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Constructing and Analyzing Neural Network Dynamics for Information Objectives and

Working Memory
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Elham Ghazizadeh Ahsaei

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2021

Professor ShiNung Ching, Chair

Creation of quantitative models of neural functions and discovery of underlying principles of

how neural circuits learn and compute are long-standing challenges in the field of neuroscience.

In this work, we blend ideas from computational neuroscience, information and control theories

with machine learning to shed light on how certain key functions are encoded through the

dynamics of neural circuits. In this regard, we pursue the ‘top-down’ modeling approach of

engineering neuroscience to relate brain functions to basic generative dynamical mechanisms.

Our approach encapsulates two distinct paradigms in which ‘function’ is understood. In the

first part of this research, we explore the synthesis of neural dynamics for task-independent,

well-defined objective function: the information processing capacity of neural circuits/networks.

We contribute our efforts to devise a strategy to optimize the dynamics of the network at

hand using information maximization as an objective function. In this vein, our principle

contributions are in terms of mathematical formulation of the optimization problem and

proposing a simplification method to reduce the computational burden associated with mutual

information optimization. Then, we illustrate the novelty of our ideas for well-understood

dynamical systems. Our methodology results in dynamics that generically perform as encoder

of afferent inputs distribution and facilitate information propagation. However, determining
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a well-defined mathematical objective function may not be straightforward in all cases, e.g.

complex cognitive functions. To address this issue, in the second part of this research we

consider top-down synthesis on the basis of a surrogate task. In particular, we optimize

‘artificial’ recurrent networks in order to perform a computational task that embodies the

function we are interested in studying, i.e. working memory. We contribute our efforts

to propose a realistic training paradigm for recurrent neural networks and elucidate how

dynamics of the optimized artificial networks can support computations implemented in

memory functions. We will discuss the theoretical and technical steps involved in our

interpretations, as well as remaining open questions and future directions.
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Chapter 1

Introduction

1.1 Overview and Context

Neuroscience is a wide-ranging field of study that involves understanding the biological and

computational basis of behavior, learning, memory, perception and action [1]. Historically,

a driving motivator in neuroscience has been a desire to link observations about cognitive

behavior with actual physical and physiological processes that support such behavior [2].

Early studies of the brain began with empirical investigations of the mind, the essence of

feelings and the causes of psychiatric disorders [1, 3]. With the development of scientific and

experimental methods, scientists argued about the relation between mental processes and

different brain regions [4]. For instance, during the 19th century, scientists postulated as to

the existence of a specific area for each mental processes in the brain (i.e., the ‘homonculus’

[5]) and thus people’s skills and abilities could be recognized by the size and shape of their

skulls [5]. In the 1860s, Pierre Broca performed seminal research studying the relationship

between language and brain through his clinical studies of patients with brain damage [2].
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More recently, the advent of electroencephalography, modern imaging techniques and advances

in neural recording and stimulation devices has led to tremendous progress in understanding

the structure of the brain at cellular and molecular levels [2, 6] and the discovery of a wide

range of brain electrical phenomena, from the spiking activity of neurons to the slower

oscillations of small populations [7]. However, despite these decades of progress, there are

still countless unanswered questions about the brain function and many research challenges

yet remain to be addressed.

A paramount challenge in contemporary systems neuroscience research involves the elucidation

of formal links between activity in large-scale neural circuits and complex behaviors [3, 5,

8]. While experimental capability has elevated to prospects of observing even-increasing

swaths of the brain, there remains a gap in technical capability as conceptual and theoretical

formalisms for making sense of these high-dimensional observations [9]. In this regard, it has

been widely recognized that to confront the immense complexity of the brain across multiple

scales of temporal and spatial organization and extract theoretical/conceptual models of the

brain functions and neural data, neuroscience can benefit from tools and theories from other

disciplines such as mathematics, physics and engineering, within the overall framework of

‘computational neuroscience’ [10]. In particular, neural systems are not simply an entangled

web of complexities that exist for their own sake, but rather they have evolved to solve a

myriad of computational problems. Thus, engineering science, including design and analysis

frameworks in signal processing, dynamical systems and control theory, can serve as sources

of inspiration to understand how neural systems may be solving certain problems and as

tools for analyzing models of neural circuits [10, 11].
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1.1.1 Engineering Neuroscience and Dynamics in the Brain

A long-standing challenge in computational neuroscience involves studying the brain com-

putations underlying complex functions such as sensory coding, muscle control, perception

and decision making [11, 12, 13]. In this regard, there is one aspect of neural activity where

engineering theory can play an especially powerful role: the study of brain dynamics, or the

generative mechanisms within neural circuits that give rise to time-varying neural activity

that eventually forms the substrate for complex behavior [14].

Dynamics in the nervous system can be understood at many levels of spatial scale ranging

from molecules, synapses, neurons, networks, maps and systems (see Fig. 1.1). In this

dissertation, focus is directed at the neuronal and circuit/network level of description. In

particular, we recognize that neural activity is not simply mapped statically to high level-

functions such as perception, movement and learning but rather evolves through time as

a function of internal and external processes. As such, the brain is a coevolving dynamic

system and characterization of its dynamics is fundamental to our understanding of its

function. In this regard, engineering theory is ideally situated to lend novel hypothesis

and interpretations regarding the mechanisms and role of brain dynamics. This paradigm

of ‘engineering neuroscience’ can constitute a new and potentially powerful paradigm in

computational neuroscience, and its exploration is a central arc of this dissertation.

1.1.2 Dichotomy of Bottom-up and Top-down Modeling

A key approach in computational and engineering neuroscience is the use of mathematical

models to guide scientific inquiry regarding functional mechanisms within the brain.

3



Whole Organ

Regions

Network

Cellular

Molecular

Figure 1.1: Different levels of the brain functions [15].

Development of mechanistic circuit models that link neural activity with the high-level

brain function can be organized into two broad categories: 1) Bottom-up modeling and 2)

Top-down modeling. In the former, one starts by studying and modeling the dynamics of

low-level circuit parts (i.e., neurons), which are then composed into larger networks that

are then studied to infer high-level functionality. Such methods offer potentially high levels

of biophysical interpretability and compatibility, and have a long history in computational

neuroscience. Bottom-up approaches have been particularly successful at creating explanatory

circuit models for broad electrophysiological phenomena such as oscillations and synchrony

[16].
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Conversely, in the top-down approach, one starts by formulating a high-level hypothesis about

a function, which is then used as a means to construct or synthesize the low level parts. In

neuroscience, such a paradigm has sometimes been referred to as a ‘normative’ approach [8,

16] and relies heavily on methods from optimization. The resultant synthesized dynamics can

then be evaluated for biological plausibility by comparing the predictive behavior of the model

with observed/recorded neural data. Both bottom-up and top-down approaches can lead

to quite complex dynamical models that are difficult to analyze analytically [8]. Numerical

methods, including dimensionality reduction and other manifold learning strategies, are thus

important tools in elucidating the fundamental dynamical mechanisms embedded within

these models [17].

This dissertation will focus on the top-down engineering neuroscience approach. Our goal

is to build network dynamics that we can analyze in order to understand basic generative

mechanisms, while also explicitly relating to high-level functional requirements. Our goal is

to understand how and why neural activity is generated within brain networks. With most

computational approaches in neuroscience, we make particular choices in the tradeoff between

numerical and analytical tractability and the level of biophysical detail embodied in our

models. Our approach encapsulates two distinct paradigms in which ‘function’ is understood.

A schematic of the dissertation roadmap is shown in Fig. 1.2.

1.1.3 Normative Synthesis with and without Mathematical Objec-

tives

Specifically, the first part of the dissertation explores the construction of neuronal dynamics

for a well-defined mathematical objective that is not explicitly linked to a particular task. This

objective encapsulates, in a general sense, the information processing capacity of neural circuits.
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(Chapter 2)
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(Chapters 3 and 4)

Computational 
Neuroscience

Figure 1.2: Dissertation structure

We elucidate the neuronal dynamics that are best conducive of information propagation in

neural circuits via extremizing this objective function.

However, determining a well-defined mathematical objective function may not be straightfor-

ward in all cases. For example, complex cognitive processes may not be neatly quantified

in a closed-form expression. To tackle this issue, in the second part of the dissertation we

consider top-down synthesis on the basis of a surrogate task. That is, we optimize networks

in order to perform a computational task that embodies the function we are interested in

studying. Such an approach draws heavily from recent efforts in distributed optimization and
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neural-network-based machine learning [18]. The function we focus on is working memory.

Specifically, to generate a top-down model of working memory function, we optimize ‘artificial’

neural networks to perform cognitive tasks that exhibit working memory requirements. Next,

we elucidate how dynamics of the optimized artificial networks can support computations

implemented in memory function. In the following, we elaborate on some of the details in a

brief introduction for each chapter of the dissertation.

1.2 Synthesis of Dynamics for Information Objectives

(Chapter 2)

Fundamental biological functions such as perception, cognition, action and adaptation rely

on neural information processing and thus neural circuits naturally lend themselves to be

studied with information theory [19]. Shannon’s theory of information was originally used to

analyze and optimize man-made communication systems, for which the functioning principles

are known. Nevertheless, it was soon realized that information theory can be applied to

broader settings (e.g. theoretical neuroscience) to obtain insight about the functioning of

systems for which the underlying principles are far from fully understood, e.g. neural systems

[20].

In this context, the concept of empowerment was first introduced in [21] as a hypothetical,

information-based utility function which might be considered as a formal definition of ‘intrinsic

motivation’ for learning and adaptation. Subsequently, empowerment has been widely used

in reinforcement learning as a general framework for obtaining agent policies based on the

value of information rather than manually-designed, task-specific utility functions [22, 23,

24]. Further, the mathematical definition of empowerment is highly related to the ‘Infomax’

objective used in theoretical studies of neural coding [25, 26, 27]. At a conceptual level,
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empowerment can be understood as the maximum potential effect that an input can impart

on the states of a system. In other words, a high empowerment corresponds to a system with

higher information processing capacity.

In this chapter, we pursue the top-down approach of computational modeling and address

what sort of neural network dynamics are most conducive of afferent information? We

formalize our hypothesis using a well-defined information theoretic objective function, here

empowerment. In this regard, if empowerment is high, then the inputs are well-encoded in

the states of the network in question. Thus, we optimize the network’s empowerment to shed

light on the neural dynamics capable of such functionality.

Particularly, the main facet of our approach involves adapting the information-theoretic

definition of empowerment into the context of dynamical system, which in turn are used

as abstract models of neural circuits. However, the calculations underlying empowerment

are highly taxing for high dimensional state space of neural circuits. We contribute our

efforts to posit a simplification on the empowerment calculation based on the system impulse

response in conjunction with the adaptation of the variational lower bound for empowerment

approximation. Then, we explicitly define a parametrization of the dynamical system for

which we seek to maximize the empowerment. We will elaborate on the mathematical details

of the optimization of variational empowerment with respect to the parameterization of

system dynamics in this chapter.

Afterward, we proceed to show the efficacy of our proposed method on canonical and well-

understood dynamical systems such as linear dynamical systems and inverted pendulum as

well as a well known neural mass model, i.e. the Wilson-Cowan model. Our results show that

the maximally conducive dynamics created via this procedure lead to ‘simple’ dynamics with
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a single unstable fixed point and a large number of reachable states, which agrees with basic

intuition and the sort of neural dynamics thought to be pervasive in actual neuronal circuits.

1.3 Optimization and Learning of Network Dynamics

via Reinforced Regression for High-level Function

(Chapter 3)

As part of the Central Nervous System (CNS), the brain regulates several functions including

vital functions such as breathing, basic functions like sleeping or eating and high-level functions

such as reasoning, verbal communication and holding traces of complex information online

simultaneously. In particular, high-level cognitive functions are mental operations by which

the brain derives representation of relevant information from external inputs and use them

to modify or produce behavior [3]. Despite decades of neuroscience research, understanding

the neural bases of cognitive functions is yet a challenge [5]. For instance, it is not yet fully

understood how sensory information is perceived and how such perceptions are transformed

into meaningful representations to be recruited into immediate plans or performing complex

tasks, like decision making. Clearly, these are complicated processes and deriving such an

understanding is not simple.

In Chapter 3, we will apply the top-down approach of theoretical neuroscience and try to

answer this question: how neural circuit dynamics give rise to high-level functions? Answering

this question requires formulation of a hypothesis that explains the high-level function in

question. However, in this case it is not feasible to determine an explicit, well-defined

objective function that generates such function. To tackle this challenge, we turn to task-

based surrogate modeling via the artificial counterpart of neuronal circuits, i.e. artificial
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neural networks. As such, by optimizing artificial recurrent neural networks (RNNs) to

implement cognitive tasks we can identify the dynamical system that generates input to

output mappings. Then, the emergent dynamics of the synthesized network can be studied

as a generative mechanism underlying the computations of the high-level function.

Although RNNs have been widely adopted to generate hypothesis about operations of neuronal

circuits, cautionary details need to be considered when reasoning about certain principles

that govern neural computations [28, 29]. Because each optimized RNN merely generates a

potential hypothesis that can achieve the task at hand, the ability of these optimized networks

to predict actual brain activity may depend crucially on certain restrictions regarding the

optimization method that is used; e.g., by regularizing or encouraging solutions that manifest

more realistic connection motifs [30, 31].

Expanding on the aforementioned idea, we propose a training method for RNNs by adding

realistic constraints on the learning paradigm. Specifically, we blend ideas from trial-based

reinforcement learning with online error regression method to develop our training method.

We proceed this chapter by elaborating on the computational details of the proposed method.

1.4 Analysis of Emergent Dynamics Associated with

Working Memory (Chapter 4)

In Chapter 3, we developed the framework to generate mechanistic hypotheses of high-level

cognitive functions. We will deploy this optimization paradigm in Chapter 4 by considering

a key component of cognitive functions, i.e. working memory, that allows to carry out

various tasks such as learning, problem-solving, natural language, reasoning and planning. In

particular, working memory (WM) is a temporary store that allows for active manipulation
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of information in the absence of external stimuli [32]. In this regard, understanding how

neural circuits retain and represent memory have been the focus of substantial experimental

and computational neuroscience research.

In particular, WM is associated with a delay period following stimulus presentation and prior

to onset of a behavioral response or action, such that the memory of past stimuli is retained

via an invariant neuronal representation [33, 34, 35]. Many experimental and theoretical

works on WM center on understanding neural activity during these delay periods [33, 36,

37]. Characterization of delay activity dichotomizes into two broad categories: 1) persistent

activity, wherein neurons are tuned to relevant features of a stimulus and produce a relatively

constant activity throughout delay intervals [38, 39]. 2) time-varying activity, wherein neural

activity transiently ramp up and down during delay periods [37, 40]. Presumably, these two

descriptions may have distinct underlying mechanisms [41, 42, 43].

To disambiguate the underpinning dynamical mechanisms of neural activity patterns during

WM periods, in this chapter, we first elaborate on the design of a simple cognitive task that

exhibits WM requirements. Next, we address the remaining open questions regarding the

circumstances under which different network dynamics may arise and the specific functional

advantages of one versus the other. In this regard, we first optimize thousands of RNNs

across different hyperparameters and initialization schemes. Then, we reverse engineer the

trained networks to reveal the dynamical properties of the networks. Interestingly, we identify

a diversity of mechanisms that achieve the desired task computations but varying in their

key dynamical properties. In particular, we find that networks can display predominantly

asymptotically stable fixed points, stable limit cycle attractors, or a combination thereof.

To shed light on the functional advantages of each of these dynamical mechanisms, we design

post hoc experiments to interrogate the trained networks. In particular, we examine the
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durability of memory representations to increase in memory demands and the robustness

of networks performance to perturbations. Our key finding is that memory representations

need not to be encoded directly in network attractors, but can be mediated by transient

dynamics formed in the overall network vector field. It turns out that such a mechanism is

both efficient and robust as compared to the other emergent network dynamics.

1.5 Summary of Contributions (Chapter 5)

This dissertation, in the domain of engineering neuroscience, will show how merging methods

and ideas from engineering theory with neuroscience can lend the conceptual hypothesis

regarding how the brain works. Accordingly, the contributions of this dissertation coincide

with both basic engineering theory and in theoretical neuroscience. The major specific

contributions are:

1.5.1 Engineering theory

• A method to simplify the computational burden of calculating empowerment, i.e., the

information-theoretic channel capacity associated with a dynamical system. (Chapter

2)

• A method to find optimal neuronal dynamics for empowerment maximization via

considering a parametrization along a continuum of possible dynamics. (Chapter 2)

• A method to optimize recurrent neural networks in the context of task-based top-down

modeling. The method blends trial-based reinforcement learning with continuous

regression methods. (Chapter 3)
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• Development of numerical sensitivity analyses to elucidate the different dynamical

methods embedded within neural network models, in order to link these dynamical

mechanisms to high-level functionality. (Chapter 4)

1.5.2 Theoretical neuroscience

• A top-down approach to understand the relation between a general, task-independent

function and neuronal dynamics, where the function can be achieved by maximizing a

well-defined mathematical objective function, i.e. empowerment. (Chapter 2)

• Understanding the functional advantages of oscillatory neuronal dynamics in the context

of information encoding. (Chapter 2)

• A detailed accounting of different network-level mechanisms that can sustain a specific

cognitive function: working memory. (Chapter 2)

• A analysis of the functional tradeoffs associated with the above competing mechanisms

and an assessment of their biological significance and plausibility. (Chapter 4)

The dissertation will conclude in Chapter 5 with concluding remarks and a brief discussion

on perspectives gleaned, remaining challenges and prospects for future inquiry along these

lines of investigation.
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Chapter 2

Synthesis of Dynamics for

Information Objectives

2.1 Introduction

Neural circuits process information and examining such processings is of prime importance

to the goal of obtaining insight on the functionality of neural systems from a theoretical

standpoint. This relates to the fundamental problem of neural coding, or how circuits in the

brain represent afferent information. In particular, we define the notion of functionality in

terms of information theoretic quantities, since such quantities allow us to address the concept

of optimality in a general way that is well-defined, task-independent and applicable universally

to any input-system interaction. As such, employing the top-down modeling approach, we

use the notion of empowerment as our objective function. Conceptually, empowerment can

be understood as the maximum potential effect that an input can impart on the states

of a system. Thus, empowerment is a property of the input-to-output (or, input-to-state)
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transfer function of a dynamical system and is fundamentally related to the notions of channel

capacity and reachability, from communication and control theories, respectively [44]. The

greater the empowerment of a system, the greater the diversity of states/outputs an input

can induce. This problem setup allows the desirable dynamics of the network to emerge only

via the empowerment maximization criterion without having any a priori knowledge about

the optimal dynamics.

In the remaining of this chapter, we first adopt the definition of empowerment to the dynamical

system in question. Next, we elaborate on the mathematical details of empowerment

approximation based on our proposed method. Lastly, we reveal the optimal system dynamics

obtained from empowerment maximization.

2.2 Problem Formulation and the System Model

In this section, we present the mathematical definition of empowerment as our objective

function. Then, we provide the dynamical system model under consideration and specifically

note the parameterization over which empowerment will be maximized. Throughout this

chapter the terms dynamical system and network are used interchangeably.

2.2.1 Empowerment

Mutual Information is a core information theoretic quantity that measures the dependency

between two random variables. In our formulation, the dynamical system can be perceived

as a communication channel from afferent inputs to states. Given the current state s, the

mutual information between the input u and the final state s′ is:
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I(u; s′|s = s) =
∫ ∫

p(s′|u, s)ω(u|s) log p(s′, u|s)
p(s′|s)ω(a|s)

du ds′ (2.1)

where we denote ω(u|s) as the input distribution and p(s′, u|s) as the transition distribution.

With this formulation, empowerment is simply the channel capacity, i.e., the maximum

information that an input can potentially emit to the system by manipulating the states [21,

45] via actions/inputs. Particularly, for the given current state, the empowerment is:

E(s) = max
ω(u|s)

I(u; s′|s) (2.2)

Here, u can be seen as an exogenous input (that is uncorrelated with the dynamics of the

system), referred to in the communication theory literature as a ‘source’. Consequently,

empowerment quantifies the extent to which the source is encoded in the system states. Fig.

2.1 shows empowerment landscape for a maze.
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Figure 2.1: Empowerment landscape for a maze, where the value of empowerment (over 5
time steps) is represented for each state. The white lines display the walls in the maze. In the
center of the maze, where there is more number of possible states (as compared to the corners
or near the walls) the value of empowerment is higher and thus the input is well-encoded in
the states of the maze [21] .

2.2.2 Dynamical System Model

We consider networks that can be described as dynamical systems of the affine form:

ṡ(t) = fK(s(t)) + u(t) (2.3)

where f(·) : Rd → Rd denotes the vector field, which is in this case parameterized by K.

Here, s(t) and u(t) are the states and inputs at time t, respectively. We discretize the system
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A

B

Figure 2.2: Panel A shows the evolution of states over 3 sequence of inputs. Panel B presents
our proposed method of increasing the horizon of empowerment calculation.

using a fixed time-step dt, leading to:

st+1 = st + (fK(st) + ut) dt. (2.4)

2.2.3 Simplified Empowerment Calculation via Impulse Response

The discrete model in equation (2.4) is a one-step autoregressive equation that describes

the effect of an input at the current time on the state of the system at the subsequent time.

When characterizing empowerment it is desirable to capture the effect of input actions over a

prolonged temporal horizon [46, 47, 48]. In such a procedure, one obtains an optimal input

sequence leading to a trajectory within the state space (see, e.g., Fig 2.2.A where a sequence

of 3 inputs evolves the state according to (2.4)).
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Because of the dynamical nature of the system, we posit a simplification of this idea wherein

we instead calculate empowerment based on the system impulse response. We consider only

a single step input utat time t, then allow the states to evolve over a horizon of n time steps

i.e. st+n in (2.5).This constrains the search space (to a single input step), while nonetheless

allowing the system dynamics to evolve the state over larger swaths of the state space. That

is, we provide the dynamical system with enough time to nontrivially react to the input.

Comparing the graphs in Fig. 2.2 A with B, we can see that using the scheme in panel A,

the computational complexity of calculating empowerment is linearly proportional to the

number of inputs. However, using the impulse response simplification, we can reduce the

computational complexity to a constant with respect to a single input.

For n time steps, we can obtain the final state as follows:

st+n = st + fK(...fK((fK(st) + ut)))dt (2.5)

where the number of recursions of fK is n. To make the notion of empowerment meaningful,

it is necessary to introduce stochasticity to the above dynamics (in order to create nontrivial

probability distributions). We do this by assuming additive noise in the readout of the system

states, i.e.,

st = st + wt, (2.6)

where wt is an uncorrelated noise process.
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2.2.4 Empowerment Maximization for Synthesizing Optimal Net-

work Dynamics

System Parameterization

Thus far, we have set up the problem of calculating the empowerment of a dynamical system,

as per equation (2.2). Our goal at this point is to treat the question of maximizing the

empowerment of the system at hand with respect to its parameterization, i.e. K. In particular,

suppose that K in equation (2.5) represents a degree of freedom to alter the dynamics (e.g.,

in the case of a pendulum, altering the mass or length of the rod). We denote the number of

discretized states of our considered system as M . For a given current state of the system, i.e.

s(m)

t ∈ {s(1)

t , ..., s(M)

t }, we posit the problem of empowerment maximization with respect to the

parameterization K as follows:

max
K
E(st) = max

K
max

ω

1

M

∑
m

I(ut; st+n|s(m)
t ) (2.7)

Variational Empowerment Maximization

The fundamental algorithm to obtain the channel capacity (here, empowerment) is the

Blahut-Arimoto (BA) algorithm [49, 50], which is an enumeration-based approach with

exponential computational complexity. Thus, it cannot be applied for evaluating mutual

information over the continuous domain of variables. However, the intensive computational

complexity of empowerment calculation necessitates devising an effective method for its

approximation. The authors in [46] proposed variational inference method as a scalable

approach for empowerment approximation with the aim of using empowerment as a proxy
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for interinsically-motivated reinforcement learning. Similarly, the authors in [22] addressed

the empowerment approximation over continuous systems for learning optimal policies via

empowerment maximization.

The problem (2.7) is challenging since it involves nested maximization over a continuous

state space and nontrivial probability distributions. Prima facie, this is near intractable.

Thus, in order to proceed, an approximation is required and for this we turn to the popular

approach of using a variational lower bound for the key quantities [22, 46, 51, 52]. We

will specifically adopt the variational lower bound for empowerment approximation in [22],

which enables evaluation of mutual information for continuous variables. However, we will

use this computational approach in a different context (i.e., to synthesize dynamics) and

with an additional level of approximation to aid tractability. We proceed to discuss these

contributions.

In particular, the major computational challenge alluded to above arises from the intractability

of the probability terms in equation (2.1) and the integration over the continuous domain of

all inputs and states. To circumvent the mentioned issues, we can rewrite equation (2.1) as:

I(u; st+n|st) =
∫ ∫

p(st+n|ut, st)ω(ut|st) logp(ut|st+n, st)
ω(ut|st)

dut dst+n (2.8)

where p(ut|st+n) is the posterior distribution of inputss. In a Bayesian sense, the input

distribution, ω(ut|st), is the prior.

Due to the intractability of the true posterior distribution, we use the mutual information

variational bound, introduced in [25], to approximate the above equation as follows:

Î(st+n;ut|st) =
∫ ∫

p(st+n, ut|st) logq(ut|st+n, st)
ω(ut|st)

dut dst+n (2.9)
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where q(ut|st+n, st) is the variational distribution that approximates the true posterior. Using

the variational approximation method, obtaining the variational distribution can be considered

as an optimization problem where qξ(ut|st+n, st) is a variational family of distributions with

parameter ξ [53]. Given that the variational distribution expressively represents the true

posterior distribution, a tight variational lower bound can be achieved [22]. That is

I − Î =
∫ ∫

p(st+n, ut|st) log p(ut|st+n, st)
qξ(ut|st+n, st)

dut dst+n

=
∫
p(st+n|st) [KL( p(ut|st+n, st) || qξ(ut|st+n, st))] dst+n

= E st+n∼p(st+n|st)[KL( p(ut|st+n, st) || qξ(ut|st+n, st))]

(2.10)

where KL denotes the KL-divergence. If the variational distribution is similar to the true

posterior distribution, the KL-divergence is close to zero. Fig. 2.3 shows the schematic of

variational approximation.

p(ut|st+n, st)

q⇠(ut|st+n, st)

Figure 2.3: Schematic of Variational Approximation

22



Hence, we can obtain a variational lower bound on the empowerment as follow:

Ê(st) = max
ω,q
Î(st+n;ut|st) (2.11)

To perform the optimization of the variational bound, we can obtain the input distribution

and the variational distribution via deep neural networks parameterized by φ and ξ, respec-

tively. Sharing the same ideas with amortized variational inference [54, 55], using neural

networks(NNs) as a mapping from states to the distribution parameters enables us to only

deal with finite number of neural network parameters (i.e. weights and biases) instead of

learning a separate input distribution and variational distribution for each state. In this

work, we choose the input and variational distributions from the Gaussian family as follows:

ω(ut|s(m)

t ) = N (µφ(s(m)

t ), σ2
φ(s

(m)

t )I)

q(ut|s(m)

t , st+n) = N (µξ(s(m)

t , st+n), σ
2
ξ (s

(m)

t , st+n)I)

(2.12)

where mean µ and variance σ are also parameterized by NNs. θ = {φ, ξ} are the joint

parameter set of equation (2.11). Via joint optimization of variational bound w.r.t. parameters

of ω and q, we can achieve the action distribution that maximizes the mutual information

and the variational distribution that is responsible for the tightness of the variational lower

bound. Exploiting the variational lower bound on empowerment, we pose our optimization

problem as follows:

max
K

max
θ

J(K, θ), (2.13)
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where

J(K, θ) =
1

M

∑
m

Î(st+n;ut|s(m)

t ) (2.14)

and

Î(st+n;ut|s(m)

t ) = (2.15)

Est+n∼p(st+n,ut|s(m)
t )

[log q(ut|st+n, s(m)

t )− logω(ut|s(m)

t )]

We can perform the joint Monte-Carlo sampling method to obtain samples from the joint

distribution, p(st+1, ut|s(m)
t ), and use the reparameterization trick [56, 57] to evaluate the

stochastic gradients of the objective function with respect to K and θ as:

∂
∂θ
Î(st+n;ut|s(m)

t ) ≈

1
L

∑
l

∂
∂θ
[log qξ(u(l

t |s
(l)

t+n, s
(m)

t )− logωφ(u(l)

t |s
(m)

t )]

(2.16)

and

∂
∂K Î(st+n;ut|s(m)

t ) ≈ (2.17)

1
L

∑
l

∂
∂K [log q(u(l)

t |s
(l)

t+n, s
(m)

t )− logω(u(l)

t |s
(m)

t )]

where L is the number of samples. Algorithm 1 summarizes the optimization procedure. It

is worth mentioning that if fK is differentiable, a gradient-based approach can be used to

update the decision variables. When examining convergence, we look at the magnitude of

the gradients with respect to the decision variables and the magnitude of the cost function,

J . However, we do not set any formal thresholds on these quantities, since they depend on

the dynamics and parameters of the system under consideration.
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Algorithm 1 Maximization of Empowerment Variational Lower Bound, w.r.t. θ = {φ, ξ}
and K

Initialize uniform samples from state space, {s(m)
t }m=1,...,M

repeat
for each s(m)

t do
draw one sample from ω(ut|s(m)

t ) :
ut ∼ ω(ut|s(m)

t )
transit to the final state st+n

end for
J = 1

M

∑
m log q(ut|s(m)

t , st+n)− logω(ut|s(m)
t )

θ ← θ + ηθ∇θJ for r epoches
K← K + ηK∇KJ
until convergence

2.3 Results

We proceed to show the efficacy of the proposed method on three canonical examples: linear

dynamical systems, the inverted pendulum on fixed pivot and the Wilson-Cowan neural mass

model. We then discuss the emergent dynamics of these systems following empowerment

maximization.

2.3.1 Efficacy of the Proposed Impulse Response Procedure

First, we demonstrate the efficacy of the proposed empowerment calculation procedure.

Linear system

For the 2-dimensional linear systems, equation (2.5) is:

st+n = st+n−1 + (Ast+n−1 + ut)dt+ wt+n, (2.18)
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where A ∈ R2×2 determines the vector field of the system. In this example, A is chosen so

that the origin is unstable. Fig. 2.4 (b) and (c), depict the computed empowerment over

the state space for horizons of 2 and 5 steps, respectively. As it is seen, the states around

the origin have largest empowerment, which is intuitive given the dynamics of the system

(because the origin is unstable, inputs applied for these initial conditions have the potential

to access the largest swaths of state space).

As means of comparison, we have also performed calculation of the empowerment using a

full iteration of actions (i.e., as in Fig. 2.2A). Fig. 2.4 (d) shows the obtained empowerment

landscape for this case. As seen, the proposed impulse response-based approach compares

favorably to the full solution. Full details regarding simulations are found in Appendix A.

Pendulum

To show the performance of our method for nonlinear systems, we studied the simple pendulum

with the following dynamics

s̈ = −3g
2l

sin(s+ π) + 3
ml2

(u− 0.05ṡ) (2.19)

For the sake of comparison with previous works [22, 47], we considered the optimization over

n = 50 steps. As seen in Fig. 2.5, the impulse response method produced an interpretable

empowerment landscape, wherein the locus of high empowerment corresponds with the

unstable manifold associated with the equilibrium at the origin (i.e., the pendulum in the

inverted position). Like the unstable linear system, this is intuitive because on this manifold

the input is able to drive the system to a larger swath of the state space. This is exactly

equivalent to the idea of reachability in control systems analysis.
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Figure 2.4: The vector field and empowerment landscape result from n step empowerment
calculation. Plot (a) shows the state space and its corresponding vector field of a 2 dimensional
linear system and (b) depicts the corresponding empowerment landscape (in nats) optimized
over two time steps of states. Plot (c) and (d) depict the comparison of empowerment (in
nats) landscape over 5 time steps of states (i.e., the proposed impulse response method)
versus 5 time steps of actions, respectively.
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Figure 2.5: The pendulum vector field and its corresponding empowerment landscape (in
nats) obtained via empowerment calculation over 50 step states. Fixed points are shown with
black dots and arrows represent the direction of the vector field.

The Wilson-Cowan model

We also demonstrate the performance of our method for the canonical neural mass model, the

Wilson-Cowan model, which provides a course-grained representation of the overall activity

of populations of neurons [58, 59, 60]. The 2-dimensional system describing the excitatory

and inhibitory activity of these populations is:

ṡe = −se + (1− rese)Fe(c1se − c2si + Ie + P )

ṡi = −si + (1− risi)Fi(c3se − c4si + Ii +Q)
(2.20)
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where se and si are the overall activity in the excitatory and inhibitory populations. Here, rj ,

j ∈ {i, e} represents a constant describing the refractory period. c1, c2, c3 and c4 present the

strength of excitatory and inhibitory interactions. P and Q are the excitation level in the

system and Ie and Ii are the control input currents that affect the respective populations.

Also, Fj is a sigmoid function:

Fj(s) =
1

1 + exp[−aj(s− θj)]
− 1

1 + exp(ajθj)
(2.21)

where a and θ are free parameters representing the slope and the threshold, respectively. We

applied our method to the Wilson-Cowan model over n = 100 steps. Particularly, we study the

case wherein the system exhibits 3 multiple fixed points (2 stable fixed points and an unstable

fixed point, see Appendix A for details). Fig. 2.6, depicts the empowerment landscape

obtained using the impulse response method. As seen, the locus of high empowerment

corresponds to the unstable manifold associated with the unstable fixed point.

2.3.2 Synthesizing Optimal Dynamics

We now move to the main problem considered in this paper: optimization of the empowerment

with respect to thedynamics. We performed this study for the same systems considered

above.

Linear and nonlinear systems

For simplicity, we first consider a horizon of two steps and a linear parameterization as

follows:

st+2 = st + f(f(st) + Kst + ut)dt+ wt+2 (2.22)
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Figure 2.6: The vector field, nullclines and empowerment landscape result from n step
empowerment calculation for the Wilson-Cowan model (the empowerment values are in nats).
The fixed points of the system are located where nullclines intersect. Fixed points are shown
with dots.

Fig. 2.7, shows the vector field and the landscape of a stable linear system before and after

optimization of the linear parameterization (again, see Appendix A for details). Perhaps

intuitively, the optimization has taken the original system (wherein the origin is asymptotically

stable) and destabilized it. As a consequence, the system is more ‘usable’ in the sense that a

greater diversity of states is accessible (asymptotically).

The optimal system in Fig. 2.7-(b) depicts higher empowerment around the center as opposed

to Fig. 2.7-(a).

We also consider the case of a nonlinear system with multiple equilibria (again, see Appendix

A for details). As shown, the optimization tends to accentuate the dominance of a single
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Figure 2.7: Empowerment maximization of a linear dynamical system with one stable
equilibrium point (a). After optimization, the resultant environment (b) exhibits a dominant
unstable equilibrium.

unstable equilibrium point. In Fig. 2.8-(a), the basal system has 4 equilibria (2 saddle,

one stable and one unstable equilibrium). The optimization leaves a dominant unstable

equilibrium and destroys the rest of them, Fig. 2.8-(b).

These results are intuitive insofar as the optimization appears to be simplifying the systesm

dynamics and making as much of the state space to be accessible or reachable as possible.

Thus, an input interacting with the optimized dynamics can ‘do more’ than one interacting

with the basal system. Although we have considered only the simplified case of a linear

parameterization, there are clear ways to generalize this concept including parameterizing

the dynamics along a basis set of nonlinear functions.
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Figure 2.8: Empowerment maximization of a nonlinear dynamical system with four equilibrium
points (a). After optimization, the number of equilibria is reduced and a single dominant
unstable node emerges (b).

The Wilson-Cowan model

We carry out further simulations for the Wilson-Cowan model to look into the sorts of

dynamics that emerge after learning the optimal parametrization of the system. In Fig. 2.9,

we have considered P in equation (2.20) as the system parametrization and performed the

empowerment optimization. Fig. 2.9 (a) and (b) depict the corresponding empowerment

landscape of the initial and the optimal network. As seen, the emergent dynamics from

empowerment maximization for n = 300 create a limit cycle. This observation again is intuitive

since the limit cycle permits different initial conditions to remain ‘separated’ asymptotically

(versus converging to a single stable fixed point). This observation is also intriguing from a

scientific perspective, since such limit cycle oscillations are thought to be pervasive in actual

neuronal dynamics.
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Figure 2.9: Comparison of the empowerment landscapes and the system dynamics for
empowerment maximization in the Wilson-Cowan model. In (a), the system initially exhibits
a stable fixed point and the empowerment landscape is flat ( P = 0). In (b), after learning
the optimal system parametrization, i.e. P , the system exhibits a limit cycle (P = 1.177).
(c) and (d) present the comparison between the time response of the system before and after
empowerment maximization.
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2.4 Discussion and Conclusion

In our work, we have explored the use of empowerment as a way to shape a dynamical

system so as to render it more functional for information processing. From the perspective

of dynamical systems and control theory, this problem amounts to altering the dynamics of

the system at hand so that as much of the state space is reachable as possible. To do so, we

suggest a computational simplification to aid in the calculation of empowerment (noting that

the calculation of empowerment is itself an optimization problem over the space of inputs).

We then use a variational approach to facilitate the optimization of the system as intended.

Returning to the idea alluded to in the Introduction, one possible avenue for these results

is to enable a study of biophysical neuronal dynamics. That is, we can fashion neurons as

environments and study how their dynamics mediate information capacity. This may help us

to derive general insights into the functionality of neural circuits and also reveal principles

for network design that do not require task specificity. Finally, one can connect these results

back to the general idea of agent policy design, by viewing the parameterization as a degree

of freedom that can be chosen by the agent, so that it can both shape the environment

and then exploit it according to a secondary objective. It is also worth mentioning that in

our simulations, we constrained the degree of freedom as a linear parametrization of the

environment; a potential future direction is augmenting the environment according to a

more general parameterization, for example through the use of basis functions that allow for

nonlinear manipulation of the vector field.
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Chapter 3

Optimization and Learning of

Network Dynamics via Reinforced

Regression for High-level Function

3.1 Introduction

Neural-network-based machine learning provides an interesting and potentially insightful

paradigm for us to build intuition for the nature of computations and dynamical mechanisms

underlying various patterns of neural activities. Initially, such networks were simply conceived

of as abstract constructs that reflected certain aspects of neurobiology, but that were mostly

focused on achieving computational and engineering endpoints. However, recently scientists

have begun to derive intellectual ‘feedback’ from artificial neural networks by using them as

an analog to probe and study actual brain dynamics in top-down paradigms [18].
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Perhaps most notably, artificial neural networks have emerged as a promising tool for modeling

sensory systems, attention, circuit connectivity and patterns of neural activity [18, 30, 61,

62]. As such, various architectures (e.g. feedforward versus recurrent neural networks),

optimization techniques and regularization methods can be explored to generate mechanistic

hypothesis about the computations carried out in neural systems.

In this chapter, we deploy the top-down modeling approach by optimizing RNNs as a proxy

of dynamical network systems that carry out computations that are ostensibly associated

with high-level cognitive functions. In the following, we first lay the groundwork for the use

of RNN modeling. Next, we provide the details of a new reinforced regression method for

optimization of RNNs.

3.2 Artificial Recurrent Neural Networks

3.2.1 Motivations for Using a Recurrent Architecture

To derive an understanding of the generative processes that give rise to task-evoked neural

activity patterns, we turn to a dynamical systems framework. At a high-level, these processes

are captured through an equation of the form ẋ(t) = F (x(t), u(t)), where x(t) is a high-

dimensional vector that captures the state (e.g., activity) of neurons and u(t) are exogenous

inputs (e.g., stimuli). In question is the vector field F (.), which models the dynamics, i.e.,

time-evolution, of the neural states during both stimulus-driven and autonomous periods of a

given task. Unfortunately, ascertaining F (.) in a bottom-up fashion is not straightforward,

especially at a level of scale commensurate with networks thought to be relevant to high-level

brain functions, such as prefrontal cortex [63, 64].
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One approach to tackling this issue is to produce top-down hypothetical versions of F (.) by

optimizing artificial RNNs to engage high-level cognitive tasks [28, 31, 65, 66]. Here, rather

than modeling the dynamics of the brain directly (e.g., by fitting to neural recordings), one

is creating and optimizing a model that achieves the function in question, such that F (·) is

emergent [29, 67]. Specifically, the recurrent nature of RNNs architecture develops putative

neural dynamics that embed the computations associated with the function in question.

3.2.2 Overview of Training Methods of RNNs

The use of artificial RNNs in this context dates to the early work of Hopfield, wherein abstract

networks were among were used to describe potential mechanisms underlying associative

long-term memory [68]. Methods for training recurrent networks such as Real-Time Recurrent

Learning (RTRL)[69] and Back-Propagation Through Time (BPTT) [70] were developed

later and provided a means to construct more complex network architectures and dynamics.

However, such training methods were primarily developed as means to create algorithmic

solutions, as opposed to top-down neuroscience tools.

One of the first efforts explicitly bridge the gap between machine learning and computational

neuroscience was in the area of reservoir computing [71], where recurrent neural networks

were shown to be able to engage with a number of tasks of potential cognitive relevance

and proposed as a means by which the brain itself might be functioning. Instances of this

line of research include Liquid State Machines (LSM) [72] and Echo State Networks (ESN)

[73]. Even more recently, many new methods have been proposed to optimize RNNs for

the specific purpose of top-down neuroscience. These include the first-order reduced and

controlled error (FORCE) [74] method, Hessian-free (HF) [67, 75] and variations on stochastic

gradient descent (SGD) [31].
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3.3 Reinforced Regression for Optimizing RNNs to Per-

form Cognitive Tasks

A widely-used and well-studied class of recurrent networks is characterized by the presence of

fully random recurrent connectivity [76]. Specifically, these networks have rich dynamical

repertoire and thus are capable of generating complex temporal patterns that are potentially

commensurate with spontaneous cortical activities [76, 77]. In the following, we elaborate on

constructing and optimizing random RNNs to perform high-level task-based functions.

3.3.1 Random Recurrent Network Model

We consider networks composed of N nonlinear firing-rate units :

τ ẋ(t) = −x(t) + Jr(t) (3.1)

where x ∈ RN is the state vector and r (t) = tanh(x(t)) denotes the activities obtained via

applying hyperbolic nonlinearity to network states. We set the network time constant, τ , to 1

for simplicity throughout the rest of equations. We denote J as the initial synaptic connectivity

matrix with elements drawn randomly from a Gaussian distribution, i.e. Jij ∼ N (0, σ2
J).

Specifically, we parameterize σ2
J =

g2

N
, so that g controls the strength of initial synaptic

interactions. A schematic of these networks is presented in Fig. 3.1.
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Figure 3.1: Schematic of random recurrent network

3.3.2 Basic Dynamical Characterizations of the Untrained Net-

work

In the context of our investigation, it is important to keep in mind that the above network is

in fact a dynamical system. Our eventual goal is to understand the dynamics embedded in

the network vector field, including the type and stability of attractors. Certain details are

useful to point out even prior to any optimization being carried out. For instance, the origin

is a fixed-point of (3.1). To study the stability properties of the origin, we can consider the

eigenvalues of the Jacobian matrix:

M = −I + J (3.2)

Regarding the well-known circle law of random matrix [78], the eigenvalues of random

connectivity matrix J are distributed over a disk with radius g for N →∞ [76, 79]. Thus,

depending on the strength of J , the stability of origin varies. By shifting the stability matrix

M by I, we obtain the connectivity matrix as the shifted Jacobian at the origin. To perform
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Figure 3.2: Eigenvalue spectrum of the connectivity matrix

the stability analysis, we consider the shifted Jacobian matrix throughout this chapter. Fig.

3.2 shows the eigenvalue distribution of the connectivity matrix, J:

Therefore, depending on the strength of J , the stability of origin varies. For g < 1 the

origin is asymptotically stable, while for g > 1 the origin is unstable, suggestive of potentially

chaotic dynamics in the overall network. Fig. 3.3 presents these two dynamical regimes.

3.3.3 Optimizing Networks through Structure Low-rank Augmen-

tation

Despite the dynamic range of these networks, they cannot implement complex computations

without specific optimization in terms of a functional objective [80]. Motivated by the
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B

Figure 3.3: Eigenvalue spectrum and neural activities. Panel A, for g = 0.9, shows the
eigenvalue distribution and unit activities (for a subset of neurons/units in the RNN). Panel
B, for g = 1.5, shows the eigenvalue distribution and unit activities.

evidence that connectivity of cortical circuits is a mixture of random and structured synaptic

connections and low-dimensional dynamics observed in neural populations [81], one can

add low-rank structure to the random connectivity and manipulate the initial dynamics for

implementing the cognitive task computations. For example, Fig. 3.4 shows the emergence

of outlier eigenvalues after applying a rank 1 structure to the connectivity matrix J. Many of

the aforementioned methods for training RNNs, including the FORCE method [74] involve

the use of such low-rank augmentations to a basic random connectivity structure.

We will follow a similar paradigm at the FORCE method, but make a few specific modifications

with an eye towards increased interpretability relative to the original method. We proceed by
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Figure 3.4: Comparison of eigenvalue distributions before and after adding the low-rank
structure. (m,n ∈ RN)

explaining the details of our proposed method for optimizing RNNs to perform a high-level

function.

3.3.4 Optimization of RNNs via Temporall Restricted Error Ker-

nel

To parameterize the network (3.1) to learn the computation of interest, we adjust the

connectivity via applying additional connections to the network:

ẋ(t) = −x(t) + (J + WfWT
o ) r(t) + Wiu(t)

zo(t) = WT
o r(t)

(3.3)

where zo(t) is a network output. Optimization/learning proceeds by modifying the projection

vectors Wo ∈ RN×1. The network output zo(t) is fed back to the network via feedback weights
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i.e. Wf ∈ RN×1. The network receives the exogenous input (i.e., stimulus) u(t) ∈ Rd×1 via

input weights Wi ∈ RN×d, where d is the input dimension.

This strategy effectively modifies the initial connectivity by addition of a low-rank component,

allowing for more interpretable relations between the overall network connectivity and function

[77, 82].

In general, the goal of learning is to minimize the total error between a target signal, f(t),

and the network output during training time, T .

E(t) =
1

2

∫ T

0

e(t)2dt (3.4)

with e(t) = z(t)− f(t). In our setup, we modify readout weights Wo to keep the error, eo(t),

between zo(t) and output targets, fo(t), small during training.

However, our goal here is not to only optimize/train RNNs to generate accurate input-output

mappings. Instead, we contribute our effort to incorporating realistic assumptions and

restrictions into our training framework. In particular, behaving animals do not receive a

continual external supervisory error-signal throughout learning, but they obtain a reward upon

successful performance at brief moments in time (i.e., the high-level notion of reinforcement

learning [83]). Inspired by this, the proposed training method blends trial-based reinforcement

learning with the continual error regression, such that learning is constrained to occur only

during brief intervals throughout training. We refer to these epochs where regression occurs

as a temporally restricted error kernel.

Therefore, in contrast to FORCE method, where the weights are updated continually during

training intervals, here, we update weights only during short intervals; i.e. during the response

generation. Thus, our training paradigm is a temporally regularized FORCE method that
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prevents the output from overfitting to the target signal and in turn allows the network to

figure out the optimal dynamics on its own. As per the FORCE method, Wo, subject to our

training paradigm, is updated using recursive least squares [74]. Hence, to reduce eo(t), we

obtain
Wo(t) = Wo(t−∆t)− eo(t)P(t)r(t)

P(t) = P(t−∆t)− P(t−∆t)r(t)rT (t)P(t−∆t)

1 + rT (t)P(t−∆t)r(t)

(3.5)

where P(t) denotes the approximate estimate for the inverse of the correlation matrix of

network activities with a regularization term

P(t) =

∫ T

0

r(t)rT (t)dt+ αIN (3.6)

where α is the regularization parameter and IN the identity matrix. Mathematical details of

obtaining the update rules (C.3) are provided in Appendix B. Fig. 3.5 shows the network

architecture and the schematic of the proposed training paradigm in comparison to fully

temporally unconstrained methods.
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Figure 3.5: Reinforced regression. (A) shows the RNN architecture and connectivity. (B)
displays the training paradigm of FORCE method, wherein z(t) follows the target signal fo(t)
during the total trial interval. (C) displays the training paradigm of reinforce regression,
wherein z(t) follows the target signal fo(t) only at brief intervals, i.e. Tresponse.

3.4 Conclusion

In this chapter, we introduced RNN modeling as a tool in top-down neuroscience. We

described the basic architecture and dynamic of the class of RNNs that we are interested

in using. We then provided details of a reinforced regression training method that adds

interpretable structure to existing methods in the literature. Our premise is that this revised

optimization framework, by leaving long temporal epochs unconstrained, may lead to a wider

range of emergent dynamics within RNNs when optimized for high-level cognitive functions.

In the subsequent chapter, we will evaluate the efficacy of this method on a specific paradigm

working memory wherein we will show how rich and biologically compatible dynamics emerge

in the optimized networks.
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Chapter 4

Analysis of Emergent Dynamics

Associated with Working Memory

4.1 Introduction

Working memory (WM) enables the storage and manipulation of information over brief

periods of time. This capability is required for many cognitive tasks such as reasoning

and problem-solving. Presumably, memory retention relies on an invariant latent neural

representation of past stimuli [84], but the precise nature of these representations and the

dynamical mechanisms by which they are created in neural circuits remain enigmatic. From

a mechanistic standpoint, there are two prevailing hypotheses that address the bases of

invariant neural representation during memory periods; the first hypothesis suggests that

neural activity evolves toward stable self-sustained attractor states during delay periods

associated with WM [85, 86, 87]. Depending on the nature of memory items and tasks,

discrete attractors such as stable fixed points or continuous attractors such as line and ring
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attractors have been proposed [86]. Conversely, the latter hypothesis does not necessarily

require self-sustaining attractors. One premise for such a hypothesis is that high-dimensional

fluctuations in neural activities may project onto a lower-dimensional latent space upon

which an invariant representation is held during delay intervals [37, 42]. For example, if the

activity of a neuron gradually drops during delay periods, the activity of another neuron

increases to compensate for that drop. Thus, during delay, neural activity may traverse along

a low-dimensional manifold corresponding to this invariant representation [88, 89].

In this spirit, recent works have tried to reconcile the aforementioned hypotheses in the

context of WM [90, 91, 92, 93]. For instance, in [90], authors suggest that the existence of

both transient dynamics and stable fixed points are essential for reliable task performance

in the face of uncertain stimulus timing. However, there remain open questions yet to be

addressed; what are the circumstances under which each of these solutions may emerge?

Which mechanism is more favorable regarding the WM functionality? Are these dynamical

mechanisms compatible with actual biological brain dynamics?

In Chapter 3, we set the framework for developing mechanistic hypothesis of neural dynamics

based on RNN modeling. In this chapter, we first design a simple sequential, memory-

dependent task: sequential pattern matching (SPM). Then to optimize RNNs, we use our

proposed method, i.e. the reinforced regression method. Then, we proceed to identify the

emergent network dynamics and elucidate on the functionality of the emerged solutions.

4.2 WM Task Design

In this study, we design a sequential pattern-matching task that takes into account key phases

of working memory tasks: stimulus processing, memory encoding and response execution [63].

The goal is to use a task of sufficiently low dimension as to be able to perform tractable and
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Figure 4.1: SPM Task. Panel A shows the VAE

potentially illuminating post-hoc analysis on the emergent dynamics of RNNs. In the proposed

task, each trial consists of two random process stimuli alternating with delay intervals and a

brief response interval (Fig. 4.1). Particularly, each stimulus is a two-dimensional Gaussian

process obtained in the latent space of a Variational Auto Encoder (VAE) trained on the

MNIST dataset of hand-written digits. We design the task rule to emulate summation,

which differs from simple match or non-match tasks [94]. Note that in our setup, we use two

different stimuli and we have 3 outcomes for summation. For example, valid trials in Fig. 4.1

are: (4,5), (4,4), (5,4) and (5,5).
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4.3 Optimizing RNNs to Perform SPM Task

Recurrent networks with fully random connectivity as in equation (3.1) have a rich dynamical

repertoire and thus are capable of generating complex temporal patterns that are commensu-

rate with spontaneous cortical activities [76, 95]. To make these networks learn the function

of interest and thus perform the task, we first define two variables decoded from the network

activity:
zo(t) = WT

o r(t)

zd(t) = WT
d r(t)

(4.1)

where zo(t) is a network output for generating responses, while zd(t) is a low-dimensional latent

variable that is linearly decoded from neural firing rate activity, i.e. zd(t) = (zd1(t), zd2(t)).

In our network, invariant memory representations will be formed in this latent space. Opti-

mization/learning proceeds by modifying the projection vectors Wo ∈ RN×1 and Wd ∈ RN×2.

The network output zo(t) and dummy output zd(t) are fed back to the network via feedback

weights i.e. Wf ∈ RN×1 and Wfd ∈ RN×2 , respectively. This results in modified synaptic

connectivity:

ẋ(t) = −x(t) + (J + WfWT
o + WfdWT

d ) r(t) + Wiu(t) (4.2)

The elements of Wf and Wfd are drawn independently from Gaussian distributions with zero

mean and variance σ2
f . The network receives the exogenous input (i.e., stimulus) u(t) ∈ R2×1

via input weights Wi ∈ RN×2 (see Fig. 4.2). This strategy effectively modifies the initial

connectivity by addition of a low-rank component, allowing for more interpretable relations

between the overall network connectivity and function [77, 82]. Note that a minimal rank,

i.e. rank 1, perturbation could be used, but it is known to induce high correlations between

emergent fixed points, thus restricting the potential range of emergent dynamics [82, 96].

49



Hence, to allow for a potentially wide range of solutions, we used a random connectivity plus

rank 3 structure for the SPM task.

In our framework, optimization occurs only during the relevant temporal intervals in which

these target signals are defined (Fig. C), which we term a temporally restricted error kernel.

When applying this kernel, the total error derived for a given trial is:

E(t) =
1

2

∫
Td
ed(t)

2dt+
1

2

∫
Tr
eo(t)

2dt (4.3)

where Td and Tr are the temporal epochs associated with the two delay periods and response

period, respectively (Fig. C). Here,

ed(t) = ‖zd(t)− fd‖ , (4.4)

where zd = (zd1 , zd2) and fd = (fd1 , fd2) and

eo(t) = ‖zo(t)− fo‖ . (4.5)

Here, fd1 , fd2 and fo are scalar real numbers chosen prior to optimization to represent the

2-dimensional stimulus and the trial outcome. During the delay intervals in particular, a low

error thus implies that the neural activity linearly maps to a constant, invariant representation

(i.e., zd ∈ R2×1). Activity during temporal epochs outside of the these periods do not impact

the error. Optimization proceeds by modifying readout weights Wo and Wd to minimize

these errors.

Within the temporal error kernel, we deploy the FORCE method for parametric regression in

RNNs. Here, Wo and Wd are updated using recursive least squares [74]. Briefly, to reduce
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eo(t), we obtain

Wo(t) = Wo(t−∆t)− eo(t)P(t)r(t)

P(t) = P(t−∆t)− P(t−∆t)r(t)rT (t)P(t−∆t)

1 + rT (t)P(t−∆t)r(t)

(4.6)

where P(t) denotes the approximate estimate for the inverse of the correlation matrix of

network activities with a regularization term

P(t) =

∫
Tr

r(t)rT (t)dt+ αIN (4.7)

where α is the regularization parameter and IN the identity matrix. In the same manner, to

reduce ed(t) we have

Wd(t) = Wd(t−∆t)− ed(t)P(t)r(t). (4.8)

Note that we update the associated inverse correlation matrices during training intervals

Td and Tr (shown in Fig. 4.2). In total, our training paradigm is a temporally regularized

FORCE method that mitigates overfitting and in turn provides a potentially broader range

of dynamical solutions to manifest. Indeed, it is known that optimizing RNNs using FORCE

for a sequential trial-based task (here, a pattern association task with memory requirement)

prevents the emergence of multiple fixed points in optimized networks, and thus can overly

constrain the range of possible solution dynamics [96].
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Figure 4.2: Panel A shows the schematic diagram of RNN. The network receives input trials
sequentially via input weights and generates the task outputs zo(t) and memory encodings
zd(t). (B) shows the initial synaptic connectivity matrix J and the low-rank structure added
to it. We use a rank 2 structure for encoding memory and a rank 1 structure for generating
response.
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Figure 4.3: Training RNN using reinforced regression to perform SPM task. (A) shows a single trial,
wherein each stimulus is a low dimensional representation of handwritten digits followed by short delay
intervals. The network is optimized to generate the correct summation output during response interval. Digit
representations are two dimensional Gaussian process and thus the dummy target fd is two dimensional. (B)
shows target signals fo(t) and fd(t) and their corresponding network outputs zo(t) and zd(t) for the trained
network (here during 4 sequence of trials). Note that in reinforced regression paradigm, the weights are
updated only during brief intervals (the shaded areas) and thus the network follows the target signals only
during training intervals.
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4.4 Dynamical Systems Analysis

The central theoretical question in our study pertains to analyzing the dynamics of our

optimized networks. A first order question in this regard is to elucidate the landscape of

attractors manifest in the network’s vector field. In the same manner as discussed in Chapter

3, to study the stability of the origin, we can consider the eigenvalues of connectivity matrix

(or shifted Jacobian matrix). For the optimized networks with the rank 3 structure, the

Jacobian matrix at the origin is JT = J + WfWT
o + WfdWT

d .

Understanding the location and stability of fixed points away from the origin is harder to

ascertain analytically. Hence, we rely on a number of numerical procedures to identify these

points. To locate stable fixed points used for task computations, we arrest trials at relevant

time moments, then forward simulate to ascertain the asymptotic behavior of the network.

In one set of simulations, this forward simulation is carried out for trials arrested at the end

of the first delay period. In a second set of simulations, it is carried out after trial conclusion.

The forward simulation is carried out for ten times the nominal trial length, at which time

we assume the network state is in a stationary regime, i.e., within an ε distance of either a

stable fixed point or limit cycle.

We can perform additional linearization about stable fixed points that are discovered numeri-

cally in this way. Here, the eigenvalue spectrum of Jacobian matrix, Q, at these non-zero

fixed points, denoted x∗, is as follows

Q = (J + WfWT
o + WfdWT

d )R′ (4.9)
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where R′ is a diagonal matrix with elements R′
ij = δijr′i with

r′ = 1− tanh2(x∗). (4.10)

Note that if the states are largely saturated at a fixed point (as in the case of DFP encoding,

Fig. 4.9C), then the entires of r′ are very small, which contracts the spectrum of Q.

In the following, we reveal the details of the emergent dynamics after training the networks.

4.5 Results

Optimization was terminated when the error during these epochs was below a specified

threshold. As opposed to FORCE method, reinforced regression method obviates the issue of

generating an error signal continuously throughout trials, since doing so may overly constrain

the dynamics that the RNNs can manifest [18]. Our networks successfully solve the SPM task

via several distinct dynamical mechanisms. Underlying these mechanisms are key invariant

structures that are manifest in the network vector field, namely stable fixed points and

attractive limit cycles. Interestingly, the mechanisms by which fixed points are used to

encode latent memory representations and task outputs can vary. (Simulation parameters

are provided in Appendix D.)

4.5.1 WM Can Be Encoded via Distinct Dynamical Mechanisms

Associated with Tonic (or Persistent) and Phasic (or Tran-

sient) Neural Activation.

We enacted a trial-based WM task involving sequential pattern matching (SPM) that exhibits

working memory requirements (Fig. 4.2). In our design, high-dimensional stimuli are encoded
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as bivariate random processes, such that the network is required to temporally integrate each

stimulus and then store a latent representation of said stimulus for later processing. We

optimized RNNs to perform this task by using a modified FORCE method [74] that included

a temporally restricted error kernel. Here, regression occurs at two phases during each trial:

(i) during memory/delay periods, wherein we promote the formation of an invariant latent

linear projection from neural units nominally associated with maintenance of a memory

representation; and (ii) at the conclusion of each trial, wherein we promote a linearly decoded

output response signal (Fig. 4.2). All other temporal epochs are unconstrained, thus obviating

the need to generate an error signal continuously throughout trials, which may overly constrain

the dynamics [18].

We found that optimized networks could produce both tonic and phasic activity patterns

during delay periods, as exemplified for two different networks of 1000 neurons in Fig. 4.4.

In order to study the dynamical mechanisms underlying these overt patterns we first used a

numerical criteria on neuronal activity at the end of the delay period, Td. Specifically, we

arrested trials at Td and forward simulated the networks autonomously to ascertain whether

the activity was sustained at a fixed point. We identified four distinct dynamical mechanisms

that could mediate working memory. In the case of tonic activation, network activity would

indeed remain persistent, i.e., x(t), the state vector of neuronal activity, would remain near

x(Td) with ‖ẋ‖ ' 0, indicative of a fixed point attractor (Fig. 4.5A). We refer to this

mechanism as direct fixed point encoding (DFP). In the case of phasic patterns, x(t) in the

forward simulation would deviate from x(Td). In some cases, the network would always settle

at a different fixed point from the memory representation (Fig. 4.5B, termed indirect fixed

point encoding, IFP), independent of the stimulus or network initial condition. In other cases

the network would always asymptotically approach a stable limit cycle attractor (Fig. 4.5C,

limit cycle encoding, LC). In a fourth case (not depicted), the network could asymptotically
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approach either a disparate fixed point or a limit cycle, depending on the stimulus realization

(termed mixed encoding, see Fig. 4.6). In total, we optimized 1524 network models, of which

703 were identified of the direct fixed point (DFP) mechanism, 534 were of the indirect fixed

point (IFP) mechanism, 182 were of the limit cycle (LC) mechanism, and 105 were of the

mixed (Mix) mechanism. Given their dominance in the emergent solutions, our subsequent

attention will be on understanding the workings of the DFP and IFP mechanisms, though

we will later also untangle the factors that cause each mechanism to arise over the others.
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Figure 4.4: Tonic vs. phasic pattern of neural activity. Tonic and phasic activity for
two different networks. Activity patterns (normalized) of neurons are sorted by the time of
their peak value.
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Figure 4.5: Forward simulation of network after delay to identify distinct dynamical mecha-
nisms underlying WM . A, Direct Fixed Point encoding (DFP), where the network uses fixed points to
encode memory representations of each stimulus. B, Indirect Fixed Point encoding (IFP), where the network
asymptotically settles at a fixed point but this fixed point does not correspond to a memory representation.
C, Limit Cycle (LC), where the network asymptotically approached a stable limit cycle attractor.

4.5.2 Indirect Encoding Efficiently Uses the Network Attractor

Landscape.

The above findings suggests that key invariant structures in the network attractor landscape –

stable fixed points and attractive limit cycles – determine whether and how delay activity takes

on a tonic or phasic characteristic. To delve further into these mechanisms, we attempted

to analyze how networks in each of the four categories leverage their respective attractor

landscapes during the task.

We began by linearizing the dynamics at the origin and using mean-field results [82] to

establish lower bounds on the number of fixed point attractors manifest in the network
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Figure 4.6: Flow chart Categorization of dynamical mechanisms based on (i) the type
of asymptotic attractor (either fixed point or limit cycle) and (ii) whether delay periods
correspond to a fixed point.

attractor landscape. Fig. 4.7A,B show how our four mechanistic categories break down

along three key properties of spectra of the ensuing Jacobian matrix, where distinctions are

readily observed. Most notably, the landscapes associated with direct fixed point encoding

involve a greater number of fixed point attractors relative to indirect encoding. In support

of this point, Fig. 4.7C illustrates representative low-dimensional projections of network

activity in each of the four mechanisms with stable fixed points overlaid (here, we restrict

attention to the positive quadrant, see also Discussion). In DFP encoding (Fig. 4.7C), the
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sequential stimuli move the trajectory between different fixed points (associated with memory

representations), culminating in an output that is itself associated with a different fixed point

(i.e., here a total of four fixed points are used in the service of the task). In contrast, the

landscape for IFP encoding (Fig. 4.7C) involves a single fixed point that does not encode

memories, nor does it encode the nominal output (though, it is approached asymptotically

if networks are forward simulated autonomously after trial cessation). Thus, IFP encoding

is able to maintain invariant representations during the relevant memory periods without

relying directly on the presence of multiple fixed point attractors (see also Fig. 4.8)
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4.5.3 Indirect Encoding Uses Slow Manifolds to Sustain Memory

Representations

Following from the above, IFP encoding appears to use the geometry of the stable manifolds of

the single fixed point to maintain memory representations. Fig. 4.9A illustrates the spectrum

of the linearized dynamics about the fixed point in the previous IFP example encoding model,

where we see many eigenvalues near the imaginary axis, indicating the presence of slow, stable

manifolds along which activity flows in a relatively invariant fashion. These manifolds provide
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the opportunity for a low-dimensional latent representation of memory to be maintained,

despite phasic activity (along the manifold). Indeed, because we encourage linearly mapped

latent representations via our optimization method (see Methods), we know these manifolds

have a planar geometry in the firing rate activity variables. In contrast, Fig. 4.9B illustrates

the spectra resulting from linearization about two memory fixed points in a DFP model.

Here we note that eigenvalues are relatively offset from the imaginary axis, indicating rapid

convergence to the fixed point. This conclusion is supported in Fig. 4.9C, which shows

the relative proportion of delay periods in which neurons are in the saturated (nonlinear)

vs. linear range of the activation function, i.e. tanh(.) , for each model we trained. The

much larger proportion of saturated neurons in DFP encoding indicates that the mass of

eigenvalues for these models is relatively contracted and offset from the imaginary axis (see

Methods and equation (4.9)) and thus associated with fast decay to the fixed points.

To further understand the circuit-level details mediating the DFP and IFP mechanisms, we

characterized the connectivity between neurons. We first noted that DFP encoding leads to

an overall much greater distribution of connectivity weights between neurons relative to IFP

(Fig. 4.9D). Next, we sorted neurons according to their peak activation (as in Fig. 4.4) and

examined their average pre-synaptic activity throughout the course of trials. We found that

neurons in DFP encoding exhibited highly structured synaptic tuning to different stimuli

and memory periods, in contrast to IFP encoding (Fig. 4.9E). Finally, we examined the

bidirectional synaptic weight between ‘adjacent’ neurons (ones with temporally sequential

maximal activation). Here, DFP exhibits no systematic connectivity structure, while IFP

shows that neurons with similar peak activation times are more tightly coupled (Fig. 4.9F).

This latter point suggests that traversal along the slow manifolds is mediated by an internal

sequential, ‘daisy chain’ type of structure embedded within the trained IFP encoding network.
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Figure 4.9: Eigenvalue spectrum at task fixed points and connectivity character-
ization. A, Eigenvalue spectrum of Jacobian matrix at the single non-zero stable fixed
point of IFP (shown in Fig. 4.5b). B, Eigenvalue spectra of Jacobian matrix at memory
fixed points of DFP (shown in Fig. 4.5a). C, Saturation ratio (the ratio of neurons with
activity in saturated range of activation function during memory interval (averaged over
all trials)) for all networks simulated (across all four mechanisms). Standard error of the
mean is depicted. D, Distribution of connectivity matrix entries (i.e., weights) before and
after training for DFP (the top panel) and IFP (the bottom panel). E, Average pre-synaptic
(incoming connections) strength sorted by peak activation of neurons (as in Fig. 4.4) for DFP
and IFP, respectively. F, Comparison of mean and variance of elements of task connectivity
matrix based on temporal distance of neurons. For IFP (the bottom panel) temporally
adjacent neurons are more tightly coupled and a peak can be observed. (The inset shows
this peak and i, j denote neurons indices. )
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4.5.4 Stable Manifold Encoding Is Forgetful, but Robust.

We sought to better understand the functional advantages of the different mechanism types.

In this regard, we interrogated networks by extending delay periods beyond the nominal

training requirements, a form of increased memory demand. The main question here is how

increasing the memory demand in this way would affect activity and consequently degrade

task performance. Fig. 4.10A illustrates the comparison of neural activity patterns for DFP

and IFP encoding categories (with extended delay equal to five times the nominal delay

interval). For DFP encoding, regardless of the length of the extended delay, the neural

activity is unaffected since the network uses fixed points as the invariant structure to encode

memory traces. Consequently, after the extended delay ends and the network receives the

second stimulus, task computations can be executed correctly. However, for IFP encoding,

during the extended delay interval, neural activity gradually drops away which results in loss

of function due to deviation from the ‘correct’ activity pattern upon receiving the second

stimulus. Fig. 4.10B summarizes the deviation from the nominally ‘correct’ post-delay neural

activity as a function of delay extension for our two FP mechanisms, as well as LC and Mix.

As expected, for DFP encoding this deviation is near zero. In contrast, for IFP the networks

can tolerate extended delay up to % 100 of the nominal delay, after which point performance

gradually drops, i.e., the correct representation is ‘forgotten’.

To assay other functional aspects of these mechanisms, we examined how performance of

our networks would tolerate the presence of a distracting noise added to the actual stimulus.

Here, we found a counterintuitive functional advantage of ‘forgetting’, relative to the DFP

mechanism. We specifically added uncorrelated noise of differing variance to the first of

the two sequential stimuli and examined deterioration from the nominal ‘correct’ neural

representation at trial conclusion. For values of noise variance that are less than the stimulus
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variance (vertical dotted line Fig. 4.10C) IFC (and indeed LC) encoding are highly robust

to perturbations, and indeed variances in excess of an order of magnitude greater than the

stimulus can be tolerated. In stark contrast, DFP encoding is highly fragile with respect to

distracting noise, with rapid and near-complete breakdown of the correct neural representation

after modest perturbation (Fig. 4.10C). To understand this mechanism we carefully studied

the trajectories in low-dimensional space in the presence of distracting noise ( Fig. 4.11),

from which we ascertained that the distracting noise was essentially placing the trajectory in

an erroneous basin of attraction, i.e., causing an incorrect memory fixed point to be induced.

This result runs counter to classical Hopfield-type associative memory theory [68], which

presumes that basins are useful to rejecting noise and uncertainty. Our finding, in essence,

indicates that the high reliance on many fixed points for stable memory representations in

DFP encoding makes this mechanism more susceptible to the temporal integration of noise

(see also Discussion).
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4.5.5 Initial Network Properties Dictate the Emergence of Differ-

ent Solution Dynamics.

Finally, we sought to understand the factors prior to optimization that bias the emergent

dynamics towards one type of mechanism versus another. We considered three main network

properties: (i) the strength of connectivity, g, (ii) the variance of feedback, σf , and (iii) the

sparsity of the initial connectivity matrix. We varied these parameters over their possible

ranges. Fig. 4.12 illustrates the effect of different parameterizations: for small values of g the

trainability of networks is poor, but improves significantly as g increases. In other words,

large random initial connectivity facilitates training, consistent with known results [74, 82].

For g < 1 the untrained network has one stable fixed point at the origin and the emergent

trained dynamics tend to be of DFC or IFC encoding (Fig. 4.12A). Interestingly, the variance

of feedback weights, σf has a notable effect on the emergent dynamics; for large values of

σf the networks tend to form DFC models and as σf decreases only IFC and LC models

arise (Fig. 4.12B). The sparsity of initial connectivity matrix has no significant effect on the

trainability of networks nor the emergent dynamics (Fig. 4.12C).
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4.6 Conclusion and Discussion

4.6.1 Learning a Diversity of Dynamics for WM Function

In this work we used a top-down optimization-based approach to investigate potential

dynamical mechanisms mediating WM function. By training/optimizing RNNs using a

modification of the FORCE regression method, we found four qualitatively different types

of network dynamics that can mediate function. At a mechanistic level, these solutions are

differentiated on the basis of the number of asymptotically stable fixed points manifest in the

network vector field and, crucially, how those fixed points are leveraged in the service of the

task. We note especially two solution types, one reflecting neural memory representations

that are highly persistent corresponding to direct encoding at fixed points (i.e., DFP), versus

the other where neural representations are transient and correspond to traversal along slow
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manifolds in the network state space (i.e., IFP). At the level of neural activity, DFP produces

tonic sustained activity during delay periods, while IFP produces phasic, transient activity.

Our results are related to prior work that has shown that persistent versus transient encoding

of memories can manifest in neural networks trained on different WM tasks and under different

optimization/learning schemes [93]. Here, we choose to focus on a single, structured task in

an effort to go beyond overt activity characterizations and carefully dissect the underlying

dynamical mechanisms associated, namely the attractor landscape in the neural state space.

Doing so provides not only insight into potential generative circuit processes but also allows

us to perform sensitivity analyses to ascertain nuanced functional advantages associated with

the different mechanisms.

4.6.2 Tradeoff between Efficiency, Memory Persistence and Ro-

bustness

In particular, our results suggest an interesting balance between persistence and robustness of

memory representations. Specifically, the DFP mechanism resembles in many ways traditional

associative memory attractor dynamics, in the sense of Hopfield networks [68]. Here, each

memoranda is associated with a distinct, asymptotically stable fixed point. On the one hand,

such a mechanism is able to retain memories for arbitrary lengths of time. Further, the

dynamics with the attractor basins can nominally correct for small perturbations to neural

trajectories at the onset of memory periods. However, our results suggest that this latter

classical interpretation breaks down when considering sequential, time-varying stimuli. In

this case, perturbations to stimuli can accrue over time, causing neural representations to

stray into errant basins of attraction, ultimately leading to failure of performance.
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In contrast, in the IFP encoding mechanism, the network vector field exhibits a smaller number

of fixed points that do not encode memoranda directly. Rather, memory representations are

formed from projection of neural activity along slow manifolds that are ostensibly shaped

through optimization of the network vector field. The fixed points here are, in essence,

‘shared’ between memoranda. This mechanism turns out to be far more robust to time-

varying stimulus perturbations. There are likely two factors related to this robustness. First,

noisy perturbations may not be able to easily move trajectories off of the ‘correct’ slow

manifold. Second, there are no competing attractors to absorb errant trajectories, as would

be the case in the DFP mechanism. In total, the IFP encoding can be viewed as an overall

more efficient use of neural dynamics wherein the lack of a persistent representation (i.e.,

‘forgetfulness’) is offset by both a lighter weight coding scheme in terms of the number of

attractors deployed in the state space, leading – perhaps paradoxically – to more robust

performance.

4.6.3 Shaping a Landscape with Few Attractors

Expanding on the above point of efficiency, it is of note that the limit cycle and mixed

mechanisms are most comparable to IFP in terms of the way in which they attractor

landscape is used in the service of the task. In the LC mechanism in particular, the oscillatory

cycle is not itself used to encode or sustain the memory, but rather shapes the landscape to

create slow manifolds for encoding, similar to IFP. Thus, while the oscillation is not directly

functional, it nonetheless is critical in establishing the ‘right’ landscape for task completion.

From an energetic standpoint, the indirect mechanisms are potentially less expensive since

most neurons are inactive at any moment in time, in contrast to DFP encoding.
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4.6.4 Temporally Restricted Optimization Promotes Solutions that

Are Compatible with Observed Dynamics in vivo

Our results shed light on the different means by which recurrent networks can embed memory

functions within their dynamics. Such a question is highly relevant to understanding how

key machine learning and artificial intelligence constructs such as RNNs encode complex

context-dependent functions [97]. However, they also suggest mechanistic interpretations for

actual WM circuits in the brain, given the seeming prevalence of phasic activity patterns

during delay intervals observed in vivo [63]. Indeed, it has been observed that neurons in

memory-relevant regions such as prefrontal cortex do not necessarily maintain persistent

activity throughout long delay periods, but rather may ‘ramp’ on and off at systematic time

points [63], as is compatible with our IFC mechanism. Further, in the IFC mechanism, most

neurons are lightly saturated (Fig. 4.9c), meaning that most neurons are within a linear

regime, as thought to occur in actual neural circuits [18, 98].

Notably, the IFP dynamical mechanism only arises after using the proposed temporally

restricted error kernel. Indeed, we found that using the native FORCE method without such

a kernel leads to poor trainability; and further those networks that do manage to be trained

are highly fragile to the extended delay and noise perturbations we considered. This fragility

ostensibly arises due to the latent outputs being overly constrained in this situation. Indeed,

the choice of how to constrain these outputs throughout the task is somewhat arbitrary in the

first place. Hence, the temporally restricted error kernel may be allowing for the emergence

of more naturalistic dynamics in our RNNs.
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4.6.5 Potential for Enhanced Fast Learning and Generalization

An important technical caveat is that we have set up our RNNs to produce activity in the

positive quadrant. Hence, our analysis focuses on characterization of the attractor landscape

in that region of the state space. However, because we consider an odd activation function,

we know analytically that the fixed points analyzed in our networks have ‘mirror’ negative

fixed points that are not directly used in the service of the task, which means that these

dynamical features are essentially ‘wasted’ by construction and network design. A speculative

hypothesis is that these fixed points may allow the network to more quickly learn a related

task with minimal synaptic modification, i.e., by leveraging the mirror dynamics that are

already embedded in the network. Such a concept is related to the idea of meta-learning [99]

and may be an interesting line of future study.
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Chapter 5

Conclusion and Future Directions

5.1 Concluding Remarks

In this work we contributed our efforts to develop hypotheses regarding the functional

role of brain dynamics. Specifically, we directed our focus toward the top-down modeling

approaches in engineering neuroscience. To address the notion of functionality, we incorporated

optimization methods within two different paradigms in the context of engineering theory.

First, we postulated our hypothesis regarding the general functionality of neural circuits for

information processing and synthesized the optimal dynamical substrates for maximization of

empowerment. In the second part of our work, we considered a more specific function of the

neural circuits, i.e. working memory. Because complex cognitive functions lack a well-defined

objective function, we developed our hypothesis on the basis of creating generative models of

such complex functions using artificial neural networks and thus identified network dynamics

that facilitate working memory functions.
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In the following, I first make some remarks on the remaining challenges and potential ideas

within the top-down modeling approach that we pursued in this dissertation. Then, I

provide my opinions on the potential prospects of engineering theory within the context of

neuroscience.

5.1.1 Remaining Challenges within the Top-down Modeling Ap-

proach Pursued in This Work

Optimization is a fundamental component of top-down modeling approaches and thus

optimization methods/techniques could largely impact the nature of inferences about brain

functions. In particular, in Chapter 2, we used deep neural networks to approximate unknown

probability distributions for empowerment maximization. Here, the decision variables are

parameters (weights and biases) of neural networks and thus we face a non-convex optimization

problem. As such, different hyperparameters and initializations could potentially lead to

different local maxima. Then, how can we ensure the validity of our hypothesis? In our work,

we substantiated the validity of our inferences on the basis of intuition and the prevailing

observations about neural dynamics. But what about the problems where we lack apriori

intuition or further evidences about the logic of our inferences? Should we explore other

modeling approaches or try to devise a more reliable optimization strategy? Moreover, in

Chapter 3 and 4, we incorporated realistic assumption within the optimization method for

minimization of the error regression. As compared to similar previous methods, reinforced

regression paradigm led to the emergence of neural activities that are commensurate with

neural recordings. However, the update rule for modification of synaptic connections is not

biologically plausible. A question that arises here is how the nature of solutions may change

if we use a realistic update rule (i.e., Hebbian learning rule)?
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In particular in this work, we focused on top-down modeling to link the brain function with

neural network/circuit dynamics. In the network model of Chapter 2, we considered several

simplifying assumptions including homogenous neural networks with firing-rate neurons and

network time constant equal to 1. However, there remain open questions regarding the

mathematical formulations and optimization strategies for non-homogenous neural network

models as well as modifying our models by considering the complex dynamics of individual

neurons.

Interestingly, in Chapter 4, we observed that if the initial dynamical regime of random RNNs

is near chaotic, i.e. g ≥ 1, the trainability of such RNNs increases to perform WM tasks.

Basically, these random RNNs have at least one unstable fixed point as compared to random

RNNs with one stable fixed point at the origin (i.e. g < 1). Linking this observation back to

the results in Chapter 2, at a high-level, we can conclude that chaotic random RNNs may be

better models for generating mechanistic hypothesis of brain functions since their dynamics

are compatible with optimal dynamics obtained via empowerment maximization. In other

words, chaotic RNN dynamics may facilitate task-based optimization since task computations

can be implemented in a wider swath of state space. Perhaps it is worth exploring the use of

empowerment maximization as a preprocessing step for task-based modeling with the aim of

limiting the space of model parameters for efficient training.

5.1.2 Future Landscape of Top-down Modeling within Engineering

Neuroscience

Indeed, understanding the computational bases of brain functions have been a paramount

challenge of neuroscientific research. An essential step to tackle such challenge is directing
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effort to a synergy among different theoretical and practical disciplines. Specifically, the-

oretical and engineering neuroscience are reciprocal to each other; using the fundamental

theoretical knowledge one can formulate principles in an abstract fashion as a blueprint for

synthesizing/analyzing models of brain functions. In turn, by using tools from engineering

one can draw meaningful inferences about the mechanisms underlying the brain computations,

which ultimately can lead to novel theories about the link between neural processings and

high-level functions.

Engineering neuroscience paradigm can potentially contribute to the following areas:

• Neurostimulation

• Reinforcement Learning

• Neuroscience Inspired Artificial Intelligence
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Appendix A

Model Parameters for Empowerment

Maximization

In this section, we provide the details of parameters used in our simulations. Particularly, the

dynamical model parameters for pendulum and the Wilson-Cowan model are obtained from

the corresponding references [22, 58]. For the remaining, i.e. linear and nonlinear systems,

the model parameter are chosen to highlight the key idea of empowerment maximization

with respect to the system dynamics.

A.0.1 Dynamical Models Parameters:

In Fig. 2.4

A =

 1 −1

−1 1


In Fig. 2.5, the parameter set-up for pendulum are the same as the model provided in [22].
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In Fig. 2.6, c1 = 12, c2 = 4, c3 = 13, c4 = 11, ae = 1.2, ai = 1, θe = 2.8, θi = 4 and P = Q = 0.

We have set [Ie, Ii] = [u1, u2].

We obtained excitatory and inhibitory nullclines by setting ṡe = 0 and ṡi = 0, respectively.

The fixed points of the system are located where the nullclines intersect.

In Fig. 2.7 (a)

A =

−0.5 0

0 −0.5


In Fig. 2.7 (b)

K =

0.626 0.032

0.022 0.674


In Fig. 2.8(a)

f(s) =


s2x − 0.5

s2y − 0.5

In Fig. 2.8 (b)

K =

 1.533 −0.414

−0.430 1.566


In Fig. 2.9, c1 = 16, c2 = 12, c3 = 15, c4 = 4, ae = 1.3, ai = 2, θe = 4θi = 3.7. We have set

[Ie, Ii] = [u1, u2]. In Fig. 2.9(b), k = P .
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A.0.2 Simulation Parameters:

We have used TensorFlow [100, 101] framework for our implementations. The NNs structure

for our simulations are as follows:

Linear system: d = 2 ,

ω(ut|st) : 16 ELU + 16 ELU + {d idenity, d exp}

q(ut|st, st+n) : 16 ELU + 16 ELU + {d idenity, d exp}

Pendulum: d = 2,

ω(ut|st) : 128 tanh + 128 tanh + 128 tanh + 128 tanh + {1 idenity, 1 exp}

q(ut|st, st+n) : 128 tanh + 128 tanh + 128 tanh + 128 tanh + {1 idenity, 1 exp}

Nonlinear system: We have used the same structure as the linear one.

The Wilson-Cowan model: d = 2,

ω(ut|st) : 16 ELU + 16 ELU + 16 ELU + {d idenity, d exp}

q(ut|st, st+n) : 16 ELU + 16 ELU + 16 ELU + {d idenity, d exp}
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Appendix B

Details of Update Rules

In this section, we provide the mathematical details of obtaining parameter update rules as

per FORCE method.

The goal here is to minimize the squared error during training time T , with respect to readout

weights Wo:

E(t) =
1

2

∫ T

0

e(t)2dt (B.1)

∂E(t)

∂Woi

=

∫ T

0

e(t)
∂z(t)

∂Woi

dt (B.2)

∂z(t)

∂Woi

= ri(t) +
N∑

m=1

Womr′i(t)
∂xm(t)

∂Woi

(B.3)

Difficulties in training RNNs arise from the taxing computations of ∂xm(t)

∂Woi

through time. In

contrast to back propagation-based methods of training RNN, such as BPTT, it is assumed
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that ∂xm(t)

∂Woi

is close to zero, throughout training. This assumption is valid as long as ε(t) is

close to zero, where:

z(t) = f(t) + ε(t) (B.4)

By considering

z(t) = Wo(t−∆t)r(t) (B.5)

where ∆t is the update time step, we obtain:

e−(t) = Wo(t−∆t)r(t)− f(t) (B.6)

Using (B.3), we have the gradient-based update rule for Wo as:

Wo(t) = Wo(t−∆t)− η(t)e−(t)r(t) (B.7)

where η(t) is a time-dependent learning rate.

Using (B.7) and (B.6), we can rewrite z(t) as :

z(t) = Wo(t)f(t) = f(t) + e−(t)(1− η(t)r(t)T (t)r(t)) (B.8)

Thus, ε(t) will be much smaller than 1 − η(t)r(t)T (t)r(t) � 1 and thus remains as a valid

assumption throughout training. Then, recursive least square method can be used to obtain

the update rules presented in Chapter 3.
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Appendix C

Update Rules for Training RNNs to

Perform SPM Task Using Reinforced

Regression

Update rule for modifying output readout weights and the inverse correlation matrix:

Wo(t) = Wo(t−∆t)− eo(t)P (t)r(t)

P (t) = P (t−∆t)− P (t−∆t)r(t)rT (t)P (t−∆t)

1 + rT (t)P (t−∆t)r(t)

(C.1)

P (t) =

∫ T

0

r(t)rT (t)dt+ αIN (C.2)

Update rule for modifying dummy weights we have:

Wd(t) = Wd(t−∆t)− ed(t)P (t)r(t). (C.3)
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Note that, using reinforced regression we update the inverse correlation matrix during training

intervals shown in . ∆t denotes the update time steps.
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Appendix D

Model Parameters for SPM Task

Learning and Dynamical Analysis

In this section, we provide the details of parameters used in our simulations.

In SPM task, we set the stimulus interval to 100 time steps, delay intervals 50 time steps and

response interval to 50 time steps. From the low dimensional representation of MNIST digits

(obtained from training Variational Auto Encoder) we selected digits 1 and 0 as the stimuli.

We encoded the summation outcomes (i.e. 0, 1, 2) as 0.5, 1 and 1.5 respectively for training

the networks. We encoded dummy outputs as the two dimensional mean vector for each digit

representation.

For all simulations the value of α is initialized to 1 and P is initialized to identity matrix for

both readout and dummy weights training. The number of neurons N = 1000 and elements of

Wo and Wd are initialized to zero. Input weights were drawn randomly from zero mean Gaus-

sian distribution with variance 50. For 4 different initialization seeds we considered all possible

combination of feasible values for g, σf and sparsity (in Fig. 4.12). The value of σf were chosen
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proportional to the size of network, i.e. σf ∈ { 1
1.5N

, 1
N
, 1
0.5N

, 1
0.1N

, 1
0.02N

, 1
0.005N

, 1
0.002N

, 1
0.0001N

}.

Training was terminated if the average root mean squared error between target and output

was less that 0.01 for all trials.
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