LCEA less than 20° [19]. Control subjects had no 

self-reported history of hip pathology, no history of groin or lateral hip pain, had no discomfort 

during a clinical exam of hip flexion-adduction-internal-rotation, and were confirmed to have no 

evidence of hip deformity visible on magnetic resonance images. Both groups had no past hip or 

lower extremity surgeries, or functional restraints that would limit gait movements.  

The LCEA and AI angles were measured for each DDH subject on antero-posterior 

radiographs following established techniques [21]. The measurements were standardized with a 

customized Matlab image analysis tool (MathWorks; Natick, MA) (Figure 5.1) and made by a 

senior rater with 10 years of experience, using methods shown to have excellent intra- and inter-

rater reliability [22]. 

With each DDH and control subject lying prone in a neutral hip position, magnetic 

resonance images  were collected from the lumbar region to the knees using a 3T scanner (VIDA, 

Siemens AG; Munich, Germany) with T1-weighted VIBE gradient-echo sequences and SPAIR fat 

suppression (1×1×1 mm voxels) [18]. From the images, 3D bony anatomy of the whole pelvis and 
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femurs was reconstructed using Amira software (v2019a; Thermo Fisher Scientific; Houston, TX), 

including detailed acetabular anatomy. 

 

Figure 5.1. LCEA and AI measurement methods. (A) LCEA was measured as the angle between a first line (thick 

white) through the femoral head center and perpendicular to the inferior aspect of ischial tuberosities (light blue) and 

a second line connecting the femoral head center to the lateral aspect of acetabular sourcil (red). (B) AI was measured 

as the angle between a first line parallel to the inferior aspect of ischial tuberosities and a second line connecting the 

medial and lateral aspects of acetabular sourcils (thin white). 

Motion data were collected at 100 Hz using 10 infrared cameras (Vicon; Centennial, CO) 

and 70 skin markers. All subjects walked at self-selected speed on an instrumented treadmill 

(Bertec; Columbus, OH). Ground reaction forces were recorded at 2000 Hz. Marker data were 

low-pass filtered with an 8 Hz cutoff frequency as determined with a residual analysis [23]. Force 

data were filtered at 6 Hz to minimize treadmill analog artifact noise [24]. 

5.3.2 Subject-Specific Musculoskeletal Models 

Subject-specific musculoskeletal models were created in the OpenSim software [11] as 

recently described [18]. Briefly, a generic OpenSim model [25] was modified by adding image-

based pelvis and femur bony anatomy, including landmark-based 3D alignment of the pelvis tilt, 

obliquity, and rotation. Aligned 3D bony anatomy was then used to update hip joint center (HJC) 
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locations, muscle anatomical paths, and muscle-tendon physiological parameters specific to each 

subject. These models were validated with electromyography as previously reported [18]. 

One representative gait cycle for each subject was simulated in OpenSim to estimate time-

dependent hip biomechanics. Joint angles and net moments were calculated via inverse kinematics 

and inverse dynamics [23]. Hip resultant JRFs and antero-posterior, supero-inferior, and medio-

lateral JRF components were computed using OpenSim Joint Reaction Analysis [26] from muscle 

forces estimated via static optimization [27]. Hip JRF components were expressed in the pelvis 

coordinate system to represent loading onto the acetabulum. JRFs, joint angles and moments on 

the symptomatic side of each DDH subject were chosen for subsequent analyses; for comparison, 

a random hip was chosen for each control subject. 

5.3.3 Estimation of Acetabular Edge Loading (AEL) 

AEL on the analyzed hip during each gait trial was computed by mathematically projecting 

hip JRFs onto the acetabular anatomy in each subject-specific model. First, the acetabular rim was 

delineated on each image-based 3D pelvis, using a principle curvature heat map (Figure 5.2A). 

Then, on each acetabular rim, nine clock-face points were designated within the anterior (2-4 

o’clock), superior (11-1 o’clock), and posterior (8-10 o’clock) quadrants [28] (Figure 5.2B). A 

right-view clock-face convention was adopted for all hips regardless of side such that 3 o’clock 

represented anterior for both right and left hips [28]. 

The hip JRF was represented as a 3D force vector stemming from the femoral head, i.e. the 

HJC (Figure 5.2C). The direction of AEL was defined as the vector from HJC to a point on the 

acetabular rim. The AEL magnitude was then estimated via trigonometric projection of the JRF 

along the AEL direction towards each of the 9 clock-face points (Figure 5.2C). Additionally, a 

‘JRF-to-edge angle’ was defined as the angle between the JRF direction and the AEL direction, 
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which represented how close the JRF was relative to the edge [13]. The JRF-to-edge angle was 

also computed at each clock-face point. 

 

Figure 5.2. Estimation of acetabular edge loading (AEL). (A) The acetabular rim of each subject was delineated using 

a principal curvature heat map. (B) Nine clock-face points were designated on the anterior (“A”), superior (“S”), and 

posterior (“P”) quadrants of the rim. (C) AEL magnitudes were estimated via trigonometric projection of the hip JRF 

(black arrow) along the directions from HJC towards each clock-face point on the rim (red/green arrows). The JRF-

to-edge angle was calculated as the angle between the JRF and the AEL directions (i.e. between black and red/green 

arrows). Note zero posterior AEL when JRF is directed anteriorly. (D) An ‘acetabular edge plane (AEP)’ was fit to 

the rim to measure the distance between the approximated acetabular border and the HJC. 

Because the JRF magnitude and direction change during gait, the clock-face AEL 

magnitude and JRF-to-edge angle are both time-dependent, and were calculated at each time frame 
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throughout the gait trial. AEL was then numerically integrated over the duration of the whole gait 

cycle to calculate its accumulative impulse. 

Finally, a 3D plane was fit to each delineated acetabular rim, termed the ‘acetabular edge 

plane (AEP)’ (Figure 5.2D). The distance from each HJC to AEP was calculated to approximate 

the relative position between the femoral head center and the acetabular border, as an additional 

measure of the DDH anatomical deformity. 

5.3.4 Inter-Group Comparison and Correlations 

Hip JRFs, clock-face AEL, and JRF-to-edge angles were time-normalized to 0-100 percent 

of a gait cycle. The forces were then normalized by body weight (unit: ×BW). To include the 

influence of the gait cycle duration, the accumulative impulses of AEL were not time-normalized, 

but magnitudes were normalized by BW (unit: ×BW*s). Net hip moments were normalized by 

body mass (unit: Nm/kg). Timing of the two hip JRF peaks in early stance (termed ‘JRF1’) and 

late stance (‘JRF2’) in each gait cycle was identified. All instantaneous forces, angles, and 

moments at the times of JRF1 and JRF2 were extracted for statistical analyses, along with the 

accumulative impulses. 

Each demographic, radiographic, and biomechanical variable was assessed for normality 

using the Shapiro-Wilk test. Normally distributed variables were compared between the DDH and 

control groups using independent t-tests, with corrections for heterogeneity of variance as needed. 

Variables violating data normality were compared using the non-parametric Mann-Whitney U 

tests. Statistical significance for all tests was α = 0.05. Effect sizes were determined by Cohen’s d, 

with a large effect defined as d ≥ 0.8 [29]. Within the DDH subjects, associations between 

biomechanical variables (JRFs, AEL, JRF-to-edge angles) and radiographic measures (LCEA and 
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AI) were assessed using Pearson’s correlation (r), or Spearman’s rank correlation (ρ) if data 

violated normality; a strong correlation was defined as |r| or |ρ| ≥ 0.5 [29]. 

5.4 Results 

5.4.1 Subject Demographics and Anatomy 

The DDH and control groups did not differ significantly in age, height, mass, body-mass 

index, or gait speed (Table 5.1). The average LCEA and AI values for the DDH group were within 

ranges of traditional DDH definitions [21]. Additionally, the HJC-to-AEP distance was 

significantly larger in hips with DDH compared to controls (Table 5.1), which strongly correlated 

with smaller LCEA (ρ = -0.53) and larger AI (r = 0.58) among the DDH subjects. 

Table 5.1. Demographics, gait speed, radiographic measures, and the HJC-to-AEP distance (mean ± SD) of DDH and 

control subjects. 

 DDH (N = 15) Control (N = 15) p-value 

Age (years) 26.5 ± 7.9 24.6 ± 6.3 0.62 

Height (m) 1.66 ± 0.07 1.67 ± 0.06 0.85 

Mass (kg) 62.7 ± 9.3 61.9 ± 7.8 0.79 

Body-mass index (kg/m2) 22.7 ± 2.4 22.3 ± 2.3 0.64 

Gait speed (m/s) 1.37 ± 0.15 1.39 ± 0.15 0.59 

Lateral Center-Edge Angle (degrees) 10.5 ± 9.2 N/A - 

Acetabular Inclination (degrees) 18.0 ± 8.4 N/A - 

HJC-to-AEP distance (mm) 9.3 ± 2.5 5.9 ± 1.4 <0.01 

Note: Radiographic measurements of acetabular anatomy were only made for the DDH subjects. HJC, hip joint center; 

AEP, acetabular edge plane. 

5.4.2 Hip JRFs 

As reported in our previous study [18], DDH subjects had higher-than-control medial hip 

JRFs at JRF1 (1.3±0.6 vs 0.9±0.3 ×BW; p = 0.03, d = 0.82), as well as higher resultant (5.7±1.1 

vs 5.0±0.8 ×BW) and superior JRFs (4.8±0.8 vs 4.1±0.7 ×BW) at JRF2 (p ≤ 0.05, d ≥ 0.76). 
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5.4.3 Clock-Face AEL and JRF-to-Edge Angles 

At early-stance JRF1, DDH subjects had higher AEL than controls in the anterior and 

superior regions from 11 to 3 o’clock (p ≤ 0.01, d ≥ 0.97; Figure 5.3AB). Averaged AEL across 

the 11 to 3 o’clock points was 3.6 ×BW in DDH vs. 2.8 ×BW in controls.  Higher AEL correlated 

with smaller LCEA (ρ = -0.58) and larger AI (r = 0.53) for DDH subjects at the 3 o’clock location, 

but not from 11-2 o’clock. Simultaneously, JRF-to-edge angles were smaller in hips with DDH in 

the anterior and superior regions (11-4 o’clock, Figure 5.3AB; p ≤ 0.01, d ≥ 1.18), which 

correlated with smaller LCEA (ρ ≥ 0.60) and larger AI (r ≤ -0.45) from 12-3 o’clock. 

At late-stance JRF2, similar to early-stance, DDH subjects had higher AEL in the anterior 

and superior regions from 11-2 o’clock (p ≤ 0.05, d ≥ 0.76; Figure 5.3AB), which correlated with 

larger AI at 11 o’clock (r = 0.60). Averaged AEL across the 11 to 2 o’clock points was 4.3 ×BW 

in DDH vs. 3.3 ×BW in controls. The JRF-to-edge angles at JRF2 were again smaller in DDH 

subjects across the superior region (11-1 o’clock, Figure 5.3B; p ≤ 0.02, d ≥ 0.92).  Posterior AEL 

magnitudes at JRF2 were minimal, but JRF-to-edge angles were significantly smaller in DDH 

subjects than controls in the posterior region (8-9 o’clock, Figure 5.3C; p = 0.04, d ≥ 0.79).  

Smaller JRF-to-edge angles correlated with larger AI in all regions (r ≤ -0.52), and with smaller 

LCEA at 1 o’clock (ρ = 0.53). 

Over a whole gait cycle, DDH subjects had higher accumulative AEL (i.e. impulse) in a 

broad region from the anterior to postero-superior acetabulum (10-3 o’clock, Figure 5.3; p ≤ 0.02, 

d ≥ 0.91). Averaged AEL accumulative impulse across the 10 to 3 o’clock points was 1.8 ×BW*s 

in DDH vs. 1.4 ×BW*s in controls. Higher accumulative AEL correlated with smaller LCEA (ρ = 

-0.54) and larger AI (r = 0.51) at the 12 o’clock location. 
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Figure 5.3. Average JRF-to-edge angles (top) and AEL (bottom) in (A) anterior (2-4 o’clock), (B) superior (11-1 

o’clock), and (C) posterior (8-10 o’clock) regions throughout gait. Red/black shades = ±1 SD. Vertical yellow bars 

indicate time of JRF peaks (JRF1 and JRF2). Blue shades illustrate accumulative impulses. Statistical significance: 

‘*’ instantaneous, ‘#’ accumulative. 
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5.4.4 Joint Angles and Moments 

Also as previously reported [18], DDH subjects had slightly larger hip adduction 

(1.2°±2.8° vs. -1.4°±2.6°, p = 0.01, d = 0.95) and more pelvis obliquity towards the ipsilateral side 

than controls (1.2°±2.2° vs. -1.1°±1.8°, p < 0.01, d = 1.15) in late stance (JRF2). Hip moments did 

not differ between groups. 

5.5 Discussion 
The objectives of this study were to estimate AEL in hips with DDH compared to healthy 

control hips during gait, and determine the associations between AEL and radiographic measures 

of acetabular anatomy. Results generally supported the hypothesized AEL elevation in hips with 

DDH. Our secondary hypothesis that AEL elevation was associated with the severity of acetabular 

deformities was also supported. Hips with DDH exhibited higher AEL both instantaneously when 

JRFs peaked, and accumulatively over the duration of gait. The specific location and timing of 

elevated AEL varied throughout different phases of gait, suggesting relationships among 

acetabular anatomy, movement, muscle-induced joint loading, and labral mechanics. Such 

dependencies support the need to comprehensively evaluate the whole hip biomechanical 

environment for a refined understanding of DDH pathomechanics, and patient-specific risk 

assessments of DDH-related labral tears and articular cartilage damage. 

The location and severity of acetabular deformities were main contributors to AEL. First, 

elevated AEL almost always accompanied reduced JRF-to-edge angles, which meant that 

whenever hip loading acted in close proximity to the shallow acetabular edge, a large component 

of the JRF would be projected to the edge. This coupled phenomenon was consistent in the anterior 

and superior regions of the DDH acetabula, which matches well-established clinical descriptions 

of the locations where DDH-related labral tears frequently occur [4]. Prior models of articular 
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cartilage stress found that the bony deformities of DDH led to a disproportionately large amount 

of contact stresses on the superolateral labrum [8]. Our results support this edge loading 

phenomenon, and provide new evidence of how the shallow acetabulum of DDH also causes 

muscle-induced edge loading to be elevated. We also found that the shallower the acetabulum was, 

as shown by LCEA and AI, the higher JRF loading would be applied at the lateral edge in late 

stance and over a gait cycle. Additionally, a larger HJC-to-AEP distance demonstrated that the 

lateral edge of dysplastic hips was farther away from the femoral head center than controls [1,30], 

which further elevated AEL. Based on these associations, region-specific risks for labral tears or 

cartilage damage can vary according to radiographic metrics of acetabular deformity and in context 

with muscle-induced pathomechanics. 

Labral tears can be caused by both acute and chronic mechanisms [5]. High acute hip 

loading during gait typically occurs in a transient phase of motion, such as weight acceptance 

during early stance (i.e., JRF1) and the late-stance transition to push-off (i.e., JRF2). Hip loading 

from JRFs is generally in the supero-medial direction throughout a gait cycle, and shifts from 

posterior to anterior over stance [31,32]. We found that instantaneous AEL was elevated in hips 

with DDH at both JRF1 and JRF2. Cyclic high instantaneous loading on the superior and anterior 

acetabulum when JRFs peak may be another risk factor that compounds with the shallow 

acetabulum to heighten the likelihood of labral tears and articular cartilage damage in those regions 

[1,5]. Although high instantaneous loads can occur during traumatic events, a large percentage of 

labral tears cannot be linked to known high-impact events [6,33]. Instead, most tears may be caused 

by accrued micro-damage from routine yet aberrant loading [34]. Muscle-induced AEL may 

contribute to such insidious damage not only at cyclic points when JRFs peak, but also through 

accumulative loads across the entire gait motion. Indeed, accumulative AEL during gait was not 
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only significantly increased in our patients with DDH, but also spanned a wide region around the 

acetabular rim. Because the duration of abnormal AEL could play a vital role in the development 

of labral tears, the assessments of labral mechanics in response to disease progression or treatments 

should be monitored over time. 

It is notable that antero-superior AEL was elevated not just in late stance when anterior 

JRFs peaked, but also in early stance when the hip was flexed and the joint loading was less 

anterior. While JRFs were directed farther away from anterior edge in both groups during early 

stance (Figure 5.3A), the JRF-to-edge angles were relatively smaller in DDH subjects versus 

controls. Such inter-group differences may explain why AEL was relatively elevated and can be 

caused by the DDH subjects’ higher medial JRFs during early stance. Although medial loading 

may be produced by the hip muscles to stabilize the femoral head in the shallow acetabulum [17], 

due to the dynamic nature of hip loading and 3D acetabular positions, a force component may still 

be projected towards the shallow anterior edge. This dynamic interaction may also explain why 

the lateral acetabular anatomy (LCEA and AI) was associated with an anterior AEL in early stance. 

Its potential contributions to labral and cartilage damage should not be overlooked, especially 

considering the accumulative impacts (Figure 5.3). 

To our knowledge, this study was the first to quantify anatomy- and movement-specific 

loading at the native acetabular edge, either with or without anatomical deformity. Our findings 

were indirectly supported by edge loading evaluations of prosthetic hips [12,13]. Specifically, edge 

loading risks in prosthetic acetabular cups that poorly covered the femoral head were analogous to 

the elevated AEL we demonstrated in the shallow native acetabula. These prior studies also 

demonstrated how prosthetic cup positioning could reduce edge loading risks and implant wear. 

Likewise, surgical re-orientation of the native, pre-arthritic DDH acetabula have been shown (via 
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model simulations) to greatly influence muscle-induced JRFs [35], which may be further informed 

by model-based AEL analyses to minimize the risks for labral tears and joint degeneration. 

Several limitations of this study should be considered. First, due to a small sample size, it 

was not feasible to statistically analyze the interactions between AEL and the different subgroups 

of posterior, anterior, and global acetabular deficiency [36]. DDH patients with poor anterior and 

posterior femoral coverage may possess different risks of edge loading and labral tears, and 

respond differently to peak or repetitive loading during movements. While we reported AEL for 

the DDH group as a whole, our methods were precise to individuals, which could be readily applied 

to subgroup analyses given a large enough sample. A second limitation was that HJC locations in 

the musculoskeletal models were assumed static within the acetabulum. Due to the potential 

instability of dysplastic hips [2], subtle translation of the femoral head during motion may occur 

and could affect projected AEL. However, by defining JRF and AEL directions both stemming 

from the HJC, their relative closeness (i.e. JRF-to-edge angle) should still robustly capture the 

mechanical influence of the acetabular deformities. Third, we used static optimization to estimate 

muscle forces, JRFs and AEL, which did not incorporate muscle co-contractions that could be 

altered in hips with DDH. We chose this method as it was able to estimate hip JRFs during gait 

close to benchmark data [27]. To study high-speed movements that involve significant muscle co-

contractions, dynamic force estimation may be necessary. 

In conclusion, AEL was significantly elevated in hips with DDH compared to healthy 

controls, both instantaneously when JRFs peaked and accumulatively over the duration of gait. 

The extent of high AEL was strongly correlated with the severity of DDH deformities, especially 

lateral acetabular deficiency. Our findings suggest that AEL magnitude and location are highly 

dependent on movement, muscle-induced joint loading, and the DDH acetabular deformities. 
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Because the anatomical, movement, and biomechanical factors are interrelated and patient-

specific, clinical evaluations of DDH should consider the hip biomechanical environment in 

context with established anatomical measures as risk factors for labral tears and articular cartilage 

damage. 
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Chapter 6: Hip Dysplasia Elevates Loading 

at the Posterior Acetabular Edge during 

Double-Legged Squat 

6.1 Abstract 
Hips with developmental dysplasia (DDH) are at a heightened risk of premature hip 

osteoarthritis, which is often expedited by mechanically-induced articular tissue damage. A 

prevalent form of damage in DDH is labral tears caused by abnormal loading at the shallow 

acetabular edge. Although the majority of DDH-related labral tears occur in the antero-superior 

acetabulum, posterior labral tears can be prevalent in individuals whose lifestyle involves frequent 

high hip flexion tasks such as squatting. To better understand the contributions of task-specific 

movements to acetabular edge loading (AEL), and the region-specific risks for labral tears, we 

used image-based musculoskeletal models to compare AEL during double-legged squat between 

hips with DDH (n=10) and healthy controls (n=10). Hips with DDH had higher-than-control 

posterior AEL at the lowest point of squat (2.6 vs 1.8 ×BW, p≤0.04) and accumulatively 

throughout the duration of squatting motion (2.6 vs 1.9 ×BW*s, p≤0.04). Elevated posterior AEL 

coincided with increased net hip extension moments and posterior joint reaction forces, and was 

correlated with the severity of DDH acetabular deformity. Interestingly, the regions of peak and 

accumulative AEL corresponded to the intensity and duration of hip loading respectively. Our 

findings suggest AEL is highly dependent on specific movements such as squatting, and thus is 

unique to the lifestyles of individuals. Clinical evaluation of DDH should consider patient-specific 

anatomy, lifestyle, and time factors together to make personalized treatment decisions that reduce 

the risks of secondary labral and cartilage damage. 
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6.2 Introduction 
Developmental dysplasia of the hip (DDH) is a major risk factor for premature 

development of hip osteoarthritis [1,2]. The onset of osteoarthritis secondary to DDH is often 

expedited by mechanically-induced articular tissue damage and the resulting detrimental mechano-

biological changes [2,3]. For example, one of the most prevalent forms of damage in hips with 

DDH is labral tears and cartilage damage at the acetabular rim, which are thought to be caused by 

excessive loading near the labrum at the lateral acetabular edge [1,4,5]. Torn acetabular labrum 

compromises the normal loading environment of the hip, which may then lead to joint degeneration 

[6,7]. To better evaluate and accordingly reduce the risks for DDH-related labral tears and articular 

cartilage damage, reliable quantification of acetabular edge loading (AEL) and identification of its 

contributing factors are required. 

A probable factor that contributes to excessive AEL is the anatomical deformity of DDH. 

DDH is clinically characterized by a shallow acetabulum that poorly covers the femoral head 

during movements [1,8]. Computational studies have shown that the shallow acetabulum causes a 

lateral shift of the articular contact area and increased contact stresses borne by the labrum at the 

supero-lateral acetabular edge [9]. Such study quantitatively described the altered labral mechanics 

unique to the DDH bony anatomy, and could partially explain why the supero-lateral region is 

among where labral tears were frequently observed [4]. 

However, acetabular anatomy alone cannot fully explain the region-specific risks for labral 

tears in DDH. Other than the supero-lateral region, the anterior acetabulum is another common 

site of labral tears [4,6]. US and England-based studies reported over two thirds of labral tears in 

the anterior region [7,10], which have been attributed to higher repetitive mechanical loading in 

the anterior hip during routine tasks such as gait [6,11]. For subjects with DDH, the task-specific 
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hip joint loading could compound with the existing anatomical deformity and complicate the 

region-specific risks for labral tears. Notably, in labral tear studies from Japan where daily tasks 

involve frequent high hip flexion such as squatting and sitting on the ground, posterior tears were 

found in at least 70% of the cases [12,13]. Despite this clinical observation, the mechanistic risk 

factors for posterior labral tears or AEL are unclear. It is worth noting that posterior acetabular 

deficiency can be as common as anterior or global deficiency among hips with DDH [14], while 

for a population like young adults with DDH, high hip flexion tasks can be prevalent due to their 

active lifestyles and involvement in sports. To reliably evaluate how likely these patients may 

suffer labral tears, and where in the acetabulum such tears are most likely to occur, quantification 

of AEL specific to dynamic movement tasks such as squatting is needed. 

Although it is not possible to directly measure task-specific AEL in vivo, musculoskeletal 

models are capable of estimating joint reaction forces (JRFs) from subject-specific movements 

[15], which may be combined with medical image-based anatomy to predict articular-level 

mechanics. To our knowledge, no past study has reported how hip JRFs and the resulting AEL are 

altered in DDH during high flexion tasks such as double-legged squat. Thus, the objective of this 

study was to use image-based musculoskeletal models to estimate AEL during double-legged squat 

in hips with DDH compared to healthy controls. We hypothesized that AEL during squat would 

be higher in the posterior region of the acetabula with DDH, and the extent of AEL elevation would 

be correlated to the severity of DDH acetabular deformity. 

6.3 Methods 

6.3.1 Subjects and Experimental Data Collection 

After Institutional Review Board approval and informed consent, 10 female patients with 

untreated DDH and 10 female healthy control subjects were included [16] as part of a larger case-
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control study (Level of Evidence III). All subjects in the larger research had gait movement data 

collected for separate studies (Chapters 4 and 5) [16], among whom the 20 current subjects were 

a subset instructed to also perform double-legged squats at the time of data collection. Controls 

were age-matched to the DDH patients. Patients were diagnosed by a single orthopaedic surgeon 

and had radiographic evidence of a lateral center-edge angle (LCEA) <20° [8]. Control subjects 

had no self-reported history of hip pathology, no discomfort during a clinical exam of hip flexion-

adduction-internal-rotation, and no hip anatomical deformity visible on magnetic resonance 

images. Both groups had no past hip surgeries or functional restraints that would limit their ability 

to perform double-legged squats. For each DDH subject, the LCEA and acetabular inclination (AI) 

angles (Figure 6.1) were measured on antero-posterior radiographs, following established clinical 

standards to evaluate the acetabular anatomy [17]. The measurements were standardized with a 

customized Matlab image analysis tool (MathWorks; Natick, MA). 

 

Figure 6.1. LCEA and AI measurements. LCEA was measured as the angle between a first line (black) through the 

femoral head center and perpendicular to the inferior aspect of ischial tuberosities (blue) and a second line connecting 

the femoral head center to the lateral aspect of acetabular sourcil (red). AI was measured as the angle between a first 

line parallel to the inferior aspect of ischial tuberosities and a second line connecting the medial and lateral aspects of 

acetabular sourcils (purple). 
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With each DDH and control subject lying prone in a neutral hip position, magnetic 

resonance (MR) images were collected from the lumbar region to the knees using a 3T scanner 

(VIDA, Siemens AG; Munich, Germany) with T1-weighted VIBE gradient-echo sequences and 

SPAIR fat suppression (1×1×1 mm voxels) [16]. From the MR images, 3D bony anatomy of the 

whole pelvis and both femurs was reconstructed using Amira software (v2019a; Thermo Fisher 

Scientific; Houston, TX), including detailed acetabular anatomy. 

Squatting movement data were collected at 100 Hz using 10 infrared cameras (Vicon; 

Centennial, CO) and 70 skin-mounted markers placed on each subject. All subjects performed at 

least 3 successful double-legged squatting sequences (Figure 6.2) without interrupted motion or 

loss of balance, with each foot on separate in-ground force platforms (Bertec; Columbus, OH). 

Ground reaction forces on both feet were recorded at 2000 Hz. Marker trajectory and ground 

reaction force data were low-pass filtered with 8 Hz and 10 Hz cutoff frequencies respectively, as 

determined with a residual analysis [18]. 

 

Figure 6.2. Example of a squatting sequence. Ground reaction forces (green arrows) on each foot were recorded by 

an in-ground force platform. The start, end, and lowest point of a squatting trial (MaxSq) were determined using the 

maximum and minimum vertical positions of a skin marker placed above the top of sacrum (red dot). 

The start of each squatting trial was defined at the time point when the subject began 

descending, and ended when the subject finished ascending, based on the maximum vertical 
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position of a skin marker placed above the top of sacrum (Figure 6.2). The minimum vertical 

position of the sacral marker was used to define the time when the subject reached the lowest point 

of squat (‘MaxSq’; Figure 6.2). 

6.3.2 Image-based Musculoskeletal Models 

Subject-specific musculoskeletal models were created in the OpenSim software [19] as 

recently described [16]. Briefly, a generic OpenSim model [20] was modified by adding MR-based 

pelvis and femur bony anatomy, including landmark-based 3D alignment of the pelvis tilt, 

obliquity, and rotation. Aligned 3D bony anatomy was then used to update hip joint center (HJC) 

locations, muscle anatomical paths, and muscle-tendon physiological parameters in the model 

specific to each subject. These models were validated with electromyography as previously 

reported [16]. 

One representative squatting trial for each subject was simulated in OpenSim to estimate 

hip biomechanics. Joint angles and net moments were calculated via inverse kinematics and 

inverse dynamics [18]. Resultant hip JRFs and their antero-posterior, supero-inferior, and medio-

lateral components were computed using OpenSim Joint Reaction Analysis [15] from muscle 

forces estimated via static optimization [21]. Hip JRF components were expressed in the pelvis 

frame to represent loading onto the acetabulum. JRFs, joint angles and moments on the 

symptomatic side of each DDH subject were chosen for subsequent analyses; for comparison, a 

random hip was chosen for each control subject. 

6.3.3 Acetabular Edge Loading (AEL) Estimation 

AEL on the analyzed hip during each squatting trial was computed by mathematically 

projecting hip JRFs onto the acetabular anatomy in each subject-specific model. First, the 

acetabular rim was delineated on each MR-based 3D pelvis, using a principle curvature heat map 
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(Figure 6.3A). Then, on each acetabular rim, nine clock-face points were designated within the 

anterior (2-4 o’clock), superior (11-1 o’clock), and posterior (8-10 o’clock) quadrants (Figure 

6.3B) [22]. A right-view clock-face convention was adopted for all hips regardless of side such 

that 3 o’clock represented anterior for both right and left hips [22]. 

The hip JRF was represented as a 3D force vector stemming from the center of femoral 

head, i.e. the HJC (Figure 6.3C). The direction of AEL was defined as the vector from HJC to a 

point on the acetabular rim. The AEL magnitude was then estimated via trigonometric projection 

of the JRF along the AEL direction towards each of the 9 clock-face points (Figure 6.3C). Next, 

a ‘JRF-to-edge angle’ was defined as the angle between the JRF direction and the AEL direction, 

which represented how close the JRF direction was relative to the edge [23]. The JRF-to-edge 

angle was also computed at each clock-face point. 

The JRF magnitude and direction both change over the course of the squatting sequence. 

Therefore, the clock-face AEL magnitude and JRF-to-edge angle are both time-dependent, and 

were calculated at each time frame throughout every squatting trial. AEL was then numerically 

integrated over the duration of the whole trial to calculate its accumulative impulse throughout the 

squatting sequence. 

Lastly, a 3D ‘acetabular edge plane (AEP)’ was fit to each delineated acetabular rim 

(Figure 6.3D). The distance from each HJC to AEP was calculated to approximate the relative 

position between the femoral head center and the acetabular border, as an additional mechanistic 

factor that could potentially alter hip JRFs [16] and the AEL during squat. 
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Figure 6.3. Estimation of acetabular edge loading (AEL) during squat. (A) The acetabular rim of each hip was 

delineated using a principal curvature heat map. (B) Nine clock-face points were designated on the anterior (“A”), 

superior (“S”), and posterior (“P”) quadrants of the rim. (C) AEL magnitudes were estimated via trigonometric 

projection of the hip JRF (black arrow) along the directions from HJC towards each clock-face point on the rim (e.g. 

green arrow for 11 o’clock). The JRF-to-edge angle was defined as the angle between the JRF and the AEL directions 

(e.g. between black and green arrows). Diagram depicts hip JRF near the lowest point of squat, which was in the 

posterior direction while AEL was projected to the posterior and superior acetabulum. (D) An ‘acetabular edge plane 

(AEP)’ was fit to the rim to measure the distance between the approximated acetabular border and the HJC (yellow 

line). 
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6.3.4 Data Analysis and Statistics 

Hip JRFs, clock-face AEL, and JRF-to-edge angles were time-normalized to 0-100 percent 

of a squatting trial. The forces were then normalized by body weight (unit: ×BW). To include the 

influence of squatting duration, the accumulative impulses of AEL were not time-normalized, but 

magnitudes were normalized by BW (unit: ×BW*s). Net hip moments were normalized by body 

mass (unit: Nm/kg). All time-dependent forces, angles, and moments were extracted at the time of 

MaxSq for subsequent statistical analyses, along with the integrated accumulative impulses. 

Each demographic and biomechanical variable was assessed for normality using the 

Shapiro-Wilk test. Normally distributed variables were compared between the DDH and control 

groups using independent t-tests, with corrections for heterogeneity of variance as needed. 

Variables violating data normality were compared using the non-parametric Mann-Whitney U 

tests. Statistical significance for all tests was α = 0.05. Effect sizes were determined by Cohen’s d, 

with a large effect defined as d ≥ 0.8 [24]. Within the DDH subjects, associations between 

biomechanical variables (JRFs, AEL, JRF-to-edge angles) and radiographic measures (LCEA and 

AI) were assessed using Pearson’s correlation (r), or Spearman’s rank correlation (ρ) if data 

violated normality; a strong correlation was defined as |r| or |ρ| ≥ 0.5 [24]. 

6.4 Results 

6.4.1 Subject Demographics and Anatomy 

The DDH and control groups did not differ significantly in age, height, mass, or body-mass 

index (Table 6.1). The average LCEA and AI values for the DDH subjects were within ranges of 

the clinical definitions of DDH [17]. HJC-to-AEP distance was significantly larger in hips with 

DDH compared to controls (Table 6.1), which strongly correlated with a smaller LCEA (r = -0.56) 

among the DDH subjects. 
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Table 6.1. Demographics, radiographic measures, and the HJC-to-AEP distance (mean ± SD) of DDH and control 

subjects. 

 DDH (n = 10) Control (n = 10) p-value 

Age (years) 25.5 ± 7.5 25.7 ± 7.4 0.96 

Height (m) 1.66 ± 0.09 1.66 ± 0.05 0.93 

Mass (kg) 64.2 ± 10.5 61.0 ± 7.7 0.44 

Body-mass index (kg/m2) 23.3 ± 2.3 22.1 ± 2.5 0.30 

Lateral Center-Edge Angle (degrees) 14.0 ± 5.2 N/A - 

Acetabular Inclination (degrees) 16.3 ± 6.1 N/A - 

HJC-to-AEP distance (mm) 8.8 ± 1.9 6.0 ± 1.6 <0.01 

Note: Radiographic measurements were only made for the DDH subjects. HJC, hip joint center; AEP, acetabular edge 

plane. 

 

Figure 6.4. Hip JRF resultant and antero-posterior, supero-inferior, medio-lateral components throughout a squatting 

trial, averaged among DDH and control subjects. Red/black shades = ±1 SD. Vertical yellow bars indicate time of 

lowest point of squat (MaxSq). ‘*’ Indicates inter-group statistical significance. 
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6.4.2 Hip JRFs 

At MaxSq, DDH subjects had significantly higher posterior hip JRFs compared to healthy 

controls (3.4±0.6 vs 2.7±0.7 ×BW, Figure 6.4; p = 0.03, d = 1.05). Higher posterior JRFs also 

correlated with smaller LCEA for the DDH subjects (r = 0.52). 

6.4.3 Clock-Face AEL and JRF-to-Edge Angles 

At MaxSq, DDH subjects had higher AEL in the posterior acetabular region compared to 

controls, which extended to the posterior end of the superior region (8-11 o’clock, Figure 6.5; p ≤ 

0.04, d ≥ 0.99) and correlated with smaller LCEA from 9-11 o’clock (r ≤ -0.63). Averaged AEL 

at MaxSq across 8-11 o’clock points was 2.6 ×BW in DDH vs. 1.8 ×BW in controls. Elevated 

AEL accompanied reduced JRF-to-edge angles across the entire posterior and superior regions (8-

1 o’clock, Figure 6.5; p ≤ 0.03, d ≥ 1.17), which correlated with smaller LCEA from 9-12 o’clock 

(r ≥ 0.56). 

Over the whole squatting sequence, DDH subjects had higher AEL accumulative impulses 

from the superior end of the posterior acetabulum to the most superior region (10-12 o’clock, 

Figure 6.5; p ≤ 0.04, d ≥ 0.97), which were slightly less posterior and more superior compared to 

the high-AEL regions at MaxSq. Averaged AEL accumulative impulse across 10-12 o’clock points 

was 2.6 ×BW*s in DDH vs. 1.9 ×BW*s in controls. Higher accumulative AEL correlated with 

smaller LCEA (ρ = -0.54) at 12 o’clock. 
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Figure 6.5. Average JRF-to-edge angles (top) and AEL (bottom) in (A) superior (11-1 o’clock) and (B) posterior (8-

10 o’clock) regions throughout a squatting trial. Note AEL in the anterior region (2-4 o’clock) was minimal, where 

no inter-group differences were found, thus were not shown. Red/black shades = ±1 SD. Vertical yellow bars indicate 

time of MaxSq. Blue shades illustrate accumulative impulses over the duration of a whole squatting trial. Inter-group 

statistical significance: ‘*’ instantaneous, ‘#’ accumulative. 
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6.4.4 Joint Angles and Moments 

At MaxSq, DDH subjects had a small pelvis obliquity towards contralateral, instead of 

towards ipsilateral for controls (-1.1°±2.4° vs. 1.4°±1.8°, p = 0.01, d = 1.20). Hip moments 

significantly differed between the groups, as DDH subjects had larger hip extension moments 

(0.82±0.21 vs. 0.65±0.14 Nm/kg, p = 0.04, d = 0.97) and smaller external rotation moments 

(0.06±0.11 vs. 0.17±0.09 Nm/kg, p = 0.02, d = 1.18) than controls at MaxSq. 

6.5 Discussion 
The objective of this study was to use image-based musculoskeletal models to estimate 

AEL during double-legged squat in hips with DDH compared to healthy controls. Our models 

demonstrated that AEL during squat was higher in the posterior-to-superior regions of the 

acetabula with DDH, and the extent of elevated AEL was correlated with the severity of DDH 

acetabular deformity (as quantified by the LCEA and AI radiographic measures), which generally 

supported our hypothesis. Elevated posterior AEL coincided with increased hip JRFs and net hip 

extension moments, which suggested that labral loading is directly dependent on task-specific 

movements and muscle-induced joint loading. A particularly interesting finding was that the 

regions of elevated peak and accumulative AEL corresponded to the intensity and duration of hip 

JRFs respectively, which supported the distinctive contributions of acute and chronic joint loading 

and the multiple pathways to region-specific labral pathomechanics. The convoluted influences of 

abnormal anatomy, task-specific movements, and duration of loading suggest that the risks for 

DDH-related labral tears may be highly subject-specific, thus the anatomical, lifestyle, and time 

factors for unique patient individuals should all be considered during clinical evaluation and the 

corresponding treatment decision making. 
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The anatomical deformity of the dysplastic acetabulum likely contributed to elevated AEL 

during double-egged squat. We found that AEL in the superior region of the acetabula with DDH 

was not only higher than controls, but also associated with smaller LCEA, a standard clinical 

measure of shallow lateral acetabulum [8,17]. Namely, the severity of supero-lateral deficiency 

directly linked to the extent of AEL elevation at the superior acetabular edge, which agreed with 

prior finite element models that showed higher contact stresses on the supero-lateral labrum during 

simulated gait [9]. Even as hip joint motions and loading patterns were entirely different between 

a gait cycle and a squatting sequence, elevated loading on the shallow supero-lateral edge was 

common for both movement tasks. Considering supero-lateral deficiency is almost universal in 

hips with DDH [14], this region may be prone to mechanically-induced labral tears for most 

patients. 

The elevation of posterior AEL is unique to high hip flexion tasks such as double-legged 

squat, and may be caused by a combination of mechanical and anatomical factors. Because most 

clinical reports from Western countries found antero-superior labral tears to be more common 

[7,10], the importance of posterior labral mechanics has not been emphasized. Yet, other than 

Japanese studies that found over 70% of the tears posteriorly [12,13], in some reports from Western 

countries, there were also tears or fraying of the posterior labrum in more than 25% of the patients 

[7,10]. These studies have associated the posterior tears with traumatic high-impact events. Such 

association is supported by our finding of higher-than-control posterior JRFs in DDH at MaxSq, a 

time point when high impact loading was exerted to the posterior acetabulum and possibly near 

the labrum at the edge. The higher posterior JRFs may in turn be a result of the abnormal DDH 

anatomy, including an increased HJC-to-AEP distance that alters force production from the 

surrounding hip muscles [16]. Indeed, the total muscle force demand to maintain the squatted 
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position may be higher in DDH subjects, as suggested by the higher net hip extension moments at 

MaxSq. It should be noted that the inter-group differences in hip moments, JRFs and AEL all 

existed without a substantial difference in hip angles at MaxSq. The contrast of similar kinematics 

and altered mechanics indicates that abnormal anatomy can combine with possibly normal motions 

and still results in abnormal articular forces. Hence for individuals with DDH whose routine or 

lifestyle demands frequent high hip flexion tasks, extra attention should be paid to the risks of 

posterior labral pathomechanics, even if there is no visible movement deficiency. 

Although generally posterior, the regions of higher-than-control peak and accumulative 

AEL due to DDH slightly differed, which may indicate the multiple mechanical pathways that 

could lead to DDH-related labral tears. The instantaneous AEL peaked near MaxSq along with the 

resultant and posterior hip JRFs. Accordingly, the regions of elevated peak AEL were most 

posterior (8-11 o’clock) where the peak JRF was directed (Figure 6.3C). However, when 

integrated over the full squatting sequence, the accumulative effect of elevated AEL was most 

evident in a postero-superior region (10-12 o’clock) that did not include the very posterior end. It 

is notable that although the posterior-most region was bearing the peak hip loading mid-squat, the 

postero-superior region was loaded for a longer duration throughout the squatting sequence. The 

time-dependent effect may be best seen at 11 o’clock, where AEL during the descending and 

ascending phases of squat exceeded that near MaxSq (Figure 6.5A, right). These findings support 

clinical reports of the postero-superior labral tear locations [13], and highlight the potential roles 

of repetitive loading on mechanically-induced damage. Collectively, these results indicate that 

acute high impact and insidious repetitive overloading during high hip flexion tasks could both 

contribute to posterior labral damage, with each affecting potentially different locales. Vice versa, 

evaluating the patterns of DDH-related labral damage in context with quantitative hip mechanics 
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such as the task-specific AEL may help clinicians identify patient-specific etiology and possibly a 

better-informed decision for treatments. 

Our study was the first to estimate in-vivo loading at the native hip acetabular edge during 

double-legged squat. A few past studies also used musculoskeletal models to predict edge loading 

risks in prosthetic hip acetabular cups during tasks ranging from routine gait [23] to high hip 

flexion sit-to-stand [25]. These prior studies showed that movement alterations such as increased 

hip abduction could effectively lower the risks of edge loading. Analogously, movement 

alterations could also potentially reduce edge loading in the pre-arthritic hips with DDH. Indeed, 

recent musculoskeletal models demonstrated that movement retraining can lower JRFs in 

dysplastic hips during single-legged squat [26]. While surgical correction of anatomy remains the 

most common treatment for DDH, new interventions that involve movement retraining should be 

considered to further reduce the risks of edge loading. 

The results of this study and our interpretations should be considered with several 

limitations. First, our results do not necessarily capture the precise effects of posterior acetabular 

deformity on AEL. The LCEA and AI angles primarily quantify lateral acetabular deficiency, 

while standardized radiographic measures such as the crossover and posterior wall signs only 

qualitatively (and often poorly) describe posterior deficiency [14,17]. Some 3D-based measures 

on posterior coverage exist such as the acetabular sector angle [27], but their reliability on MR 

images has not been verified. Recent research have combined 3D acetabular and femur anatomy 

from MR to quantify region-specific coverage [28], which may be used to characterize the 

relationships between posterior deficiency and task-specific AEL. Second, the relatively small 

sample size could not empower us to reliably detect the underlying mechanistic factors that could 

contribute to the altered muscle demand (i.e. net hip moments) and induced hip loading (i.e. JRFs). 
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For example, the smaller-than-control hip external rotation moments may indicate subtle kinetic 

strategies adapted by the DDH subjects to compensate for increased hip extension moments. 

Altered hip kinetics and muscle activity during squat have been observed in subjects with 

femoroacetabular deformity [29], and could likewise occur in those with DDH. With a larger 

cohort, future studies may further delineate the neuromuscular risk factors that ultimately lead to 

abnormal articular or labral loading. Lastly, the static optimization criterion we used to estimate 

muscle forces may underestimate hip muscle co-contractions during squat, and thus the muscle-

induced JRFs and AEL. We chose this method to better match the benchmark hip JRF data and 

other recent hip musculoskeletal models used to simulate double-legged squats [21]. 

In conclusion, AEL during double-legged squat was significantly elevated in the posterior-

to-superior regions of the acetabula with DDH, which was correlated with the severity of 

anatomical deformity. Elevated posterior AEL coincided with increased hip JRFs and net hip 

extension moments, indicating altered kinetics and muscle demand that were unique to squatting 

motion and also contributed by the abnormal anatomy. Regions of AEL elevation corresponded to 

the intensity and duration of hip loading, which supported time-dependent effects and the multiple 

distinctive pathways to region-specific labral pathomechanics in DDH. These findings collectively 

suggest that AEL is highly dependent on task-specific movements and muscle-induced joint 

loading, thus unique to the routine lifestyles of patient individuals. For this reason, we recommend 

future clinical evaluation of DDH to consider the anatomical, lifestyle, and time factors together 

and specifically for each patient, in order to make personalized treatment decisions that better 

reduce the risks of secondary labral and articular damage. 
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Chapter 7: Summary and Future Directions 

7.1 Conclusions, Significance, and Novelty 
This research aimed to (1) establish and standardize the creation of image-based MSMs for 

estimation of hip biomechanics in DDH, and then to (2) use subject-specific MSMs to estimate 

hip biomechanics in DDH compared to healthy controls, and analyze their relationships with the 

hip anatomical abnormalities of DDH. To address these aims, image-based MSMs with detailed 

anatomy were first compared against conventional MSMs with generic anatomy, to identify the 

influences of model anatomy on estimated hip biomechanics, on both DDH and healthy control 

subjects (Chapter 3). Findings from Chapter 3 helped determine the level of anatomical details in 

MSMs needed for reliable and feasible estimation of DDH biomechanics. Then, using MSMs with 

the appropriate level of specificity, key biomechanical estimates such as hip joint reaction forces 

(JRFs) and muscle forces during gait were compared between DDH and control groups along with 

hip muscle moment arm lengths (MALs) and lines of action (LoAs), to clarify the relationships 

between DDH hip anatomy, dynamic muscle force production, and contributions to joint loading 

(Chapter 4). Next, muscle-induced hip JRF estimates from the MSMs were projected to image-

based 3D pelvis to predict how DDH bony anatomy affects dynamic loading at the shallow 

acetabular edge (Chapter 5). In addition to DDH-to-control comparisons, acetabular edge loading 

(AEL) during gait was also analyzed against clinical radiographic measures to determine its 

associations with the anatomical characteristics. Finally, MSM-based AEL methods in Chapter 5 

were extended to analyze double-legged squat (Chapter 6), to more comprehensively identify the 

contributors to task-specific articular-level hip biomechanics in DDH. Outcomes from Chapters 4 

through 6 helped clarify both the mechanistic sources and influences of abnormal joint loading in 

hips with DDH during dynamic movements, which improved our knowledge how mechanically-
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induced joint damage may be developed in those structurally abnormal hips. Such new knowledge 

can potentially inform personalized clinical evaluation and treatments of DDH to better correct the 

hip biomechanical environment and improve long-term hip joint health. 

Despite their significant clinical meanings, hip joint and muscle forces in DDH during 

dynamic activities have rarely been quantified, partly due to the difficulties with direct 

measurements. Even as MSMs can estimate such quantities via simulation, the few MSM studies 

on DDH prior to this dissertation [1,2] did not reach consensus on the biomechanical findings, 

potentially due to the different levels of model anatomy used. To determine whether detailed model 

anatomy is a prerequisite for MSMs to delineate hip pathomechanics unique to DDH, direct model-

to-model comparisons on the same subjects were needed [3]. Chapter 3 was the first study to make 

such comparisons on both DDH and healthy subjects, which found estimates from CT-based 

subject-specific MSMs and scaled generic MSMs to be significantly different, and differences 

among the models on DDH subjects were larger than those on the controls. Especially, higher hip 

JRFs as a result of dysplastic bony anatomy supported past mechanical theories of DDH [4], which 

indicated a relative improvement in model accuracy. Among potential contributors to the altered 

JRFs, a more accurate representation of the lateralized hip joint center (HJC) [5] was speculated 

as a major factor. These findings suggest that a high level of patient-specific anatomical detail that 

captures the unique deformity traits of DDH is necessary for MSMs to identify potentially 

detrimental hip mechanics during dynamic movements. A notable finding was that the moderately-

specific models with CT-based pelvis scaling estimated very similar JRFs and muscle forces to the 

generic MSMs. These “semi-specific” MSMs were still more specific than generic, but much 

simpler (and cost-friendly) than models using full CT-based 3D anatomy, because the nonuniform 

scaling would be replicable with multi-view 2D radiographs readily available in the clinics. 
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However, the non-difference versus generic suggests such approach was not enough to identify 

the unique hip mechanics of DDH. Therefore, even as their creation remains an challenging task, 

image-based MSMs were recommended as the most appropriate for estimating hip biomechanics 

in DDH. This conclusion from Chapter 3 provide valuable references on how MSMs may be used 

in DDH and other hip-related biomechanical studies, while laying the methodological framework 

for the subsequent studies in this dissertation. 

Past theories [4] and model studies [5] including MSMs [2] have all agreed that abnormal 

bony anatomy is a major contributor to pathological hip joint loading in DDH. However, the 

mechanistic relationships between anatomy (deformity of the bones) and dynamic forces (altered 

joint loading during movements) were not fully clarified. For example, it was unclear how 

lateralized HJC [6] contributed to higher hip JRFs compared to controls [2] and in DDH-specific 

models (Chapter 3) [7]. Because dynamic hip loading was known to be primarily contributed from 

hip muscles [8], Chapter 4 was dedicated to the analyses of two muscle parameters directly linked 

to both anatomical path and dynamic force production, the MAL and the LoA. The primary finding 

was that the lateralized HJC became closer to the hip abductor muscle paths (e.g. gluteus medius), 

which reduced its MALs and effectiveness at generating hip-stabilizing torques during gait stance, 

resulting in an elevated force demand. This result was consistent with the very limited past finding 

on hip muscle MALs in DDH [9], yet novel as it described the muscles’ mechanical effectiveness 

true to the joint dynamic positions. Another new finding was the roles of secondary muscle actions 

and out-of-plane contributions, such as the potential adduction and internal rotation effects of the 

iliopsoas [10]. Because many hip muscles produce high forces during routine tasks, their 3D 

coordination and force contribution can alter hip joint loading significantly. Such 3D contributions 

were further affirmed by the higher gluteal muscle medial LoAs in DDH and concurrently higher 
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medially-directed JRFs [2]. To summarize, results of Chapter 4 showed how DDH bony anatomy 

directly alters muscle dynamic force production and 3D action, which had significant contributions 

to hip joint loading. These findings can help update the current theoretical paradigm on how DDH 

anatomy leads to abnormal biomechanics, by demonstrating the roles of hip muscles that may be 

previously overlooked. This new knowledge on the hip anatomy-force relationships can also 

potentially help clinical treatments, including movement retraining, to optimize the dynamic hip 

biomechanical environment specific to patients’ activity demands during daily living. 

Although past MSMs [1,2] and Chapter 4 [10] both showed that muscle-induced hip JRFs 

are altered in DDH, it was a challenge to understand how the model-based JRFs are related to 

mechanically-induced pathology, and how it should be interpreted in context with the clinical 

characteristics of the disease. As a clinically important example, acetabular labral tears are among 

the most prevalent forms of damage in DDH and may be caused by abnormal dynamic loading at 

the shallow acetabular edge [11,12]. MSM studies have analyzed acetabular edge loading (AEL) 

in prosthetic hips [13,14], but extension of such analyses to native hips was limited by the model 

representation of subject-specific anatomy, which was found to be essential for DDH research 

(Chapter 3) [7]. In Chapter 5, the subject-specific MSMs established from Chapter 3 and refined 

through Chapter 4 enabled dynamic prediction of muscle-induced AEL in DDH, both compared 

with controls and analyzed by correlations with clinical radiographic measures such as the LCEA 

and AI angles. The primary result was that the characteristic shallow acetabulum caused its edge 

to be in close proximity with the hip JRF direction, which directly led to a larger force component 

(AEL) projected towards the edge. Elevated AEL during gait occurred in the anterior and superior 

acetabulum, which matched the regions bearing high repetitive forces during gait [8] and where 

labral tears were most frequently found [11,12]. Elevated AEL was also strongly correlated with 
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standard clinical metrics of DDH acetabular anatomy (LCEA and AI), suggesting the risks for 

labral and chondral damage may increase with the severity of the deformity. An important finding 

was that when integrated over time, the accumulative impulse of AEL was elevated over a wide 

region of the acetabular rim, which affirmed the roles of chronic overloading on the insidious 

developments of labral tears [15,16]. Overall, findings from Chapter 5 supported past models of 

labral pathomechanics in DDH [5] and were analogous to AEL in prosthetic hips [13,14], yet was 

the very first to quantify muscle-induced dynamic AEL in native hips, either with or without 

abnormal anatomy. The novel methods enabled by image-based MSMs provide new insights into 

the mechanical causes of labral and chondral damage in DDH, and support the needs for clinical 

evaluations to consider patient-specific hip biomechanics in context with anatomical traits. 

It should be noted that although anatomical deformity is the best-known characteristic of 

DDH, anatomy alone may not fully explain the patient-specific risks for all types of DDH-related 

joint damage. Regarding labral tears, a unique clinical observation is the prevalence of posterior 

tear location for some patients, which were thought to be related to high hip flexion relevant to 

certain routine lifestyles [17,18] or sports [15]. Despite a potential dependency between posterior 

labral tears and dynamic AEL during high hip flexion tasks such as double-legged squat, no past 

study has quantified hip biomechanics during such dynamic tasks in hips with DDH. As the first 

study to do so, Chapter 6 found increased posterior AEL in hips with DDH compared to controls, 

which accompanied simultaneous increase in peak posterior JRFs and net hip extension moments 

near the lowest point of squat. These differences indicate hips with DDH may have altered kinetics 

and muscle demand unique to squatting motion, even as movement patterns were not substantially 

different from controls. Similar to Chapter 5, the effects of loading duration was also substantial, 

as the region of elevated accumulative AEL differed from that of the peak AEL, which supported 
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the multiple mechanical pathways that could lead to both acute and chronic damage. Overall, AEL 

during gait (Chapter 5) and double-legged squat (Chapter 6) were both elevated by the acetabular 

deformity of DDH, but in distinct regions that matched the task-specific hip loading. Chapters 5 

and 6 collectively support the importance for clinical evaluations of DDH to consider anatomy, 

lifestyle, and time factors together in order to make patient-specific treatment decisions, including 

targeted surgical correction and movement retraining, to optimize hip biomechanics during various 

tasks of daily living and minimize the risks for joint damage and degeneration. 

7.2 Limitations and Future Directions 
Although the limitations of each specific study have been described in the discussions of 

Chapters 3 through 6, the MSMs created and used throughout this dissertation shared some 

common general limitations, which are reviewed here to clearly define the scope of this research 

and the findings summarized above in Section 7.1. Each limitation may warrant future studies or 

method developments; such potential directions are described along with each limitation, followed 

by other future work that is otherwise outside the scope of this dissertation but can be valuable to 

further advance our knowledge of the biomechanics of DDH. 

As with any MSM-based studies of the hip, the lack of direct force measurement data for 

model validation remains a major challenge. Even as increased hip JRFs due to patient-specific 

model anatomy [7] were consistent with mechanical theories of DDH [4], without knowing the in-

vivo hip JRFs in the same subjects, the absolute accuracy of the MSM-based estimates cannot be 

directly validated. Compared to hip contact forces recorded from instrumented prosthetics in older 

individuals [19], MSM-estimated JRFs tended to be higher in magnitude. A recent study found 

MR-based MSMs to estimate JRFs lower than generic models while closer to the benchmark data, 

although such findings were based on models of healthy middle-aged subjects [3]. The reliability 
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of the subject-specific MSMs for DDH was partly supported by their ability to demonstrate altered 

muscle MALs [10] that were consistent with imaging studies [9] and theoretically contribute to 

higher JRFs [4]. The MSMs in this dissertation were validated with muscle activation experimental 

data recorded using electromyography [20], and experimental activation patterns of major hip 

muscles qualitatively agreed with model estimation [2,10]. Hip JRF and muscle force estimates 

were also compared among recent MSM studies to ensure general agreements in force magnitudes 

[2,3,7,10]. Future biomechanics research of DDH and other hip diseases should continue to verify 

and validate the MSMs following established best practices for simulation [20]. 

Although the anatomy is improved in image-based MSMs, many other model elements still 

followed conventional methods. For example, the hip joint center (HJC) was assumed static within 

the pelvis frame, with only the rotational degrees of freedom allowed (i.e. ideal ball-and-socket 

joint). Hips with DDH are known to exhibit instability [21,22], which could lead to subtle 

migrations of the femoral head center (i.e. HJC) inside the acetabulum during motion. Relative 

HJC translations could influence hip muscle MALs and their force contributions to the JRFs [10], 

while uncertainties in the HJC-to-acetabulum relative position could further affect dynamic AEL 

projection. As speculated in Chapters 4, such HJC translations would most likely be lateral due to 

the deficient femoral coverage [23], which could further elevate the abductor force demand and 

muscle-induced JRFs. Then in the AEL analyses, because the relative closeness between JRF and 

the shallow edge would still be captured by the models, projected AEL could be even higher. Thus, 

the mechanical phenomena found in Chapters 4 through 6 that depicted the causes and effects of 

dynamic hip loading are expected to be robust to the dysplastic HJC instability, although the extent 

of biomechanical influences could be underestimated. While HJCs in the current MSMs were 

updated using CT or MR data, the standard MSM workflow did not facilitate dynamic perturbation 



150 

 

of the HJC mid-simulation. One useful method to potentially address this challenge is probabilistic 

analyses of the MSM simulations, such as Monte-Carlo methods to determine the sensitivity of 

biomechanical estimates to uncertainties in model parameters [24,25]. Probabilistic MSMs have 

recently been used to simulate DDH hip mechanics under treatment scenarios [26,27], and may be 

applied to analyze the effects of femoral head instability on estimated forces. 

As with hip joint position, muscle paths were also personalized in the models using imaging 

data, but other muscle properties that influence force production were processed generically. For 

example, the optimal fiber length and tendon slack length of each muscle was linearly scaled 

according to the updated full anatomical path [3], while maximum isometric force (i.e. strength) 

was matched to the generic models. Although outside the scope of this dissertation, muscle 

weakness [28] or muscle-tendon abnormalities [29] in hips with DDH could affect their force 

production during dynamic movements, and in turn further alter muscle-induced JRFs, AEL, etc. 

Recent work [27] has used probabilistic MSMs to demonstrate the influences of muscle strength 

on DDH hip mechanics; future studies can likewise simulate the mechanical effects of muscle fiber 

or tendon abnormalities. Biomechanics of the hip muscles can also be analyzed along with other 

muscle properties such as physical size [9,30] to further update our understanding on the roles of 

hip muscles in the developments of DDH pathology. 

Estimating the forces in each hip muscle required solving the underdetermined mechanical 

system equations, using a static or dynamic optimization criterion (Section 2.3.1) [31,32]. The 

MSMs in this research used static optimization [31], which was suggested as appropriate for gait 

simulation while computationally more efficient than dynamic methods [32]. Hip-specific studies 

also found that static optimization estimated hip contact forces closest to benchmark experimental 

data during both gait and sit-to-stand [33]. However, static optimization does not consider the time-
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dependent effects of muscle physiology, activation, or coordination that could be important in 

highly dynamic movements such as running or sport-specific tasks [20,32]. Gait and double-legged 

squat (which involves high hip flexion similar to sit-to-stand) were studied in this dissertation due 

to their importance in routine mobility and potential links to DDH-specific joint damages. Yet for 

young adults with DDH, highly dynamic and sport-specific tasks can be relevant, thus future 

studies should simulate such tasks with MSMs using dynamic characterization of muscle 

activation and forces. Computed muscle control [34], electromyography-driven muscle activation 

[35], and synergies-based analysis [36] are some options to predict highly dynamic muscle 

functions. Future MSMs to study DDH biomechanics during such movements should also verify 

and validate the chosen approach according to recommended best practices [20]. 

The mechanical estimates from MSMs are specific to prescribed motion kinematics, and 

incorporate the effects due to muscle function, making them uniquely useful for understanding the 

relationships among multiple factors that contribute to joint biomechanics dynamically. However, 

joint and articular-level mechanics such as JRFs and AEL are only part of the mechanical factors 

toward joint damage. A common understanding is that tissue damage and degeneration are resulted 

from abnormal acute or chronic mechanical stresses [37], which have been demonstrated in hips 

with DDH using finite element (FE) models driven by generic hip joint loading [5]. Because MSMs 

can quantify subject-specific hip loading, opportunities exist to use MSM-based JRFs (as 

determined for DDH in this research) to drive FE or discrete element (DE) models for improved 

estimation of dysplastic hip articular contact stresses [38,39]. Articular stresses estimated from 

MSM-FE/DE hybrid models may then be compared against medical imaging-based quantifications 

of cartilage composition [40] to help further clarify the mechanistic connections between altered 

hip biomechanics and tissue damage in DDH. 



152 

 

It was concluded from Chapter 3 that for reliable estimation of DDH biomechanics, a high 

level of image-based anatomical detail is required in the MSMs. Although the model creation 

workflow used throughout this research was standardized in Chapter 3, it remains painstaking and 

requires many manual geometrical processing steps, which could induce uncertainties to the 

mechanical estimates [24]. An arduous process also potentially limits the sample size and thus the 

statistical power for significant findings in future studies. Although the robustness of the MSMs 

in this dissertation was verified with a sensitivity analysis (Chapter 3) [7], to benefit future DDH 

biomechanics research in larger scales, automated creation of image-based MSMs will be helpful. 

Recent publications have introduced several modalities to automatically update joint positions and 

muscle paths using segmented 3D bony anatomy [41,42]. While these tools provide promising 

frameworks to create image-based MSMs for DDH, cautions should be taken regarding accurate 

representation of the unique abnormal anatomy, with manual refinements to be made as needed. 

Other than MSM-related limitations, another topic not exhaustively investigated in this 

research was the associations of DDH biomechanics with the 3D anatomical traits of the hip. 

Chapters 5 and 6 only analyzed the correlations between biomechanical estimates (JRFs, AEL) 

with the LCEA and AI angles, which were common clinical metrics of the acetabular anatomy but 

limited to characterization of the lateral deficiency. Even as LCEA and AI were strongly correlated 

with antero-superior AEL during gait (Chapter 5) and posterior AEL during squat (Chapter 6), 

these findings do not necessarily suggest the relative risks for tissue damage in subgroups of DDH 

who have anterior, posterior, or global acetabular deficiency [23]. Without subgroup mechanical 

analyses or correlations to 3D metrics of anatomical deformity, it remains undetermined which 

anatomical traits may be more indicative of damage risks. Furthermore, the mechanical influences 

of 3D femoral deformities in DDH [43] could also be important, but were beyond the scope of this 
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dissertation. Such extended analyses were partly limited by the relatively small sample sizes due 

to the model creation burdens aforementioned. In future studies empowered with automated MSM 

creation, dynamic muscle MAL, LoA, and AEL methods established in Chapters 4 through 6 may 

be replicated in subgroups of DDH, and correlations with the 3D anatomy of acetabulum and 

femurs [23,43] can both be analyzed. These extension studies will help us more comprehensively 

identify the anatomical factors that contribute to patient-specific pathology. 

To truly understand which biomechanical traits of DDH are indicative of joint damage and 

symptoms, thus can be key modifiable factors for clinical evaluation and intervention to target, we 

need to establish the relationships between laboratory-based biomechanics and clinical parameters 

of the DDH presentation or prognosis. Questionnaire-based patient-reported outcomes (PROs) are 

the most common clinical tools to evaluate DDH patients’ pain, functional limitations, and quality 

of life [44]. Therefore, future studies can analyze the associations between PRO responses and 

MSM-based biomechanics to determine which variables are most closely linked with symptoms. 

For example, we may better understand whether elevated posterior AEL during squat is correlated 

with posterior pain felt by the patients, or their perceived difficulties to perform high hip flexion 

tasks. Such knowledge may help explain the mismatch between symptom severity and anatomical 

traits in some patients [44]. Longitudinal analyses will also be highly valuable to determine the 

associations between biomechanics and the development of joint damage, such as whether hips 

with elevated AEL would indeed more likely develop labral tears or chondral lesions later. Such 

research requires a much larger cohort and continued commitment, but will complement clinical 

studies of hip anatomical and biological changes over time [22] and significantly improve our 

understanding on how the chronic pathology of DDH is developed. 
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The ultimate purpose of quantifying hip biomechanics in DDH, along with its relationships 

with anatomical and clinical parameters, is to help future clinical intervention improve efficacy, 

preserve hip joint health, minimize the risks for tissue damage, and delay the development of OA. 

Therefore, an important future extension of this dissertation is to use MSMs to estimate or simulate 

hip biomechanics in response to the treatments of DDH. As introduced in Chapter 2, Bernese PAO 

surgery is the most common treatment to correct anatomy in pre-arthritic hips with DDH, which 

aims to preserve the joint by restoring a normal hip biomechanical environment [45]. Considering 

the long-term hip joint survival rate after PAO was suboptimal for many [46], quantification of 

post-PAO, patient-specific hip biomechanics may be a missing piece to explain why some patients 

had worse surgical outcomes than others. Image-based MSMs for DDH established in this research 

provide a framework for such analyses, including how modified femoral coverage or medialized 

HJC could lower hip JRFs [26] and the AEL to help reduce the risks for labral tears. MSM-based 

dynamic estimates could complement motion analyses [47] and finite element models [48] to 

refine our understanding of the hip biomechanics after PAO. Likewise, because post-PAO or non-

PAO rehabilitation has often lacked quantitative evidences, MSM-based simulations [27] may be 

combined with muscle-related analyses (e.g. dynamic MALs and LoAs, as in Chapter 4) to predict 

how rehabilitation could be designed to optimize muscle mechanical functions. Furthermore, as 

with longitudinal follow-ups of natural disease progression, associations between post-treatment 

hip mechanics, PROs, and joint biological status may be tracked over time to verify which 

biomechanical parameters are predictive of favorable clinical outcomes, thus may be emphasized 

in future intervention. Overall, using subject-specific MSMs in longitudinal studies can yield 

valuable biomechanical data that fills the knowledge gap between clinical metrics of DDH, thus 

inform personalized treatments for improved long-term efficacy. 
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Finally, subject-specific MSMs for DDH may benefit from state-of-the-art technology for 

research in larger scales and wider scopes. Other than model automation to allow larger cohorts 

[41,42], the abundance of data can also be analyzed in novel ways to thoroughly explore the roles 

of biomechanics within the spectrum of DDH etiology. For example, machine learning algorithm 

is useful for establishing associations between source and outcome variables, and has recently been 

applied to predict the clinical outcomes of hip arthroscopy [49]. Such approach may be adapted in 

DDH research, with the addition of MSM-based biomechanical data, to develop predictive models 

of favorable effects based on clinical evaluation, thereby assist patient-specific treatment decision 

making. Another promising methodological development is the use of wearable sensors to assess 

natural dynamic movements outside of laboratory, which could be used to drive MSMs [50] and 

quantify DDH biomechanics in real-world scenarios for a longer duration, yielding more data 

representative of unique patient individual’s daily living. These modern technologies provide great 

potentials for scientists to better understand the biomechanics of DDH, for clinicians to improve 

personalized treatments, and ultimately for more patients to achieve desirable hip joint health. 
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