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ABSTRACT OF THE DISSERTATION 

Mapping Transcription Factor Networks and Elucidating Their Biological Determinants  

by 

Yiming Kang 

Doctor of Philosophy in Computer Science 

Washington University in St. Louis, 2020 

Professor Michael Brent, Chair  

 

A central goal in systems biology is to accurately map the transcription factor (TF) network of a 

cell. Such a network map is a key component for many downstream applications, from 

developmental biology to transcriptome engineering, and from disease modeling to drug 

discovery. Building a reliable network map requires a wide range of data sources including TF 

binding locations and gene expression data after direct TF perturbations. However, we are facing 

two roadblocks. First, rich resources are available only for a few well-studied systems and cannot 

be easily replicated for new organisms or cell types. Second, when TF binding and TF-

perturbation response data are available, they rarely converge on a common set of direct and 

functional targets for a TF. This dissertation explores and validates the best combination of 

experimental and analytic techniques to map TF networks. First, we introduce an unsupervised 

inference algorithm that maps TF networks by exploiting only gene expression and genome 

sequence data. We show that our “data light” method is more accurate at identifying direct 

targets of TFs than other similar methods. Second, we develop an optimization method to search 

for a convergent set of target genes that are independently identified by binding locations and 

perturbation responses of each TF. Combining this method with network inference greatly 
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expanded the high-confidence network maps, especially when applied on datasets obtained by 

using recently developed experimental methods. Third, we describe a framework for predicting 

each gene’s responsiveness to a TF perturbation from genomic features. Using this framework, 

we identified properties of each gene that are independent of the perturbed TF as the major 

determinants of TF-perturbation responsiveness. This may lead to improvements in network 

mapping algorithms that exploit TF perturbation responses. Overall, this dissertation provides a 

scalable framework for mapping high-quality TF networks for a variety of organisms and cell 

types. 
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Chapter 1: Introduction 

1.1 Motivation 

Cells respond to environmental cues or stress by modulating their transcriptional states. 

Transcription factors (TFs) are the key regulators that directly bind to their target gene’s 

regulatory DNA and thereby control the genes’ transcription rates. Such interactions between 

TFs and targets form a directed graph, called a TF network, in which nodes represent TFs or 

genes, and edges represent the direct and functional regulatory interactions. Such network maps 

have essential roles in many areas of research and development including TF activity inference 

(Tran et al. 2005; Boorsma et al. 2008; Alvarez et al. 2016; Ma and Brent 2020), transcriptome 

engineering (Heinäniemi et al. 2013; D’Alessio et al. 2015; Rackham et al. 2016; Cahan et al. 

2014; Michael et al. 2016), cancer systems biology (Carro et al. 2010; Aytes et al. 2014; 

Bhagwat and Vakoc 2015; Da Silveira et al. 2017), and drug discovery (Bansal et al. 2014; 

Gayvert et al. 2016; Garcia-Alonso et al. 2018). 

To map the TF network of a particular organism, we need to leverage experimental data 

generated systematically to identify the genes that respond to the perturbation of each TF or 

those whose cis-regulatory DNA are bound by each TF. Model organisms such as 

Saccharomyces cerevisiae (yeast) and Homo sapiens (human) have been the systems for 

development of methods that seek to effectively exploit such datasets. Nevertheless, mapping TF 

networks for less well-studied organisms is difficult due to the lack of comprehensive resources. 

The data for TF binding is especially scarce, as technologies for its measurement are 

considerably more challenging than those for gene response quantification. Therefore, it is 
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essential to develop an unsupervised, “data light” algorithm to accurately reconstruct TF 

networks using only scalable resources such as gene expression data.  

For well-studied model organisms, a wide range of data sources including TF binding 

locations for many TFs are available, in addition to gene expression profiles. The data for TF 

binding and those for TF-perturbation responses provide independent, orthogonal information for 

understanding TF regulation. Using these two types of data generated for the same TF, we would 

expect to find a large fraction of TF-bound genes to be responsive, and vice versa. However, 

little convergent evidence was found between these independent sources (Gitter et al. 2009; 

Lenstra and Holstege 2012; Cusanovich et al. 2014). This motivated us to develop techniques for 

improving the convergence and reconstructing high-confidence TF networks for model 

organisms. Furthermore, there still remains a challenge -- if the binding locations of a TF in a 

gene’s regulatory DNA are insufficient to explain why the gene would respond to the 

perturbation of this TF, then what are the other factors that constitute the discrepancy? To 

address this issue, we describe a systematic approach using machine learning to predict whether 

a gene will respond to the perturbation of a particular TF. Factors presenting a gene’s 

epigenomic context and its expression properties, in addition to the binding signals of the 

perturbed TF, are considered to be plausible predictors. Explaining how the models learn to 

tackle the prediction task expands our understanding of the determinants of transcriptional 

responses to TF perturbations. 

1.2 Background 

1.2.1 Experimental methods to generate data for TF network mapping  

There are two major experimental approaches methods to generate data for mapping TF 

networks: (1) the measure of transcriptional responses after TF perturbation, and (2) the measure 
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of TF binding locations. The perturbation response assay measures how much the expression 

levels of the targets change upon perturbing the activity of a TF. The perturbations include 

knockout, knockdown, and induction. If a TF is a direct and functional regulator of a target, then 

the target is expected to show strong transcriptional response when the TF is perturbed. Most 

large-scale experiments have measured the steady-state response of genes after perturbing the TF 

(Hu et al. 2007; Kemmeren et al. 2014; Davis et al. 2018; Schmitges et al. 2016). A recent large-

scale, time-series response dataset has been generated using the ZEV system for inducing yeast 

TFs to over express (Hackett et al. 2019). TF binding assays record the genomic coordinates 

where a TF binds. The TF binding sites (TFBS) appear frequently in the cis-regulatory regions of 

the targets. Direct evidence of binding can be obtained from experiments such as chromatin 

immunoprecipitation (ChIP) followed by microarray or sequencing, while indirect evidence can 

be attained by searching the genes’ cis-regulatory regions for occurrences of short DNA motif 

that a TF can potentially bind. More recently developed technologies such as transposon calling 

cards (Wang et al. 2007, 2011a, 2012), ChIP-exo (Rhee and Pugh 2011; Rossi et al. 2018b, 

2018a) and CUT&RUN (Skene and Henikoff 2017; Hainer and Fazzio 2019; Meers et al. 2019a) 

have improved over ChIP-chip/seq. Data are currently available for a small fraction of TFs. 

Auxiliary data types such as chromatin accessibility, histone modifications, and chromatin 

conformation (e.g., Hi-C and ChIA-PET) have also shown usefulness in mapping TF binding 

signals to each gene’s regulatory DNA. 

1.2.2 Computational methods to map TF networks 

DREAM challenges (Madar et al. 2010; Greenfield et al. 2010) initiated the first large 

cohorts of inference algorithms for mapping TF networks from gene expression data. The 

fundamental idea is that regulatory interactions can be inferred from the correlated gene 
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expression levels of each TF and its target, measured across various conditions such as 

environmental stimulus, TF perturbation, and cell cycle. Among the best performing methods, 

Inferelator (Greenfield et al. 2010) and TIGRESS (Haury et al. 2012) use sparse linear regression 

to model the expression level of each gene as a function of TFs’ expression levels. GENIE3 

(Huynh-Thu et al. 2010) replaces linear models with random forest. CLR (Faith et al. 2007) and 

ARACNE (Margolin et al. 2006) estimate mutual information of the TF-target pairs. In the post-

DREAM era, MERLIN (Roy et al. 2013) was developed to apply probabilistic graphical models 

to select the TFs that regulate each gene, where both regulators and targets are constrained to be 

co-expressed within a module of genes. NetProphet (Haynes et al. 2013) is a method developed 

in our lab to improve TF network mapping using gene expression data measured after genetic 

perturbations. It reduced overfitting of linear models and optimized the integration of two 

analyses -- co-expression and differential expression.  

For model organisms such as yeast and human, the binding signals for a number of TFs 

have been either directly measured or inferred using other experimental data. Thereby, the recent 

generation of TF network mapping methods have been focused on incorporating the binding 

information into previously established expression-based inference. MERLIN-P (Siahpirani and 

Roy 2017) integrates the estimated prior probabilities into the existing graphical models. 

Inferelator was updated (Greenfield et al. 2013) to select the co-expression model that best 

utilizes the priors using Bayesian best subset regression. Another extension to Inferelator (Castro 

et al. 2018) infers TF activities from the priors, and subsequently uses them as predictors of gene 

expression in linear models. 
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1.2.3 Predicting gene expression levels  

To understand gene regulation, many studies have focused on predicting gene expression 

levels from various combinations of genomic features. These features include TF data (e.g., TF 

binding signals and expression levels of TF-encoding genes), epigenetic factors (e.g., histone 

modifications and chromatin accessibility), and DNA sequence. Given the right combination of 

TFs for a particular gene, TF binding signals near the gene’s transcription start site (TSS) have 

been shown to be predictive of the gene’s expression level (Middendorf et al. 2004; Ouyang et 

al. 2009; Schmidt et al. 2017). Another class of methods demonstrated the value of using the 

localized signals of histone modifications in genes’ cis-regulatory region as predictors (Karlić et 

al. 2010; Cheng et al. 2011; Dong et al. 2012; McLeay et al. 2012; Singh et al. 2016; Read et al. 

2019). More recently, exploiting the DNA sequence flanking a gene by training deep neural 

networks has gained traction in the field (Kelley et al. 2018; Zhou et al. 2018; Washburn et al. 

2019; Agarwal and Shendure 2020). Furthermore, models have been trained for an alternative 

task -- predicting the variability of gene expression within or across cell types (Ouyang et al. 

2009; Zhou et al. 2014; González et al. 2015; Crow et al. 2019; Sigalova et al. 2020). In addition 

to the above genomic features, combining the binding signals of RNA-binding proteins and 

microRNA at gene bodies with TFBS at promoters has also shown predictive value (Tasaki et al. 

2020).  

It is worth noting that these methods aimed to predict gene expression levels in 

conditions that do not involve TF perturbations; therefore, they cannot be used to explain the 

functional associations between TFs and genes. It is rather important to directly predict whether 

a gene will change its transcription level when the activity of a TF is perturbed. This is because it 

serves as a benchmark of how well we understand the TF network. 
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1.3 Contributions 

• Development of an unsupervised algorithm for mapping TF networks using only 

scalable and low-cost resources. We present NetProphet 2.0, a novel, unsupervised 

learning method that combines three key principles -- ensemble learning, TF-TF binding 

similarity, and motif inference. By exploiting only gene expression and genome sequence 

data, it improves over our lab’s original method, NetProphet 1.0, and other expression-

based methods. This contribution is presented in Chapter 2. 

• Development of a computational method to optimize the convergence from TF 

binding locations and TF perturbation responses. We describe dual threshold 

optimization for setting significance thresholds on binding and perturbation-response 

data, which improves their convergence; processing response data through network 

inference further improves the outcome. This contribution is presented in Chapter 3. 

• Reconstruction of high-confidence TF networks for yeast and human cells. We 

present high-confidence TF networks for yeast cells, human K562 and HEK293 cells by 

applying the best combination of experimental and analytic techniques. This contribution 

is presented in Chapter 3. 

• Development of a framework to predict TF-perturbation responses. We describe a 

machine learning framework to train and test models for predicting each gene’s 

responsiveness upon a TF perturbation by using genomic features including TF binding 

locations. This contribution is presented in Chapter 4. 

• Identification of TF-independent factors as major determinants of perturbation 

responses. We identify gene expression properties and histone modifications measured in 

unperturbed conditions as the top determinants of responsiveness to TF perturbations. 
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Currently available data on TF binding locations is predictive of perturbation response in 

yeast but not in human. This contribution is presented in Chapter 4. 
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Chapter 2: 

Mapping TF networks by exploiting scalable 

data resources 

2.1 Introduction 

A transcription factor (TF) network map is a directed graph comprising nodes that 

represent genes and the proteins they encode and edges that link the TFs to their direct, 

functional targets. Developing effective methods for mapping TF networks genome-wide is a 

long-standing goal in genomics (Harbison et al. 2004; Hu et al. 2007) and computational biology 

(Faith et al. 2007; Margolin et al. 2006); see (Brent 2016) for a recent review. TF network maps 

encode basic knowledge about the biochemical functions of molecules, much like metabolic 

network maps. They are thus a key part the encyclopedic knowledge that enables research and 

development. In addition, a TF network map is an essential input to at least two downstream 

applications. The first is TF activity inference. A TF network map links TFs with the target genes 

that they have the potential to bind and regulate, given the right circumstances, external signals, 

or developmental context. TF activity inference uses such a map to quantitatively model how 

much influence each TF is exerting on each target in a given context (Boorsma et al. 2008; 

Boulesteix and Strimmer 2005; Kao et al. 2004; Tran et al. 2005). Unlike ordinary regression of 

target RNA levels against TF RNA levels, this approach treats TF activity levels as latent 

variables that are not necessarily proportional to TF RNA levels. A second application is 

transcriptome engineering, in which the goal is to modify the transcriptional regulatory network 

of a cell in a way that drives it into an expression state associated with some desirable behavior 
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(Michael et al. 2016).  The most common application of transcriptome engineering to date has 

been aimed at driving mammalian cells of one type (e.g. stem cells) into the transcriptional state 

associated with another cell type (e.g. liver cells) (Cahan et al. 2014; D’Alessio et al. 2015; 

Heinäniemi et al. 2013; Rackham et al. 2016). 

Previous approaches to TF network mapping can be loosely categorized into those that 

rely exclusively on gene expression data (“expression only”) and those that integrate a wide 

range of data types, including chromatin immunoprecipitation sequencing (ChIP-seq) of many 

TFs, genome-wide chromatin marks, and binding specificities for many TFs determined in vitro 

(“integrative”). The data required for integrative approaches are available only for major model 

systems, principally Saccharomyces cerevisiae (yeast), Drosophila melanogaster (fly) (Marbach 

et al. 2012b), and the mammalian cell lines that have been the focus of the ENCODE project 

(Brent 2016). Such resources are unlikely to become available soon for most other organisms 

and cell types. Even for fly and mammalian cell lines only a small fraction of the TFs encoded in 

the genome have been successfully subjected to ChIP-seq. Furthermore, most of the genes whose 

regulatory regions are bound by a TF show no evidence of being functionally regulated by that 

TF (Gitter et al. 2009; Cusanovich et al. 2018). 

Gene expression data, by contrast, can be obtained from low cost, reliable, and easily 

scalable experiments. Expression-only approaches to network inference have had notable 

successes on bacterial networks  (Faith et al. 2007; Ghanbari et al. 2015; Greenfield et al. 2010; 

Haury et al. 2012; Huynh-Thu et al. 2010; Lam et al. 2016). More recently the NetProphet 

algorithm, which directly compares expression profiles from TF-knockout strains and wild-type 

strains, has been shown to give good results on single-cell eukaryotes (Haynes et al. 2013; Brent 

2016). There is evidence to suggest that when NetProphet is applied to yeast (Saccharomyces 
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cerevisiae) it identifies bound genes more accurately than existing yeast ChIP-chip data (Haynes 

et al. 2013). Unlike ChIP-chip, however, all of the targets NetProphet identifies for a TF are 

functionally regulated by that TF. However, the accuracy of this approach on animal networks, 

which are much more complex than that of yeast, has never been demonstrated. 

Here, we report on a second-generation “data light” TF-network mapping algorithm 

called NetProphet 2.0. Our approach requires only data that can be generated from low-cost, 

reliable, and easily scalable experimental methods. NetProphet 2.0 relies on three fundamental 

ideas. First, combining several expression-based network algorithms that use different types of 

models can yield better results than using either one alone – the “wisdom of the crowds” idea 

(Marbach et al. 2012a). Second, TFs with similar DNA binding domains (in terms of amino acid 

sequence) tend to bind similar sets of target genes. Third, even an imperfect network map can be 

used to infer models of each TF’s DNA binding preferences from the promoter sequences of its 

putative targets and these models can be used to further refine the network. We describe the 

modules of NetProphet 2.0, show that each module contributes to its overall accuracy on both 

yeast and fly, and show that its overall accuracy improves on that of earlier data light methods, 

which rely only on gene expression data. 

2.2 Results 

2.2.1 Overview of analysis steps in NetProphet 2.0 

NetProphet 2.0 comprises six computational modules (Fig. 2.1), five of which take 

advantage of information obtained from gene expression profiling or genome sequencing. The 

output of each module is a map, represented as a score matrix with rows corresponding to TFs 

and columns corresponding to all genes, each of which is a potential target. The score vector 

(row) for a TF represents the strength of evidence that the TF regulates each potential target 
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gene. A discrete graph structure can always be constructed by including only edges whose scores 

exceed a chosen threshold. 

 

Figure 2. 1: Overview of NetProphet 2.0 pipeline. Database icons: input data sources. Rectangles: computational 

modules. Circles: network maps. 

Module A (Fig. 2.1a) is NetProphet 1.0, as previously described (Haynes et al. 2013). It 

constructs a map from gene expression profiles and performs best when the data include 

expression profiles of single TF perturbation strains. Module B (Fig. 2.1b) constructs an 

independent network map from the same gene expression data by using a machine learning 

algorithm called Bayesian Additive Regression Trees (BART) (Chipman et al. 2012). For each 

gene, Module B trains a separate BART model to predict the RNA level of that gene as a 

function of the RNA levels of all TFs. It then simulates the effect of varying each TF’s RNA 

level on the predicted RNA level of the target, holding the levels of all other TFs constant. Each 

TF’s level is varied between its minimum and maximum observed levels. The difference 

between the two predicted target gene expression levels is used as the score of the TF-target pair. 
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Intuitively, the more a gene is predicted to change as a result of changing the level of a TF, the 

more likely it is to be a direct target of that TF.  

Although Module B (BART) and Module A (NetProphet 1.0) use the same gene 

expression data, they do so in very different ways. NetProphet 1.0 relies primarily on the direct 

comparison of a gene’s expression after genetic perturbation of a TF to its expression in 

unperturbed, wild type cells. Secondarily, it uses sparse linear regression of each gene’s RNA 

level against the RNA levels of the TFs. BART does not explicitly compare expression of a gene 

before and after an experimental TF perturbation. Instead, it uses a non-linear, non-parametric 

regression model based on random forests to predict the effects of a TF perturbation on the 

expression of a gene. 

Module C (Fig. 2.1c) capitalizes on the fact that TFs with similar DNA binding domains 

(DBDs) tend to bind similar sets of target genes (Weirauch et al. 2014). It replaces the score 

matrix row for each TF by a weighted average of rows for other TFs with similar DBDs. Each 

row is weighted according to how similar the DBD of its TF is to the DBD of the row being 

replaced (see Methods & Supplemental Fig. S2.1). The predicted amino acid sequence of the 

DBD can be obtained from automated annotation of the genome sequence. The outputs of 

modules A and B are independently passed through Module C. They are then combined into a 

single score matrix by Module D (Fig. 2.1d), which uses quantile normalization to make the 

score distributions of the two networks comparable (see Methods). 

Modules E and F (Fig. 2.1e,f) make use of the target genes’ promoter sequences to 

further refine the network map. Module E infers the DNA-binding specificity (motif) of each TF 

by identifying motifs whose presence in a promoter best distinguishes high scoring (likely) target 

genes from low scoring (unlikely) target genes (see Methods). Module F scans the inferred motif 
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for each TF over the promoters of all genes and computes a score reflecting the strength of 

evidence that the TF binds the promoter. If no significant motif is found for a TF, then its score 

vector remains unchanged after Module F. The resulting score matrix is then combined with the 

input score matrix by using module D again. In a final step, the combined matrix is passed 

through module C again. 

In the following sections, we evaluate the contribution of each successive module to the 

overall accuracy of NetProphet 2.0. Finally, we compare the accuracy of the complete system to 

that of some previous systems for mapping TF networks from gene expression data. 

2.2.2 Input data and benchmarking standards 

We collected input data and benchmarking data for both yeast and fly. The gene 

expression data we used as inputs came from two sources. The first is a recently published yeast 

data set, which contains 1,487 samples including 265 TF knockout strains and 1,219 knockouts 

of non-TF-encoding genes (Kemmeren et al. 2014). The second is a fly data set, which contains 

200 samples including 23 TF knockdown lines and 84 knockdowns of non-TF-encoding genes 

(Bonke et al. 2013). To evaluate the accuracy of the inferred network maps, we compared them 

to both ChIP-based binding data and motif-based binding potential. However, we do not assume 

that either of these networks is the correct network we are aiming to learn. Indeed, we know that 

most genes whose promoters are bound by a TF according to ChIP data show no evidence of 

being functionally regulated by that TF (Gitter et al. 2009; Cusanovich et al. 2014). However, a 

TF’s direct, functional targets are likely to be a subset of the genes whose promoters are bound 

by that TF. In other words, binding is necessary, but not sufficient, for direct regulation. Because 

our predicted targets are based on evidence of functional regulation from gene expression data, 

those predicted targets that are also bound by the TF are likely to be its direct, functional targets. 
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For each species, we constructed two benchmark networks whose edges connect TFs to 

the genes whose promoters they bind (but do not necessarily regulate). The first is based on 

ChIP-chip/seq data, which assesses the physical binding locations of the TFs. For yeast, we 

compiled ChIP data from TNET (Babu et al. 2004) and YEASTRACT (Abdulrehman et al. 

2011), which contains ~30,000 interactions for 184 TFs. For fly, we compiled ChIP data from 

FlyNet (Marbach et al. 2012b) and seven other ChIP-chip/seq studies, which together contain 

~180,000 interactions for 82 TFs. The second benchmark is a motif network constructed by 

scoring the promoters using position weighted matrix (PWM) models of the DNA binding 

specificity of each TF. These models are derived from protein binding microarray (PBM) data 

(collected in UNIPROBE database (Gordân et al. 2011; Robasky and Bulyk 2011)), which are 

completely independent of both gene expression and ChIP experiments. PWM models are 

available for 150 yeast TFs and 98 fruit fly TFs. 

2.2.3 Exploiting similarity between DNA binding domains improves accuracy 

Previously we showed that NetProphet 1.0 (Module A) performed well on yeast by using 

an older gene expression data set (Hu et al. 2007). Here, our first step is to determine its accuracy 

on a new yeast data set and on the fruit fly. We evaluated the percentage of the top ranked edges 

that were supported by the ChIP network (Fig. 2.2A,C) or by the known-PWM network (Fig. 

2.2B,D). In all cases, the predicted networks scored much better than randomly generated 

networks (gray shading), except for the PWM evaluation of the fly network when the number of 

predicted targets exceeded ~25 per TF encoded in the genome (24,225 total). The Kemmeren 

yeast data set yielded better results than those previously obtained using the smaller Hu data set 

(Supplemental Fig. S2.2). Module C (weighted averaging) improved the evaluations against 
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ChIP data except that it was neutral for large fly networks (Fig. 2.2). It slightly hurt the PWM 

evaluation of the smaller yeast networks, but it was otherwise neutral. 

 

Figure 2. 2: Effect of weighted averaging on the edges of similar TFs. (A) Accuracy of NetProphet 1.0 on yeast 

before weighted averaging (black line) or after weighted averaging (green line). Horizontal axis: number of top 

ranked edges included in the network per TF encoded in the genome. E.g., since there are 320 TFs in the yeast 

genome, “10” on the horizontal axis corresponds to a network with 3,200 edges. Vertical axis: Percentage of edges 

supported by ChIP data. Dotted line: Expected accuracy of random networks. Gray area: 95% confidence interval 

for randomly selected networks. (B) Same as A for PWM support. The point labeled “ChIP network” indicates the 

number of ChIP-supported edges and the fraction of those edges that also have PWM support. (C) Same as A for the 

fly data. (D) Same as B for the fly data, except that the vertical axis shows support by conserved PWM hits only. 
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2.2.4 NetProphet 1.0 works on the fly network 

Comparing the results for yeast and fly, it is apparent that the fly networks received 

slightly more support than the yeast network from ChIP data but less support from PWM data. In 

fact, the PWM support for fly networks with more than 25 edges per TF encoded in the genome 

does not significantly exceed the support for random networks. That is probably because the 

number of fly expression profiles in which a single TF has been knocked down represents 10-

fold fewer TFs than for yeast (23 vs. 265) and the number of expression profiles from non-TF 

knockdowns is also much smaller (84 vs. 1,219). The number of known fly PWMs against which 

to evaluate is also smaller (98 vs. 150). Another difference is that the yeast ChIP network was 

supported by PWM evidence at the same rate as the similar sized networks predicted by 

NetProphet 1.0. The fly ChIP network, by contrast, was supported at a much higher rate than 

similar sized networks predicted by NetProphet 1.0. That may be the result of the smaller 

expression data set for fly and because the fly ChIP data are more recent than the yeast data, so 

the ChIP methodology may have matured in the interim. 

2.2.5 Combining with Bayesian Additive Regression Trees improves accuracy 

Module B uses Bayesian Additive Regression Trees (BART), which provides an 

alternative approach to making use of the gene expression data. As weighted averaging (Module 

C) improved the accuracy of the NetProphet 1.0 output, we applied it to the BART output (Fig 

2.1, network 2), which it also improved (Supplemental Fig. S2.3). Finally, we tried combining 

the two resulting networks (Fig. 2.1, network 3). The effects of processing through these 

modules on accuracy are shown in Figure 2.3. NetProphet 1.0 with weighted averaging (Modules 

A & C, green) generally performed better than BART with weighted averaging (Modules B & C, 

blue), except that BART significantly outperformed in PWM support on yeast (Fig. 2.3B). 
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Remarkably, combining the two networks (Modules A-D) performed as well as the better of the 

two on the yeast ChIP and PWM metrics (Fig. 2.3A, B) and significantly better than either 

network on fly (Fig. 2.3C, D). This is consistent with the previously reported “Wisdom of 

Crowds” effect in TF network mapping (Marbach et al. 2012a). 

 

Figure 2. 3: Effect of combining intermediate networks. (A) Accuracy of NetProphet 1.0 on yeast after weighted 

averaging (Modules A & C, green line), BART after weighted averaging (Modules B & C, blue line), and the 

combination of the two (Modules A-D, orange line). Horizontal axis: number of top ranked edges included in the 

network per TF encoded in the genome. Vertical axis: Percentage of edges of included edges that are sup-ported by 

ChIP data. Dotted line: Expected accuracy of randomly networks. Gray area: 95% confidence interval for random 

networks. (B) Same as A for PWM support. The point labeled “ChIP network” indicates the number of ChIP-
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supported edges and the fraction of those edges that also have PWM support. (C) Same as A for the fly data. (D) 

Same as B for the fly data, except that the vertical axis shows support by conserved PWM hits only. 

2.2.6 Inferring TF binding preferences from promoter sequence improves 

accuracy 

We hypothesized that knowing the DNA binding specificities of the TFs would enable us 

to improve on the accuracy of the maps output by Modules A-D. To test that hypothesis, we 

scanned the known yeast and fly PWMs across the promoter sequences of all genes in the 

genome, producing a binding potential score for each TF at each promoter (see Methods). This 

score matrix was then combined with the score matrix output by Modules A-D (Fig. 2.1, 

Network 3) by using Module D again. The resulting maps were evaluated as before (Fig. 2.4, 

purple dashed lines). For the evaluation by PWM support, using known PWMs constitutes 

“peeking” at the evaluation standard, so it would have been worrisome if performance had not 

improved. For the evaluation by ChIP support, using known PWMs provided a small but 

consistent accuracy improvement, except for mid-sized fly networks, where it had no effect. The 

fact that this helped the yeast results more than the fly results is not surprising, since the 

promoter regions in yeast are much smaller and a much higher fraction of yeast TFs have known 

PWMs (46.9% vs. 10.1%). 
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Figure 2. 4: Effect of adding a motif network. (A) Accuracy of Modules A-D (Combination of NetProphet 1.0 and 

BART after weighted averaging (orange line), Modules A-D with known yeast PWM motifs (dashed purple line), 

and Modules A-F (NetProphet 2.0). Horizontal axis: number of top ranked edges included in the network per TF 

encoded in the genome. Vertical axis: Percentage of edges of included edges that are supported by ChIP data. Dotted 

line: Expected accuracy of randomly networks. Gray area: 95% confidence interval for random networks. (B) Same 

as A for PWM support. The point labeled “ChIP network” indicates the number of ChIP-supported edges and the 

fraction of those edges that also have PWM support. (C) Same as A for the fly data. (D) Same as B for the fly data, 

except that the vertical axis shows support by conserved PWM hits only. 

The known PWMs used above were obtained from protein binding microarray 

experiments. However, we hypothesized that we could infer PWMs using only gene expression 
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and genome sequence data, thereby avoiding the need for additional experiments. Thus, we 

applied the FIRE motif inference algorithm (Elemento et al. 2007) to the score vector of each TF 

after Modules A-D. FIRE attempts to find a motif whose presence in a promoter best 

discriminates between high and low scoring target genes. We then used the inferred motifs to 

score the promoter of each gene just as we had with the known PWMs. These scores were 

combined with the output of Modules A-D, except that the scores for TFs for which FIRE could 

not identify a high confidence motif were left unchanged. The resulting accuracy improvement 

(Fig. 2.4, blue line) was approximately half of that obtained from the known motifs. Importantly, 

this approach does not require any additional experiments, making it suitable for application to 

non-model systems. 

Next, we directly compared the motifs inferred by Module E to the known motifs. For 

each TF with a known PWM, we calculated the Spearman correlation between the scores 

assigned to each promoter by the inferred and known PWMs (Fig. 2.5, blue bars). As a 

randomized baseline distribution, we calculated the median of the correlations between each 

inferred PWM and all other known PWMs (Fig. 2.5, orange bars). For yeast, 37.9% of the 

inferred PWMs correlated with the corresponding known PWMs at levels significantly above the 

baseline distribution. In the fly data, the baseline distribution showed much higher correlations 

than in the yeast data. This is probably because 42% of all known fly PWMs belong to the 

Homeodomain family, whose members share a preference for binding motifs containing ATTA 

(Hughes 2011). Additionally, there were only 2 fly TFs, whose inferred PWM scores had a 

correlation of > 0.5 with their known PWM score (as compared to 25 in yeast). This may reflect 

the larger size of the fly promoters, the smaller amount of expression data available for fly, 

and/or a greater tendency for gene regulation in the fly to be determined by combinatorial logic, 
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rather than by independently active binding sites. Although few of the inferred fly PWMs 

showed a statistically significant degree of similarity with their known counterparts, the use of 

the PWM inference module results in a small but noticeable increase in overall accuracy. 

 

Figure 2. 5: Relationships between inferred and known PWMs. Blue bars: distribution of rank order correlations 

between binding potential scores assigned to each promoter by inferred PWMs and known PWMs. Orange bars: 

distribution of the medians of Spearman correlations between each inferred PWM and the known PWMs for all 

other TFs. (A) Yeast. (B) Fruit fly. 

2.2.7 NetProphet 2.0 improves on previous network mapping methods 

For several years, algorithms for mapping TF networks from gene expression data were 

compared in a series of community evaluation projects known as DREAM (Dialog on Reverse-

Engineering Assessment and Methods; (Marbach et al. 2012a)). In a previous publication, we 

compared NetProphet 1.0 to several of the best performing algorithms from DREAM on a set of 

yeast expression profiles (Haynes et al. 2013). The comparison algorithms were Inferelator 

(Greenfield et al. 2010) and GENIE3 (Huynh-Thu et al. 2010). Here, we compare NetProphet 2.0 

to those same algorithms plus two others: CLR (Faith et al. 2007) and TIGRESS (Haury et al. 

2012), on a new set of yeast expression profiles and a set of fly expression profiles. We also 
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compare to using the squared Spearman correlation coefficient between the expression of each 

TF and each target gene as the TF-target score, the method used in the FlyNet paper (Marbach et 

al. 2012b). 

To evaluate NetProphet and the four other algorithms, we ran them all on the same sets of 

expression profiles used throughout this study and selected the top scoring interactions from the 

output of each algorithm. The number of top scoring interactions selected was ten per TF 

encoded in the genome – i.e. 3,200 for yeast and 9,690 for fly. It is important to note that 

NetProphet 2.0 requires an annotated genome sequence as input, whereas the other algorithms 

use only the gene expression data. Therefore, we are not evaluating algorithms designed for 

exactly the same tasks. However, they can all be viewed as special cases of algorithms designed 

to infer direct, functional TF networks from data that can be produced by low-cost, reliable, 

scalable methods. 

The results of the comparison showed that NetProphet 2.0 was more accurate than the 

other algorithms as evaluated by the yeast ChIP benchmark and by the fly ChIP and PWM 

benchmarks (Fig. 2.6). GENIE3 was slightly more accurate than NetProphet 2.0 on the yeast 

PWM benchmark. When comparing predictions to known interactions that are supported by both 

ChIP and PWM data, NetProphet 2.0 was substantially more accurate than all of the comparison 

algorithms. This is significant because ChIP hits that coincide with PWM hits are more likely to 

be functional than those that do not (Cusanovich et al. 2014; Van Nostrand and Kim 2013). 
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Figure 2. 6: Comparison between NetProphet 2.0 and other leading expression-based mapping algorithms. 

(A) Yeast. (B) Fruit fly. 

2.3 Discussion 

NetProphet 2.0 is designed around the principle of using only data that can be obtained 

with robust, predictable, and scalable experimental methods. Specifically, it requires only gene 

expression data after TF perturbation and genome sequence with automated annotation. It makes 

use of three fundamental ideas. First, combining the results of distinct approaches to mapping 

networks from gene expression data can significantly improve accuracy (Marbach et al. 2012a). 

Second, similar DNA binding domains bind similar sets of promoters (Weirauch et al. 2014). 

Third, even a noisy, imperfect network can be used to infer useful binding motifs from promoter 

sequences. By combining these three ideas, NetProphet 2.0 significantly outperforms NetProphet 

1.0 and a range of other expression-based algorithms, as assessed by measured binding locations 

and by binding potentials. The fraction of predicted interactions that are supported by both ChIP 

and PWM substantially exceeds that of the other algorithms tested (Fig. 2.6). 
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There are many possible ways to implement the ideas behind NetProphet 2.0. For 

example, there are other non-parametric regression algorithms that could substitute for or 

supplement BART. Fused regression (Lam et al. 2016) is a possible alternative to our weighted 

averaging approach for exploiting the similarities between DNA binding domains. There are also 

many software packages for inferring TF binding motifs, which could be substituted for FIRE. 

Implementations using these alternative components, which are beyond the scope of this study, 

have the potential to improve accuracy in the future. 

NetProphet’s “data light” approach stands in contrast to the “integrative” approach, 

which has also been applied to mapping the fly TF network (Marbach et al. 2012b). In that study, 

a network was constructed by using all available data sources, including the same TF-ChIP and 

PWM data sets that we used only for validation. Because these two data sources were used as 

inputs, they could not also be used for validation of the integrative network. As a result, it is not 

possible to directly compare the accuracy of the two approaches on genome-scale networks. The 

integrative model also used ChIP of a wide range of chromatin marks as input. Thus, applying it 

to a new organism or cell type would require a data generation effort far beyond what can 

currently be done in a single lab. Integrative network construction is feasible for a few model 

systems that have been targeted for exhaustive data generation by large consortia. When the 

integrative approach is feasible, NetProphet 2.0 can be used to process the available gene 

expression data in place of methods such as the Spearman correlation of expression profiles 

(Marbach et al. 2012a). In addition, NetProphet 2.0 can integrate binding specificity models 

determined by methods such as yeast one hybrid (Fuxman Bass et al. 2016), high throughput 

selex (Jolma et al. 2013), and protein binding microarrays (Weirauch et al. 2014), for any TFs for 

which they are available. An interesting intermediate between data-light and integrative 
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approaches would be to combine NetProphet 2.0 with TF binding locations that are predicted 

from TF binding specificity, conservation, and cell-type specific DNA accessibility data, but not 

requiring ChiP-seq of individual TFs (Cuellar-Partida et al. 2012; Zhong et al. 2013). There has 

also been recent progress in formal frameworks for integration of prior knowledge into 

expression-based network mapping (Ghanbari et al. 2015; Lam et al. 2016).  

TF-target interactions predicted by NetProphet 2.0 are supported by binding potential 

(PWMs derived from protein-binding microarray experiments) at a significantly higher rate than 

the interactions predicted by existing yeast ChIP-chip data (Fig. 2.4B). The ChIP-seq data on the 

fly genome are much more recent than the yeast data (Clough et al. 2014; Georlette et al. 2007; 

Hadzić et al. 2015; Ikmi et al. 2014; Liu et al. 2009; Marbach et al. 2012b; Page et al. 2005; 

Teleman et al. 2008). When networks of similar size (number of targets per TF) are compared, 

the fly ChIP edges are supported by PWMs at a slightly higher rate than the NetProphet 2.0 

predictions (Fig. 2.4D). However, the NetProphet 2.0 edges that score among the top 14,535 

(~15 targets per TF) are supported by strong binding potential at a rate comparable to those of 

the larger ChIP network. For practical purposes, it is also important to keep in mind that the 

ChIP data come at a much higher cost than the NetProphet 2.0 predictions, take much longer to 

generate, and are plagued by the uncertain success of individual ChIP-seq experiments. 

Furthermore, existing evidence suggests that only a very small fraction of ChIP-supported 

interactions are functional, in the sense that the expression of the gene whose promoter is bound 

changes when the TF is perturbed (typically < 10%; (Gitter et al. 2009; Cusanovich et al. 2014); 

reviewed in (Brent 2016)). Since NetProphet 2.0 is primarily an expression-based method, all its 

predictions are supported by expression data and hence are likely to be functional. Thus, 

NetProphet 2.0 provides an attractive alternative to TF ChIP, especially for experimental systems 
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that are unlikely to benefit from an ENCODE-style undertaking to systematically ChIP a large 

number of TFs. 

NetProphet 2.0 is the first algorithm that has been shown to be effective on an animal 

genome without requiring any data beyond gene expression after TF perturbations and genome 

sequence. While the steps from bacteria to yeast and yeast to fly were significant (Haynes et al. 

2013; Marbach et al. 2012b), the step from a compact invertebrate genome such as that of the fly 

to mammalian genomes will also be challenging. The primary challenges include limited data 

availability, large, poorly defined promoters, and long-range enhancers. The data limitation will 

probably be removed over the next few years, now that CAS9 has made deleting TFs in 

mammalian systems much easier. The problem of defining enhancers and identifying their target 

genes may also be alleviated before long. One source of data that will likely prove useful is the 

expression of enhancer RNAs, which can highlight active enhancers and the genes whose 

expression correlates with enhancer activity (Andersson et al. 2014; Core et al. 2008; Danko et 

al. 2015). Data on three-dimensional chromosome conformation from rapidly improving, 

sequencing based methods will also prove useful. We expect that these new data sources will 

make it possible to test, validate, and apply NetProphet 2.0 to mammalian systems in the near 

future. 

2.4 Methods 

2.4.1 Download and preparation of data sets 

Yeast data  

The microarray data with gene deletions used for mapping TF network in yeast was 

published in (Kemmeren et al. 2014) (accession GSE42217, downloaded from 

http://deleteome.holstegelab.nl/). This set of expression profiles contains 265 strains of single TF 
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knockouts and 1,219 strains of other gene knockouts. To assess the mapping accuracy, we 

constructed two benchmarks derived from ChIP-chip and protein binding microarray (PBM) 

experiments. The ChIP benchmark was compiled from TNET (Babu et al. 2004) and 

YEASTRACT (Abdulrehman et al. 2011). It contains 29,945 interactions among 184 TFs and 

5,790 genes. The PWM benchmark was constructed using the PBM-derived PWMs of 150 TFs 

collected in UNIPROBE database (Gordân et al. 2011; Robasky and Bulyk 2011), as described 

in (Haynes et al. 2013). 

Fruit fly data 

The microarray data after TF knockdowns used for mapping the fly TF network was 

published in (Bonke et al. 2013) (accession E-MTAB-453). It consists of samples of 23 single 

TF knockdowns and 84 other gene knockdowns. We processed the raw CEL files using RMA 

normalization (affy package, R/Bioconductor (Gautier et al. 2004)). To build benchmarks for fly, 

ChIP data was combined from multiple ChIP-chip/seq studies. We combined the curated data in 

(Marbach et al. 2012b) with data described in several other publications (Clough et al. 2014; 

Georlette et al. 2007; Hadzić et al. 2015; Ikmi et al. 2014; Liu et al. 2009; Page et al. 2005; 

Teleman et al. 2008). The resulting network map contains 184,053 interactions between 82 TFs 

and 14,165 genes. The known PWM benchmark was as described in (Marbach et al. 2012b). 

Each PWM was scanned across the conserved regions within the promoter of each gene (1k bp 

regions centered on TSS) and the highest score within the promoter was used. Conservation was 

based on the analysis of the genomes of 12 Drosophila species. The resulting network map 

(binary score matrix) contains 71,090 interactions between 98 TFs and 10,299 genes. This 

relatively small number of edges per TF helps explain why the percentage of predicted edges that 
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are supported by the fly PWM network is much lower than the percentage supported by the fly 

ChIP network. 

Promoter sequence  

We collected the promoter sequences of yeast and fruit fly from Regulatory Sequence 

Analysis Tools (RSAT) database (Medina-Rivera et al. 2015) (http://pedagogix-tagc.univ-

mrs.fr/rsat/). The promoter of each yeast gene is the region 600 bp upstream of the transcription 

start site (TSS). The promoter of each fly gene is the region between 2,000 bp upstream from the 

TSS and 200 bp downstream from the TSS. Any regions of the promoters that overlap with the 

coding sequences of a neighboring gene were excluded. 

DNA binding domain sequence  

The amino acid sequences of the yeast TFs was obtained from Saccharomyces Genome 

Database (Cherry et al. 2012). The amino acid sequences of the fly TFs were obtained from 

FlyBase (dmel v6.04, (Dos Santos et al. 2015)). The NCBI Web CD-Search Tool (Marchler-

Bauer et al. 2015) (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi, with default 

settings) was then used to search for the DNA binding domains (DBDs) of the TFs. Subsequently 

BEDTools (v2.25.0) (Quinlan and Hall 2010) was used to parse the search results and output 

DBD sequences in fasta format. 

Data access 

The resource data files, output networks, inferred motifs and benchmark networks are 

available for download at http://mblab.wustl.edu/software.html under NetProphet 2.0 software 

package. 

2.4.2 Evaluation 

ChIP support  
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We used the ChIP benchmarks to assess the mapping accuracy of our algorithm. These 

network maps are binary matrices in which ones represent positive ChIP interactions. Based on a 

certain stringency level, the top L interactions predicted by NetProphet 2.0 modules were 

evaluated against ChIP interactions. The mapping accuracy, termed as ChIP support rate, is the 

fraction of these predicted top interactions supported by ChIP evidence. The network size is 

based on all predicted edges above a given stringency, while the ChIP support rate is based on 

the edges whose TFs have ChIP data. We evaluated the accuracies of the mapped networks of 

different sizes as we varied the stringency levels.  

PWM support 

The PWM score matrices for yeast were binarized using a threshold for each TF. The 

threshold was the greatest binding potential score that was exceeded by at least 10% of the ChIP-

supported interactions of that TF. We calculated the PWM-support rates using this binary matrix, 

just as we did for the ChIP binary matrix. 

2.4.3 Weighted Averaging 

Calculation of weighting function & threshold 

We used a four-step process to characterize the relationship between the similarities of 

DBDs and the similarities of known PWMs. First, for each yeast TF, we obtained the sequences 

of any DBDs found within it as well as the PWM associated with it from the CIS-BP data base 

(Weirauch et al. 2014). We then aligned the DBDs of each TF to the DBDs of each other TF by 

using Clustal Omega (v1.2.1) (Sievers et al. 2011) and used the percent identity (PID) to quantify 

the similarity between the two of DBDs. If there were multiple DBDs within a TF all pairs of 

DBDs were aligned and the largest percent identity was used. Second, we aligned the PWM of 

each TF to that of each other by using Tomtom (v4.9.1) (Gupta et al. 2007) and used the E value 
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output from Tomtom as a measure of the similarity between the two PWMs. Third, for the TF 

pairs whose DBD similarity scores fall in a certain PID range, we calculated the fraction of the 

corresponding PWM pairs that are similar (Tomtom E value < 1). Finally, we fit a logistic 

function to model the relationship between the percent identities of DBDs and the fraction of 

significantly similar PWMs: 

𝑤(𝑑) =
0.9

1 + 𝑒𝑥𝑝(−0.1(𝑑 − 40))
(2.1) 

where 𝑑 is the percent identity of a pair of DBDs (Supplemental Fig. S2.1). The fraction of 

similar PWMs can also be seen as the probability of a pair of TFs at a given DBD-similarity 

level binding to similar DNA sequences. 

Use of weighting function 

To implement Module C, we calculated the PID between each pair of DBDs to predict 

the probability that the DBDs bind significantly similar sequences, according to the logistic 

model. For each TF i, this probability was used as a weighting factor for each other TF with PID 

>= 50%; for TFs with PID < 50%, the weighting was 0. Row i was then replaced by the weighted 

sum of all rows: 

𝑆′
𝑖 = ∑ 𝑤(𝑑𝑘,𝑖)𝑆𝑘

𝑘

(2.2) 

where 𝑆𝑖
′ is the updated row of edge scores of TF i to all genes, 𝑑𝑘,𝑖 is the percent identity score 

between DBD’s of TF k and TF i, and 𝑤(·) is the weighting factor calculated using the logistic 

function. 

2.4.4 Bayesian Additive Regression Trees 

We used the BART model trained for each target gene to predict the effects of varying 

each TF’s level on the level of the target gene. Specifically, we varied the RNA level of each TF 
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between its minimum and maximum observed levels while keeping the levels of other TFs 

constant (fold change 1). The edge score of TF i to target j in the BART network map is the 

difference between the predicted level of target j in the two simulations, one with TF i at its 

maximum observed level and the other with TF i at its minimum observed value. BART package 

implemented in R was used (v0.3-1.3, https://cran.r-project.org/package=BayesTree; (Chipman 

et al. 2012)). 

2.4.5 Quantile combination of network maps 

Since the network maps output by various modules have different score distributions, we 

used quantile normalization (Module D) to combine score matrices.  One matrix is designated as 

the reference and the other as the auxiliary. The scores in the auxiliary matrix are modified to 

have the same distribution as the reference matrix before averaging with the corresponding 

entries of the reference matrix. Formally, if 𝑆𝑖,𝑗
𝑟𝑒𝑓

 is the score for TF i as a regulator of gene j in 

the reference matrix and 𝑆𝑖,𝑗
𝑎𝑢𝑥 is the score for TF i as a regulator of gene j in the auxiliary matrix:  

Si,j =
1

2
(Si,j

ref + Fref
−1 (Faux(Si,j

aux))) (2.3) 

where 𝐹𝑟𝑒𝑓 and 𝐹𝑎𝑢𝑥 are the empirical cumulative distribution functions of the reference and 

auxiliary matrices, respectively. For combining the NetProphet-derived (Fig. 2.1, network 1) and 

BART-derived (Fig. 2.1, network 2) matrices, the former is designated as the reference. This 

approach was chosen over other quantile normalization methods empirically, because it gave 

better results. 

2.4.6 PWM inference and promoter scoring 

PWM inference 
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Module E uses an algorithm called FIRE (Elemento et al. 2007) to infer a motif for each 

TF based on its score vector and the promoter sequences of all genes. For each TF, Module E 

divides the range of target scores into 20 bins, each spanning 1/20th of the range. For each gene, 

the bin number corresponding to its score as a target of the TF is input to FIRE, along with the 

sequence of its promoter region. We used 7 as the k-mer seed size, 20/20 as the robustness 

threshold, and default parameters for other criteria. If more than one motif passed the criteria for 

a TF, we only considered the best one, according to FIRE. 

Promoter scoring  

Semantically, the motifs output by FIRE are patterns specifying which nucleotides are 

possible at each position of a binding site. However, these can be converted to PWMs by 

assigning each of the possible nucleotides at each position the same probability and assigning 

each impossible nucleotide probability zero. For example, if the motif specified is 

{A,T}{G}{G,C,T}, A or T in the first position would have probability 1/2, G in the second 

position would have probability 1, and G, C or T in the third position would have probability 1/3. 

With this interpretation, Module F uses the FIMO program (Grant et al. 2011) to score the 

binding potentials by scanning the inferred motifs over the promoters. The TF-promoter binding 

potential was calculated as the maximum of two scores:(1) the log odds of the most significant 

binding site, (2) the sum of log odds of all significant (p < 0.05) binding sites. Subsequently, we 

used Module D again to combine this binding potential matrix (the auxiliary matrix; Fig. 2.1, 

Network 4) with the input to Module E (the reference matrix; Fig. 2.1, Network 3). The rows of 

TFs for which we could not infer a motif were left unchanged from the input (Fig. 2.1, Network 

3). 
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2.4.7 Other algorithms to which NetProphet 2.0 is compared 

TIGRESS 

Trustful Inference of Gene REgulation using Stability Selection (TIGRESS) uses stability 

selection to sample the expression data and scores the TF-target interaction as the frequency of 

each TF being chosen in LARS for each target gene (Haury et al. 2012). We used its MATLAB 

implementation (v2.1) downloaded from http://cbio.mines-

paristech.fr/~ahaury/svn/dream5/html/index.html. We modified the code so that the TFs could be 

indexed at any position in the comprehensive gene list. 

CLR  

Context likelihood of relatedness (CLR) estimates the likelihood of the mutual 

information (MI) by contrasting the MI calculated using the RNA levels of each TF-target pair 

across all samples with the null model, given the local network context (Faith et al. 2007). We 

used minet (v3.30.0, R/Bioconductor package) downloaded from 

https://www.bioconductor.org/packages/release/bioc/html/minet.html to build MI matrix and 

infer CLR network. 

Inferelator pipeline  

The Inferelator pipeline in DREAM4 (Greenfield et al. 2010) is a mixture model that consists of 

median corrected Z-score, mutual information (CLR) and LASSO regression coefficient 

(Inferelator 1.0). The source code was downloaded from  

https://github.com/smidget/Network-Inference-Workspace/tree/master/algorithms/inferelator-

pipeline. We wrote a script to pipeline Inferelator modules according to the provided pseudo-

code. 

GENIE3  
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GEne Network Inference with Ensemble of trees (GENIE3) uses random forests that 

estimate how much the expression level of each TF contributes to explaining the level of each 

target gene (Huynh-Thu et al. 2010). We used the Python implementation downloaded from 

http://www.montefiore.ulg.ac.be/~huynh-thu/software.html. 
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Chapter 3: 

Expanding high-confidence maps using 

convergent evidence from TF binding 

locations and TF perturbation responses 

3.1 Introduction 

Mapping the circuitry by which cells regulate gene expression is a fundamental goal of 

systems biology. Such maps would facilitate a broad spectrum of research programs, much as 

maps of intermediary metabolism and genome sequences have. Transcriptional regulation has 

multiple layers and component types, including sensors and signal transduction cascades. The 

bottom layer of transcriptional regulation, which acts directly at the genome, features sequence-

specific DNA binding proteins known as transcription factors (TFs). Signaling cascades often 

change the activity levels of specific TFs -- the extent to which they exert their regulatory 

potential on their target genes -- via mechanisms that affect TFs’ abundance, localization, non-

covalent interactions, or covalent modifications. To map and model transcriptional regulation as 

a whole, we must know which genes each TF regulates, or has the potential to regulate when 

activated.  

A map of an organism’s TF network would have powerful applications. It could be used 

to infer the effects of specific signals, drugs, or environments on the activity levels of TFs by 

analyzing their effects on gene expression (Balwierz et al. 2014; Boorsma et al. 2008; Liao et al. 

2003; Tran et al. 2005). It could be used to predict the significance of naturally occurring 

genome variants in TFs or TF binding sites (TFBS). It could also be used to design genome edits 
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in TFs or TFBS to achieve a desired transcriptional state or behavior (Cahan et al. 2014; Michael 

et al. 2016; Rackham et al. 2016). Crucial to all of these applications is the distinction between 

the direct functional targets of a TF -- the genes it regulates because it binds to their cis-

regulatory DNA -- and its indirect targets, which are regulated via intermediary proteins. For 

example, a mutation inactivating a binding site for a TF in the cis-regulatory DNA of one of its 

direct targets will affect the relationship between the TF and its direct target. However, a 

mutation in a non-functional binding site which happens to lie in the cis-regulatory DNA of an 

indirect target will not affect the relationship between the TF and its indirect target. 

In this study, we analyze previously published and newly described genome-wide data 

sets (Table 3.1) with both standard and novel analytic techniques, to reveal the current state of 

the art in identifying the direct, functional targets of a TF. The data sets we focus on are those 

that aim to determine the binding locations of TFs and those that attempt to measure the 

transcriptional response to perturbations of TF activity, such as over expressing the TF or 

deleting the gene that encodes it. The binding location data are derived from either chromatin 

immunoprecipitation (ChIP) or transposon calling cards (Mayhew and Mitra 2016; Ryan et al. 

2012; Shively et al. 2019; Wang et al. 2008).  
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Table 3. 1: Data resources 

Data type Technology Species 
Proteins 

targeted 

Targeted 

TFs 

analyzed 

Genome 

assembly 

Strain/ 

Cell line 
Publications 

Binding 

location 

ChIP-chip S. cerevisiae 203 155 N/A W303 Harbison, 2004 

ChIP-chip S. cerevisiae 200 36 N/A S288C Venters, 2011 

ChIP-exo S. cerevisiae 26 26 
R55, R64 

(SGD) 
S288C 

Rhee, 2011; Rossi, 

2018a; Rossi, 2018b; 

Bergenholm, 2018; 

Holland, 2019 

Transposon 

calling cards 
S. cerevisiae 15 15 

R61 

(SGD) 
S288C 

Wang, 2012; 

Shively, 2019; Kang, 

2020 

ChIP-seq H. sapiens 261 261 GRCh38 K562 
Davis, 2018 

(ENCODE) 

ChIP-seq H. sapiens 131 131 GRCh37 HEK293 Schmitges, 2016 

 ChIP-exo H. sapiens 236 236 GRCh37 HEK293T Imbeault, 2017 

Perturbation 

response 

TFKO S. cerevisiae 1,484 164 N/A S288C Kemmeren, 2014 

ZEV TF 

induction 
S. cerevisiae 201 139 N/A S288C Hackett, 2019 

TFKD 

(shRNA, 

siRNA) 

H. sapiens 261 261 GRCh38 K562 
Davis, 2018 

(ENCODE) 

CRISPR + 

CRISPRi 
H. sapiens 96 96 GRCh38 K562 

Davis, 2018 

(ENCODE) 

TF induction H. sapiens 80 80 GRCh37 HEK293 Schmitges, 2016 

 

Yeast data sets on TF binding locations and TF perturbation-responses are more complete 

than those of any other eukaryote and yeast has a simpler genome with more localized regulatory 

DNA. For those reasons, we start by focusing on yeast. In addition to evaluating data sets and 
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experimental and analytic methods, we construct a preliminary map of the yeast TF network by 

integrating the best available binding and perturbation response data sets. For model 

invertebrates, there are large data sets on TF binding location (Brown and Celniker 2015; 

Kudron et al. 2018), but there are currently no comparable data sets on the responses to TF 

perturbations. Such data is available, however, for human cell lines. We analyze large data sets 

on human K562 cells (Sloan et al. 2016; Dunham et al. 2012) and HEK293 cells (Schmitges et 

al. 2016), producing TF networks for each cell type. 

3.2 Results 

3.2.1 Simple comparison of yeast ChIP-chip to expression profiles of TF 

deletion strains yields few high-confidence regulatory relationships 

Comprehensive binding and perturbation response data sets are available for yeast TFs 

In 2004, Harbison et al. assayed the binding locations of all yeast TFs by using ChIP-chip 

(Harbison et al. 2004). In 2007, Hu et al. published gene expression data on yeast strains in 

which each non-essential yeast TFs was deleted (Hu et al. 2007). This made it possible to 

estimate the fraction of binding events that are functional, and Hu et al. remarked on how small 

that fraction is -- about 3-5% in their data. In 2014, Kemmeren et al. published a second such 

data set, which benefited from newer technology and the hindsight afforded by the earlier study 

(Kemmeren et al. 2014). In this section, we focus on the Kemmeren TF knockout (TFKO) data 

because it demonstrates better agreement with the Harbison ChIP data, on average. 

Most bound genes in the Harbison ChIP data are not responsive in the TFKO data 

We began by calculating the response rate of bound genes for each TF -- the fraction of 

bound genes that are differentially expressed in the TFKO strain, relative to the wild type (WT). 
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The microarrays used by Harbison et al. in their ChIP-chip study contained one probe for each 

promoter, so their analysis yielded a simple P-value for whether each promoter is bound. We 

eliminated from further consideration the 16 TFs that were not called as bound to any promoter. 

For the TFKO data, we used the authors’ statistical analysis and considered a gene differentially 

if its p-value (adjusted for multiple comparisons) was < 0.05. We eliminated from further 

consideration any TF whose knockout resulted in no significant changes as well as the 32 TFs 

whose reported expression level in the strain lacking the TF was more than one half its reported 

level in the WT. This can happen when the wild-type expression level of the TF is near or below 

the detection limit of the microarray.  

Figure 3.1A shows a histogram of the results. The median response rate for bound genes 

was 18%. The mode was 0% -- 25 of the 97 TFs (26%) had both bound targets and responsive 

targets, but none of the bound targets were responsive. Only 17 TFs (18%) had a response rate 

above 50%. Tightening the statistical significance threshold for responsiveness lowers the 

response rate further, while tightening the threshold for binding causes very few genes to be 

classified as bound and responsive (Supplemental Fig. S3.1A-C). Thus, these data do not support 

the notion that most binding is functional. The low response rate of bound genes cannot be 

explained by saying that the TFs are inactive in the conditions tested, since the median number 

of genes that respond with p<0.05 is 318. A lot of genes respond, but they are not the bound 

genes. 
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Figure 3. 1: Overlap between the bound and responsive gene sets. (A) Distribution of the response rates of TFs 

(fraction of bound genes that respond to TF perturbation) in the Harbison binding and Kemmeren TFKO data sets. 
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Stacked orange bar indicates the number of TFs with response rates of exactly 0. Binding threshold is p<0.001 and 

response threshold is p<0.05, as recommended in the original publications, with no minimum fold change. (B) 

Median numbers of bound genes (17), perturbation-responsive genes (318), and intersection size (3), when 

comparing the ChIP-chip data to the TFKO perturbation-response data. Thresholds are as in panel A. (C) Minimum 

expected FDR as a function of sensitivity for TF Gln3, when comparing ChIP to TFKO. Genes are counted as 

responsive if they have adjusted P<0.05 (blue line) or adjusted P<0.05 and fold-change > 1.5 (salmon line). 80% 

sensitivity with 20% FDR is not attainable at either threshold, when comparing ChIP to TFKO. (D) The bound set, 

responsive set, and intersection for Gln3, when comparing ChIP to TFKO. (E) Minimum expected FDR, as a 

function of sensitivity, with moderate and tight thresholds for responsiveness, when comparing ChIP to ZEV15. 

80% sensitivity with 20% FDR is attainable at either threshold. (F) The bound set, responsive set, and intersection 

for Gln3, when comparing ChIP to ZEV15. 

Many genes that are both bound and responsive in previously published data are probably not 

direct functional targets 

Given that available data suggest most binding sites are non-functional, a logical 

procedure for finding the direct functional (DF) targets is to take the intersection of the genes 

bound by each TF with the genes that respond to perturbation of that TF, a procedure we refer to 

as the intersection algorithm. It is important to keep in mind, however, that most responsive 

genes are not bound. Comparing the ChIP data with the TFKO data, the median fraction of 

responsive genes that are bound is 1% (Fig. 3.1B). Thus, most of the responsive genes are 

indirect targets. Furthermore, it is reasonable to assume that the distribution of indirect targets 

among all genes is independent of the distribution of non-functional binding sites, or at least that 

non-functional binding sites do not systematically avoid the promoters of indirect targets. This 

suggests that some of the indirect targets also have non-functional binding sites. These genes 

would be false positives of the intersection algorithm -- genes that are bound and responsive, but 

are not responsive because they are bound. 

In Methods (3.5.2 Expected false discovery rate of intersection algorithms), we derive a 

new lower bound on the expected false discovery rate (FDR) of the intersection algorithm, as a 
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function of its sensitivity (the fraction of direct functional targets that are in the intersection) and 

four other variables: number of bound genes, |𝐵|, the number of responsive genes, |𝑅|, the 

number of bound and responsive genes, |𝑅 ∩ 𝐵|, and the total number of genes assayed, |𝐺|.  

E[𝐹𝐷𝑅] ≥
max(0,  |𝐵| − |𝑅 ∩ 𝐵|/Sn) max(0,  |𝑅| − |𝑅 ∩ 𝐵|/Sn)

|𝐺||𝑅 ∩ 𝐵|
(3.1) 

The formula shows that, if a large fraction of bound genes is not responsive and a large 

fraction of responsive genes is not bound, the intersection procedure cannot have both high 

sensitivity and low false-discovery rate. For example, Figure 3.1C shows the relationship 

between sensitivity and expected FDR for a fairly typical TF, Gln3, based on the Harbison ChIP 

data and the TFKO response data. The blue and red lines form the boundaries between the 

feasible and infeasible regions for two different response thresholds. They are calculated by 

varying the sensitivity and using the formula shown above to calculate the corresponding lower 

bound on the expected FDR. A reasonable minimum accuracy criterion for a procedure aimed at 

finding the DF targets of a TF is that it has sensitivity >= 80% (it detects at least 80% of the DF 

targets) and an FDR <= 20%. However, that is not possible for Gln3, using these two data sets 

(Fig. 3.1C, black dot). Intuitively, this is because the fraction of Gln3-bound genes that are 

responsive to the Gln3 perturbation (53%) is only a little more than the fraction of all genes that 

are responsive to the Gln3 perturbation (43%; Fig. 3.1D). The 80-20 criterion is achievable for 

only 43 TFs. Supplemental Figure S3.2 shows the cumulative fraction of TFs that have an FDR 

bound below a given level, assuming 80% sensitivity, at various significance thresholds for 

binding and response. 

The FDR lower bound does not guarantee any maximum FDR for the intersection 

algorithm. In fact, of the 43 TFs that could possibly achieve the 80-20 criterion in the ChIP-

TFKO comparison, only 27 have an intersection that is significantly larger than would be 
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expected by chance (hypergeometric P<0.01, not adjusted for multiple testing). Conversely, three 

TFs that passed the P<0.01 criterion failed the 80-20 criterion. If we define “TF with acceptable 

convergence” to be one that could pass the 80-20 criterion and has a larger overlap between 

bound and responsive targets than would be expected for randomly selected gene sets, then there 

are 27 acceptable TFs with 448 interactions regulating 366 target genes. If we take this to be our 

network map, ~85% of TFs do not have acceptable convergence, so they have no high 

confidence targets, while 94% of genes have no identifiable regulator. In summary, using the 

simple intersection algorithm with just these two data sets does not produce anything like a 

complete TF network map. 

3.2.2 Comparing yeast ChIP-chip data to expression profiles measured 

shortly after TF induction enlarges the network map 

Recently, some of us released a data set in which the expression of nearly every yeast TF 

was induced from a very low level to a high level (http://idea.research.calicolabs.com; (Hackett 

et al. 2020)). This was accomplished by expressing ZEV, an estradiol-activated artificial TF, and 

replacing the promoter of the gene to be induced with a ZEV-responsive promoter (McIsaac et 

al. 2014, 2013). (Some of the TFs were induced using an earlier iteration of the artificial TF 

called GEV (McIsaac et al. 2011), but we refer to the data set as ZEV for convenience.) Gene 

expression profiles were measured before induction and at 5, 10, 15, 20, 30, 45, and 90 minutes 

after inducing the expression of a natural yeast TF with estradiol. We reasoned that genes that 

respond rapidly might be enriched for direct targets of the induced TF, since there would be 

limited time for intermediary proteins to be transcribed and translated. If the responders were 

enriched for direct targets, the number of TFs showing acceptable convergence might increase, 

expanding the network map. In general, the expression profiles taken 15 minutes after TF 
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induction (ZEV15) were most enriched for bound genes, so we focus on the 15-minute time 

point for the remainder of the analyses (Supplemental Fig. S3.3). For a detailed description of the 

strains, experiments, and analysis, see (Hackett et al. 2020). 

The TF Gln3, which could not achieve 80% sensitivity with 20% expected FDR in the 

ChIP-TFKO comparison (Fig. 3.1C), can in the ChIP-ZEV15 comparison (Fig. 3.1E). The reason 

is that the number of responsive genes has decreased from 43% of all genes to 24%, at the same 

time that the response rate of bound genes increased from 53% to 60% (Fig. 3.1D,F). Across all 

TFs, the ChIP-ZEV15 comparison identified 37 acceptable TFs, 23 of which had not been 

identified in the ChIP-TFKO comparison (Fig. 3.2A). The ChIP-ZEV15 comparison 

significantly expanded the network map. Still, >72% of TFs do not show acceptable convergence 

in either data set and hence have no identifiable targets, while >87% of genes have no 

identifiable regulators. 

3.2.3 Dual threshold optimization expands the TF network map 

A possible limitation of the previous analyses is its sensitivity to the statistical 

significance thresholds used to determine which genes are bound and which are responsive. The 

statistics are calculated separately for the binding and response data sets and statistical 

significance thresholds are, by their nature, arbitrary. Furthermore, statistically significant levels 

of binding or perturbation response might not be biologically significant. For example, a TF may 

bind a site consistently in the ChIP data even though the fractional occupancy of the site is too 

low to detectably affect transcription.  

To address these problems, we developed dual threshold optimization (DTO), a method 

that sets the binding and response thresholds by considering both data sets together. DTO 

chooses, for each TF, the pair of (binding, response) thresholds that minimizes the probability 
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that the overlap between the bound and responsive sets results from random gene selection (Fig. 

3.2B). For this analysis, we ranked all genes by their absolute log fold change in the ZEV15 data 

and, separately, by their negative log p-value in the ChIP-chip data. We then chose the pair of 

(binding, response) rank thresholds that minimized the nominal hypergeometric P-value of the 

overlap between bound and responsive gene sets. The only constraint on the thresholds chosen 

was that the p-value for the ChIP data could not exceed 0.1. To test the significance of the 

overlap at the chosen thresholds, we randomly permuted the assignment of binding and response 

signals to genes 1000 times and ran DTO on each random permutation (see Methods for details). 

After DTO, we applied the same acceptable convergence criteria as before -- the bound-

responsive overlap must be significant (P<0.01, permutation-based) and 20% FDR at 80% 

sensitivity must be theoretically achievable. DTO expanded the network map again (Fig. 3.2C). 

Combining the results from TFKO and ZEV15, 60 TFs showed acceptable convergence. For 

these 60, the bound-responsive overlap contained 2,074 regulatory interactions involving 1,430 

unique target genes. The number of TFs that are acceptable in both response da ta sets, 29, now 

exceeds the number that are acceptable in either of the data sets alone (TFKO:14, ZEV15:17). In 

this map, ~33% of TFs have at least one target and ~24% of genes have at least one regulator.  
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Figure 3. 2: Dual threshold optimization and network inference in yeast. (A) Numbers of acceptable TFs, 

unique target genes, and network edges, when comparing Harbison ChIP data to TFKO or ZEV15 response data. 

“Unique Targets” are genes that are in the bound-responsive intersection of at least one acceptable TF and thus are 

plausible direct functional targets. Edges connect acceptable TFs to the genes in their bound-responsive intersection. 

The ZEV15 response data yields more acceptable TFs, more unique targets, and more regulatory edges. (B) 

Illustration of DTO algorithm. Each dot represents one gene. Red lines indicate the chosen (optimal) thresholds for 

binding (vertical red line) and regulation (horizontal red line). The lower left quadrant, relative to the red lines, 

contains the bound and responsive genes, which are presumed to be direct functional targets (red dots). Gray lines 

indicate some of the other possible thresholds on binding or response and locations where the gray lines cross are 

possible combinations of binding and response thresholds, each of which is evaluated by the DTO algorithm. (C) 
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Numbers of acceptable TFs and unique target genes for comparison of Harbison ChIP binding data to TFKO or 

ZEV15 response data, after dual threshold optimization (DTO). The requirement that the overlap between the bound 

and responsive targets be greater than chance at p<0.01 was checked by comparing the nominal hypergeometric p-

value for the overlap to a null distribution obtained by running dual threshold optimization on 1,000 randomly 

permuted binding and response data sets. DTO increases the network size, relative to using fixed significance 

thresholds. ZEV15 still yields more acceptable TFs, regulated genes, and regulatory interactions than TFKO. (D) 

Comparison of TFKO and ZEV15 networks derived from fixed thresholds, DTO on raw gene expression, and DTO 

on gene expression data processed by NetProphet 2.0. The use of DTO on the raw expression data (blue bars) 

increases the size of both the intersection of the ZEV15 and TFKO (left bar grouping) and their union (right bar 

grouping). Post processing with NetProphet 2.0 (green bars) further increases the number of acceptable TFs. 

3.2.4 Processing yeast gene expression data with a network inference 

algorithm further expands the network map 

There are many algorithms that attempt to infer TF-target relationships by processing 

gene expression data but not binding location data (e.g., (Faith et al. 2007; Greenfield et al. 2013; 

Haury et al. 2012; Haynes et al. 2013; Huynh-Thu et al. 2010; Kang et al. 2018; Margolin et al. 

2006; Roy et al. 2013)). Typically, they assign a confidence score to each possible TF-target 

interaction. If all possible targets of a TF are ranked according to their score, DTO can be 

applied to compare this ranking to binding location data. As long as the network inference 

algorithm does not use any binding data, DTO can provide independent, convergent evidence. 

There are also network inference algorithms that weigh and integrate data sources including gene 

expression and TF binding location data or curated sources influenced by binding data (e.g. 

(Miraldi et al. 2019; Siahpirani and Roy 2017; Wang et al. 2018)). These algorithms are not 

suitable for our current purpose, which is to assess the convergence of independent evidence 

from gene expression and binding location data. 

To test this idea, we focused on our lab’s network inference algorithm, NetProphet 2.0 

(Kang et al. 2018). A major component of the NetProphet score is the degree to which the target 
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gene responds to direct perturbation of the TF. However, it also considers the degree to which 

the mRNA level of the TF is predictive of the mRNA level of the potential target, across many 

different perturbations. NetProphet also makes use of two other ideas: (1) that co-regulated genes 

tend to have similar sequence motifs in their promoters, and (2) that DNA binding domains with 

similar amino acid sequences tend to bind similar motifs. It does not use any data on TF binding 

location, either directly or indirectly. 

We built separate NetProphet networks using the TFKO and ZEV data (see Methods). 

For TFKO, we input 3 wild-type expression profiles and the complete set of 1,484 expression 

profiles from strains lacking one gene -- some of the deleted genes encode TFs, but others 

encode other putative regulatory proteins, such as kinases and phosphatases. For ZEV, we used 

590 expression profiles from 15 minutes, 45 minutes, or 90 minutes post-induction. We then 

ranked the potential targets of each TF by their NetProphet scores and ran dual threshold 

optimization, treating the NetProphet score as we did the perturbation response strength. 

Combining the results from NetProphet applied to TFKO and ZEV data, dual threshold 

optimization yielded 84 TFs (46%) with acceptable convergence (Fig. 3.2D). For these TFs, the 

bound-responsive intersection had 2,153 regulatory interactions involving 1,327 unique target 

genes (23%, Supplemental Fig. S3.4A,B). The number of TFs that are acceptable in both 

perturbation data sets, 44, is now much larger than the number that are acceptable in either data 

set alone (TFKO:22, ZEV:18). Results from comparing binding data to output from three other 

network inference algorithms, Inferelator (Greenfield et al. 2013), GENIE3 (Huynh-Thu et al. 

2010), and MERLIN (Roy et al. 2013), can be found in Supplemental Figure S3.4C. 

Running NetProphet on gene expression data and feeding the result into dual threshold 

optimization has enlarged the map, but it is still smaller than what is generally expected for the 
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complete yeast TF network. To improve it further, we need binding data that is more accurate or 

more specifically focused on functional binding. 

3.2.5 Without network inference, data on human cell lines yields a few 

acceptable TFs 

The ENCODE Project (Dunham et al. 2012) has produced a wealth of data on human cell 

lines, including 743 TF ChIP-seq experiments and 391 RNA-seq experiments following 

knockdown of a TF by siRNA or shRNA (TFKD), or by CRISPR interference (Gilbert et al. 

2014) or CRISPR knockout (CRISPRi+CRISPR KO). In K562 cells, 42 TFs have both ChIP-seq 

and TFKD data while 45 TFs have both ChIP-seq and CRISPRi or CRISPR KO data. We focus 

on this K562 data, as it is by far the biggest relevant data set. 

We considered two ways of assigning ChIP-seq peaks to the genes they potentially 

regulate. The first is the traditional approach of choosing a fixed interval around the transcription 

start site (TSS) -- we used 10 kb upstream to 2 kb downstream. The second is to take a small 

proximal promoter region (TSS -500 bp to +500 bp) along with enhancer regions that have been 

identified and assigned to the target gene in the GeneHancer database (Fishilevich et al. 2017). 

GeneHancer uses a variety of data types including predicted and ChIP-based TF binding sites, 

enhancer RNAs, histone marks, chromosome conformation, and cis-eQTLs. We used only the 

‘elite’ enhancers and ‘elite’ associations, each of which are supported by at least two sources of 

evidence. 91% of the ‘elite’ enhancers were supported by evidence from ENCODE, much of 

which comes from K562 cells. The enhancer-based approach generally yielded 1 or 2 more TFs 

with acceptable convergence than the fixed interval approach, so we used the enhancers in 

subsequent analyses. 
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Unlike the yeast array data, the human sequencing data yielded many more bound than 

responsive genes (Fig. 3.3A,B). Among the TFs that had at least one bound and one responsive 

gene, 7 (TFKD) and 7 (CRISPRi+CRISPR KO) had no genes that were both bound and 

responsive. The median response rate for bound genes was < 0.5%. In a fixed-threshold 

intersection with K562 ChIP-seq data, TFKD and CRISPRi+CRISPR KO each yielded 5 TFs 

with acceptable convergence. We then ran dual threshold optimization limiting the bound and 

responsive gene sets to have p<=0.1; such limits are necessary because DTO occasionally 

chooses implausible thresholds, such as counting all genes as responsive. Among all TFs with 

both binding and response data, TFKD yielded 14% acceptable TFs (6/43) and 

CRISPRi+CRISPR KO yielded 13% (6/45), a slight improvement over fixed-threshold 

intersections (Fig. 3.3C, left and center). 

We also analyzed a data set on 88 human GFP-tagged C2H2 Zinc finger TFs with 

matched ChIP-seq data and response-to-overexpression data in HEK293 cells (Schmitges et al. 

2016). Using DTO on the ChIP-seq and differential expression data and limiting the total number 

of responsive genes to 300,000, three of 88 TFs showed acceptable convergence (Fig. 3.3C, 

right). 
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Figure 3. 3: Network inference with dual threshold optimization in human cell lines. (A) Medians of number of 

bound genes, number of perturbation-responsive genes, and number genes that are both bound and responsive, when 

comparing ENCODE K562 ChIP-seq data to ENCODE TFKD data. Excludes TFs with either no bound genes or no 

responsive genes. Binding threshold is p<0.05 and response threshold is p<0.05 with no minimum fold change. (B) 

Comparison of ENCODE K562 ChIP-seq data and ENCODE CRISPRi + CRISPR KO data, as in Panel A. (C) 

Comparison of human networks derived from fixed thresholds, dual threshold optimization (DTO) on raw 

perturbation-response data, and DTO on perturbation-response data processed by NetProphet 2.0. The vertical axis 

is the number of TFs showing acceptable convergence divided by the number that were both ChIPped and perturbed 

(K562: ChIP-CRISPRi + CRISPR KO = 45, K562: ChIP-TFKD = 43, HEK293: ChIP-TF_over = 80). Asterisk 

indicates that no fixed threshold analysis for HEK293 is available due to the lack of response p-values. 
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3.2.6 Processing human data through network inference algorithms greatly 

increases the number of acceptable TFs 

We ran NetProphet 2.0 on both the K562 data (TFKD and CRISPRi+CRISPR KO) and 

the HEK293 data followed by DTO, limiting the total set of responsive genes to those with the 

top 500,000 (K562) or 300,000 (HEK293) NetProphet scores (see Methods for details). Among 

the TFs that were both perturbed and ChIPped, the number showing acceptable convergence 

increased from 6 to 8 (K562 CRISPRi+CRISPR KO), from 6 to 17 (K562 TFKD), and from 3 to 

71 (HEK293 over expression; Fig 3.3C). Comparable results for other network inference 

algorithms are shown in Supplemental Fig. S3.4D. NetProphet and other inference algorithms 

can also infer targets for TFs that have not been directly perturbed, by exploiting correlation 

between the expression of the TF and its targets when other TFs are perturbed. Processing all the 

perturbation response data and evaluating only on the non-perturbed TFs, we found that the 

Inferelator scores yielded the largest number of TFs with acceptable convergence (Supplemental 

Fig. S3.4E). This is not surprising, since NetProphet weighs the response to direct perturbation 

heavily in its score. This suggests that, for TFs that have not been directly perturbed, Inferelator 

is the best choice of analysis tool.  

We also compared the output of NetProphet 2.0 when run on HEK293 perturbation 

response data to a recently published ChIP-exo data set (Imbeault et al. 2017) focusing on KRAB 

Zinc finger TFs. ChIP-exo (Perreault and Venters 2016; Rhee and Pugh 2011, 2012; Rossi et al. 

2018b) is a variant of ChIP-seq in which the affinity-purified chromatin is digested by an 

exonuclease, leaving much smaller pieces that are partially protected by protein. Of the 27 TFs 

that were in both perturbation and ChIP-exo data sets, 20 showed acceptable overlap with 

NetProphet scores. For the same 27 TFs, using the previously described ChIP-seq yielded 24 TFs 
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with acceptable convergence. This small difference may be due, in part, to the fact that the ChIP-

exo experiments were done on a derivative cell line known as HEK293T. 

3.2.7 In yeast, newer ChIP data do not necessarily yield better convergence 

with perturbation response 

To assess whether the age of the Harbison ChIP-chip data was responsible for some of its 

limitations, we analyzed a 2011 ChIP data set from Venters et al. (Venters et al. 2011), which 

included 26 factors that were also chipped by Harbison and perturbed by TFKO and ZEV. The 

results did not improve on those of Harbison et al. (Fig. 3.4A). 

3.2.8 In yeast, ChIP-exo yields better convergence than traditional ChIP 

We also ran DTO on ChIP-exo data from yeast (Bergenholm et al. 2018; Holland et al. 

2019; Rhee and Pugh 2011; Rossi et al. 2018a, 2018b). Twenty TFs had data in ChIP-exo, 

Harbison ChIP-chip, TFKO, and ZEV15, enabling all-way comparisons. Regardless of the 

perturbation-response data set, ChIP-exo showed acceptable convergence for more TFs than 

ChIP-chip did (Fig. 3.4B). (For the sixteen TFs with ChIP-exo data in four different growth 

conditions, we used the glucose-limited chemostat data as it gave the best results; dotted blue 

lines, Supplemental Fig. S3.5A, B). After processing the ZEV perturbation-response data 

through NetProphet 2.0, all 20 TFs showed acceptable convergence (Fig. 3.4B). 
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Figure 3. 4: Generating a high-confidence yeast TF network. (A) Percentage of TFs showing acceptable 

convergence, when comparing the Harbison ChIP and Venters ChIP data on the same 26 TFs. Regardless of the 
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perturbation data set or the processing by NetProphet 2.0, the Harbison ChIP data always yields more acceptable 

TFs. (B) Among the 20 TFs for which we have data in Harbison ChIP-chip, ChIP-exo, TFKO, and ZEV, the 

percentage that show acceptable convergence. Regardless of the perturbation data set or processing by NetProphet 

2.0, ChIP-exo always yields more acceptable TFs. For both TFKO and ZEV, NetProphet postprocessing yields more 

acceptable TFs than raw differential expression. When NetProphet-processed ZEV data is compared to ChIP-exo 

data, all TFs show acceptable convergence. (C) Among the 12 TFs for which we have data in Harbison ChIP, calling 

cards, TFKO, and ZEV, the percentage that show acceptable convergence. When NetProphet-processed ZEV data is 

compared to calling cards, all TFs show acceptable convergence. (D) For each of the 12 TFs for which we have data 

in Harbison ChIP, calling cards, TFKO, and ZEV15, the Gene Ontology (GO) term that is most strongly enriched in 

the TF’s targets. Targets are determined either by simple intersection of the bound and responsive genes in Harbison 

ChIP and TFKO data, using fixed thresholds (blue) or by dual threshold optimization on calling cards data and 

output from NetProphet 2.0 run on the TFKO and ZEV expression data (red). The colored numbers indicate the 

number of target genes annotated to the most significant GO term. Asterisk indicates no GO enrichment with 

p<0.01. (E) Among all TFs for which the indicated analyses can be carried out, the percentage that are acceptable in 

either TFKO or ZEV data or both. The fraction shows the number of acceptable TFs over the total number of TFs 

that could be analyzed. FT: Fixed threshold. DTO: Dual threshold optimization. 

3.2.9 Transposon calling cards yields more acceptable TFs than traditional 

ChIP 

Transposon calling cards is a method of determining TF binding locations by tethering a 

transposase to a TF, recovering the inserted transposons with their flanking sequences, and 

counting the insertions in a given genomic region. It does not require crosslinking, sonication, or 

affinity purification (Mayhew and Mitra 2016; Ryan et al. 2012; Wang et al. 2011b). Here, we 

analyze previously published calling cards data on seven TFs (Shively et al. 2019; Wang et al. 

2011b) and new, never-before-analyzed data on eight TFs. Binding data from ChIP-chip and 

calling cards were compared to perturbation-response data from TFKO and ZEV15, using the 12 

TFs present in all four data sets (Fig. 3.4C). In all comparisons, calling cards yielded 

substantially more acceptable TFs than ChIP-chip. This is particularly impressive given that the 

calling cards experiments were carried out in different growth conditions from the ZEV 

experiments -- synthetic complete medium with galactose on agarose plates at room temperature 
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versus minimal in phosphate-limited continuous-flow chemostats with glucose at 30°C (Hackett 

et al. 2020). Figure 3.4C also shows that, holding all other factors constant, ZEV was always 

better than TFKO and post-processing by NetProphet was always beneficial.  

Figure 3.4D shows the -log p-value of the most significant Gene Ontology (GO) term for 

the predicted targets of each TF we have calling cards data on, excluding GO terms that describe 

more than 300 or fewer than 3 genes. To highlight the progress reported here, results are shown 

for the best combination of experimental and analytic methods (DTO on calling cards data and 

NetProphet output after processing TFKO and ZEV 15, 45, and 90-minute samples) compared to 

the simple intersection of bound and responsive genes using TFKO and ChIP-chip. For 10 of 12 

TFs, the best combination of methods had a more significant GO term P-value, and the 

differences were large. For 2 of 12 (Ino4 and Sfp1), simple intersection had the more significant 

P-value, but the differences were smaller. The median -log10 P-value for the best combination of 

methods was 11.2, while that of simple intersection was 1.5. The best combination of methods 

assigned the top GO term to 117 target genes, whereas simple intersection assigned the top term 

to only 41 genes. For most TFs, the most significant GO term had a clear relationship to the 

known function of the TF. In some cases, the term selected is an immediate parent of the most 

familiar term associated with the TF. For example, Gcr2 (Glycolysis Regulation 2) is known as a 

regulator of genes encoding glycolytic enzymes. Its most significant GO term is “ADP metabolic 

process”, annotating 13 predicted Gcr2 targets, but 12 of those targets are also annotated with 

“Glycolytic process”, a subcategory of “ADP metabolic process”. This can be seen in 

Supplemental Figure S3.6, which shows the top 5 GO terms for each TF.  

Another way to look at the contributions of various methods is to plot the fraction of 

available TFs that show acceptable convergence, combining TFKO and ZEV, using each 
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combination of methods described here (Fig. 3.4E). Only 15 TFs are currently available for 

calling cards and either ZEV15 or TFKO (12 for both), but analyzing these with DTO and 

NetProphet results in a much larger fraction of TFs being acceptable. This includes TFs that are 

not thought to be active in the ZEV or TFKO growth conditions, such as Gal4, presumably 

because ZEV overexpression of Gal4 significantly exceeds the number of Gal80 molecules 

available to bind and inactivate it. The second best percentage of TFs showing acceptable 

convergence was obtained by comparing NetProphet scores to ChIP-exo data (Fig. 3.4E). 

3.2.10 The combination of ZEV and calling cards greatly increases response 

rates  

We began this study by observing that, using fixed threshold analysis of the TFKO and 

ChIP data, most binding appears to be non-functional. To revisit the question of functionality 

using ZEV15 and calling cards data, we plotted the fraction of bound genes that are responsive, 

as a function of binding strength rank. Figure 3.5A shows that, for the TF Leu3, the combination 

of calling cards and ZEV15 gives much higher response rates than any of the other three 

combinations -- ChIP-ZEV15, calling cards-TFKO, or ChIP-TFKO -- regardless of binding 

strength. Nine out of the 10 mostly strongly bound and 48 out of 100 most strongly bound genes 

were responsive. To make the comparison between ZEV15 and TFKO fair, we fixed the number 

of Leu3-responsive genes in each perturbation data set to be the same. Thus, we labeled the 156 

most strongly responsive genes in each data set as Leu3-responsive, because156 was the 

minimum of the numbers of genes that were significantly differentially expressed in the two data 

sets for Leu3. Although the number of responsive genes in each data set was the same, a larger 

fraction of the ZEV15-responsive genes was bound, as compared to the TFKO-responsive genes. 

Figure 3.5B shows a similar plot of the average response rates at each binding threshold, across 
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the 12 TFs for which we have all four combinations of data sets. Again, the combination of 

ZEV15 and calling cards gives higher response rates at all binding thresholds. On average, the 

response rate of the 10 most strongly bound genes is 61.7%. Individual rank response plots for 

the 11 other TFs present in all four data sets are shown in Supplemental Figure S3.7.  

Figure 3.5C shows a direct comparison of binding strengths as assessed by calling cards, 

ChIP-exo, and ChIP-chip for the 8 TFs for which we had data from all methods. Each binding 

data set was compared to ZEV15 data on the same TF. At the highest binding strengths, calling 

cards appears to be a bit more discriminating, but ChIP-exo catches up when 20 or more top 

binding targets are considered. Both calling cards and ChIP-exo greatly outperform ChIP-chip. 

 

Figure 3. 5: Comparison of yeast perturbation-response and binding data sets. (A) The fraction of most 

strongly Leu3-bound genes that are responsive to Leu3 perturbation, as a function of the number of most-strongly 

bound genes considered. (B) Same as (A), with response rates averaged across the 12 TFs for which Harbison ChIP, 

calling cards, TFKO, and ZEV data were available. (C) Same as (B), with response rates averaged across the 8 TFs 

for which Harbison ChIP, calling cards, ChIP-exo, and ZEV15 data were available. (D) Venn diagram for the 20 

genes that are most strongly bound by Leu3 in each assay but not responsive to Leu3 perturbation (ZEV15). Only 
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the top 20 non-responsive genes ranked by their binding strengths are shown. (E) The analysis for Leu3 shown in 

Panel A, applied to the eight TFs for which we have data in ChIP-chip, ChIP-exo, Calling cards, and ZEV. The three 

colored boxplots show the genes that are only bound in one of the three binding sets. The boxplot in grey shows the 

genes with evidence in at least two binding sets. 

3.2.11 Comparison of non-responsive genes that are bound in each assay 

Genes that appear to be bound by a TF but are not responsive to it could reflect false 

positives of the binding assay, non-functional binding sites, or genuinely bound genes that are 

not responsive because of network compensation, saturation, or other biological mechanisms 

(see Discussion). To estimate the contribution of false positives of the binding assays, we 

compared the bound but non-responsive targets according to each assay, for the 8 TFs for which 

we had all three assays (Fig. 3.5D). The non-responsive genes that are bound in only one assay 

are more likely to be false positives than those that are supported by multiple assays. Binding at 

these genes could be supported by another assay at a level below the threshold we used for this 

analysis, so we cannot conclude that they are definitely false positives. We found that ChIP-chip 

had more likely false positives than either calling cards or ChIP-exo, which were comparable to 

one another (Fig. 3.5E). The non-responsive genes that were supported by at least two assays are 

most likely true bound sites that are non-responsive for biological reasons. The relatively large 

size of this set suggests that there are a substantial number of truly bound, non-responsive genes. 

3.2.12 Combining all available data sets yields the best result 

ChIP-exo and calling cards data are not yet available for most yeast TFs. Furthermore, 

the data sets that are best overall may not be best on every TF. Therefore, we combined the data 

sets described above using NetProphet 2.0, DTO, and our FDR lower bound. We used the 

following procedure, which can be applied to any data sets available for any species:  
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Union the network edges produced by performing the following procedure on each 

perturbation-response data set: 

1. Using the entire perturbation-response data set, run a suitable network inference 

algorithm that does not use binding location data either directly or indirectly. Rank all 

possible edges according to their score. If desired, multiple inference algorithms can be 

run (Marbach et al. 2012a). 

2. For each TF:  

a. Compare the network inference scores of the TF’s targets to each binding location 

data set using DTO to select thresholds. Among all binding data sets for the TF, 

choose the one that yields the best hypergeometric p-value. 

b. Using the chosen data set and DTO thresholds, check whether the TF is 

acceptable as defined above. If so, return edges from the TF to targets that are 

above the thresholds for both expression and binding. 

We carried out this procedure on the TFKO and ZEV expression data with the Harbison 

ChIP, ChIP-exo, and calling cards binding data. For the TFs for which ChIP-exo or calling cards 

data were available, one of these data sets was chosen over Harbison ChIP 92% of the time 

(TFKO comparison) or 96% of the time (ZEV comparison). Considering all data sets, the 

resulting network comprises 96 acceptable TFs with 3,268 edges impinging on 1,686 unique 

target genes. 

3.3 Discussion 

The fundamental question behind this investigation is whether TF binding locations and 

TF perturbation responses could provide convergent evidence about the direct functional targets 

of each TF in an organism. Using standard methods to compare binding data from chromatin 
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immunoprecipitation (ChIP) to published perturbation-response data, we found that most of the 

genes whose cis-regulatory DNA is bound by a TF are not functionally regulated by that TF. We 

found this to be the case for two yeast ChIP datasets as well as ENCODE ChIP-seq experiments 

in human K562 cells and another 88 ChIP-seq experiments in human HEK293, consistent with 

previous reports based on different data sets (Cusanovich et al. 2014; Gitter et al. 2009; Hu et al. 

2007; Lenstra and Holstege 2012). 

If the problem is that most bound genes are not responsive, a natural solution would be to 

focus on those that are. That is, to take the intersection of the genes a TF binds and the genes that 

respond to perturbation of the TF as its direct functional targets. However, we proved that this 

procedure does not effectively identify the direct functional targets when the sets of bound and 

responsive genes are much larger than their intersection. The reason is that, when there are many 

genes with non-functional binding sites and many genes that respond to the perturbation because 

they are indirect targets, it is expected that some indirect targets will have non-functional binding 

sites in their cis-regulatory DNA. These are not direct functional targets, yet they inhabit and 

contaminate the intersection of bound and responsive genes. 

We quantified this problem by setting minimal criteria for considering the genes that are 

bound and responsive to be likely direct functional targets. First, the intersection procedure must 

be able to achieve, in principle, 80% sensitivity with an expected false discovery rate of no more 

than 20%. Second, the intersection must be larger than would be expected by chance (p<0.01). 

We say that a TF shows acceptable convergence if it meets both those criteria. This designation 

does not guarantee that all or most of the TF’s bound and responsive genes are responsive 

because they are bound. The 80-20 criterion is a lower bound on the expected FDR, not an upper 

bound. Furthermore, it does not guarantee a unique relationship between the bound and 
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responsive sets of an acceptable TF -- the bound set of one TF can show acceptable convergence 

when compared to the responsive set of a different TF. Acceptable simply means that there is no 

obvious red flag to prevent us from supposing that a good number of the TF’s bound and 

responsive genes are direct functional targets. When combining ChIP data with steady-state 

perturbation-response data, the number of TFs showing acceptable convergence was no more 

than 15% of TFs assayed in both yeast and human data. For the remaining TFs, there is a clear 

red flag. 

We identified four techniques that could substantially increase the number of TFs 

showing acceptable convergence.  

1. Measuring the transcriptional response a short time after inducing overexpression of a TF 

by using a method such as ZEV.  

2. Using dual threshold optimization (DTO) to set significance thresholds for binding and 

response data in a way that makes their intersection as significant as possible. 

3. Processing all the perturbation-response data together through a network inference 

algorithm that does not use binding data, either directly or indirectly. 

4. Measuring TF binding location by using transposon calling cards or (in yeast) ChIP-exo, 

rather than standard ChIP.  

We combined all these methods to produce a high-quality yeast TF network, using the best 

binding data available for each TF. Currently, ~25% of the TFs in the network have binding data 

from calling cards or ChIP-exo; we expect the network to improve as these data are produced for 

more TFs. For mammalian cells, calling cards (Wang et al. 2012), dual threshold optimization, 

and network inference have all been shown to work to some degree. For TF activity perturbation, 

highly specific genome-targeting systems have been developed and tested with a variety of 
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activation and repression domains (Waryah et al. 2018) and linked to small-molecule inducers 

(Kundert et al. 2019; Oakes et al. 2016). However, the prospects for obtaining ZEV-like 

perturbation and calling cards binding data on large numbers of mammalian TFs remain 

uncertain. 

Other new technologies for measuring TF binding locations have shown great promise 

(Policastro and Zentner 2018), but have not yet yielded a sufficiently large, systematic data set, 

with matched perturbation-response data, for comparison to ChIP and calling cards. One such 

technology is DamID, in which a DNA-methyltransferase is tethered to a DNA-binding protein 

and changes in DNA methylation relative to a control are assayed to determine binding location 

(Hass et al. 2015; Tosti et al. 2018; Van Steensel and Henikoff 2000). Another is CUT&RUN, in 

which an endonuclease tethered to an antibody against a TF enters permeabilized nuclei and 

releases the DNA bound by the TF, which diffuses out of the cell and is recovered for 

sequencing (Hainer and Fazzio 2019; Meers et al. 2019b; Skene et al. 2018; Skene and Henikoff 

2017). A promising approach for measuring perturbation-response in mammalian cells is to 

transfect cells with a library of constructs encoding guide-RNAs that target a variety of TFs and 

then use single-cell RNA-seq to identify the TF perturbed and measure the response. Variants of 

this general approach include Perturb-seq (Adamson et al. 2016; Dixit et al. 2016; Replogle et al. 

2018), CROP-seq (Datlinger et al. 2017), and CRISP-seq (Jaitin et al. 2016). As these 

technologies mature, they will likely be used to produce large, systematic data sets that can be 

analyzed using the methods described here.  

Even when we apply the best combination of analytic and experimental methods, a large 

fraction of the genes whose regulatory DNA is significantly bound by a TF does not respond to a 

perturbation of that TF. Such non-responsiveness could be caused by several mechanisms. 
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• Insufficient occupancy -- rank response plots (Fig. 3.5A-C) indicate that the most 

strongly bound sites are much more likely to be functional than sites that are bound less 

strongly, even when the weaker sites are statistically significant. 

• Saturation -- if a gene is already expressed at its maximum possible level and an activator 

of that gene is induced, no response will be seen. However, if other TFs were removed, 

lowering the expression level of the gene, it would respond to the induction. The same 

situation arises when a repressor of an unexpressed gene is induced or an activator of it is 

depleted.  

• Inactivity -- the TF may bind DNA even when the TF is in an inactive or partially active 

state. However, ZEV induction of Gal4 activates galactose genes even in the absence of 

galactose and presence of glucose, showing that overexpression can elicit a response in 

conditions where a TF is normally inactive. 

• Compensation -- the regulatory network as a whole may compensate for the change in TF 

activity in a way that damps the effect of the initial perturbation. Measuring responses 

shortly after the perturbation should reduce the prevalence of such compensation, but 

some mechanisms can compensate quickly. A simple example would be two essentially 

equivalent TFs that can bind to the same sites, so that the effects of perturbing one TF are 

buffered by the other. This was shown to be a contributing factor in a comparison of the 

Harbison ChIP data to the TFKO data from Hu et al (Gitter et al. 2009; Hu et al. 2007). 

• Override -- some regions of a genome may be shut down in a way that overrides the 

effects of TFs, even when the TFs can bind to the cis-regulatory DNA. For example, the 

transcribed region of a gene might be in inaccessible, tightly compacted DNA even 

though the cis-regulatory region remains somewhat accessible to TFs. 
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• Synergistic regulation -- some TFs that are bound to cis-regulatory DNA may be active 

only where there is a binding site for a cofactor nearby. 

Regardless of the mechanism that renders a bound gene non-responsive, it remains the case 

that many binding sites are non-functional under the conditions tested, in the sense that the 

transcription rate of the associated gene is unaffected by the presence or absence of the TF. 

Currently, we do not know how much each of the factors listed above contributes to explaining 

why so many genes that are bound by a TF do not respond to a perturbation of that TF. For now, 

technical limitations of the available data sets may be a significant contributing factor. Once 

those have been mitigated by newer methods like transposon calling cards, we will be in a strong 

position to investigate the biological factors that explain the non-responsiveness of genes whose 

cis-regulatory DNA is bound by a TF. Determining the prevalence of each factor will bring the 

landscape of transcriptional regulation into much clearer focus. 

3.4 Methods 

3.4.1 Data preparation 

Yeast gene and TF definitions 

For all yeast analyses, we considered the 5,887 genes labeled as “ORF verified” or 

“uncharacterized” in the Saccharomyces Genome Database (SGD), discarding the 1,127 labeled 

as “dubious”, “ncRNA”, “rRNA”, “snoRNA”, “snRNA”, or “tRNA”.  We only considered TFs 

with evidence of direct DNA binding via a DNA binding domain. To identify these, we 

compared multiple lists, including those that had been ChIPped by Harbison et al., those that 

were over-expressed in the ZEV data, and those that had DNA binding specificity models in the 

CIS-BP database (Weirauch et al. 2014). In cases of disagreement, we curated the list manually 

by consulting data in SGD, focusing primarily on domain analysis of the protein and on gene 
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ontology categories assigned via high-throughput experiments such as protein-binding 

microarrays. In most cases the judgment is clear but there are some borderline cases that require 

a best guess.   

Yeast ChIP-chip data sets 

The Harbison ChIP-chip binding location data was published in (Harbison et al. 2004). 

We downloaded the p-values that represent the significance of TF binding within the intergenic 

regions from http://younglab.wi.mit.edu/regulatory_code/GWLD.html. Following the authors’ 

recommendation, targets were considered significantly bound if their p-value was less than or 

equal to 0.001. TFs with no significantly bound targets were eliminated from further analysis. 

The Venters ChIP-chip data were published in (Venters et al. 2011). We downloaded the 

occupancy-level profiles for 200 transcription-related proteins from Table S4a in (Venters et al. 

2011). The log2 fold change of experimental signal over background signal within each promoter 

was used as the binding signal strength. The probes covered a distal region (260-320 bp upstream 

of ATG) and a proximal region (30-90 bp upstream of ATG). The downloaded occupancy level 

took the maximal level from either regulatory region. The authors used an FDR threshold of 5%, 

but we used 1% in order to make the data more comparable to those from the Harbison data set. 

For each TF, an FDR cutoff was calculated by searching for an occupancy level such that the 

ratio of number of targets in the mock IP control over the number in the experimental sample 

reaches the desired FDR. The “25&37C merged MockIP controls” file was obtained directly 

from the authors as it was unpublished. TFs with no significantly bound target were eliminated 

from further analysis. 

Yeast ChIP-exo data sets 
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The ChIP-exo data for 26 TFs were compiled from four resources (Bergenholm et al. 

2018; Holland et al. 2019; Rhee and Pugh 2011; Rossi et al. 2018a, 2018b). We downloaded 

genomic coordinates of the ChIP peaks for Reb1, Gal4, Phd1 and Rap1 published in ref. (Rhee 

and Pugh 2011) from https://ars.els-cdn.com/content/image/1-s2.0-S0092867411013511-

mmc2.xls. We mapped the peaks to genes using the coordinates of each gene’s promoter region 

(700 bp upstream to ATG) in reference genome S288C-R55, which was the last release prior to 

the date cited in the paper, “(build: 19-Jan-2007)” (ref. (Engel et al. 2014) lists all releases). We 

then calculated each TF’s binding strength at each promoter as the sum of all the TF’s in that 

promoter. We downloaded peaks for Abf1 and Ume6 generated using a newer protocol, ChIP-

exo 5.0, described in ref. (Rossi et al. 2018b), from GEO Series GSE110681. We also 

downloaded peaks for Cbf1 from GEO Series GSE93662 (see ref. (Rossi et al. 2018a)). The 

assignment of peak-promoter and binding strength at promoter were calculated as for the data 

from ref. (Rhee and Pugh 2011), except that both peak and promoter coordinates were based on 

gene annotation from reference genome S288C-R64. Lastly, we obtained ChIP-exo data for 20 

TFs (Cat8, Cbf1, Ert1, Gcn4, Gcr1, Gcr2, Hap1, Ino2, Ino4, Leu3, Oaf1, Pip2, Rds2, Rgt1, Rtg1, 

Rtg3, Sip4, Stb5, Sut1, Tye7) directly from the authors of (Holland et al. 2019) and (Bergenholm 

et al. 2018). Each TF was assayed in four different environmental conditions, but we focused on 

the glucose limited chemostat data as that gave the best agreement with both TFKO and ZEV15 

response data. This data set contains scores for each promoter that had at least one peak assigned 

to that promoter. We directly used the highest score at each promoter as the binding strength, 

after removing any peak that was > 700 bp upstream from ATG. Any promoter without a score 

in the file was assigned a score of zero. 

Yeast transposon calling cards data 
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We combined calling cards data from (Wang et al. 2011b) and (Shively et al. 2019) on 

Cbf1, Cst6, Gal4, Gcr1, Gcr2, Rgm1, and Tye7 with new data on Eds1, Gcn4, Ino4, Leu3, 

Lys14, Rgt1, Sfp1, and Zap1. For each TF, all data from all replicates were combined. 

Transpositions within the promoters of yeast genes (700 bp upstream to ATG, reference genome 

S288C-R61) were used for calculating the significance of TF binding. For each promoter, a 

Poisson p-value was calculated by comparing the experiment sample with a no-TF control 

sample as described (Wang et al. 2012). To obtain a ranking by calling cards signal strength for 

dual threshold optimization, we used the normalized transposition count of the experimental 

samples minus that of the control samples to break ties when promoters had identical p-values. 

Yeast TFKO data 

The microarray expression data on gene knockout strains was published in ref 

(Kemmeren et al. 2014). The gene expression profiles of 1,484 single gene deletion strains and 3 

wild type replicates were downloaded from 

http://deleteome.holstegelab.nl/data/downloads/deleteome_all_mutants_controls.txt. In addition, 

we downloaded the gene expression profiles after removal of the slow growth signature removed 

http://deleteome.holstegelab.nl/data/downloads/deleteome_all_mutants_svd_transformed.txt. 

This transformed data set did not contain new p-values and analyzing it did not produce better 

results than the untransformed data, so we focused on the untransformed data. 

Yeast ZEV induction data 

The ZEV induction system was described in ref. (Hackett et al. 2020). The shrunken 

expression profiles were used as the quantitative responsiveness of target genes after TF 

induction. Specifically, the file “Raw & processed gene expression data” was downloaded from 

https://idea.research.calicolabs.com/data and the column labeled “log2_shrunken_timecourses” 



69 

 

was used. The responsive set contains all targets with non-zero expression levels. We 

systematically analyzed ZEV expression profiles measured at all time points (5, 10, 15, 20, 30, 

45, and 90 minutes) after TF induction. To make different time points comparable, we only 

focused on 103 TFs that were available in the Harbison ChIP-chip data and each time point of 

the ZEV data. The maximal number of acceptable TFs was obtained at 15 min, so we chose to 

move forward with this time point for all subsequent analyses except those that involve network 

inference. For network inference, we used the 15, 45, and 90 minute samples. 

Human ChIP-seq data 

Two human ChIP-seq data sets were analyzed in this work: ChIP-seq in K562 cell line 

published by ENCODE, and ChIP-seq in HEK293 cell line published in ref. (Schmitges et al. 

2016). All ENCODE data were downloaded from www.encodeproject.org as of January 21st, 

2019.  We focused on the data on K562 cells because it had by far the most TFs with both ChIP-

seq and perturbation response data. We downloaded the “conservative” ChIP-seq peaks mapped 

to GRCh38 as called by the ENCODE pipeline, which uses the Irreproducible Discovery Rate 

(IDR) analysis of biological replicates with 2% IDR cutoff. Using the ENCODE definition of 

transcription factor, there was ChIP-seq data for 261 TFs in K562. To quantify the significance 

of each TF-target binding interaction, we summed the log10 q-values of significant peaks that 

were within the regulatory regions of each gene (defined below). For the HEK293 cell line, 

ChIP-seq was carried out using an antibody against GFP. We downloaded the combined summits 

for 131 ChIPped zinc finger proteins from GEO Series GSE76494 (see ref. (Schmitges et al. 

2016) for details). The binding strength within the regulatory regions of a gene was the summed 

scores of all summits assigned to those regions. We tried two definitions of regulatory region: (1) 

a single long promoter extending from 10 Kb upstream of the 5’-most transcription start site 
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(TSS) to 2Kb downstream (Ensembl Release 92), or (2) a core promoter extending from 500 bp 

upstream of the TSS to 500 bp downstream combined with the gene’s enhancers from the 

GeneHancer database V4.8 (Fishilevich et al. 2017). We used only the “double elite” enhancers, 

for which both the existence of the enhancer and the gene-enhancer association are supported by 

at least two evidence sources. This double-elite list was obtained by emailing the authors of the 

paper. In order to properly use the ChIP summits in HEK293 whose coordinates were based on 

GRCh37, we used the LiftOver tool in UCSC genome browser to lift over the coordinates of 

regulatory regions from GRCh38 to GRCh37. 

Human ChIP-exo data 

A collection of ChIP-exo data of 221 KRAB zinc-finger proteins in HEK293T cell lines 

was downloaded from GSE78099 (Imbeault et al. 2017). We mapped the MACS peaks obtained 

from the supplemental files to the regulatory regions defined above (GRCh37). We then summed 

the scores of peaks for each gene to represent the binding strength between each protein and its 

target.  

Human TFKD, CRISPRi and TF-induction data 

We considered three human perturbation response data sets: TF knockdown (TFKD) in 

K562, CRISPRi in K562, and TF-induction in HEK293 (Schmitges et al. 2016). The RNA-seq 

expression profiles of wild-type controls, TFKDs and CRISPRi were downloaded from the 

ENCODE web site. Knockdowns using small-interfering RNA (siRNA) or small-hairpin RNA 

(shRNA) were combined in the data set we referred to as TFKD while the CRISPRi and CRISPR 

TF-disablement data were combined in the data set we referred to as CRISPR. For K562 cells, 

there were TFKD experiments targeting 261 different proteins and CRISPRi experiments 

targeting 96 different proteins. The expected counts were reported by the RSEM program in the 
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ENCODE RNA-seq processing pipeline using gene annotation from GENCODE V24 

(GRCh38). Differentially expressed genes in each perturbed TF strain were processed by 

comparing the experimental replicate set to the control set using DESeq2 (V1.10.1). On the TF-

induction for HEK293, RNA-seq was carried out 24 hours after overexpressing the TF from a 

tetracycline-inducible plasmid. For the majority of TFs there was only a single replicate of the 

RNA-seq experiment, which prevents the calculation of statistical significance by traditional 

methods. The processed RNA-seq expression profiles (after lowly-expressed gene removal and 

batch normalization) for 80 induced zinc finger proteins were downloaded from GEO Series 

GSE76495. Since there were no control replicates, we used the expression levels in each profile, 

normalized to the medians of the respective batches, as the response strength (Schmitges et al. 

2016).  

3.4.2 Expected false discovery rate of intersection algorithms 

 Intersection algorithms identify the direct functional targets of a TF as those whose 

promoters are bound by the TF in an assay such as ChIP-seq and are responsive when the same 

TF is perturbed. A true direction function (DF) target is responsive when the TF is perturbed 

because it is bound by the TF. One possible alternative is that a gene is in the intersection 

because it is an indirect target of a TF and happens, by chance, to have a non-functional binding 

site for the same TF in its promoter. Although we use the terms non-functional binding site and 

indirect target, the analysis is unaffected if there are simply false positives of the binding or 

response assays. 

 We started by defining the following notation for any given TF: 

 𝐵 the set of genes whose promoters appear to be bound by the TF in an experiment 
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 𝑅 the set of genes that appear to be responsive when the TF is perturbed in an 

experiment 

 𝐺 the set of all genes assayed in both the binding and response experiments 

 𝐷𝐹 the true set of direct functional targets of the TF 

 𝐷𝐹 is unknow, but 𝐵, R and 𝐺 are all observed outcomes of the experiments. B ∩ DF̅̅̅̅  is 

the set of genes with only non-functional binding of the TF (the overbar indicates set 

complement). Genes with functional binding are in 𝐵 ∩ 𝐷𝐹. Likewise, 𝑅 ∩ 𝐷𝐹̅̅ ̅̅  is the set of 

indirect targets – genes that are responsive but not direct functional targets. 

 This analysis is based on the idea that the promoters with only non-functional binding for 

a TF can be modeled as though they were scatter randomly across genes, without regard to 

whether the gene are indirect targets of the same TF. (In fact, we only need to assume that 

promoters with non-functional binding don’t systematically avoid indirect target genes.) We 

believe this is a good assumption because we cannot think of any molecular or evolutionary 

mechanism by which non-functional binding sites could be enriched or depleted in the promoters 

of indirect target genes. Since they are non-functional, they are not under any evolutionary 

selection. The same applies to false positives of the binding and/or responsive assays – there is 

no reason to believe that false positives of the binding assay would be enriched or depleted 

among the false positive of the response assay. 

 According to this model, the genes with only non-functional binding are selected at 

random from 𝐷𝐹̅̅ ̅̅ , so the expected fraction that are also in 𝑅 ∩ 𝐷𝐹̅̅ ̅̅  is simply |R ∩ 𝐷𝐹̅̅ ̅̅ |/|𝐷𝐹̅̅ ̅̅ |, 

where the vertical bars indicate set size. Thus 

𝐸[|𝑅 ∩ 𝐵 ∩  𝐷𝐹̅̅ ̅̅ |] = |𝐵 ∩ 𝐷𝐹̅̅ ̅̅ |
|𝑅 ∩  𝐷𝐹̅̅ ̅̅ |

|𝐷𝐹̅̅ ̅̅ |
(3.2) 
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 By way of analogy, it is as though |𝐵 ∩ 𝐷𝐹̅̅ ̅̅ | balls were selected at random from a jar 

containing |𝐷𝐹̅̅ ̅̅ | balls, of which |𝑅 ∩ 𝐷𝐹̅̅ ̅̅ | are red and the remainder are white.  The expected 

number of red balls is given by the right-hand side of formula (3.2). 

 By definition, the false discovery rate (FDR) of the intersection algorithm is: 

FDR =
|𝑅 ∩ 𝐵 ∩ 𝐷𝐹̅̅ ̅̅ |

|𝑅 ∩ 𝐵|
(3.3) 

 The denominator is directly observable from the assays. We do not know the true set of 

DF targets, but have just derived the expectation of the numerator with respect to the random 

process that distributes promoters with non-functional binding sites to genes. 

 We also observed that the sensitivity of the intersection algorithm is, by definition: 

𝑆𝑛 =
|𝐷𝐹 ∩ 𝑅 ∩ 𝐵|

|𝐷𝐹|
≤

|𝑅 ∩ 𝐵|

|𝐷𝐹|
 

 So 

|𝐷𝐹| ≤
|𝑅 ∩ 𝐵|

𝑆𝑛
(3.4) 

 Putting these equations togethers, 

E[𝐹𝐷𝑅] =
𝐸[|𝑅 ∩ 𝐵 ∩ 𝐷𝐹̅̅ ̅̅ |]

|𝑅 ∩ 𝐵|
 

=
|𝐵 ∩ 𝐷𝐹̅̅ ̅̅ ||𝑅 ∩ 𝐷𝐹̅̅ ̅̅ |

|𝐷𝐹̅̅ ̅̅ ||𝑅 ∩ 𝐵|
 

≥
𝑚𝑎𝑥(0, |𝐵| − |𝐷𝐹|)𝑚𝑎𝑥(0, |𝑅| − |𝐷𝐹|)

|𝐷𝐹̅̅ ̅̅ ||𝑅 ∩ 𝐵|
 

≥
𝑚𝑎𝑥(0, |𝐵| − |𝑅 ∩ 𝐵|/𝑆𝑛)𝑚𝑎𝑥(0, |𝑅| − |𝑅 ∩ 𝐵|/𝑆𝑛)

|𝐷𝐹̅̅ ̅̅ ||𝑅 ∩ 𝐵|
 

≥
𝑚𝑎𝑥(0, |𝐵| − |𝑅 ∩ 𝐵|/𝑆𝑛)𝑚𝑎𝑥(0, |𝑅| − |𝑅 ∩ 𝐵|/𝑆𝑛)

|G||𝑅 ∩ 𝐵|
(3.5) 
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3.4.3 NetProphet analysis 

NetProphet 2.0 is a TF network inference algorithm that exploits gene expression data 

under genetic or environmental perturbation and genome sequences with annotations. The 

algorithm is described in detail in ref. (Kang et al. 2018). Here, two yeast TF networks were 

mapped, one using the Kemmeren TFKO gene expression data and one using the ZEV data. 

Three human TF networks were mapped using the three perturbation response data sets.  

Yeast NP networks 

NetProphet 2.0 requires gene expression data in the form of a gene expression matrix and 

differential expression matrix. The Kemmeren gene expression matrix was represented as the 

log2 fold-change (logFC) values of strains with gene deletions over wild-type strains. The ZEV 

gene expression matrix was represented as the logFC values of the levels measured at a certain 

time point after the TF induction relative to time 0. For the differential expression (DE) module 

of the algorithm, we used Kemmeren samples in which a TF-encoding gene was knocked out, 

not those in which some other type of gene was knocked out, and ZEV samples from 15 min 

after TF induction. For the co-expression module of the algorithm, we used the complete set of 

1,484 Kemmeren expression profiles from strains lacking one gene (not necessarily encoding a 

TF) or 590 ZEV expression profiles from 15 minutes, 45 minutes, or 90 minutes post-induction. 

The other two inputs were DNA sequences of yeast promoters and amino acid sequences of TFs’ 

DNA binding domains (DBDs), as described in ref. (Kang et al. 2018). PWM models of TFs’ 

binding specificity were not used. Each output network is an adjacency matrix, where the rows 

represent TFs, the columns represent genes, and the entries are NetProphet scores representing 

the aggregate strength of evidence that the gene is a direct functional target of the TF. 
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Human NP networks 

For K562 data, we calculated differential expression (DE) p-values for TFKD and 

CRISPRi independently using DESeq2. The DE matrix input to NetProphet 2.0 contained the -

log p-values, with a negative sign for apparent repression (the knockdown of the TF makes the 

target gene go up). For HEK293 data, we directly used the logFC values because there were no 

replicates, hence no p-values, for most TFs. The co-expression matrix contained the logFC of 

individual mutant strain replicates over the median expression level of control replicates (K562) 

or the median expression level of the gene across all perturbations (HEK293). There were 765 

expression profiles (including replicates) for K562 TFKD, 252 for K562 CRISPRi, and 107 for 

HEK293 TF inductions. We obtained DNA sequences of the regulatory regions based on their 

coordinates in GRCh38 using our definition (2) of regulatory regions. We concatenated the 

enhancers and promoter of each gene into a single sequence for the purpose of motif inference in 

NetProphet 2.0. Each pair of concatenated regions was separated by 50 N’s to ensure that no 

inferred motif instances crossed between one enhancer and another. We also queried the CIS-BP 

database (Weirauch et al. 2014) for the amino acid sequences of human TFs’ DBDs. The details 

of DBD preprocessing are described in (Kang et al. 2018). The TFKD and CRISPRi networks 

had 392 TFs each, which were ENCODE TFs being ChIPped in either of the major cell lines 

K562 or HepG2. The TF-induction network had 103 TFs, which were the zinc finger proteins 

being ChIPped in HEK293. 

3.4.4 Analysis using other network inference algorithms 

GENIE3 (Huynh-Thu et al. 2010) (v1.16.5, Python implementation) was downloaded 

from http://www.montefiore.ulg.ac.be/?huynh-thu/software.html. Default parameters in GENIE3 

were used. The version of Inferelator that incorporates Bayesian Best Subset Regression 
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(Greenfield et al. 2013) was downloaded from https://github.com/ChristophH/Inferelator. No 

prior network was used because our intention is to infer networks from perturbation response 

data without any influence from data on TF binding locations. Otherwise, default parameters 

were used. MERLIN (Roy et al. 2013) was downloaded from 

https://github.com/marbach/gpdream and used with default parameters. We input the same gene 

expression matrix, TF list and gene list to NetProphet 2.0, GENIE3, Inferelator, and MERLIN.  

3.4.5 Acceptable TFs 

For each pair of binding and expression data on a given TF, the positive gene sets (bound 

genes or responsive genes) were compared. The TF was deemed acceptable if they met two 

criteria. (1) The lower bound on the expected FDR had to be less than or equal to 20% when the 

sensitivity was fixed at 80%, as calculated by using the formula (3.1) derived in Methods. (2) 

The p-value for the significance of the overlap between the bound and responsive gene sets had 

to be <= 0.01. For fixed threshold analysis, the p-value was calculated using the hypergeometric 

null distribution. For dual threshold analysis, it was calculated using the randomization-based 

null distribution, not the nominal p-value (see description of dual threshold optimization). 

3.4.6 Dual threshold optimization 

Software availability 

Software implementing dual threshold optimization and instructions can be found at 

https://github.com/BrentLab/Dual_Threshold_Optimization.  

DTO algorithm 

For each TF, dual threshold optimization (DTO) uses one binding location data set and 

one gene expression data set. The genes in each data set are ranked by the strength of their 

binding or expression signal. By default, the signal strength is the negative log p-value, but 
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different experiments and methods may require different calculations of signal strength (see 

sections below). For each data set, DTO chooses a threshold on the ranks such that genes ranking 

above the threshold are considered positives for binding or response (see Fig. 3.2C).  A series of 

rank-threshold combinations (places where the gray lines cross in Fig. 3.2C) are used to generate 

positive subsets of genes in each dataset. The series of thresholds for each data set, T1, T2, …, 

were generated using the recurrence: 

𝑇1  =  1 

𝑇𝑛  =  𝐹𝑙𝑜𝑜𝑟(𝑇𝑛−1 ∗ 1.01 +  1) 

This formula produces a fine spacing among smaller subsets that becomes coarser as the 

subsets grow. If a threshold would split a group of genes that all have the same score that 

threshold is skipped. For each pair of subsets, a hypergeometric p-value was computed using a 

hypergeometric survival function (Scipy’s hypergeom.sf) with the following parameters: 

 k = # of genes in the intersection of the subsets - 1 

 M = # of genes in the universe of assayed genes 

 n = # of genes in the expression subset 

 N = # of genes in the bound subset 

This hypergeometric p-value is the probability of an intersection as large as, or larger 

than, the observed intersection, when choosing random subsets of genes, with the number of 

genes in each random subset equal to the number of genes in the positives defined by the rank 

threshold pair. We refer to this as the nominal p-value because it is only used for selecting the 

best pair of thresholds, not for determining whether the resulting overlap is significantly larger 

than would be expected by running DTO on random rankings. DTO returns the threshold 

combination that minimizes the nominal p-value.  
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Randomization-based p-values for overlaps identified by DTO 

To produce a null distribution for testing the significance of the overlap chosen by DTO, 

a randomization procedure was used. A new set of data was generated using random assignment 

of signal strength scores to genes and then DTO was run. The best nominal p-value for each 

randomized data set was used to calculate a null distribution of nominal p-values. This was done 

by running the randomized DTO procedure 1000 times for each TF in each analysis and the 

distribution of nominal (hypergeometric) p-values enabled us to determine a P<0.01 significance 

threshold on the nominal p-value that is specific to that TF. When the nominal p-value of the 

rank pair chosen by DTO using the true data was below the threshold defined by the 

randomizations, the overlap was considered significant. 

Application of DTO to yeast data 

In the analysis of yeast data, the universe was defined as the set of all genes assayed in 

either of the two datasets being compared. For data sets that do not have p-values, the signal 

strength is the log fold change (ZEV) or score (NetProphet 2.0, GENIE3, Inferelator or 

MERLIN). For Calling cards, where many p-values were identical, ties were broken by the 

difference between the number of insertions in the experimental sample and the number of 

insertions in the control sample. The number of insertions was normalized to the total insertion 

count in each sample.  

Occasionally, DTO can produce implausible results, such as concluding that all genes are 

responsive to a perturbation. To prevent this, we set very relaxed limits on the bound or 

responsive genes in certain data sets. For Harbison ChIP, we required P<0.1. For each inferred 

network output we required that the score of the TF-target relationship be among the top 150,000 
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scores. These were sufficient to eliminate any anomalous results; no constraints on the TFKO or 

ZEV data were required. 

Application of DTO to human ENCODE data 

In the analysis of human data on K562 cells, the universe was defined as the set of all 

genes detected in the gene expression dataset. Response signal strength for DTO was the 

absolute value of the log fold change, relative to non-perturbed control samples. DTO was 

limited to choosing bound or responsive genes with P<=0.1. For each inferred network output, 

the score of the TF-target relationship was required to be among the top 500,000 scores. 

Application of DTO to human HEK293 data 

In the analysis of human data on HEK293 cells, the universe was defined as the set of all 

genes detected in the gene expression dataset. Response signal strength for DTO was the 

absolute value of the log fold change, relative to non-perturbed control samples. No replicates or 

p-values were available for most TFs. For both raw perturbation-response data and inferred 

network scores, the score of the TF-target relationship was required to be among the top 300,000 

scores. 

3.4.7 Comparisons among binding data sets 

Harbison ChIP-chip compared to Venters ChIP-chip 

The TFs used in the comparison shown in Figure 3.4A are: Ash1, Cha4, Cin5, Fkh1, 

Fkh2, Gal4, Gcn4, Gln3, Ino4, Leu3, Msn2, Pho2, Rfx1, Rph1, Sfp1, Skn7, Stp1, Swi5, Uga3, 

Wtm1, Wtm2, Xbp1, Yap5, Yap6, Zap1, Zms1 

Harbison ChIP-chip compared to ChIP-exo 

The TFs used in the comparison shown in Figure 3.4B are: Cat8, Cbf1, Ert1, Gal4, Gcn4, 

Gcr2, Hap1, Ino4, Leu3, Oaf1, Phd1, Pip2, Rds2, Rgt1, Rtg1, Rtg3, Sip4, Stb5, Sut1, Tye7 
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Harbison ChIP-chip compared to transposon calling cards 

The TFs used in the comparison shown in Figure 3.4C are: Cbf1, Cst6, Gal4, Gcn4, Gcr2, 

Ino4, Leu3, Rgm1, Rgt1, Sfp1, Tye7, Zap1 

3.4.8 Rank response plots 

To create the lines in the rank response plots such as Figure 3.5A, we first determined the 

minimum of the number of responsive genes in the TFKO and the ZEV15 data -- call it n. A 

gene was considered responsive in the TFKO data if it had adjusted P<0.05 and in the ZEV15 

data if it had shrunken absolute log fold change > 0. We then labeled the top n most strongly 

responsive genes in the TFKO and ZEV15 data as responsive for purposes of this plot (see “DTO 

algorithm” above for definitions of signal strength). This equalized the number of ZEV15-

responsive and TFKO-responsive genes for each TF. We then sorted genes by the strength of 

their binding signal for the TF in question. Next, we considered the top 1, 2, 3, 4, etc. most 

strongly bound genes. For each such group, we calculated and plotted the fraction of genes that 

were responsive. For the mean rank-response plot (Fig. 3.5B) we simply averaged the response 

rates across the 12 TFs. In comparison of ChIP-chip, ChIP-exo and calling cards (Fig. 3.5C), we 

averaged the response rates across the 8 TFs that are present in all 3 binding data sets. 

3.4.9 GO enrichment analysis 

Gene ontology (GO) enrichments for each TF were analyzed using two networks mapped 

using different methods: (1) fixed threshold on Harbison ChIP data and TFKO data; (2) DTO on 

calling cards data and output from NetProphet 2.0 run on the TFKO and ZEV response data. For 

each TF, its target set in network 2 was the union of the output of DTO applied to NetProphet 

scores from ZEV expression data and DTO applied to NetProphet scores for TFKO expression 

data. The mapping of GO term to gene for Saccharomyces cerevisiae was queried using R 
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Bioconductor library org.Sc.sgd.db (V3.5.0). Any GO terms annotated with less than 3 or greater 

than 300 genes were eliminated. Using the target genes of a TF identified from network (1) or 

(2), the GO enrichment in biological process was analyzed using the hypergeometric test 

implemented in R Bioconductor library GOstats (V2.44.0). The output p-values were used for 

ranking the enriched terms, from most significant to the least significant. When plotting the top 

GO term shown in Figure 3.4D, for each TF, we combined all terms from both networks into a 

single rank list. If multiple terms were enriched by the same set of targets, only the most specific 

term was retained, based on the GO hierarchical structure, i.e. redundant ancestral terms were 

removed from the rank list. Subsequently, the top GO term was chosen for the corresponding TF. 

When plotting the top GO terms shown in Supplemental Figure S3.6, we used the GO terms 

enriched in one network and chose the top five (if available) as described above. 

  



82 

 

Chapter 4: 

Elucidating the biological determinants of 

transcriptional responses to TF perturbations 

4.1 Introduction 

Understanding the function of a genome requires knowing which transcription factors 

(TFs) directly regulate each gene. A systems-level understanding should also enable us to predict 

which genes will change in expression level in response to direct perturbations of TFs. It was 

hoped that determining where in the genome each TF binds by chromatin-immunoprecipitation 

(ChIP) would go a long way toward solving these problems, but several studies have shown that 

the set of genes whose promoters are bound by a TF and the set of genes that respond when that 

TF is perturbed do not overlap much (Gitter et al. 2009; Lenstra and Holstege 2012; Cusanovich 

et al. 2014; Kang et al. 2020). Genes that are responsive but not bound may be indirect targets of 

the TF. The genes that are not responsive despite the fact that their regulatory DNA is bound by 

the perturbed TF constitute a greater mystery. Currently, we cannot predict which bound genes 

will respond to a perturbation and which will not. In this study, we take on the challenge of 

predicting whether a gene will respond to perturbation of a TF by using data on where the TF 

binds along with a variety of TF-independent features of each gene, including histone marks 

(HMs), chromatin accessibility, dinucleotide frequencies, and the gene’s pre-perturbation 

expression level and expression variation.  

A number of studies have shown success in predicting the expression levels of genes by 

using TF binding signals (Middendorf et al. 2004; Ouyang et al. 2009; Schmidt et al. 2017), or 
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HMs in each gene’s regulatory region (Karlić et al. 2010; Cheng et al. 2011; Dong et al. 2012; 

McLeay et al. 2012; Singh et al. 2016; Read et al. 2019). Recently, deep neural networks have 

been used to predict the expression level of a gene from the DNA sequence flanking it (Kelley et 

al. 2018; Zhou et al. 2018; Washburn et al. 2019; Agarwal and Shendure 2020). All these models 

predict expression level in a given sample by using data from the same cell type and similar 

growth conditions. As result, the features used for prediction could be causes, consequences, or 

merely correlates of gene expression level (Henikoff and Shilatifard 2011). Models have also 

been trained to predict the variability of gene expression within or across cell types (Ouyang et 

al. 2009; Zhou et al. 2014; González et al. 2015; Crow et al. 2019; Sigalova et al. 2020). In 

addition to the above genomic features, combining the binding signals of RNA-binding proteins 

and microRNA at gene bodies with TFBS at promoters was also determined to be predictive 

(Tasaki et al. 2020). 

We have taken on a different challenge – training machine learning models to predict 

which genes will respond to perturbation of a TF without using any data from perturbed cells. 

Because the predictive features are measured in unperturbed cells, they cannot be consequences 

of the perturbation or the response. The overall accuracy of the models serves as a benchmark for 

our understanding of global regulatory networks. Perhaps more important, analysis of the trained 

models can provide insight into the factors that determine which genes respond to a TF 

perturbation. Many methods have been developed to explain how specific features and feature 

values influence a complex model’s predictions (Molnar 2019). One class of methods computes 

feature importance as the drop in prediction accuracy when the assignment of a feature’s values 

to training examples is randomly permuted (Breiman 2001; Zeiler and Fergus 2012; Zhou and 

Troyanskaya 2015; Fisher et al. 2019). Another class focuses on explaining why the predictions 
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for individual examples differ from the mean prediction. In this study we rely on one such 

method – SHAP values (Lundberg and Lee 2017). SHAP values are based on how the prediction 

for a particular example is affected when the value of a feature is replaced by the value from 

another randomly selected example. A positive SHAP value for a particular feature of a 

particular example indicates that that feature pushes the model to predict a higher response for 

that example. Conversely, a negative SHAP value indicates that the feature value pushes the 

model to predict a lower response for that example. The magnitude of the SHAP value for a 

particular feature of a particular example indicates how influential the feature value is.  

SHAP values are specific to one example because, in a non-linear model, the effects of a 

feature depend not only on its value but on the values of other features of the same example. 

However, several summary calculations make it possible to draw conclusions that apply to all 

examples or a specific subset of examples. Separately summing the positive and negative SHAP 

values for a feature over a set of examples reveals the relative strength of the positive and 

negative influences of the feature. This can be especially useful when looking at just the positive 

examples, just the negative examples, examples which are predicted accurately or inaccurately, 

etc. Summing the positive and negative SHAP values of a feature together provides a sense of 

the feature’s overall direction of influence, which we refer to as the net influence of the feature. 

Summing the absolute values of the SHAP values for a set of examples shows how important the 

feature is in determining the model’s predictions, regardless of direction. We refer to the sum of 

absolute SHAP values over all examples as global feature importance. 

SHAP analysis, complemented by analyses of model accuracy, provides several surprising 

biological and methodological insights. 
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1. Existing genome-scale data on TF binding locations, including ENCODE data on human 

K562 cells, are not useful for predicting which genes will respond to perturbation of a 

TF. However, yeast data obtained by newer methods (transposon calling cards or ChIP-

exo) are. 

2. A few HMs have value for predicting perturbation responses, primarily when they occur 

in the gene body downstream of the transcription start site (TSS). 

3. For both yeast and human, the preperturbation gene expression level and gene expression 

(GEX features) were surprisingly useful for predicting whether a gene would respond to 

perturbation of any TF or other regulatory protein; for human cells, they were far and 

away the most useful features. When these features are available, HMs provide no 

additional information that is useful for predicting perturbation responses in human K562 

cells. 

4. In summary, properties of the gene itself have a major influence on its tendency to 

respond to regulatory perturbations. The extent to which this tendency is determined by 

the gene’s epigenetic state or its inherent properties remains to be seen. 

4.2 Results 

4.2.1 Modeling frameworks, features, and datasets 

We took a two-step approach to understanding the determinants of transcriptional 

responses to TF perturbations: (1) train machine learning models to predict whether each gene 

will respond to a perturbation of a particular TF and (2) analyze the trained models to identify 

which genomic features they used to make their predictions. We provided the models with three 

types of genomic features (Fig. 4.1A). First, data on the binding locations of the perturbed TF 

(location features). Second, data on the median and variance of each gene’s expression levels in 
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unperturbed samples (GEX features). Third, data on each gene’s epigenomic context, including 

DNA accessibility, selected histone modifications, and dinucleotide frequencies (epigenetic 

features). We focused on eight histone marks that were previously shown to be most useful for 

predicting gene expression level (Karlić et al. 2010; Zhou et al. 2014; González et al. 2015; 

Singh et al. 2016; Roadmap Epigenomics Consortium et al. 2015) (Supplemental Table S1). 

Neither GEX features nor epigenetic features are tied to any specific TF – if they predict a gene’s 

responsiveness to perturbation of one TF, they should also predict its responsiveness to 

perturbation of other TFs. 
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Figure 4. 1: Model and performance. (A) Features for predicting transcriptional responses to TF perturbation. (B) 

Framework for predicting responses, evaluating model performance, and estimating local feature influences. (C) 

Model accuracy on yeast TFs using all binding location data. (D) Model accuracy on eight yeast TFs with binding 

location data from both ChIP-exo and calling cards assays. (E) Model accuracy on human K562 cells using two 

methods of aggregating data from enhancers associated with each gene. 

To generate a feature matrix, we defined cis-regulatory regions for each gene and mapped 

genomic data to them. For yeast genes, we assumed a regulatory region ranging from 1000 bp 

upstream of the transcription start site (TSS) to 500 bp downstream. Although most studies 

assume the yeast promoter is smaller than this, we expected that the models would learn which 

parts of this region are most predictive. For human genes, we included both proximal promoters 
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(4 kb centered on the 5’-end TSS) and distal enhancers (taken from (Fishilevich et al. 2017); see 

Methods). 47% of alternative TSS’s fell within 4 kb region around the 5’ TSS. The 5’ TSS and 

others within 2 kb of it account for the vast majority of transcription (Supplemental Fig. S4.1). 

Alternative promoters outside of this region were treated as enhancers (Andersson and Sandelin 

2020).To test whether certain locations within a regulatory region are more important than 

others, we divided the promoter regions into 100 bp subregions, each with its own features. We 

tried two methods of subdividing enhancer regions, as described below. Within each 100 bp 

subregion, signals from assays for TF binding location, DNA accessibility, or histone marks 

were aggregated and discretized. For yeast, we used TF binding location data generated by two 

in vivo assays: transposon calling cards (Wang et al. 2011a; Shively et al. 2019; Kang et al. 

2020) and ChIP-exo (Bergenholm et al. 2018; Rossi et al. 2018a). We showed previously that 

these datasets predict perturbation responses much better than older ChIP-chip data (Kang et al. 

2020). We used data on yeast histone marks from ref. (Weiner et al. 2015) and chromatin 

accessibility from ref. (Schep et al. 2015), both assayed in steady-state growth conditions. For 

human models, we used data from the K562 cell line because the it has the most TFs that were 

ChIPped and perturbed in the ENCODE Project (Dunham et al. 2012; Davis et al. 2018; Abascal 

et al. 2020). Histone marks, DNA accessibility, and perturbation-response data were also from 

ENCODE (see Methods). For both yeast and human, preperturbation expression variance was 

adjusted to make it independent of expression level (Methods; Supplemental Fig. S4.2). 

We trained the models to predict whether a gene will respond to a TF perturbation (Fig. 

4.1B). For yeast, responsiveness was determined by using data from Hackett et al. (2020), who 

measured transcriptional responses shortly after chemically inducing overexpression of each TF. 

We focused on the responses at 15 minutes after the induction (see Methods). For human, 
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responsiveness was determined by using ENCODE RNA-Seq data measured after TF 

knockdown or knockout. Our datasets included 25 yeast TFs and 56 human TFs with both 

binding and perturbation-response data. The average number of genes that responded to each 

perturbation was ~6.7% in yeast (median: 2.7%, sd: 9.4%) and ~6.4% in human (median: 2.5%, 

sd: 8.3%).  

We trained and tested two ensemble classifiers for each perturbed TF—random forests 

and a gradient boosting implementation called XGBoost (Chen and Guestrin 2016) – by using 

ten-fold cross-validation on genes. Below, we analyze how the features influence the prediction 

for each gene using the model that was not trained on that gene. We used precision recall curves 

for accuracy evaluation and the area under the curve (AUPRC) as a summary statistic. This 

approach is appropriate because only a small fraction of genes is responsive to each perturbation, 

creating large class imbalances.  

First, we tested the two classifiers using yeast TF binding-location data from either 

transposon calling cards or ChIP-exo, keeping all other features constant. The best combination 

of classifier and binding data was XGBoost on calling cards data (Fig. 4.1C). However, calling 

cards and ChIP-exo data assayed different sets of TFs. To make a direct comparison, we trained 

and tested XGBoost models for the eight TFs assayed by both methods. The calling cards data 

again yielded greater prediction accuracy (Fig. 4.1D). We also tried replacing binding location 

data with TF binding potentials obtained by scanning a binding specificity model for the 

perturbed TF (Spivak and Stormo 2012; Grant et al. 2011) over promoter sequences. Binding 

potential was least useful, even when data on chromatin accessibility was also included in the 

model (Fig. 4.1D). Going forward, we use the XGBoost models. For yeast, we focused on TFs 
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that had either calling cards or ChIP-exo data; for those that had both, we used the data that 

yielded the best prediction accuracy. 

Using XGBoost on the K562 ENCODE data, we investigated two ways of incorporating 

binding and epigenetic features from enhancers. The two methods divide the region around the 

promoter into subregions in different ways and sum the signals from enhancers within each 

subregion to form a single feature value. The first method (bin enhan) sums signals over 

enhancers within subregions whose widths increase exponentially with their distance from the 

TSS (Supplemental Fig. S4.3). The second approach (agg enhan) sums signals from all 

enhancers upstream of the TSS to create one feature and all enhancers downstream of the TSS to 

create another. Models trained using the two strategies of enhancer-feature mapping show no 

significant difference in accuracy (P = 0.63, paired t-test; Fig. 4.1E), so we used less numerous 

aggregated enhancer features in the remainder of the study. 

The prediction accuracy varied quite a bit from one TF to another (Supplemental Fig. 

S4.4). In general, accuracy was lower for TFs that had few responsive targets than for those that 

had many (Supplemental Fig. S4.5A,B). This is likely the result of extreme class imbalance, 

which is known to hinder classification algorithms (Japkowicz and Stephen 2002) and the lack of 

enough positive examples to learn from. In the ENCODE data, another major factor was the 

effectiveness of the TF perturbation. The larger the absolute log fold change of the TF in the 

perturbed sample relative to the unperturbed, the better the TF model performed (Supplemental 

Fig. S4.5D). There was no such trend in the yeast data because the induced TFs were highly 

over-expressed (typically at least 16-fold, Supplemental Fig. S4.5C). 
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4.2.2 SHAP analysis shows that the TF binding signal is useful for prediction 

in yeast 

The next step in our analysis was to determine what XGBoost learned about genomic 

features and how it used them. The model interpretation approach we used is based on SHAP 

values (Lundberg and Lee 2017; Lundberg et al. 2018). SHAP values explain why the prediction 

for one particular test example – one TF-gene pair – differs from the average prediction for all 

genes in response to perturbation of that TF. Of course, explaining what an algorithm learned is 

only interesting if it learned something significant, as indicated by its prediction accuracy. Thus, 

we analyzed only models with a median cross-validation AUPRC greater than 0.1, yielding 

models for 17 yeast TFs (Supplemental Table S2) and 30 human TFs (Supplemental Table S3). 

Taking the XGBoost model for yeast TF Lys14 as an example, Figure 4.2A illustrated the 

SHAP values calculated for each feature of LYS9, a responsive gene, and ECM23, a non-

responsive gene. The primary factors that caused the model to predict that LYS9 would be 

responsive are (1) the Lys14 binding signal in the 500 bp upstream of the TSS and (2) LYS9’s 

pre-perturbation expression level (Fig. 4.2A, left, red). For ECM23, these positive influences 

were absent (Fig. 4.2A, right). Furthermore, ECM23’s pre-perturbation expression level and, to a 

lesser extent, its pre-perturbation expression variation, pushed the model to predict that it would 

not respond to Lys14 perturbation (blue). To aggregate these influences across promoter regions, 

we separately summed all positive SHAP values for each feature, which are plotted in red to the 

right of the heatmaps, and all negative SHAP values for each feature, which are plotted in blue. 

If a feature has a positive influence in some regions of the promoter but negative in others, it is 

shown with both a red bar (to the right of the centerline) and a blue bar (to the left of the 
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centerline). For LYS14 and ECM23, most features have only positive or only negative SHAP 

values, so only one bar is visible. 

 

Figure 4. 2: Quantification of feature influences. (A) An example of decomposing the predicted score using 

SHAP values. Lys9 is a responsive target of yeast TF Lys14 with predicted response probability 0.83 and Ecm23 is 

an unresponsive gene with predicted response probability 0.01. The top panel shows the features that are 

independent of genomic coordinates; the bottom panel shows the features that depend on genomic coordinates. The 

right horizontal bars show the respective sums of SHAP values that are positive (red) and negative (blue), regardless 

of their genomic coordinates. (B) Left: For yeast TF Lys14, the positive (red) or negative (blue) SHAP values for 

each feature, summed over genomic positions relative to each gene and averaged over genes that respond to Lys14 
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perturbation. Right: The same analysis for genes that do not respond to Lys14 perturbation. (C) Distribution across 

TFs of the “net influence” of each feature on predictions, averaged over responsive targets. Net influence is the sum 

of all SHAP values for a feature, regardless of sign or genomic position. (D) Comparison of yeast model accuracy 

using four types of input features: the model described previously (Full model), the model trained without TF 

binding features, the model without gene expression features, and the model without histone marks (HMs). (E) Same 

as (C) except for human K562 TF perturbations. (F) Human model accuracy as in (D), with the addition of a model 

trained only on gene expression features (GEX only).  (G) Comparison of net influences of features on predictions 

for responsive human genes. Models were trained with gene expression features (Full model) or without. (H) 

Comparison of model accuracy using four types of input features: the model described previously (Full model), the 

model excluding enhancer features (Promo only), the model excluding enhancer features and features mapped 

upstream of the TSS (Gene body 2Kb), and the model using only pre-perturbation gene expression features (GEX 

only). 

To get a sense of how feature values affected the model’s predictions for all genes, we 

first divided genes into responsive and non-responsive. Within each group, for each feature, we 

separately summed its positive SHAP values from all promoter regions of all genes and its 

negative SHAP values (Fig. 4.2B).  For Lys14-responsive genes (Fig. 4.2B, left), Lys14 binding 

data in the gene’s promoter tends to have a much bigger effect on predictions when it pushes the 

predicted probability of response up (red bar) than when it pushes the predicted probability of 

response down (blue bar). Comparing the red and blue bars for other features reveals net positive 

effects from pre-perturbation gene expression level and variation. Histone marks H3K79me1 and 

H3K4me3 have smaller positive influences and they have negative influences that are almost as 

large as the positive ones, on average. Thus, depending on the promoter position, the value of the 

histone mark feature, and the gene, these features can either increase the predicted probability of 

a gene’s responding or decrease it. For genes that do not respond to the Lys14 perturbation, the 

net influences of all features are close to zero (Fig. 4.2B, right), indicating that they do not push 

predictions for non-responsive genes very far from the average prediction for all genes. This 
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average is low – 6.8% probability of being responsive – since the vast majority of genes do not 

respond to perturbation of Lys14. 

To generalized from Lys14 to all TFs, we calculated the net influences of features on 

predictions for genes that respond to perturbation of each TF and plotted the distributions (Fig. 

4.2C). This showed that the findings for Lys14 generalize well to the other TFs. The biggest net 

influence was the binding signal from the perturbed TF, followed by gene expression level, gene 

expression variation, and histone marks H3K79me1 and H3K4me3. Supplemental Figure S4.6 

shows the positive and negative influences of each feature on both responsive and non-

responsive genes. Complementary analysis of the effects of dropping feature classes from the 

model confirmed that TF binding features contribute most to the accuracy of the full model, 

followed by gene expression features (Fig. 4.2D). Dropping histone marks had a marginally 

significant but very small effect (the mean AUC dropped 0.01, P<0.04). This was due to an 

effect on a minority of TFs, since the median AUC actually increased by 0.006. 

4.2.3 In human cells, ChIP-seq peaks and epigenetic marks have relatively 

little value for response prediction 

Next, we summarized SHAP values for each human TF model, focusing first on genes 

that respond to perturbation of the TF. Strikingly, ChIP-seq peaks for a TF, which reflect its 

binding location, had essentially no net influence on predictions for genes that are in fact 

responsive (Fig. 4.2E). This is consistent with earlier studies (Gitter et al. 2009; Lenstra and 

Holstege 2012; Cusanovich et al. 2014; Kang et al. 2020). Gene expression level in unperturbed 

control samples was the most influential factor, followed by expression variation in the control 

samples. H3K4me1 and dinucleotide frequencies in the cis-regulatory DNA had very small 

influences on the predictions for some TF models, but the effects of the other histone marks and 
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of chromatin accessibility were negligeable. Analysis of non-responsive genes yielded similar 

conclusions (Supplemental Fig. S4.6B). The impacts of these features on predictive accuracy 

supported these conclusions: Dropping the ChIP-Seq or the HM features had negligible impact 

on prediction accuracy, whereas dropping the gene expression features greatly reduced accuracy 

(Fig. 4.2F). In fact, a model using only the gene expression features was almost as accurate as 

the full model (median AUPRC dropped by 0.001, P<0.001).  

We hypothesized that the lack influence of histone marks in the model might be due to 

the fact that gene expression features summarize any useful information provided by histone 

marks as well as other aspects of a gene’s epigenetic state, rendering the information from 

histone marks redundant with and less useful than gene expression information. To test this, we 

trained a model without the gene expression features and analyzed the influence of the remaining 

features on predictions for genes that are in fact responsive (Fig. 4.2G). Removing the gene 

expression features from the model did increase the influence of H3K4me3 and H3K4me1, 

supporting our hypothesis. However, the model without gene expression features has low 

accuracy (median AUPRC 0.11), so the predictive value of HMs is very small. 

These findings drove us to investigate the utility of features mapped to various regions of 

the cis-regulatory DNA associated with each gene. When we dropped the TF binding signal, 

histone modifications, dinucleotide frequencies, and chromatin accessibility from the enhancer 

regions associated with each gene, the effect on prediction accuracy was negligible (median 

AUPRC decreased by 0.004, P<0.001 Fig. 4.2E). We then tried dropping all features from both 

the enhancers and the promoter regions upstream of the TSS, leaving only the first 2 Kb of the 

gene body. Again, the effect on accuracy was negligible (median AUPRC increased by .002 

relative to the full model while the mean decreased by 0.007). Finally, we tried dropping these 
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features altogether, leaving only the gene expression level and expression variation in control 

samples. The effect of dropping these features entirely was small, compared to the full model 

(median AUPRC decreased by 0.035, or 14% of the full model’s AUPRC). While the TF binding 

signal and epigenetic features significantly enhanced prediction accuracy in yeast, they had little 

predictive value in the human data. What predictive value they did have was entirely due to 

features mapped to the 2 Kb downstream of the TSS. 

4.2.4 In yeast cells, TF binding locations and strengths discriminate between 

bound genes that are responsive and those that are not 

The most common use of in vivo binding location data is to classify genes into those 

whose regulatory DNA is or is not bound by the TF. However, this typically yields a large set of 

genes that are bound by the TF at a statistically significant level but are not responsive to 

perturbation of that TF (Gitter et al. 2009; Lenstra and Holstege 2012; Cusanovich et al. 2014; 

Kang et al. 2020). Thus, we investigated whether the model could use the strength and location 

of the binding signal to better predict which bound genes would be responsive. In Figure 4.3A, 

each row shows SHAP values of the TF binding signal in each promoter bin, averaged across the 

genes that were significantly bound by the perturbed TF. For all but three TFs, the binding signal 

in the 600 bp upstream of a gene’s TSS influenced the model toward predicting (correctly) that 

the gene would respond to the perturbation. The Calling Cards and ChIP-exo technologies 

showed a general concordance on the relative utilities of various positions, but the influence of 

ChIP-exo was even more localized to 300 bp upstream (Supplemental Fig. S4.7). Using Leu3 

calling cards data as a typical example, stronger binding signals were more influential than 

weaker ones and signals of the same strength were more influential in the region 100-200 bp 

upstream of the TSS than in the region 400-500 bp upstream (Fig. 4.3B). For Leu3, SHAP values 
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in five promoter bins were significantly higher among the bound and responsive group than in 

the bound but unresponsive group (Fig. 4.3C). For most TFs, a similar pattern was found in one 

or more promoter bins (Fig. 4.3D, Supplemental Fig. S4.8). Thus, the strength and location of the 

binding signal are meaningful predictors of whether significantly bound genes will respond to 

the perturbation, consistent with our earlier findings (Kang et al. 2020). 

 

Figure 4. 3: TF binding features in yeast models. (A) Heatmap of the influence of yeast TF binding signals along 

regulatory DNA. Each pixel is the mean SHAP value over all target genes that were bound by the perturbed TFs. (B) 

Comparison of two upstream bins ([-500, -400] and [-200, -100]) of yeast TF Leu3. Among the genes that are bound 

by Leu3, the responsive genes are more clearly distinguished from the unresponsive one in the [-200, -100] bin. This 

shows that even within 500 bp of the TSS, Leu3 binding near the TSS is more likely to be functional than Leu3 

binding further away. (C) Comparison of feature influences on responsive and unresponsive targets that were bound 
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by Leu3. Statistical significance used Wilcoxon rank-sum test: p < 0.05 (*), p < 0.01 (**), p < 0.001(***). The 

significant differences all show that responsive genes are bound more strongly than unresponsive genes. 

Furthermore, all significant effects of binding strength are within 600 bp upstream of the TSS. (D) Number of 

promoter bins in which the bound and responsive genes have significantly higher SHAP values for TF binding (p < 

0.05) than the bound but non-responsive genes. Blue bars: calling cards; Green bars: ChIP-exo data. 

4.2.5 Highly expressed genes and genes with high expression variation are 

more likely to be responsive   

Given the predictive power of gene expression level and variation, we investigated how 

the model used these features. Starting with yeast TF Lys14, we noted a monotonic relationship 

in which the more highly a gene was expressed before the perturbation, the more the model 

expected it to respond (Fig. 4.4A). We also noted that, the more a gene’s expression varied from 

one pre-perturbation sample to another, the more the model expected it to respond (Fig. 4.4B). 

This this was not due to the relationship between expression level and expression variation, 

which we removed by fitting a model that predicts expression variation from expression level 

and using the residuals from that model as our variation feature (Supplemental Fig. S4.1). For 

most yeast TFs, both expression level and expression variation are positively correlated with 

SHAP value – higher expression level and expression variation push the model to predict a 

higher probability of response (Fig. 4.4C). The same pattern holds for human TFs (Fig. 4.4D). 

The two yeast TFs (Rgt1 and Zap1) and one human TF (ZC3H8) that have negative correlations 

were those for with the lowest model accuracies, which suggests that either (1) the data on these 

TFs are not particularly accurate or (2) the model’s feature utilization may not reflect the true 

patterns in the data.  
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Figure 4. 4: Gene-specific features. (A) Relationship between feature input and SHAP values of gene expression 

level for Lys14 model. Red curve is a fitted sigmoid function. The model predicts that more highly expressed genes 

are more likely to be responsive to Lys14 perturbation. (B) Relationship between feature input and SHAP values of 

gene expression variation for the same model.  The model predicts that genes whose expression levels are more 

variable after correction for their expression level are more likely to be responsive to Lys14 perturbation. (C) The 

distribution of the correlations of input and SHAP values for the two expression-related features in yeast cells. For 

most TFs, both expression level and expression variation are positively correlated with response to a perturbation. 

On average, expression level is more positively correlated than expression variation. All correlations are statistically 

significant with the largest P-value < E-18. (D) Same as (C) except for human K562 cells. All correlations are 

statistically significant. 

4.2.6 Histone marks downstream of the TSS are more predictive of 

responsiveness than upstream histone marks 

We showed above that for human TFs, models trained using coordinate-dependent 

features in enhancers, the 2Kb upstream of the 5’-end TSS, and the 2Kb downstream of the 5’ 

TSS were no more accurate than those that used only the downstream features (Fig. 4.2H). For 
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both yeast and human, the downstream histone marks had a much greater influence on the 

predictions than the upstream marks (Fig. 4.5A). This was quantified for each TF by the mean 

absolute SHAP values across all genes. Among the six histone marks we analyzed in yeast, 

downstream H3K79me1 had the biggest influence on predictions, followed by downstream 

H3K4me3 and downstream H3K4me1. For these three marks, the differences between their 

influence when they occur downstream of the TSS compared to upstream of the TSS are 

statistically significant (Fig. 4.5A). This echoes the previous report that H3K79me1 and 

H3K4me3 are predictive of gene expression for genes whose promoters have low CpG content 

(Karlić et al. 2010). In human cells we did not have data on H3K79me1, but downstream 

H3K4me3 and H3K4me1 are the two most influential marks, followed by downstream H3K27ac 

(Fig. 4.5A, right). The differences between the influences of these marks when they occur 

downstream of the TSS compared to upstream are statistically significant.  
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Figure 4. 5: Epigenetic features. (A) Comparison of the global importance of histone mark features in the regions 

upstream or downstream of the TSS. The distribution across TFs is shown. For each TF, the global importance of 

each feature is the absolute SHAP value for that feature averaged across all genes and all bins upstream or 

downstream of the TSS. Marks showing a significant difference are more influential when they occur downstream of 
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the TSS than when they occur upstream (* P<0.05, ** P<0.01, *** P<0.001, Wilcoxon signed-rank test). (B) 

Correlation of histone modification signals and their corresponding SHAP values at bin [0, 100] (first downstream 

bin from TSS). For example, both the yeast and human models predict that genes with stronger H3K4me1 signal 

immediately downstream of the TSS are more likely to be responsive to TF perturbations. Genes with stronger 

H3K4me3 signal, by contrast, are less likely to be responsive. (C) Average input-SHAP correlations along the 

genomic coordinates in yeast and human cells. In both organisms, H3K4me1 was the strongest and most consistent 

predictor of responsiveness while H3K4me3 was the strongest predictor of unresponsiveness. (D) Distributions 

across yeast TFs of the average signed influences of features located upstream of the TSS, averaged across TF-

bound genes that were either responsive or non-responsive. Asterisks indicate significant difference between bound 

targets that are perturbation responsive and those that are non-responsive. 

Focusing in on the direction of influence in the 100 bp downstream of the TSS, 

H3K4me3 signal was negatively correlated with SHAP value for most yeast TFs, indicating that 

the presence of this mark pushes the model to predict that a lower probability of response (Fig. 

4.5B). H3K27ac was also negatively correlated with SHAP value for most yeast TFs, while 

H3K79me1 was positively correlated. For H3K4me3 and H3K4me1, the sign of correlation was 

generally consistent between yeast and human, but some TFs are exceptions to this 

generalization. Looking at different positions relative to the TSS in yeast (Fig. 4.5C, top), we see 

that the influences of H3K4me3 and H3K27ac presence are most consistently negative when 

they occur immediately downstream of the TSS, whereas the influences of H3K79me1, 

H3K4me1, and H3K36me3 presence downstream of the TSS are consistently positive. In human, 

the influences of H3K4m1, H3K4me3, and H3K36m3 peak slightly downstream of the TSS (Fig. 

4.5C, bottom).  However, one should not read too much into this, as the inclusion of these 

features in the model has a very small effect on prediction accuracy. 

Next, we focused on yeast histone marks upstream of the TSS and asked whether the 

model picked up differences between the TF-bound genes that respond to perturbation of the TF 

and the TF-bound genes that do not respond (Fig. 4.5D). The presence of either H3K4me1 or 

H3K4me3 upstream of the TSS influences the model to correctly predict a higher probability of 
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response among genes that are responsive than among those that are not. Thus, the model is able 

to take advantage of these features in discriminating between bound-responsive genes and 

bound-unresponsive genes. The same is true of chromatin accessibility upstream of the TSS. 

However, these influences are orders of magnitude lower than the influences of the TF binding 

signal (Fig. 4.3C) or the gene expression features (Fig. 4.4A,C). 

4.2.7 Responses to any genetic perturbation are partially explained by TF-

independent factors 

Above, we reported that TF binding signals at cis-regulatory regions have little value for 

modeling responses to TF perturbations in ENCODE data on human K562 cells. This drove us to 

investigate whether the features that are independent of any particular TF can predict a gene’s 

predisposition to respond to perturbations of TFs or other regulators. We therefore calculated the 

response frequency of each gene – the number of perturbations to which each gene responds 

divided by the total number of perturbations. Next, we trained an XGBoost regression model to 

predict each gene’s responsive frequency using only the TF-independent features and it by 10-

fold cross-validation on genes. The median variance explained is 45% for yeast and 37% for 

human (Fig. 4.6A). Since training on this task does not require DNA binding location data, we 

also tried it on a larger set of regulator perturbations in K562 cells, including TFs for which no 

binding data is available and regulators that are not DNA-binding proteins. This model was even 

better, explaining 56% of variance in the frequency of response to regulator perturbations. These 

results clearly demonstrate that some genes are poised to respond to perturbations and others are 

resistant. In this task, H3K79me1 and H3K4me3 are the most influential features in yeast cells – 

more influential even than gene expression level and variation (Fig. 4.6B, left). In human cells, 

gene expression level and variation are by far the most influential features (Fig. 4.6B, middle, 



104 

 

right). These features are likely read-outs of some as-yet-unidentified molecular feature that 

makes genes sensitive to perturbations.  

 

Figure 4. 6: TF-independent prediction of each gene’s tendency to respond to genetic perturbations. (A) The 

variance explained for predicting DE frequency in yeast TF perturbations (n=194), human TF perturbations for 

which binding data are available (n=56), and all ENCODE genetic perturbations of K562 cells (n=355). Bar height 

indicates the median, across genes, of the variance explained (R2) based on cross validation using held-out genes. 

(B) The mean absolute influence of each TF-independent feature across genes. Asterisks indicate missing data. 

4.3 Discussion 

Determining which genes are regulated by each TF in an organism is a fundamental goal 

of regulatory systems biology. Furthermore, the ability to predict which genes will respond to 

perturbation of a TF serves as a benchmark of how well we understand the TF network. Note that 

there is a body of work focused on predicting gene expression level (Middendorf et al. 2004; 

Ouyang et al. 2009; Schmidt et al. 2017; Tasaki et al. 2020; Karlić et al. 2010; Cheng et al. 2011; 

Dong et al. 2012; McLeay et al. 2012; Singh et al. 2016; Read et al. 2019; Kelley et al. 2018; 

Zhou et al. 2018; Washburn et al. 2019; Agarwal and Shendure 2020; Zhou et al. 2014; González 

et al. 2015; Crow et al. 2019; Sigalova et al. 2020), but this is a very different task from 

predicting the response of expression level to perturbations by using only data from unperturbed 

cells. Data on where in the genome each TF binds was expected to be of great value in 
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determining its targets, but multiple studies have shown that, in the available large ChIP-chip and 

ChIP-seq datasets, the genes in whose regulatory DNA a TF binds do not correspond well to 

those that respond to perturbation of the TF (Gitter et al. 2009; Lenstra and Holstege 2012; 

Cusanovich et al. 2014; Kang et al. 2020). We followed up on these observations by training 

machine learning models to predict which genes would respond to perturbation of a TF, given 

both data on a TF’s binding locations and several features reflecting the gene’s epigenetic 

context. We found that data on yeast TF binding locations obtained by the calling cards (Wang et 

al. 2011a; Shively et al. 2019; Kang et al. 2020) method and, to a lesser extent, the ChIP-exo 

method (Bergenholm et al. 2018; Holland et al. 2019), are useful for predicting which genes will 

respond to a perturbation of the TF. In fact, binding location was the most influential and 

valuable among the features we provided (Fig. 4.2A-D). Since earlier ChIP-chip data on yeast 

are known to correspond poorly to perturbation response, we conclude that the newer 

technologies are yielding better results. Binding signals influenced predictions mainly in the 500 

bp upstream of the TSS, suggesting that this is the extent of functional yeast promoter regions 

(Fig. 4.3A-B). Even among genes with significant binding signal for a TF in their promoter, the 

strength and location of the signal helped to differentiate between functional and non-functional 

binding (Fig. 4.3C-D). In ENCODE data on human K562 cells, however, the situation was 

strikingly different. The models did not identify any patterns in ChIP-seq data that were useful 

for predicting which genes would respond to perturbation of the TF (Fig. 4.2E-F).  

We also investigated the predictive value of a selection of histone marks and chromatin 

accessibility features. In yeast, these features had predictive value that was less than that of TF 

binding locations, but it was not negligible (Fig. 4.2A-D). In human, however, these features 

were not useful in models that included GEX features; HM features had a larger (though still 
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small) impact in models that did not include GEX features, which are discussed below. Among 

HMs for which we had data in both yeast and human, H3K4me1 and H3K4me3 were most 

influential. H3K4me1 increased the predicted probability of a gene’s response to perturbations 

while H3K4me3 decreased it (Fig. 4.5). Both marks were most influential when they occurred 

downstream of the TSS, in the gene body. In fact, dropping all features that mapped to the 

enhancers and the promoter region upstream of the TSS had only a small impact on predictive 

accuracy in K562 cells. This surprising observation likely reflects both the low utility of the 

existing ChIP-seq data and incomplete knowledge of the enhancer locations and enhancer-gene 

associations. Future datasets on TF binding locations and enhancer-gene associations will likely 

reveal at least some predictive power for enhancer features. 

The preperturbation gene expression and gene expression variation (GEX features) were 

surprisingly good predictors of which genes would respond to a perturbation. In fact, a model 

using only these two features predicted responses in K562 cells almost as well as the full model, 

which includes ChIP-seq, histone marks, chromatin accessibility, and dinucleotide frequencies 

(Fig. 4.2F). Genes that were expressed at higher level and genes that showed more variability in 

their expression level were more likely to respond to perturbations (Fig. 4.4). We hypothesize 

that these features are readouts of many molecular features of the genes sequence context and / 

or epigenetic state which have limited predictive power individually but much greater predictive 

power when aggregated by their effects on gene expression level and variation. This hypothesis 

is supported by the observation that the influence of several histone marks increases when GEX 

features are omitted from the model, though these influences are still small compared to the 

impact of GEX features when they are provided (Fig. 4.2G). However, the epigenetic state that is 

reflected in the GEX features is not as simple open chromatin versus closed chromatin, since 
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chromatin accessibility features have little influence even in the absence of GEX features. 

Identifying the molecular states and sequence elements that are reflected by in GEX features and 

showing that they can predict perturbation response is an important direction for future research. 

The predictive power of features that are independent of the TF perturbed -- GEX 

features, HMs, chromatin accessibility, and dinucleotide sequence -- shows that some genes are 

poised to respond to perturbations while others are not. To confirm this, we trained models to 

predict how many TF perturbations a gene would respond to using only these features of the 

target gene (not TF binding locations). This model proved quite accurate. The yeast model relied 

most on histone marks, followed by GEX features, whereas the human model relied almost 

exclusively on GEX features. This was a significant finding -- if you want to predict which genes 

will respond to perturbation of a TF, it is not enough to know where the TF binds -- you must 

also know whether the gene is predisposed to respond to perturbations. An important direction 

for future research is to discover the extent to which a gene’s predisposition to respond to 

perturbations is an epigenetic feature that depends on cell type and conditions or an inherent 

feature of the gene. 

Our findings raise many questions. Neither the yeast nor the human model is able to 

predict which genes will respond to a TF perturbation reliably, even when provided with the 

binding locations of the TF and a host of epigenetic features. This is not simply a consequence of 

discretizing perturbation responsiveness, as models trained to predict the quantitative response 

yielded similar results (not shown). For human cells, the inability to predict responsiveness may 

reflect limitations of the technologies used for measuring TF binding locations and perturbing 

TFs as well as limited knowledge of enhancer locations and enhancer-gene associations. It may 

also be possible to improve on the way enhancer-associated features were coded for the model, 
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which could lead to better utilization of histone marks and chromatin accessibility for 

determining enhancer activity in a given sample of cells. Other types of data, such as levels of 

enhancer-associated transcription may also help. For yeast, however, these explanations are less 

applicable. Obtaining the right genomic data and developing the right models for predicting 

which yeast genes will respond to perturbation of a TF is a major challenge. Progress in 

overcoming this challenge will serve as a benchmark of our understanding of regulatory systems 

biology. 

4.4 Methods 

4.4.1 Data preparation 

TF-perturbation response data 

We used two large collections of TF perturbations followed with gene expression 

profiling in yeast and human K562 cells respectively. For yeast data, we downloaded the 

microarray data for transcriptional responses to each of the 194 induced yeast TFs using the ZEV 

TF-induction system (Hackett et al. 2020). Specially, column log2_shrunken_timecourses from 

the file “Raw & processed gene expression data” at https://idea.research.calicolabs.com/data was 

used as the levels of responses. A gene associated with a non-zero value was defined as 

responsive. The response profiles measured at 15 minutes after TF inductions were used to create 

labels for the corresponding TF models. 

For human data, we used all RNA-seq expression profiles measured after gene knockout 

(KO) or knockdown (KD) in K562 cells from the ENCODE Project database (Dunham et al. 

2012; Davis et al. 2018; Abascal et al. 2020). These TFKO and TFKD mechanisms include 

CRISPR TF-disablement, CRISPR inference (CRISPRi), small-interfering RNA (siRNA), and 

small-hairpin RNA (shRNA). We downloaded the expected counts of experimental and control 

https://idea.research.calicolabs.com/data
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profiles that were estimated using RSEM in the ENCODE RNA-seq pipeline and genome 

assembly GENCODE V24 (GRCh38). For each of the 355 experiments, we ran DESeq2 

(V1.10.1) (Love et al. 2014) to identify differentially expressed genes by comparing the 

experimental replicates to the corresponding control replicates. A gene that has a Benjamini-

Hochberg adjusted P-value < 0.05 and log2 fold-change > 0.5 was defined as responsive. 

Pre-perturbation gene expression data 

The gene expression features—pre-perturbation expression level and expression 

variations—were derived from the above gene expression datasets. One feature is the median of 

gene expression level across all samples measured prior to the TF perturbation. The other feature 

is the coefficient of variation (COV) of gene expression levels in these pre-perturbation samples. 

However, there exists dependency between expression level and expression variation, where 

COV decreases as expression level increases (Supplemental Fig. S4.2: left panels). To make the 

two features independent, we performed a correction procedure described in ref. (Sigalova et al. 

2020). First, a smooth curve for COV was fitted as a function of the median expression level, 

using locally estimated scatterplot smoothing (LOESS) regression (Python scikit-misc V0.1.3). 

Second, for each gene, the residual of LOESS based on the gene’s median expression level was 

calculated to represent the corrected COV, namely pre-perturbation expression variation 

(Supplemental Fig. S4.2: right panels). Regarding the specific input for calculating the two 

expression features, for each yeast gene, we took its log fluorescence levels of red (experimental) 

channel measured at 0 minute (before each of the TF inductions) as the pre-perturbation gene 

expression levels. For each human gene, we took its log TPM levels among all replicates of 

control samples as the pre-perturbation gene expression levels. 

TF binding location data 
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The genome-wide binding location measures of yeast TFs were obtained using 

transposon calling cards (Wang et al. 2011a; Shively et al. 2019; Kang et al. 2020) and ChIP-exo 

(Bergenholm et al. 2018; Holland et al. 2019). To consistently map coordinate-dependent 

features, we used genome assembly sacCer3 for yeast and GRCh38 for human throughout this 

study. For the calling cards data that are available for 16 yeast TFs, we lifted over the transposon 

insertion coordinates, which were originally mapped based on sacCer2, to sacCer3 using the 

LiftOver tool in UCSC genome browser. No peak calling was used to further process the binding 

signals. 

As regards ChIP-exo data, we obtained the peaks for TF binding sites (TFBSs) of 20 

yeast TFs from the authors of Bergenholm et al. (2018) and Holland et al. (2019). Kang et al. 

(2020) reported that among the four environmental conditions, the bound targets of these TFs in 

glucose limited chemostat condition have the best agreement with the responsive targets at 15 

minutes after TF inductions. We therefore only focused on the binding data in glucose limited 

condition. Furthermore, as the binding locations were reported in an alternative strain CEN.PK, 

we lifted over the TFBSs to assembly sacCer3 for strain S288C as follows. First, since the loci of 

TFBSs were reported as relative distances to CEN.PK TSSs, these loci were converted to the 

relative distances to the ORFs using the CEN.PK TSS annotation 

(https://github.com/SysBioChalmers/ChIPexo_Pipeline/blob/master/Data/TSSData.tsv). Due to 

high similarity of the two yeast strains, we assumed that the relative distance of each TFBS to 

CEN.PK ORF are the same for the matching S288C ORF. Next, the relative distances were 

converted to absolute genomic coordinates in sacCer3 using S288C gene annotation from 

the Saccharomyces Genome Database (SGD).  

https://github.com/SysBioChalmers/ChIPexo_Pipeline/blob/master/Data/TSSData.tsv
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Turning now to human TFBS data, we downloaded the ChIP-seq peaks for 54 TFs in 

human K562 cells from the ENCODE Project (Dunham et al. 2012; Davis et al. 2018; Abascal et 

al. 2020). K562 was by far the cell type that have the largest number of TFs that were both 

ChIPped and perturbed. These TFs were also restricted to be the well-defined DNA-binding 

factors from ref. (Lambert et al. 2018). Furthermore, we specifically used the “conversative” 

peaks, which underwent the Irreproducible Discovery Rate (IDR) correction using biological 

replicates at 2% IDR threshold. The log10 q-value reported for each peak was considered the 

binding strength of the TFBS. 

Histone modifications and chromatin accessibility data 

We used the coverage data for histone modifications (Weiner et al. 2015) and chromatin 

accessibility (Schep et al. 2015) in yeast cells. Specifically, the histone modifications data were 

measured in timepoint 0 minute before a diamide stress response using MNase-ChIP-Seq. Our 

choice of yeast histone marks includes H3K27ac, H3K36me3, H3K4me1, H3K4me3, 

H3K79me1, and H4K16ac. The chromatin accessibility data were measured at 0 minute before 

an osmotic response using ATAC-seq. We downloaded the coverage data in bigWig files under 

accession GSE61888 for histone marks and GSE66386 for chromatin accessibility from NCBI 

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The coverage of each 

feature was mapped to yeast genome assembly sacCer3. 

For human K562 cells, we downloaded the coverage data (fold change over control) in 

bigWig format for histone modifications and chromatin accessibility from ENCODE (Dunham et 

al. 2012; Davis et al. 2018; Abascal et al. 2020). Our choice of human K562 histone marks 

includes H3K27ac, H2K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3. The 

coverage of each feature was mapped to human genome assembly GRCh38. 

https://www.ncbi.nlm.nih.gov/geo/
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Mapping genome-wide features to cis-regulatory regions 

For the yeast genome, the promoter of a gene is a fixed interval ranging from 1,000 bp 

upstream to 500 bp downstream from the transcription start site (TSS). The genomic coordinate 

of the TSS for each yeast gene were obtained from de Boer et al. (2020). The genome assembly 

is R64 (sacCer3). Next, each promoter region was split into 15 equal-sized bins (100 bp in 

width). The inputs of each genome-wide feature that were mapped to these promoter bins based 

on the relative position to TSS were then summed into a single value to represent a quantized 

input level for a certain feature in a certain bin. 

For the human genome, we define three types of cis-regulatory regions for each gene. (1) 

5’ promoter: a 4 Kb region centered at the 5’-end TSS of each gene (2 Kb on either side). The 

TSS coordinates were downloaded from Ensembl Release 92 (Cunningham et al. 2019). (2) 

Alternative promoter: a 4 Kb region centered at each TSS that is more than 2 Kb from the 5’-end 

TSS (if there exits alternative TSS for a particular gene). (3) Enhancer: a distal locus that is 

linked to target gene(s), which were compiled in the GeneHancer V4.8 database (Fishilevich et 

al. 2017). We require a legible enhancer-target link to have the “double elite” status, meaning 

that the identification of each enhancer must be supported by at least two distinct types of 

evidence, and the link to target must also be supported by more than one evidence. Enhancers 

that are more than 500 Kb away from the 5’-end TSSs of the linked genes were removed. 

Here, we considered several strategies to create genomic bins that cover a gene’s 

regulatory regions. Equal number of bins across genes is required to guarantee a rectangular 

feature matrix without missing values. To begin with, we primarily focused on the promoter 

centered at the 5’-end TSS of each gene for two reasons. First, approximately half of all TSSs 

(excluding the 5’-end TSSs) fall within the 2 Kb region downstream from the 5’-end TSS 
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(Supplemental Fig. S4.1A). Those TSSs that are more than 2 Kb away have median distance of 

26.3 Kb. Second, the usage of the TSSs within the 2 Kb region (including the 5’-end TSS) is 

approximately three times of the TSS usage outside the region according to Fantom5 CAGE data 

(Forrest et al. 2014; Lizio et al. 2019) (Supplemental Fig. S4.1B). Therefore, 2 Kb is a 

reasonable range because of the coverage and usage of TSSs. Meanwhile, alternative promoters 

outside of this region were treated as enhancers, since enhancers and promoters share properties 

and functions as reviewed in ref. (Andersson and Sandelin 2020). If overlap exists, the regions 

would be merged to prevent double mapping of the localized features. Consequently, to combine 

the 5’ promoter and distal regulatory elements, we devised two approaches as illustrated in 

Supplemental Figure S4.3. (1) Prom + bin enhan (blue) includes 40 equal-width bins of the 

promoter centered around the 5’-end TSS, 45 bins within the upstream region (-500 Kb to -2 Kb) 

from 5’-end TSS, and another 45 bins within the downstream region (2 Kb to 500 Kb). The bin 

widths for the distal regions are the multiple of 500 bp, e.g. the width of the first three bins 

closest to the TSS are 500, 1000, and 1500 bp respectively. (2) Prom + agg enhan (green) 

includes 40 equal-width bins of the promoter centered around the 5’-end TSS, one single 

upstream bin covering the entire region between -500 Kb and -2 Kb, and one single downstream 

bin covering the region between 2 Kb and 500 Kb. Next, the signals of each genome-wide 

feature that fall within the defined cis-regulatory regions were quantized within the 

corresponding bins based on their relative genomic distance. 

Response frequency in perturbations 

The response frequency of each gene to any perturbation is the number of perturbations 

to which it is responsive divided by the total number of perturbations. We inherently used the 

criteria for responsiveness described above to binarize target genes. The inductions of 194 yeast 
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TFs available in (Hackett et al. 2020) were incorporated in this calculation. And two types of 

human K562 perturbation samples in ENCODE (Dunham et al. 2012; Davis et al. 2018; Abascal 

et al. 2020) were incorporated: (1) the perturbations of 56 TFs used for TF specific perturbation-

response prediction, and (2) the perturbations of 355 genes. 

4.4.2 Predicting TF-perturbation responses using cross-validation 

For each TF perturbation, we simultaneously trained and tested the model for predicting 

whether a gene will respond using cross-validation on all genes. Specifically, every gene can be 

thought to be an instance for training or testing. As the genes were divided into ten folds at 

random, genes in one of the folds was reserved for testing while those in the other folds 

combined were used to train a model. Class stratification on gene split was applied to assure that 

all folds have equal proportion of responsive and unresponsive genes.  

We trained and tested two ensemble classification algorithms—random forest 

implemented in scikit-learn library (V0.22.1) (Pedregosa et al. 2011), and gradient boosted trees 

implemented in XGBoost library (V 0.90) (Chen and Guestrin 2016). Both algorithms capitalize 

on the idea of “the wisdom of crowds”, i.e. the ensemble of weak learners. For random forest, the 

number of trees was set to 500 while other hyperparameters were kept as default. For XGBoost, 

500 shallow gradient-boosted trees were estimated, learning rate of 0.01 was set for the “gbtree” 

booster, and other hyperparameters were set as default. The complexity of the boosted trees, by 

default, are penalized by applying L2 regularization on feature weights. In each cross-validation 

run, the training data was standardized using Z-score transformation such that every feature is 

zero-centered with a unit standard deviation. Consequently, the testing data was standardized 

using the scaler learned from training.  
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The trained model was evaluated using precision recall curve, where the probabilities 

predicted for the held-out genes were compared against the measured binary responsiveness. The 

area under this precision recall curve (AUPRC) was used as the summary statistic for the 

corresponding cross-validation fold.  

4.4.3 Using SHAP to quantify the predictive values of features 

We employed SHAP (SHapley Additive exPlanations) framework (V0.35.0) (Lundberg 

and Lee 2017) to quantify the extent to which each feature contributes to the predicted 

probability of responsiveness for a gene. Briefly, SHAP exploits on the idea of using a linear 

model that are explainable to approximate the predicted probability of each example in a black-

box model agnostically. Instead of directly interrogating a complex, nonlinear model, SHAP 

explains what the linear model learns. To train the linear model, SHAP samples new data points 

from a particular example (gene), each of which has a weight that is derived from Shapley value 

estimate, which quantifies the effect of removing a particular feature out of all possible 

combinations of other features. The use of Shapely values guarantee key desirable mathematical 

properties (Lundberg and Lee 2017). For the tree-based models, we utilized TreeExplainer 

function, which makes use of the node dependency in a tree structure to effectively reduce the 

approximation to polynomial complexity (Lundberg et al. 2018).  

We calculated the SHAP values only for genes unseen by the model in each testing set; 

accordingly, we obtained each feature’s SHAP value for every gene in the cross-validation 

framework. In this work, SHAP values explain why the prediction for one particular test example 

– one TF-gene pair – differs from the average prediction for all genes in response to perturbation 

of that one TF. Positive values indicate how strongly a particular feature value pushes the model 

toward assigning the gene a higher probability of responding, while negative values represent 
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how strongly the value pushes the model toward assigning the gene a lower probability of 

responding. 

4.4.4 Aggregating SHAP values across genes of interest 

To characterize the effect of a particular feature for a group of genes, we separately 

averaged all its positive SHAP values and its negative SHAP values. For each coordinate-

dependent feature (e.g. localized TF binding), we independently summed its positive and 

negative SHAP values over genomic bins for each gene before averaging within the gene group. 

Concretely, we calculated mean positive SHAP value 𝑆𝑘
+ and mean negative SHAP value 𝑆𝑘

− as: 

Sk
+ = ∑ ∑ ϕ𝑖𝑗𝑘[ϕ𝑖𝑗𝑘 > 0]/|𝐺′|

𝐵

𝑗

𝐺′

𝑖

(4.1) 

𝑆𝑘
− = ∑ ∑ 𝜙𝑖𝑗𝑘[𝜙𝑖𝑗𝑘 < 0]/|𝐺′|

𝐵

𝑗

𝐺′

𝑖

(4.2) 

where ϕ𝑖𝑗𝑘 is the SHAP value for gene 𝑖 in bin 𝑗 for feature 𝑘, 𝐺′ is the set of gene indices, (𝐺′ ⊆

G, where 𝐺 is for all genes), and 𝐵 is the set of bin indices. For coordinate-independent features 

(e.g., pre-perturbation gene expression), 𝐵 has size of one.  

We defined two terms for quantifying how each feature influences model prediction. Net 

influence is the sum of the positive and negative SHAP values of a feature together for a set of 

genes. It provides a sense of the feature’s overall direction of influence. Global feature 

importance is the sum of absolute values of the SHAP values of a feature for all genes. It shows 

how important the feature is in determining the model’s prediction, regardless of direction. 



117 

 

4.4.5 Modeling and interpreting generic responses in any genetic 

perturbation 

The above classification framework was modified to predict how frequently that a gene 

would respond in any genetic perturbation in absence of TF information. Specifically, we trained 

and tested a XGBoost regressor rather than a classifier for predicting each of the response-

frequency vectors. Each entry of the vector represents the fraction of conditions that a particular 

gene responds across all genetic perturbations. We created three vectors respectively for all 

induction conditions in yeast (n=194), TFKO/TFKD conditions in human K562 (n=56), and all 

genetic perturbations in K562 (n=355). The corresponding feature matrix for each label vector 

includes all features except for the localized TF binding data. The regression model for each 

label was cross validated.  

Subsequently, we calculated the SHAP values for the testing genes. In a regression 

model, SHAP values explain why the prediction for one particular gene differs from the average 

frequency for all genes in response to any genetic perturbation. Positive values indicate how 

strongly a particular feature value increases the likelihood of generic response, while negative 

values represent how strongly the value decreases the likelihood of generic response. In addition, 

to summarize the overall importance of a feature, we calculated the mean absolute SHAP value 

across all genes. The higher the absolute value, the stronger overall influence the feature has. 
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Chapter 5: Discussion 
 

5.1 Conclusion 

Mapping high quality, genome-wide TF networks has been a long-standing goal in 

regulatory systems biology. Being able to map such networks from scalable and low-cost data 

resources (i.e., gene expression and annotated genome) provides researchers with powerful tools. 

In Chapter 2, we described a new network mapping framework -- NetProphet 2.0 -- based on the 

success of an earlier method developed in our lab. Our new method improved over the original 

and many other expression-based inference methods by capitalizing on three principles. First, 

assembly of multiple intermediary networks, or “wisdom of the crowds”, outperforms any one of 

them. Second, TFs that have similar protein domains are likely to regulate similar sets of target 

genes. Third, an incomplete network is valuable for inferring TFs’ motifs, which in turn help 

improve the network mapping quality.  

 Even when rich data resources (e.g., ChIP-seq) are available for well-studied yeast and 

human cells, the genes bound by a TF and those that respond upon the perturbation of the same 

TF were found to have little convergence. To address this mystery, we asked two question -- Can 

we find better convergence? And what factors in addition to TF binding determine the response?  

In Chapter 3, we the developed dual threshold optimization method for setting 

significance thresholds on binding and perturbation-response data to improve the convergence. 

Integrating NetProphet 2.0 was found to further improve the results. Moreover, we found that 

data from new technologies for measuring TF perturbation responses (i.e., ZEV induction 

system) and TF binding locations (i.e., transposon calling cards and ChIP-exo) give further 
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advantages. Collectively, we progressed towards high-confidence network maps for yeast and 

human by applying the best combination of analytical and experimental methods. 

 In Chapter 4, we described a two-step process to elucidate the determinants of a gene’s 

responsiveness under a TF perturbation. First, we trained machine learning models using TF 

binding, epigenetic, and gene expression features in unperturbed samples. Second, we applied 

SHAP values to explain the feature influences on each prediction. The binding signals of the 

perturbed TF were found only predictive in yeast promoters, while those mapped to enhancers 

and promoters in the human genome were of no use. Interestingly, inherent properties of each 

gene showed substantial predictive values. For instance, a gene whose expression level or 

expression variation is regularly high is poised to respond to any genetic perturbation regardless 

of which TF is perturbed. 

 Throughout this thesis work, we made steps towards mapping high-quality TF networks 

for several organisms, from simple eukaryotes to compact invertebrates, and from invertebrates 

to complex mammalian systems. Looking ahead, we anticipate that we will be better equipped to 

map reliable TF networks by taking several immediate steps. 

5.2 Future directions 

5.2.1 Improving the quality of expression-based network mapping using more 

precise input and expanded data resources 

 In Chapter 2, the premise behind regression modules is that a certain combination of TFs’ 

activity levels is predictive of the expression level of a gene. Because we currently lack the 

experimental approach to directly measure TF activities, we made an assumption that the gene 

expression level is a reasonable approximation of the TF activity (TFA) level. However, factors 



120 

 

such as post-transcriptional and post-translational modifications are known to alter TFA levels. 

To address this issue, computational methods have been developed to infer TFA from multiple 

resources (reviewed in ref. (Ma and Brent 2020)). A recent method developed in our lab 

accurately inferred TFA from large-scaled expression datasets and a prior network (Ma and 

Brent 2020). We anticipate that TF network mapping will be greatly benefited from a more 

precise representation of TFA. One way to achieve the goal is to iterate between TF network 

mapping and TFA inference, where the output network map is the input to TFA inference and 

the output TFA levels are the input to network mapping, until the scores of network edges and 

TFA levels are stabilized. 

 From Chapter 4 and several other studies (Crow et al. 2019; Sigalova et al. 2020), we 

have learned that some genes are naturally poised to respond to a TF perturbation or any 

regulator perturbation. This implies that we need to be careful about calling a responsive gene 

the target of a particular perturbation. Computational tools have become more and more 

sophisticated in performing statistical tests to quantify the extent to which each gene changes its 

expression when comparing a perturbed sample to a control. However, a gene with a significant 

change in expression (fold change over control or P-value) should not always be interpreted as 

the perturbation target, just because it responds strongly. This means we cannot so safely say that 

such a gene is the functional target of the perturbed TF. So far, we know that some genes with 

certain properties are more likely to vary their expression levels regardless of the circumstances. 

Therefore, incorporating the prior knowledge (such as gene expression level and expression 

variation in unperturbed conditions) of genes can help generate adjusted transcriptomic response 

profiles that properly reflect the consequences of perturbations. This will bring substantial value 

to expression-based network mapping. 
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 The rise of single cell technology, especially the wide adoption of transcriptomic 

profiling at single cell level (scRNA-seq) has brought a new horizon to study systems biology. 

The advantages that single cell data brings to network inference are (1) the large sample size, as 

a single sequencing run can simultaneously measure expression profiles of tens of thousands of 

cells; (2) the variance of expression levels across cells, which include underrepresented cell types 

that are not typically detectable by bulk sequencing. Moreover, the integration of CRISPR 

technology and single cell sequencing makes it possible to knock out multiple TF-encoding 

genes in a single tube of cells, where one of the targeted TFs in each cell is randomly perturbed 

(e.g. CRISP-seq (Jaitin et al. 2016), Perturb-seq (Dixit et al. 2016; Adamson et al. 2016; 

Replogle et al. 2020), CROP-seq (Datlinger et al. 2017), Mosaic-seq (Xie et al. 2017)), or 

activate the transcription of many genes (e.g. CRISPRa followed by scRNA-seq (Alda-Catalinas 

et al. 2020)). However, one caveat to keep in mind is that the network mapping algorithms 

designed to work with bulk gene expression data are not guaranteed to succeed when substituting 

the input with single cell data. Because of the low sequencing depth in each cell, profiles for 

scRNA-seq samples are discretized and zero-inflated, which produces different distributions 

compared to those for bulk RNA-seq samples. To make use of single cell data in NetProphet 

without algorithmic change, we may consider preprocessing scRNA-seq data using imputation 

algorithms. In a recent review (Hou et al. 2020), methods that smooth expression levels using 

cell-to-cell similarities (Wagner et al. 2017; Dijk et al. 2018) and capitalize on gene-to-gene 

relationships within each cell (Huang et al. 2018) were considered top contenders that accurately 

recover bulk expression data. Conversely, imputation methods were found to have no clear 

advantage of improving differential expression analysis over no imputation. Another study 

suggested that mapping TF networks without preprocessing scRNA-seq data using complex 
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normalization or imputation worked reasonably well (Jackson et al. 2020). Furthermore, other 

newly developed imputation and augmentation methods using deep generative models (Xu et al. 

2020; Marouf et al. 2020) could be potential alternatives for this task. While the rapid growth of 

single cell data can provide us with rich transcriptomic information for mapping TF networks, 

these data should be used with caution as different modules in NetProphet may require different 

input preprocessing, the effect of which remains to be seen. Alternatively, devising novel 

algorithms that directly make use of single cell profiles is a completely feasible avenue. 

5.2.2 Improving the accuracy and efficiency of expression-based network 

inference using better implementation 

 The overarching goal of regression modules in NetProphet is to assign importance scores 

to TFs for each gene. For each gene, a BART model is trained to predict its expression level 

from that of all TFs. Then, the influence of each TF on the gene is calculated as the predicted 

gene responses under a simulated change of the TF’s expression level while other TFs remain at 

their respective mean levels. This is a strong assumption that may create counterfactual 

conditions -- because the expression levels of the TFs can be highly correlated, changing one 

between extreme values while maintaining others at their mean values may be unrealistic. To 

address the issue, we can directly explain the BART model by applying SHAP values, which is 

one of many interpretable machine learning methods, without simulating new unrealistic 

conditions. Precisely, for the trained BART model for a particular gene, we would first calculate 

the SHAP values for each TF (predictor), which represents how much influence this TF exerts on 

the predicted level of the gene in a particular expression profile. Next, we would try scoring the 

TF-gene edge by summarizing SHAP values. (1) A straightforward way is to calculate the global 

importance of the TF by averaging the absolute SHAP values over samples. However, this 
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approach loses information about the sign of the TF’s influence on the gene’s predicted 

expression level. (2) To retain the sign, we need to put the magnitude of each feature’s influence 

into the equation. The idea is to take the signed SHAP value only if it makes up a significant 

fraction of the target’s response level and their signs are in the same direction. A more 

sophisticated implementation may better capitalize on this idea. 

Many transcriptomic profiling experiments have been conducted in time-series, including 

ZEV TF-induction (Hackett et al. 2020). NetProphet, as currently implemented, treats gene 

expression profiles in a time-series as independent samples. As each input profile is assumed to 

be measured at equilibrium, the inference is unable to fully exploit the temporal information. 

Therefore, at minimal, our regression modules will need to incorporate the classic kinetic model 

for TF regulation (Bonneau et al. 2006). We will implement an additional layer of processing to 

generate the pseudo-time transcriptomic profiles, which requires a vector of RNA half-life (or 

RNA degradation rate) data for all genes as input parameters. In a recent collaboration of 

mapping NetProphet networks for archaea cells, we incorporated the use of kinetic model on 

time-series data (data not shown). Furthermore, we may consider updating the differential 

expression analysis for time-series profiles (Spies et al. 2019). 

 We developed NetProphet in a high throughput computing environment, where CPU time 

and memory are not limiting. For ease of use in a desktop environment, there is the need to 

optimize individual modules for computing efficiency such as runtime and memory. (1) The 

estimation of global shrinkage in LASSO module is computationally intensive. Its novelty lies in 

the search for a single shrinkage parameter that is universal for all regression models, each of 

which corresponds to a gene. This is computationally expensive, because all potential shrinkage 

parameter values obtained by separate LARS runs on each gene are currently checked for cross-
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validation error on all genes. To speed up the search for shrinkage parameter, we can apply grid 

search or Bayesian Optimization on a pre-defined range of parameters. (2) The implementation 

used for BART regression has a long runtime. Placing with a more recent BART implementation 

(XBART) or other regression software such as XGBoost are viable solutions for speedup (He et 

al. 2018). However, we should not trade accuracy for speed, which would defeat the purpose of 

mapping high-confidence TF networks. 

5.2.3 Mapping a high-confidence global human network 

 One ambition in the field of regulatory systems biology is to accurately map the global 

human TF network, which is a key component for many downstream applications, from 

developmental biology to transcriptome engineering, and from disease modeling to drug 

discovery. Such a network can be defined in many ways. In our view of the global network, each 

edge represents the maximal potential a TF exerts on each of its direct and functional targets. If 

one’s interest is in a cell-type specific network, we will first infer TFA levels based on the global 

network along with a particular expression profile or a subset of profiles representing the cell 

type. And subsequently update the edge weights by integrating the inferred TFA levels; 

specifically, up-weight edges of the global network outgoing from active TFs and down-weight 

the ones outgoing from inactive TFs. On the other hand, we can try a different approach that 

directly maps cell-type specific network without having to first map a global network; 

specifically, the regression modules will use expression data for the cell type of interest, while 

the differential expression module will use perturbed samples for all cell types (since TF-

perturbation samples for human cells are relatively limited). 

In Chapter 3, we made our effort to map human networks for independent cell types 

using the combination of DTO and NetProphet. A natural next step is to run the same procedure 
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using an expanded collection of datasets that include more cell and tissue types. The following 

are several large-scaled sets we identified so far: ENCODE database (Dunham et al. 2012; Davis 

et al. 2018; Abascal et al. 2020) is a reliable source that has been frequently updated over the 

past decade. ReMap (Chèneby et al. 2020) also provides large collections of human TF binding 

data from ChIP-seq, ChIP-exo, and DAP-seq (DNA affinity purification sequencing). 

Alternatively, computational approaches can help recovering the in vivo TF binding sites 

(TFBSs) that have not been assayed, due to high cost and intensive labor of experimental 

approaches. The idea is to filter potential binding sites whose DNA sequences match a TF’s 

motif by using chromatin accessibility (Pique-Regi et al. 2011; Li et al. 2018). Other epigenomic 

features including DNA sequence, DNA shape, and histone marks near each motif hit were also 

predictive of in vivo binding sites. (Xin and Rohs 2018). For gene expression, in addition to 

ENCODE database, several large-scaled TF perturbation datasets are available (Hurley et al. 

2012; Nakatake et al. 2020) as well as GTEx database for tissue expression (with no 

perturbation) (Lonsdale et al. 2013; Aguet et al. 2017). As each dataset may have batch effect 

that is inherent in data generation and processing, it is not yet clear whether running network 

mapping programs using input combined all together or combining networks mapped separately 

using individual datasets brings more benefit. 

 Our initial motivation for developing NetProphet was to map a TF network for yeast, 

which has a compact genome. A network map containing two sets of nodes -- TFs and genes -- 

seemed adequate, as TFs bind to the proximal region of a gene to effectively modulate the gene’s 

expression level. Human cells, by contrast, contain multiple cis-regulatory elements (CREs), 

such as enhancers that are located distally (in a genome coordinates) from the associated genes 

and promoters that are located nearby the genes. Our current network architecture may be 
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oversimplified. Therefore, we anticipate a new design of directed acyclic graph that includes a 

new layer of nodes for CREs between TF and gene nodes: a TF-CRE edge represents a TFBS in 

a CRE, while a CRE-gene edge represents the association between a CRE and its target (Brent 

2016). The effect of direct and functional regulation between a TF and its target gene can 

quantified as the combination of non-zero scores for the two edges and the activities levels of the 

corresponding TF and CRE. To build such a network, we will need three arms: (1) the in vivo 

binding evidence or binding potential of TFBSs in CREs; (2) the CRE-gene association (whether 

physical chromatin contact or functional linkage); (3) the transcriptional association between TF 

and gene. The first arm can be obtained from established experimental and computational 

methods. The second arm is an area of active research, which will be discussed in detail in the 

following section. The last arm can inherit co-expression and differential expression analyses in 

NetProphet. Subsequently the inferred score of each TF-gene pair will be integrated with all 

potential TF-CRE-gene paths. In addition, we will also need to modify TFA inference to 

accommodate the new architecture and collect evidence or integrate inference for the CRE 

activity. Since cooperativity within small groups of TFs occur frequently in complex organisms, 

it may be worthwhile constraining TFs that are likely to interact to have similar activity levels in 

the TFA inference module, where TF interactions that have been systematically evaluated and 

compiled from multiple sources are available in STRING (Szklarczyk et al. 2019) and BioGRID 

(Oughtred et al. 2019). Overall, the TF-CRE-gene architecture is expected to offer the versatility 

of more accurately characterizing the direct, functional TF-gene interactions mediated by CREs. 
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5.2.4 Improving the identification of activities and gene associations of cis-

regulatory elements 

 A key component for mapping accurate TF networks, especially for complex mammalian 

genomes, is the association between each active CRE and its target genes (Gasperini et al. 2020; 

Brent 2016). Such characteristics are also expected to improve our ability to reliably predict TF-

perturbation responses (Chapter 4); thereby, the influences of TF binding signals and epigenetic 

features can be better explained. Currently, technologies have been developed to identify (1) the 

locations of active CREs and (2) the associations between CREs and genes.  

Nascent RNAs transcribed from CREs appear to be a good indicator of the CREs’ 

activity. Technologies such as GRO-seq (Core et al. 2014), PRO-seq (Mahat et al. 2016), and 

CoPro (Tome et al. 2018) were developed for measuring such transcriptions in vivo. Data are 

currently limited to a few cell types. Therefore, we expect data for systematically evaluating a 

range of cell types to become available in the near future. 

 The goals for identifying the CRE-gene associations can be divided into two classes -- 

direct interactions and functional interactions. To measure the physical contact in 3D genome, 

experimental methods such as Hi-C (Lieberman-Aiden et al. 2009), ChIA-PET (Fullwood and 

Ruan 2009), and HiChIP (Mumbach et al. 2016, 2017) were developed. While 3D loops 

identified by Hi-C requires feature processing to filter for the loop ends that contain activate 

CREs, those identified by ChIPA-PET or HiChIP contain active CREs marked by H3K27ac (a 

well-known indicator of active enhancer) in at least one loop end. On the other hand, to measure 

the functional CRE-gene association, experimental methods were developed to determine the 

causal effects of interfering or activating CREs on the nearby genes (Fulco et al. 2016; Klann et 

al. 2017; Simeonov et al. 2017). As in vivo evidence is currently limited to a few well-studies 
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human cell types, computational methods can offer wider coverage. GTEx cis-eQTL data 

(Lonsdale et al. 2013; Aguet et al. 2017) have been used to identify CRE-gene associations, if a 

SNP in the CRE is statistically associated with the expression variation of a gene. Moving from 

bulk to single cell sequencing, technologies such as Sci-CAR (Cao et al. 2018) and 10x 

Chromium Single Cell Multiome ATAC + Gene Expression provide the possibility to jointly 

measure chromatin accessibility and gene expression in the same cell. A functional association 

can be established if the expression level of a gene increases as a nearby CRE becomes 

accessible, and vice versa. For a single cell sequencing run on cell mixtures, the CRE-gene 

associations for multiple cell types can be simultaneously inferred. Nevertheless, an accurate 

algorithm that is thoroughly validated by experimental evidence remains to be seen. 

5.2.5 Improving response prediction using network maps for TF-TF 

interactions and TF-gene regulations 

 Among the features used to predict which gene will respond to a regulatory perturbation 

(Chapter 4), we only used the TF binding information of the perturbed TF, which might hinder 

our ability to reliably predict transcriptional responses. From the perspective of systems biology, 

the limitations are likely caused by two reasons. First, TF interactions such as cooperation and 

competition can affect how a gene is regulated through TF binding. Second, regulatory 

dependencies between TFs in a TF network can affect how a gene is indirectly regulated.  

To address the first issue, for each TF perturbation, we can add the binding signals of 

other TFs that interact cooperatively or competitively with the perturbed TF as new features. 

Some TFs form a protein complex and bind their target as a single entity. Thus, we expect that 

knowing the sites in a gene’s regulatory region that are adjacently bound by the complex 

members will improve our ability to predict the gene’s likelihood of response. On the other hand, 
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since some TFs compete for the binding sites by recognizing similar sequence motifs, we expect 

that the unresponsive targets with the same sites bound by competing TFs can be more 

accurately predicted. For example, yeast TF Tye7 is known to cooperate with three other factors 

while competing with Cbf1 (Shively et al. 2019). In the perturbation of Tye7, targets bound by 

Tye7 and its cooperative factors are expected to be responsive; but those bound by Cbf1 are 

expected to be unresponsive. The cooperative factors can be identified using the evidence of 

direct physical contacts curated in protein-protein interaction (PPI) network (e.g., STRING 

(Szklarczyk et al. 2019) or BioGRID (Oughtred et al. 2019)). The competing factors can be 

identified as those that have no connection in the PPI network but have similar motifs or DBDs 

(if the motif is unavailable) (Chapter 2). We then need to define features to encode the two types 

of TF interaction and use them to annotate the binding features of each of the interacting TFs. 

 To address the second issue where a gene can be indirectly regulated by the perturbed TF, 

we need to propagate the effect of perturbation to indirect targets through the responses of 

intermediary TFs. Specifically, we will incorporate the transcriptional responses of all genes that 

encode TFs as an additional set of features. Moreover, we need to inform the model about the 

regulatory relationship from these intermediary TFs to their respective targets. To do so, we will 

need a prior -- the TF network map based on binding data for ChIP or PWMs processed with 

epigenetic data (discussed in 5.2.3), or network inference using NetProphet 2.0 with differential 

expression module disabled (to avoid data peeking). Next, for each gene, we will reweigh the 

response of each intermediary TF using the edge score of a network map. Finally, we will 

characterize how each of the new features contributes to the predicted probability. We 

hypothesize that if a gene is the indirect target of the perturbed TF, then a fraction of the new 

features representing intermediate regulators of the gene would show some certain degrees of 
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influence on the prediction. This would indicate that the effect of TF perturbation has been 

propagated through the TF network. Conversely, if the gene is the direct target of the perturbed 

TF, then none of these features would be expected to have influence on the outcome. Taken 

together, we anticipate that informing models with features for the synergistic and competitive 

interactions among TFs and those for network structure will provide a comprehensive picture of 

transcriptional responses. 
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Appendix  

 

Supplemental Figure S2. 1: Relationship between the percent identities of DBD pairs and the similarities of 

their PWMs. Horizontal axis: the bins of percent identities (PIDs) of all pairs of DBDs. Each value on the 

horizontal axis represents the lower bond of the corresponding bin, e.g. if a pair of DBD are 82% identical, they are 

in the PID bin of 80%-85%. Vertical axis: the fraction of TFs in a certain PID bin that have similar known PWMs 

(Tomtom E-value < 1). Red line: a logistic fit. 
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Supplemental Figure S2. 2: Accuracy of NetProphet 1.0 using two yeast expression data sets. The smaller 

dataset (Hu et al. 2007) contains 269 TF knockout strains (black line); the larger dataset (Kemmeren et al. 2014)  

contains 265 strains of single TF knockouts and 1,219 strains of other gene knockouts (blue line). (A) Vertical axis: 

Percentage of edges supported by ChIP data.  Horizontal axis: number of top ranked edges included in the network 

per TF encoded in the genome. E.g., since there are 320 TFs in the yeast genome, “10” on the horizontal axis 

corresponds to a network with 3,200 edges. Dotted line: Expected accuracy of random networks. Gray area: 95% 

confidence interval for randomly selected networks. (B) Same as A for PWM support. The point labeled “ChIP 

network” indicates the number of ChIP-supported edges and the fraction of those edges that also have PWM 

support. 
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Supplemental Figure S2. 3: Effect of weighted averaging applied to BART network. Accuracy of BART 

network on yeast before weighted averaging (black line) or after weighted averaging (green line). Horizontal axis: 

number of top ranked edges included in the network per TF encoded in the genome. E.g., since there are 320 TFs in 

the yeast genome, “10” on the horizontal axis corresponds to a network with 3,200 edges. Vertical axis: Percentage 

of edges supported by ChIP data. Dotted line: Expected accuracy of random networks. Gray area: 95% confidence 

interval for randomly selected networks. (B) Same as A for PWM support. The point labeled “ChIP network” 

indicates the number of ChIP-supported edges and the fraction of those edges that also have PWM support. (C) 

Same as A for the fly data. (D) Same as B for the fly data, except that the vertical axis shows support by conserved 

PWM hits only. 
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Supplemental Figure S3. 1: Overlap between bound and responsive gene sets at different thresholds. Same as 

Figure 3.1A except: (A) Binding threshold is p<0.001 and response threshold is p<0.05 with fold change > 1.5. 

Total bound and responsive genes is 209. (B) Binding threshold is p<0.00001 and response threshold is p<0.05 with 

no minimum fold change. Total bound and responsive genes is 297. (C) Binding threshold is p<0.00001 and 

response threshold is p<0.05 with fold change > 1.5. Total number of bound and responsive genes is 119. 
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Supplemental Figure S3. 2: Cumulative number of TFs with expected FDR lower bound less than the number on 

the horizontal axis, assuming sensitivity of 80%. Red line: moderate binding and response thresholds; orange line: 

moderate binding threshold and tight response threshold; green line: tight binding threshold and moderate response 

threshold; blue line: tight binding and response thresholds. 
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Supplemental Figure S3. 3: Numbers of acceptable TFs when comparing Harbison ChIP data to ZEV response 

data at various time points. 
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Supplemental Figure S3. 4: (A) and (B) Comparison of TFKO and ZEV15 networks derived from fixed thresholds, 

dual threshold optimization (DTO) on raw gene expression, and DTO on gene expression data processed by 

NetProphet 2.0. DTO on the raw expression data (blue bars) increases the size of the networks over fixed thresholds 

(red bars). This is true for both the intersection of the TFKO and ZEV networks (left bar grouping) and their union 

(right bar grouping). Post processing expression data with NetProphet 2.0 (green bars) further increases the size of 

the networks. See Figure 3.2 for the numbers of TFs showing acceptable convergence in these analyses. (C) 

Comparison of yeast networks derived from DTO on ChIP data and response data processed using several network 

inference algorithms (D) Comparison of human K562 networks derived from DTO on ChIP-seq and raw response 

data or network inference processed response data. Bar height is the fraction of TFs showing acceptable 

convergence divided by the number of TFs that were ChIPped and perturbed by either TFKD or CRISPR. Network 

inference postprocessing improves convergence over unprocessed response data. (E) Similar to (D), but considering 

only TFs that were not directly perturbed. These TFs cannot be analyzed for convergence without network 

inference. 
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Supplemental Figure S3. 5: (A) Among 16 TFs for which we have data in TFKO and ChIP-exo in four nutrient 

limited conditions, the number of TFs that show convergence between ChIP-exo data and TFKO response data 

(dotted blue) or network inference processed response data (other colored lines). (B) Same as (A) except that ZEV15 

data replaces TFKO data. (C) Comparison of networks derived from DTO on calling cards data and response data 

processed through several network inference algorithms. 
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Supplemental Figure S3. 6: Same as Figure 3.4D except: (A) For each TF that has any enriched GO term, the five 

most enriched terms when the targets of each TF are chosen by using fixed thresholds on Harbison ChIP and TFKO 

data. In most cases these same terms are even more significantly enriched when the targets are chosen by using a 

different method -- dual threshold optimization comparing calling cards data to output from NetProphet 2.0 run on 

the TFKO and ZEV expression data (red bars). The numbers to the right of the bars indicate the number of genes 

with a given GO term among the targets of the TF. (B) For each TF that has any enriched GO term, the five most 

significantly enriched terms chosen by using dual threshold optimization comparing calling cards data to output 

from NetProphet 2.0 run on the TFKO and ZEV expression data. In many cases, terms with one or two fewer genes 

are more familiar than the terms with the most genes. For example, Gcr2 has 12 target genes annotated with 

“glycolytic process”, corresponding to its accepted function, but the most significant term is “ADP metabolic 

process”, which contains those 12 glycolytic genes plus one additional gene. 
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Supplemental Figure S3. 7: Same as Figure 3.5A. The fraction of most strongly TF-bound genes that are 

responsive to the perturbation of that TF, as a function of the number of most-strongly bound genes considered. 

Shown are the other 11 TFs, in addition to Leu3, that had data available in Harbison ChIP, transposon calling cards, 

TFKO, and ZEV15. 
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Supplemental Figure S4. 1: Statistics on human TSS. (A) Distances between each 5’ end TSS and other 

downstream TSSs of the corresponding gene. Among the downstream TSSs for all genes, ~47% of them are within 

the 2 Kb range of their paired 5’ end TSS. The median distance for the TSSs within 2 Kb range is 163 bp, while the 

median distance for those that are more than 2 Kb away is 26.3 Kb. (B) Relationship between TSS usage and 

distance. TSS usage for each TSS is represented as the median Tags Per Million (TPM) level across all samples in 

Fantom5 CAGE expression data (Forrest et al. 2014; Lizio et al. 2019). The median TPM for the TSSs within 2 Kb 

range to their corresponding 5’ end TSS (including these 5’ end TSS themselves) is approximately three times of the 

median TPM for the TSSs that are more than 2 Kb away from their corresponding 5’ end TSS. 
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Supplemental Figure S4. 2: (A) Expression variation for yeast cells. Left: Relationship between the median 

expression level of each gene across pre-perturbation (or control) conditions and its expression variation measured 

by the coefficient of variation. Orange curve was fitted using locally estimated scatterplot smoothing (LOESS) 

regression. Right: Expression variation adjusted for the median expression level by taking the residual of LOESS 

regression (the orange curve from left). (B) Expression variation for human cells. Same analysis as in (A). 
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Supplemental Figure S4. 3: Definition of human cis-regulatory regions. The top panel illustrates a 1 Mb region 

centered at the 5’ end TSS of a gene. Orange boxes indicate the enhancers linked to the gene, and the 4 Kb 

promoter(s) centered around the gene’s TSS(s). The bottom two panels illustrate the approaches for binning the 1Mb 

cis-regulatory region. Prom + bin enhan (blue) includes 40 equal-sized bins of the promoter centered around the 5’ 

TSS, and 45 bins with incremental widths for the upstream regions between -500 Kb and -2 Kb and another 45 bins 

for the downstream regions between 2 Kb and 500 Kb respectively. As the distance between the distal bin and TSS 

increases, the width of the bin increases exponentially. Prom + agg enhan (green) includes 40 equal-sized bins of 

the promoter centered around the 5’ TSS, one single upstream bin covering the entire region between -500 Kb and -

2 Kb, and one single downstream bin covering the region between 2 Kb and 500 Kb. The signals of each coordinate-

dependent feature that are mapped to the defined cis-regulatory regions (orange, top panel) linked to the 

corresponding bins according to the genomic coordinates. Within each bin, the signals are summed into a single 

aggregated input value. 
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Supplemental Figure S4. 4: (A) Performance of individual yeast TF models that were trained on different types of 

TF binding data. No boxplot is shown if the TF binding data from the corresponding assay was unavailable. Each 

boxplot shows the results of ten-fold cross-validation on all genes. (B) Performance of individual human TF models 

that were trained using various definitions of regulatory DNA. Statistical significance used paired t-test: p < 0.05 

(*), p < 0.01 (**), p < 0.001(***). 
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Supplemental Figure S4. 5: (A) Relationship between AUPRC of random prediction and AUPRC of model 

prediction. Dashed diagonal line has slope of 1. (B) Same as (A) but for human K562 TFs. (C) Relationship between 

the log fold change of the mRNA for the perturbed TF and model accuracy, for yeast. Pearson correlation = 0.06, P 

= 0.76. (D) Same as (B) but for human TFs. Pearson correlation = 0.47, P = 0.002. 
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Supplemental Figure S4. 6: (A) Mean SHAP values for all responsive and unresponsive targets of each yeast TF 

perturbation. (B) Mean SHAP values for all responsive and unresponsive targets of human TF perturbations. 
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Supplemental Figure S4. 7: Comparison of the influence of yeast TF binding data generated from two types of 

assays: transponson calling cards and ChIP-exo. Each pixel is the mean SHAP values of all target genes that were 

bound by the perturbed TFs.  
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Supplemental Figure S4. 8: Heatmap of the statistics that indicate the degree to which the bound but unresponsive 

genes have insufficient TF occupancy. The P-values for all bins in each row (TF) were estimated using the method 

in Figure 3C. Bins with P-values no less than 0.05 are in blank. 
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Supplemental Table S4. 1: Selection of histone modifications 

 
Literatures Data Availability 

  Karlić, 2010 

Zhou, 2014; 

González, 

2015 

Kundaje, 2015; 

Singh, 2016 

Yeast  

(Weiner, 2015) 

Human K562  

(ENCODE, 

2020) 

H3K27ac 1 1 
 

1 1 

H3K27me3 
 

1 1 
 

1 

H3K36me3 1 
 

1 1 1 

H3K4me1 
 

1 1 1 1 

H3K4me3 1 1 1 1 1 

H3K79me1 1 
  

1 
 

H3K9me3 
  

1 
 

1 

H4K16ac 1 
  

1 
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Supplemental Table S4. 2: Yeast TF models. 

TF Binding dataset AUPRC 

For SHAP 

analysis 

YLR403W (SFP1) Calling cards 0.58446718 TRUE 

YEL009C (GCN4) ChIP-exo 0.51278158 TRUE 

YLR451W (LEU3) Calling cards 0.36390632 TRUE 

YHR178W (STB5) ChIP-exo 0.3110723 TRUE 

YAL051W (OAF1) ChIP-exo 0.31106409 TRUE 

YIL036W (CST6) Calling cards 0.27532851 TRUE 

YNL199C (GCR2) Calling cards 0.27381191 TRUE 

YBL103C (RTG3) ChIP-exo 0.26980529 TRUE 

YLR256W (HAP1) ChIP-exo 0.24455603 TRUE 

YJR060W (CBF1) ChIP-exo 0.22821206 TRUE 

YDR034C (LYS14) Calling cards 0.21046638 TRUE 

YPL248C (GAL4) Calling cards 0.20618276 TRUE 

YJL056C (ZAP1) Calling cards 0.16135172 TRUE 

YKL038W (RGT1) Calling cards 0.16046672 TRUE 

YOR344C (TYE7) Calling cards 0.15421627 TRUE 

YMR182C (RGM1) Calling cards 0.12508439 TRUE 

YOL067C (RTG1) ChIP-exo 0.10535961 TRUE 

YEL009C (GCN4) Calling cards 0.45564519 FALSE 

YJR060W (CBF1) Calling cards 0.21908991 FALSE 

YNL199C (GCR2) ChIP-exo 0.21725465 FALSE 

YKL038W (RGT1) ChIP-exo 0.16007984 FALSE 

YLR451W (LEU3) ChIP-exo 0.1505335 FALSE 

YOR344C (TYE7) ChIP-exo 0.1503378 FALSE 

YOR363C (PIP2) ChIP-exo 0.09239194 FALSE 

YOL108C (INO4) Calling cards 0.07745282 FALSE 

YOL108C (INO4) ChIP-exo 0.06640978 FALSE 

YGL162W (SUT1) ChIP-exo 0.04185123 FALSE 

YMR280C (CAT8) ChIP-exo 0.03881355 FALSE 

YPL133C (RDS2) ChIP-exo 0.029646 FALSE 

YPL075W (GCR1) ChIP-exo 0.02614397 FALSE 

YPL075W (GCR1) Calling cards 0.02100747 FALSE 

YBR239C (ERT1) ChIP-exo 0.01386913 FALSE 

YJL089W (SIP4) ChIP-exo 0.01344086 FALSE 
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Supplemental Table S4. 3: Human TF models. 

TF AUPRC 

For SHAP 

analysis 

ENSG00000105698 (USF2) 0.64906387 TRUE 

ENSG00000074219 (TEAD2) 0.63229787 TRUE 

ENSG00000131931 (THAP1) 0.61089246 TRUE 

ENSG00000130522 (JUND) 0.55512811 TRUE 

ENSG00000113658 (SMAD5) 0.55354296 TRUE 

ENSG00000143390 (RFX5) 0.54710206 TRUE 

ENSG00000177045 (SIX5) 0.52840098 TRUE 

ENSG00000187098 (MITF) 0.52106216 TRUE 

ENSG00000111206 (FOXM1) 0.51931609 TRUE 

ENSG00000185591 (SP1) 0.51506909 TRUE 

ENSG00000198176 (TFDP1) 0.50122105 TRUE 

ENSG00000197905 (TEAD4) 0.49858104 TRUE 

ENSG00000105722 (ERF) 0.42194973 TRUE 

ENSG00000143379 (SETDB1) 0.26877678 TRUE 

ENSG00000102145 (GATA1) 0.25225519 TRUE 

ENSG00000141568 (FOXK2) 0.24994403 TRUE 

ENSG00000144161 (ZC3H8) 0.24814691 TRUE 

ENSG00000001167 (NFYA) 0.22888833 TRUE 

ENSG00000134138 (MEIS2) 0.21580418 TRUE 

ENSG00000186918 (ZNF395) 0.2140645 TRUE 

ENSG00000162772 (ATF3) 0.18328793 TRUE 

ENSG00000173039 (RELA) 0.17614689 TRUE 

ENSG00000160633 (SAFB) 0.17497082 TRUE 

ENSG00000123358 (NR4A1) 0.14874691 TRUE 

ENSG00000115816 (CEBPZ) 0.14337738 TRUE 

ENSG00000120837 (NFYB) 0.14218726 TRUE 

ENSG00000177463 (NR2C2) 0.1354988 TRUE 

ENSG00000185551 (NR2F2) 0.11380771 TRUE 

ENSG00000082641 (NFE2L1) 0.11378921 TRUE 

ENSG00000172273 (HINFP) 0.11147308 TRUE 

ENSG00000179348 (GATA2) 0.09625769 FALSE 

ENSG00000060138 (YBX3) 0.08859001 FALSE 

ENSG00000130254 (SAFB2) 0.08360437 FALSE 

ENSG00000177485 (ZBTB33) 0.07704929 FALSE 

ENSG00000126746 (ZNF384) 0.07324795 FALSE 

ENSG00000112658 (SRF) 0.06051329 FALSE 
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ENSG00000158773 (USF1) 0.05962755 FALSE 

ENSG00000126561 (STAT5A) 0.05056387 FALSE 

ENSG00000106459 (NRF1) 0.0484205 FALSE 

ENSG00000147421 (HMBOX1) 0.00781738 FALSE 

ENSG00000156273 (BACH1) 0.00700893 FALSE 

ENSG00000166478 (ZNF143) 0.00116493 FALSE 
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