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Polydopamine (PDA), a synthetic and organic material, has emerged as a promising material 

platform for various applications in energy, environmental, and biomedical fields.  PDA, formed 

by self-polymerization of dopamine, is rich in catechol and amine groups, which facilitate 

covalent conjugation and/or other non-covalent interactions with organic and inorganic 

materials. It is highly biocompatible, biodegradable, has broadband light absorption spectrum 

and excellent light-to-heat conversion efficiency. Also, it is easy to synthesize and functionalize. 

The combination of excellent characteristics of polydopamine-based nanomaterials, make them a 

promising adsorbent agent for environmental wastewater treatment and photothermal agent for 

biomedical applications.  

In the first half of thesis, we utilize the surface chemical functionality of polydopamine 

nanoparticles and their affinity to heavy metal ions and organic dyes to realize multifunctional 

filtration membranes that remove heavy metal ions and organic dyes from water through 

adsorption and catalytic degradation. Polydopamine exhibits high adsorption capacity toward 

heavy metal ions and organic dyes. Adsorption-based membrane technologies can be ideal for 

continuous flow water purification and have been extensively employed at industrial scale for 
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water reclamation. By introducing polydopamine nanoparticles during bacteria-mediated 

cellulose growth, we fabricated a composite foam and membrane to study the adsorption 

behavior of the nanocomposites in different environmentally relevant pH and concentrations. 

The PDA/BNC membrane was used to investigate the removal efficiency of toxic heavy metals 

ions such as Pb (II) and Cd (II) and organic pollutants such as rhodamine 6G and methylene 

blue. Furthermore, to improve the range of pH in which the composite membrane is effective for 

dye removal, we fabricated another novel polydopamine/nanocellulose membrane, which is 

decorated with palladium (Pd) nanoparticles to remove organic dyes from contaminated water 

through catalytic dye degradation.   

In the second part of thesis, we develop polydopamine-based nanomaterials and experimental 

setups to be used in biomedical applications such as drug delivery and photothermal stimulation 

of cells. Using mesoporous silica-coated PDA nanoparticles as drug carrier and tetradecanol 

(TD) as gate keeper, we demonstrated that we could enhance the immune system response 

toward Melanoma cancer in mouse model through combination of photothermal and 

immunotherapy. Polydopamine core works as a photothermal agent to cause localized release of 

gardiquimod and tumor cell death upon NIR laser irradiation, hence, release of tumor associated 

antigens. Antigen presenting cells (APCs) including the dendritic cells and macrophages uptake 

these antigens and be activated around tumor site in response to these signals. Furthermore, these 

activated APCs, present the antigen to CD8+ cytotoxic T cells to actuate anti-tumor immune 

response. We have shown that this treatment is effective in reducing the tumor size and 

eliminating it in majority of cases. Also, the treatment created a memory effect in immune 

system toward melanoma cancer when second cancer event happened in mice that were treated 

before.  
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Finally, we investigated the possibility of controlling the excitable cells’ activity through 

nanoheating. This was made possible by using polydopamine nanoparticles to localize the heat 

on cell membrane. We demonstrated that by using polydopamine nanoparticle and 

polydopamine/collagen 3D foam, and by applying NIR laser light, we can reversibly modulate 

the activity of in vitro cultured neurons and cardiomyocytes. A reduction in firing rate of neurons 

and an increase in beating rate of cardiomyocytes with different degree of inhibition and 

excitation was observed. Effect of different parameters on the quality of modulation was 

investigated.  
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Chapter 1: Background and Motivation 

1.1 Polydopamine-Based Nanomaterials 

Inspired by mussel’s versatile adhesion capability, including surprisingly strong metal-binding 

ability, polydopamine has emerged as a promising material platform for various applications in 

energy, environmental, and biomedical fields.1-4  Polydopamine, formed by self-polymerization 

of dopamine, is rich in catechol and amine groups, which facilitate covalent conjugation and/or 

other non-covalent interactions with organic and inorganic materials.5-11  Polydopamine is 

biocompatible and biodegradable, which serves as a great material for reduction of waste in 

environmental applications. The applications of PDA coating onto various adsorbents, such as 

graphene, graphene oxide, glass beads, magnetic nanoparticles, and most recently, metal-organic 

frameworks, was shown to significantly improve their adsorption efficiency toward metal and 

organic contaminants.12-16 

1.1.1 Polydopamine/Bacterial Nanocellulose Ultrafiltration Membrane for 

Adsorption-Based Wastewater Treatment 

The growing world’s population and socioeconomic development cause significant increase the 

demand for the fresh and clean water. The ever-growing industrialization around the world 

brings about more toxic heavy metals and organic contaminants into the natural water resources 

than ever.17-19  In response to these impending challenges, various water remediation 

technologies based on adsorption, chemical precipitation, membrane filtration, and biological 

treatment have been used to remove contaminants from polluted water.20-24  Among them, 

adsorption-based methods have been widely used for removing a variety of pollutants from water 

because they are simple, low-cost, effective and can be implemented in many parts of the 
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world.20  Several different types of adsorbents, such as carbon-based materials, metal oxides, 

silica, and polymers have been shown to remove heavy metal ions and organic pollutants from 

contaminated water.16, 20, 25-26  However, these adsorbents are mostly suitable for small-volume 

applications and are not compatible with continuous flow water treatment.22  Alternatively, 

membrane technologies can be ideal for continuous flow water purification and have been 

extensively employed at industrial scale for water reclamation.27-29  Thus, it is of great interest to 

develop novel adsorbent membranes that are cost-effective, robust and scalable.  

1.1.2 Palladium Nanoparticle-Decorated Mesoporous-Polydopamine/Bacterial 

Nanocellulose Ultrafiltration Membrane for Catalytic Removal of Organic 

Dyes in Wastewater 

Owing to the globally increasing demand for consumer goods, massive amounts of chemical 

wastes are produced and released into the environment by industries including textiles, paints, 

printing inks, cosmetics, plastics and paper.30 These industrial effluents are highly contaminated 

by organic and inorganic compounds with textile wastewater being the most polluting among all 

industrial sectors.31 Modern dyes, which are extensively used in many industries, offer superior 

color stability because of the high degree of aromaticity and extensive conjugation present in 

their chemical structures, which also make them harder to remove from water resources via 

traditional water treatment techniques.32-33 Presence of these carcinogenic, mutagenic and 

persistent organic contaminants in natural environment, poses a great health risk for humans and 

aquatic ecosystems.34-37 This greatly increases the need for the development of highly proficient 

and economical dye removal techniques from contaminated water. 
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Catalytic degradation of organic dyes by noble and transition metal nanostructures has been 

shown to be highly efficient and practical in water remediation in a wide range of environmental 

conditions.38-43 To alleviate the aggregation of metal nanoparticles and achieve prolonged 

catalytic activity, immobilizing them on various substrates has been proven to be an attractive 

approach. A wide range of substrates such as polydopamine (PDA)-based nanoparticle, carbon-

based nanoparticles, silica, and metal oxides have been employed for this purpose.24, 44-52 Among 

these, PDA has emerged as a promising material platform for the development of catalytically-

active substrates.1, 48-49, 52 PDA nanoparticles and PDA-based materials were used as substrates 

for immobilization of different metals such as silver, gold, palladium and platinum.48-50, 53  

However, the use of these stand-alone catalytically active composite particles is highly limited 

for practical applications in industrial waste water treatment, due to their colloidal stability, 

which requires extra steps to remove them from water. One way to overcome this problem is to 

immobilize the metal nanoparticle on membranes for membrane filtration. However, achieving 

an ultrafiltration membrane with high water flux and excellent organic dye removal 

characteristics is still a challenge. 

1.2 Photothermal Applications of Polydopamine-Based 

Nanomaterials  

Among various nanomaterials that could transform light energy to heat, polydopamine (PDA) 

nanomaterials are a particularly promising candidate for photothermal neuronal modulation and 

cancer therapy due to their excellent photothermal properties, biocompatibility, biodegradability, 

and facile surface functionalization. 54 PDA-based nanomaterials have been widely investigated 

as photothermal agents for photothermal cancer therapy.55-57 Furthermore, due to their 
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biocompatibility and superior interaction with cells, PDA-based nanomaterials have been shown 

to be promising candidates for neuronal interfacing. 58-60 

1.2.1 Mesoporous Silicon Oxide-Coated Polydopamine Nanoparticles as Drug 

Carrier and Photothermal Agent for Combined Photothermal-

Immunotherapy Cancer Treatment 

To achieve concurrent release of antigen and adjuvant by photothermally ablating the tumor cells 

for release of tumor associated antigens (TAAs) and simultaneously triggering the release of 

adjuvant, there is a need for a photothermally active material and a drug carrier. Recently, 

polydopamine has attracted increased attention as a bio-inspired, biocompatible, and 

biodegradable photothermal material for various biomedical applications.1, 3, 61-65 Mesoporous 

silica, which is employed as shell, exhibits excellent biocompatibility, and complete degradation 

into non-toxic components making it an attractive candidate as a drug carrier.66  Mesoporous 

silica-coated polydopamine nanoparticles could serve as a great drug delivery vehicle and 

photothermal agent for simultaneous photothermal and immunotherapy treatment. 

1.2.2 Polydopamine Nanoparticles and Collagen/Polydopamine 3D Foam for 

Photothermal Stimulation of Excitable Cells 

Among the many methods that aim to modulate the biological processes, a particularly attractive 

method is photo-regulation, a process in which light is utilized as an external stimulus.67 

Optogenetics, which involves the insertion of light-sensitive ion channels and subsequent 

stimulation of these neurons for selective control, has received wide attention.68-69 While 

optogenetic techniques are promising and have revolutionized basic research aimed at 

understanding the computational and behavioral role of several different neural populations, 

there are still several limitations associated with these techniques that remain to be addressed.70-
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72 To address some of these shortcomings, the use of nanomaterials for non-genetic electrical and 

thermal stimulation were explored and tested successfully in recent years.73 Among these, 

photothermal methods have shown great promise and versatility in stimulating neuronal cells. 74-

82 The use of thermal energy as a stimulus to activate neurons could be highly localized to avoid 

generic effects on neuronal firing and their behavior. Hence, there is a need for novel 

biocompatible nanomaterials to be used to interface them with excitable cells and are 

photothermally active to be used for photothermal stimulation of cells.   

1.3 Research Goals and Objectives 

The goal of this research effort is to synthesize multifunctional polydopamine (PDA) 

nanoparticles with well-defined structure and optical properties and to demonstrate their versatile 

applications in: (1) wastewater remediation; (2) combined photothermal and immunotherapy 

cancer treatment; (3) photothermal activity modulation of neuronal cells. Collectively, by 

demonstrating the multifunctional nature of the polydopamine nanomaterials and facile material 

synthesis, we have shown several potential applications that could take advantage of properties 

of this new class of organic material. We have accomplished several specific technical tasks 

noted below to realize these objectives: 
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Figure 1.1 Schematic illustration of the overall research goal 

 

1.3.1 Objective 1: Design, fabricate and validate PDA/ bacterial nanocellulose 

(BNC)-based functional composite membranes for efficient heavy metal ions 

and organic dyes removal from wastewater 

 

 Task 1: Investigate the contaminant removal capacity, water flux properties and the 

effect of pH and contaminant concentration on the adsorption properties of the PDA/BNC 

composite foam and membrane. 

 Task 2: Investigate the catalytic properties of palladium-decorated mesoporous-

PDA/BNC membrane, the water flux and membrane’s ability to remove organic dyes from 

wastewater.  
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1.3.2  Objective 2: Investigate NIR light-triggered photothermal therapy for 

improved cancer immunotherapy by using mesoporous silica-coated PDA 

nanoparticles 

 

 Task 1: Synthesize biocompatible mesoporous silica-coated PDA nanoparticles loaded 

with immuno-stimulating agent. 

 Task 2: Investigate anti-tumor response of photothermally-stimulated mesoporous silica-

coated PDA particles loaded with TLR7/8 agonist using mouse melanoma model. 

1.3.3  Objective 3: Harness the photothermal properties of PDA nanoparticles 

to control the electrical activity of neurons and cardiomyocytes in vitro locally 

and focally 

 

 Task 1: Devise an experimental setup to photothermally stimulate the primary neuronal 

cells and cardiomyocytes cultured on microelectrode arrays in presence of PDA nanoparticles 

using NIR light and investigate the nature of change in cells’ activity. 

 Task 2: Develop a composite foam of collagen-PDA nanoparticle to be used as an add-on 

patch for photothermal activity modulation of excitable cells and compare its performance to 

PDA nanoparticle.  
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Chapter 2: A Robust and Scalable 

Polydopamine/Bacterial Nanocellulose Hybrid 

Membrane for Efficient Wastewater Treatment 

2.1 Introduction 

The growing world’s population and socioeconomic development cause significant increase the 

demand for the fresh and clean water. The ever-growing industrialization around the world 

brings about more toxic heavy metals and organic contaminants into the natural water resources 

than ever.17-19  In response to these impending challenges, various water remediation 

technologies based on adsorption, chemical precipitation, membrane filtration, and biological 

treatment have been used to remove contaminants from polluted water.20-24  Among them, 

adsorption-based methods have been widely used for removing a variety of pollutants from water 

because they are simple, low-cost, effective and can be implemented in many parts of the 

world.20  Several different types of adsorbents, such as carbon-based materials, metal oxides, 

silica, and polymers have been shown to remove heavy metal ions and organic pollutants from 

contaminated water.16, 20, 25-26  However, these adsorbents are mostly suitable for small-volume 

applications and are not compatible with continuous flow water treatment.22  Alternatively, 

membrane technologies can be ideal for continuous flow water purification and have been 

extensively employed at industrial scale for water reclamation.27-29  Thus, it is of great interest to 

develop novel adsorbent membranes that are cost-effective, robust and scalable.  

Inspired by mussel’s versatile adhesion capability, including surprisingly strong metal-binding 

ability, polydopamine has emerged as a promising material platform for various applications in 

energy, environmental, and biomedical fields.1-4  Polydopamine, formed by self-polymerization 
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of dopamine, is rich in catechol and amine groups, which facilitate covalent conjugation and/or 

other non-covalent interactions with organic and inorganic materials.5-11  The applications of 

PDA coating onto various adsorbents, such as graphene, graphene oxide, glass beads, magnetic 

nanoparticles, and most recently, metal-organic frameworks, was shown to significantly improve 

their adsorption efficiency toward metal and organic contaminants.12-16  In membrane 

technologies, dopamine coating on commercially available PET/PTFE composite membrane was 

used to improve the oil–water separation.83  Due to excellent hydrophilicity of dopamine, it was 

used to modify the hydrophobic PVDF membranes to enhance the water flux and its antifouling 

performance.84 Because of its photothermal ability, polydopamine coating was also used on 

commercial PVDF membranes to achieve localized heating under sunlight for photothermal 

membrane distillation.85 Furthermore, it has been shown that PDA particles, as biocompatible 

materials could be used independently for a removal of heavy metals and organic contaminants 

with an outstanding efficiency.20, 86  However, in those system, PDA particles which are 

dispersed in aqueous solution are barely reusable and difficult to collect. Thus, they are less 

likely to be suitable for real-world, large-scale applications. For this reason, designing an 

innovative and environmentally benign composite materials, immobilized PDA particles in foam 

or membrane structures, can be an attractive solution to ensure sustainable water treatment.  

Bacterial nanocellulose is a highly attractive material for realizing multifunctional composites 

due to its outstanding mechanical strength, diverse chemical functionalization, facile synthesis, 

and excellent biocompatibility.87-96  By introducing functional materials into the culture medium 

during bacteria-mediated BNC growth, scalable and robust functional composites can be 

achieved.  Recently, we have demonstrated a novel, highly scalable and cost-effective strategy to 

realize BNC-based functional composites.97-99   
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Here, we report the fabrication approach of a low cost, scalable, environmentally friendly, and 

reusable composite membrane, which combines the mechanical robustness of BNC and the 

adsorption properties of PDA particles.  Heavy metal ions such as lead and cadmium, along with 

surrogates of organic pollutants such as rhodamine 6G (R6G), methylene blue (MB), and methyl 

orange (MO) and combination of these pollutants can be efficiently removed from water by 

simple membrane filtration at a low vacuum pressure (0.7 bar).  The novel membrane design 

introduced here suggest a promising approach for effective water remediation.  

2.2 Results and Discussion  

The PDA/BNC membrane is fabricated by the addition of PDA particles into Gluconacetobacter 

hansenii broth under aerobic and static conditions (Figure 2.1).  PDA particles are synthesized by 

self-polymerization and air-oxidation of dopamine monomer in water-ethanol-ammonium 

mixture at room temperature (Figure 2.2A).10  The size of the PDA particles can be controlled by 

varying the amount of ammonium present in the reaction solution, with a higher amount of 

ammonium resulting in smaller particles.  Optimal PDA particle size is critical for efficient 

incorporation of the particles in the BNC fiber network and fabrication of uniform PDA/BNC 

hybrid composites.  Smaller particles leach out of the BNC network easily under operational 

conditions, which compromises the adsorption efficiency of the membrane and causes 

unintended contamination of the permeate water.  Scanning electron microscopy (SEM) images 

showed that the PDA particles are spherical and highly uniform with a diameter around 800 nm 

(Figure 2.2B).  The Raman spectrum of PDA particles exhibited two broad bands at 1371 cm-1 

and 1578 cm-1 corresponding to the characteristic aromatic groups of polydopamine, confirming 

the formation of PDA particles (Figure S2.1).100  Fourier transform infrared (FTIR) spectrum of 

the PDA particles showed a broad adsorption band at 3341 cm-1, corresponding to the O–H and 
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N–H stretching vibrations of catechol group of the PDA (Figure 2.2C).101  The absorption peak 

at 1610 cm-1 can be attributed to the bending ring vibration of N–H and stretching vibration of 

aromatic ring, the peak at 1516 cm-1 corresponds to shearing vibration of amide group, and the 

peak at 1290 cm-1 corresponds to C-O stretching.102-103   

The as-produced PDA/BNC hydrogels were either freeze-dried to form foams for adsorption 

experiments in batch reactors or air-dried to form membranes for flow-through filtration tests.  

The thickness of the PDA/BNC foam was tuned by simply controlling the duration of the 

bacterial growth process.  The typical thickness of the PDA/BNC foams used in this study was 

~1.1 mm (Figure 2.2D).  Pristine BNC foam, comprised of an entangled network of 

nanocellulose fibers with diameters 20–100 nm, exhibited a porous microstructure, while the air-

dried BNC membrane showed a compact structure of cellulose fibers (Figure S2.2 and S2.3).  

We hypothesized that the fibrous network of the BNC matrix can effectively trap 800 nm PDA.  

Growth of BNC in the presence of PDA particles resulted in high density and uniform 

distribution of PDA particles inside the BNC fiber network, which is important for reliable and 

consistent performance of the membrane (Figure 2.2E and F).  When the PDA/BNC hydrogels 

were air-dried, the cellulose fibers and PDA particles were packed into a thin and dense film 

with a thickness of ~50 μm (Figure 2.2G and I).  Figure 2H shows that a few layers of BNC 

fibers on the surface of the membrane effectively trap PDA particles and prevent them from 

leaching out of the membrane.   

Thermogravimetric analysis (TGA) was used to measure the PDA loading of the PDA/BNC 

composite. TGA was performed in nitrogen using a TA Instruments Q5000 IR 

Thermogravimetric Analyzer at a heating rate of 5 ºC min-1. Around 57 % residual weight of 

PDA was observed after heating to 800°C under Nitrogen.  Pristine BNC film showed an initial 
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mass loss (2–3%) at 100 °C, which is attributed to the loss of residual/adsorbed water, a mass 

loss (~70%) at ~280 °C is due to the degradation of cellulose and a mass loss (~25%) at ~390 °C 

is due to the decomposition of cellulose residual, which generates CO2 and H2O.104  In the case 

of PDA/BNC, the initial mass loss (~8 %) at ~100 °C is due to the loss of residual water.  The 

second mass loss (~30%) at 280 °C is due to the degradation of cellulose and the degradation of 

PDA particles. After heating to 800 °C, 33% of initial weight of PDA/BNC membrane remained.  

Based on TGA results, the mass loading of PDA in PDA/BNC is calculated to be ~ 44 wt% 

(Figure S2.4).   

To study the adsorption behaviors of PDA/BNC composites, we performed batch adsorption 

tests using heavy metal ions and organic dyes (Figure 2.3A).  Pb (II) was selected as a model 

heavy metal ion.  In this experiment, the initial pollutant concentration and pH were adjusted and 

then PDA/BNC or BNC (control) foam was weighed and placed in the known volume of the 

pollutant solution.  The adsorbent was left under gentle shaking until it reached equilibrium 

condition. Subsequently, pollutant concentrations in the solution were measured to calculate the 

adsorption capacity.  The solution pH affects the surface potential (zeta-potential) of the PDA 

particles and BNC, thereby changing their adsorption behaviors.  In our experimental systems, 

the isoelectric point (pHiep) of BNC and PDA particles was found to be 2.4 and 3.3, respectively 

(Figure 2.3B), and the zeta-potential of BNC and PDA particles decreased with an increase in the 

pH of the solution.  

Specifically, the adsorption capacity of BNC and PDA/BNC foams for Pb (II) increased with the 

pH increased (Figure 2.3C).  At pH values below pHiep, the positively charged surface repels the 

positively charged Pb (II) ions, and hence, lower adsorption capacities were observed at pH < 3 
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(Figure 2.3C).  At pH values above pHiep, the surface of the adsorbent is negatively charged 

because of the ionization of oxygen-bearing functional groups on the surface.  Negatively 

charged surface provides favorable interactions for adsorption of Pb (II) ions.  The adsorption 

capacity was found to significantly increase for both BNC and PDA/BNC foams at pH values 

above their isoelectric point and below pH 6 (Figure 2.3C). At pH > 6, hydrolysis of the Pb (II) 

ions possibly transforms them into metal hydroxides and result in precipitation.105  The 

adsorption capacities of BNC and PDA/BNC foams were acquired at pH 6.  Upon increasing the 

Pb (II) ion concentrations, the adsorption capacity for both BNC and PDA/BNC foams increased 

until they reach a saturation point (Figure 2.3D).  Incorporation of PDA particles in the BNC 

matrix significantly increased the Pb (II) adsorption capacity of the composite from 5 mg g-1 for 

BNC to 16.8 mg g-1 for PDA/BNC.  This could be mainly due to the presence of active 

catecholamine functional groups on the PDA surface and their strong affinity to heavy metals.20  

The XPS spectra of the PDA/BNC before and after the adsorption were used to confirm the 

adsorption of the Pb (II) ions and their interactions with the adsorbents (Figure S2.5).  The C 1s, 

N 1s, and O 2p peaks at ~285.2 eV, ~398.4 eV and ~531.7 eV, respectively, correspond to the 

elemental composition of PDA/BNC before the adsorption (N 1s spectrum comes from PDA 

only).  The presence of Pb 4f binding energy peak (at 137.4 eV and 142.3 eV) after exposure to 

Pb salt solution confirmed the successful Pb (II) adsorption onto the PDA/BNC.  The Pb 4f 

spectrum for lead (II) nitrate exhibits two peaks at 138.1 eV and 143 eV (Figure S2.5B).  Upon 

its adsorption onto PDA/BNC, the two peaks shifted to lower energy levels by 0.7 eV, 

suggesting the reaction of Pb (II) and phenolic groups on the surface of the PDA (Figure 

S2.5C).16  Furthermore, we compared the PDA particle’s ability to remove Pb (II) with that of 

activated carbon, which is one of the most commonly used adsorbents (Figure S2.6).  The PDA 
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particles showed 77% higher adsorption capacity compared to activated carbon for lead ions 

when normalized by the weight of the adsorbents.  Although the specific surface area of PDA 

particles (1446 m2 g-1) is lower than that of the activated carbon (1594 m2 g-1), interestingly, 

PDA particles exhibited superior Pb (II) adsorption capacity compared to activated carbon.  

These observations indicate the better affinity of the lead ions to the PDA particles over activated 

carbon, possibly due to the presence of catecholamine groups on the PDA surface.20 

To examine the organic pollutant removal efficiency of the PDA/BNC foam, R6G was employed 

as a model positively charged organic contaminant.  Over a pH range of 2 to 8, the adsorption 

capacity of both BNC and PDA/BNC increased with an increase of the pH (Figure 2.4A).  With 

an increase in pH of the solution, the adsorbent surface is more negatively charged and results in 

higher adsorption of the positively charged dye (R6G).  However, above pH 7 due to 

deprotonation of amine groups of the dye, the interaction weakens, and the adsorption capacity 

decreases.  We tested the adsorption capacity of BNC and PDA/BNC foams at different initial 

concentrations of R6G at pH 7 (Figure 2.4B).  The adsorption capacity for both foams increased 

with an increase in the concentration of the dye until it reached a saturation point.  PDA/BNC 

showed improved performance with a maximum adsorption capacity of 8.7 mg g-1 compared to 

BNC (1.8 mg g-1).  The superior performance by PDA/BNC may be related to the π-π 

interactions between aromatic moieties of PDA and R6G along with the hydrogen-bonding 

interactions between catecholamine groups on PDA and amine groups of the R6G.106     

To analyze the nature of adsorption of heavy metal ions and organic pollutants, the experimental 

data were fitted using the following Langmuir adsorption isotherm (Equation 2.1).   
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                                                                                                                           (2.1) 

Where qe is the adsorption capacity (mg g-1) corresponding to equilibrium concentration, Ce (mg 

L-1). Qmax is the maximum uptake (mg g-1), and KL is the binding constant (L g-1). The fitting 

parameters corresponding to these curves are provided in Table S1 in supporting information. 

For both Pb (II) and R6G, the Langmuir model describes the adsorption behavior quite well 

(R2>0.97), suggesting that the adsorption of lead ions and R6G occurred on the functional groups 

on the surface of the adsorbents in a monolayer manner.16  

Considering that the PDA/BNC foam exhibited high efficiency in adsorbing heavy metal ions 

and organic dye, we set out to investigate the performance of PDA/BNC as a filtration membrane 

for continuous and rapid removal of contaminants in feed water (Figure 2.5A).  Membranes 

obtained through air-drying of the PDA/BNC hydrogel were cut into circular pieces with a 

diameter of 3 cm.  The membranes were fixed on a vacuum filtration setup and a vacuum 

pressure of 0.7 bar was applied.  Typical metal ion pollutants (i.e., Pb (II) and Cd (II)) along with 

organic dyes (i.e., R6G, MB, and MO) were used in membrane filtration tests.  The 

concentration of the pollutants in the feed water was adjusted to match that of polluted water 

sources and the pH of water was adjusted to match the optimum performance of the membrane 

for each pollutant (as determined from the batch adsorption measurements, see Figure S2.7 for 

optimum pH value for Cd (II) and MB).  The experiments with pristine BNC membranes did not 

generate any flow at 0.7 bar (vacuum) due to the small pore size of the BNC membrane. 

Therefore, no vacuum filtration data was obtained for BNC membrane.  Impregnating the BNC 

matrix with PDA particles, provided additional nanochannels for water to pass through the 



16 

 

membrane. This in turn, enabled filtration with water flux reaching 57 L m-2 hr-1 at 0.7 bar (10 

psi) vacuum pressure (water inlet pressure at the kitchen faucet: 25–75 psi). To measure the 

upper and lower limits of the pore sizes of the BNC membrane, we performed diffusion test with 

DL-Tryptophan, R6G, and lysozyme.  Within the observation time (5 hours), all of them diffused 

through the BNC membrane showing that pore size for BNC membrane is larger than ~ 1 nm 

(Figure S2.8A). To determine the upper limit of the pore size for BNC membrane, diffusion test 

was performed by using gold nanoparticles (AuNPs) with a diameter of 5 nm. After 24 hours, no 

AuNP was found on the permeate side, indicating that the pore size for the BNC membrane is 

less than 5 nm (Figure S2.8A). For PDA/BNC membrane, vacuum filtration at 0.7 bar pressure 

was used to filter the colloidal solution of 5 nm and 10 nm AuNPs (Figure S2.8B). As evident 

from the extinction spectrum, 5 nm AuNPs penetrate through the membrane, but 10 nm AuNPs 

are blocked from passing through the membrane even after 4 hours of filtration. These results 

indicate the upper limit of the pore size of PDA/BNC to be 10 nm, which is higher than that 

noted for BNC membranes.  

  

The first heavy metal pollutant tested was Pb (II) with an initial concentration of 58 ppm and pH 

adjusted to 6.  The permeate water concentration was measured repeatedly and the experiment 

was carried out until a detectable amount of Pb (II) was observed on the permeate side (Figure 

2.5B).  The Pb (II) concentration in the feed and permeate was determined using inductively 

coupled plasma optical emission spectrometry (ICP-OES) with a detection limit of 50 ppb.  A 

total amount of 225 ml of 58 ppm Pb (II) aqueous solution was filtered through the membrane 

with undetectable levels of Pb (II) on the permeate side.   The filtration test was carried out for 

Cd (II) solution with initial concentration of 50 ppm and a total amount of 125 ml was filtered to 
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a concentration below the limit of the detection of the ICP-OES (Figure 2.5C).  The PDA/BNC 

membrane showed superior performance in removing Pb (II) solution compared to Cd (II).   

Furthermore, after each filtration test of heavy metal ions, the PDA/BNC membranes were 

regenerated to recover their heavy metal ions removal efficiency (inset of Figure 2.5B). Aqueous 

sodium citrate (0.1 M) solution was employed for regenerating the membrane.  Note that sodium 

citrate is a mild regeneration agent compared to the typically employed strong acids, 

necessitating multiple wash steps for complete regeneration. The use of such mild regeneration 

agent preserves the membrane integrity and extends the lifetime of the membrane for repeated 

use.   The regenerated membranes exhibited excellent contaminant removal efficiency even after 

10 cycles of filtration (about 90% of the initial performance retained).   

For organic pollutants, the initial concentration for each pollutant was adjusted to mimic 

industrial wastewater source.22  For R6G and MB as model positively charged dyes, the initial 

pH was adjusted to 7 and 10, respectively (Figure S2.9A for chemical structure of the dyes).  In 

case of R6G, 105 ml of dye solution was filtered from 51 ppm to below 0.05 ppm (Figure 2.6A).  

For MB, 120 ml solution with initial concentration of 47 ppm was filtered to a concentration 

below 0.05 ppm (Figure 2.6B).  The last organic pollutant tested was MO as model negatively 

charged dye (Figure S2.10).  At pH 7, it was observed that no MO dye was removed from the 

water because of the electrostatic repulsion between negatively charged dye and negatively 

charged membrane.  Then, the initial pH value for MO solution was adjusted to ~2.4 for 

filtration purpose.  At this pH, only 25 ml of MO solution with an initial concentration of 55 ppm 

was filtered with high efficiency (Figure S2.10A).  The filtration performance for MO was 

significantly lower than R6G and MB, suggesting that PDA/BNC membrane, and generally 

PDA-based adsorbents, are not suitable choices for removing negatively charged pollutants.  To 
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demonstrate the reusability of the membranes, after R6G filtration, the membrane was 

regenerated using ethanol.  The PDA/BNC membrane retained more than 90% of its R6G 

removal capacity after 10 cycles of filtration and regeneration (inset of Figure 2.6A).   

To investigate the versatility of the PDA/BNC membrane when exposed to feed water with 

multiple contaminants, an inorganic–organic mixed solution of Pb (II), Cd (II), R6G, and MB 

was prepared and filtered through the PDA/BNC membrane.  In this competitive adsorption test, 

the PDA/BNC membrane removed 5.3 g of Pb (II) from water per square meter of the membrane 

area (Figure 2.6C).  The lowest performance was observed for Cd (II) with 2.1 g of ions removed 

per square meter of the membrane area, which might be because of lower binding affinity of Cd 

(II) to carboxylic and phenolic groups compared to lead ions.107  Organic dyes were also 

effectively removed from the mixture with total removal capacity of 4.3 g m-2 and 3.8 g m-2 for 

R6G and MB, respectively.  The strongly green colored cocktail solution became completely 

colorless after the vacuum filtration demonstrating an efficient filtration process with only a 

single run (Figure 2.6D and Figure S2.9B).  To put this into perspective, 5300 L of water 

contaminated with lead ions at a concentration of 1 ppm (much higher than EPA recommended 

safe level of 15 ppb) could be filtered to a safe concentration by using PDA/BNC membrane of 

1×1 m2.   

The mechanical stability of the PDA/BNC membrane was investigated by subjecting it to 

extensive sonication (Cole-Parmer ultrasonic cleaner #8890, 5 hours) and agitation (speed 3 on 

standard analog shaker, 30 days).  The membrane did not exhibit noticeable signs of 

disintegration or loss of PDA particles from the BNC matrix after the shaking and sonication 

process (Figure 2.7A).  The in situ fabrication method adopted here allowed for up to 44 wt% 

loading of the PDA particles inside the BNC network (Figure 2.7B, detailed thermogravimetric 
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analysis (TGA) is provided in the supporting information).  TGA of the PDA/BNC membrane 

after sonication (5 hours), demonstrated no discernible change in the weight fraction of the PDA 

particles inside the PDA/BNC composite, suggesting the high mechanical integrity of the 

membrane (Figure 2.7B).  The absorption spectrum of the bath solution in which PDA/BNC 

membrane was submerged during 5 hours of sonication did not exhibit light absorption 

corresponding to the PDA particles, further confirming the high mechanical stability of the 

PDA/BNC membranes and negligible amount of particle leaching (Figure 2.7C).  SEM images 

of the membrane before and after the sonication exhibited no perceivable change in the structure 

of the PDA/BNC membrane (Figure 2.7D).  Overall, the stability tests proved the excellent 

mechanical stability of the membranes, which is critical for their real-world applications. The 

performance of the membrane before and after the stability test was investigated using 100 ppm 

R6G as feed solution at pH 7. The PDA/BNC membrane retained 81% of its initial efficiency in 

removing the pollutants. We also noted a ~10% increase in water flux, possibly due to small 

structural changes that could not be perceived with SEM imaging. While there is a noticeable 

change in the membrane performance, it is important to note that the stability test performed here 

is quite harsh and represents an accelerated form of real-world application of the membrane.  

2.3 Conclusion  

To summarize, we introduced a novel PDA/BNC composite adsorption membrane which has 

potential to treat wastewater containing multiple inorganic and organic pollutants.  The 

PDA/BNC membrane is fabricated by incorporating high density PDA particles inside BNC 

matrix during its growth.  This fabrication technique is highly versatile and can be easily adapted 

to incorporate other adsorbents. All the materials used in the membrane fabrication process are 

biocompatible and biodegradable.  The unique fabrication process resulted in a highly uniform 
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distribution of PDA particles within the BNC matrix.  The highly flexible thin film PDA/BNC 

membrane exhibited excellent aqueous stability and fast water transport (57 L m-2 hr-1 under 10 

psi).  The PDA/BNC membrane showed effective contaminant removal from feed water 

containing heavy metal ions and positively charged organic dyes at high concentrations (40–60 

ppm).  The membrane was found to be equally effective in removing either a single pollutant or 

pollutant cocktail (the concentrations of contaminants in permeate side decreased to less than 

0.05 ppm). The PDA/BNC membrane can also be regenerated easily and reused for several times 

without a significant degradation in its adsorption capacity.  The facile, inexpensive, and scalable 

synthesis, excellent mechanical robustness and highly efficient removal of heavy metals and 

organic dyes under complex conditions and the ability to modify the PDA surface for variety of 

water treatment systems, collectively make PDA/BNC membrane demonstrated here a promising 

and powerful candidate for wastewater treatment.  

2.4 Experimental Section 

Sample Preparation:  All chemicals were purchased from Millipore Sigma, St. Louis, USA and 

used without further modification.  Polydopamine particles were synthesized by using a method 

explained elsewhere.10  In a typical synthesis procedure of polydopamine particles, 252 ml of 

deionized (DI) water (resistivity > 18.2 MΩ·cm) was mixed with 112 ml of ethanol in a 1000 ml 

glass container. Subsequently, 1.12 ml of aqueous solution of ammonia (28–30% NH4OH) was 

introduced into the above water/ethanol mixture.  After stirring for 30 min, the aqueous solution 

of dopamine hydrochloride (1.4 g in 28 ml) was added to the above solution.  The reaction was 

left under gentle magnetic stirring for 24 hours with no cap on the glass container.  The PDA 

particles were collected by centrifugation (7000 rpm, 10 min) and washed with DI water three 

times and dispersed in water (320 ml).   
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A fabrication technique that we introduced in our previous work was used with some 

modifications to synthesize the PDA/BNC composite.108 Bacterium Gluconacetobacter hansenii 

(ATCC®53582) was cultured in test tubes containing 16 ml of #1765 medium at 30 °C under 

shaking at 250 rpm.  The #1765 medium is composed of 2 % (w/v) glucose, 0.5 % (w/v) yeast 

extract, 0.5 % (w/v) peptone, 0.27 % (w/v) disodium phosphate, and 0.5 % (w/v) citric acid.  

PDA particle solution (160 ml) was centrifuged, and the pellets were dispersed in the mixture of 

bacterial culture solution and the bacterial growth solution (1.5 ml and 13.5 ml, respectively). 

This mixture was then transferred to a petri dish (6 cm diameter).  After 1-2 hours that the PDA 

particles precipitated at the bottom of the petri dish, the excess culture solution was removed.  

Two days later, a thin uniform layer of PDA-filled BNC was formed. The PDA/BNC hydrogel 

was collected and washed in boiling water for 2 hours, then dialyzed in DI water for one day.  

Then, the PDA/BNC hydrogels were either freeze-dried for batch adsorption tests or air-dried for 

filtration tests.  The PDA/BNC fabrication process relies on PDA particles to completely settle 

down during the first 1-2 hours of the growth process.  Hence, particles with the size around 800 

nm, that settle down in less than 1 hour were synthesized to incorporate into BNC matrix.  

Materials Characterization: Scanning electron microscope (SEM) images were obtained by 

using a JEOL JSM-7001 LVF Field Emission SEM.  Zeta potential measurements were 

performed using Malvern Zetasizer (Nano ZS).  Shimadzu UV-1800 spectrophotometer was 

employed for light absorption measurements. Raman spectra were obtained using a Renishaw 

inVia confocal Raman spectrometer mounted on a Leica microscope with 20× objective and 785 

nm wavelength diode laser as an illumination source.  Versa Probe II X-Ray Photoelectron 

Spectrometer (XPS) was used to acquire XPS spectra.  Fourier-transform infrared (FTIR) 

spectrum was obtained on Nicolet 470 (Thermo Scientific).  The specific surface area was 
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estimated from nitrogen adsorption/desorption isotherms by using Brunauer–Emmett–Teller 

(BET) method and a surface area analyzer (Autosorb‐1C).  

Batch Adsorption Experiments: To evaluate the adsorption behavior of PDA/BNC, batch 

adsorption tests were conducted at room temperature.  To investigate the effect of pH, a small 

piece of PDA/BNC foam was placed in 5 ml solution of each pollutant and left shaking until it 

reached equilibrium.  For heavy metals, pH values from 2 to 6 and for organic pollutants pH 

values from 2 to 10 were tested.  The solution pH was controlled by adding HCl and NaOH to 

original solutions.  At an optimum pH value for each pollutant, PDA/BNC foam was immersed 

into solutions with different initial concentrations and left shaking to reach equilibrium.  For 

R6G, methyl orange and methylene blue, UV-vis absorption spectroscopy is used to measure the 

concentrations before and after the adsorption.  Then, an Inductively coupled plasma-optical 

emission spectroscope (ICP-OES PE Optima 7300DV) was utilized to evaluate the heavy metal 

concentrations.  To compare the PDA with a commonly used adsorbate such as activated carbon, 

similar weight of each absorbent was added into 15 ml of 200 ppm Pb (II) solution in a glass 

vial.  Glass vials were subjected to mild shaking for a day, and Pb (II) concentrations before and 

after the test were measured.  The removal capacity (q) for each pollutant was calculated by the 

equation below.  

                                                                                                                                  (2.2)                                               

where, C and C0 are the initial and final concentration of the pollutant (in ppm), respectively, V is 

the volume of the contaminated water used (in L) and m is the weight of adsorbents (in gram). 

Each experiment was replicated three times and error bar for each data point shows the standard 

deviation of these three runs.   
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Membrane Filtration Experiments: Filtration experiments were carried out by using a vacuum 

filtration setup.  A concentration of each pollutant was prepared, and the pH was adjusted to the 

corresponding optimal pH value for each pollutant.  At typical pressure of 0.7 bar, vacuum 

filtration was performed in wet state, until the concentration of the filtered water for each 

pollutant exceeded the limit of detection of the corresponding measuring system.  All the 

membranes used in vacuum filtration had 3 cm diameter.  Then, membrane was regenerated 

using ethanol for organic dyes and 0.1 M sodium citrate solution for heavy metals. After each 

filtration test, the membrane was regenerated by placing it in the washing solution and shaking it 

for 2 hours for each washing cycle. The washing solution was measured each time to estimate the 

amount of regenerated pollutants. Washing cycles were continued until no pollutant was 

observed in the washing solution. 

 

2.5 Supporting Information 

Supporting Information for chapter 2 is provided in appendix 1. 
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2.6 Figures 
 

 

 

Figure 2. 1 (A) Photographs of PDA/BNC membrane during different fabrication steps. (B) 

Schematic representation of the fabrication process of PDA/BNC membrane. 

 

 

 

 

 

 

 

 

 

A 

 

B 

  



25 

 

 

Figure 2. 2 (A) Photograph of the PDA particle solution. (B) SEM images of as-synthesized PDA 

particles (inset shows the higher magnification SEM image). (C) FTIR absorption spectrum of 

the PDA particles.  Optical images (D), SEM images of the (E) surface and (F) cross-section of 

the freeze-dried PDA/BNC composite.  Optical images (G), SEM images of the (H) surface and 

(I) cross-section of the air-dried PDA/BNC membrane. 
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Figure 2. 3 (A) Schematic illustration of the batch adsorption test.  (B) Zeta potentials of the 

PDA particles and BNC dispersion at different pH values.  (C) Adsorption capacities of 

PDA/BNC and pristine BNC foams for Pb (II) at different pH values (experiments carried out at 

room temperature and the initial concentration of the contaminants was 200 ppm (D)  Pb (II) 

adsorption isotherms of PDA/BNC and BNC foams and curve fitting by Langmuir (dash line) 

model (The initial pH value was adjusted to 6).  (Number of replicates = 3, Error bars for BNC 

samples are small compared to the graph scale.) 
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Figure 2. 4 (A) R6G adsorption capacities of PDA/BNC and pristine BNC foams at different pH 

values (experiments carried out at room temperature and the initial concentration of the 

contaminants was 200 ppm).  (B) R6G adsorption isotherms of PDA/BNC and BNC foams and 

curve fitting by Langmuir (dash line) model (initial pH value was adjusted to 7).  (Number of 

replicates = 3, Error bars for BNC samples are small compared to the graph scale.) 
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Figure 2. 5 (A) Schematic illustration of membrane filtration experiment.  Permeate water 

concentrations after filtration of (B) Pb (II) with a feed concentration of 58 ppm (inset shows 

PDA/BNC membrane performance after 10 cycles of Pb (II) filtration-regeneration); (C) Cd (II) 

with a feed concentration of 50 ppm. 
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Figure 2. 6 Permeate water concentrations after filtration of (A) R6G with a feed concentration 

of 51 ppm (inset shows 10 cycles of filtration-regeneration of R6G) and (B) MB with a feed 

concentration of 47 ppm. (C) Single filtration tests of cocktail solution containing Pb (II) and Cd 

(II) ions as well as R6G and MB organic dyes (The bars on the left (red) show original 

concentration, and on the right (black) show total uptake). (D) Optical images of mixture 

solution before and after the cocktail filtration test. 
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Figure 2. 7 (A) Optical images of the PDA/BNC composite before and after extensive sonication 

and mechanical agitation.  (B) Weight loss profiles of PDA/BNC composite before and after 

sonication (5 hrs) obtained by TGA.  (C) UV-vis spectra of the PDA particles (13.5 mg L-1) and 

bath solution used for sonicating PDA/BNC membrane for 5 hrs (The inset is the optical image 

of the PDA particle solution (left) and bath solution used for sonication (right)).  (D) SEM 

images of the PDA/BNC membrane before and after sonication (5 hrs).  
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Chapter 3: Palladium Nanoparticle-Decorated 

Mesoporous Polydopamine/Bacterial Nanocellulose as 

a Catalytically Active Universal Dye Removal 

Ultrafiltration Membrane 

3.1 Introduction 

Owing to the globally increasing demand for consumer goods, massive amounts of chemical 

wastes are produced and released into the environment by industries including textiles, paints, 

printing inks, cosmetics, plastics and paper.30 These industrial effluents are highly contaminated 

by organic and inorganic compounds with textile wastewater being the most polluting among all 

industrial sectors.31 Modern dyes, which are extensively used in many industries, offer superior 

color stability because of the high degree of aromaticity and extensive conjugation present in 

their chemical structures, which also make them harder to remove from water resources via 

traditional water treatment techniques.32-33 Presence of these carcinogenic, mutagenic and 

persistent organic contaminants in natural environment, poses a great health risk for humans and 

aquatic ecosystems.34-37 This greatly increases the need for the development of highly proficient 

and economical dye removal techniques from contaminated water. 

To treat water resources contaminated with organic pollutants, several different technologies 

such as membrane filtration, catalytic degradation, photocatalytic oxidation and adsorption have 

been employed.109-119 Among them, adsorption is one of the most commonly-used method for 

removing a variety of organic pollutants from water because of its simplicity and low cost.120 

However, adsorption alone cannot remove all the different dyes and not all adsorption-based 
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techniques are able to operate in a broad range of environmentally-relevant pH conditions.121-122 

Alternatively, catalytic degradation of organic dyes by noble and transition metal nanostructures 

has been shown to be highly efficient and practical in water remediation in a wide range of 

environmental conditions.38-43 Among transition metals, palladium nanoparticles (PdNPs) have 

attracted special attention for dye degradation owing to its excellent catalytic properties and low 

environmental impacts.123-125 Through catalytic degradation, the toxic organic pollutants with 

intrinsic poor biodegradability can be converted to degradable molecules through the electron 

transfer between catalysts and pollutants.49 However, metal nanostructures when used as stand-

alone (colloidal state) catalysts, tend to aggregate in solution and cause secondary 

contaminations, which makes the recovery of these nanostructures challenging.126-128  

To alleviate the aggregation of metal nanoparticles and achieve prolonged catalytic activity, 

immobilizing them on various substrates has been proven to be a feasible approach. A wide 

range of substrates such as polydopamine (PDA)-based nanoparticle, carbon-based 

nanoparticles, silica, and metal oxides have been employed for this purpose.24, 44-52 Among these, 

PDA, mussel-inspired synthetic polymer, has emerged as a promising material platform for the 

development of catalytically-active substrates.1, 48-49, 52 PDA nanoparticles and PDA-based 

materials were used as substrates for immobilization of different metals such as silver, gold, 

palladium and platinum.48-50, 53  However, the use of these stand-alone catalytically active 

composite particles is highly limited for practical applications in industrial waste water 

treatment, due to their colloidal stability, which requires extra steps to remove them from water.  

Membrane technologies are being widely used by different industries due to their stability and 

ability to be used in continuous flow and high throughput dye removal setups.27, 29, 129-130 In our 
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previous work, we demonstrated the use of solid PDA nanoparticle incorporated into 

nanocellulose matrix (PDA/BNC) as adsorption-based filtration membrane for removing organic 

dyes and heavy metals.130 However, PDA/BNC membrane effectiveness in removing organic 

dyes was limited to cationic dyes and to pH values above 4-5. Incorporating catalytically active 

composite particles into membrane matrix can provide a highly efficient dye removal membrane 

for real-world applications. Several different types of membrane such as GO/BNC, PVDF, PET 

and cellulose acetate have been employed as efficient dye degradation membrane for methyl 

orange (MO), 4-nitrophenol (4NP), methylene blue (MB), Congo Red and 2,6-dinitrophenol.44, 

131-134  However, achieving an ultrafiltration membrane with high water flux and excellent 

organic dye removal characteristics is still a challenge.  

Herein, we report a facile, scalable and highly efficient catalytically active ultrafiltration 

membrane based on bacterial nanocellulose (BNC) loaded with mesoporous PDA (mPDA) 

nanoparticles and palladium nanostructures. Mesoporous PDA nanoparticles are embedded into 

the BNC matrix during the growth process of BNC to generate mPDA-BNC membrane followed 

by in situ growth of Pd nanoparticles on mPDA nanoparticles and BNC fibers. Although 

Palladium is expensive, it is a popular catalyst for dye degradation due to its high efficiency and 

inert nature. Incorporation of bowl-like mPDA particles inside BNC matrix increases the pore 

size of the composite and provides high surface area for Pd nucleation and growth, which results 

in higher Pd loading compared to pristine BNC membrane. Moreover, due to the higher porosity 

of the membrane the water flux for the membrane is significantly higher compared to the 

existing commercial ultrafiltration membranes with the same range of pore size.135 The Pd-

mPDA-BNC membrane exhibited high degradation efficiency in removing anionic (MO), neutral 
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(4NP) and cationic (MB) dyes over a wide range of environmentally relevant pH conditions (3-

9), making it an outstanding candidate for real-world applications in wastewater treatment. 

3.2 Results and Discussion  

3.2.1 Preparation of Pd-mPDA-BNC Membrane 

Mesoporous polydopamine-bacterial nanocellulose (mPDA-BNC) membrane was fabricated by 

the addition of mPDA particles into Gluconacetobacter hansenii broth under aerobic and static 

conditions (Figure 3.1).  Mesoporous bowl-like polydopamine nanoparticles were synthesized 

based on formation of block copolymer F127, PDA, and 1,3,5 trimethylbenzene (TMB) micelles 

at water/TMB emulsion interfaces followed by island nucleation and anisotropic growth on the 

surface of emulsion droplets.136  Using this technique, porous polydopamine nanoparticles with 

the diameter of ~200 nm were formed with mesoscale channels (~11 nm diameter, ~21 nm 

center-to-center distance) aligned radially from the center to the surface (Figure 3.2A).   

To synthesize palladium-decorated mPDA-BNC, we have employed two different approaches: 

(i) direct growth of Pd nanoparticles in the mPDA nanoparticles followed by their dispersion in 

bacteria growth solution to create membrane; and (ii) dispersion of mPDA particles into the 

bacteria growth solution to fabricate a composite membrane, followed by the formation of Pd 

nanostructures on nanocellulose fibers and mPDA nanoparticles. For the first approach, mPDA 

nanoparticles were dispersed in palladium chloride (PdCl2) solution, which resulted in loading of 

the mPDA nanoparticles with Pd2+ ions formation of coordination compounds.137-138 

Subsequently, the mPDA nanoparticles were transferred to sodium borohydride (NaBH4) 

solution to reduce the precursor (Pd (II) ions) to metallic palladium. The Pd nanoparticles were 
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primarily formed inside the pores of mPDA particles as shown in TEM image (Figure 3.2B). 

This is probably due to the trapping of Pd (II) ions inside the pores through electrostatic 

interactions between PDA and heavy metal ions, which prevents their during washing steps.2 

High-resolution transmission electron microscopy (HRTEM) of Pd decorated mPDA 

nanoparticles (Pd-mPDA) revealed lattice fringes with a lattice spacing of 0.23 nm, 

corresponding to (111) planes of Pd (Figure 3.2C). To create thin-film membrane, 

Gluconacetobacter hansenii bacterium was utilized to produce a non-woven network of cellulose 

nanofibers called bacterial nanocellulose. In the past, we have shown that various 2D 

nanomaterials such as graphene oxide and MoS2 nanosheets and spherical nanoparticles such as 

SnO2 and PDA nanoparticles can be trapped inside the nanocellulose network by adding these 

nanomaterials into the bacterial culture medium, resulting in a composite multi-functional 

structure.130, 139-141 However, addition of the palladium-decorated mPDA particles to the growth 

solution inhibited the formation of cellulose network  due to the antibacterial properties of the Pd 

nanostructures.142 Hence, we employed the second approach for the fabrication of the membrane. 

Pd-mPDA particles were used to compare dye removal efficiency of pristine mPDA and Pd-

mPDA nanoparticles. With no additives in bacterial culture medium, under typical growth 

conditions, a 1 mm thick cellulose hydrogel is formed after 2 weeks. Air-dried pristine BNC 

membrane is comprised of a dense network of cellulose nanofibers with a diameter of ~20-100 

nm (Figure 3.2D). The cross-section SEM images of the pristine BNC membrane showed a 

uniformly layered structure with overall thickness of 7 μm (Figure S3.1A, supporting 

information). Addition of mPDA nanoparticles into the bacterial broth solution resulted in 

trapping of the mPDA nanoparticle within the nanocellulose fiber network. The resulting air-

dried membrane exhibited highly porous structure compared to the pristine membrane as the 
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tight packing of the nanofibers is hindered by the presence of the PDA nanoparticles with 

hundreds of nanometers in size, which provide physical barriers for fiber-fiber interaction and 

collapse (Figure 3.2E). The air-drying process removes water from the expanded cellulose fiber 

network, thus causing the collapse of the 3D open porous network into compact film. The 

cellulose fibers form extensive inter-fiber hydrogen bonds, which results in small pore size of the 

membrane and significant loss in swellability upon rehydration.143 The Pd NPs were in situ 

grown in the mPDA-BNC composite by exposing the mPDA-BNC membrane to Pd (II) 

precursor (palladium chloride) solution and subsequent reduction using a strong reducing agent, 

NaBH4. Scanning electron microscopy images revealed that palladium nanostructures were 

formed on mPDA particles and BNC fibers throughout the membrane (Figure 3.2F). 

The Pd growth on the mPDA-BNC membrane is notably different from that on mPDA particles. 

The size of Pd nanostructures and areal coverage of the Pd nanostructures was significantly 

higher compared to that observed in free mPDA nanoparticles in solution. This difference in the 

structure and coverage of Pd nanostructures possibly stems from the more efficient trapping of 

the Pd precursor within the composite membrane compared to the nanopores of the free mPDA 

nanostructures. The cross-section SEM images of the Pd-decorated mPDA-BNC (Pd-mPDA-

BNC) showed uniform Pd formation with increased membrane thickness of 17 μm (Figure 

S3.1B, supporting information). This increase in the membrane thickness comes from 

combination effect of mPDA particle trapping in BNC matrix and growth of Pd nanostructures in 

situ. For comparison, the same procedure was used to create Pd nanostructures on the pristine 

BNC membrane (Pd-BNC). The SEM images of the surface of the Pd-BNC membrane showed 

sparse Pd structures formed on the surface with a large fraction of the surface free of Pd 
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nanostructures, which may be attributed to the highly dense network structure of pristine BNC 

membrane compared to mPDA-BNC membrane (Figure S3.2A, supporting information).  

Atomic force microscopy image of the Pd-BNC further confirmed the low coverage of the Pd 

nanostructures on the BNC surface (Figure S3.2B, supporting information). The 

thermogravimetric analysis of the membranes showed that Pd accounts for 20.3 wt% in Pd-

mPDA-BNC and 13.6 wt% in Pd-BNC (Figure S3.3, supporting information). The higher Pd 

loading in Pd-mPDA-BNC compared to pristine BNC membrane shows that the incorporation of 

mPDA nanoparticles provides higher density of active sites for the in situ growth of Pd 

nanostructures, thereby potentially improving its catalytic properties.  

To understand the chemical composition of Pd-mPDA-BNC membrane, we performed X-ray 

photoelectron spectroscopy (XPS) measurements. The binding energy of Pd 3d5/2 and Pd 3d3/2 

obtained from the Pd-mPDA-BNC at 333.0 and 338.3 eV can be assigned to Pd (0), indicating 

the metallic form of Pd. The peaks at 334.1 and 339.1 eV correspond to the oxidized form of Pd 

(Pd2+) (Figures 3.2G, Figure S3.4, supporting information).144-145 The Pd(0):Pd(II) ratio is 

calculated to be around 19.5:10, indicating that a major fraction of Pd in the Pd-mPDA-BNC 

membrane exists in the metallic form.146  Energy-dispersive X-ray spectroscopy (EDS) analysis 

further confirmed the presence of Pd in the membrane with strong peaks at 2.85 eV and 3.01 

KeV (Figure 3.2H).  Furthermore, the presence of Pd nanoparticles in the membrane was also 

verified by X-ray diffraction (XRD). The XRD pattern exhibited four peaks at 40.2°, 46.7°, 68.3° 

and 82.1° corresponding to the (111), (200), (220) and (311) planes of typical face centered cubic 

Pd, respectively (Figure 3.2I).147 
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3.2.2 Batch Reaction for Wastewater Treatment  

The mPDA nanoparticles are used instead of PDA because they provide nanopores for Pd 

nucleation (Figure 3.2) and higher surface area for efficient adsorption of organic dyes. Figure 

S5 demonstrates the superior performance of mPDA particles compared to PDA particles with 

improved dye removal efficiency for all three dyes at all pH values tested. As a proof-of-concept 

for degradation efficiency, we evaluated the dye removal efficiency of the Pd-mPDA particles. 

Methyl orange (MO, anionic dye), 4-nitrophenol (4NP, neutral) and methylene blue (MB, 

cationic dye) were selected as model dyes. The dye removal efficiency of the Pd-mPDA and 

mPDA particles were compared under a wide range of environmentally relevant pH conditions. 

Polydopamine is not stable at extremely acidic or alkaline solutions, hence, pH values from 3 to 

9 were chosen for the dye removal experiments.148 Polydopamine adsorbs positively charged 

organic dyes mainly through electrostatic interactions above pH 4.130 However, the adsorption 

efficiency is low for negatively charged and neutral dyes above pH 4, which is attributed to the 

negatively charged surface of PDA under these conditions (isoelectric point of PDA is 3.2).130 

We hypothesized that this low efficiency can be overcome by incorporating catalytically-active 

Pd nanoparticles in mPDA nanoparticles. The dye removal mechanism of mPDA is exclusively 

through adsorption, while that of Pd-mPDA nanoparticles is through the synergistic effect of 

adsorption and catalytic degradation. The chemical degradation of dye in presence of catalyst 

involves the adsorption of borohydride ions (BH4 
-1) on the surface of the catalyst, releasing 

hydrogen on its surface. This in turn forms catalyst-H complexes on the surface of the catalyst as 

follows149-151: 

                                                                                            (3.1) 
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                                                                                                              (3.2) 

Where, C represents the catalyst. The dye molecules then adsorb on the surface of catalyst via 

hydrogen bonding. After the adsorption of dye, the catalyst surface transfers the electron from 

reducing agent (NaBH4 in this case) to the dye molecules, thereby facilitating the degradation of 

dye.152-153 The degradation product is then desorbed from the surface of the catalyst and diffuses 

to the bulk region, thereby evacuating the catalytically active site for next reduction run.154 

Sodium borohydride reacts with water to form sodium borate, both of which are toxic and should 

not exist in water in large amounts.151 Although most studies reporting catalytic degradation of 

organic dyes use sodium borohydride as reducing agent, its concentration should be carefully 

considered to minimize the possible adverse effect on the environment and human health (more 

information on environmental impact of sodium borate is provided in Supporting 

Information).155  

The catalytic degradation of methyl orange results in the formation of sulfanilic acid and 

aromatic amines,156-159 degradation of methylene blue results in leucomethylene blue149-150, 152-153 

and that of 4-nitrophenol results in 4-aminophenol.160-162 The byproducts of the catalytic 

degradation are colorless and have various industrial and medicinal applications, although toxic 

in higher amounts.149-150, 152-154, 156-158, 160-162 This suggests that the processed water can be utilized 

by industries for the manufacture of commercially relevant products.162 The reaction kinetics 

were monitored using UV-vis spectroscopy. The MO, 4NP and MB exhibit absorption peaks at 

465 nm, 400 nm, and 664 nm, respectively (Figure 3.3A, B and C). The MO removal efficiency 

for mPDA nanoparticles decreased with increasing pH, which results in an increase in the 

negative surface charge of mPDA nanoparticles, thus weakening the electrostatic adsorption of 

negatively charged dye (Figure 3.3D). However, the Pd-mPDA nanoparticles in the presence of 
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NaBH4 exhibited removal efficiency above 99% at all pH conditions, which can be attributed to 

the synergistic effect of electrostatic adsorption and catalytic dye degradation. In the case of 

neutral dye 4NP, removal efficiency for mPDA nanoparticles was below 10% at all pH values, 

however, the Pd-mPDA nanoparticles exhibited more than 99% removal efficiency at all pH 

conditions (Figure 3.3E). The removal efficiency of positively charged MB increased with pH in 

case of mPDA nanoparticles due to favorable electrostatic interactions between mPDA 

nanoparticles and MB at higher pH values (Figure 3.3F).  In other words, the MB removal 

efficiency of pristine mPDA nanoparticles was lower under low pH conditions. On the other 

hand, the Pd-mPDA nanoparticles exhibited removal efficiency above 99% at all pH values 

tested. These results systematically demonstrate that incorporation of catalytically active species, 

such as Pd nanoparticles, with mPDA nanoparticles renders synergistic effect of dye adsorption 

and degradation, thus significantly improving the overall dye removal efficiency. It is known that 

sodium borohydride decomposes at different rates in water at different pH. At pH around 10, 

sodium borohydride is more stable in water. At pH around 7, decomposition rate is much faster 

(two orders of magnitude) compared to the rate of reaction at pH 10.163 But, this should not 

affect the degradation process in our experiments, since all the elements needed for degradation 

are already available when sodium borohydride is introduced to the solution. This way, sodium 

borohydride decomposition will help degradation of the dye in presence of catalyst (Pd) at all pH 

values as is evident from high removal rate (above 99%) for all dyes at all pH values (Figure 

3.3). 

Having established the synergistic effect of mPDA and Pd nanoparticles, we set out to explore 

the reaction kinetics of catalytic dye degradation of Pd-mPDA-BNC membrane. For this, a 1x1 
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cm2 piece of Pd-mPDA-BNC membrane was immersed into MO, 4NP and MB dye solutions 

containing NaBH4 (see Experimental section for details). Subsequently, the change in 

absorbance of each dye was monitored to track the kinetics of the reaction. For MO, the 

absorption peak at 465 nm decreased rapidly in the first minute and then the rate of change in 

absorbance decreased (Figure 3.4A). The absorbance continued to decrease slowly due to dye 

degradation until the solution became completely colorless (not shown in the plot). The MO 

solution containing NaBH4 without the Pd-mPDA-BNC membrane did not show any sign of 

color change, indicating the need for the catalyst in the degradation reaction (Figure S3.6, 

supporting information). For comparison, we have also introduced BNC and mPDA-BNC 

membranes (1x1 cm2) and immersed into the MO solution containing NaBH4. However, we 

noted only small decrease in the absorbance (11%) after 30 minutes, suggesting that without the 

presence of Pd as catalyst, the degradation reaction proceeds at an extremely slow rate. The 

batch degradation experiment for 4NP showed similar behavior with Pd-mPDA-BNC membrane 

degrading the 4NP rapidly during first two minutes followed by slower rate until complete 

degradation (Figure 3.4B). The BNC and mPDA-BNC membranes did not result in any 

noticeable change in the 4NP absorbance confirming the catalytic degradation of 4NP in the 

presence of Pd nanostructures. The degradation kinetics of MB were significantly different 

compared to the former two dyes in that it exhibited significantly smaller slope but linear 

degradation over a longer time scale (Figure 3.4C). The significantly different degradation 

kinetics of MB compared to MO and 4NP possibly stems from the electrostatic attraction 

between positively charged MB and negatively charged BNC and mPDA .130  In addition to 

electrostatic adsorption of MB on negatively charged surface, the constant flux of dye molecules 

towards the membrane facilitates catalytic degradation. As a result, absorbance of corresponding 
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to MB completely disappeared within 5 min, which is in stark contrast to the other two dyes 

tested. 

To demonstrate the advantage of using mPDA-BNC composite membrane as the template to 

grow Pd nanostructure, we investigated the catalytic activity of pristine BNC membrane 

containing in situ grown Pd nanostructures. For all three dyes, the degradation trend was similar 

to the Pd-mPDA-BNC, however, with a slower reaction rate. Use of mPDA-BNC as a template 

improved the degradation speed owing to the larger surface area mPDA nanostructures, which 

facilitated higher Pd nanostructures loading (20% by weight) compared to pristine BNC (13% by 

weight). The Langmuir–Hinshelwood apparent first-order kinetics was used to estimate and 

compare the reaction rate constant for different dyes and substrates (Figure 3.4D, E and F). From 

pseudo first-order kinetics analysis, the rate constant of Pd-mPDA-BNC membrane was higher 

than Pd-BNC membrane for all three dyes. By using the mPDA-BNC as the template to grow the 

Pd nanostructures, the rate of the reaction increased by ~100% for all three dyes, suggesting the 

effectiveness of the Pd-mPDA-BNC in improving the catalytic degradation efficacy. 

3.2.3 Membrane Filtration 

Now, we turn our attention to the possible application of the Pd-mPDA-BNC membrane as a 

filtration membrane for treatment of organic dye-polluted water. To test this, the membranes 

were placed in a benchtop filtration setup under 0.8 bar vacuum pressure.  For each dye, varying 

concentrations of dye contaminated water (from low to high) were filtered through the 

membranes. Subsequently, the change in absorbance of the dye-contaminated water upon 

filtration was used to calculate the dye removal efficiency.   For MO, the filtered water was 

completely colorless until 50 ppm with removal efficiency above 99%. Although above 50 ppm 



43 

 

(extremely toxic concentrations) the filtration efficiency gradually decreased, the membrane was 

still able to remove more than 92% of the MO at 200 ppm (Figure 3.5A). For comparison, 50 

ppm MO solution containing NaBH4 was filtered through the pristine BNC membrane with 

removal efficiency of only 20% (Figure S3.7A, supporting information).  In the absence of 

NaBH4, Pd-mPDA-BNC membrane used to filter 50 ppm MO solution, resulted in only 17% 

removal efficiency, highlighting the need for presence of both NaBH4 and Pd nanostructures for 

high removal efficiency (Figure S3.7B, supporting information). It is worth noting that the dye 

removal efficiency decreases with an increase in the water flux.135, 164 Although the effect of 

water flux is not systematically studied here, we noted that by increasing the porosity of the 

membrane (freeze-drying instead of air-drying), water flux increased, and the degradation 

efficiency decreased, possibly due to the shortened time of interaction between catalyst and dye.    

In the case of 4NP, the Pd-mPDA-BNC membrane removed more than 99% of the contaminant 

until 100 ppm. The removal efficiency gradually decreased for higher concentrations but 

remained above 94% up to 200 ppm (Figure 3.5B).  For MO and 4NP, the dye removal is caused 

mainly by catalytic degradation with little or virtually no contribution from dye adsorption. 

However, in the case of MB, adsorption on Pd-mPDA-BNC also contributes to the overall 

removal efficiency. The Pd-mPDA-BNC exhibited significantly higher removal efficiency for 

MB with 99% dye removal efficiency until 300 ppm (Figure 3.5C). It was only at 400 ppm MB 

concentration that the removal efficiency dropped to 95%. These results indicate the excellent 

dye removal efficiency of Pd-mPDA-BNC, stemming from the synergistic effect of catalytic 

degradation and adsorption of three different classes of organic dye molecules. We observed that 

when Pd-mPDA-BNC membrane is subjected to solution containing dye but without sodium 



44 

 

borohydride, membrane surface turned to blue color, indicating the formation of organic film on 

the membrane. However, in the presence of sodium borohydride, due to the catalytic degradation 

of the MB, no significant change in the color of the membrane was observed. 

Next, we investigated the recyclability of Pd-mPDA-BNC membranes by washing them with 

water and alcohol mixture and reusing them for filtration of 50 ppm MO solution.165-166 The 

membranes retained their removal efficiency above 96% even after 5 cycles of washing/filtration 

steps (Figure 3.5D). Furthermore, in order to explore if the removal happens preferentially for 

certain dyes, a 50 ml cocktail containing MO, 4NP and MB (10 ppm of each dye) in presence of 

NaBH4 was filtered through a regenerated Pd-mPDA-BNC membrane (Figure 3.5E). All the 

dyes were effectively removed from the solution and solution turned colorless from its original 

green color (Figure 3.5F). 

For real world applications involving regular filtrations and mechanical agitations, the structural 

integrity of the membrane is critical. To assess their mechanical stability, Pd-mPDA-BNC 

membranes were subjected to 30-day mechanical agitation and 1-day harsh ultrasonication. The 

membrane structure compared to that of the pristine Pd-mPDA-BNC membrane and supernatant 

color were examined (Figure 3.6A). After 30-day mechanical shaking, there is no sign of particle 

leakage and damage to the membrane (Figure 3.6B). However, after 1-day of harsh 

ultrasonication, a small amount of the Pd nanostructures leaked from membrane into the solution 

as evidenced by the color of the solution (Figure 3.6C).  

Ultrasonication is an extreme case, which rarely happens in real-world applications. TGA curves 

after mechanical shaking showed no signs of weight change in the membrane confirming the 
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negligible leakage of Pd (Figure 3.6D). However, after 1-day sonication, there was ~3% weight 

loss in the membrane, indicating Pd loss during the process. Furthermore, to assess the amount of 

Pd loss during the mechanical shaking, the Pd concentration in the supernatant of Pd-BNC and 

Pd-mPDA-BNC membranes was measured by inductively coupled plasma mass spectrometry 

(ICP-MS) (Figure 3.6E). The presence of trace amount Pd in the supernatant (122 ppb for Pd-

mPDA-BNC and 305 ppb for Pd-BNC) suggest that although there was no measurable weight 

loss in TGA curves, small fraction of Pd particles leached out during the shaking. These results 

also indicate that Pd-mPDA-BNC is more stable compared to Pd-BNC, yet another advantage of 

the composite membrane compared to pristine BNC. The BNC membrane consists of a tightly 

packed matrix of cellulose nanofibers and Pd nanoparticles only form on the surface of the BNC 

(Figures 3.2D and S3.2). Hence, the Pd nanostructures that are formed on the surface are not 

mechanically interlocked and are prone to desorption during mechanical agitation. On the other 

hand, the mPDA-BNC membrane structure is more porous with Pd nanostructures covering the 

entire surface of cellulose nanofibers and mPDA particles (Figure 3.2F). The Pd nanostructures 

interact with both PDA particles and the BNC fibers, which serve as anchoring sites to resist 

desorption during mechanical agitation. 

Considering the importance of metallic Pd in the dye degradation, XRD spectra was collected 

before and after the dye degradation filtration experiments (Figure 3.6F). The virtually identical 

XRD spectra before and after filtration further confirmed the stability of the Pd nanostructures in 

the membrane. The pore size of the Pd-mPDA-BNC membrane was assessed by filtering 5 nm 

gold nanoparticles solution (Figure S3.8, supporting information).44, 130 The filtered solution is 

free of gold nanoparticles with rejection rate of ~100% as determined using UV-vis extinction 

spectra, indicating that membrane pore size to be smaller than 5 nm. Furthermore, it is expected 
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from the combined observations of SEM images (Figure 3.2 and Figure S3.2) and particle 

rejection test that the pore size distribution is in the range of few nanometers to few tens of 

nanometers. Hence, the Pd-mPDA-BNC membrane falls in the category of ultrafiltration 

membrane. Finally, the water flux through the Pd-mPDA-BNC membrane was measured to be 

137.4 L m-2 h-1 under 0.8 bar vacuum pressure. This is much higher than ~ 15 L m-2 h-1 at 4 bar 

which we observed from the commercially available color reduction ultrafiltration membrane 

(YMGESP3001, Sterlitech) which we tested in our previous study (with 95.2% removal 

efficiency for 10 mM MO).44  

3.3 Conclusion  

In conclusion, we demonstrated a highly efficient organic dye removal membrane based on BNC 

loaded with mPDA and Pd nanoparticles for wastewater treatment. Key factors which enable the 

Pd-mPDA-BNC membrane to be effective in dye removal are as follow: synergistic effect of dye 

adsorption on mPDA and catalytic ability of Pd nanoparticles in presence of NaBH4; highly 

porous structure due to the addition of mPDA nanoparticles, which increases the specific surface 

area for higher adsorption and degradation; and uniform and high loading of Pd nanoparticles 

within the entire membrane. The membrane fabrication process is simple and is easily scalable. 

The Pd-mPDA-BNC membrane exhibited excellent dye removal performance (above 99% 

removal for MB even at extremely high concentration of 300 ppm) as well as the ability for the 

treatment of multiple contaminants with different chemical structures and charge simultaneously. 

The membrane exhibited significantly higher water flux (137.4 L m-2 h-1) compared to 

commercially available membranes even under low vacuum pressure of under 0.8 bar. The facile 

and the scalable fabrication of the membrane along with excellent dye removal efficiency and 
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higher water flux makes it a highly attractive candidate for wastewater treatment even at 

industrial scales. 

3.4 Experimental Section 

Materials: 1,3,5-trimethylbenzene (TMB), block copolymer F-127 (Pluronic F-127), dopamine 

hydrochloride, 30% ammonium hydroxide solution, glucose, sodium borohydride (NaBH4), 

palladium chloride (PdCl2), methyl orange, 4-nitrophenol and methylene blue were purchased 

from Sigma-Aldrich. Yeast extract, peptone and disodium phosphate were purchased from Fisher 

Scientific and citric acid was purchased from Alfa Aesar. Gluconacetobacter hansenii was 

obtained from ATCC (ATCC® 53582). 190 proof ethanol was obtained from Decon Labs, Inc. 

All the chemicals were used with no further purification. Nanopure water (≥18.2 MΩ) was used 

for the preparation of all solutions unless otherwise stated. 

Synthesis of mesoporous polydopamine particles: Mesoporous polydopamine (mPDA) 

particles with radially oriented mesoporous channels were synthesized via emulsion-induced 

anisotropic assembly technique.136 In a typical synthesis, 1.5 g of dopamine hydrochloride, 1 g of 

the block copolymer F-127 and 2 ml of TMB were dispersed in 100 ml of 1:1 ethanol-water 

mixture via ultrasonication to form an emulsion. To this emulsion solution, 3.75 ml of 30% 

ammonium hydroxide solution was added dropwise under moderate stirring. The mPDA 

particles were collected via centrifugation after 2 hours and washed three times with water and 

ethanol. Then the particles were redispersed in 20 ml of 1:1 ethanol-water mixture and heated at 

100 oC for 24 hours in a sealed Teflon-lined autoclave to stabilize the mesostructure. The 

resulting mPDA particles were washed three times with ethanol and water and then redispersed 

in water for further use. 
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Synthesis of Pd decorated mDA particles: The mPDA particles were dispersed in PdCl2 

solution (2.5 wt% in 5 wt% of HCl) and incubated for 2 hours, followed by washing in water to 

remove excess PdCl2. Subsequently, Pd2+ ions were reduced to metallic Pd in NaBH4 solution 

(100mM) for 10 min to achieve in situ formation of Pd nanoparticles on mPDA. The resultant Pd 

decorated mPDA nanoparticles were washed three times in water and redispersed in water for 

further use. 

Fabrication of mPDA-BNC membrane: The fabrication technique introduced in our previous 

work was employed with slight modifications to synthesize mPDA-BNC membrane.130 

Gluconacetobacter hansenii (ATCC®53582) was cultured in test tubes containing 16 ml of 

#1765 medium at 30 °C under shaking at 250 rpm. The #1765 medium was composed of 2% 

(w/v) glucose, 0.5% (w/v) yeast extract, 0.5% (w/v) peptone, 0.27% (w/v) disodium phosphate, 

and 0.5% (w/v) citric acid. The as synthesized mPDA particles (14 ml of 0.1 wt%) was 

centrifuged and redispersed in #1765 medium and centrifuged again to obtain a wet mixture of 

mPDA and medium after decanting the supernatant. Subsequently, this wet mixture was 

dispersed in a mixture of Gluconacetobacter hansenii culture solution and fresh medium (2 ml 

and 12 ml, respectively). This mixture was then transferred to a petridish (6 cm diameter) and 

left undisturbed at room temperature for 2 weeks. The membrane fabrication process can be 

modified to significantly reduce the fabrication time to around three days.44 After 2 weeks, the 

mPDA-BNC hydrogel was first washed in boiling water for 6 hours and then dialyzed in 

nanopure water for 1 day. Then the cleaned mPDA-BNC hydrogel was air dried in an oven at 60 

oC for 12 hours to obtain mPDA-BNC membrane. Pristine BNC membrane was also obtained 

using an identical procedure except for the addition of mPDA particles. 
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Formation of Pd Nanostructure on mPDA-BNC membrane:  The mPDA-BNC membrane 

was immersed in PdCl2 solution (2.5 wt% in 5 wt% of HCl) and incubated for 1 hour. This PdCl2 

soaked membrane was then immediately immersed in 100 mM NaBH4 solution for 10 min to 

achieve in situ formation of Pd nanoparticles on membrane fibers and mPDA surface. The 

obtained Pd-mPDA-BNC membrane was then air dried in an oven at 60 oC for 2 hours. 

Materials Characterization: Scanning electron microscopy (SEM) images were obtained by 

using a JEOL JSM-7001 LVF Field Emission scanning electron microscope at an accelerated 

voltage of 10kV. Transmission electron microscopy (TEM) images were obtained using JEM- 

2100F (JEOL) field emission STEM at an operating voltage of 200 kV. X-ray photoelectron 

spectroscopy (XPS) analysis was performed using Physical Electronics® 5000 VersaProbe II 

Scanning ESCA (XPS) Microprobe. The X-ray diffraction (XRD) patterns of the membranes 

were obtained using a Bruker D8-Advance X-ray powder diffractometer using Cu Kα radiation 

(λ = 1.5406 Å). TGA was performed in nitrogen atmosphere using a TA Instruments Q5000 IR 

Thermogravimetric Analyzer at a heating rate of 10 oC/min. The optical absorption spectra of 

dye-contaminated water were obtained using a Shimadzu UV-1800 UV-Vis spectrometer. Trace 

amounts of Pd was measured using ICP-MS: PerkinElmer NexION 2000 in duplicates of three 

different dilutions and the average of all 6 measurements was reported. 

Evaluation of dye removal performance of Pd-mPDA particles: The dye removal 

performance of Pd-mPDA particles was evaluated by incubating Pd-mPDA particles (200 µg/ml, 

final concentration) with dye-contaminated water (10 ppm, final concentration) in the presence 

of NaBH4 (1.2 mM, final concentration) at different pH (3,5,7,9) under constant stirring. In these 

experiments, pH of the dye solution was adjusted to desired value using NaOH or HCl, then it 

was mixed with Pd-mPDA nanoparticles, followed by addition of the NaBH4. After 10 minutes, 
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the mPDA particles were centrifuged down and the optical spectra of the dye solutions before 

and after the particle incubation was monitored. The dye removal efficiency of the particles was 

calculated using the following equation: 

                                          (3.3)                                    

Where, co and cf are the initial and final dye concentration, Ao and Af are the initial and final dye 

optical absorbance, respectively. 

Evaluation of catalytic kinetics of Pd-mPDA-BNC membrane: The catalytic kinetics of the 

Pd-mPDA-BNC membrane was evaluated by monitoring the evolution of catalytic dye-

degradation reaction with time.  NaBH4 (1.5 mM, final concentration) was rapidly added into the 

dye solution (15 ppm, final concentration) under constant stirring and subsequently, Pd-mPDA-

BNC membrane (1 cm X 1 cm) was placed in 1.5 ml of the above solution to initiate the catalytic 

reaction. The concentration of the reactant (dye) obtained from UV-Vis spectra of the solution 

was monitored every 30 sec for 11 minutes. The rate constant of the degradation reaction of dye 

using Pd-mPDA-BNC as a catalyst was estimated via Pseudo-first-order kinetics as follows:167 

 

                                                                                                                                (3.4)                                                                                                              

Where, co is the initial reactant concentration, ct is the reactant concentration at time t, k is the 

reaction rate constant and t is the reaction time. In this reaction, the ratio of ct and co was 

calculated from the relative absorbance intensity of At/Ao. 
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Evaluation of dye removal performance of Pd-mPDA-BNC ultrafiltration membrane: The 

dye removal performance of the Pd-mPDA-BNC ultrafiltration membrane was evaluated via 

filtering dye-contaminated water through the membrane using a benchtop vacuum filtration 

setup. The diameter of all the membranes used in vacuum filtration is 3 cm. 10 ml of varying 

concentrations of dye solutions (0 – 200 ppm) were filtered through the membrane placed in a 

benchtop vacuum filtration setup under 0.8 bar in the presence of NaBH4 (2.5 mM, final 

concentration). The optical absorption spectra of the solutions before and after filtration was 

monitored and the dye removal efficiency of the membrane was calculated as follows: 

 

                                                                     (3.5) 

Where, Ao is the initial dye optical absorbance and Af is the final dye optical absorbance after 

filtration. 

Flux and particle rejection test: Water flux of the Pd-mPDA-BNC membrane was estimated 

using a benchtop vacuum filtration setup under 0.8 bar by filtering 200 ml of water through a 

fixed cross-section area of membrane and the total time for filtration was recorded. The water 

flux was calculated as follows: 

 

                                                                           (3.6) 

Gold nanoparticles (AuNPs) with a diameter around 5 nm were synthesized using previously 

reported successive seed-mediated growth synthesis.168 10 ml of the as-synthesized AuNP 
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solution was then filtered through Pd-mPDA-BNC membrane using the above mentioned 

benchtop vacuum filtration setup under 0.8 bar. The optical extinction spectra of feed and 

permeate solutions were monitored and the rejection rate was determined as follows: 

 

                                                                                              (3.7)                     

Where, Ef and Ep are the optical extinction of feed and permeate solutions, respectively. 

 

3.5 Supporting Information 

Supporting Information for chapter 3 is provided in appendix 2. 
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3.6 Figures 
 

 

 

 

Figure 3. 1 Schematic illustration showing the preparation of the catalllically active Pd-mPDA-

BNC membrane. Bacteria produces cellulose nanofibers in the presence of the mPDA particles to 

create mPDA-BNC hydrogel. The mPDA-BNC hydrogel is incubated in PdCl2 solution, 

subsequently transfereed to NaBH4 solution to create metalic palladium nanostructures on the 

cellulose fibers and mesoporous polydopamine nanoparticles. 
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Figure 3. 2 Transmission electron micrographs of (A) mesoporous polydopamine nanoparticles 

and (B) palladium nanoparticle (Pd NP)-loaded mesoporous polydopamine nanoparticles (black 

dots represent Pd nanoparticles). (C) HRTEM image of a single Pd NP on the mPDA 

nanoparticle.  Scanning electron micrographs of top surface of the (D) BNC membrane, (E) 

mPDA-BNC membrane and (F) Pd NP-loaded mPDA-BNC membrane.  (G) XPS spectra of Pd 

3d peak after reduction of Pd on the mPDA-BNC membrane. (H) EDX spectrum of Pd-mPDA-

BNC showing the formation of metallic palladium. (I) XRD spectrum of the Pd-mPDA-BNC 

membrane showing the peaks corresponding to palladium nanocrystals. 
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Figure 3. 3 UV–vis spectra showing the degradation of (A) MO, (B) 4NP and (C) MB in the 

presence of NaBH4 and Pd-mPDA nanoparticles at pH=7. Dye removal performance of the 

pristine mPDA and Pd-mPDA nanoparticles at different pH for different dyes: (D) negatively 

charged methyl orange (MO), (E) neutral 4-nitrophenol (4NP) and (F) positively-charged 

methylene blue (MB) (insets show the chemical structure of each dye molecule).  
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Figure 3. 4 Plots showing the degradation of different membranes for (A) MO, (B) 4NP and (C) 

MB in the presence of NaBH4 over time. Langmuir–Hinshelwood apparent reaction rate constant 

for degradation of (D) MO, (E) 4NP and (F) MB in the presence of Pd-mPDA-BNC and Pd-

BNC. 
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Figure 3. 5 Dye removal efficiency of Pd-GO-BNC membrane at different (A) MO, (B) 4NP and 

(C) MB concentrations. (D) Dye removal efficiency of the Pd-mPDA-BNC membrane over 

multiple cylces of filtration/regenarations showing the reusability of the membranes. (E) UV–vis 

spectra showing the dye removal from a cocktail (50 mL) of organic contaminants: MO, 4-NP, 

and MB (each with a concentration of 10 ppm) in the presence of NaBH4 (2.5 mM). (F) 

Photographs showing the organic dye cocktail before and after filtration treatment.  
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Figure 3. 6 Optical images of (A) Pristine Pd-mPDA-BNC membrane, (B) after 30-day 

mechanical shaking and (C) after 1-day ultrasonication. (D) TGA of pristine Pd-mPDA-BNC, 

after 30-day mechanical shaking and 1-day sonication showing the Pd particle loss percentage 

during the process. (E) Concentration of Pd leaked into solution after mechanical shaking of Pd-

BNC and Pd-mPDA-BNC membranes showing better stability of the latter membrane compared 

to the former. (F) The XRD spectra before and after the dye degradation filtration experiment 

showing the intact Pd nanocrystals, which serve as the catalyst. 
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Chapter 4: Polydopamine-Mesoporous Silica Core-

Shell Nanoparticles for Combined Photothermal-

Immunotherapy 

4.1 Introduction 

Immunotherapy has proven to be a successful therapeutic approach for cancer with long-lasting 

effects. However, only a limited fraction of patients is completely cured by standalone 

immunotherapy. A primary cause of the low response rate is the “immunoediting” employed by 

cancer in an immuno-competent host to escape surveillance.169-171 Cancer cells downregulate 

antigenic proteins and peptides, upregulate immune-inhibitory receptors and express/secrete 

immuno-suppressive factors to effectively create a pro-tumor microenvironment.172 The primary 

goal of immunotherapeutic interventions is to restore the lost immunogenicity and reverse the 

immuno-suppressive microenvironment in the tumor.173-174 Toll-like receptor (TLR) agonists and 

immunomodulatory vaccine adjuvants such as polyinosinic:polycytidylic acid (Poly(I:C)), 

cytosine-phosphorothioate-guanine (CpG), imiquimod, and resiquimod reprogram the tumor 

microenvironment (TME). These TLR agonist act either alone or in combination with other 

treatment modalities such as chemotherapy, photodynamic therapy (PDT), radiotherapy or 

photothermal therapy (PTT) for generation of potent anti-tumor immune response.175-180 

An ideal combination immunotherapy involves a “tumor killing” modality including PTT, PDT, 

or chemotherapy, that should partially ablate the tumor and release tumor-associated antigens 

(TAAs) and damage associated molecular patterns (DAMPs).  The released TAAs and DAMPs 

synergize with immunomodulatory drugs to create a tumor-inhibitory environment. In previous 

studies, the two components-i) chemo/photothermal/photodynamic agents; and ii) the 
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immunomodulators, are co-delivered either in the form of a simple physical mixture or co-

encapsulated in a drug delivery vehicle.181-185  With these therapeutic approaches, there is no 

external control over the release profile or the bioavailability of the therapeutic agents once the 

formulation is administered inside the body. The lack of external control over the cargo release 

leads to differential release kinetics of antigen and adjuvant. This compromises the efficacy of 

the innate immune response and subsequent adaptive immune response. For eliciting cytotoxic 

anti-tumor immune response, the internalized antigen must undergo cross-presentation, which 

includes MHC I-restricted presentation to CD8+ T cells.186-187 For optimum cross-presentation by 

APCs, the antigen and adjuvant should preferentially be exposed simultaneously to the APCs.188 

If the APCs are exposed to adjuvant first, it leads to their activation and maturation, which in 

turn leads to down-regulation of phagocytosis and cross-presentation compromising the overall 

anti-tumor immunity.189-190 On a contrary, if the APCs are exposed to antigen first in the absence 

of adjuvants, then the APCs cross-present the antigen in the absence of co-stimulatory receptors 

(e.g., CD40, CD80), which leads to generation of immunological tolerance and anergy.191-193  

Both of these scenarios (antigen first in the absence of adjuvant and vice versa) result in sub-

optimal anti-tumor immune response, thus underscoring the importance of innovative delivery 

approaches for spatiotemporally orchestrating the availability of antigens and adjuvant for APCs.    

Here, we aim to achieve concurrent release of antigen and adjuvant by photothermally ablating 

the tumor cells for release of TAAs and simultaneously triggering the release of adjuvant.  

Towards this goal, we have designed and synthesized polydopamine (core) - mesoporous silica 

(shell) nanostructures that enable photothermal tumor ablation owing to the photothermal 

properties of the PDA nanostructures and simultaneous release of the adjuvant contained in the 

mesoporous silica shell. Recently, polydopamine has attracted increased attention as a bio-
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inspired, biocompatible, and biodegradable photothermal material for various biomedical 

applications.1, 3, 61-65 Mesoporous silica, which is employed as shell, exhibits excellent 

biocompatibility, and complete degradation into non-toxic components making it an attractive 

candidate as a drug carrier.66  We harnessed mesoporous silica shell for controlled release of 

gardiquimod, a toll-like receptor 7/8 (TLR 7/8) agonist, known to improve cell-based or 

combination immunotherapies for various cancers.194-197 Mesoporous silica was loaded with a 

mixture of gardiquimod and a phase change material, 1-tetradecanol, which served as a “gate 

keeper” for near infrared (NIR) light-controlled release of the cargo.  We engineered the core-

shell nanoparticles to generate locoregional heat to ablate the tumor cells and simultaneously 

release the adjuvant through melting of the phase change material upon heating caused by NIR 

irradiation (Figure 4.1A). The concurrently released antigens (upon tumor ablation with NIR 

irradiation) and adjuvant causes effectual activation of dendritic cells, which in turn activate the 

CD8+ T cells in the tumor draining lymph nodes. The activated cytotoxic effector T cells not 

only eliminate the residual primary tumor but also inhibits recurrent secondary tumors (Figure 

1B). Using these multifunctional nanoparticles, we demonstrate robust photothermal-

immunotherapeutic response using NIR light as an external trigger. 

4.2 Results and Discussion  
 

4.2.1 Synthesis and characterization of mesoporous silica-polydopamine 

nanoparticles (PDA@mSiO2) 

Spherical PDA nanoparticles are synthesized by oxidative self-polymerization of dopamine 

monomer in water−ethanol−ammonium mixture at room temperature.10 By controlling the 
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amount of ammonium hydroxide, spherical PDA particles with a diameter of 260 ± 32 nm were 

synthesized (Figure 4.2A, E).  Subsequently,  silica shell was formed around the PDA 

nanoparticles using modified Stӧber method.198  For forming nanoscale pores within the silica 

shell, cetyltrimethylammonium bromide (CTAB), which serves as a porogen, was added to the 

reaction mixture. Following the formation of the shell, CTAB was removed through ion 

exchange.199  The resulting core-shell nanostructures exhibited highly porous structure with 

buckled surface (Figure 4.2B, F). The as-prepared silica-coated PDA nanoparticles did not 

exhibit buckling on their surface (Figure S4.1). The surface buckles appeared after refluxing the 

core-shell particles in ammonium nitrate solution to remove the porogen (i.e. CTAB).  The 

differential thermal stresses at the core-shell interface developed during reflux process (at 45°C 

for 24 hours) possibly result in the buckled surface morphology of the nanostructures.  The 

thickness of the mesoporous silica coating was found to be ~100 nm as measured by dynamic 

light scattering (Figure 4.2C). Both PDA and PDA@mSiO2 exhibited negative zeta-potential (~-

30 mV) at physiological pH of 7.4 (Figure 4.2D).  The pore size distribution of the PDA@mSiO2 

nanoparticles exhibited a sharp peak at 3.1 nm, confirming the mesoporous nature of the shell 

(Figure 4.2G).  Scanning transmission electron microscopy-energy dispersive X-ray 

spectroscopy elemental mapping of N and Si delineated the PDA core and silica shell, as 

evidenced by the presence of N and Si in the core and shell, respectively (Figure S4.2).  

Thermogravimetric analysis (TGA) of the pristine PDA nanoparticles and PDA@mSiO2 

nanoparticles indicated that silica shell corresponds to about 53% of the weight of the 

PDA@mSiO2 nanoparticles (Figure 4.2H).  
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4.2.2 Photothermal and controlled release properties of PDA@mSiO2 

nanoparticles  

Polydopamine and PDA@mSiO2 nanoparticles exhibited broad light absorption over visible and 

NIR parts of the electromagnetic spectrum (Figure S4.3A). To explore the NIR-induced heating 

of PDA@mSiO2 nanoparticles and dynamics of the temperature increase, different 

concentrations of PDA@mSiO2 nanoparticles in water were subjected to 808 nm laser irradiation 

at a power density of 14 mW/mm2. For 300 seconds of laser irradiation, the temperature 

increased monotonically and reached to a maximum of 57°C for PDA@mSiO2 nanoparticles 

solution with a concentration of 1000 µg/ml (Figure 4.3A). As expected, the maximum 

temperature increased with an increase in the nanoparticle concentration (Figure 4.3B). 

Temperature rise of the core-shell nanoparticle solution under NIR irradiation ranged from 10°C 

to 30°C for concentrations ranging from 100-1000 µg/ml.  In contrast, temperature of de-ionized 

water increased by only 2°C under identical NIR irradiation conditions. Following the NIR 

irradiation for 20 min, no discernable changes in the shape or pore structure of the core-shell 

nanoparticles were observed, indicating the stability and applicability as drug carriers for 

controlled release (Figure S4.3B). The photothermal efficiency was calculated and found to be 

56.8% (See discussion in Supporting Information). 

Next, we investigated the loading and controlled release of cargo from core-shell nanostructures 

using 1-tetradecanol as gate keeper.  1-Tetradecanol, a biocompatible phase changing material, 

exhibits melting temperature of 38-39°C, which is slightly above the normal human body 

temperature. Consequently, 1-tetradecanol can contain the cargo in the nanoparticles at body 

temperature with minimal leakage and enable triggered release of the contents by external 
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heating.200  A model dye, Rose Bengal (RB), mixed with 1-tetradecanol was loaded into the 

nanostructures.  As discussed above, under NIR irradiation, PDA@mSiO2 nanoparticles 

exhibited temperature rise, enough to melt 1-tetradecanol and release the cargo. The RB-loaded 

PDA@mSiO2 nanoparticles solution was concentrated to 4 mg/ml and subjected to NIR laser (14 

mW/mm2) to trigger the release. During the first 5 minutes of the treatment, the solution 

temperature raised steadily followed by saturation at ~70°C for the subsequent 15 min of 

irradiation (Figure 4.3C). As the temperature increased to above the melting point of the 1-

tetradecanol within 1 minute, the optical absorbance of RB in the surrounding aqueous medium 

started to increase, indicating the NIR-triggered release of the dye from the nanoparticles (Figure 

4.3C, D). The cumulative absorbance of the dye steadily increased for the subsequent 20 min 

indicating the continuous release of the dye from the nanostructures. In stark contrast, the RB-

loaded PDA@mSiO2 nanoparticles solution incubated at room temperature (25°C) for 1 day 

exhibited a leakage of only 1.5%, which shows their excellent ability to contain and release the 

payload only under an external trigger. Successful loading and controlled release of the payload 

from PDA@mSiO2 nanoparticles was further confirmed using a fluorescent dye (see Figure 

S4.5A and discussion in Supporting Information). 

 

4.2.3 Photothermal therapeutic efficacy and immune-stimulatory effect of 

gardi-mPDA nanoparticles 

Now we evaluated the in vitro photothermal therapeutic efficacy of the gardiquimod-loaded 

PDA@mSiO2 (called gardi-mPDA henceforth) nanoparticles. The encapsulation efficiency of 

gardiquimod in nanoparticles was determined to be 11 ± 3 µg/mg (see Experimental section). 
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B16-F10 melanoma cells were incubated with different concentrations of gardi-mPDA 

nanoparticles, followed by 10 minutes of laser irradiation (14 mW/mm2). For all concentrations 

of gardi-mPDA nanoparticles, a significant decrease in viability was observed in NIR treated 

cells compared to cells without NIR treatment (Figure 4.3E). Importantly, without NIR 

irradiation, no toxicity was observed, indicating that the adjuvant-loaded particles by themselves 

are not cytotoxic. For efficient photothermal cytotoxicity the nanoparticles should physically 

interact with cancer cells. The nanoparticle-cell interaction was assessed by incubating B16-F10 

cells with LT680-loaded PDA@mSiO2 (LT680-mPDA) followed by confocal fluorescence 

microscopy. We observed punctate-like LT680 signal from the cells confirming physical 

nanoparticle-cell interaction (Figure S4.5B).  

After confirming the in vitro photothermal therapeutic efficacy of the gardi-mPDA nanoparticles, 

we investigated their immuno-stimulatory potential upon NIR-triggered release of gardiquimod. 

Bone marrow derived dendritic cells (BMDCs) were treated with supernatants collected from 

gardi-mPDA (100 µg/ml) subjected to 10 minutes of NIR treatment.  Concentration of secreted 

interleukin 6 (IL-6) and tumor necrosis factor-α (TNFα), which indicate the activation of 

BMDCs, were measured and compared to secretion levels of BMDCs treated with free 

gardiquimod. There was a significant increase in cytokine secretion following the treatment of 

BMDCs with supernatant of NIR treated gardi-mPDA nanoparticles compared to supernatant 

without NIR treatment (Figure 4.3F, G). Similar results were observed for upregulation of 

maturation markers (CD40 and CD80), where supernatants collected from NIR-treated 

nanoparticles led to significant increase in BMDC maturation as compared to without NIR 

treatment (Figure S4.4). It is important to note that CD40 and CD80 serve as co-stimulatory 

signal for efficient activation of CD8+ T cells. These results indicate that gardiquimod can be 
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released with external trigger and the photothermally released gardiquimod is therapeutically 

active. 

4.2.4 Combined photothermal-immunotherapy effect of gardi-mPDA 

nanoparticles 

After confirming the in vitro photothermal therapeutic efficacy of PDA@mSiO2 nanoparticles 

and immuno-stimulatory effect of gardi-mPDA nanoparticles independently, we set out to 

answer two key questions: (i) Does the NIR treatment of cancer cells incubated with gardi-

mPDA nanoparticles release both the TAAs and adjuvant concurrently; and (ii) is the released 

adjuvant from the cancer cells capable of causing immunostimulatory effect?  To address these 

questions, B16-F10 cells were treated with LT680-mPDA and then loaded with a cell-permeable 

protein-labelling dye, carboxyfluorescein succinimidyl ester (CFSE). Here, LT680 serves as 

model drug loaded in mPDA and CFSE labelled intracellular proteins serve as representative 

tumor antigen. The cells were harvested and divided into two groups: with and without NIR 

treatment (Figure 4.4A). The supernatants collected from both groups were analyzed for LT680 

and CFSE fluorescence. The NIR treatment demonstrated significant increase in fluorescence 

intensity of both LT680 and CFSE as compared to without NIR treatment (Figure 4.4B, C). 

These results indicate the ability of PDA@mSiO2 nanoparticles to simultaneously release the 

loaded drug and protein antigen from the cells when treated with NIR light.  Next, we incubated 

B16-F10 cells with gardi-mPDA nanoparticles and subjected them to NIR treatment to induce 

the release of gardiquimod from internalized and cell surface bound nanoparticles. Subsequently, 

BMDCs were treated with the above mentioned B16-F10 cell culture supernatant to assess the 

activation ability of the released gardiquimod. Clearly, the cell culture supernatant resulted in 

activation of BMDCs as evidenced by the increase in the secreted IL-6 concentration, further 
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confirming the NIR-assisted release of gardiquimod from within the cancer cells and its 

immunomodulatory effects (Figure 4.4D).  

4.2.5 In vivo photothermal efficiency and externally triggered release of 

payload 

To further investigate the photothermal efficacy of the PDA@mSiO2 nanoparticles in vivo, 

subcutaneously inoculated B16-F10 mouse melanoma model was used. One day after the 

administration of the nanoparticles, tumors were irradiated with an NIR laser for 5 minutes (laser 

power 6 and 14 mW/mm2). Mice without nanoparticle injection were employed as control group. 

After laser irradiation at a power density of 14 mW/mm2 for 5 minutes, the tumor temperature for 

the control group without nanoparticle injection reached 40°C.  In contrast, under identical 

irradiation conditions, the tumor temperature for the mouse injected with PDA@mSiO2 

nanoparticles, increased to 81 °C, indicating the high photothermal efficiency of PDA@mSiO2 

nanoparticles in converting NIR light to heat and inducing locoregional cell ablation (Figure 

S4.6A, B).  In vivo fluorescence imaging of the tumors after injection of LT680-mPDA revealed 

nearly two-fold increase in fluorescence after subjecting the tumors to NIR irradiation for 5 

minutes as compared to without NIR treatment, confirming that the dye encapsulated in 

nanoparticles, is diffusing outward and restoring fluorescence after successful NIR triggered 

release from the nanoparticles (Figure S4.6C, D). 

4.2.6 In vivo therapeutic efficacy of gardi-mPDA  

After confirming in vitro photothermal therapeutic efficacy and successful release of payload 

under NIR irradiation, we investigated the therapeutic potential of gardi-mPDA in vivo. The 

release of tumor antigen after photothermal ablation of tumor cells and concurrent release of 
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adjuvant is critical for robust anti-tumor immune response. We employed B16-F10 melanoma 

model and intra-tumorally injected the gardi-mPDA nanoparticles followed by NIR treatment 

(808 nm, 14 mW/mm2) (Figure 4.5A). The first step was to assess the biocompatibility of 

nanoparticles for which the body weight of the mice was monitored. No significant difference 

was observed in the body weight of the mice treated with PDA@mSiO2 or gardi-mPDA 

nanoparticles indicating that the nanoparticles did not cause any severe systemic toxicity (Figure 

4.5B).  Tumor growth was monitored for different treatment groups and we noted that the gardi-

mPDA nanoparticles treated with NIR resulted in significant inhibition of tumor growth 

compared to gardi-mPDA nanoparticles without NIR, PDA@mSiO2 nanoparticles with NIR and 

PBS group (Figure 4.5C). The survival rate of mice treated with gardi-mPDA nanoparticles and 

NIR was ~57% at day 43, while all the other groups had 0% survival rate at day 30 (Figure 

4.5D). Notably, the tumors for mice treated with PDA@mSiO2-NIR exhibited inhibition in 

tumor growth (due to photothermal tumor ablation) until day 10-11 while the tumors for mice 

treated with PBS or gardi-mPDA without NIR demonstrated constant growth (Figure 4.5E, F, 

G). However, the effect of PDA@mSiO2-NIR was not long-lasting as the tumor cells, which 

survived photothermal ablation started growing, ultimately resulting in the formation of tumors 

equivalent in size to that of gardi-mPDA group at day 19. Although PDA@mSiO2-NIR group is 

expected to release abundant tumor associated antigens during photothermal ablation, the 

presence of antigen without adjuvant resulted in sub-optimal therapeutic effect. In the other 

control group where the mice were treated with gardi-mPDA, adjuvants were available to tumor 

resident antigen-presenting cells (APCs) as the nanoparticles are eventually expected to be 

uptaken by APCs followed by their activation (Figure 4.6).  
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The gardi-mPDA treated mice showed moderate inhibition in tumor growth, which is possibly 

due to the reversal of immuno-suppressive microenvironment in tumor caused by TLR7/8 

agonism.201  More specifically gardiquimod is known to impart tumor-killing potential to 

plasmacytoid dendritic cells.202 The moderate inhibition of tumor growth observed in mice 

treated with PDA@mSiO2-NIR and gardi-mPDA without NIR was not robust and short-lived as 

it eventually lead to 100% mortality until day 30. Mice treated with gardi-mPDA-NIR 

demonstrated dramatic inhibition in tumor growth emphasizing the role of simultaneous release 

of antigen and adjuvant (Figure 4.5H). The released antigen and adjuvants from the 

photothermally ablated tumor cells are available to APCs, which are expected to migrate to the 

tumor draining lymph nodes where they activate the CD8+ T cells. These effector immune T 

cells are capable of eradicating the residual tumors, which survive the primary photothermal 

ablation. The mice surviving primary tumor challenge were able to significantly inhibit growth 

of secondary tumors indicating the generation of long-term memory response, when compared to 

age-matched naïve mice (Figure 4.5I). The biocompatibility of these nanoparticles was further 

confirmed by histopathological staining. We observed no signs of cell death, confirming no 

systemic toxicity in the visceral organs of the mice after treatment with gardi-mPDA-NIR 

(Figure 4.5J). 

Since the primary tumors were temporarily attenuated by photothermal effect caused by 

PDA@mSiO2-NIR, we reasoned if the increase in NIR treatment duration from 5 minutes to 10 

minutes could result in complete ablation of tumor growth without the need for immunotherapy. 

We treated the mice with PDA@mSiO2 and gardi-mPDA followed by NIR treatment for 10 

minutes (Figure S4.9A). NIR treatment for 10 minutes was well tolerated by mice as it did not 

cause any decrease in the body weight of the mice (Figure S5.9B). Interestingly, both 
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PDA@mSiO2-NIR and gardi-mPDA-NIR resulted in significant inhibition of tumor growth 

(Figure S4.9C).  While less than half (40%) of the mice in PDA@mSiO2-NIR group survived at, 

80% of mice in gardi-mPDA-NIR survived at day 46 with no observable signs of primary tumor 

(Figure S4.9D). In order to evaluate the long-term efficacy of both photothermal therapy and 

photothermal-immunotherapy the tumor-free mice from primary challenge were subjected to 

secondary tumor challenge on the opposite flank. It was observed that the mice treated with 

concurrent photothermal-immunotherapy had better resistance to tumor growth as compared to 

just photothermal therapy (Figure S4.9E). Taken together, these results emphasize the 

significance of both specificities associated with the tumor-associated antigens and immune-

stimulatory capabilities of the adjuvant for generation of robust and long-lasting anti-tumor 

immune response. 

4.2.7 In vivo immune status in tumor draining lymph node  

The population and activation status of immune cells in the tumor draining lymph nodes was 

assessed to understand the role of immune cells in therapeutic effect. Increased percentage of 

both T cells and dendritic cells (DCs) was observed in tumor draining lymph nodes of mice 

treated with gardi-mPDA-NIR.  Specifically, presence of CD3+CD8+ T cells was analyzed, and 

we observed that while PDA@mSiO2-NIR resulted in a modest increase in T cells, gardi-mPDA 

nanoparticles irrespective of the presence or absence of NIR resulted in almost two-fold increase 

in T cell count compared to PBS (Figure 4.6A). Maturation of DCs was assessed by measuring 

the expression levels of maturation markers (CD40, CD80, MHC II). We observed higher 

activation of DCs with gardi-mPDA treated groups compared to PDA@mSiO2-NIR or PBS 

group. PDA@mSiO2-NIR has relatively mild immuno-stimulatory potential in the absence of 

potent adjuvants. Despite having significant immuno-stimulatory effect, the influence of gardi-
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mPDA is non-specific because of lack of specific tumor associated antigen (Figure 4.6B, S4.7, 

S4.8). This signifies that the presence of both antigen and adjuvant is critical for generation of 

long-lasting immune response. Externally triggered NIR facilitated the release of both antigen 

and adjuvant simultaneously, thus orchestrating a highly potent tumor-specific immune response.  

4.3 Conclusion  

To summarize, we designed and synthesized a core-shell nanostructure based on highly 

biocompatible and completely biodegradable components, where the photothermal property of 

the core was integrated with NIR-responsive drug release properties of the shell for ultimately 

generating a robust and long-lasting anti-tumor immune response. PDA nanoparticles were 

employed as a photothermal core and mesoporous silica shell was used as the carrier for a 

mixture of phase-change material (1-tetradecanol) and immune-stimulating agent (gardiquimod). 

These nanoparticles were effectively uptaken by cancer cells and led to concurrent release of 

both antigen and adjuvant from the cancer cells upon NIR irradiation. The external trigger NIR 

facilitated spatiotemporal control of the therapeutic events for ultimately mounting a potent anti-

tumor immune response. The core-shell nanoparticle design is universal and is amenable for 

loading other types of immunomodulatory or chemotherapeutic drugs or their combinations for 

synergistic effects. The versatility and unique design of these multifunctional nanoparticles can 

be harnessed for improved photothermal-immunotherapeutic treatments acting as a powerful 

platform for cancer treatment. 

4.4 Experimental Section 

Preparation of PDA nanoparticles coated with mesoporous silica shell (PDA@mSiO2): All 

chemicals are purchased from Millipore Sigma, St. Louis, MO, USA and used without further 
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purification, unless or otherwise mentioned. Polydopamine nanoparticles were synthesized by 

using a method reported previously.10 Briefly, 112 mL of ethanol was mixed with 252 mL of 

deionized (DI) water (resistivity of 18.2 MΩ·cm) in a glass container. Subsequently, 4.2 mL of 

aqueous solution of ammonia (28−30% NH4OH) was added into the above water/ethanol 

mixture.  After stirring for 30 minutes, dopamine hydrochloride (1.4 g in 28 mL water) was 

added to the reaction mixture. The reaction was left under gentle magnetic stirring for 24 hours. 

The PDA particles were collected by centrifugation (9000 rpm, 10 minutes) and washed with DI 

water five times and dispersed in water. 

To form mesoporous silica shell on PDA particles, 0.8 ml of polydopamine solution (8 mg/ml in 

water) was mixed with 0.4 ml of cetyltrimethylammonium bromide (CTAB, 0.1 M) and stirred at 

30 ºC for 10 minutes. Then, 0.2 ml tetraethyl orthosilicate (TEOS, 17% v/v in ethanol) was 

added to the mixture under vigorous stirring. After 10 minutes, 5 µl of ammonium hydroxide 

(NH4OH, 30% in water) was added and the mixture was left stirring at room temperature for 15 

hours. The core-shell particles were washed three times with water and then three times with 

ethanol and dispersed in ethanol. To remove the template of CTAB, particles were dispersed in 

ammonium nitrate solution (NH4NO3, 60 ml, 10 mg/ml in ethanol) and refluxed at 45 ºC for 24 

hours. The mesoporous silica-coated PDA nanoparticle were washed five times with ethanol and 

dispersed in ethanol.  

Drug Loading  : Loading of drugs into PDA@mSiO2 nanoparticles using 1-tetradecanol (TD) as 

gatekeeper was carried out following previous reports with some modifications.203 Typically, 1-

tetradecanol (4 mg) was mixed with gardiquimod 1-(4-amino-2-ethylaminomethylimidazo-[4,5-

c]quinolin-1-yl)-2-methylpropan-2-ol (50 µl, 5 mg/ml in ethanol) in a round-bottom glass tube. 

The glass tube was heated to 75 ºC under mild stirring and left for 20 minutes. Subsequently, 
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PDA@mSiO2 nanoparticle solution (8 mg in 200 µl ethanol) was added to the mixture and 

temperature was increased to 90 ºC. The mixture was stirred for about 1 hour until the ethanol 

completely evaporated.  The particles were resuspended by adding hot water (1 ml, 80 ºC) 

followed by sonication for 5 seconds. The mixture was immediately centrifuged (9000 rpm, 10 

min) and supernatant discarded.  Drug-loaded particles were dispersed in cold water and washed 

with water 10 times to remove free drug in solution.  The loading amount of gardiquimod was 

measured by dispersing the gardiquimod-loaded nanoparticles in acetone followed by 20 minutes 

of sonication to extract the gardiquimod and TD into acetone.  The UV-vis absorption at 329 nm 

was used to estimate the amount of loaded gardiquimod.  The drug loading efficiency was 

calculated according to the following equation: 

 =  

To load the Rose Bengal and LT680 dyes, similar procedure was followed. The loading amount 

for Rose Bengal (UV absorption at 545 nm) was found to be 11.25 µg/mg. 

Nanoparticle characterization 

Transmission electron microscope (TEM) images were obtained using a JEOL JEM-2100F field 

emission microscopy. Scanning electron microscopy (SEM) images were obtained using a JEOL 

JSM-7001 LVF field-emission scanning electron microscope. High resolution transmission 

electron microscope (HRTEM) images and EDX elemental mappings were obtained using a 

JEOL JEM-2100F field-emission STEM.  Thermogravimetric analysis (TGA) was performed in 

nitrogen using a TA Instruments Q5000 IR thermogravimetric analyzer at a heating rate of 5 ºC 

minute-1. Dynamic light scattering (DLS) and zeta potential measurements were performed using 
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Malvern Zetasizer (Nano ZS). Shimadzu UV-1800 spectrophotometer was employed for light 

absorption measurements. The pore size distribution was estimated from nitrogen adsorption/ 

desorption isotherms by using Barrett-Joyner-Halenda (BJH) method and a surface area analyzer 

(Autosorb-1C). 

NIR-induced heating and drug release profiles  

Aqueous solutions of pristine PDA@mSiO2 nanoparticles at different concentrations (0-1000 

µg/ml) were prepared in a 1 ml cuvette. NIR laser (808 nm) was placed on top of the cuvette at a 

distance of ~10 cm to deliver 14 mW/mm2 power density to the top of the solution. The 

temperature rise for different particle concentrations was monitored over 9 minutes by an IR 

camera (ICI 7320 USB camera). Temperature rise of water under identical irradiation conditions 

was recorded for comparison. 

For probing the NIR-triggered release profile, Rose Bengal (RB) was used as a model dye. 1 ml 

of RB-loaded PDA@mSiO2 nanoparticles was concentrated to 400 µl solution. 200 µl of the 

concentrated particles was irradiated by NIR laser (808 nm) at power density of 14 mW/mm2. At 

specific times during laser treatment, 15 µl of the solution was extracted and diluted to 400 µl in 

water and centrifuged immediately. The optical absorbance of RB within the supernatant was 

measured using UV-vis spectrometer. The corresponding solution temperature for each time 

point was measured using an IR camera. Similar procedure was followed for NIR-triggered 

release of LT680 (fluorescent dye) from PDA@mSiO2 nanoparticles. The LICOR Odyssey CLx 

scanner was used to measure the fluorescence intensity of the supernatant.  

Cell culture, BMDC isolation and animal model 
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The B16-F10, a murine melanoma cell line, was purchased from American type culture 

collection (ATCC). Cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Gibco) with 10% fetal bovine serum (FBS, Gibco), 100 U/ml penicillin and 100 µg/ml 

streptomycin. Female C57BL/6 (H-2b) mice that were 6 to 8 weeks of age were purchased from 

Jackson Labs (Bar Harbor, ME, USA). The mice were maintained under pathogen-free 

conditions. All experiments employing mice were performed in accordance with laboratory 

animal protocol approved by the School of Medicine Animal Studies Committee of Washington 

University in St. Louis. Mouse were euthanized using CO2 asphyxiation and cervical dislocation. 

The euthanized mouse was kept in 70% (v/v) ethanol for 1 min. Both the femurs and tibiae were 

isolated, and the muscle attachments were carefully removed using gauze pads. Both ends of the 

bones were cut with scissors and the marrow was centrifuged in an adapted centrifuge tube (0.6 

ml tube with a hole inserted in 1.5 ml tube) at 1000 rpm for 10 seconds. The pellet was 

resuspended by vigorous pipetting in RPMI 1640 media. The cells were passed through a 70 μm 

cell strainer to prepare a single cell suspension. After one wash (1200 rpm, 5 min), red blood 

cells were depleted with RBC lysis buffer (Sigma-Aldrich). The bone marrow cells were 

collected and cultured in 100-mm Petri dishes containing 10 ml RPMI medium supplemented 

with 10% heat-inactivated FBS, 50 IU/ml penicillin, 50 μg/ml streptomycin, and 20 ng/ml mouse 

recombinant granulocyte- macrophage colony-stimulating factor (GM-CSF, R&D Systems, MN, 

USA). 

Photothermal cytotoxicity assay 

For probing the photothermal efficacy of PDA@mSiO2 nanoparticles, 1x104 B16-F10 cells in 

100 µl of media/well were seeded in a 96-well plate and kept at 37oC with 5% CO2 for 12 hours. 

Cells were incubated with different concentrations of PDA@mSiO2 nanoparticles for 6 hours 
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after which they were subjected to 808 nm laser for 10 minutes at a power density of 

14mW/mm2.  After 24 hours, MTS assay was performed as per manufacturer protocol.  

BMDC activation and maturation 

BMDCs (1x106) were seeded on a 6-well plate in 1 ml of media. The cells were treated with 

supernatants collected after centrifuging 100 µg/ml gardi-mPDA nanoparticles at 8000 rpm for 

10 minutes. For gardi-mPDA-NIR, the particles were treated with 10 minutes of 808 nm laser 

(14mW/mm2) right before centrifugation. The collected supernatants were added to BMDCs and 

incubated for 24 hours. The cells were harvested using a cell scraper and centrifuged at 1000 rpm 

for 5 minutes. The supernatant was used for assessment of cytokine (IL-6 and TNFα) levels 

using ELISA (R&D Systems, Minneapolis, USA). The cells were fixed using 10% neutral 

buffered formalin (NBF) for 20 minutes at room temperature and then washed with PBS. The 

cells were then blocked using CD16/CD32 (Mouse BD Fc Block™) and stained for APC-CD40 

and PE-CD80 followed by analysis using flow cytometry (Acea Novocyte, San Diego, USA).  

Uptake of nanoparticles  

For studying the uptake of the nanoparticles, BMDCs were treated with 100 µg/ml of LT680-

mPDA. After incubating for 1 hour, the cells were washed and fixed with 10% NBF (20 minutes) 

followed by washing three times with PBS. NIR laser was treated for 2 minutes to release some 

dye and prevent the LT680 self-quenching. The cells were then stained with DAPI using 

manufacturer’s protocol. The images were acquired using Zeiss LSM 880 Confocal fluorescence 

microscope. 

In vitro combined photothermal and immune-stimulation study 
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For probing the combined photothermal and immune-stimulation efficacy of nanoparticles, 

1×106 B16-F10 cells per well were seeded in a 6 well plate followed by incubation with either 

LT680-mPDA or gardi-mPDA nanoparticles (100 µg/ml). After incubating with the 

nanoparticles for 1 hour, cells were harvested and washed three times with PBS (1100 rpm, 5 

minutes). The cells were then stained with 1 µl of CellTrace™ CFSE (Invitrogen™, Carlsbad, 

USA) for 20 minutes at room temperature. The cells were then washed with complete media and 

divided into two groups of 2x106 cells in 100 µl of culture medium. The first group was 

subjected to 10 minutes of 808 nm laser (14 mW/mm2) treatment, followed by dilution of cells in 

1 ml of culture medium. The second group was directly diluted in 1 ml of medium and the cells 

from both the groups were seeded in a 6-well plate for incubation at 37oC for 12 hours. Cells 

from both the groups were harvested and centrifuged at 1100 rpm for 5 minutes. The LICOR 

Odyssey CLx scanner was used to measure the fluorescence intensity of the LT680 and 

fluorescence plate reader (Molecular devices, SpectraMax ID3) was used to measure the 

fluorescence intensity of CFSE in the supernatant. For immune-stimulation study B16-F10 cells 

were treated with gardi-mPDA instead of LT680-mPDA as described above. The supernatants 

collected from the two groups were treated on BMDCs (1x106) seeded in a 6-well plate. 

Supernatant from BMDCs was collected 24 hours post-treatment and the IL-6 secretion was 

measured using ELISA (R&D Systems, Minneapolis, USA). 

In vivo photothermal efficacy and drug release 

Photothermal treatment was performed 1-day post-injection of PDA@mSiO2 nanoparticles into 

the tumor site.  Mouse injected with gardi-mPDA was anaesthetized and subjected to 808 nm 

laser (power density of 14 mW/mm2 and laser spot size of 5 mm). The body hair was removed 

from the tumor site to eliminate the external factors affecting the photothermal heating. The 
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tumor injected with gardi-mPDA nanoparticles was irradiated with laser for 5 minutes. The 

corresponding tumor surface temperature was measured using an IR camera. Identical NIR 

irradiation was performed on a tumor-inoculated mouse without particle injection to collect the 

tumor surface temperature during treatment, as a control. 

For drug release experiment, 7 days after B16-F10 tumor inoculation, mice were scanned using 

LICOR scanner for background fluorescence. Then 10 µl of LT680-mPDA were adminstered 

intratumorally, followed by fluorescence imaging one immediately and the other 10 minutes 

after adminstration. The mice were then subjected to 14 mW/mm2  808 nm laser treatment for 5 

minutes and then imaged. Fluorescence intensity (FI) after particle injection was considered as a 

reference and the fold increase was calculated for 10 minutes without NIR and with NIR. 

In vivo tumor model 

Six to eight weeks old C57Bl/6 mice were inoculated on the right flank with 1x106 B16-F10 cells 

(s.c) in 100 µl of HBSS. On day 6, mice bearing tumor with a diameter of 4-6 mm were selected, 

numbered and divided into 4 groups (n=7). The mice in different groups were administered 50 µl 

of PBS, gardi-mPDA, PDA@mSiO2 and gardi-mPDA intra-tumorally. 24 hours after injection, 

PDA@mSiO2 and one gardi-mPDA group was treated with 808 nm laser (14 mW/mm2) for 5 

minutes. 24 hours allows diffusion within the tumor and uptake of injected nanoparticles by the 

cancer cells. The body weight and tumor diameters were measured every other day till day 19 

after tumor implantation using a sliding caliper. Tumor volume was calculated as following: 

tumor volume = length × (width)2/2. For survival study, the treated animals were observed for at 

least 42 days. For secondary tumor challenge, tumor-free mice at day 28 were re-challenged with 

5x105 B16-F10 cells on the opposite flank. For histopathological analysis, the heart, kidney, 
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liver, spleen and lungs were harvested 2 weeks after immunization and processed for 

hematoxylin−eosin staining. 

In vivo flow cytometry analysis 

To assess the population of immune cells in tumor draining lymph nodes, the inguinal lymph 

node from the tumor bearing side was isolated and digested using 0.5 mg/ml collagenase I and 

0.1 mg/ml DNAase in DMEM at 37oC for 1 hour. Nylon mesh filter (70 µm) was used to prepare 

single cell suspension followed by washing three times with PBS. The cells were subjected to 

blocking using CD16/CD32 (Mouse BD Fc Block™), followed by staining with FITC-CD11c, 

PE-Dazzle-CD3, FITC-CD8, APC-CD40, PE-CD80 and Per CP-MHC II (eBiosciences, San 

Diego, USA ) for 1 hour at room temperature in dark. The cells were washed three times with 

PBS and then analyzed using flow cytometry (Acea Novocyte, San Diego, USA).  

Statistical analysis 

For analyzing the statistical difference between two groups, unpaired two-tailed t-test with 

Welch's correction was used. For analyzing the statistical difference between more than two 

groups, one-way ANOVA with post-hoc Tukey’s honest significance test was used.  Statistical 

significance of the data was calculated at 95% (p < 0.05) CIs.  For analyzing statistical 

significance in survival data log-rank (ManteleCox) test was used. All values are expressed as 

mean ± standard deviation from three or more independent or repeated experiments. GraphPad 

Prism 6 (San Diego, CA, USA) was used for all statistical analysis and Origin and GraphPad was 

used for creating all figures. 
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4.5 Supporting Information 

Supporting Information for chapter 4 is provided in appendix 3. 
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4.6 Figures 

 

Figure 4. 1 Schematic illustrations depicting (A) Synthesis of gardiquimod-loaded mesoporous 

silica coated polydopamine nanoparticles (gardi-mPDA) and NIR-assisted drug release. (B) 

Tumor ablation and drug release under NIR irradiation followed by activation of DCs and 

effector T cells in tumor draining lymph nodes for regression of primary and secondary tumors. 
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Figure 4. 2 TEM images of the (A) PDA and (B) PDA@mSiO2 nanoparticles. (C) hydrodynamic 

diameter and (D) zeta potential of the PDA and PDA@mSiO2 nanoparticles. SEM images of the 

(E) PDA and (F) PDA@mSiO2 nanoparticles. (G) Pore size distribution of PDA@mSiO2 

nanoparticles obtained by nitrogen adsorption and using Barrett-Joyner-Halenda (BJH) method. 

(H) Weight loss profiles of PDA and PDA@mSiO2 nanoparticles as measured by 

thermogravimetric analysis. 
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Figure 4. 3 (A) Schematic representation of NIR irradiation of pristine PDA@mSiO2 

nanoparticles and IR images of temperature rise with increase in particle concentration after 5 

minutes of NIR laser treatment. (B) Temperature profile and effect of PDA@mSiO2 particle 

concentration on temperature rise when aqueous solutions were subjected to laser power density 

of 14 mW/mm2. (C) Cumulative release of model dye from the PDA@mSiO2 nanoparticles after 

different laser irradiation durations and their corresponding solution temperature (laser power 

density, 14 mW/mm2). (D) Schematic representation of gardiquimod loaded PDA@mSiO2 

(gardi-mPDA) nanoparticles and release of cargo with NIR treatment. (E) Cancer cell viability 

after treatment with gardi-mPDA with and without NIR. BMDC activation indicated by cytokine 

secretion (F) IL-6 and (G) TNFα. Data represented as mean ± SD. ** p<0.01, *** p<0.001 and 

**** p<0.0001 by one-way ANOVA with Tukey’s posttest. 
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Figure 4. 4 Combined photothermal-immunotherapy effect in the presence of NIR. (A) 

Schematic illustration describing the experiment. Briefly, B16-F10 cells were treated with 

LT680-mPDA followed by labelling with CFSE. The labelled cells were divided into 2 groups 

and one group was given NIR treatment for 10 min. The supernatant of 2 groups were collected 

after 12 hours and fluorescence intensity was measured. (B) Fluorescence images (LT680) of 

supernatants collected from cells treatment with and without NIR, (C) Fluorescence intensity of 

CFSE and LT680 with and without NIR, (D) IL-6 secretion by BMDCs treated with supernatants 

released from B16-F10 cells. Data represented as mean ± SD. * p<0.05 and **** p<0.0001 by 

one-way ANOVA with Tukey’s posttest. 
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Figure 4. 5 In vivo photothermal-immunotherapeutic effect of gardi-mPDA.(A) Timeline of 

experiment. (B) In vivo toxicity of gardi-mPDA and NIR assessed by change in body weight of 

the mice, (C) tumor growth profiles, (D) survival curve of mice given different treatments (n=7). 

Tumor growth curves of individual mouse after treatment with (E) PBS, (F) PDA@mSiO2-NIR, 

(G) gardi-mPDA and (H) gardi-mPDA-NIR. (I) Tumor volume after secondary challenge in 

mice surviving after gardi-mPDA-NIR treatment (vaccinated mice) and age matched naïve mice 

(n=3). (J) Hematoxylin−eosin (H&E) staining images of major mice organs after treatment with 

PBS and gardi-mPDA-NIR. Data represented as mean ± SD. * p<0.05 and **** p<0.0001 by 

one-way ANOVA with Tukey’s posttest and Log-rank (Mantel-Cox) test for survival curve.  
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Figure 4. 6 Relative populations and activation status of immune cells in tumor draining lymph 

node at day 16. Representative flow cytometry plots of (A) CD3+ CD8+ T cells, (B) CD11c+ 

CD80+ dendritic cells. Percentage positive cells are displayed on top right corner. 
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Chapter 5: Reversible Photothermal Modulation of 

Electrical Activity of Excitable Cells using 

Polydopamine Nanoparticles 

5.1 Introduction 

Controlling a selective population of neurons to understand and establish a causal link between 

the neural activity and overall behavioral outcomes is a grand challenge in systems neuroscience. 

Harnessing the unique properties of matter at the nanoscale to tackle this grand challenge has 

received increased attention over the past few years.204-208  Among the many methods that aim to 

modulate the biological processes, a particularly attractive method is photo-regulation, a process 

in which light is utilized as an external stimulus 67. Since cells by themselves are not sensitive to 

photo-stimulation, insertion of light-sensitive ion channels and subsequent stimulation of these 

neurons for selective control (i.e. optogenetics), has become an increasingly popular and staple 

tool for numerous investigations.68-69 While optogenetic techniques are promising and have 

revolutionized basic research aimed at understanding the computational and behavioral role of 

several different neural populations, there are still several limitations associated with these 

techniques that remain to be addressed.70-72  These include:  (i) ability to excite neurons that are 

embedded deep in the tissue; (ii) ability to be widely used in different model organisms with or 

without a rich repertoire of genetic tools; (iii) graded control of neurons; (iv) ability to control 

different subset of neurons in a concurrent fashion; (v) reversibility of the proposed approaches 

to return the controlled neurons to their original configuration; and more importantly (vi) 

feasibility of developing a non-invasive approach. To address some of these shortcomings, the 

use of nanomaterials for non-genetic electrical and thermal stimulation were explored and tested 
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successfully in recent years.73 Among these, photothermal methods have shown great promise 

and versatility in stimulating neuronal cells 74-82. 

It has been reported that the absorption of the infrared (IR) light by water, converting it to 

thermal energy reversibly alters the electrical capacitance209 and therefore the excitability of 

nerve cells. However, direct IR stimulation is a non-specific approach that excites (or inhibits) 

many neurons in the area where optical illumination targets. The use of thermal energy as a 

stimulus to activate neurons could be highly localized to avoid generic effects on neuronal firing 

and their behavior. Plasmonic nanostructures such as gold nanorods (AuNRs), which serve as 

locoregional photothermal transducers, have been employed to modulate (inhibit/stimulate) 

neural activity in vitro using NIR light74, 76, 81-82, 210.  Radio-frequency magnetic-field based 

heating of magnetic nanoparticles has also been demonstrated to be effective in thermal 

activation of ion channels and triggering action potentials in cultured neurons211-212. Magnetic 

nanoparticles were also used to target the motor cortex of moving mice and modulate its 

movement through magnetothermal stimulation78.  Among various nanomaterials that could 

transform light energy to heat, polydopamine (PDA) nanoparticles are a particularly promising 

candidate for neuronal modulation due to their excellent photothermal properties, 

biocompatibility, biodegradability, and facile surface functionalization54. PDA-based 

nanomaterials have been widely investigated as photothermal agents for photothermal cancer 

therapy.55-57 Furthermore, due to their biocompatibility and superior interaction with cells, PDA-

based nanomaterials have been shown to be promising candidates for neuronal interfacing 58-60.   

Here, we explore the use of biocompatible and biodegradable polydopamine nanoparticles and a 

novel highly porous biofoam as photothermal agents to stimulate excitable cells such as neurons 

and cardiomyocytes with NIR light in a non-disruptive manner. This novel nanomaterial 
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approach was utilized to localize the temperature around the excitable cells under 808 nm laser 

illumination. The change in the activity of neurons was monitored and quantified to understand 

the effect of different photothermal heating conditions. Electrical activity was measured for 

neurons and cardiomyocytes cultured on microelectrode array (MEA) to assess the ability of 

PDA nanoparticles and PDA-based foam to modulate the cell excitability. Series of quantitative 

analyses were performed to explain the effect of laser light intensity in the presence of PDA 

nanoparticles in modular and reversible control of the neuron and cardiomyocyte activity.     

5.2 Results and Discussion  

PDA nanoparticles are synthesized by oxidative self-polymerization of dopamine monomer in 

water–ethanol–ammonium mixture at room temperature, using a previously reported method 213. 

Scanning electron microscopy (SEM) image and dynamic light scattering (DLS) measurement 

revealed the diameter of the PDA particles to be ∼465 nm (Figure 5.1B and 5.1C). It has been 

recently reported that nanoparticle’s interaction with neurons is solely dependent on its surface 

charge regardless of the shape, size and composition 214. Negatively charged particles tend to 

adhere to the neuron cell membrane more efficiently than other particles. Polydopamine, due to 

the presence of hydroxyl and amine functional groups on its surface, exhibits different surface 

charge under different pH conditions, with an isoelectric point at 3.3 130. Under physiological 

conditions (pH=7.4), the zeta potential of PDA was measured to be -30.6 ± 0.3 mV (Figure 

S5.1). PDA particles exhibited broad optical absorption ranging from 400 nm to 800 nm with a 

peak around 500 nm (Figure 5.1D). Polydopamine nanoparticles exhibit excellent 

biocompatibility and biodegradability and provide high photothermal conversion efficiency and 

have been used as contrast agents for photothermal therapy 55.  Under 808 nm laser irradiation 

(power density of 14 mW mm-2), PDA particle solution temperature increased with an increase 
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in the concentration of the nanoparticles. For a concentration of 400 µg ml-1, the temperature 

increased by 30 ºC within 4 minutes, although the cell experiments are not conducted for this 

long period to prevent cell death (Figure 5.1E).  It is worth noting that smaller changes in 

temperature ( 5 ºC) as would be desirable for controlling cell excitability can be achieved 

within a few seconds. The magnitude of temperature rise under NIR laser irradiation can be 

controlled by tuning the power density of the laser, which is critical to avoid photothermally-

induced cell death (Figure 5.1F and 5.1G). Considering that the light absorption of cells and soft 

tissues in the NIR range is significantly lower compared to that in the visible part of the 

electromagnetic spectrum, 808 nm laser employed here confines the heat to the proximity of the 

photothermal nanoparticles, thus enabling locoregional neuromodulation 215-216.  

To study the effect of nanoheating on the neuron viability, primary hippocampal neurons from 

prenatal rat were cultured on a substrate pre-coated with polyethylenimine (PEI) and laminin, 

sequentially. After 14 days in vitro, the neurons were immunolabeled for β-tubulin (III), which 

indicates good adhesion of neuron cells to the substrate and its long-term viability (Figure 5.2A) 

76. The effect of photothermal heating on the viability of cultured neurons was examined by 

incubating them with PDA NPs and applying NIR light (Figure 5.2B). When irradiated with 808 

nm laser at a power density of 14 mW mm-2 in the presence of PDA NP for 1, 2 and 5 minutes, 

no noticable change in the viability of the neurons compared to the control groups was observed. 

The viability of neurons subjected to laser with and without PDA NP remained above 90%, 

indicating that the photothermal stimulation can be employed to modulate neuronal activity 

without inducing cell death.  
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To investigate the effect of photothermal heating on neurons activity, hippocampal neurons were 

cultured on microelectrode arrays (MEAs) and extracellular activity of neurons was recorded 

with and without PDA treatment and NIR stimulation (Figure 5.2C). Neurons cultured on MEA 

formed a dense network of neurites around TiN recording electrodes (Figure 5.2D). To ensure 

that the activity of the cultured neurons is stable and does not change over time, extracellular 

activity was recorded for 30 min without PDA treatment and NIR stimulation (Figure S5.2). The 

overlaid waveform of cultured neurons exhibited stable activity without any significant change in 

the spike shape or amplitude over the entire recording duration (Figure 5.2E). Before stimulating 

the neurons with NIR laser in presence of PDA, the effect of PDA treatment on neurons baseline 

activity was examined (Figure 5.2F). Upon adherence of PDA nanoparticles to the plasma 

membrane of neurons, the mean spike rate of the neurons increased. This is possibly because the 

negatively charged PDA NPs induce a depolarization of the membrane potential by providing 

negative charge extracellularly to cause increased firing 214. 

Following the formation of a complete network and reaching a stable spontaneous activity 

(approximately 14 days in vitro (DIV)), the neurons cultured on the MEAs were treated with 

PDA NPs (100 µg ml-1 final concentration) and incubated overnight. The PDA NPs adhered to 

neurons and the substrate and the rest of them gradually settled down and created a bed of 

particles on the cells and neurites which resulted in a particle-free solution before the activity 

recording and photothermal stimulation. The PDA NP-treated neurons were subjected to 

repeated irradiation of 808 nm laser at different power densities for different stimulation duration 

(10, 20 and 30 seconds) in a back-to-back pulsatile fashion. The extracellular activity of the 

neurons was recorded before, during, and after the photothermal treatment (Figure 5.3A).  
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As can be noted, the neurons had spontaneous activity before any photo-stimulation. During the 

NIR irradiation, the number of action potentials fired reduced below spontaneous activity levels.  

Fewer spikes were detected for all power densities and for all durations tested (Figure 5.3A and 

5.3B). The spike rate decreased monotonically with an increase in the NIR laser power density 

from 3 to 6 mW.mm-2 (Figure 5.3C). At laser power density of 3 mW mm-2, there was only 39% 

reduction in the spike rate compared to before NIR stimulation. The spike rate reduction reached 

98% when laser power density increased to 6 mW.mm-2, suggesting an almost complete 

shutdown of neuron activity under these irradiation conditions. In comparison, neuron activity 

was recorded for cultures that were not treated with PDA NP but subjected to 808 nm laser 

irradiation (Figure S5.3). The neuron activity did not change even under a significantly higher 

laser power density of 14 mW mm-2 (Figure S5.3A). In the experiment without the presence of 

PDA particles, the mean spike rate measured before and during the laser irradiation did not 

change significantly.  To investigate the effect of repeated laser stimulation, neuron activity was 

recorded for cultures treated with PDA NP and over 10 repeats of 30-second NIR pulses at 6 

mW mm-2 where almost complete activity shutdown was observed (Figure 5.3D, S5.4). The 

similarity in neural spike activity observed, summarized as a correlation matrix, during different 

photothermal stimulation periods/cycles/pulses showed that the evoked photothermal responses 

were highly similar. Photothermal treatment had a culture wide and universal effect of in 

inhibiting neuron activity (Figure S5.4A). The mean spike rate for PDA NP-treated neurons was 

measured before the laser irradiation and after the finish of each cycle to reveal the possible 

permanent effect of photothermal treatment on neuron activity (Figure 5.3E).  Although 

complete shutdown of extracellular activity was noted during the laser irradiation (with PDA NP 

and at 6 mW mm-2), the mean spike rate after laser irradiation remained virtually identical to that 
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observed before irradiation, indicating the reversible nature of the photothermal 

neuromodulation. Moreover, the spike shape and amplitude before and after the photothermal 

treatment did not show significant change for the same experiment indicating that neurons 

recovered their activity after photothermal treatment with no sign of temporary or permanent 

damage (Figure S5.5).  

Following the NIR irradiation period that resulted in complete inhibition of the neural activity, 

we noted that the neurons do not start firing immediately after stopping the irradiation but 

recovered their baseline activity after a short time lag. We investigated the dependence of the 

neural activity recovery time on the laser power density and laser irradiation duration (Figure 

5.4). By fixing the irradiation duration and increasing the laser power density from 3 to 6 mW 

mm-2, the activity recovery time (the period between the end of NIR irradiation and the first 

spike for each electrode) increased significantly for all of the laser durations tested (Figure 

5.4A). There was a small increase in the recovery time with an increase in the laser power 

density from 3 to 4 mW mm-2. An increase in the laser power density from 4 to 6 mW mm-2, 

resulted in a much larger increase in the lag time (Figure 5.4C). This is possibly due to the long 

cooling period required at higher laser power densities, where the maximum temperature under 

laser irradiation is higher (Figure 5.1F). Alternately, stronger hyperpolarization during photo-

stimulation period that at higher laser power densities could also result in longer recovery of 

resting membrane potential which could underlie similar monotonic increase in recovery time 

with response strength. In the case of fixed laser power density, an increase in the laser 

irradiation duration resulted in a monotonic increase in the activity lag time (Figure 5.4B). This 

increase in the activity lag time was more pronounced at the higher laser power density of 6 mW 

mm-2 (Figure 5.4D). The particles on the substrate immediately adjacent to the neurons also 
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contribute to the localized heating and delay the cooling process once the laser is turned off, thus 

causing a significant lag in the neuron activity recovery after each photothermal stimulation 

cycle. The tunable activity lag time with the laser power density and laser irradiation duration 

serves as an additional handle in light-based neuromodulation. On the other hand, specific 

targeting of the photothermal nanostructures to the neurons can minimize the non-specific 

adsorption of the nanostructures on the substrate and possibly minimize the activity lag time.  

To test the generality of photothermal modulation on controlling cellular excitability, we have 

investigated the effect of PDA NPs and laser treatment on the electrical activity of 

cardiomyocytes. The iPSC-derived cardiomyocytes were differentiated and plated on the MEAs 

to assess the beating rates of cardiac tissues (Figure 5.5A). Without PDA NPs, upon laser 

stimulation, the beating rates of cardiac tissues increased only slightly (less than 10%) and 

recovered to baseline rate once the laser irradiation is stopped (Figure 5.5B and 5.5C). Following 

the incubation of cardiomyocytes with PDA nanoparticles for 24 hours, the beating rates under 

laser irradiation increased significantly compared to untreated cells subjected to laser irradiation 

(Figure 5.5D and 5.5E and supporting information Figure S5.6). These results indicate the 

successful modulation of the electrical activity of the cardiomyocytes with photothermal 

nanostructures. To further understand the effect of localized heating on the tissue, PDA NP-

treated tissues were subjected to different laser power densities from 4 to 25 mW mm-2 (Figure 

5.5F-H and supporting information Figure S5.7). With an increase in the laser power density 

from 4 to 14 mW mm-2, the beating rate progressively increased and reached to about 1.8 times 

of the baseline activity (Figure 5.5F). For the highest laser power density (25 mW mm-2), the 

cardiomyocytes exhibited irreversible changes in the beating rate, indicating possible thermal 

toxicity (Figure S5.7). The tissues not treated with PDA NPs exhibited only a small increase in 
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the beating rate with a maximum increase of less than 10% at 14 mW.mm-2. These results 

demonstrate that the iPS-derived cardiac tissues showed a significant response to the localized 

nano-heating in the presence of PDA NPs with NIR laser irradiation. Also, the nature of the 

response changed from excitatory at lower laser power densities to inhibitory at laser power 

densities above 14 mW mm-2 (Figure 5.5 and S5.7). The tunable modulation of the electrical 

activity of cardiomyocytes using PDA NPs could be harnessed for excitation and inhibition of 

cardiac activity is desired, simply by changing the laser power density. 

The results discussed so far involve the incubation of the neurons (or cardiomyocytes) with 

colloidal PDA NP, which offers poor control over the distribution of the photothermally-active 

nanostructures.  To achieve better spatial control over photothermal stimulation and better 

photothermal performance, we have designed a highly porous 3D collagen foam modified with 

PDA NPs as a conformal photothermal substrate (Figure 5.6A). Collagen foam is widely used in 

biomedical applications (e.g., wound dressing, tissue culture scaffolds) due to its highly porous 

structure and excellent biocompatibility.217-218 Pristine collagen foam is white (due to light 

scattering) and does not possess photothermal activity (Figure S5.8A). When the collagen foam 

is exposed to a high concentration solution of PDA nanoparticles, within a few minutes, the 

collagen fibers are completely covered with PDA nanoparticles, as is indicated by its change of 

color from white to black (Figure S5.8B). SEM images of the PDA-modified collagen foam 

(PDA/Collagen) reveal the high porosity and the PDA nanoparticles adsorbed on individual 

collagen fibers (Figure 5.6B). The PDA/collagen foam was found to be highly stable with no 

noticeable desorption of the PDA NP even under mechanical agitation. The absorbance spectrum 

of the PDA/collagen foam is similar to that of PDA NP solution suggesting that photothermal 

efficiency for the foam should be similar to the PDA NPs (Figure 5.6C). In its dry state, the 
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surface temperature of PDA/collagen foam increased by more than 100 ºC in just less than 10 

seconds when irradiated by laser at a power density of 6 mW mm-2 (Figure S5.9). Even at a 

much lower laser power density of 3 mW.mm-2, we noted a 60 ºC increase in the local surface 

temperature within the first 10 seconds. In wet state, the foam surface temperature rose by up to 

12 ºC after 10 seconds and by up to 20 ºC after 30 seconds of irradiation at a laser power density 

of 6 mW mm-2 (Figure 5.6D).  The superior photothermal activity of the PDA/collagen foam 

compared to the high concentration of PDA NPs (100 µg ml-1) stems from the highly dense 

adsorption of the PDA NPs on the collagen fibers and efficient light trapping within the foam 

due multiple reflections. In addition to the excellent photothermal properties, the highly porous 

PDA/collagen foam soaked in the cell culture medium can be applied as a conformal patch on 

cells and tissues. 

To investigate the efficacy of PDA/collagen foam in photothermally modulating the neural 

activity, the foam was placed on the neurons cultured on the MEAs for 14 DIV, and after the 

neurons reached stable spontaneous activity.  The neurons with PDA/collagen foam were 

subjected to repeated irradiation of 808 nm laser at different power densities for different 

stimulation durations (10, 20 and 30 seconds). The extracellular activity of the neurons was 

recorded during the photothermal treatment and it is evident that spiking activity during the 

photothermal stimulation is reduced drastically (Figure 5.6E and 5.6F). The quantitative 

measurement of the changes in the spike rate showed that at all the power densities tested, the 

neuron activity suppression was above 90% (Figure 5.6G). In comparison, at the same power 

density of 3 mW mm-2, photothermal treatment of neurons treated with colloidal PDA NP 

resulted in only a 39% reduction in neuron activity. Moreover, when the power density was 

increased to 15 mW.mm-2, PDA/collagen foam resulted in permanent damage to cells, and the 
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activity suppression was not reversible. This superior photothermal performance of the 

PDA/collagen compared to colloidal PDA NP allows the utilization of lower power light sources 

(e.g. near-infrared LEDs) instead of laser for modulating the neural activity. Furthermore, this 

PDA/collagen 3D foam could be easily applied as a patch on brain tissues and cardiac tissues for 

modulating the electrical activity in a facile manner.  

 

5.3 Conclusion  

In conclusion, we have demonstrated the reversible and graded control of the electrical activity 

of excitable cells using PDA nanoparticles as biocompatible and biodegradable photothermal 

transducers. In the presence of PDA nanoparticles, the spike rate of neurons was significantly 

suppressed under NIR laser irradiation with a power density as low as 3 mW mm-2. With a 

progressive increase in the laser power density, we observed a monotonic decrease in the spike 

rate. The activity recovery time was found to be dependent on irradiation power density and 

irradiation duration.  The neural activity suppression and recovery were repeatable over 10 

consecutive pulses of laser irradiation in a single trial, demonstrating the robustness of this non-

invasive neuromodulation approach. In the presence of PDA nanoparticles, the beating rate of 

cardiomyocyte tissues progressively increased as the irradiation laser power density increased 

from 4 to 14 mW mm-2. To improve the ease of interfacing the photothermal agents with neural 

cultures and brain tissues, we have designed and realized a 3D collagen/polydopamine 

nanoparticle foam and applied it on the cultured neurons as an “add-on” patch. The 3D foam 

demonstrated superior photothermal and neuromodulation performance compared to colloidal 

polydopamine nanoparticles in that we observed more than 90 percent reduction in neuron 
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activity even at laser power densities as low as 3 mW mm-2.  Compared to inorganic 

photothermal nanostructures (e.g., noble metal nanoparticles), PDA nanostructures are better 

suited for in vivo neuromodulation owing to their high biocompatibility and biodegradability.  

We believe that this novel material platform for non-invasive neuromodulation can be easily 

extended to other excitable cells both ex vivo and in vivo and serve as a valuable tool in nano-

neuroengineering.  

5.4 Experimental Section 

Cell Culture: All procedures have been approved by the Institutional Animal Care and Use 

Committee (IACUC) at Washington University in St. Louis. Hippocampal tissues were dissected 

from embryonic day 18 Sprague_Dawley rat brain (Charles River, USA). The tissues were 

transferred into Hibernate EB medium (HEB, BrainBits, USA) for further use. Cell dissociation 

solution was prepared by dissolving 6 mg papain (P4762, Sigma, USA) in 3 ml of Hibernate E-

Ca (HE-Ca, BrainBits, USA). Hippocampal tissues were transferred to the cell dissociation 

solution and incubated at 30 ºC for 10 minutes. Dissociation solution was removed and HEB 

medium was added to the tissues, followed by trituration with fire-polished Pasteur pipette. Cell 

dispersion was centrifuged (200×g, 1 minute) and supernatant was removed, and pellets were 

resuspended in NbActiv4 (BrainBits, USA). Substrates were pre-treated with 

poly(ethyleneimine) solution (0.1 % in water, P3143, Sigma, USA) for 30 minutes followed by 

air drying. Before the cell seeding, substrates were treated with laminin solution (20 µg ml-1 in 

NbActiv4 medium, L2020, Sigma, USA). After removing the extra laminin solution, cells were 

seeded at the density of 500-1000 cells.mm-2 and maintained in the NbActiv4 medium in a 

humidified incubator with 5% CO2 and 37 ºC condition. After 2 days, half of the medium was 

changed with fresh NbActiv4 medium and was regularly changed every 4 days. 
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For iPS-derived cardiomyocytes (iPS-CMs), the WTC-11-GCaMP6 from Bruce Conklin Lab in 

Gladstone Institute were used as the induced pluripotent stem cells (iPSC). The iPSCs were 

maintained in E8 medium (Thermo Fisher Scientific) on Matrigel-coated (Corning) tissue culture 

plate and passaged every four days. The protocols used to differentiate and purify iPS-derived 

cardiomyocytes (iPS-CMs) was through Wnt modulation and lactate purification that was 

previously described 219-220. 

Polydopamine Nanoparticle and Collagen/Polydopamine Foam Preparation: All chemicals 

were purchased from Millipore Sigma, St. Louis, USA and used without further modification. 

Polydopamine particles were synthesized by using a method described elsewhere.213 In a typical 

synthesis procedure of polydopamine nanoparticles, 252 mL of deionized (DI) water (resistivity 

>18.2 MΩ·cm) was mixed with 112 mL of ethanol in a 1000 mL glass container. Subsequently,  

1.96 mL of aqueous solution of ammonia (28−30% NH4OH) was introduced into the above 

water/ethanol mixture. After stirring for 30 min, the aqueous solution of dopamine hydrochloride 

(1.4 g in 28 mL) was added to the above solution. The reaction was left under gentle magnetic 

stirring for 24 h with no cap on the glass container. The PDA particles were collected by 

centrifugation (9000 rpm, 10 min) and washed with DI water three times and dispersed in water 

(320 mL). 

To prepare the photothermally active 3D foam, a collagen film (HeliTAPE Collagen Wound 

Dressing, Miltex® Instruments, USA) was soaked in water to create a hydrogel. The collagen 

hydrogel wass then freeze-dried to achieve a highly porous 3D foam. The collagen foam, was 

soaked in the PDA NP solution (1 mg ml-1 in water) and left for 5 minutes with shaking followed 

by washing with water to remove the excess nanoparticles. The PDA NP-loaded collagen foam 

was freeze-dried again to be used in the photothermal stimulation experiments.  
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Material Characterization: Scanning electron microscopy (SEM) images were obtained by using 

a JEOL JSM-7001 LVF Field Emission scanning electron microscope. Dynamic light scattering 

(DLS) and zeta potential measurements were performed using Malvern Zetasizer (Nano ZS). 

Shimadzu UV-1800 spectrophotometer was employed for light absorption measurements.  

Photothermal Stimulation: A fiber optic NIR laser (808 nm) was used for a light source and the 

laser beam spot size and power density was controlled by its distance from the microelectrode 

array (MEA, Multichannel Systems, Germany). Hippocampal neuronal networks were cultured 

on a MEA chip and incubated with PDA NPs overnight. The PDA NP-treated neurons were then 

repeatedly irradiated with a NIR laser (808 nm) at different power densities and durations. A 

typical photothermal experiment lasts for 330 seconds, and the cells were illuminated with laser 

at different power densities for 10, 20 and 30 seconds. The laser on and off was controlled by a 

mechanical shutter. For repeatability experiment, cells were illuminated for 30 seconds with a 

power density of 6 mW mm-2 followed by 90 seconds of no laser illumination for 10 cycles. The 

experiment for calculating the neuron activity recovery time after laser illumination was 

performed by recording the activity for 60 seconds followed by laser pulses with different 

durations and power densities followed by at least 90 seconds wait time, for a total of 210 

seconds. Same experimental procedures were followed for cardiomyocytes.   

Electrical Activity Recording: Neural recordings were obtained from neuronal cultures at the age 

of 14-18 DIV. Extracellular activity from cultured neurons were monitored using 60-channel 

TiN microelectrode arrays (MultiChannel Systems, diameter 30 μm, electrode spacing 200 μm, 

500 nm thickness of Si3N4 insulator). Electrode signals were amplified and digitized with an in 

vitro MEA system (Multichannel systems, gain 1100, bandwidth 10-8 kHz, sampling frequency 

25 kHz). The recorded signals were filtered with a 200 Hz digital high pass filter (Butterworth, 
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second order), and spikes were detected by setting the threshold level at five times the standard 

deviation of background noise using vendor provided software (MC Rack, MultiChannel 

Systems). Recording condition was maintained at 37 ºC and 5% CO2. Collected data were 

processed using MATLAB (MathWorks). For bulk heating experiments, the head stage 

temperature was adjusted to desired value and after 15 minutes of stabilization, the neuron 

activity recording was performed. To test the effect of PDA NP on neuron activity without laser 

stimulation, the extracellular activity of cultured neurons was recorded for 30 minutes before 

addition of PDA NP after which the culture was incubated with PDA NP solution (100 µg ml-1 

final concentration).  

To record the field potential activities of iPS-CM, the iPS-CMs were suspended at 30 × 106 cells 

ml-1 and a 4 µl droplet was seeded on the recording area of MEA probe (60MEA200/10iR-Ti). 

The field potentials were recorded using MC_Rack software (Multichannel Systems) at 10000 

Hz sampling rate with a 200 Hz digital high pass filter (Butterworth, second order). The data 

were converted to ABF format using MC_Data Tool (Multichannel Systems) and the field 

potentials were analyzed using Clampfit 10.7 (Molecular Devices) and MATLAB (MathWorks). 

Cell Viability: Hippocampal neurons were cultured in pre-treated 96 well black plates at the 

density of 20000 cells per well for 14 DIV and treated with PDA NPs at 100 µg ml-1 final 

concentration. After 5 h incubation, they were subjected to 808 nm laser for 10 minutes at a 

power density of 14 mW mm-2. After 24 hours, MTS assay was performed as per manufacturer 

protocol.  

Data Analysis: Recording channels whose average firing rate was larger than 0.1 spikes per 

second were selected as active channels and used for neural activity analysis. For the analysis of 

spontaneous activity, peri-event time histogram and raster plots were used with the NIR 
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irradiation as an event. The spike rate reduction (ΔR/R) with or without the NIR irradiation was 

calculated by the following equation: ΔR/R (%) = [R(ON) - R(OFF)]/ R(OFF), where R(OFF) 

and R(ON) indicated the average spike rate before and after the onset of NIR irradiation, 

respectively. R(ON) covered the entire irradiation period (5-45 seconds), and R(OFF) covered 

the 30 second window just before the onset of the irradiation. All statistics were performed with 

5% significance level. 

Immunostaining: Hippocampal neurons were fixed in 4% neutral buffered formalin in 1x PBS 

for 30 minutes at room temperature and washed with PBS three times. To permeabilize the cells, 

neurons were incubated with 0.5% Triton X-100 in 1x PBS for 10 minutes at room temperature 

and washed with PBS three times. The nonspecific binding of antibodies was blocked by 6% 

bovine serum albumin (BSA, Sigma) in PBS for 30 minutes, and washed with PBS once. The 

biotinylated primary antibody (neuron-specific β-III tubulin antibody, 6 µg ml-1 in 1.5% BSA, 

R&D systems MAB 1195) was added to the cells and incubated for 3 h at RT. After washing 

with PBS for three times, streptavidin-tagged fluorescent dye (IRDye 800CW Streptavidin, 50 ng 

ml-1 in 1.5% BSA, LI-COR) were incubated with the cells for 30 minutes at RT. After washing 

with PBS for three times, DAPI solution (300 nM in PBS, Sigma) was used for nucleus staining. 

Fluorescence images were obtained using Lionheart FX Automated Microscope (BioTek, USA).  

The iPSC-derived cardiomyocytes were seeded on glass slide at Day 30. The cells were fixed 

with 4% (v/v) paraformaldehyde for one hour and stained with primary antibody TNNT2 

(ab45923; Abcam) and secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (A11008; 

Invitrogen) and nuclei counterstained by DAPI solution (1 µg mL-1). 
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5.5 Supporting Information 

Supporting Information for chapter 5 is provided in appendix 4. 
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5.6 Figures 
 

 

Figure 5. 1 (A) Schematic of Polydopamine nanoparticle (PDA NP)-mediated photothermal 

stimulation of neurons. PDA nanoparticles localized on the neuron membrane, modulates the 

neural activity through photothermal conversion of NIR light. (B) SEM image, (C) DLS 

measurement and (D) Absorption spectra of PDA NPs. (E) Temperature changes in PDA NP 

solution with different concentrations at 14 mW mm-2 laser power density. (F) Temperature 

changes in 200 µg ml-1 solution of PDA NP at different laser power density and (G) 

Corresponding IR Camera images of the PDA NP solution at the end of the laser illumination 

period.  
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Figure 5. 2 (A) Fluorescence images of cultured hippocampal neurons after immunochemical 

staining with β-tubulin (III) (magenta) and nucleus (blue). (B) Cell viability of neurons subjected 

to 1, 2 and 5 minutes of NIR irradiation (14 mW mm-2) without PDA NP (control) and with PDA 

NP (100 µg ml-1 final concentration). The heat generated by NIR laser in presence of PDA NP 

did not change the viability of the neurons compared to control sample (no PDA NP), meaning 

that it is safe to use PDA NP for photothermal treatment of neurons.  (C) Schematic of the 

experimental setup with neurons cultured on a microelectrode array (MEA) and stimulated with 

NIR laser with and without PDA NP treatment. (D) Phase contrast image of the hippocampal 

neurons cultured on PEI-laminin coated MEA with cell density of 1000 cells mm-2. (E) Overlaid 

waveform of hippocampal neurons at half an hour time interval. Neurons were not treated with 

PDA NP and are not subject to any external stimulation. Spikes from 3-minute recording with 

256 spikes in each set (no change in mean spike rate). Black curve shows the mean value for 

each set. (F) Effect of localization of PDA NP on neuron membrane on the mean spike rate of 

cultured neurons without NIR stimulation. Unpaired Two-samples t-test; p= 0.0018, n=56, * 

p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001. 



106 

 

 

 

 
Figure 5. 3 (A) Spike rates of neurons treated with PDA NP (100 µg ml-1) with NIR irradiation at 

different power densities. (B) A single trace of spike recording for different NIR irradiation 

periods (10 s, 20 s and 30 s laser irradiation at power density of 6 mW mm-2). (C) Quantification 

of spike rate changes in panel A (effect of laser power density on spike rate change and 

inhibition of neuron activity). (D) Spike rates of neurons treated with PDA NP (100 µg ml-1) 

with NIR irradiation (power density of 6 mW mm-2) over 10 cycles of 30 s treatment. (E) Mean 

spike rates of PDA NP-treated neurons before and after NIR irradiation ( Data were collected for 

laser power density of 6 mW mm-2 where neuron activities were completely suppressed during 

NIR irradiation, Unpaired Two-samples t-test; p= 0.8866, n=55). 
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Figure 5. 4 (A) A single trace of spike recording for neuron treated with PDA NP at different 

laser power densities for 20 s. Red lines show the activity lag time which is the amount of time it 

took after the laser illumination for the first spike to appear. (B) Effect of laser duration on the 

activity lag time for PDA NP treated neurons (power density of 6 mW mm-2). (C) Quantification 

of the effect of the laser duration on the activity lag time at different laser power densities. (D) 

Quantification of the effect of the laser power density on the activity lag time at different laser 

duration times. 
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Figure 5. 5 (A) The immunofluorescence images of iPSC-derived cardiomyocyte counter stained 

with DAPI (blue) and cardiac troponin T (green). PDA nano-particles increased the beating rates 

of iPS-derived cardiomyocytes. (B) The original trace of filed potential recording of iPS-derived 

cardiomyocytes from MEA system without PDA treatment. The laser power density was 14 

mW.mm-2  and was turned on for 10 seconds as indicated. (C) The representative traces of field 
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potential recordings of iPS-CMs without treating with PDA nanoparticles before (black) and 

after (red) 808 nm laser excitation. (D) The original trace of filed potential recording of iPS-

derived cardiomyocytes from MEA system. The iPS-CMs were treated with PDA nanoparticles 

for 24 hrs and washed out before recording. The laser power density was 14 mW mm-2  and was 

turned on for 10 seconds as indicated. (E) The representative traces of field potential recordings 

of iPS-CMs treated with PDA nanoparticles before (black) and after (red) 808 nm laser 

excitation. (F) – (H) The normalized beating rates of iPS-CMs before and after 808 nm laser 

excitation. At different laser power densities (14, 6 and  4 mW mm-2), the laser was turned on for 

10, 20 and 30 seconds at the indicated time. The beating rates were determined by calculating the 

peak intervals of field potential recordings and normalized the rates at baseline. 
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Figure 5. 6 (A) Schematic of experimental setup with neurons cultured on a microelectrode array 

(MEA), Collagen foam + PDA NP placed on the culture and stimulated with NIR laser. (B) SEM 

image (inset: higher magnification SEM) and (C) Absorption spectra of collagen foam + PDA 
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NP. (D) Temperature changes of collagen foam + PDA NP in wet state at different laser power 

densities. (E) Spike rates of neurons with collagen foam + PDA NP and NIR irradiation at 

different power densities. (F) A single trace of spike recording for different NIR irradiation 

periods (10 s, 20 s and 30 s laser irradiation at power density of 6 mW mm-2). (G) Quantification 

of spike rate changes in panel E (effect of laser power density on spike rate change and inhibition 

of neuron activity). 
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Chapter 6: Conclusions 

6.1 General Conclusions 

Polydopamine-based organic nanomaterials possess excellent physical, chemical and optical 

properties which make them promising candidates for environmental and biomedical 

applications. They are rich with chemical groups on their surface that makes it easy to 

functionalize them with many desirable chemistries and tune them for specific applications. 

Polydopamine polymerization is a facile process which could be applied to almost any surface to 

create favorable chemistry on surfaces that are normally hard to functionalize. The synthesis of 

polydopamine nanoparticle is easy process and allows for creation of particles with different 

shapes and sizes to be used in different applications. Polydopamine surface chemistry 

demonstrates affinity to heavy metal ions and organic dyes, which make it excellent tool for 

fabrication of multifunctional membranes and substrates for environmental applications. Also, 

the excellent light-to-heat conversion efficiency of polydopamine nanomaterials enables it to 

serve as biocompatible photothermally active nanomaterial for various biomedical applications. 

This dissertation demonstrated several applications of polydopamine nanomaterials in 

environmental and biomedical applications.  

We have demonstrated a novel PDA/BNC composite adsorption membrane which has potential 

to treat wastewater containing multiple inorganic and organic pollutants.  The PDA/BNC 

membrane is fabricated by incorporating high density PDA particles inside BNC matrix during 

its growth.  This fabrication technique is highly versatile and can be easily adapted to incorporate 

other adsorbents. All the materials used in the membrane fabrication process are biocompatible 

and biodegradable.  The unique fabrication process resulted in a highly uniform distribution of 

PDA particles within the BNC matrix.  The PDA/BNC membrane showed effective contaminant 
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removal from feed water containing heavy metal ions and positively charged organic dyes at 

high concentrations in a single pollutant or pollutant cocktail situations. The facile, inexpensive, 

and scalable synthesis, excellent mechanical robustness and highly efficient removal of heavy 

metals and organic dyes under complex conditions and the ability to modify the PDA surface for 

variety of water treatment systems, collectively make PDA/BNC membrane demonstrated here a 

promising and powerful candidate for wastewater treatment.  

We have designed and demonstrated a highly efficient organic dye removal catalytic membrane 

based on BNC loaded with mPDA and Pd nanoparticles for wastewater treatment. Key factors 

which enable the Pd-mPDA-BNC membrane to be effective in dye removal are: synergistic 

effect of dye adsorption on mPDA and catalytic ability of Pd nanoparticles in presence of 

NaBH4; highly porous structure due to the addition of mPDA nanoparticles, which increases the 

specific surface area for higher adsorption and degradation; and uniform and high loading of Pd 

nanoparticles within the entire membrane. The membrane fabrication process is simple and is 

easily scalable. The Pd-mPDA-BNC membrane exhibited excellent dye removal performance as 

well as the ability for the treatment of multiple contaminants with different chemical structures 

and charges simultaneously. The membrane exhibited significantly higher water flux compared 

to commercially available membranes even under low vacuum pressure. The facile and the 

scalable fabrication of the membrane along with excellent dye removal efficiency and higher 

water flux makes it a highly attractive candidate for wastewater treatment even at industrial 

scales. 

We have also shown the design and synthesis technique of a core-shell nanostructure based on 

highly biocompatible and completely biodegradable components, where the photothermal 

property of the core was integrated with NIR-responsive drug release properties of the shell for 
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ultimately generating a robust and long-lasting anti-tumor immune response. PDA nanoparticles 

were employed as a photothermal core and mesoporous silica shell was used as the carrier for a 

mixture of phase-change material (1-tetradecanol) and immune-stimulating agent (gardiquimod). 

These nanoparticles were effectively uptaken by cancer cells and led to concurrent release of 

both antigens from the cancer cells (through immunogenic cell death) and adjuvant from the 

nanoparticles upon NIR irradiation. The external trigger NIR facilitated spatiotemporal control of 

the therapeutic events for ultimately mounting a potent anti-tumor immune response. The core-

shell nanoparticle design is universal and is amenable for loading other types of 

immunomodulatory or chemotherapeutic drugs or their combinations for synergistic effects. The 

versatility and unique design of these multifunctional nanoparticles can be harnessed for 

improved photothermal-immunotherapeutic treatments acting as a powerful platform for cancer 

treatment. 

Furthermore, we have demonstrated the reversible and graded control of the electrical activity of 

excitable cells using PDA nanoparticles as biocompatible and biodegradable photothermal 

transducers. In the presence of PDA nanoparticles, the spike rate of neurons is significantly 

suppressed under NIR laser irradiation with a power density as low as 3 mW mm-2. With a 

progressive increase in the laser power density, we observed a monotonic decrease in the spike 

rate. The activity recovery time was found to be dependent on irradiation power density and 

irradiation duration.  In the presence of PDA nanoparticles, the beating rate of cardiomyocyte 

tissues progressively increased as the irradiation laser power density increased from 4 to 14 mW 

mm-2. To improve the ease of interfacing the photothermal agents with neural cultures and brain 

tissues, we have designed and realized a 3D collagen/polydopamine nanoparticle foam and 

applied it on the cultured neurons as an “add-on” patch. The 3D foam demonstrated superior 
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photothermal and neuromodulation performance compared to colloidal polydopamine 

nanoparticles. Compared to inorganic photothermal nanostructures (e.g., noble metal 

nanoparticles), PDA nanostructures are better suited for in vivo neuromodulation owing to their 

high biocompatibility and biodegradability.  We believe that this novel nanomaterial platform for 

non-invasive neuromodulation can be easily extended to other excitable cells both ex vivo and in 

vivo and serve as a valuable tool in neuro-engineering.  

6.2 Significance and Outlook  

In addition to the representative nanomaterials and applications demonstrated in this dissertation, 

the fabrication strategies and design principles demonstrated in this work can have far reaching 

implications to realize various nanocomposites with applications in water purification, energy 

harvesting, cancer treatment and neuroscience. By harnessing polydopamine-based 

biocompatible and biodegradable organic materials, a wide variety of functional materials and 

nanocomposites can be achieved in a facile and controllable way.    

 

 

 

 

 

 

 

 

 



116 

 

References 

 

1. Liu, Y.; Ai, K.; Lu, L., Polydopamine and Its Derivative Materials: Synthesis and 

Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews 

2014, 114 (9), 5057-5115. 

2. Szefer, P.; Frelek, K.; Szefer, K.; Lee, C. B.; Kim, B. S.; Warzocha, J.; Zdrojewska, I.; 

Ciesielski, T., Distribution and relationships of trace metals in soft tissue, byssus and shells of 

Mytilus edulis trossulus from the southern Baltic. Environmental Pollution 2002, 120 (2), 423-

444. 

3. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface 

chemistry for multifunctional coatings. Science (New York, N.Y.) 2007, 318 (5849), 426-430. 

4. Lee, H.; Lee, B. P.; Messersmith, P. B., A reversible wet/dry adhesive inspired by 

mussels and geckos. Nature 2007, 448, 338. 

5. Xu, L. Q.; Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Dopamine-induced 

reduction and functionalization of graphene oxide nanosheets. Macromolecules 2010, 43 (20), 

8336-8339. 

6. Postma, A.; Yan, Y.; Wang, Y.; Zelikin, A. N.; Tjipto, E.; Caruso, F., Self-

polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. 

Chemistry of Materials 2009, 21 (14), 3042-3044. 

7. Lee, H.; Rho, J.; Messersmith, P. B., Facile Conjugation of Biomolecules onto Surfaces 

via Mussel Adhesive Protein Inspired Coatings. Advanced Materials 2009, 21 (4), 431-434. 

8. Ryu, J.; Ku, S. H.; Lee, H.; Park, C. B., Mussel‐Inspired Polydopamine Coating as a 

Universal Route to Hydroxyapatite Crystallization. Advanced Functional Materials 2010, 20 

(13), 2132-2139. 

9. Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; 

Dai, S., Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and 

Yolk‐Structured Carbon Nanocomposites. Angewandte Chemie International Edition 2011, 50 

(30), 6799-6802. 

10. Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G., Sp2 C‐Dominant N‐Doped Carbon 

Sub‐micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient 

Oxygen‐Reduction Catalysts. Advanced Materials 2013, 25 (7), 998-1003. 

11. Han, X.; Zhang, L.; Li, C., Preparation of polydopamine-functionalized graphene-Fe3O4 

magnetic composites with high adsorption capacities. RSC Advances 2014, 4 (58), 30536-30541. 

12. Lee, M.; Rho, J.; Lee, D. E.; Hong, S.; Choi, S. J.; Messersmith, P. B.; Lee, H., Water 

Detoxification by a Substrate‐Bound Catecholamine Adsorbent. ChemPlusChem 2012, 77 (11), 

987-990. 

13. Dong, Z.; Zhang, F.; Wang, D.; Liu, X.; Jin, J., Polydopamine-mediated surface-

functionalization of graphene oxide for heavy metal ions removal. Journal of Solid State 

Chemistry 2015, 224, 88-93. 

14. Nematollahzadeh, A.; Seraj, S.; Mirzayi, B., Catecholamine coated maghemite 

nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical 

Engineering Journal 2015, 277, 21-29. 



117 

 

15. Sun, D. T.; Peng, L.; Reeder, W. S.; Moosavi, S. M.; Tiana, D.; Britt, D. K.; Oveisi, E.; 

Queen, W. L., Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic 

Framework/Polydopamine Composite. ACS Central Science 2018. 

16. Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H., Mussel-Inspired Synthesis of 

Polydopamine-Functionalized Graphene Hydrogel as Reusable Adsorbents for Water 

Purification. ACS Applied Materials & Interfaces 2013, 5 (2), 425-432. 

17. Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; von 

Gunten, U.; Wehrli, B., The Challenge of Micropollutants in Aquatic Systems. Science 2006, 

313 (5790), 1072. 

18. Ma, Q.; Yu, Y.; Sindoro, M.; Fane, A. G.; Wang, R.; Zhang, H., Carbon‐Based 

Functional Materials Derived from Waste for Water Remediation and Energy Storage. Advanced 

Materials 2017, 29 (13), 1605361. 

19. Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X., 

Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites 

for the Removal of Heavy Metal Ions: A Review. Environmental Science & Technology 2016, 50 

(14), 7290-7304. 

20. Zhang, Q.; Yang, Q.; Phanlavong, P.; Li, Y.; Wang, Z.; Jiao, T.; Peng, Q., Highly 

Efficient Lead(II) Sequestration Using Size-Controllable Polydopamine Microspheres with 

Superior Application Capability and Rapid Capture. ACS Sustainable Chemistry & Engineering 

2017, 5 (5), 4161-4170. 

21. Ghosh, P.; Samanta, A. N.; Ray, S., Reduction of COD and removal of Zn2+ from rayon 

industry wastewater by combined electro-Fenton treatment and chemical precipitation. 

Desalination 2011, 266 (1), 213-217. 

22. Bolisetty, S.; Mezzenga, R., Amyloid–carbon hybrid membranes for universal water 

purification. Nature Nanotechnology 2016, 11, 365. 

23. Khan, M. A.; Ahmad, A.; Umar, K.; Nabi, S. A., Synthesis, Characterization, and 

Biological Applications of Nanocomposites for the Removal of Heavy Metals and Dyes. 

Industrial & Engineering Chemistry Research 2015, 54 (1), 76-82. 

24. Chen, F.; Gong, A. S.; Zhu, M.; Chen, G.; Lacey, S. D.; Jiang, F.; Li, Y.; Wang, Y.; Dai, 

J.; Yao, Y.; Song, J.; Liu, B.; Fu, K.; Das, S.; Hu, L., Mesoporous, Three-Dimensional Wood 

Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS Nano 2017, 

11 (4), 4275-4282. 

25. Aguila, B.; Sun, Q.; Perman, J. A.; Earl, L. D.; Abney, C. W.; Elzein, R.; Schlaf, R.; Ma, 

S., Efficient Mercury Capture Using Functionalized Porous Organic Polymer. Advanced 

Materials 2017, 29 (31), 1700665. 

26. Smith, S. C.; Rodrigues, D. F., Carbon-based nanomaterials for removal of chemical and 

biological contaminants from water: A review of mechanisms and applications. Carbon 2015, 

91, 122-143. 

27. Bessbousse, H.; Rhlalou, T.; Verchère, J. F.; Lebrun, L., Removal of heavy metal ions 

from aqueous solutions by filtration with a novel complexing membrane containing 

poly(ethyleneimine) in a poly(vinyl alcohol) matrix. Journal of Membrane Science 2008, 307 

(2), 249-259. 

28. Singh, R.; Hankins, N., Emerging Membrane Technology for Sustainable Water 

Treatment. Elsevier 2016. 

29. Pendergast, M. M.; Hoek, E. M. V., A review of water treatment membrane 

nanotechnologies. Energy & Environmental Science 2011, 4 (6), 1946-1971. 



118 

 

30. Venkateswararao, A.; Thomas, K. R. J.; Lee, C.-P.; Li, C.-T.; Ho, K.-C., Organic dyes 

containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties. 

ACS applied materials & interfaces 2014, 6 (4), 2528-2539. 

31. Tehrani-Bagha, A. R.; Mahmoodi, N. M.; Menger, F. M., Degradation of a persistent 

organic dye from colored textile wastewater by ozonation. Desalination 2010, 260 (1-3), 34-38. 

32. Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P., Graphitic carbon nitride (g-

C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we 

a step closer to achieving sustainability? Chemical reviews 2016, 116 (12), 7159-7329. 

33. Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L., Atomically thin 

mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. 

ACS nano 2016, 10 (2), 2745-2751. 

34. Yu, K.; Yang, S.; Liu, C.; Chen, H.; Li, H.; Sun, C.; Boyd, S. A., Degradation of organic 

dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based 

visible light photocatalysis. Environmental science & technology 2012, 46 (13), 7318-7326. 

35. Tiwari, J. N.; Mahesh, K.; Le, N. H.; Kemp, K. C.; Timilsina, R.; Tiwari, R. N.; Kim, K. 

S., Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from 

aqueous solutions. Carbon 2013, 56, 173-182. 

36. Zhao, S.; Li, K.; Jiang, S.; Li, J., Pd–Co based spinel oxides derived from pd 

nanoparticles immobilized on layered double hydroxides for toluene combustion. Applied 

Catalysis B: Environmental 2016, 181, 236-248. 

37. Liu, Y.; Zhang, Y. Y.; Kou, Q. W.; Chen, Y.; Han, D. L.; Wang, D. D.; Lu, Z. Y.; Chen, 

L.; Yang, J. H.; Xing, S., Eco-friendly seeded Fe 3 O 4-Ag nanocrystals: A new type of highly 

efficient and low cost catalyst for methylene blue reduction. RSC advances 2018, 8 (4), 2209-

2218. 

38. Xie, S.; Huang, P.; Kruzic, J. J.; Zeng, X.; Qian, H., A highly efficient degradation 

mechanism of methyl orange using Fe-based metallic glass powders. Scientific reports 2016, 6, 

21947. 

39. Wang, J. Q.; Liu, Y. H.; Chen, M. W.; Xie, G. Q.; Louzguine‐Luzgin, D. V.; Inoue, A.; 

Perepezko, J. H., Rapid Degradation of Azo Dye by Fe‐Based Metallic Glass Powder. Advanced 

Functional Materials 2012, 22 (12), 2567-2570. 

40. Jiao, T.; Zhao, H.; Zhou, J.; Zhang, Q.; Luo, X.; Hu, J.; Peng, Q.; Yan, X., Self-assembly 

reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its 

potential efficient application toward dye degradation for wastewater treatments. ACS 

Sustainable Chemistry & Engineering 2015, 3 (12), 3130-3139. 

41. Chandra, R.; Mukhopadhyay, S.; Nath, M., TiO2@ ZIF-8: A novel approach of 

modifying micro-environment for enhanced photo-catalytic dye degradation and high usability of 

TiO2 nanoparticles. Materials Letters 2016, 164, 571-574. 

42. Xie, S.; Wu, S.; Bao, S.; Wang, Y.; Zheng, Y.; Deng, D.; Huang, L.; Zhang, L.; Lee, M.; 

Huang, Z., Intelligent mesoporous materials for selective adsorption and mechanical release of 

organic pollutants from water. Advanced Materials 2018, 30 (27), 1800683. 

43. Wang, F.; Li, C.; Sun, L. D.; Xu, C. H.; Wang, J.; Yu, J. C.; Yan, C. H., Porous 

single‐crystalline palladium nanoparticles with high catalytic activities. Angewandte Chemie 

International Edition 2012, 51 (20), 4872-4876. 

44. Xu, T.; Jiang, Q.; Ghim, D.; Liu, K.-K.; Sun, H.; Derami, H. G.; Wang, Z.; Tadepalli, S.; 

Jun, Y.-S.; Zhang, Q.; Singamaneni, S., Catalytically Active Bacterial Nanocellulose-Based 

Ultrafiltration Membrane. Small 2018, 14 (15), 1704006. 



119 

 

45. Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; 

Edwards, J. K.; Carley, A. F.; Borisevich, A. Y.; Kiely, C. J.; Hutchings, G. J., Palladium-tin 

catalysts for the direct synthesis of H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; with 

high selectivity. Science 2016, 351 (6276), 965. 

46. Zhu, W.; Wu, Z.; Foo, G. S.; Gao, X.; Zhou, M.; Liu, B.; Veith, G. M.; Wu, P.; 

Browning, K. L.; Lee, H. N.; Li, H.; Dai, S.; Zhu, H., Taming interfacial electronic properties of 

platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. 

Nature Communications 2017, 8 (1), 15291. 

47. Bhaskar, R.; Joshi, H.; Sharma, A. K.; Singh, A. K., Reusable Catalyst for Transfer 

Hydrogenation of Aldehydes and Ketones Designed by Anchoring Palladium as Nanoparticles 

on Graphene Oxide Functionalized with Selenated Amine. ACS Applied Materials & Interfaces 

2017, 9 (3), 2223-2231. 

48. Cai, J.; Huang, J.; Wang, S.; Iocozzia, J.; Sun, Z.; Sun, J.; Yang, Y.; Lai, Y.; Lin, Z., 

Crafting Mussel-Inspired Metal Nanoparticle-Decorated Ultrathin Graphitic Carbon Nitride for 

the Degradation of Chemical Pollutants and Production of Chemical Resources. Advanced 

Materials 2019, 31 (15), 1806314. 

49. Lu, J.; Fang, J.; Li, J.; Wang, C.; He, Z.; Zhu, L.-P.; Xu, Z.-K.; Zeng, H., Polydopamine 

Nanotubes Decorated with Ag Nanoparticles as Catalyst for the Reduction of Methylene Blue. 

ACS Applied Nano Materials 2019. 

50. Song, Y.; Jiang, H.; Wang, B.; Kong, Y.; Chen, J., Silver-Incorporated Mussel-Inspired 

Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial 

Agent. ACS Applied Materials & Interfaces 2018, 10 (2), 1792-1801. 

51. Yao, T.; Cui, T.; Wang, H.; Xu, L.; Cui, F.; Wu, J., A simple way to prepare 

Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic 

reduction of methylene blue dye. Nanoscale 2014, 6 (13), 7666-7674. 

52. Wang, Z.; Yang, H.-C.; He, F.; Peng, S.; Li, Y.; Shao, L.; Darling, S. B., Mussel-inspired 

surface engineering for water-remediation materials. Matter 2019, 1 (1), 115-155. 

53. Cui, K.; Yan, B.; Xie, Y.; Qian, H.; Wang, X.; Huang, Q.; He, Y.; Jin, S.; Zeng, H., 

Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for 

enhanced removal of organic dyes. Journal of Hazardous Materials 2018, 350, 66-75. 

54. Batul, R.; Tamanna, T.; Khaliq, A.; Yu, A., Recent progress in the biomedical 

applications of polydopamine nanostructures. Biomaterials science 2017, 5 (7), 1204-1229. 

55. Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L., Dopamine-Melanin Colloidal 

Nanospheres: An Efficient Near-Infrared Photothermal Therapeutic Agent for In Vivo Cancer 

Therapy. Advanced Materials 2013, 25 (9), 1353-1359. 

56. Zhang, D.-Y.; Zheng, Y.; Zhang, H.; Sun, J.-H.; Tan, C.-P.; He, L.; Zhang, W.; Ji, L.-N.; 

Mao, Z.-W., Delivery of Phosphorescent Anticancer Iridium(III) Complexes by Polydopamine 

Nanoparticles for Targeted Combined Photothermal-Chemotherapy and 

Thermal/Photoacoustic/Lifetime Imaging. Advanced Science 2018, 5 (10), 1800581. 

57. Seth, A.; Gholami Derami, H.; Gupta, P.; Wang, Z.; Rathi, P.; Gupta, R.; Cao, T.; 

Morrissey, J. J.; Singamaneni, S., Polydopamine–Mesoporous Silica Core–Shell Nanoparticles 

for Combined Photothermal Immunotherapy. ACS applied materials & interfaces 2020, 12 (38), 

42499-42510. 

58. Kang, K.; Lee, S.; Kim, R.; Choi, I. S.; Nam, Y., Electrochemically Driven, 

Electrode‐Addressable Formation of Functionalized Polydopamine Films for Neural Interfaces. 

Angewandte Chemie 2012, 124 (52), 13278-13281. 



120 

 

59. Battaglini, M.; Marino, A.; Carmignani, A.; Tapeinos, C.; Cauda, V.; Ancona, A.; 

Garino, N.; Vighetto, V.; La Rosa, G.; Sinibaldi, E., Polydopamine nanoparticles as an organic 

and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation. ACS 

Applied Materials & Interfaces 2020, 12 (32), 35782-35798. 

60. Golabchi, A.; Wu, B.; Cao, B.; Bettinger, C. J.; Cui, X. T., Zwitterionic 

polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. 

Biomaterials 2019, 225, 119519. 

61. Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J., Mussel-Inspired Polydopamine: A 

Biocompatible and Ultrastable Coating for Nanoparticles in Vivo. ACS Nano 2013, 7 (10), 9384-

9395. 

62. Zhang, P.; Xu, Q.; Du, J.; Wang, Y., Polydopamine-based nanoparticles with excellent 

biocompatibility for photothermally enhanced gene delivery. RSC Advances 2018, 8 (60), 34596-

34602. 

63. Poinard, B.; Lam, S. A. E.; Neoh, K. G.; Kah, J. C. Y., Mucopenetration and 

biocompatibility of polydopamine surfaces for delivery in an Ex Vivo porcine bladder. Journal 

of Controlled Release 2019, 300, 161-173. 

64. Gu, G. E.; Park, C. S.; Cho, H.-J.; Ha, T. H.; Bae, J.; Kwon, O. S.; Lee, J.-S.; Lee, C.-S., 

Fluorescent polydopamine nanoparticles as a probe for zebrafish sensory hair cells targeted in 

vivo imaging. Scientific Reports 2018, 8 (1), 4393. 

65. Ball, V., Polydopamine Nanomaterials: Recent Advances in Synthesis Methods and 

Applications. Frontiers in Bioengineering and Biotechnology 2018, 6 (109). 

66. Li, W.; Liu, Z.; Fontana, F.; Ding, Y.; Liu, D.; Hirvonen, J. T.; Santos, H. A., Tailoring 

Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. 

Advanced Materials 2018, 30 (24), 1703740. 

67. Li, J.; Pu, K., Development of organic semiconducting materials for deep-tissue optical 

imaging, phototherapy and photoactivation. Chemical Society Reviews 2019, 48 (1), 38-71. 

68. Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K., Millisecond-timescale, 

genetically targeted optical control of neural activity. Nature Neuroscience 2005, 8, 1263-1268. 

69. Zemelman, B. V.; Lee, G. A.; Ng, M.; Miesenböck, G., Selective Photostimulation of 

Genetically ChARGed Neurons. Neuron 2002, 33 (1), 15-22. 

70. Bernstein, J. G.; Boyden, E. S., Optogenetic tools for analyzing the neural circuits of 

behavior. Trends in Cognitive Sciences 2011, 15 (12), 592-600. 

71. Deisseroth, K.; Feng, G.; Majewska, A. K.; Miesenböck, G.; Ting, A.; Schnitzer, M. J., 

Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal 

of Neuroscience 2006, 26 (41), 10380-10386. 

72. Callaway, E. M.; Yuste, R., Stimulating neurons with light. Current opinion in 

neurobiology 2002, 12, 587-592. 

73. Wang, Y.; Guo, L., Nanomaterial-enabled neural stimulation. Frontiers in Neuroscience 

2016, 10, 69. 

74. Yoo, S.; Park, J.-H.; Nam, Y., Single-cell photothermal neuromodulation for functional 

mapping of neural networks. ACS nano 2018, 13 (1), 544-551. 

75. Rastogi, S. K.; Garg, R.; Scopelliti, M. G.; Pinto, B. I.; Hartung, J. E.; Kim, S.; Murphey, 

C. G. E.; Johnson, N.; San Roman, D.; Bezanilla, F.; Cahoon, J. F.; Gold, M. S.; Chamanzar, M.; 

Cohen-Karni, T., Remote nongenetic optical modulation of neuronal activity using fuzzy 

graphene. Proceedings of the National Academy of Sciences 2020, 117 (24), 13339. 



121 

 

76. Yoo, S.; Hong, S.; Choi, Y.; Park, J.-H.; Nam, Y., Photothermal Inhibition of Neural 

Activity with Near-Infrared-Sensitive Nanotransducers. ACS Nano 2014, 8 (8), 8040-8049. 

77. Carvalho-de-Souza, João L.; Treger, Jeremy S.; Dang, B.; Kent, Stephen B. H.; 

Pepperberg, David R.; Bezanilla, F., Photosensitivity of Neurons Enabled by Cell-Targeted Gold 

Nanoparticles. Neuron 2015, 86 (1), 207-217. 

78. Munshi, R.; Qadri, S. M.; Zhang, Q.; Rubio, I. C.; Del Pino, P.; Pralle, A., 

Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving 

mice. Elife 2017, 6, e27069. 

79. Kang, H.; Lee, G.-H.; Jung, H.; Lee, J. W.; Nam, Y., Inkjet-Printed Biofunctional 

Thermo-Plasmonic Interfaces for Patterned Neuromodulation. ACS Nano 2018, 12 (2), 1128-

1138. 

80. Lee, J. W.; Jung, H.; Cho, H. H.; Lee, J. H.; Nam, Y., Gold nanostar-mediated neural 

activity control using plasmonic photothermal effects. Biomaterials 2018, 153, 59-69. 

81. Eom, K.; Kim, J.; Choi, J. M.; Kang, T.; Chang, J. W.; Byun, K. M.; Jun, S. B.; Kim, S. 

J., Enhanced Infrared Neural Stimulation using Localized Surface Plasmon Resonance of Gold 

Nanorods. Small 2014, 10 (19), 3853-3857. 

82. Yoo, S.; Kim, R.; Park, J.-H.; Nam, Y., Electro-optical Neural Platform Integrated with 

Nanoplasmonic Inhibition Interface. ACS Nano 2016, 10 (4), 4274-4281. 

83. Yang, X.; Wang, Z.; Shao, L., Construction of oil-unidirectional membrane for integrated 

oil collection with lossless transportation and oil-in-water emulsion purification. Journal of 

Membrane Science 2018, 549, 67-74. 

84. Sun, H.; Yang, X.; Zhang, Y.; Cheng, X.; Xu, Y.; Bai, Y.; Shao, L., Segregation-induced 

in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky 

poly (ethylene glycol) blending. Journal of Membrane Science 2018. 

85. Wu, X.; Jiang, Q.; Ghim, D.; Singamaneni, S.; Jun, Y.-S., Localized heating with a 

photothermal polydopamine coating facilitates a novel membrane distillation process. Journal of 

Materials Chemistry A 2018. 

86. Contreras Rodriguez, A. R.; Saiz-Poseu, J.; Garcia-Pardo, J.; Garcia, B.; Lorenzo, J.; 

Ojea-Jimenez, I.; Komilis, D.; Sedo, J.; Busque, F.; Sanchez, A.; Ruiz-Molina, D.; Font, X., 

Biocompatible polydopamine-like particles for the removal of heavy metals at extremely low 

concentrations. RSC Advances 2016, 6 (46), 40058-40066. 

87. Carpenter, A. W.; de Lannoy, C.-F.; Wiesner, M. R., Cellulose Nanomaterials in Water 

Treatment Technologies. Environmental Science & Technology 2015, 49 (9), 5277-5287. 

88. Wu, Z.-Y.; Liang, H.-W.; Chen, L.-F.; Hu, B.-C.; Yu, S.-H., Bacterial Cellulose: A 

Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. 

Accounts of Chemical Research 2016, 49 (1), 96-105. 

89. Tian, L.; Jiang, Q.; Liu, K.-K.; Luan, J.; Naik, R. R.; Singamaneni, S., Bacterial 

Nanocellulose-Based Flexible Surface Enhanced Raman Scattering Substrate. Advanced 

Materials Interfaces 2016, 3 (15), n/a-n/a. 

90. Tian, L.; Luan, J.; Liu, K.-K.; Jiang, Q.; Tadepalli, S.; Gupta, M. K.; Naik, R. R.; 

Singamaneni, S., Plasmonic Biofoam: A Versatile Optically Active Material. Nano Letters 2016, 

16 (1), 609-616. 

91. Chen, L.-F.; Huang, Z.-H.; Liang, H.-W.; Gao, H.-L.; Yu, S.-H., Three-Dimensional 

Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for 

Supercapacitors. Advanced Functional Materials 2014, 24 (32), 5104-5111. 



122 

 

92. Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; 

Yu, S.-H., Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode 

material for supercapacitors. ACS nano 2012, 6 (8), 7092-7102. 

93. Tong, S.; Zheng, M.; Lu, Y.; Lin, Z.; Zhang, X.; He, P.; Zhou, H., Binder-free carbonized 

bacterial cellulose-supported ruthenium nanoparticles for Li-O2 batteries. Chemical 

Communications 2015, 51 (34), 7302-7304. 

94. Wang, B.; Li, X.; Luo, B.; Yang, J.; Wang, X.; Song, Q.; Chen, S.; Zhi, L., Pyrolyzed 

bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 2013, 9 (14), 

2399-2404. 

95. Liang, H.-W.; Guan, Q.-F.; Zhu, Z.; Song, L.-T.; Yao, H.-B.; Lei, X.; Yu, S.-H., Highly 

conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater 2012, 

4, e19. 

96. Olsson, R. T.; Azizi Samir, M. A. S.; Salazar Alvarez, G.; BelovaL; StromV; Berglund, 

L. A.; IkkalaO; NoguesJ; Gedde, U. W., Making flexible magnetic aerogels and stiff magnetic 

nanopaper using cellulose nanofibrils as templates. Nat Nano 2010, 5 (8), 584-588. 

97. Jiang, Q.; Tian, L.; Liu, K. K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; 

Singamaneni, S., Bilayered Biofoam for Highly Efficient Solar Steam Generation. Advanced 

Materials 2016, 28 (42), 9400-9407. 

98. Jiang, Q.; Kacica, C.; Soundappan, T.; Liu, K.-k.; Tadepalli, S.; Biswas, P.; Singamaneni, 

S., An in situ grown bacterial nanocellulose/graphene oxide composite for flexible 

supercapacitors. Journal of Materials Chemistry A 2017, 5 (27), 13976-13982. 

99. Xu, T.; Jiang, Q.; Ghim, D.; Liu, K. K.; Sun, H.; Derami, H. G.; Wang, Z.; Tadepalli, S.; 

Jun, Y. S.; Zhang, Q., Catalytically Active Bacterial Nanocellulose‐Based Ultrafiltration 

Membrane. Small 2018, 1704006. 

100. Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L., Dopamine‐Melanin Colloidal 

Nanospheres: An Efficient Near‐Infrared Photothermal Therapeutic Agent for In Vivo Cancer 

Therapy. Advanced Materials 2013, 25 (9), 1353-1359. 

101. Luo, H.; Gu, C.; Zheng, W.; Dai, F.; Wang, X.; Zheng, Z., Facile synthesis of novel size-

controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine 

spheres. RSC Advances 2015, 5 (18), 13470-13477. 

102. Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q., Adsorption of 

methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, 

thermodynamics and mechanism analysis. Chemical Engineering Journal 2015, 259, 53-61. 

103. Fu, J.; Xin, Q.; Wu, X.; Chen, Z.; Yan, Y.; Liu, S.; Wang, M.; Xu, Q., Selective 

adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. 

Journal of colloid and interface science 2016, 461, 292-304. 

104. Poletto, M.; Pistor, V.; Santana, R. M. C.; Zattera, A. J., Materials produced from plant 

biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose. Materials 

Research 2012, 15 (3), 421-427. 

105. Weng, C.-H., Modeling Pb(II) adsorption onto sandy loam soil. Journal of Colloid and 

Interface Science 2004, 272 (2), 262-270. 

106. Huang, S.; Yang, L.; Liu, M.; Phua, S. L.; Yee, W. A.; Liu, W.; Zhou, R.; Lu, X., 

Complexes of polydopamine-modified clay and ferric ions as the framework for pollutant-

absorbing supramolecular hydrogels. Langmuir 2013, 29 (4), 1238-1244. 



123 

 

107. Kinniburgh, D. G.; Milne, C. J.; Benedetti, M. F.; Pinheiro, J. P.; Filius, J.; Koopal, L. K.; 

Van Riemsdijk, W. H., Metal ion binding by humic acid: application of the NICA-Donnan 

model. Environmental Science & Technology 1996, 30 (5), 1687-1698. 

108. Jiang, Q.; Derami, H. G.; Ghim, D.; Cao, S.; Jun, Y.-S.; Singamaneni, S., Polydopamine-

filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly 

efficient solar steam generation. Journal of Materials Chemistry A 2017, 5 (35), 18397-18402. 

109. Bolisetty, S.; Mezzenga, R., Amyloid–carbon hybrid membranes for universal water 

purification. Nature nanotechnology 2016, 11 (4), 365. 

110. Lv, Y.; Zhang, C.; He, A.; Yang, S. J.; Wu, G. P.; Darling, S. B.; Xu, Z. K., 

Photocatalytic nanofiltration membranes with self‐cleaning property for wastewater treatment. 

Advanced Functional Materials 2017, 27 (27), 1700251. 

111. Avlonitis, S. A.; Poulios, I.; Sotiriou, D.; Pappas, M.; Moutesidis, K., Simulated cotton 

dye effluents treatment and reuse by nanofiltration. Desalination 2008, 221 (1-3), 259-267. 

112. Gil, A.; Assis, F. C. C.; Albeniz, S.; Korili, S. A., Removal of dyes from wastewaters by 

adsorption on pillared clays. Chemical Engineering Journal 2011, 168 (3), 1032-1040. 

113. Jiang, D.; Chen, M.; Wang, H.; Zeng, G.; Huang, D.; Cheng, M.; Liu, Y.; Xue, W.; 

Wang, Z., The application of different typological and structural MOFs-based materials for the 

dyes adsorption. Coordination Chemistry Reviews 2019, 380, 471-483. 

114. Hu, H.; Xin, J. H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y., Synthesis and stabilization of 

metal nanocatalysts for reduction reactions–a review. Journal of materials chemistry A 2015, 3 

(21), 11157-11182. 

115. Massaro, M.; Colletti, C. G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S., Synthesis and 

characterization of halloysite–cyclodextrin nanosponges for enhanced dyes adsorption. ACS 

Sustainable Chemistry & Engineering 2017, 5 (4), 3346-3352. 

116. Naushad, M.; Ali Khan, M.; Abdullah Alothman, Z.; Rizwan Khan, M.; Kumar, M., 

Adsorption of methylene blue on chemically modified pine nut shells in single and binary 

systems: isotherms, kinetics, and thermodynamic studies. Desalination and Water Treatment 

2016, 57 (34), 15848-15861. 

117. Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H. M.; Wang, L., 

Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials 2019, 

31 (38), 1801369. 

118. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q., Metal–organic frameworks as platforms for 

catalytic applications. Advanced Materials 2018, 30 (37), 1703663. 

119. Wang, Z.; Ji, S.; Zhang, J.; He, F.; Xu, Z.; Peng, S.; Li, Y., Dual functional membrane 

with multiple hierarchical structures (MHS) for simultaneous and high-efficiency removal of dye 

and nano-sized oil droplets in water under high flux. Journal of Membrane Science 2018, 564, 

317-327. 

120. Khan, N. A.; Hasan, Z.; Jhung, S. H., Adsorptive removal of hazardous materials using 

metal-organic frameworks (MOFs): a review. Journal of hazardous materials 2013, 244, 444-

456. 

121. Islam, M. A.; Ahmed, M. J.; Khanday, W. A.; Asif, M.; Hameed, B. H., Mesoporous 

activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH 

activation for methylene blue adsorption. Journal of environmental management 2017, 203, 237-

244. 



124 

 

122. Shahabuddin, S.; Sarih, N. M.; Mohamad, S.; Baharin, S. N. A., Synthesis and 

characterization of Co 3 O 4 nanocube-doped polyaniline nanocomposites with enhanced methyl 

orange adsorption from aqueous solution. RSC Advances 2016, 6 (49), 43388-43400. 

123. Kurt, B. Z.; Durmus, Z.; Durmus, A., Preparation and characterization of platinum (Pt) 

and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the 

elimination of basic fuchsin and indigo carmine dyes. Solid State Sciences 2016, 51, 51-58. 

124. Leyva-Pérez, A.; Oliver-Meseguer, J.; Rubio-Marqués, P.; Corma, A., Water-Stabilized 

Three- and Four-Atom Palladium Clusters as Highly Active Catalytic Species in Ligand-Free 

C C Cross-Coupling Reactions. Angewandte Chemie International Edition 2013, 52 (44), 

11554-11559. 

125. Kuvarega, A. T.; Krause, R. W. M.; Mamba, B. B., Nitrogen/Palladium-Codoped TiO2 

for Efficient Visible Light Photocatalytic Dye Degradation. The Journal of Physical Chemistry C 

2011, 115 (45), 22110-22120. 

126. Xiong, Z.; Zhang, L. L.; Ma, J.; Zhao, X. S., Photocatalytic degradation of dyes over 

graphene–gold nanocomposites under visible light irradiation. Chemical Communications 2010, 

46 (33), 6099-6101. 

127. Zhang, Y.; Liu, S.; Lu, W.; Wang, L.; Tian, J.; Sun, X., In situ green synthesis of Au 

nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. 

Catalysis Science & Technology 2011, 1 (7), 1142-1144. 

128. Zhang, Z.; Shao, C.; Zou, P.; Zhang, P.; Zhang, M.; Mu, J.; Guo, Z.; Li, X.; Wang, C.; 

Liu, Y., In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for 

catalytic reduction of 4-nitrophenol. Chemical Communications 2011, 47 (13), 3906-3908. 

129. Ghasemzadeh, G.; Momenpour, M.; Omidi, F.; Hosseini, M. R.; Ahani, M.; Barzegari, 

A., Applications of nanomaterials in water treatment and environmental remediation. Frontiers 

of Environmental Science & Engineering 2014, 8 (4), 471-482. 

130. Gholami Derami, H.; Jiang, Q.; Ghim, D.; Cao, S.; Chandar, Y. J.; Morrissey, J. J.; Jun, 

Y.-S.; Singamaneni, S., A robust and scalable polydopamine/bacterial nanocellulose hybrid 

membrane for efficient wastewater treatment. ACS Applied Nano Materials 2019, 2 (2), 1092-

1101. 

131. Sikhwivhilu, K.; Moutloali, R. M., Functionalized PVDF Membrane-immobilized Fe/Ni 

Bimetallic Nanoparticles for Catalytic Degradation of Methyl Orange Dye: A Comparative 

Study. Materials Today: Proceedings 2015, 2 (7), 4070-4080. 

132. Subair, R.; Tripathi, B. P.; Formanek, P.; Simon, F.; Uhlmann, P.; Stamm, M., 

Polydopamine modified membranes with in situ synthesized gold nanoparticles for catalytic and 

environmental applications. Chemical Engineering Journal 2016, 295, 358-369. 

133. Kamal, T.; Ahmad, I.; Khan, S. B.; Asiri, A. M., Synthesis and catalytic properties of 

silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. 

Carbohydrate Polymers 2017, 157, 294-302. 

134. Wang, Z.; Han, M.; Zhang, J.; He, F.; Xu, Z.; Ji, S.; Peng, S.; Li, Y., Designing 

preferable functional materials based on the secondary reactions of the hierarchical tannic acid 

(TA)-aminopropyltriethoxysilane (APTES) coating. Chemical Engineering Journal 2019, 360, 

299-312. 

135. Lin, J.; Ye, W.; Baltaru, M.-C.; Tang, Y. P.; Bernstein, N. J.; Gao, P.; Balta, S.; Vlad, M.; 

Volodin, A.; Sotto, A., Tight ultrafiltration membranes for enhanced separation of dyes and 

Na2SO4 during textile wastewater treatment. Journal of Membrane Science 2016, 514, 217-228. 



125 

 

136. Guan, B. Y.; Yu, L.; Lou, X. W., Formation of asymmetric bowl-like mesoporous 

particles via emulsion-induced interface anisotropic assembly. Journal of the American 

Chemical Society 2016, 138 (35), 11306-11311. 

137. Hong, G.; Shen, L.; Wang, M.; Yang, Y.; Wang, X.; Zhu, M.; Hsiao, B. S., Nanofibrous 

polydopamine complex membranes for adsorption of Lanthanum (III) ions. Chemical 

engineering journal 2014, 244, 307-316. 

138. Dong, Z.; Wang, D.; Liu, X.; Pei, X.; Chen, L.; Jin, J., Bio-inspired surface-

functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with 

a superhigh capacity. Journal of Materials Chemistry A 2014, 2 (14), 5034-5040. 

139. Jiang, Q.; Tian, L.; Liu, K.-K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; 

Singamaneni, S., Bilayered Biofoam for Highly Efficient Solar Steam Generation. Advanced 

Materials 2016, 28 (42), 9400-9407. 

140. Ghim, D.; Jiang, Q.; Cao, S.; Singamaneni, S.; Jun, Y.-S., Mechanically interlocked 

1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy 2018, 53, 

949-957. 

141. Liu, K.-K.; Jiang, Q.; Kacica, C.; Derami, H. G.; Biswas, P.; Singamaneni, S., Flexible 

solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. 

RSC Advances 2018, 8 (55), 31296-31302. 

142. Shaheen, F.; Badshah, A.; Gielen, M.; Dusek, M.; Fejfarova, K.; de Vos, D.; Mirza, B., 

Synthesis, characterization, antibacterial and cytotoxic activity of new palladium (II) complexes 

with dithiocarbamate ligands: X-ray structure of bis (dibenzyl-1-S: S′-dithiocarbamato) Pd (II). 

Journal of organometallic chemistry 2007, 692 (14), 3019-3026. 

143. Ul-Islam, M.; Khattak, W. A.; Kang, M.; Kim, S. M.; Khan, T.; Park, J. K., Effect of 

post-synthetic processing conditions on structural variations and applications of bacterial 

cellulose. Cellulose 2013, 20 (1), 253-263. 

144. Rahul, R.; Singh, R. K.; Bera, B.; Devivaraprasad, R.; Neergat, M., The role of surface 

oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism 

and product selectivity on Pd-based catalysts in acid media. Physical Chemistry Chemical 

Physics 2015, 17 (23), 15146-15155. 

145. Wang, B.; Yan, T.; Chang, T.; Wei, J.; Zhou, Q.; Yang, S.; Fang, T., Palladium supported 

on reduced graphene oxide as a high-performance catalyst for the dehydrogenation of 

dodecahydro-N-ethylcarbazole. Carbon 2017, 122, 9-18. 

146. Dubey, A. V.; Kumar, A. V., A biomimetic magnetically recoverable palladium 

nanocatalyst for the Suzuki cross-coupling reaction. RSC Advances 2016, 6 (52), 46864-46870. 

147. Xu, L.; Wu, X.-C.; Zhu, J.-J., Green preparation and catalytic application of Pd 

nanoparticles. Nanotechnology 2008, 19 (30), 305603. 

148. Wei, H.; Ren, J.; Han, B.; Xu, L.; Han, L.; Jia, L., Stability of polydopamine and poly 

(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and 

alkaline conditions. Colloids and Surfaces B: Biointerfaces 2013, 110, 22-28. 

149. Shah, L. A.; Sayed, M.; Fayaz, M.; Bibi, I.; Nawaz, M.; Siddiq, M., Ag-Loaded Thermo-

Sensitive Composite Microgels for Enhanced Catalytic Reduction of Methylene Blue. 

Nanotechnology for Environmental Engineering 2017, 2 (1), 14. 

150. Ma, X.; Guo, Y.; Jin, J.; Zhao, B.; Song, W., Bi-Functional Reduced Graphene 

Oxide/AgCo Composite Nanosheets: An Efficient Catalyst and SERS Substrate for Monitoring 

the Catalytic Reactions. RSC Advances 2017, 7 (67), 41962-41969. 



126 

 

151. Kojima, Y.; Suzuki, K.-i.; Fukumoto, K.; Sasaki, M.; Yamamoto, T.; Kawai, Y.; Hayashi, 

H., Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal 

oxide. International Journal of Hydrogen Energy 2002, 27 (10), 1029-1034. 

152. Ali, F.; Khan, S. B.; Kamal, T.; Alamry, K. A.; Asiri, A. M.; Sobahi, T. R. A., Chitosan 

Coated Cotton Cloth Supported Zero-Valent Nanoparticles: Simple but Economically Viable, 

Efficient and Easily Retrievable Catalysts. Scientific Reports 2017, 7 (1), 16957. 

153. Ucar, A.; Findik, M.; Gubbuk, I. H.; Kocak, N.; Bingol, H., Catalytic Degradation of 

Organic Dye Using Reduced Graphene Oxide–Polyoxometalate Nanocomposite. Materials 

Chemistry and Physics 2017, 196, 21-28. 

154. Robina, B.; Jawayria, N.; Ayesha, S.; Khalida, N.; Ahmad, I.; Abdullah, G. A.-S.; 

Zahoor, H. F., Chemical Reduction of Methylene Blue in the Presence of Nanocatalysts: A 

Critical Review. Reviews in Chemical Engineering 2019,  (0), 20180047. 

155. Naseem, K.; Farooqi, Z. H.; Begum, R.; Irfan, A., Removal of Congo red dye from 

aqueous medium by its catalytic reduction using sodium borohydride in the presence of various 

inorganic nano-catalysts: a review. Journal of cleaner production 2018, 187, 296-307. 

156. Ravikumar, K. V. G.; Dubey, S.; pulimi, M.; Chandrasekaran, N.; Mukherjee, A., Scale-

Up Synthesis of Zero-Valent Iron Nanoparticles and Their Applications for Synergistic 

Degradation of Pollutants With Sodium Borohydride. Journal of Molecular Liquids 2016, 224, 

589-598. 

157. Chen, Z.-x.; Jin, X.-y.; Chen, Z.; Megharaj, M.; Naidu, R., Removal of Methyl Orange 

from Aqueous Solution Using Bentonite-Supported Nanoscale Zero-Valent Iron. Journal of 

Colloid and Interface Science 2011, 363 (2), 601-607. 

158. Ilunga, A. K.; Khoza, T.; Tjabadi, E.; Meijboom, R., Effective Catalytic Reduction of 

Methyl Orange Catalyzed by the Encapsulated Random Alloy Palladium-Gold Nanoparticles 

Dendrimer. ChemistrySelect 2017, 2 (30), 9803-9809. 

159. Mondal, A.; Adhikary, B.; Mukherjee, D., Room-temperature synthesis of air stable 

cobalt nanoparticles and their use as catalyst for methyl orange dye degradation. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects 2015, 482, 248-257. 

160. Lin, F.-h.; Doong, R.-a., Highly Efficient Reduction of 4-nitrophenol by Heterostructured 

Gold-Magnetite Nanocatalysts. Applied Catalysis A: General 2014, 486, 32-41. 

161. Li, J.; Liu, C.-y.; Liu, Y., Au/Graphene Hydrogel: Synthesis, Characterization and its Use 

for Catalytic Reduction of 4-Nitrophenol. Journal of Materials Chemistry 2012, 22 (17), 8426-

8430. 

162. Bae, S.; Gim, S.; Kim, H.; Hanna, K., Effect of NaBH4 on Properties of Nanoscale Zero-

Valent Iron and its Catalytic Activity for Reduction of p-Nitrophenol. Applied Catalysis B: 

Environmental 2016, 182, 541-549. 

163. Davis, R. E.; Bromels, E.; Kibby, C. L., Boron hydrides. III. Hydrolysis of sodium 

borohydride in aqueous solution. Journal of the American Chemical Society 1962, 84 (6), 885-

892. 

164. Chen, W.; Mo, J.; Du, X.; Zhang, Z.; Zhang, W., Biomimetic dynamic membrane for 

aquatic dye removal. Water research 2019, 151, 243-251. 

165. Zhang, Y.; Cheng, X.; Jiang, X.; Urban, J. J.; Lau, C. H.; Liu, S.; Shao, L., Robust natural 

nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials 

Today 2020. 

166. Zhang, Y.; Ma, J.; Shao, L., Ultra-thin Trinity Coating Enabled by Competitive Reactions 

for Unparalleled Molecular Separations. Journal of Materials Chemistry A 2020. 



127 

 

167. Vinodgopal, K.; Kamat, P. V., Enhanced Rates of Photocatalytic Degradation of an Azo 

Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films. Environmental Science & 

Technology 1995, 29 (3), 841-845. 

168. Zheng, Y.; Zhong, X.; Li, Z.; Xia, Y., Successive, Seed-Mediated Growth for the 

Synthesis of Single-Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range 

of 5–150 nm. Particle & Particle Systems Characterization 2014, 31 (2), 266-273. 

169. Vesely, M. D.; Kershaw, M. H.; Schreiber, R. D.; Smyth, M. J., Natural Innate and 

Adaptive Immunity to Cancer. Annual Review of Immunology 2011, 29 (1), 235-271. 

170. Dunn, G. P.; Bruce, A. T.; Ikeda, H.; Old, L. J.; Schreiber, R. D., Cancer immunoediting: 

from immunosurveillance to tumor escape. Nature Immunology 2002, 3 (11), 991-998. 

171. O’Donnell, J. S.; Teng, M. W. L.; Smyth, M. J., Cancer immunoediting and resistance to 

T cell-based immunotherapy. Nature Reviews Clinical Oncology 2018. 

172. Beatty, G. L.; Gladney, W. L., Immune Escape Mechanisms as a Guide for Cancer 

Immunotherapy. Clinical Cancer Research 2015, 21 (4), 687. 

173. Mellman, I.; Coukos, G.; Dranoff, G., Cancer immunotherapy comes of age. Nature 

2011, 480 (7378), 480-489. 

174. Disis, M. L., Mechanism of Action of Immunotherapy. Seminars in Oncology 2014, 41, 

S3-S13. 

175. Huang, L.; Xu, H.; Peng, G., TLR-mediated metabolic reprogramming in the tumor 

microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 

2018, 15 (5), 428-437. 

176. Bocanegra Gondan, A. I.; Ruiz-de-Angulo, A.; Zabaleta, A.; Gómez Blanco, N.; 

Cobaleda-Siles, B. M.; García-Granda, M. J.; Padro, D.; Llop, J.; Arnaiz, B.; Gato, M.; Escors, 

D.; Mareque-Rivas, J. C., Effective cancer immunotherapy in mice by polyIC-imiquimod 

complexes and engineered magnetic nanoparticles. Biomaterials 2018, 170, 95-115. 

177. Xu, C.; Nam, J.; Hong, H.; Xu, Y.; Moon, J. J., Positron Emission Tomography-Guided 

Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized 

Cancer Immunotherapy. ACS Nano 2019, 13 (10), 12148-12161. 

178. Seth, A.; Heo, M. B.; Lim, Y. T., Poly (γ-glutamic acid) based combination of water-

insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 2014, 35 (27), 

7992-8001. 

179. Phuengkham, H.; Ren, L.; Shin, I. W.; Lim, Y. T., Nanoengineered Immune Niches for 

Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer 

Immunotherapy. Advanced Materials 2019, 31 (34), 1803322. 

180. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; 

Kohler, R. H.; Pittet, M. J.; Weissleder, R., TLR7/8-agonist-loaded nanoparticles promote the 

polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature 

Biomedical Engineering 2018, 2 (8), 578-588. 

181. Im, S.; Lee, J.; Park, D.; Park, A.; Kim, Y.-M.; Kim, W. J., Hypoxia-Triggered 

Transforming Immunomodulator for Cancer Immunotherapy via Photodynamically Enhanced 

Antigen Presentation of Dendritic Cell. ACS Nano 2019, 13 (1), 476-488. 

182. Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z., Photothermal therapy with 

immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer 

immunotherapy. Nature Communications 2016, 7 (1), 13193. 

183. Yang, W.; Zhu, G.; Wang, S.; Yu, G.; Yang, Z.; Lin, L.; Zhou, Z.; Liu, Y.; Dai, Y.; 

Zhang, F.; Shen, Z.; Liu, Y.; He, Z.; Lau, J.; Niu, G.; Kiesewetter, D. O.; Hu, S.; Chen, X., In 



128 

 

Situ Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano 2019, 13 (3), 3083-

3094. 

184. Ye, X.; Liang, X.; Chen, Q.; Miao, Q.; Chen, X.; Zhang, X.; Mei, L., Surgical Tumor-

Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy. ACS Nano 

2019, 13 (3), 2956-2968. 

185. Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W., Nanoscale 

Metal-organic Frameworks Mediate Photodynamic Therapy and Deliver CpG 

Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. 

Angewandte Chemie International Edition 2019, 0 (ja). 

186. Embgenbroich, M.; Burgdorf, S., Current Concepts of Antigen Cross-Presentation. 

Frontiers in immunology 2018, 9, 1643-1643. 

187. Sánchez-Paulete, A. R.; Teijeira, A.; Cueto, F. J.; Garasa, S.; Pérez-Gracia, J. L.; 

Sánchez-Arráez, A.; Sancho, D.; Melero, I., Antigen cross-presentation and T-cell cross-priming 

in cancer immunology and immunotherapy. Annals of Oncology 2017, 28 (suppl_12), xii44-

xii55. 

188. Alloatti, A.; Kotsias, F.; Magalhaes, J. G.; Amigorena, S., Dendritic cell maturation and 

cross-presentation: timing matters! Immunological reviews 2016, 272 (1), 97-108. 

189. Gil-Torregrosa, B. C.; Lennon-Duménil, A. M.; Kessler, B.; Guermonprez, P.; Ploegh, H. 

L.; Fruci, D.; Endert, P. V.; Amigorena, S., Control of cross-presentation during dendritic cell 

maturation. European Journal of Immunology 2004, 34 (2), 398-407. 

190. Reis e Sousa, C., Dendritic cells in a mature age. Nature Reviews Immunology 2006, 6 

(6), 476-483. 

191. Dhodapkar, M. V.; Dhodapkar, K. M.; Palucka, A. K., Interactions of tumor cells with 

dendritic cells: balancing immunity and tolerance. Cell Death Differ 2008, 15 (1), 39-50. 

192. Makkouk, A.; Weiner, G. J., Cancer Immunotherapy and Breaking Immune Tolerance: 

New Approaches to an Old Challenge. Cancer Research 2015, 75 (1), 5. 

193. Mende, I.; Engleman, E. G., Breaking Self-Tolerance to Tumor-Associated Antigens by 

In Vivo Manipulation of Dendritic Cells. In Immunological Tolerance: Methods and Protocols, 

Fairchild, P. J., Ed. Humana Press: Totowa, NJ, 2007; pp 457-468. 

194. Ma, F.; Zhang, J.; Zhang, J.; Zhang, C., The TLR7 agonists imiquimod and gardiquimod 

improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 2010, 7 (5), 381-

388. 

195. Seth, A.; Lee, H.; Cho, M. Y.; Park, C.; Korm, S.; Lee, J.-Y.; Choi, I.; Lim, Y. T.; Hong, 

K. S., Combining vasculature disrupting agent and Toll-like receptor 7/8 agonist for cancer 

therapy. Oncotarget 2017, 8 (3), 5371-5381. 

196. Weber, A.; Zimmermann, C.; Mausberg, A. K.; Kieseier, B. C.; Hartung, H. P.; 

Hofstetter, H. H., Induction of pro-inflammatory cytokine production in thymocytes by the 

immune response modifiers Imiquimod and Gardiquimod™. International 

Immunopharmacology 2013, 17 (2), 427-431. 

197. Zou, B. B.; Wang, F.; Li, L.; Cheng, F. W.; Jin, R.; Luo, X.; Zhu, L. X.; Geng, X.; 

Zhang, S. Q., Activation of Toll-like receptor 7 inhibits the proliferation and migration, and 

induces the apoptosis of pancreatic cancer cells. Molecular Medicine Reports 2015, 12 (4), 6079-

6085. 

198. Wang, C.; Ma, Z.; Wang, T.; Su, Z., Synthesis, Assembly, and Biofunctionalization of 

Silica‐Coated Gold Nanorods for Colorimetric Biosensing. Advanced Functional Materials 

2006, 16 (13), 1673-1678. 



129 

 

199. Shen, S.; Tang, H.; Zhang, X.; Ren, J.; Pang, Z.; Wang, D.; Gao, H.; Qian, Y.; Jiang, X.; 

Yang, W., Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal 

therapy with near-infrared radiation. Biomaterials 2013, 34 (12), 3150-3158. 

200. Tian, L.; Gandra, N.; Singamaneni, S., Monitoring controlled release of payload from 

gold nanocages using surface enhanced Raman scattering. ACS nano 2013, 7 (5), 4252-4260. 

201. Tran, T. H.; Tran, T. T. P.; Truong, D. H.; Nguyen, H. T.; Pham, T. T.; Yong, C. S.; Kim, 

J. O., Toll-like receptor-targeted particles: A paradigm to manipulate the tumor 

microenvironment for cancer immunotherapy. Acta Biomaterialia 2019, 94, 82-96. 

202. Stary, G.; Bangert, C.; Tauber, M.; Strohal, R.; Kopp, T.; Stingl, G., Tumoricidal activity 

of TLR7/8-activated inflammatory dendritic cells. The Journal of experimental medicine 2007, 

204 (6), 1441-1451. 

203. Moon, G. D.; Choi, S.-W.; Cai, X.; Li, W.; Cho, E. C.; Jeong, U.; Wang, L. V.; Xia, Y., 

A new theranostic system based on gold nanocages and phase-change materials with unique 

features for photoacoustic imaging and controlled release. Journal of the American Chemical 

Society 2011, 133 (13), 4762-4765. 

204. Won, S. M.; Song, E.; Zhao, J.; Li, J.; Rivnay, J.; Rogers, J. A., Recent advances in 

materials, devices, and systems for neural interfaces. Advanced Materials 2018, 30 (30), 

1800534. 

205. Li, J.; Duan, H.; Pu, K., Nanotransducers for near‐infrared Photoregulation in 

biomedicine. Advanced Materials 2019, 31 (33), 1901607. 

206. Fattahi, P.; Yang, G.; Kim, G.; Abidian, M. R., A review of organic and inorganic 

biomaterials for neural interfaces. Advanced materials 2014, 26 (12), 1846-1885. 

207. Jeong, Y. C.; Lee, H. E.; Shin, A.; Kim, D. G.; Lee, K. J.; Kim, D., Progress in 

Brain‐Compatible Interfaces with Soft Nanomaterials. Advanced Materials 2020, 1907522. 

208. Obidin, N.; Tasnim, F.; Dagdeviren, C., The Future of Neuroimplantable Devices: A 

Materials Science and Regulatory Perspective. Advanced Materials 2020, 32 (15), 1901482. 

209. Mikhail G. Shapiro; Kazuaki Homma; Sebastian Villarreal; Richter, C.-P.; Bezanilla, F., 

Infrared light excites cells by changing their electrical capacitance. Nature Communications 

2012, 3, 736. 

210. Yong, J.; Needham, K.; Brown, W. G. A.; Nayagam, B. A.; McArthur, S. L.; Yu, A.; 

Stoddart, P. R., Gold-Nanorod-Assisted Near-Infrared Stimulation of Primary Auditory Neurons. 

Advanced Healthcare Materials 2014, n/a-n/a. 

211. Dobson, J., Remote control of cellular behaviour with magnetic nanoparticles. Nat 

Nanotechnol 2008, 3 (3), 139-143. 

212. Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A., Remote control of ion 

channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 2010, 5 

(8), 602-606. 

213. Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G., Sp2 C-Dominant N-Doped Carbon Sub-

micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen-

Reduction Catalysts. Advanced Materials 2013, 25 (7), 998-1003. 

214. Dante, S.; Petrelli, A.; Petrini, E. M.; Marotta, R.; Maccione, A.; Alabastri, A.; Quarta, 

A.; De Donato, F.; Ravasenga, T.; Sathya, A.; Cingolani, R.; Proietti Zaccaria, R.; Berdondini, 

L.; Barberis, A.; Pellegrino, T., Selective Targeting of Neurons with Inorganic Nanoparticles: 

Revealing the Crucial Role of Nanoparticle Surface Charge. ACS Nano 2017, 11 (7), 6630-6640. 

215. Smith, A. M.; Mancini, M. C.; Nie, S., Second window for in vivo imaging. Nature 

Nanotechnology 2009, 4 (11), 710-711. 



130 

 

216. Weissleder, R., A clearer vision for in vivo imaging. Nature Biotechnology 2001, 19 (4), 

316-317. 

217. Aslan, B.; Guler, S.; Tevlek, A.; Aydin, H. M., Evaluation of collagen foam, poly(l-lactic 

acid) nanofiber mesh, and decellularized matrices for corneal regeneration. Journal of 

Biomedical Materials Research Part B: Applied Biomaterials 2018, 106 (6), 2157-2168. 

218. Mackenzie, S. J.; Yi, J. L.; Singla, A.; Russell, T. M.; Osterhout, D. J.; Calancie, B., 

Cauda equina repair in the rat: Part 3. Axonal regeneration across Schwann cell—Seeded 

collagen foam. Muscle & Nerve 2018, 57 (1), E78-E84. 

219. Lian, X.; Hsiao, C.; Wilson, G.; Zhu, K.; Hazeltine, L. B.; Azarin, S. M.; Raval, K. K.; 

Zhang, J.; Kamp, T. J.; Palecek, S. P., Cozzarelli Prize Winner: Robust cardiomyocyte 

differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt 

signaling. Proc. Natl. Acad. Sci. USA 2012, 109, E1848-E1857. 

220. Tohyama, S.; Hattori, F.; Sano, M.; Hishiki, T.; Nagahata, Y.; Matsuura, T.; Hashimoto, 

H.; Suzuki, T.; Yamashita, H.; Satoh, Y., Distinct metabolic flow enables large-scale purification 

of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell stem cell 2013, 12 (1), 

127-137. 

221. Zheng, Y.; Zhong, X.; Li, Z.; Xia, Y., Successive, Seed‐Mediated Growth for the 

Synthesis of Single‐Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range 

of 5–150 nm. Particle & Particle Systems Characterization 2014, 31 (2), 266-273. 

222. Poletto, M.; Pistor, V.; Santana, R. M. C.; Zattera, A. J., Materials produced from plant 

biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose. Materials 

Research 2012, 15, 421-427. 

223. EPA, Report of the Food Quality Protection Act (FQPA) Tolerance Reassessment 

Eligibility Decision (TRED) for Boric Acid/Sodium Borate Salts. 

https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/tred_PC-011001_1-

Jul-06.pdf. 

224. Ghosh, S.; Avellini, T.; Petrelli, A.; Kriegel, I.; Gaspari, R.; Almeida, G.; Bertoni, G.; 

Cavalli, A.; Scotognella, F.; Pellegrino, T.; Manna, L., Colloidal CuFeS2 Nanocrystals: 

Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. Chemistry of 

Materials 2016, 28 (13), 4848-4858. 

 

 

 

 

 

 

 

https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/tred_PC-011001_1-Jul-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/tred_PC-011001_1-Jul-06.pdf


131 

 

Appendix 

Appendix 1 

Gold nanoparticle (AuNP) synthesis:  AuNPs were synthesized using a seed-mediated 

method.221 Au seeds with a diameter of 3 nm were synthesized by addition of ice-cold sodium 

borohydride (0.6 ml, 10 mM) into a mixture of hexadecyltrimethylammonium bromide CTAB 

(9.75 ml, 0.1 M) and gold chloride trihydrate (0.25 ml, 10 mM) under vigorous stirring. AuNPs 

with a dimeter of 5 nm were synthesized by mixing CTAC (2 ml, 0.2 M), ascorbic acid (1.5 ml, 

0.1 M) and 3 nm as-prepared seed (1 ml) and addition of gold chloride solution (2 ml, 0.5 mM) 

under vigorous stirring for 15 minutes. For 10 nm AuNPs, CTAC (7 ml, 0.2 M), ascorbic acid 

(5.25 ml, 0.1 M) and 3 nm as-prepared seed (0.175 ml) were mixed and added with gold chloride 

solution (7 ml, 0.5 mM) under vigorous stirring for 15 minutes. 
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Table S2. 1 Parameters of Langmuir Isotherm models for adsorption of Pb (II) and R6G onto 

PDA/BNC foams. 
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Figure S2. 1 Raman spectra of the dopamine monomer and polydopamine particles. 
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Figure S2. 2 (A) Photograph and SEM images of (B) surface and (C) cross-section of the freeze-

dried pristine BNC (BNC foam).  
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Figure S2. 3  Optical image (A) and SEM of the surface (B) of the BNC membrane (air-dried 

BNC).  
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Figure S2. 4 Weight loss profiles of BNC, PDA particles and PDA/BNC composite as measured 

by thermogravimetric analysis (TGA).  
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Figure S2. 5 (A) XPS spectra of PDA/BNC before and after the Pb (II) adsorption test. Pb 4f 

spectra of Pb (II) in (B) Pb(NO3)2 powder and (C) after adsorption on PDA/BNC.   
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Figure S2. 6 Comparison between PDA nanoparticle and activated carbon in Pb (II) adsorption 

(the weight of the both adsorbents was 80 mg, NOTE: error bars are small compared to scale of 

the graph).  
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Figure S2. 7 Adsorption capacities of PDA/BNC foam for Cd (II) (A), and MB (B) at different 

pH values (Experiments carried out at room temperature and the initial concentration of the 

contaminants was 200 ppm). 
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Figure S2. 8 (A) Pore size investigation for BNC membrane. 5 nm AuNP solution diffusion test 

(left and center) that shows no particle diffuses through the membrane and a upper limit for the 

pore size. The diffusion test repeated for DL-Tryptophan, R6G, and Lysozyme (right), and all 

these molecules are diffusing through the BNC membrane giving a lower limit of roughly 1 nm 

pore size for the membrane. (B) Pore size study for PDA/BNC membrane using 5 nm (left) and 

10 nm  (right) AuNPs using vacuum filtration at 0.7 bar pressure. The 5 nm AuNPs penetrate 

through the membrane suggesting that pore size of the membrane is larger than 5 nm, while 10 

nm AuNPs dont penetrate through the membrane even after 4 hours of solution filtration. This 
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gives a lower limit of 5 nm and upper limit of 10 nm for the pore size of the PDA/BNC 

membrane.  (C) Contact angle measurements for pristine BNC and PDA/BNC membranes. 
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Figure S2. 9 (A) Chemical structures of model positively charged dyes used in cocktail filtration 

test. (B) UV-Vis spectra of the cocktail solution before and after the filtration. 
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Figure S2. 10 (A) Concentrations of negatively charged MO in feed and permeate water 

solutions during filtration test (initial pH value was ~2.4). (B) UV-Vis spectra of the MO before 

and after the filtration test (inset shows the chemical structure of MO). 
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Appendix 2 

Gold nanoparticle (AuNP) synthesis:  AuNPs were synthesized using a seed-mediated 

method.221 Au seeds with a diameter of 3 nm were synthesized by addition of ice-cold sodium 

borohydride (0.6 ml, 10 mM) into a mixture of hexadecyltrimethylammonium bromide CTAB 

(9.75 ml, 0.1 M) and gold chloride trihydrate (0.25 ml, 10 mM) under vigorous stirring. AuNPs 

with a dimeter of 5 nm were synthesized by mixing CTAC (2 ml, 0.2 M), ascorbic acid (1.5 ml, 

0.1 M) and 3 nm as-prepared seed (1 ml) and addition of gold chloride solution (2 ml, 0.5 mM) 

under vigorous stirring for 15 minutes. For 10 nm AuNPs, CTAC (7 ml, 0.2 M), ascorbic acid 

(5.25 ml, 0.1 M) and 3 nm as-prepared seed (0.175 ml) were mixed and added with gold chloride 

solution (7 ml, 0.5 mM) under vigorous stirring for 15 minutes. 

 

Thermogravimetric Analysis (TGA): Thermogravimetric analysis (TGA) was employed to 

analyze the mass loading of Pd in Pd-BNC and Pd-mPDA-BNC membranes (Figure S3.3). For 

Pd-mPDA-BNC, the first mass loss of ~6% can be attributed to residual/absorbed water at 100 

oC, second mass loss of ~6% at 280 oC can be attributed to the degradation of cellulose and 

mPDA particles and a mass loss of ~30% at 350 oC  can be attributed to the decomposition of 

cellulose residue, which generates CO2 and H2O, and further degradation of mPDA particles.222 

After heating to 600 oC, the remaining mass (~46%) is composed of Pd nanoparticles and carbon 

residues. The mass of carbon residues for mPDA-BNC at 600 oC is ~25.7%. Based on the above 

discussion, the mass loading of Pd in Pd-mPDA-BNC membrane was calculated to be ~20.3 

wt%. However, in the case of Pd-BNC, the mass loading of Pd was calculated to be ~13.6 wt%. 
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Environmental Impact of Sodium Borate: Environmental Protection Agency’s (EPA) 

guidelines states that Lowest Observed Adverse Effect Level (LOAEL) for oral exposure (e.g. 

drinking) of boric acid and sodium borate is between 32 mg/kg/day and 46 mg/kg/day.223 

LOAEL shows the lowest dose at which there was an observed toxic or adverse effect. By 

assuming that a toddler has an average weight of 15 kg and drinks 2 liters of water every day, the 

LOAEL limit would be between 480 mg and 690 mg. In our experiments, maximum final 

concentration of NaBH4 is 2.5 mM and by assuming that 100% of it has reacted and turned into 

sodium borate, 2 liters of filtered water contain 329 mg of sodium borate, which is below the 

lower limit of LOAEL. 
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Figure S3. 1  Cross section SEM images of the (A) BNC membrane and (B) Pd-mPDA-BNC 

membrane. (Insets show corresponding higher magnification SEM images. ) 
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Figure S3. 2 (A) SEM and (B) AFM images of the surface of the Pd-BNC membrane.  
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Figure S3. 3 Weight loss profiles of BNC, Pd-BNC, mPDA-BNC and Pd-mPDA-BNC 

composites obtained by TGA. 
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Figure S3. 4 XPS spectra of mPDA-BNC and Pd-mPDA-BNC membranes confirming the 

presence of metallic Pd.  
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Figure S3. 5 mPDA vs PDA nanoparticle efficiency in removing (A) MO, (B) 4NP and (C) MB 

at different pH values. 
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Figure S3. 6 Effect of 1.5 mM NaBH4 on the absorbance of the MO after 20 minutes.  
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Figure S3. 7 (A) Absorbance of MO solution before and after filtration through BNC membrane 

in presence of NaBH4. (B) Absorbance of MO solution before and after filtration through Pd-

mPDA-BNC membrane in the absence of NaBH4. 
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Figure S3. 8 Particle rejection test. (A) TEM image of the 5 nm AuNPs used for praticles 

rejection test on Pd-mPDA-BNC membrane. (B) Extinction spectra of the AuNP feed solution 

and the permeate after filtration through Pd-mPDA-BNC membrane (Inset shows corresponding 

optical image of the solution).    
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Appendix 3 

Analysis of TGA data: 31% of the weight of PDA was retained after heating to 600 °C under 

nitrogen.  Mesoporous silica-coated PDA showed an initial mass loss of about 20% at 100 °C, 

due to water evaporation.  It lost its weight less dramatically mainly because of the presence of 

the silica coating and retained 56% of the total weight after heating to 600 °C. This indicates that 

silica coating accounts for about 53% of the weight of core-shell PDA@mSiO2 nanoparticles 

(Figure 4.1H).  

Loading and release of LT680: Successful loading and controlled release of payload from the 

PDA@mSiO2 nanoparticles was further investigated using a fluorescent dye, LT680. Following 

the loading procedure, the PDA@mSiO2 nanoparticles exhibited significantly higher 

fluorescence intensity compared to the supernatant (corresponding to the unloaded dye in 

solution), confirming the successful loading of dye in solution (Figure S4.5A).  Under laser 

irradiation (power of 14 mW/mm2) the fluorescence intensity of solution monotonically 

increased with time. This experiment demonstrates the successful loading and release of the 

LT680 dye, that can be used for studying nanoparticle uptake and subsequent release of drug 

from within the cells in vitro.  

 

Photothermal efficiency calculation: The photothermal conversion efficiency for mSiO2-PDA 

was measured using a method reported previously.224 To obtain the temperature data, 300 µl of 

mSiO2-PDA solution (1 mg/ml) was irradiated with 808 nm laser (power 0.4 W, power density 

14 mW/mm2) for six minutes so that the solution temperature reaches steady-state. Laser was 
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turned off at six minutes and solution temperature was monitored for another six minutes to 

follow the cooling kinetics. Same test was carried out with deionized water.  

The energy input by nanoparticles is given by:224 

                                                                                                           (S4.1) 

Where  is laser power (W),   is the nanoparticle absorbance at 808 nm and  is the 

photothermal conversion efficiency. 

The heat dissipated to the environment is given by: 

                                                                                                                 (S4.2) 

Where  is the heat transfer coefficient (W/cm.K),  is the surface area (cm2) and  is the 

ambient temperature (K).  

When the steady-state condition is reached, the energy input is equal to energy output: 

                                                                      (S4.3) 

Where  is the heat generated by water from laser irradiation. By combining equation 1 and 2, 

the photothermal conversion efficiency can be deduced to be: 

                                                                                                        (S4.4) 

In order to calculate the , a non-dimensional temperature  is defined as: 

                                                                                                                             (S4.5) 
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A typical time constant could be written as follows: 

                                                                                                                                (S4.6) 

Where  is the weight and  is the specific heat capacity. Using conservation of energy during 

the cooling stage and equations (5) and (6): 

                                                                                                                           (S4.7) 

By integrating the above equation: 

                                                                                                                       (S4.8) 

This means, the system‘s time constant is the slope of the linear fit between time and  

during the cooling stage.  

 

From the slope of the above graph, we obtain  sec. The  is calculated using 

equation (6), giving  (W/K). Then,  is calculated using equation below: 
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                                                                                                          (S4.9) 

Considering that the temperature rise for deionized water is 0.5 K, Qw is calculated to be 0.0029 

W. 

Then, the photothermal conversion efficiency of the nanoparticles is calculated by using equation 

(4). Laser power is 0.4 W,  and with , we calculate the 

photothermal conversion efficiency .  
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Figure S4. 1 SEM image of as-prepared silica-coated PDA nanoparticles before removing the 

pore-template (CTAB). 
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Figure S4. 2 HRTEM image of PDA@mSiO2 nanoparticles and corresponding EDS elemental 

mapping for N and Si, showing the presence of PDA core and silica shell.  
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Figure S4. 3 (A) Absorbance spectra of PDA and PDA@mSiO2 nanoparticles. (B) TEM images 

of the PDA@mSiO2 nanoparticles before and after 10 minutes laser treatment.  
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Figure S4. 4 In vitro maturation of BMDCs indicated by upregulation of maturation markers: 

CD40, and CD80. 
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Figure S4. 5 (A) (Left) FL images of the water (control), supernatant of loaded particles and 

LT680 loaded PDA@mSiO2 particles showing efficient dye loading without free dye in solution. 

(right) NIR-triggered release of LT680 dye from PDA@mSiO2 versus laser irradiation time (808 

nm, 14 mW/mm2). (B) Nanoparticle uptake by cancer cells. Confocal fluorescence images of 

B16-F10 cells incubated with LT680-mPDA nanoparticles. Scale bar: 50 µm. 
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Figure S4. 6 (A) IR images of the mouse melanoma model when tumor was ablated with laser 

(808 nm, 14 mW/mm2) with and without PDA@mSiO2 nanoparticle injection. (B) Changes in 

local tumor temperature when ablated with different laser power densities with and without 

PDA@mSiO2 nanoparticle injection. (C) Fluorescence images of mouse tumor acquired before 

injection (blank) and after LT680-loaded mPDA injection (LT680-mPDA and LT680-mPDA 10 

minute without NIR) and after 5 minutes of NIR treatment (LT680-mPDA with 5 min NIR). (D) 

Fold increase in fluorescence intensity (FI) with and without NIR treatment (n=3). Data 

represented as mean ± SD. * p<0.05 by Unpaired t test with Welch's correction.
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Figure S4. 7 Relative populations and activation status of immune cells in tumor draining lymph 

node at day 16. Representative flow cytometry plots of (A) CD11c+ CD40+ dendritic cells, (B) 

CD11c+ MHCII+ dendritic cells. Percentage positive cells are displayed on top right corner. 
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Figure S4. 8 Percentage of different immune cells present in tumor draining lymph node (n=3). 

Data represented as mean ± SD. 
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Figure S4. 9 Therapeutic effect of increasing NIR treatment duration to 10 minutes. (A) Timeline 

of experiment. (B) In vivo toxicity of gardi-mPDA and 10 minute NIR assessed by change in 

body weight of the mice, (C) tumor growth curves, (D) survival curve of mice given different 

treatments (n=5). (E) Tumor volume after secondary challenge in mice surviving after gardi-

mPDA-NIR treatment and PDA@mSiO2-NIR (n=2). Data represented as mean ± SD. * p<0.05, 

** p<0.01 and **** p<0.0001 by one-way ANOVA with Tukey’s posttest and Log-rank 

(Mantel-Cox) test for survival curve. 
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Appendix 4 

 

 

Figure S5. 1 Zeta potential measurements of Polydopamine nanoparticles in PBS, pH=7.4. 
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Figure S5. 2 A single trace of spike recording at half an hour interval. Neurons were not treated 

with PDA NP and are not subject to any external stimulation 
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Figure S5. 3 Control experiments: Effect of laser irradiation on neuron activity without PDA NP 

treatment. A single trace of spike recording (left) and mean spike rate (right). Unpaired Two-

samples t-test; panel (A): p= 0.7928, n=32, panel (B): p= 0.661927, n=38. 
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Figure S5. 4 (A) Correlation coefficient matrix for repeated laser photothermal stimulation in 

presence of PDA NP. Highly correlated spike activity across the culture during the laser 

application indicates the culture wide and universal effect of the treatment. (B) Box plot displays 

the spike reduction percentage during the photothermal stimulation for each cycle and the its 

distribution across diffeent electrodes. Close to 1oo percent average activity reduction and low 

scattering across electrodes demonstrates the culture-wide effectiveness of the photothermal 

stimulation.
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Figure S5. 5 Overlaid waveform of hippocampal neurons treated with PDA NP, before and after 

NIR laser irradiation. Data were collected for laser power density of 6 mW.mm-2 where neuron 

activities were completely suppressed during NIR irradiation. Panel (A) shows the spike cutouts 

before the application of laser and panel (B) shows the spike cutouts after the laser irradiation 

was finished. 
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Figure S5. 6 The full trace of field potential recording of iPS-derived cardiomyocytes on MEA 

system. The iPS-CMs were seeded on MEA recording probe for 3 days until stable field potential 

was observed. The iPS-CMs was treated with PDA nanoparticle for 24 hours and washed off 

before recording. The full recording was 300-seconds long. The 808 laser was turned on for 

duration of 10, 20 and 30 seconds with power density of 14 mW.mm-2.  
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Figure S5. 7 Extreme heat effect on iPS-derived cardiomyocytes. (A) The full trace of field 

potential recording of iPS-CM treated with PDA nanoparticle for 24 hours and heated by 808 

laser at power density of 25 mW.mm-2. (B) The normalized beating rate of iPS-CMs showed the 

beating rate increased at the beginning of laser heating, but ceased beating shortly after 

increasing, experiencing complete stop of beating during the laser treatment. The activity 

recovered after the laser was turned off, and the frequency of the beating changed afterward. 

 

 

 

Figure S5. 8 Optical images of (A) pristine collagen foam and (B) collagen foam modified with 

PDA NP (dark color comes from PDA NP immobilization on collagen surface).  
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Figure S5. 9 Temperature changes of collagen foam + PDA NP in dry state at different laser 

power densities (808 nm laser duration for 10, 20 and 30 seconds). 
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