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Noncanonical forms of DNA methylation, especially non-CpG DNA methylation, play 

essential roles in the neuronal epigenome, and have only recently begun to be characterized. 

While most DNA methylation within mammals is found in a CG context and maintained by 

DNMT1, neurons contain uniquely high levels of non-CpG methylation, such that the total 

amounts of methylation in non-CpG contexts equals or surpasses the total amounts of 

methylation in CG contexts. Non-CpG methylation, unlike CpG methylation, cannot be 

maintained by DNMT1, and must be established by the de novo methyltransferase DNMT3A. 

One unique characteristic of non-CpG methylation compared to canonical CpG 

methylation is the extremely wide range of biological signal it exhibits across large regions of 

the genome. This may enable MeCP2, a critical methyl-binding protein whose disruption causes  

viii 



multiple neurodevelopmental diseases, to repress regulatory elements across entire domains of 

the genome. How these patterns of varied methylation are established throughout the genome 

and what factors direct methylation to one location versus another, however, are unknown. In 

addition, the mechanisms by which these methyl binding proteins function and the 

transcriptomic effects when non-CpG methylation is lost are not well understood. As such, my 

dissertation work centers around the patterning, function, and consequences of this unique neural 

regulatory mark. 

Firstly, by applying multiscale analysis of bisulfite-sequencing and high-throughput 

chromatin conformation capture data in the cerebral cortex of mice we find that megabase-scale 

regions of high non-CG methylation can correspond with topologically-associating domains of 

chromatin folding, identifying a new mechanism influencing mCA deposition across the 

neuronal genome. We find that MeCP2 represses enhancers found in these domains when they 

are enriched for non-CG and CG methylation, with the strongest repression occurring for 

enhancers located within MeCP2-repressed genes. These alterations in enhancer activity provide 

a mechanism for how MeCP2 disruption in neurodevelopmental disorders can lead to widespread 

changes in gene expression. 

In light of our findings that enhancer-based repression by MeCP2 and mCA is disrupted 

in models of MeCP2 disorders, we investigated whether this pathway is affected in a new model 

of NDD caused by DNMT3A disruption.We find that multiple transcriptomic and epigenomic 

changes are shared between a knockout of MeCP2, and a heterozygous knockout of DNMT3A, 

the enzyme that establishes neuronal non-CpG methylation. 

ix 



        Together these findings demonstrate a previously unrecognized role for non-CpG DNA 

methylation in the regulation of enhancer activity in neurons, and a role for enhancer 

dysregulation, stemming from disruption of non-CpG DNA methylation, in multiple disorders. 

This highlights non-CpG methylation as a possible convergence point between multiple 

neurodevelopmental disorders.  
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Chapter 1: Introduction 

The mammalian nervous system requires extremely precise control of gene expression 

and regulatory networks in order to develop properly, and these requirements change over each 

stage of development. A critical mechanism that contributes to gene regulation is DNA 

methylation (Bird & Wolffe, 1999; P. A. Jones & Takai, 2001), the addition of a methyl group to 

the 5’ position of a cytosine. DNA methylation is primarily associated with gene repression (Bird 

& Wolffe, 1999; Greenberg & Bourc’his, 2019), as it is enriched within silenced promoters and 

highly repetitive regions of the genome. There are several known mechanisms by which DNA 

methylation can lead to gene repression, including blocking the binding of activating 

transcription factors (Tate & Bird, 1993) and recruiting methyl-binding proteins that can have 

repressive effects on transcription (P. L. Jones et al., 1998). This relationship, however, is not 

absolute; some transcription factors can bind to both methylated and unmethylated DNA, and 

methylation changes can occur downstream of activation or repression (Feldmann et al., 2013). 

There are developmental consequences if DNA methylation is disrupted, as zygotic ablation of 

DNA methylation through knockout of DNA methyltransferases results in embryonic lethality 

(Li et al., 1992; Okano et al., 1999), and mutations in these methyltransferases and disruption of 

methylation are widely associated with cancer (Das & Singal, 2004; Robertson, 2001).  

 

DNA methylation appears to be especially important within the mammalian brain, as 

neuronal DNA is enriched for noncanonical forms of methylation, and disruption of DNA 

methyltransferase 3a (DNMT3A) within the brain leads to neurological defects in mice. Altering 
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methylation specifically within the mouse brain through a conditional knockout of DNMT3A 

leads to broad behavioral and neuromuscular defects (Nguyen et al., 2007). Within humans, 

mutations in a major neuronal reader of methylation, Methyl-CpG Binding Protein 2 (MeCP2) 

cause Rett syndrome, another severe neurological disorder (Amir et al., 1999). Recently, more 

links between human disease and neuronal methylation have been found, as new exome 

sequencing studies have identified heterozygous mutations in DNMT3A in autism spectrum 

disorders (Feliciano et al., 2019; Sanders et al., 2015; Satterstrom et al., 2020) and 

Tatton-Brown-Rahman syndrome (TBRS), a neurodevelopmental disorder typified by 

overgrowth and intellectual disability (Tatton-Brown et al., 2014, 2018). Given the clear links to 

disease and the growing amount of evidence that methylation has a particularly important role in 

neuronal function, there is a pressing need to understand more about the unique forms of 

neuronal methylation, how they are established, the functions of their readers, and the diseases 

that result when neuronal methylation is disrupted. 

1.1 The unique neuronal methylome 

While DNA methylation within mammals is typically characterized by the addition of a 

methyl group to a cytosine followed by a guanine (mCG), that methyl group can become 

oxidized and converted into a hydroxymethyl group by Tet Methylcytosine Dioxygenase 1 

(TET1) (Tahiliani et al., 2009; Wu & Zhang, 2014). This form of methylation, 

hydroxymethylation (hmCG), is commonly thought of as an intermediary in removing 

methylation, through both passive and active mechanisms (He et al., 2011). While hmCG is 

present within most cell types, it is enriched 10-fold within neurons (Globisch et al., 2010; 
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Kriaucionis & Heintz, 2009) and is a stable mark that builds up within gene bodies 

proportionally to those genes’ expression levels (Guo et al., 2014; Mellén et al., 2012). hmCG 

provides another possible dimension to the neuronal epigenome, as it has been suggested to 

functionally demethylate highly expressed genes, rendering them less repressible by methyl 

binding proteins such as MeCP2 (Chen et al., 2015; Gabel et al., 2015; Mellén et al., 2017). 

 

While hmCG function is largely defined by its ability to actively, passively, and 

functionally demethylate regions (a sort of epigenetic “negative space”), another unique form of 

methylation in mammalian neurons may be able to recruit regulators in a way that traditional 

mCG is unable to. This unique noncanonical methylation differs by context, rather than type of 

modification. In most cells, the vast majority of DNA methylation is in a CG context, but 

neurons contain uniquely high levels of non-CpG DNA methylation (mCH, where H = A, T, or 

C), the majority of which is in a CA context (mCA) (Lister et al., 2013; Schultz et al., 2015). 

While the methylation rate (mC/C) of any given CA dinucleotide is low (the majority between 

2-5% in neurons, compared to .01% or lower for most other cell types) compared to methylation 

at CG sites (70-90%), there are many more CA sites in mammalian genomes than CG sites (in 

mice, ~380 million CA sites vs ~43 million CG sites), due to the susceptibility of methylated 

cytosines to be deaminated and converted into a thymine over evolutionary time (Sved & Bird, 

1990). Because of this, the total number of methylated sites in a CA context rivals the total 

number of mCG sites within adult neurons. The high quantities of mCA in neurons compared to 

other cell types, and its prevalence equaling that of mCG in these cells suggests that this newly 

discovered form of methylation may be an important epigenetic mechanism for nervous system 
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function (Clemens & Gabel, 2020; Lister et al., 2013). In addition, neuronal mCA can vary 

contiguously in regions of the genome 100kb long or larger, such that a given 100kb region of 

the genome can have up to three times the amount of mCA within it compared to another 

neighboring region. This variation may provide a wide range of biological signal for binding and 

repression. 

 

Initially discovered within embryonic stem cells (Ramsahoye et al., 2000), non-CpG 

methylation is also enriched within heart cells and glia (Schultz et al., 2015). However, neurons 

contain up to ten times as much mCA as these cells, and certain neuronal subtypes contain even 

more mCA (Mo et al., 2015). The exact mechanisms by which neurons accumulate these 

exceptionally high levels of mCA are unknown, but several contributing factors have started to 

emerge. One such likely reason for neurons to accumulate high amounts of mCA is due to their 

postmitotic nature, and how mCA and mCG differ between their establishment and maintenance 

through cell division: mCG can be maintained by DNA methyltransferase 1 (DNMT1) through 

cell division, as DNMT1 binds to hemimethylated CG sites and rapidly methylates the opposing 

strand (Bestor, 2000; Leonhardt et al., 1992; Li et al., 1992). However, mCA is rapidly lost 

through cell division, as DNMT1 has no such mechanism for maintaining it. Instead, mCA must 

be established by the de-novo methyltransferases DNMT3A and DNMT3B (Bestor, 2000; Gabel 

et al., 2015; Ramsahoye et al., 2000), which, unlike DNMT1, do not depend on hemimethylation 

in order to efficiently deposit a mC. Thus, mCA likely has a greater ability to build up over time 

within neurons and other postmitotic cells, such as cardiac cells. Mammalian neurons also 
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experience a surge of expression of DNMT3A in early postnatal development (Feng et al., 2005), 

contributing to their high levels of mCA.  

1.2 DNA methyltransferase 3A establishes neuronal mCA 

Additional analysis of DNMT3A and mCA patterns in neurons has established that 

DNMT3A is the primary enzyme responsible for deposition of mCA within neurons. A 

neuronal-specific knockout of DNMT3A leads to the complete ablation of mCA with 

comparatively minor effects on mCG (Gabel et al., 2015), and analysis of DNMT3A binding at 

different timepoints finds that early postnatal binding of DNMT3A is highly correlated with 

adult mCA levels (Stroud et al., 2017). Characterizing DNMT3A and the factors that influence 

its binding at this time period is thus essential in determining how mCA is distributed across the 

neuronal genome. Few existing studies describing DNMT3A have examined its regulation in the 

nervous system, where DNMT3A is exceptionally highly expressed, and there are yet to be any 

studies that examine how the timing of DNMT3A expression and the factors that promote 

DNMT3A binding impact mCA.  

 

Outside of the nervous system, peptide assays characterizing the ADD protein-interacting 

domain of DNMT3A have found that it binds to the N-terminal tail of Histone H3. Notably, this 

binding disrupted in the presence of methylated Histone H3 lysine 4 (H3K4me1/2/3)(Zhang et 

al., 2010), which mark active and poised transcription start sites. It is thought that this inhibition 

of binding contributes to a strong depletion of both mCA and mCG within these active 

regulatory regions. Another domain of DNMT3A, the PWWP domain, has been shown to bind to 
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Histone H3 lysine 36 trimethylation (H3K36me3) (Dhayalan et al., 2010), a histone mark 

enriched within highly transcribed gene bodies (Kolasinska-Zwierz et al., 2009). However, 

seemingly at odds with this finding, mCA is depleted within expressed genes in neurons, rather 

than enriched. More recent work in non-neural cells has suggested while DNMT3A does bind to 

H3K36me3, it preferentially binds to H3K36me2 with greater efficiency, while DNMT3B 

preferentially binds to H3K36me3 (Weinberg et al., 2019; Xu et al., 2020). These observations 

may have implications for mCA in the nervous system, where mCA levels are low at expressed 

gene bodies, where H3K36me3 is abundant, but high within broad euchromatic regions. 

H3K36me2 profiles are broadly euchromatic in non-neural cells, suggesting that similar patterns 

could be recruiting DNMT3A and driving broad mCA deposition, but to date the profiles of 

H3K36me2 have not been assessed in neurons. In addition, other factors such as RNA 

Polymerase II may also have an effect on DNMT3A binding (Stroud et al., 2017). While these 

factors that interact with DNMT3A may impact mCA deposition, no studies have been 

performed on if, how, and when they do. DNMT3A is expressed at extremely high levels in the 

brain (Feng et al., 2005), and its surge and subsequent decline of expression during early 

postnatal development suggests a potential role for mCA and DNMT3A in an important period 

of synaptic pruning and refinement. Exactly what this role is, and how the temporal dynamics of 

DNMT3A help accomplish its regulatory role, however, must be elucidated. 

1.3 mCA forms the basis of a critical neural-specific epigenetic mechanism 

DNMT3A mutations in humans lead to Tatton-Brown-Rahman syndrome (Tatton-Brown 

et al. 2014), and have been linked to autism spectrum disorders. Recent work characterizing the 
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function of DNMT3A and mCA through epigenomic and transcriptomic studies reveals a 

possible link to Rett syndrome and other neurodevelopmental diseases. Studying the gene 

expression changes of the aforementioned neuronal-specific knockout of DNMT3A identifies 

hundreds if not thousands of subtly changed genes (Gabel et al., 2015). The genes most changed 

upon loss of Dnmt3a have high amounts of mCA throughout their gene bodies (Gabel et al., 

2015), a characteristic shared with genes changed in a mouse model of Rett syndrome, 

suggesting potentially overlapping mechanisms and pathology though a prominent neuronal 

reader of methylation, MeCP2.  

 

 MeCP2, similarly to DNMT3A and mCA, is highly enriched within neurons, where its 

expression reaches near-histone levels (Skene et al., 2010). While it was first identified through 

its strong affinity to mCG, further research has shown it also binds tightly to mCA (Buchmuller 

et al., 2020; Gabel et al., 2015; Guo et al., 2014; Lagger et al., 2017). Disruptions of MeCP2 in 

humans cause Rett syndrome, a severe neurological disorder that is characterized by a period of 

normal development from birth to 6-18 months, then a gradual loss of speech followed by 

microcephaly, ataxia, seizures, and autism-like symptoms (Amir et al., 1999). This onset of 

symptoms takes place concurrently with the rise of expression in MeCP2 as well as mCA 

deposition, suggesting that the loss of MeCP2 interferes with proper postnatal neurological 

function. However, it has been difficult to determine how MeCP2 alters transcription, and what 

its targets are. Along with its histone-like expression levels within neurons, it exhibits extremely 

broad, histone-like binding patterns, with slight enrichments within highly methylated regions, 

but no sharp peaks to identify discrete binding sites with (Buchmuller et al., 2020; Lagger et al., 
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2017; Skene et al., 2010). In MeCP2 mutants in mice, hundreds or thousands of genes experience 

subtle (<2-fold) changes in expression, both up and down (Chahrour et al., 2008; Gabel et al., 

2015).  

 

Although few trends have been found that explain the genes downregulated in the 

knockout (MeCP2-activated genes), several striking trends have been detected in the genes 

upregulated in the MeCP2 knockout (MeCP2-repressed genes) that link the transcriptomic 

changes to the unique neuronal methylome. Firstly, although these MeCP2-repressed genes do 

not display an enrichment of mCA or mCG at their promoters, the canonical site of action for 

repression and activation of gene expression, they are enriched for mCA within their gene 

bodies. Secondly, MeCP2-repressed genes have long transcribed gene lengths, many of them 

spanning over 100kb in size (Gabel et al., 2015; Kinde et al., 2016). Thus, long, highly 

methylated genes that are particularly susceptible to repression by MeCP2 may require the 

specific patterns of neuronal mCA, which can vary greatly over large genomic regions, unlike 

mCG. In addition, recent work studying mice carrying an engineered MeCP2 protein that can 

bind mCG but not mCA has demonstrated the critical importance of mCA to MeCP2 function. 

These mice recapitulate many of the same phenotypes seen in a complete MeCP2 KO, indicating 

that MeCP2 requires mCA in order to properly guide neuronal function (Tillotson et al., 2020). 

While these findings demonstrate the importance of mCA to regulation by MeCP2, many 

questions remain unanswered. How do large regions of the genome maintain and establish varied 

methylation levels, such that genes over 100kb long can have consistent levels of high mCA? Do 

the high mCA levels within these genes impact MeCP2 binding and regulation? And if MeCP2 
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does rely on high mCA levels at the gene body to bind to, how does MeCP2 then affect the 

expression levels of that gene?  

1.4 Disruptions in multiple mCA-related proteins result in disease 

The critical importance of mCA to neuronal function is illustrated clearly from the 

overlapping neurological deficits resulting from disrupting its deposition through DNMT3A or 

from disrupting its readout by MeCP2. However, it is unknown what role methylation changes 

play in TBRS, and how mCA and MeCP2 interact to regulate genes. The recent discovery of 

links between neuronal mCA and disease emphasizes the need to learn more about the origins 

and factors influencing this novel form of methylation. Mutations in Nuclear receptor SET 

Domain-containing protein 1 (NSD1), which establishes H3K26me2, are known to cause Sotos 

syndrome, a disease with features of overgrowth and intellectual disability similar to TBRS 

(Kurotaki et al., 2002). Given that H3K36me2 has recently been proposed to recruit DNMT3A 

outside of neurons, it is possible that the overlapping features between Sotos syndrome and 

TBRS are partially due to changes in neuronal mCA. Lending further support for this hypothesis 

is the finding that patients with Sotos syndrome experience numerous methylation changes at CG 

sites within blood (Choufani et al., 2015), showing that NSD1 mutations can cause methylation 

changes, and may potentially affect mCA within the brain. The commonalities between Sotos 

syndrome, TBRS, and Rett suggest that the unique neuronal factor that these three disorders 

share, mCA, is critical for normal neuronal function, and that disruptions at multiple steps in this 

neuronal-specific regulatory mechanism can result in disease. Exactly how mCA regulates 
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neuronal expression, and how disruptions in mCA depositors and readers impact the nervous 

system, however, is yet to be known. 

 

To provide insight on these questions, I present my research on insights into how 

genomic topology influences mCA patterns to remain at a consistent level across long stretches 

of the genome. I subsequently show that these insights shed light on the mechanism by which 

MeCP2 represses long genes with high methylation, revealing that this process occurs through 

repression of highly-methylated intragenic enhancers. In my third chapter, I will present work on 

the transcriptomic and epigenetic changes in a new mouse model of TBRS. Therein, I will 

present evidence that there is a global loss of mCA upon heterozygous disruption of DNMT3A, 

and that transcriptomic changes overlap between mouse models of Rett syndrome and TBRS.   
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Chapter 2: MeCP2 represses enhancers through chromosome 

topology-associated DNA methylation 

 

This chapter is adapted from a manuscript published in Molecular Cell: 

 

Clemens AW, Wu DY, Moore JR, Christian DL, Zhao G, Gabel HW. MeCP2 Represses 

Enhancers through Chromosome Topology-Associated DNA Methylation. Mol Cell. 

2020;77(2):279-293.e8. doi:10.1016/j.molcel.2019.10.033 

 

A.W.C. carried out all of the experiments in collaboration with J.R.M. and D.L.C. and performed 

ChIP-seq analysis; D.Y.W. performed RNA-seq, Bisulfite-seq, and TAD analysis, and 

contributed to analysis of ChIP-seq studies; G.Z. and D.Y.W. performed the Hi-C analysis; 

A.W.C, D.Y.W, and H.W.G. designed the experiments and analysis, and wrote the manuscript. 

2.1 Abstract 

The genomes of mammalian neurons contain uniquely high levels of non-CG DNA            

methylation that can be bound by the Rett syndrome protein, MeCP2, to regulate gene              

expression. How patterns of non-CG methylation are established in neurons and the mechanism             

by which this methylation works with MeCP2 to control gene expression is unclear. Here we               

find that genes repressed by MeCP2 are often located within megabase-scale regions of high              
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non-CG methylation that correspond with topologically-associating domains of chromatin         

folding. MeCP2 represses enhancers found in these domains that are enriched for non-CG and              

CG methylation, with the strongest repression occurring for enhancers located within           

MeCP2-repressed genes. These alterations in enhancer activity provide a mechanism for how            

MeCP2 disruption in disease can lead to widespread changes in gene expression. Hence, we find               

that DNA topology can shape non-CG DNA methylation across the genome to dictate             

MeCP2-mediated enhancer regulation in the brain. 

 

 

2.2 Introduction 

The development and function of the mammalian brain requires precise control of gene             

expression (Cholewa-Waclaw et al., 2016). While DNA methylation at CG dinucleotides is used             

to control genes in all cells, neurons also utilize a unique form of non-CG DNA methylation for                 

gene regulation (Lister et al., 2013; Xie et al., 2012). Non-CG DNA methylation is deposited by                

DNA methyltransferase 3A (DNMT3A), accumulating specifically in neurons postnatally until          

methylated cytosine (mC) at non-CG sites is nearly equal to mC at CG sites (mCG) (Lister et al.,                  

2013). DNMT3A disruption in the mouse brain results in ablation of mC at non-CG sites and                

neurological phenotypes (Nguyen et al., 2007), supporting the importance of this methyl-mark. 

Studies indicate that Methyl-CpG binding Protein 2 (MeCP2) has high affinity for mC in              

CA dinucleotides (mCA) similar to its classical substrate, mCG (Chen et al., 2015; Gabel et al.,                

2015; Guo et al., 2014). MeCP2 is expressed at near-histone levels in neurons and binds widely                
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across the genome, with some enrichment at regions high in mCG and mCA sites (Chen et al.,                 

2015; Gabel et al., 2015; Skene et al., 2010). The protein interacts with the NCoR-HDAC3               

corepressor complex and can block reporter expression in vitro, suggesting an important function             

of MeCP2 is gene repression (Lyst and Bird, 2015). Loss of MeCP2 causes the neurological               

disorder Rett syndrome, and duplication of MeCP2 leads to autism spectrum disorder (Amir et              

al., 1999; Van Esch et al., 2005). Transcriptomic studies of brains from Rett syndrome patients               

and MeCP2 knockout (MeCP2 KO) or overexpression (MeCP2 OE) mice detect only subtle             

changes across many genes however, making it difficult to differentiate direct targets of MeCP2              

regulation from secondary gene expression effects (Chahrour et al., 2008; Tudor et al., 2002).              

Defining how MeCP2 mediates its broad, subtle expression effects is thus recognized as an              

important challenge to address (Ip et al., 2018; Lyst and Bird, 2015). 

Recent analysis has revealed that MeCP2 represses genes marked by high mCA levels             

(Chen et al., 2015; Gabel et al., 2015; Lagger et al., 2017). Notably, these genes are not                 

substantially enriched for mCA at promoters, a canonical site of action for methylation, but show               

high mCA in their transcribed regions (“gene bodies”) and flanking sequences. In addition,             

MeCP2 KO causes a relative upregulation of genes genome-wide that is correlated with both the               

length and mC level of the gene body (Gabel et al., 2015; Sugino et al., 2014). These                 

observations have led to the proposal that MeCP2 regulates expression by binding to mC in gene                

bodies to repress transcription (Kinde et al., 2016). 

While these findings provide insight into mCA and MeCP2 in the brain, it is not known                

how high mCA levels are established at MeCP2-repressed genes. In addition, while MeCP2             

represses the mRNA of long, high-mCA genes, it has not been demonstrated that this occurs               
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through direct repression of transcription, and alternative post-transcriptional mechanisms have          

been proposed (Johnson et al., 2017). Finally, the mechanism by which binding of MeCP2 to mC                

outside of promoters can drive subtle, but critical, gene repression is unknown. 

Here we examined how high mCA levels are established at MeCP2-repressed genes and             

explored how MeCP2 functions with mCA to control transcription. We find that mCA patterning              

in neurons is associated with chromatin folding, and that genes most strongly repressed by              

MeCP2 often land in mCA-enriched topologically-associating domains (TADs). We uncover          

evidence that MeCP2 binds to mCA and mCG within mCA-enriched TADs to repress activity of               

enhancer elements and cause downregulation of promoter activity for target genes. These            

findings provide insight into how disruption of MeCP2 drives neurological dysfunction in Rett             

syndrome and related disorders. 

2.3 Results 

To explore how high levels of mCA are established at MeCP2-repressed genes and to              

determine how MeCP2 reads out mC to control gene expression, we analyzed the cerebral              

cortex, a brain region where MeCP2 mutations disrupt gene expression and physiology (Pacheco             

et al., 2017; Shepherd and Katz, 2011). We integrated our data with epigenomic datasets for this                

brain region (Dixon et al., 2012; Sloan et al., 2016; Stroud et al., 2017) to search for features that                   

can explain patterns of high mCA at genes repressed by MeCP2. We focused on mCA, the most                 

prevalent, highest affinity non-CG site for MeCP2 (Gabel et al., 2015), but obtained similar              

results for minor non-CG methylation sites (mCT, mCC) in our studies. 
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Combined RNA-seq analysis of cortex from MeCP2 KO and MeCP2 OE mice (see             

methods) identified 884 “MeCP2-repressed genes” significantly upregulated in MeCP2 KO and           

downregulated in MeCP2 OE and 843 “MeCP2-activated genes” affected in the opposite manner             

in these mutants (Figure 2.1A). These genes overlap with genes identified by meta-analysis of              

non-cortical brain regions in MeCP2 mutants (Gabel et al., 2015), indicating many            

MeCP2-regulated genes are shared across brain regions (Figure 2.8A,B). As in other studies             

(Gabel et al., 2015; Renthal et al., 2018; Sugino et al., 2014), cortical MeCP2-repressed genes               

are longer than the genome average (Figure 2.8D) and are enriched for mCA (mCA/CA, or               

“mCA level”) in and around the gene, with little mCA enrichment at their transcription start site                

(TSS) (Figure 2.1B,C; 2.8C). We also detected global length- and mCA-associated upregulation            

of genes in MeCP2 KO and downregulation in MeCP2 OE (Figure 2.8E,F), with dysregulation              

most correlated with gene body mCA levels compared to gene-flanking regions (Figure 2.8G,H).             

These results confirm that MeCP2 represses long, high-mCA genes and provide a            

high-confidence set of MeCP2-regulated cortical genes for our analyses. 

 

Large-scale non-CG DNA methylation profiles are linked to chromatin topology.  

We next explored how high mCA levels are established at MeCP2-repressed genes. We             

observed that mCA enrichment can extend for megabases around these genes (Figure 2.1B,C)             

(Kinde et al., 2016), suggesting that regional mCA varies on a megabase scale. High-throughput              

chromatin conformation capture (Hi-C) analysis of the mouse cortex (Dixon et al., 2012, 2016)              

has detected TADs on a similar megabase scale. TADs are regions of cis-interactions, where              

enhancers interact with promoters in the same TAD more often than with promoters outside of               
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the TAD (Spielmann et al., 2018). We noted instances where high mCA surrounding             

MeCP2-repressed genes dropped off at transition points in Hi-C interactions similar to those             

delineating TADs (Figure 2.1D). A correlation between mCA patterns and TADs could have             

important implications for regulation of gene expression within each TAD. We therefore            

investigated if TADs in the cerebral cortex (Dixon et al., 2012; Weinreb and Raphael, 2016, see                

methods) delineate regions of high mCA at MeCP2-repressed genes. 

We find that TADs containing MeCP2-repressed genes are significantly enriched for           

mCA compared to TADs genome-wide (Figure 2.1E). Further, we observe a drop-off of mCA              

levels at boundaries of TADs containing MeCP2-repressed genes that is not detected in control              

TADs generated by shuffling genomic locations (Figure 2.1F; 2.9B,C). While the shift in mCA              

across all boundaries returns toward the genome average (Figure 2.1F), a dramatic drop-off in              

mCA at boundaries is detected when high-mCA TADs containing MeCP2-repressed genes are            

adjacent to lower mCA regions (Figure 2.1G). Such strong mCA enrichments and drop-offs at              

boundaries are not observed for shuffled TADs (Figure 2.1F,G; 2.9B, see methods) or for              

potential sources of sequencing bias (Figure 2.9B), indicating that these mCA patterns are not              

due to technical artifacts. Cross-correlation analysis (Rao et al., 2014, see methods) shows that              

mCA levels are more highly correlated for regions in the same TAD than for regions in                

neighboring TADs (Figure 2.1H). This relationship is detected for all TADs but is most              

prominent for TADs containing MeCP2-repressed genes. Control TADs shuffled across the           

genome do not show similar correlations (Figure 2.1H, see methods). These findings suggest that              

TADs are units of organization for mCA levels in the genome and that MeCP2-repressed genes               

often occupy high-mCA TADs. 
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In contrast to MeCP2-repressed genes, TADs containing MeCP2-activated genes display          

lower mCA levels (Figure 2.1E; 2.9A). Genomic mCG levels do not show prominent             

megabase-scale variation, but some mCG depletion occurs in TADs containing MeCP2-activated           

genes (Figure 2.1D; 2.9A,B). Increased correlation of mCG within TADs is observed (Figure             

2.9D), suggesting TADs do organize modest regional mCG fluctuations. 

As an added test of the association between topology and regional mCA, we analyzed              

Hi-C data from the embryonic cortex (Bonev et al., 2017), prior to the deposition of mCA.                

Topology at this time point is similarly associated with adult mCA (Figure 2.9E-H), indicating              

that chromatin folding early in development is predictive of adult mCA patterns. We further              

generalized our findings using an independent cortical mC dataset (Lister et al., 2013), as well as                

Hi-C and mC data from the cerebellum (Mellén et al., 2017; Yamada et al., 2019). This analysis                 

indicated that the association between genome topology and mCA levels is robustly detected in              

independent datasets and brain regions (Figure 2.9I-K). 

We next explored how mCA is established in TADs during development. DNMT3A            

deposits mCA in mouse cortex from birth to six weeks of age (Lister et al., 2013), and DNMT3A                  

binding in kilobase-scale regions at two weeks predicts mCA levels at eight weeks (Figure              

2.10A; Stroud et al., 2017). We therefore asked if megabase-scale DNMT3A binding at two              

weeks supports a role for TADs in influencing large-scale mCA patterning. We find that              

DNMT3A ChIP-seq signal at two-weeks shows higher cross-correlations within TADs than           

across TAD boundaries (Figure 2.2A) and predicts TAD mCA in the adult cortex (Figure 2.2B).               

DNMT3A ChIP also drops off at boundaries of TADs containing MeCP2-repressed genes            

(Figure 2.2C), while input controls do not (Figure 2.10B). Analysis of topology from embryonic              

22 



neurons and DNMT3A at a later timepoint yielded similar results (Figure 2.10C-F, see methods).              

These findings indicate that DNMT3A binding during postnatal development is shaped by TAD             

structures, defining a long-term mCA “set-point” for each TAD into adulthood. 

To examine how TAD mCA affects MeCP2 binding, we quantified MeCP2 ChIP-seq            

signal (Kinde et al., 2016) in the adult cortex. MeCP2 ChIP signal is extremely broad, showing                

only very modest fluctuations across the genome (Chen et al., 2015; Gabel et al., 2015). In the                 

context of these small effects however, we find that MeCP2 levels in TADs associate with TAD                

mCA set-points (Figure 2.2D) and that MeCP2 cross-correlation is higher within TADs than             

across TAD boundaries (Figure 2.10G). Analysis of MeCP2 binding when mCA is blocked by              

deletion of DNMT3A (Figure 2.10H) (Kinde et al., 2016) revealed relative reductions in MeCP2              

TAD binding that correlate with the wild-type mCA levels of each TAD (Figure 2.10I). Thus,               

high TAD mCA levels are associated with some enrichment of MeCP2 binding, and when mCA               

is lost, large-scale MeCP2 profiles are measurably altered. 

We then considered how TAD-associated mCA levels could impact gene regulation.           

Methylation levels for regulatory elements and genes are thought to be determined by local              

sequence features and activity level at these sites (Schübeler, 2015). However, the TAD mCA              

set-point could act on top of these local determinants to drive consistently higher or lower mCA                

across all elements within each TAD. Indeed, we detect robust correlations between the TAD              

set-point mCA level and mCA levels of gene bodies and enhancers inside each TAD (Figure               

2.2E). This correlation occurs only for elements found within the TAD, breaking down             

immediately outside of the TAD (Figure 2.10J). Correlations in mCA levels between elements in              

the same TAD are also stronger than for elements on different sides of a TAD boundary (Figure                 
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2.10K). In contrast, mCA levels in TSS regions have limited correlation with TAD mCA levels,               

suggesting that these elements escape the TAD mCA set-point. Control analysis randomizing            

TAD or genomic element locations (see methods) confirmed that TAD boundaries delineate            

transitions in mCA set-points for enhancers and genes (Figure 2.10J,K) and showed that only              

true TSS regions escape TAD mCA levels (Figure 2.10L,M). mCG levels at these elements did               

not show strong TAD-associated signals (Figure 2.10L,M). These findings indicate that mCA            

levels at enhancers and genes in each TAD are linked to the mCA set-point for the TAD. By                  

influencing mCA at genes and enhancers, TAD-associated mCA levels can directly impact            

regulation of genes within each TAD by MeCP2. 

 

Loss of MeCP2 leads to promoter activation at MeCP2-repressed genes. 

We next investigated how MeCP2 reads out mCA in TADs to affect transcription.             

Consistent with analysis above (Figure 2.2E), the high TAD mCA set-point for            

MeCP2-repressed genes is associated with high mCA in and around these genes but little mCA               

enrichment at the TSS (Figure 2.1B; 2.8C). This suggests that MeCP2 binds to mCA outside of                

the promoter to repress these genes. Based on the long length of MeCP2-repressed genes and the                

correlation between repression and gene body mCA (Figure 2.8D,G,H), we considered several            

possible regulatory mechanisms for MeCP2. For example, MeCP2 binding to gene body mCA             

might block transcribing RNA polymerase, resulting in premature termination and reduced           

mRNA. Alternatively, binding of MeCP2 to mCA at regulatory elements could act at a distance               

to block promoter activation. To test these and other possible mechanisms, we carried out              
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genomic analysis of RNA intermediates and histone marks associated with transcription in            

MeCP2 mutant mice. 

We first performed RNA-seq on nuclear RNA from MeCP2 KO and wild-type cortex to              

enrich for pre-mRNA (Figure 2.3A) and analyzed intronic reads to assess changes in             

transcription (Boswell et al., 2017). We reasoned that if MeCP2 normally reduces the             

processivity of RNA polymerase II to cause premature termination of repressed genes, increased             

transcript completion in the MeCP2 KO would result in more intronic reads at the 3’ end of                 

genes but no change in reads at the 5’ end. Alternatively, if MeCP2 represses promoter               

activation, loss of MeCP2 would cause a consistent increase in intronic reads along the entire               

gene. Finally, if post-transcriptional mechanisms affect these genes, no intronic changes would            

be seen. Differential expression analysis of introns detected highly concordant effects with            

mRNA from whole cells, with introns also showing upregulation of long and high-mCA genes              

relative to shorter and lower-mCA genes (Figure 2.3B; Figure 2.11A-F). Analysis of intronic             

RNA changes across the length of significantly upregulated genes detected a consistent increase             

of intronic reads across the pre-mRNA (Figure 2.3C; 2.11G,H). These results suggest that subtle              

changes in mRNA for MeCP2-repressed genes result from concomitant subtle changes in            

pre-mRNA transcription and that loss of MeCP2 leads to promoter activation, rather than             

changes in polymerase processivity. 

As an independent measure of transcriptional effects, we performed ChIP-seq of histone            

modifications that report on transcriptional activity. Analysis of gene body Histone 3 lysine 36              

trimethylation (H3K36me3), a mark associated with transcription levels (Guenther et al., 2007),            

revealed a subtle but significant increase in signal for MeCP2-repressed genes in the MeCP2 KO               
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(Figure 2.3A,D). Analysis of Histone 3 lysine 27 acetylation (H3K27ac) and Histone 3 lysine 4               

trimethylation (H3K4me3), marks associated with promoter activation (Heintzman et al., 2007;           

Santos-Rosa et al., 2002), showed promoter upregulation for MeCP2-repressed genes (Figure           

2.3A,D). While subtle, these effects are consistent with the magnitude of mRNA increases for              

these genes. Together with our intronic RNA analysis, these findings support a model in which               

MeCP2 acts at a distance to repress promoter activity. 

Given the small magnitude of these effects, we sought to independently test if MeCP2              

controls promoter activation. Based on the opposite effects on mRNA in the MeCP2 OE              

compared to the MeCP2 KO, we predicted intronic RNA and histone marks should be              

reciprocally affected in the MeCP2 OE. Indeed, integrated RNA-seq and ChIP-seq analyses in             

the MeCP2 OE revealed opposite effects of those in the MeCP2 KO (Figure 2.3E-G; 2.11I).               

These findings provide further support that MeCP2 represses long, high-mCA genes through            

promoter downregulation. 

 

MeCP2 represses enhancers that are enriched for mCA and mCG binding sites. 

We next considered how binding of MeCP2 to high levels of mC found outside of the                

TSS could lead to promoter downregulation. One way MeCP2 could achieve this is through              

enhancers. Since our analysis shows that high-mCA set-points of TADs containing           

MeCP2-repressed genes would lead to high mCA at enhancers in the TAD (Figure 2.1E; 2.2E),               

we considered that repression of these enhancers by MeCP2 could underlie regulation of             

MeCP2-repressed genes. To date however, effects of MeCP2 on enhancer activity have not been              

examined. Enhancer activation is associated with H3K27ac signal at these sites (Creyghton et al.,              
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2010), and visualization of our H3K27ac ChIP signal at enhancers near MeCP2-repressed genes             

suggests subtly increased acetylation in the MeCP2 KO (Figure 2.4A). Combined differential            

analysis of H3K27ac signal in MeCP2 KO and OE cortex genome-wide (see methods) identified              

significantly altered enhancers (Figure 2.4B; 2.12A). Quantification of mCA and mCG at            

dysregulated enhancers detected enriched and depleted mCA levels at MeCP2-repressed and           

MeCP2-activated enhancers respectively, while mCG levels showed limited variation at these           

regions (Figure 2.4C; 2.12B). 

Given the high affinity of MeCP2 for mCG (Meehan et al., 1989), but limited mCG/CG               

signal at MeCP2-regulated enhancers, we further considered if the number of mCG sites rather              

than the level of mCG contributes to enhancer repression by MeCP2. The number of mC binding                

sites for MeCP2 at enhancers is determined both by per-base methylation at CA and CG sites                

(e.g. mCG/CG) and dinucleotide frequencies at each enhancer (e.g. CG/kb). This is particularly             

relevant for CG dinucleotides, which are depleted from the genome and non-uniformly            

distributed (Bird, 1980). We therefore quantified mC “density” (mC/kb) at dysregulated           

enhancers and detected a robust signal for mCG density, which is driven by the presence or                

absence of CG dinucleotides (Figure 2.4C; 2.12B). These findings suggest that both mCA and              

mCG do contribute to MeCP2 enhancer regulation, but mCA enrichment is driven by per-base              

methylation, while mCG enrichment is driven by CG frequencies. 

To further explore the link between high-affinity sites for MeCP2 and enhancer            

regulation, we examined enhancer effects at higher stringency. While mCA is the highest affinity              

non-CG dinucleotide for MeCP2 (Gabel et al., 2015), the third nucleotide also affects MeCP2              

binding, with mCAC showing highest affinity for MeCP2 (Lagger et al., 2017). We find that               
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mCAC is most significantly associated with MeCP2-regulated enhancers compared to lower           

affinity sites (Figure 2.4D; 2.12C). Consistent with the presence of high-affinity MeCP2 sites at              

dysregulated enhancers, MeCP2 ChIP signal is enriched at MeCP2-repressed enhancers (Figure           

2.4E). Analysis of high-stringency MeCP2-repressed enhancers, selected based on enriched          

MeCP2 binding, yields similar changes in H3K27ac and mC enrichment (Figure 2.12A,B). This             

supports a direct role for MeCP2 in enhancer regulation. 

While significantly dysregulated enhancers display robust signal for mCA and mCG,           

methylation at enhancers occurs in a continuous distribution genome-wide (Figure 2.12D). Thus,            

every enhancer may be regulated by MeCP2 to some degree, with the number of mC sites                

determining the repression level. Indeed, when we compared mC density and H3K27ac changes             

at all enhancers in the genome, we detected a positive correlation between mCA and mCG               

density and H3K27ac changes in the MeCP2 KO and a negative correlation in the MeCP2 OE                

(Figure 2.4F,G). While mC density is enriched in and around MeCP2-repressed enhancers            

(Figure 2.4C), we find that enhancer H3K27ac dysregulation in MeCP2 mutants best correlates             

with mC density at enhancer centers (Figure 2.4H,I). Thus, mC specifically within the enhancer              

is most important for regulation by MeCP2. Together, these findings support a model in which               

repression of enhancers by MeCP2 genome-wide is proportional to the mC density at each              

enhancer. 

We also noted minor increases of H3K27ac at sites outside of stringently defined             

enhancer regions in the MeCP2 KO (Figure 2.12E). Examination of a set of possible regulatory               

elements (ATAC-seq peaks), defined across 13 mouse tissues (Cusanovich et al., 2018), showed             

that these regions overlap with enhancers as well as sites of H3K27ac enrichment not formally               
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called as enhancers (Figure 2.12E,F, see methods). Analysis of these regions genome-wide            

revealed noisier, but detectable correlations between H3K27ac changes and mC density at these             

putative regulatory sites (Figure 2.12F,G,H). Thus, while a larger absolute change in H3K27ac is              

observed at called enhancers in MeCP2 mutants (Figure 2.12F), altered H3K27ac outside of             

enhancer regions may also contribute to effects observed in these mice. 

We next tested the role of mCA and mCG in enhancer repression by selectively              

disrupting mCA in neurons. Conditional Dnmt3a deletion in the brain ablates mCA while             

preserving mCG, and leads to overlapping, but smaller effects on MeCP2-repressed genes            

compared to MeCP2 mutants (Gabel et al., 2015). We speculated that these partial expression              

effects arise due to loss of enhancer repression by mCA, but preserved repression by mCG. To                

test this, we deleted Dnmt3a from post-mitotic neurons in a DNMT3A Baf53b-cKO mouse (see              

methods) and measured effects on mC, RNA, and H3K27ac. Bisulfite-seq revealed ablation of             

mCA, but retention of mCG, at enhancers and other genomic elements (Figure 2.5A, 2.13A-C),              

and RNA-seq showed significant, but partial, dysregulation of MeCP2-regulated genes (Figure           

2.5B). H3K27ac ChIP-seq similarly detected robust, but partial, dysregulation of          

MeCP2-regulated enhancers (Figure 2.5B). Significantly up- and downregulated enhancers         

defined in the DNMT3A Baf53b-cKO (see methods) displayed enrichment or depletion of mCA,             

but equivalent mCG (Figure 2.5C, 2.13D,E). Unthresholded analysis showed that, like MeCP2            

mutants, H3K27ac changes correlate with wild-type mCA density at enhancers genome-wide           

(Figure 2.5D). In contrast, no association was detected for mCG (Figure 2.5D). Together, the              

robust but smaller effects on MeCP2-regulated enhancers and lack of mCG-associated changes            
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in the DNMT3A mutant demonstrate the role of mCA in enhancer repression by MeCP2 and also                

support a function for mCG in this regulation. 

 

Enhancer repression by MeCP2 is associated with MeCP2-mediated gene regulation. 

We next investigated if enhancer dysregulation is linked to altered gene expression in             

MeCP2 mutants. As predicted by our analysis above (Figure 2.2E), enhancers in high-mCA             

TADs containing MeCP2-repressed genes are enriched for mCA (Figure 2.6A), suggesting           

possible repression by MeCP2. Analysis of gene-enhancer links by several methods (TAD            

overlap, GREAT analysis (McLean et al., 2010), and Hi-C) revealed that MeCP2-repressed            

enhancers are significantly associated with MeCP2-repressed genes (Figure 2.6B). In light of the             

genome-wide association between mC density and repression of H3K27ac at enhancers (Figure            

2.4F,G), we considered that many high-mCA enhancers in TADs with MeCP2-repressed genes            

might undergo upregulation in the MeCP2 KO that are below the statistical significance cutoff.              

Supporting this idea, H3K27ac changes for enhancers in TADs with prominent           

MeCP2-repressed genes displayed trends toward upregulation (Figure 2.6C). Indeed, the          

population of enhancers found in TADs containing MeCP2-repressed genes showed significant           

upregulation as a group in the MeCP2 KO and downregulation in the MeCP2 OE (Figure 2.6D). 

While this analysis linked MeCP2 enhancer repression to gene regulation, we sought to             

understand our previous finding that MeCP2 mutant mRNA changes are better correlated with             

mC levels in long genes than with mC levels in gene-flanking regions (Figure 2.8F-H; 2.11E,F)               

(Kinde et al., 2016). We speculated this signal might reflect preferential repression of intragenic              

enhancers by MeCP2. Indeed, H3K27ac changes at prominent MeCP2-repressed genes in the            
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MeCP2 KO showed stronger increases at intragenic enhancers than at extragenic enhancers            

(Figure 2.6C). Analysis of all MeCP2-repressed enhancers showed they tend to be intragenic             

(Figure 2.6E), and significantly overlap with MeCP2-repressed genes (Figure 2.6B). As a            

population, enhancers in MeCP2-repressed genes are more robustly upregulated in the MeCP2            

KO and downregulated in the MeCP2 OE than all enhancers in the same TAD (Figure 2.6D).                

Furthermore, while H3K27ac repression by MeCP2 is correlated with mC density for both             

intragenic and extragenic enhancers, for a given mC density, intragenic enhancers are more             

repressed (Figure 2.6F). 

Given the susceptibility of intragenic enhancers to MeCP2 repression, we investigated           

their interactions with promoters of target genes. Hi-C data revealed that intragenic sequences             

interact more with promoters than extragenic sequences do (Figure 2.6G), and intragenic            

enhancers contact promoters of their cognate gene more than equidistant extragenic enhancers do             

(Figure 2.6H). Quantitative 3C analysis of the MeCP2 KO detected no evidence of altered              

interaction strength between enhancers and promoters of MeCP2-repressed genes (Figure 2.12I).           

This suggests that intragenic enhancers are privileged over extragenic enhancers to control their             

cognate genes, but that MeCP2 does not regulate looping between enhancers and promoters.             

Rather, MeCP2 may affect the degree of gene activation driven by enhancers once they interact               

with their target promoter. 

If the repression of genes containing high gene body mCA is largely due to repression of                

enhancers in these genes, we reasoned that gene body mCA and gene upregulation in the MeCP2                

KO should only be tightly linked for genes that contain enhancers and not be linked for genes                 

that do not contain enhancers. Because long genes contain more enhancers than shorter genes              
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(Figure 2.12J), MeCP2 intragenic enhancer repression could also explain the dysregulation of            

longer genes observed in MeCP2 mutants (Figure 2.8F-H) (Gabel et al., 2015; Sugino et al.,               

2014). We therefore examined gene expression effects in MeCP2 mutants for genes that do or do                

not contain intragenic enhancers. We detect little correlation between gene dysregulation and            

gene body mCA density for genes that do not contain enhancers but a robust correlation for                

genes containing intragenic enhancers (Figure 2.6I, 2.12L). Importantly, we observe these effects            

when controlling for gene length (Figure 2.12K). Consistent with the idea that enhancers             

specifically contribute to this effect, we find that H3K27ac changes in intragenic enhancers are              

more predictive of the gene expression changes in MeCP2 mutants than H3K27ac changes in              

non-peak sequences (Figure 2.12M). These results suggest that dysregulation of intragenic           

enhancers contributes to the dysregulation of long, highly-methylated genes that we previously            

observed in MeCP2 mutants. 

2.4 Discussion 

Our findings suggest a model in which TADs shape DNMT3A activity across the             

neuronal genome during early postnatal development, establishing mCA set-points for genes and            

enhancers within each TAD (Figure 2.7A). In mature neurons, MeCP2 reads-out mC to repress              

enhancer elements and control gene expression. Because MeCP2 most potently represses           

highly-methylated, intragenic enhancers, it has the largest impact on genes in high mCA TADs              

that contain multiple enhancers (Figure 2.7B). 

The enriched DNMT3A binding and resulting high-mCA set-point we detect in TADs             

with MeCP2-repressed genes provides insight into the origin of high mCA previously noted at              
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these genes (Kinde et al., 2016; Lagger et al., 2017). The large fluctuations in mCA observed                

between TADs can occur because of the dynamic distribution of mCA across the genome. This               

contrasts with consistently high mCG across large regions. While sequence and activity states of              

genes and enhancers are known to affect their methylation status (Schübeler, 2015), we show              

here that TAD mCA set-points also influence mCA levels at genes and enhancers. Enhancers in               

high-mCA TADs are enriched for mCA and are more repressed by MeCP2 compared to              

enhancers in low-mCA TADs. In this way, TAD mCA patterns set the stage for              

MeCP2-mediated gene regulation in the brain. 

Previously, we and others have proposed that binding of MeCP2 in genes might block               

RNA polymerase processivity to downregulate expression (Cholewa-Waclaw et al., 2019; Kinde           

et al., 2016). Surprisingly, we did not detect disrupted processivity in the MeCP2 mutants, but               

instead observed changes in promoter activity. Consistent with this finding, a parallel study used              

multiple methodologies to identify regulation of transcription initiation by MeCP2 (Boxer et al.,             

co-submitted). Our identification of intragenic enhancers that are dysregulated in MeCP2           

mutants and analysis linking them to genes (Figure 2.6I, 2.12J-M) supports the model in which               

MeCP2 preferentially represses long, highly-methylated genes but points to enhancer repression           

as a mediator of this regulation. 

MeCP2 binds nearly ubiquitously across the genome and its relevant sites of action have              

not been clear. Through genome-wide H3K27ac analysis, we uncovered a role for MeCP2 in              

enhancer repression that is driven in part by TAD-scale fluctuations in levels of mCA. While               

identification of enhancers significantly changed in MeCP2 mutants revealed critical          

determinants for MeCP2 regulation (e.g. mCA and mCG density), our unthresholded analysis            
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suggests that these enhancers represent only extreme examples along a continuum, in which             

graded repression by MeCP2 that is proportional to mC density occurs at enhancers genome              

wide. Alterations in pervasive tuning of enhancers may explain why disruption of MeCP2 leads              

to profound nervous system deficits, despite the small magnitude of effects observed for             

individual genes. 

Consistent with some role for mC sites in recruiting MeCP2 to the genome, MeCP2              

ChIP-seq shows a measurable association with mCA and mCG sites (Figure 2.2D, 2.10I).             

However, the binding of the protein is very broad, and signal is also present at demethylated                

sites. Thus, mC sites may modulate MeCP2 repression of enhancers when it is bound, rather than                

being a strict determinant of binding. Future analyses will be necessary to dissect the role of mC                 

sites in MeCP2 recruitment versus modulation of its repressive activity. 

(Ebert et al., 2013; Kokura et al., 2001; Lyst et al., 2013) Our findings suggest a model in                  

which MeCP2 at enhancers can induce histone deacetylation to block their activating effects on              

target promoters. This could occur through the interaction between MeCP2 and the NCoR             

histone deacetylase complex that is critical for MeCP2-mediated gene repression (Kokura et al.,             

2001; Lyst et al., 2013; Nott et al., 2016). Alternatively, MeCP2 could modulate NCoR functions               

on non-histone proteins to affect enhancer activity. 

A striking finding from our study is that MeCP2 represses intragenic enhancers more             

than extragenic enhancers, and intragenic enhancer dysregulation is closely linked to gene            

changes in MeCP2 mutants. We observed that intragenic enhancers more readily contact their             

cognate promoters than extragenic enhancers, suggesting intragenic enhancer effects in MeCP2           

mutants are particularly impactful for gene expression. Notably, intragenic enhancer regulation           
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by MeCP2 provides an explanation for the gene length and gene body mC signature that we                

previously observed for MeCP2-repressed genes (Kinde et al., 2016). These findings also            

suggest that the presence of an enhancer within a gene can fundamentally alter the nature of its                 

regulation. Future studies can dissect how MeCP2 preferentially represses intragenic enhancers,           

providing insight into the unique regulatory environment of these elements. 

Our study focused on mCA at MeCP2-repressed genes, but enhancer repression by            

MeCP2 may also explain MeCP2-activated genes. The MeCP2-activated enhancers we identify           

here are depleted of mC sites (Figure 2.4C; 2.12B-D). If MeCP2 primarily represses enhancers              

through mC, then H3K27ac changes at “activated” enhancers could reflect a relative lack of              

de-repression in the MeCP2 KO and escape from repression in the MeCP2 OE. MeCP2-activated              

enhancers are associated with MeCP2-activated genes (Figure 2.6B), suggesting the relative           

changes in gene expression may stem from enhancer effects. Future studies can test if a single                

model of enhancer repression by MeCP2 applies, or if MeCP2 directly activates genes by other               

mechanisms. 

While robust changes occur at enhancers in MeCP2 mutants, the protein binds broadly             

across the genome and disruption of MeCP2 has effects on acetylation outside of stringently              

defined enhancer sequences (Figure 2.12E) (Boxer et al., co-submitted). While some of this             

signal appears to originate at subthreshold enhancers (Figure 2.12E), MeCP2 is likely to have              

repressive effects on chromatin outside of enhancers that can contribute to gene regulation. 

Multiple datasets support a role for MeCP2 in repressing long, high-mCA genes (Gabel et              

al., 2015; Rube et al., 2016; Sugino et al., 2014), but a recent study proposed that long gene                  

upregulation in MeCP2 mutants results from post-transcriptional rather than transcriptional          
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effects (Johnson et al., 2017). Another study suggested long-gene dysregulation in individual            

MeCP2 datasets does not reach statistical significance (Raman et al., 2018). Here, independent             

RNA-seq and ChIP-seq analyses further show that MeCP2 preferentially affects long, high-mCA            

genes. Notably, a parallel study using multiple methodologies and large-replicate datasets has            

also verified these effects (Boxer et al., co-submitted). Our additional insights into enhancer             

regulation not only support these effects but also provide a mechanism for how they can occur. 

Our findings have important implications for Rett syndrome and MeCP2 duplication           

disorder. Mutation of MeCP2 in these disorders is likely to disrupt enhancer activity in              

high-mCA TADs, driving altered gene expression, and contributing to disease pathology. In this             

way, our study suggests that Rett syndrome and MeCP2 duplication syndrome are disorders that              

stem in part from disruption of enhancer control. 

 

2.5 Methods 
 
Mice 
MeCP2 knockout mice (B6.129P2(C)-MeCP2tm1.Bird/J) were obtained from The Jackson         
Laboratory. Female heterozygous mice (MeCP2-/+) were crossed with C57BL/6J male mice to            
generate hemizygous male knockout mice (MeCP2-/y) and wild-type male litter mates           
(MeCP2+/y). MeCP2 overexpression mice (FVB-Tg(MECP2)3Hzo/J) were cryo-recovered from        
The Jackson Laboratory. Female heterozygous mice (MeCP2Tg3/+) were crossed with FVB/NJ           
male mice to generate hemizygous male transgenic mice (MeCP2Tg3/y) and wild-type male litter             
mates (MeCP2+/y). Female Dnmt3a fl/fl were provided by M. Goodell and crossed to male             
B6.Cg-Tg(Nes-cre)1Kln/J (Nestin-Cre+/-) to generate Dnmt3afl/+; Nestin-Cre +/-. Male Dnmt3afl/+;        
Nestin-Cre+/- were then crossed to female Dnmt3afl/fl to generate Dnmt3afl/fl Tg(Nes-cre)1Kln/J           
conditional knockout mice (DNMT3A Nestin-cKO) (Gabel et al., 2015). To generate Dnmt3afl/fl;            
Tg(Actl6b-cre)4092Jiwu/J conditional knockout mice (DNMT3A Baf53b-cKO), Dnmt3afl/fl were        
crossed to Tg(Actl6b-cre)4092Jiwu/J (Baf53b-Cre+/+) to generate Dnmt3afl/+; Baf53b-Cre +/-.        
Dnmt3afl/+; Baf53b-Cre +/- were then crossed to Dnmt3a fl/fl producing experimental and control           
animals for analysis. 
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Topologically associated domain analysis 
Topologically associating domains were called using the TADtree algorithm (Weinreb and           
Raphael, 2016) on interaction matrices (Dixon et al., 2012), with the following parameters:             
gamma (sensitivity vs specificity tradeoff) = 200, M (number of hierarchical layers) = 1, p and q                 
(minimum scale of interaction shift) = 3 and 12 respectively, and N (maximum number of TADs                
detected) = 500. To allow for manual model selection, TADtree also computes TADs for the               
range of 1:500, in this case. We leveraged this to apply an additional filter for consistency,                
wherein we selected for TADs that are called in at least 30% of all runs. When we applied this                   
filter, we found that the effects of changing gamma were moderated, and the program performed               
consistently at many ranges of sensitivity vs specificity. TADs defined in the cerebral cortex by               
this method are ~400kb on average and range in size from ~160kb to ~2mb, a scale that is                  
similar to regions that we observed with enriched mCA levels. We defined TAD-related “contact              
domains” of interaction across the genome using the Arrowhead algorithm as previously            
described (Rao et al., 2014) at 5kb resolution from embryonic neocortex. These contact domains              
had a similar length distribution to TADs, with a median length of half that of TADs. These                 
domains are established and detected before DNMT3A increases in expression and establishes            
mCA, and the close correlation between early TAD structure, early DNMT3A binding, and mCA              
patterns suggests (Figure 2.10C,D) that the activity of DNMT3A in a TAD during early postnatal               
development defines a long-term “set-point” for mCA across this region into adulthood. In             
addition, the fact that DNMT3A expression is low at 8-weeks and that 8-week DNMT3A              
binding, concurrent with adult TAD structure, is less correlated with mCA compared to 2-week              
DNMT3A binding (Figure 2.10E,F), lends more support to a stable “set-point” of mCA, rather              
than levels that fluctuate through adulthood. 

8-week cortex Hi-C data was obtained as pre-processed observed/expected contact          
matrices, from http://chromosome.sdsc.edu/mouse/hi-c/download.html (Dixon et al., 2012). For        
analysis of neocortex Hi-C data from Bonev and colleagues (Bonev et al., 2017), raw FASTQ               
files were downloaded from GEO. HiC-Pro (Servant et al., 2015) was used to generate contact               
matrices using the mm10 mouse genome as reference. Juicer (Durand et al., 2016) was then run                
on the contact matrices to generate Hi-C contact matrices at 1.5kb, 5kb, and 40kb resolutions               
using KR normalization. Arrowhead domains were then called on the data within Juicer. For              
cerebellum analysis, contact domains called from 10kb-resolution Hi-C data were used (Yamada            
et al., 2019). 
 
Total and nuclear RNA isolation 
Cerebral cortex was dissected on ice in phosphate buffered saline from 1) MeCP2 KO and               
wild-type male litter mates at 7-8 weeks old, 2) MeCP2 OE and wild-type male litter mates at                 
7-10 weeks old, and 3) DNMT3A Baf53b-cKO and control mice at 7-8 weeks old. Total RNA                
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was extracted from 1/16th of a whole cortex using RLT buffer following RNeasy Micro Kit               
(Qiagen). Nuclear RNA was isolated following a modified version of the protocol described (Mo              
et al., 2015). Briefly, half of a cortex was homogenized in 0.25M sucrose, 25mM KCl, 5mM                
MgCl2, 20mM Tricine-KOH using a glass dounce homogenizer. Nuclei were isolated via            
centrifugation at 10,000g for 18 minutes at 4°C (Sorvall HB-4) by pelleting through a 30%               
iodixanol density gradient (Sigma D1556). RNA was isolated from nuclei by resuspending pellet             
in RLT buffer following the RNeasy Micro Kit (Qiagen). 
 
RNA sequencing 
RNA libraries were generated from 250ng total and nuclear RNA with NEBNext Ultra             
Directional RNA Library Prep Kit for Illumina (NEB) using a modified amplification protocol             
(37°C, 15 minutes; 98°C, 30 seconds; (98°C, 10 seconds; 65°C, 30 seconds; 72°C, 30              
seconds)x13; 72°C, 5 minutes; 4°C hold. RNA libraries were pooled at a final concentration of               
8-10nM and sequenced using Illumina HiSeq 2500 or 3000 with the Genome Technology Access              
Center (GTAC) at Washington University in St. Louis, typically yielding 20-30 million            
single-end reads per sample.  
 
RNA sequencing analysis 
Raw FASTQ files were trimmed with Trim Galore, using a quality filter of 20, then rRNA                
sequences were filtered out using Bowtie, using rRNA sequences from Mus Musculus obtained             
from the NCBI sequence database. The unaligned reads from this step were then aligned to mm9                
using STAR (Dobin et al., 2013) with the default parameters. Reads mapping to multiple regions               
in the genome were then filtered out, and uniquely mapping reads were converted to BED files.                
Intronic and exonic reads were then separated. To do this, splice-site reads were first filtered out                
of the BED read files, then reads that mapped entirely within exons were added to the splice-site                 
reads to make the exonic read file. All remaining reads that overlapped introns were considered               
intronic reads. Finally, reads were assigned to genes using bedtools coverage -counts. 
 
For gene annotation we defined a "flattened" list of longest transcript forms for each gene,               
generated on Ensgene annotations, obtained from the UCSC table browser. For each gene,             
Ensembl IDs were matched to MGI gene names. Then, for each unique MGI gene name, the                
most upstream Ensgene TSS and the most downstream TES were taken as that gene's start and                
stop. Based on these Ensembl gene models, we defined TSS regions and gene bodies. 
 
Chromatin immunoprecipitation protocol 
Cerebral cortex was dissected on ice in phosphate buffered saline from 1) MeCP2 KO and               
wild-type male litter mates at 7-8 weeks old, 2) MeCP2 OE and wild-type male litter mates at                 
7-10 weeks old, 3) DNMT3A Baf53b-cKO and control mice at 7-8 weeks old. The tissue was                
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flash-frozen in liquid nitrogen and stored at -80°C. ChIP experiments were performed on half a               
cortex as previously described (Cohen et al., 2011), using an alternative chromatin fragmentation             
method. Chromatin were fragmented with Covaris E220 sonicator (5% Duty Factory, 140 Peak             
Incidence Power, 200 cycles per burst, milliTUBE 1mL AFA Fiber). ChIP was performed with              
H3K27ac (0.025-0.1µg; Abcam ab4729), H3K4me3 (2µg; Abcam ab1012), and H3K36me3          
(0.2µg; Active Motif 61101). ChIP libraries for H3K27ac, H3K4me3, and H3K36me3 were            
generated using Ovation Ultralow Library System V2 (NuGEN). Libraries were pooled to a final              
concentration of 8-10nM and sequenced using Illumina HiSeq 3000 with GTAC, yielding 15-30             
million single-end reads per sample. 
 
Chromatin immunoprecipitation analysis 
Sequenced reads were mapped to the mm9 genome using bowtie2 alignment, and reads were              
extended based on library sizes and deduplicated to consolidate PCR duplicate reads.            
Deduplicated reads were used to quantify read density normalized by the number of reads per               
sample and by read length in basepairs. Bedtools coverage –counts was used to quantify ChIP               
signal at the transcriptional start site (TSS), gene body (GB), and transcriptional end site (TES).               
For consistency with methylation analysis, the TSS was defined as a 1kb region surrounding the               
TSS (+/-500bp), the GB was defined as 3kb downstream of the TSS to the end of the transcript,                  
and the TES was defined as 2kb upstream through 3kb downstream of the end of the transcript,                 
based on our Ensembl gene models. edgeR was then used to determine differential ChIP-signal              
across genotypes. 
 
Whole-genome bisulfite sequencing 
Cerebral cortex was dissected from DNMT3A Nestin-cKO or DNMT3A Baf53b-cKO and           
controls at 7-8 weeks, flash-frozen in liquid nitrogen, and stored at -80°C. DNA extraction and               
bisulfite conversion were performed as before (Gabel et al., 2015). Briefly, genomic DNA was              
extracted and bisulfite libraries were generated using the Ovation Ultralow Methyl-Seq Library            
System (NuGEN). Libraries were pooled and sequenced using Illumina MiSeq 2x150 with the             
Spike-In Cooperative at Washington University in St. Louis.  
 
Chromatin conformation capture 
3C assays were adapted from previously described procedures (Kim and Dekker, 2018;            
Lieberman-Aiden et al., 2009; Yamada et al., 2019). Half of a cerebral cortex was dounced 10x                
with a loose pestle in cross-linking buffer (50mM Hepes-KOH, pH 7.9; 100mM NaCl; 1mM              
EDTA; 0.5mM EGTA) with 1% formaldehyde at room temperature for 15 minutes.            
Formaldehyde was quenched with 125mM glycine and incubated for 5 minutes at room             
temperature. The suspension was pelleted at 1150xg for 5 minutes at 4°C and the pellet was                
subsequently washed with PBS and frozen at -80°C. The frozen pellet was thawed and lysed               
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(10mM Tris-HCl, pH 8; 10mM NaCl, 0.2% IGEPAL-630, Protease Inhibitor (Complete Protease            
Inhibitor Cocktail, Roche)) for 15 minutes followed by douncing 25x with a loose pestle on ice.                
The lysed cells were strained through a 70um cell strainer (Falcon) and pelleted at 200xg for 5                 
minutes at 4°C. Nuclei were resuspended in 1mL of 0.5% SDS and incubated at 62°C for 10                 
minutes to permeabilize the nuclei. 25ul (approx. 90-100k nuclei) were used for the 3C library               
construction, and SDS was quenched with Triton X-100 (1% Triton, 1x NEB 3.1 Buffer). Nuclei               
were digested overnight at 37°C with 200U of BglII. The digested nuclei were incubated at 65°C                
for 15 minutes to inactivate the enzyme. Samples were then ligated for 6 hours at 16°C with                 
4000U of T4 DNA ligase (NEB Ligase Buffer, 0.1mg/ml BSA, Triton X-100, NEB T4 ligase).               
Digested and ligated 3C samples were pelleted at 3500rpm for 5 minutes at 4°C and resuspended                
in 200ul NEB 3.1 Buffer and brought to 1% SDS and 250mM NaCl. 3C libraries were                
de-crosslinked overnight at 65°C. They were then incubated with 40ug RNase A at 37°C for 1                
hour, followed by 80ug of Proteinase K at 55°C for 1 hour. The samples were purified with                 
Phenol/Chloroform/Isoamyl Alcohol (25:24:1) and subsequently ethanol precipitated (100mM        
Sodium Acetate) overnight at -20°C. Control libraries were generated from Bacterial Artificial            
Chromosomes (BACs) as previously published (Kim and Dekker, 2018). BACs (see STAR            
methods) were isolated using PureLink HiPure Plasmid Maxiprep Kit (Invitrogen), following the            
modified protocol for BAC isolation. 
 
Quantification and Statistical Analysis 
Whole-genome bisulfite analysis 
Bisulfite-sequencing cannot distinguish between hydroxymethylation and methylation at        
cytosines, detecting both only as modified sites during sequencing. Thus, measures of            
methylation included in this study represent the aggregate of both forms of methylation at sites               
across the genome. Bisulfite data for the DNMT3A Nestin-cKO and DNMT3A Baf53b-cKO,            
and data obtained from GEO as FASTQ files, were adapter-trimmed, mapped to mm9, then              
deduplicated and called for methylation using BS-seeker2 (with bowtie2). Nonconversion rate           
was set to be (--XS=.3,2), and default settings were used otherwise. The methylation levels for               
genes and regions were assessed by summing the number of reads mapping to Cs that supported                
mC and dividing that by the number of reads mapping to Cs that supported non-mC, using                
bedtools map -o sum. This allows sites with more read information to contribute more in               
determining the methylation level of the surrounding region. In order to avoid confounding             
effects of promoter-associated depletion of methylation, genic methylation was assessed 3kb           
downstream of promoters to the TES. In order to assess any potential for C site coverage bias                 
influencing TAD-associated Bisulfite-seq results, a bed file of every C/G in the genome was              
generated, and bedtools coverage -counts was run on it. Bisulfite coverage bias was assessed on               
informative sites for methylation with bedtools map -o mean on the number of reads mapping to                
Cs in the region. 
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RNA-sequencing quantification 
MeCP2-repressed and activated genes were identified by quantitative analysis of exonic reads            
from total RNA from the MeCP2 KO and OE. For this analysis we applied an approach similar                 
to previous studies of other brain regions that combined results of gene expression in these two                
strains in order to identify the most-robustly MeCP2-regulated genes (Ben-Shachar et al., 2009;             
Chahrour et al., 2008; Chen et al., 2015). DESeq2 was run using default parameters on exonic                
reads from MeCP2 KO and their littermate control animals (n=6 per genotype). Separately, we              
ran DESeq2 analysis on exonic reads from MeCP2 OE and their littermate control animals (n=5).               
The nominal p-values output by DESeq2 for each gene in each mutant-control comparison were              
then combined using the Fisher method (log-sum). The resulting combined p-values were then             
Benjamini-Hochberg corrected, and genes with a q-value < .1 and a log2 fold-change > 0 in the                 
KO and a log2 fold-change < 0 in the OE were labeled as MeCP2-repressed, while genes with a                  
q-value < .1 and a log2 fold-change < 0 in the KO and a log2 fold-change > 0 in the OE were                      
labeled as MeCP2-activated. Notably, similar results for enrichment of mCA, and gene length             
were observed when examining lists of genes called as significantly dysregulated in the MeCP2              
KO and OE on their own. However, a smaller gene list was identified in each independent                
analysis, likely due to the reduced statistical power. For comparison between changes in intronic              
RNA and changes in exonic RNA (Figure 2.3; S1) a list of significantly changed genes in the                 
MeCP2 KO compared to littermate controls based on intronic fold-changes was generated by             
applying the same DESeq2 analysis to intronic reads derived from total RNA-seq of nuclear              
RNA.  
 
RNA-seq aggregate plots examining changes in expression over lengths of genes (Figure            
2.11G-I) were performed by binning genes into 1kb windows, then calculating nuclear intronic             
coverage over each bin using bedtools coverage -hist. Each gene was then normalized by the               
median amount of combined coverage from the MeCP2 KO and wild-type. Finally, genes were              
aligned by their TSSs, and median expression levels were plotted for each bin. For any given                
graph, the genes are filtered such that the lengths of genes plotted is equal to or greater than the                   
aggregate length being plotted (Boswell et al., 2017; Gray et al., 2014). Termination ratios              
(adapted from (Boswell et al., 2017)) were calculated in a manner similar to the aggregate plots                
of expression. Windows were made for every gene longer than 100kb, from the TSS to 25kb                
downstream of the TSS (window A), and from the TES to 25kb upstream of the TES (window                 
B). Coverage over these windows was calculated with bedtools coverage -hist, then coverage of              
window A was divided by the coverage of window B, within each sample. Then, wild               
type/MeCP2 KO samples were divided against each other, and a normalized metric for each wild               
type/MeCP2 KO replicate was generated. Finally, median metrics were plotted for each wild             
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type/MeCP2 KO replicate. Simulated metrics were generated by progressively applying exonic           
fold-changes to the wild-type expression throughout the gene. For example, a gene 50kb long,              
with an observed exonic log2 fold-change (MeCP2 KO/wild type) of -1 would be divided into 50                
1kb bins. A simulated KO expression pattern would then be generated by progressing down each               
of the 50 bins, applying a fold-change of 1/50 * -1, 2/50 * -1, etc, to the expression of the                    
corresponding bin in the WT. 
 
Controlled resampling 
A resampling approach that controls for a desired variable was used throughout the paper. A               
sample set (e.g. MeCP2-repressed genes) and a control set (e.g. all other genes) are assessed for a                 
certain characteristic (e.g. expression, length, etc). The control set is then sorted on this              
characteristic, and each entry in the sample set is assessed for where it would be placed in the                  
sorted control set. Then, for each sample entry, a control entry is selected that is within 10 places                  
of the sample entry, generating a control set the same size and variable distribution as the sample                 
set. 
 
TAD boundary analysis  
For Figures 2.1F, 2.2C, 2.9B, and 2.9F, all TADs that intersected MeCP2-repressed,            
MeCP2-activated, and unchanged genes were selected, boundaries phased, and values for mC/C,            
coverage, GC percent, or ChIP/Input plotted in aggregate using R, python, and bedtools.             
Shuffling analysis was performed in these cases by moving each TAD randomly around their              
target genes (TADs containing MeCP2-repressed genes were shuffled around MeCP2-repressed          
genes, etc.). This was done once to generate a single example (e.g. Figure 2.1F), or up to 20                  
times to generate a resampling ribbon (e.g. Figure 2.9B). Figures 2.1G and 2.9K were generated               
by selecting boundaries through the following method: TADs were assigned a score, based on              
the difference between its mCA level and the mCA level of the next downstream TAD. Then, the                 
33% top scoring TADs were taken and plotted in aggregate analysis. For shuffled TAD control               
plots, TAD locations were randomized and the selection process for these shuffled TADs was              
repeated. We note that because both true TADs and shuffled TADs in these plots were selected                
based on high differences in average methylation between them, a reduction of signal going from               
left to right is predicted. However, true TADs display two aspects of mCA/CA signal that are not                 
present in shuffled TADs, which demonstrate the organizing effects associated with TAD            
boundaries: 1) True TADs are more highly enriched for mCA, showing that resampling TADs              
eliminates an organized enrichment of mCA/CA in specific regions of the genome. 2) A steep               
step-down in mCA/CA occurs at true TAD boundaries, while a more gradual fall off in signal                
occurs at reshuffled boundaries. These two differences illustrate that ~30% shifts in mCA/CA             
levels are common between adjacent TADs, and they demonstrate that TAD boundaries            
delineate a sharp transition between mCA/CA levels at these regions. Plotted in all figures is the                
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average of the upstream and downstream TAD boundaries, taking into account TAD orientation.             
Upstream boundaries (where the TAD would be on the right, instead of the left), have their                
orientation flipped horizontally along the boundary. The value plotted is the mean of the flipped               
upstream boundaries and the unflipped downstream boundaries.  
 
TAD methylation cross-correlation 
Cross-correlation matrices (e.g. Figure 2.1H) were generated by dividing each domain into 10             
equally-sized bins, then prepending and appending 10 identically sized bins up and down-stream             
of the domain, making a number of domains x 30 matrix. Each column of this matrix was then                  
correlated against each other, making a 30 x 30 correlation matrix, which was plotted in heatmap                
form. Shuffled TADs were generated as a negative control by randomly placing TAD-sized             
regions around the genome, separated from each other by similar distances as actual TADs to               
retain TAD structure.  

In order to calculate heatmaps of correlations between mCA/CA levels of genomic            
elements in and outside of TADs and mean TAD mCA/CA levels (Figure 2.10J), TADs were               
again divided into 10 equally sized bins, with equal-sized regions placed upstream and             
downstream the domain. Enhancers, genes, and TSSs in the genome were then intersected with              
these regions, and Spearman correlations between TAD methylation (subtracting out the           
methylation of the element if necessary) and element methylation within each region were             
calculated.  

To assess the similarity of mCA levels between individual elements inside and outside of              
the same TAD (i.e. TSS regions, enhancers, gene bodies; Figure 2.10K), each element was              
paired to each other element on the same chromosome. Each pair was then assessed if they                
paired within or between TADs. Because mCA varies with genomic distance, each intra-TAD             
pair was matched to the extra-TAD pair with the most similar distance between elements, and               
Spearman correlations were calculated on the two distance-matched sets. 
 
Identification of enhancers 
Enhancers in this study were defined by stringent criteria requiring the presence of overlapping              
H3K27ac and H3K4me1 peaks that occur outside of a known TSS region, or a peak of the                 
promoter-associated histone mark H3K4me3. As noted, this led to the exclusion of some             
subthreshold regions of H3K27ac enrichment that may represent true regulatory elements, but            
ensured that we analyzed robust regulatory elements in our studies. For this analysis, bed files of                
H3K27ac and H3K4me3 ChIP-seq were pooled by replicate. Peaks of H3K27ac and H3K4me3             
ChIP-seq were identified using the MACS2 peak calling algorithm on the pooled bed files using               
the pooled ChIP Input as background signal (macs2 callpeak --nomodel -q 0.05). MeCP2 KO              
and wild type peak files were then combined using bedtools unionbedg, and overlapping peaks              
were merged into single peaks using bedtools merge. Bedtools intersect was used to identify              
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H3K27ac peaks that did not overlap with gene promoter regions (1kb around annotated TSS) or               
with H3K4me3 peaks from MACS2. These non-overlapping H3K27ac peaks were then further            
filtered for landing within an H3K4me1 peak, as called in the ENCODE-generated broadpeak             
file for H3K4me1 ChIP from 8-week old cortex. All H3K27ac peaks that remained after these               
rounds of filtering were defined as enhancers. 

To identify the enhancers most robustly regulated by MeCP2, we used combined analysis             
of the MeCP2 KO and OE, similar to the approach used for determining gene-expression              
changes. We ran differential ChIP-seq analysis on H3K27ac from the MeCP2 KO and their              
littermate control animals (n=5), and from the MeCP2 OE and their littermate controls (n=3).              
Reads were quantified in all merged acetyl peaks, and edgeR was used to calculate nominal               
p-values and fold-changes for these peaks. These p-values were then combined using the Fisher              
method (log-sum) and were Benjamini-Hochberg corrected. Acetyl peaks with a combined           
q-value < 0.1, and a log2 fold-change > 0 in the KO and a log2 fold-change < 0 in the OE were                      
called as MeCP2-repressed peaks, while peaks with a combined q-value < 0.1, and a log2               
fold-change < 0 in the KO and a log2 fold-change > 0 in the OE were called as MeCP2-activated                   
peaks.  

Enhancers were also called as misregulated in the DNMT3A Baf53b-cKO, using edgeR.            
H3K27ac ChIP-seq reads from the DNMT3A Baf53b-cKO and control (n=6) were quantified in             
the merged acetyl peaks called from the MeCP2 KO/control. edgeR was then run on these               
regions, and peaks with a q-value < 0.1 were called as misregulated in the DNMT3A               
Baf53b-cKO. 
 
ATAC peak analysis 
To sensitively detect sub-peak-threshold histone acetylation signal that could correspond to           
putative regulatory elements, a compendium of all ATAC peaks detected in the genome was              
obtained from http://atlas.gs.washington.edu/mouse-atac/data/   
(atac_matrix.binary.qc_filtered.peaks.txt) and acetylation was quantified in these regions. ATAC         
peaks that landed within 1kb of a TSS were filtered out, and methylation and acetylation analysis                
was performed on them as described for enhancers. Equal-sized control regions for enhancers             
and ATAC peaks were generated through a structured resampling approach. Enhancers and            
ATAC peaks, if located within a gene, are shuffled within that gene. If the peak is extragenic, it                  
is shuffled between the nearest upstream and downstream enhancer/gene/ATAC peak. In each            
case, enhancers and ATAC peaks are restricted from landing within existing enhancers and             
ATAC peaks. Normalized pseudocounts of acetylation for enhancers, ATAC peaks, and           
resampled ATAC peaks were generated from edgeR common dispersions, running on each            
dataset and mouse strain separately. 
 
Associations between enhancers and genes using Hi-C and GREAT 
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GREAT 3.0 (McLean et al., 2010) was used to determine potential enhancer-promoter            
interactions. NCBI build 37 of Mus Musculus was used as the species assembly, and bed files of                 
enhancer regions were uploaded into the web tool. Enhancer-promoter interactions were           
identified for MeCP2-repressed, MeCP2-activated, and all other enhancers. All identified genes           
linked to these enhancers were used for further analysis. To link enhancers to promoters by Hi-C,                
intrachromosomal Hi-C matrices (KR-normalized) were extracted at 1.5kb resolution using          
Straw (Durand et al., 2016), and mean average interactions for all distances were calculated              
per-chromosome. Each matrix was then filtered down to only interactions between promoters            
and enhancers within 3mb of each other, and enhancers-promoter pairs with greater than 3              
observed interactions and an observed/expected ratio over 1.5 were linked, making Hi-C-linked            
enhancers. Enhancers that were linked to promoters of MeCP2-repressed or MeCP2-activated           
genes were then used in analysis in Figure 2.6B. 

For analysis of intragenic versus extragenic contact frequencies (Figure 2.6G), the same            
normalized contact matrices were analyzed. Genes greater than 50kb were extended on either             
side by their respective gene lengths, and contacts were mapped to them using bedtools intersect               
-wao -F 1. Each region was then split into 60 equally-sized bins (20 upstream, 20 intragenic, 20                 
downstream), making 3600 possible regions of interactions. Average interaction frequencies          
within these regions were calculated from the interaction matrix, and each gene’s intragenic and              
extragenic interactions were aggregated by calculating the mean of each bin of interaction.  

For Figure 2.6H, intragenic and extragenic enhancer-promoter interactions were distance          
matched to control for the greater number and variability of extragenic interactions. To do this, a                
similar resampling approach to Figure 2.10K was used: for each intragenic interaction, an             
extragenic interaction with a similar distance was selected for comparison. 

To assess the relationship between enhancer acetylation fold-change and gene          
fold-change (Figure 2.12M), partial correlations between enhancer/control region acetyl         
fold-change and gene fold-change were calculated by averaging the acetyl fold-changes of            
elements within the gene and correlating this aggregate value to that gene’s fold-change. 
 
Quantitative 3C analysis 
Quantitative PCR was employed, as previously described (Joo et al., 2016; Schaukowitch et al.,              
2014; Tolhuis et al., 2002), to determine enhancer-promoter interactions of enhancers using the             
primers listed. Negative regions were selected from genomic restriction fragments that did not             
contain detectable enhancer sequences and were located nearby to the enhancer being tested but              
in closer proximity to the anchor TSS. Relative concentrations of enhancers and corresponding             
negative regions were calculated from a standard curve of BAC 3C libraries containing the              
targeted loci (see STAR methods). Enrichments of interactions were then calculated as the             
relative concentration of targeted enhancers divided by the relative concentration of the nearby             
negative region. 
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mC context enrichment analysis 
Trinucleotide contexts and methylation status (a rational number determined through bisulfite           
coverage - # of Cs mapping to site / # of Ts mapping to site) were determined for each cytosine                    
and guanine in the genome, and then sites were assigned to enhancers based on proximity (a site                 
was assigned to an enhancer if it was within 1 kb of the enhancer’s center). T-tests were then run                   
for each context, summing methyl-weighted or unweighted (for total mC per kb / C sites per kb                 
respectively), or averaging methylation statuses (for percent mC), comparing test sets           
(up/downregulated enhancers, or enhancers within certain genes) to a set of resampled control             
enhancers with similar acetylation levels 5 times the size of the test set. 
 
mC vs acetylation change local correlation analysis at enhancers 
For both enhancers and gene local correlation analysis, 1 kb-sized bins were assessed for average               
methylation around and within enhancers/genes, making an N x M sized matrix of methylation,              
where N = # of enhancers/genes, and M = # of bins. Each column of this matrix was then                   
correlated against the matching enhancer/gene’s fold-change in the MeCP2 KO/MeCP2 OE. For            
enhancers, correlation analysis was centered on summits of wild-type acetylation and MeCP2            
KO acetylation and analyzed separately through MACS2. 
 
Running-average plots 
Running-average plots of mCA/CA and genic fold-change as well as total mC sites and genic               
fold-change were generated from means of 201 gene bins, with a 1 gene step, using the rollMean                 
command in the zoo package of R. Length-controlled resampling was performed by selecting a              
gene within .75 – 1.25 times the length of each gene in the test set. 
 
TAD/element methylation correlation 
Enhancers, transcriptional start sites, and gene bodies were intersected with TADs and contact             
domains, and each unique intersection was plotted (Figure 2.2E, 2.9L,M). Shuffling analysis was             
generated by moving elements randomly within its containing TAD. To avoid spuriously            
detecting a correlation due to the contribution of the elements themselves to the calculated              
average methylation of the TAD, the mC signal from the elements within the TAD (e.g. gene)                
were excluded from the calculation of the mC levels for that TAD. 
 
Misregulated gene-enhancer linkage enrichment 
To calculate the significance and magnitude of the linkage between misregulated genes and             
enhancers (Figure 2.6B), misregulated enhancers were resampled based on acetylation, and a            
fisher’s exact test was performed comparing the association of enhancers with misregulated            
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genes between the misregulated and control set. This process was repeated 1000 times, and the               
median p-value and log2 fold-enrichment was plotted. 
 
Data and Software Availability 
All genomic data generated in this study have been uploaded to the NCBI GEO archive               
GSE123373 
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2.8 Figures 
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Figure 2.1. Non-CG methylation in cerebral cortex is associated with domains of chromatin             
folding. 

A. Exonic RNA changes for all genes dysregulated in MeCP2 KO and OE (FDR <0.1) (left),               
and an example MeCP2-repressed gene, Sdk1 (right). ***, B-H adjusted p<10^-8 Wald            
test. 

B. Aggregate mCA/CA levels for MeCP2-regulated genes. Mean mCA/CA for 1kb bins          
shown at kilobase (left) and megabase (right) scale. “Metagene” is 50 equally-sized bins             
within gene bodies. 

C. Genome browser view of mC at Sdk1. 
D. Hi-C interactions and mC for a genomic region including two MeCP2-repressed genes,            

Sdk1 and Auts2 (red). TAD-like structures visible in Hi-C interactions (blue). 
E. mCA/CA for TADs containing MeCP2-regulated genes (see methods). ***, p < 10^-8            

Wilcoxon test. 
F. Aggregate mCA/CA at boundaries of TADs containing MeCP2-repressed genes.         

Analysis of true TADs (red) or TADs shuffled around MeCP2-repressed genes (pink, see             
methods). mCA/CA drop-off at true boundaries is significantly different from shuffled           
boundaries. p<10^-3 (see Figure S2C, methods). 

G. Aggregate mCA/CA as in F, but for TADs containing MeCP2-repressed genes with the             
top 33% most differential mCA/CA levels compared to the neighboring TAD (see            
methods). 

H. Cross-correlation of mCA/CA levels for regions in and around TADs (see methods)            
containing MeCP2-repressed genes, all genes, and shuffled control TADs. 

 
See also Figure 2.8, 2.9 
 
Data from cerebral cortex of 7-10 week-old animals. n=6 each (MeCP2 KO, wild type)              
and n=5 each (MeCP2 OE, wild type) for RNA-seq, n=2 wild type for DNA methylation               
(Stroud et al., 2017). Hi-C data (Dixon et al., 2012). 
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Figure 2.2. Domain-associated DNMT3A defines megabase- and kilobase-scale mCA levels. 
A. Cross-correlations in and around TADs for DNMT3A ChIP at 2 weeks (see methods). 
B. Comparison of DNMT3A ChIP/Input at 2 weeks and mCA/CA levels at 8 weeks for each               

TAD. ***, p<10^-8. 
C. Aggregate DNMT3A ChIP/Input at 2 weeks at boundaries of TADs containing           

MeCP2-repressed genes. Black line and ribbon indicate the mean and standard deviation            
of shuffled TAD boundaries (see methods). 

D. MeCP2 ChIP/Input in TADs for quartiles of TAD mCA/CA. ***, p<10^-8. 
E. Comparison of TAD mCA/CA levels and mCA/CA levels at kilobase-scale genomic           

elements in each TAD at 8 weeks of age (see methods). ***, p<10^-8. 
 
See also Figure 2.10. 
 
Data from cerebral cortex of 2 or 8 week-old animals. Per time point: n=2-3 for               
DNMT3A ChIP-seq, n=2 wild type for DNA methylation (Stroud et al., 2017). 
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Figure 2.3. Disruption of MeCP2 leads to promoter-associated transcriptional         
dysregulation. 

A. Left, genome browser view of nuclear total RNA-seq and ChIP-seq from MeCP2 KO and              
wild type at an MeCP2-repressed gene, Zmat4. Right, overlay of MeCP2 KO and wild              
type signal illustrating subtle increases for blue highlights at left. 
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B. Changes in RNA-seq signal in the MeCP2 KO for exons in whole cortex RNA (Exonic),               
or introns in nuclear RNA (Intronic). Genesets defined in combined analysis of exonic             
RNA (see Figure 1A). ***, p<10^-8 Wilcoxon test. 

C. Profile (black, gray) and fold-change (orange) of intronic reads from RNA-seq for the             
first 100kb of upregulated genes in MeCP2 KO versus wild type (Figure S4B).             
Normalized median of 1kb bins is plotted for genes >100kb (see methods, and Figure              
S4G,H). 

D. Fold-changes in ChIP signal in MeCP2 KO at MeCP2-regulated genes identified in            
intronic RNA analysis. Value for Zmat4 is indicated by a point on each plot. **, p<10^-3;                
***, p<10^-8 Wilcoxon test. 

E. Fold-changes in gene expression as in panel B, but for MeCP2 OE. ***, p<10^-8              
Wilcoxon test. 

F. Profile of intron expression and fold-change as in panel C, but for MeCP2 OE. (see also                
Figure S4I). 

G. Fold-changes in ChIP signal as in panel D but for MeCP2 OE. *, p<0.05; **, p<10^-3 ;                 
***, p<10^-8 Wilcoxon test. 
 
See also Figure 2.11. 
 

Data from cerebral cortex of 7-10 week-old animals. MeCP2 KO per genotype: n=6 for 
RNA-seq, n=3 for H3K36me3, n=4 for H3K4me3, n=5 for H3K27ac. MeCP2 OE per genotype: 
n=5 for RNA-seq, n=2 each for H3K36me3 and H3K4me3, n=3 for H3K27ac. 
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Figure 2.4. MeCP2 represses enhancers enriched for mCA and mCG binding sites. 

A. Left, overlaid wild type and MeCP2 KO H2K27ac ChIP-seq signal at two            
MeCP2-repressed genes, Zmat4 and Efna5. Right, close-up view of enhancers indicated           
in blue at left. 

B. Fold-changes of H3K27ac ChIP in MeCP2 KO or MeCP2 OE for changed enhancers             
identified in combined analysis of H3K27ac ChIP-seq from MeCP2 KO and OE            
(FDR<0.1). 

C. Aggregate mC at MeCP2-regulated enhancers, centered at the midpoint for each           
enhancer. Mean values plotted for 100 bp bins. 

D. Enrichment significance (see methods) for mCNN trinucleotide density at         
MeCP2-repressed and MeCP2-activated enhancers. 

E. MeCP2 ChIP/Input for MeCP2-regulated enhancers. ***, p<10^-8 Wilcoxon test. 
F. Fold-changes of H3K27ac in MeCP2 KO across deciles of mCA/kb (left) and mCG/kb             

(right) for all enhancers. Spearman rho shown for mC and change in H3K27ac at              
enhancers. ***, p<10^-8. 

G. Fold-changes of H3K27ac, as in panel F, but for MeCP2 OE. ***, p<10^-8. 
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H. Spearman correlations between H3K27ac fold-change at enhancers in the MeCP2 KO           
and mC/kb for 500bp bins across these enhancers. Plots centered at the summit of              
H3K27ac ChIP peaks (see methods). 

I. Spearman correlations, as in panel H, but for H3K27ac fold-change in the MeCP2 OE. 
 
See also Figure 2.12. 
 
Data from cerebral cortex of 7-10 week-old animals. MeCP2 KO per genotype: n=5 for              
H3K27ac. MeCP2 OE per genotype: n=3 for H3K27ac. n=2 wild type for DNA             
methylation (Stroud et al., 2017) and MeCP2 ChIP-seq data (Kinde et al., 2016). 
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Figure 2.5. mCA-associated enhancer de-repression in DNMT3A Baf53b-cKO. 

A. mCG/CG and mCA/CA levels at all enhancers for wild type and DNMT3A Baf53b-cKO.             
Data shown are mean +/- SEM. **, p<10^-3; ***, p<10^-8 two-tailed t-test. 

B. Fold-changes for mRNA of MeCP2-regulated genes (left) and H3K27ac at          
MeCP2-regulated enhancers (right) in MeCP2 KO and DNMT3A Baf53b-cKO. ***,          
p<10^-8 Wilcoxon test. 

C. Aggregate wild-type mC profiles for enhancers significantly dysregulated in the          
DNMT3A Baf53b-cKO (see Figure S6D). 

D. Fold-changes of H3K27ac across deciles of mCA/kb (left) and mCG/kb (right) for all             
enhancers in the DNMT3A Baf53b-cKO. Spearman rho shown for mC and H3K27ac            
change at enhancers. *, p<0.05; ***, p<10^-8. 

 
See also Figure 2.13. 
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Data from cerebral cortex of 7-10 week-old animals. Per genotype: n=6 for DNA             
methylation, n=4 for RNA-seq, n=6 for H3K27ac ChIP-seq.  
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Figure 2.6. MeCP2-repressed enhancers are linked to MeCP2-repressed genes. 
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A. mCA/kb of enhancers in TADs containing MeCP2-regulated genes. **, p<10^-3; ***,           
p<10^-8 Wilcoxon test. 

B. Associations between MeCP2-regulated enhancers and MeCP2-regulated genes.       
Comparisons are: enhancers in the same TAD as dysregulated genes (“Same TAD”),            
assigned to dysregulated genes by GREAT analysis (McLean et al., 2010) (“GREAT”),            
enriched for enhancer-promoter contacts by Hi-C (“Hi-C-linked”), and found in          
dysregulated genes (“Intragenic”). Median significance (color) and log2 enrichment         
(number) are shown for true enhancers compared to resampled control enhancers (see            
methods). 

C. Log2 fold-changes of H3K27ac in MeCP2 KO for enhancers near two MeCP2-repressed            
genes. Blue, TADs overlapping MeCP2-repressed genes; red, enhancers in         
MeCP2-repressed gene; pink, other enhancers in the same TAD; gray and black,            
extragenic and intragenic enhancers in other TADs. *, significantly changed enhancers. 

D. Fold-changes in H3K27ac ChIP in MeCP2 KO (top) and MeCP2 OE (bottom) for             
enhancers in TADs containing MeCP2-repressed, MeCP2-activated, or no dysregulated         
genes (“Same TAD”), or for enhancers in these genes (“Intragenic”). ***, p<10^-8            

Wilcoxon test. 
E. Genic distributions of MeCP2-regulated enhancers. **, p<10^-3; ***, p<10^-8         

chi-squared test (see methods). 
F. Fold-changes of H3K27ac ChIP in MeCP2 KO (top) or MeCP2 OE (bottom) for             

intragenic and extragenic enhancers across deciles of enhancer mCA/kb (left) and           
mCG/kb (right). Spearman rho for correlation of enhancer mC and change in H3K27ac.             
***, p<10^-8. 

G. Aggregate observed/expected Hi-C interaction frequencies for regions inside and outside          
of genes (see methods). 

H. Observed/expected Hi-C interactions between enhancers and promoters for intragenic or          
distance-matched extragenic enhancers (see methods). ***, p<10^-8 Wilcoxon test. 

I. Running-average plot of intronic RNA fold-change in the MeCP2 KO (top) and MeCP2             
OE (bottom) versus gene body mCA/kb for genes containing various numbers of            
enhancers. Mean changes are plotted for genes sorted by gene body mCA/kb (bins of 201               
genes with a 1-gene step). 

 
See also Figure 2.12 
 

Data from cerebral cortex of 7-10 week-old animals. MeCP2 KO per genotype: n=6 for 
RNA-seq, n=5 for H3K27ac. MeCP2 OE per genotype: n=3 for H3K27ac, n= 5 for RNA-seq. 
n=2 wild type for DNA methylation (Stroud et al., 2017). Hi-C data from E14.5 cortical neurons 
(Bonev et al., 2017). 
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Figure 2.7. A model of TAD-associated mCA and enhancer repression by MeCP2 in 
neurons. 

A. DNMT3A activity during early postnatal development establishes high or low mCA           
set-points within TADs. 

B. In mature neurons, MeCP2 reads-out this mCA and mCG, repressing enhancers. MeCP2 
most strongly affects intragenic enhancers, resulting in repression of genes found within 
high-mCA TADs that contain multiple enhancers. 
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Figure 2.8. Identification of MeCP2-regulated genes in the cerebral cortex by combined 
RNA-seq analysis of MeCP2 KO and MeCP2 OE. Related to Figure 2.1. 

A. Venn diagram of the overlap between genes identified as MeCP2-repressed and 
MeCP2-activated in combined analysis of MeCP2 KO and OE versus wild type cerebral 
cortex and genes previously identified as consistently dysregulated across multiple 
datasets and brain regions (Gabel et al., 2015). ***, p < 10^-8 hypergeometric test. 
Analysis was performed using coding genes found in annotation sets of both studies. 

B. Boxplot of fold-changes in exonic RNA in the cortex of MeCP2 KO and wild type mice, 
for genes previously identified as consistently dysregulated across multiple datasets and 
brain regions (Gabel et al., 2015). ***, p < 10^-8 Wilcoxon rank-sum test. 

C. Boxplots of mCA/CA and mCG/CG levels at the TSS (left) and gene bodies (right) of 
MeCP2-repressed, MeCP2-activat- ed, and all other genes. Light colored boxplots are 
plots generated for a control set of genes matched for the distribution of gene expression 
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for each dysregulated gene set (see methods). * p < 0.05 ; **, p <10^-3; ***, p < 10^-8 
Medians of Wilcox- on rank-sum tests on 100 gene-set resamplings. 

D. Boxplot of gene lengths for MeCP2-repressed, MeCP2-activated, and all other genes 
identified in combined analysis of total RNA-seq from MeCP2 KO and OE cerebral 
cortex. ***, p<10^-8 Wilcoxon rank-sum test. 

E. Running average plots of exonic RNA fold-changes versus gene length, for MeCP2 KO 
(left) and OE (right) versus wild type. Mean fold-changes are plotted for bins of 201 
genes sorted by gene length with a 1-gene step (see methods). 

F. Running average plots of exonic RNA fold-change vs gene body mCA/CA for the 
MeCP2 KO (left) and OE (right) versus wild type. mCA/CA levels are calculated for the 
gene body defined as +3kb from the TSS to the TES. Mean fold-changes are plotted for 
bins of 201 genes sorted by mean mCA/CA per gene with a 1-gene step (see methods). 

G. Plot of genome-wide correlations between methylation levels for 1kb regions in and 
around genes and fold-changes in exonic RNA expression in the MeCP2 KO versus wild 
type for each gene. 

H. Plot of genome-wide correlations between methylation levels for 1kb regions in and 
around genes and fold-changes in exonic RNA expression in the MeCP2 OE versus wild 
type for each gene. 

 
Data from cerebral cortex of 7-10 week old animals. n=6 per genotype for RNA-seq (MeCP2 
KO, wild type), n=5 per genotype for RNA-seq (MeCP2 OE, wild type), n=2 wild type for DNA 
methylation (Stroud et al., 2017). In G and H analysis was carried out for genes over 75kb to 
visualize correlation signal within gene bodies. 
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Figure 2.9. Chromatin topology is associated with non-CG DNA methylation in the 
cerebral cortex. Related to Figure 2.1. 

A. Boxplots of mCA/CA and mCG/CG within TADs that contain MeCP2-repressed genes, 
MeCP2-activated genes, or no dysregulated genes. ***, p < 10^-8 Wilcoxon rank-sum 
test. 

B. Aggregate plots of mCA/CA (left), mCG/CG (center), and BS-sequencing coverage rates 
and GC composition (right) phased on boundaries of TADs defined in Hi-C data from the 
cerebral cortex at eight weeks of age. TADs containing MeCP2-repressed (red), 
MeCP2-activated (blue), or all other genes (purple) are shown. “Inside” indicates TADs 
containing genes of interest. Black line and ribbon for each plot indicates the mean and 
standard deviation of 20 sets of resampled boundaries generated by shuffling TAD 
locations in the genome (see methods). 

C. A histogram of -log10 p-values for paired t-tests, comparing the difference in DNA 
methylation on either side of the TAD boundaries or 1000 resampled TAD boundaries as 
in B. Histogram shows the distribution of p-values for resampled TADs, red line 
indicates p-value for true TADs. 

D. Cross correlation analysis of mCG/CG signal within and across TAD boundaries for all 
genes. mCG/CG values were calculated for 10 intra-domain regions and 10 equally-sized 
regions up and downstream of each TAD. Correlation between these regions across all 
TADs is shown (see methods). 

E. Boxplots of mCA/CA and mCG/CG within contact domains that contain 
MeCP2-repressed genes, MeCP2-activated genes, or no dysregulated genes. Contact 
domains were defined by analysis of Hi-C data generated from cerebral cortex neurons 
isolated from fetal brain (Bonev et al., 2017). **, p < 10^-3; ***, p < 10^-8 Wilcoxon 
rank-sum test. 

F. Aggregate plots of mCA/CA (left), mCG/CG (center), and BS-sequencing coverage rates 
and GC composition (right) phased on boundaries of contact domains defined in Hi-C 
data from fetal cortical neurons. Presented as in panel B. 

G. A histogram of -log10 p-values for paired t-tests, comparing the difference in DNA 
methylation on either side of contact domain boundaries or 100 resampled contact 
domain boundaries as in panel F. Histogram shows the distribution of p-values for 
resampled contact domains, red line indicates p-value for true contact domains. 

H. Cross correlation analysis of mCA/CA and mCG/CG signal within and outside of contact 
domains as in panel D. Resampling was performed by shuffling contact domain-sized 
regions around the genome and repeating the analysis of all genes (see methods). 

I. Boxplots of mCA/CA within TADs defined in cerebral cortex (top) and cerebellum 
(bottom) that contain MeCP2-re- pressed genes, MeCP2-activated genes, or no 
dysregulated genes. ***, p < 10^-8 Wilcoxon rank-sum test. Cerebral cortex TADs were 

70 



compared to genes from this study. Cerebellum TADs were compared to genes 
previously identified as misregulated in the cerebellum and multiple other brain regions 
(Gabel et al., 2015). 

J. Cross correlation analysis of mCA/CA signal within and outside of TADs defined in 
cerebral cortex (top) and cerebellum (bottom), as performed in panel H. 

K. Aggregate plots of mCA/CA from frontal cortex (top) and granule neurons (bottom) 
phased on boundaries of MeCP2 repressed TADs defined in cerebral cortex (top) and 
cerebellum (bottom). Analysis performed on TADs with highly differing mCA levels as 
in Figure 2.1G. 

 
A-D analysis of Hi-C interaction data (Dixon et al., 2012), and DNA methylation, n=2 (Stroud et 
al., 2017) from the cerebral cortex at 8 weeks of age. E-H analysis of Hi-C interaction data from 
neurons isolated from E14.5 cortex (Bonev et al., 2017), and DNA methylation, n=2 (Stroud et 
al., 2017) from the cerebral cortex at 8 weeks of age. I-K analysis of bisulfite data from 6-week 
frontal cortex and granule neurons isolated from 7-12 week old cerebellum (Lister et al., 2013; 
Mellén et al., 2017)(Mellén et al., 2017). Hi-C data from 6-8 week old Cerebellum (Yamada et 
al., 2019). Note that some panels from Figure 2.1 are repeated here to allow for comparisons.  
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Figure 2.10. Binding of DNMT3A and recruitment of MeCP2 are shaped by 
topologically-associating domains. Related to Figure 2.2. 
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A. Density scatter plot of DNMT3A ChIP/Input signal at 2 weeks of age and mCA/CA 
levels at 8 weeks of age for random 1kb regions of the genome. Spearman rho shown for 
the correlation between DNMT3A signal and mCA/CA level. ***, p < 10^-8. 

B. Aggregate plot of Input CPM at 2 weeks phased on boundaries of TADs that contain 
MeCP2-repressed genes (TADS from cerebral cortex at eight weeks of age). Black line 
and ribbon for each plot indicates the mean and standard deviation of 20 resampled 
boundaries generated by shuffling contact domain locations in the genome (see methods). 

C. Cross correlation analysis of DNMT3A ChIP-seq signal at 2 weeks of age for contact 
domains defined in fetal cortical neurons. DNMT3A ChIP/Input values were calculated 
for 10 intra-domain regions and 10 equally-sized regions up and downstream of each 
domain. Correlation between these regions across all domains is shown (see methods). 

D. Density scatter plot of DNMT3A ChIP/Input signal at 2 weeks of age and mCA/CA 
levels at 8 weeks of age for contact domains defined in fetal cortical neurons. Spearman 
rho shown for the correlation between DNMT3A signal and mCA/CA level. ***, p < 
10^-8. 

E. Cross correlation analysis (performed as in panel C) for DNMT3A ChIP-seq signal at 8 
weeks of age in TADs defined in the cortex at 8 weeks of age. 

F. Density scatter plot of DNMT3A ChIP/Input signal at 8 weeks of age and mCA/CA 
levels at 8 weeks of age for TADs defined in the cortex at 8 weeks of age. Spearman rho 
shown for the correlation between DNMT3A signal and mCA/CA level. ***, p < 10^-8. 

G. Cross correlation analysis (performed as in panel C) for MeCP2 ChIP/Input signal at 8 
weeks of age in TADs defined in the cortex at 8 weeks of age. 

H. Barplots of genome-wide mC/C levels in a DNMT3A Nestin-cKO and control cerebral 
cortex at 8 weeks of age. Data shown as means +\- SEM. *, p < 0.05 two-tailed t-test. 

I. Boxplot of fold-changes in MeCP2 ChIP-seq signal within TADs upon ablation of mCA 
in the DNMT3A Nestin-cKO. Change in signal is shown for TADs separated by quartiles 
of mCA/CA (left) and mCG/CG (right) under wild-type conditions. Spearman rho shown 
for the correlation between DNMT3A signal and mCA/CA level. *** p < 10^-8. 

J. Heatmap of correlation between mCA/CA levels of gene body (top), enhancer (middle), 
and TSS (bottom) regions found inside and outside of TADs and the average mCA/CA 
level for each TAD. Distinct drop off in correlation coefficient for these elements when 
they are found outside the TAD boundary illustrates influence of intra-TAD mCA/CA 
consistency. Similar correlation level and drop-off in signal is not seen for resampled 
TADs, placed in randomized positions in the genome (see methods). 

K. Barplots of correlations of mCA/CA levels for gene bodies (left), enhancers (middle), and 
TSSs (right), located in either the same TAD or separate TADs. To facilitate comparison, 
distances between pairs of elements in different TADs was matched to distances between 
pairs of elements in the same TAD (see methods). 
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L. Density scatter plots of TAD methylation levels and methylation at kilobase-scale 
genomic elements in the cerebral cortex at 8 weeks of age. Values for every TSS, gene 
body, or enhancer in the genome are plotted against the TAD in which the element 
resides. As in Figure 2E, data is subtracted from TADs such that element methylation 
does not contribute to plotted TAD methylation. Spearman rho shown for the methylation 
levels of each genomic element versus the methylation levels of the TAD that the element 
is in. ***, p < 10^-8. 

M. Density scatter plots of TAD methylation levels and methylation at resampled random 
locations for regions size-matched to kilobase-scale genomic elements (as in panel L). 
Values for every resampled TSS-, gene body-, or enhancer-sized region in the genome 
are plotted against the TAD in which the element resides. Spearman rho shown for the 
methylation levels of each randomized genomic element versus the methylation levels of 
the TAD that the element is in. ***, p < 10^-8. 

 
A,C,D Analysis of Hi-C interaction data from neurons isolated from E14.5 cortex (Bonev et al., 
2017), DNA methylation, n=2, from the cerebral cortex at 8 weeks of age, and DNMT3A 
ChIP-seq data, n=3, from the cerebral cortex at 2 weeks of age (Stroud et al., 2017). B,E-G,I-M 
Analysis of Hi-C interaction data (Dixon et al., 2012), DNA methylation (n=2 wild type), 
DNMT3A ChIP-seq data, (n=2 wild type), (Stroud et al., 2017), and MeCP2 ChIP-seq data (n=2 
per genotype) (Kinde et al., 2016) from the cerebral cortex at 8 weeks of age. H n=2 per 
genotype for DNA methylation DNMT3A Nestin-cKO versus wild-type, 8 weeks of age. Note 
that some panels from Figure 2.2 are repeated to allow for comparisons.  
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Figure 2.11. Changes in intronic RNA are consistent with promoter-associated 
transcriptional upregulation of long, highly methylated, MeCP2-repressed genes in the 
MeCP2 KO. Related to Figure 2.3. 

A. Scatterplot of the log2 fold-changes in the MeCP2 KO versus wild type for exonic RNA 
measured by total RNA sequenc- ing of cerebral cortex tissue compared to intronic RNA 
measured by total RNA sequencing of isolated nuclei from this tissue. Genes identified as 
MeCP2-repressed and MeCP2-activated in combined analysis of exonic RNA in MeCP2 
KO and MeCP2 OE mice (Figure 1; S1) are indicated by red and blue dots respectively, 
all other genes indicated as gray points. 

B. Left, heatmap of changes in intronic RNA for genes detected as significantly 
dysregulated (FDR <0.1) in nuclear RNA-seq from MeCP2 KO cerebral cortex (grey 
indicates, no data for replicate). Right, venn diagram of the overlap between genes called 
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as MeCP2-repressed or MeCP2-activated in analysis of nuclear intronic RNA expression 
in the MeCP2 KO (pale colors) with genes called as dysregulated in combined analysis of 
exonic RNA in the MeCP2 KO and MeCP2 OE mice (dark colors) (Figure 1; S1). ***, p 
< 10^-8 hypergeometric test. 

C. Aggregate plot of cerebral cortex mCA/CA levels for MeCP2-repressed, 
MeCP2-activated, and all other genes defined by analysis of intronic RNA in the MeCP2 
KO (see panel B). Mean mCA/CA for 1kb bins in the TSS and regions surrounding genes 
is shown. For “Metagene” region, mean mCA/CA was calculated for 50 equal-sized bins 
within the body of each gene. 

D. Boxplot of gene lengths for MeCP2-repressed or MeCP2-activated, and all other genes 
called by analysis of nuclear intronic RNA in the MeCP2 KO and wild type mice. *, p < 
0.05; ***, p < 10^-8 Wilcoxon rank-sum test. 

E. Running-average plot of fold-changes in intronic RNA expression in the MeCP2 KO and 
wild type versus mean gene length (top) or mean gene body mCA/CA (bottom). Mean 
fold-changes are plotted for bins of 201 genes sorted by length of mCA/CA per gene with 
a 1-gene step (see methods). 

F. Plot of spearman correlations between fold-changes in intronic RNA expression in the 
MeCP2 KO and wild type versus mCA/CA or mCG/CG for regions in and around genes. 
Analysis performed for 1kb bins across 200kb (top) and 2 Mb (bottom) regions. 

G. Scheme to assess changes in pre-mature transcription termination in the MeCP2 KO 
versus wild type. Similar to analysis carried out by Boswell et al., 2017, a “termination 
ratio” for each gene above 50kb in each sample is defined as the ratio of read counts in 
the first 25kb of each gene to the read counts in the last 25 kb of that gene. The mean 
fold-change in the ratios between MeCP2 KO and wild type is calculated across all genes 
in paired replicates. 

H. Dotplot showing the change in termination ratio between the nuclear intronic RNA-seq 
data in the MeCP2 KO and wild type for genes that are not significantly changed and 
MeCP2-repressed genes. A prediction for the change in this ratio that would be expected 
if the effects on mRNA in the MeCP2 KO were due entirely to changes in transcription 
termina- tion rate was generated for comparison, “Predicted” (see methods). 

I. Dotplot as in panel H, showing the change in termination ratio between the intronic 
RNA-seq in the MeCP2 OE and wild type for genes that are not significantly changed 
and MeCP2-repressed genes. 

Data from cerebral cortex of 7-10 week old animals. For MeCP2 KO: n= 6 per genotype for 
RNA-seq; for MeCP2 OE: n=5 per genotype for RNA-seq; n=2 wild-type for DNA methylation 
(Stroud et al., 2017).  
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Figure 2.12. Analysis of enhancers dysregulated in MeCP2 mutants. Related to Figure 2.4 
and Figure 2.6. 

A. Boxplot of fold-changes in H3K27ac ChIP signal in MeCP2 KO and OE (left) and 
MeCP2 ChIP/Input signal (right) for enhancers identified with combined ChIP-seq 
analysis in KO and OE as MeCP2-repressed, MeCP2-repressed with high MeCP2/Input 
(see methods), MeCP2-activated, or all other enhancers. Fold-changes were calculated by 
edgeR analysis of H3K27ac ChIP-seq signal at enhancer regions (see methods). 
Significantly dysregulated enhancers were defined as FDR < 0.1. *, p < 0.05, ***, p < 
10^-8 Wilcoxon rank-sum test. 

B. Left, boxplots of mC/C, mC/kb, and C sites/kb at MeCP2-repressed, MeCP2-repressed 
with high MeCP2, MeCP2-activated, and all other enhancers, as displayed in panel A. 
Right, heatmap of enrichments for median levels of mC/C, mC/kb, and C sites/kb for 
MeCP2-repressed and MeCP2-activated enhancers compared to all other enhancers. *, p 
< 0.05, **, p < 10^-3; ***, p < 10^-8 Wilcoxon rank-sum test. 

C. Heatmap of enrichment significance for number of mC sites (mC/kb, left), methylation 
level (mC/C, middle) and sequence occurrence (right) for trinucleotide sites in 
MeCP2-repressed and MeCP2-activated enhancers. Signifi- cance of enrichment or 
depletion was calculated by comparing occurrences of mC/kb, mC/C, or sequence alone 
for each trinucleotide in the 2kb region surrounding enhancers to resampled sets of 
enhancers that are not significantly changed and matched to changed enhancers for 
H3K27ac signal (see methods). 

D. Histograms of mCA/kb and mCG/kb in enhancers (black). Blue and red lines indicate the 
distributions of methylation for MeCP2-activated and MeCP2-repressed enhancers 
respectively. 

E. Genome browser view of an example MeCP2-repressed gene, Zmat4 (as in Figure 4A), 
showing overlaid wild-type and MeCP2 KO aggregate H3K27ac ChIP-seq signal, 
H3K4me1 ChIP-seq peaks, H3K27ac peaks called as enhancers, and peaks from a 
compendium of ATAC-seq peaks identified across 13 mouse tissues. Blue highlights 
ATAC-seq peaks that correspond to sub-thresholded enrichment of H3K27ac, not 
identified in peak calling analysis of H3K27ac ChIP-seq. 

F. Boxplots of H3K27ac ChIP signal in MeCP2 KO versus wild type (left) and MeCP2 OE 
vs wild type (right) for enhancers defined in this study, a compendium of detectable 
ATAC-seq peaks, and non-peak regions that are size matched to ATAC-peaks but 
selected to not overlap enhancers of ATAC-seq peaks. Values for the highest mCA/CA 
decile are shown for each class, illustrating total levels of H3K27ac and mCA-dependent 
dysregulation ***, p < 10^-8 Wilcoxon rank-sum test. 

G. Boxplots of fold-changes of H3K27ac ChIP signal in MeCP2 KO versus wild type across 
deciles of mCA/kb (left) and mCG/kb (right) for ATAC-peaks described in panel E. 
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Spearman rho shown for correlations of each methylation mark with change of H3K27ac 
at enhancers. ***, p < 10^-8 Wilcoxon rank-sum test. 

H. Boxplots of fold-changes of H3K27ac ChIP signal in MeCP2 OE versus wild type across 
deciles of mCA/kb (left) and mCG/kb (right) for ATAC-peaks described in E. Spearman 
rho shown for correlations of each methylation mark with change of H3K27ac at 
enhancers. ***, p < 10^-8. 

I. Quantitative 3C analysis of enhancers found in MeCP2 repressed genes, or control loci. 
Data shown as means +\- SEM. No significant factors were detected in a 2-way ANOVA, 
using enhancer locations and genotype. 

J. Density scatter plot of log10 number of intragenic enhancers versus log10 gene length for 
all genes in the genome. Spearman rho shown for the number of intragenic enhancers and 
gene length for all genes with at least 1 enhancer. ***, p < 10^-8. 

K. Running-average plot of fold-change in intronic RNA expression in the MeCP2 KO or 
MeCP2 OE versus mCA/kb for genes containing enhancers (red line) and length-matched 
sets of genes that do not contain enhancers (gray lines). Mean fold-changes are plotted 
for bins of 201 genes sorted by mCA/kb with a 1-gene step (see methods). 

L. Local correlation analysis correlating mCA/kb (left) and mCG/kb (right) for 1 kb 
windows in and around genes to intronic RNA fold-changes for the gene in the MeCP2 
KO (top) and OE (bottom). Genes at least 75kb in length are analyzed to allow 
visualization of correlations in gene bodies. Genic windows of methylation go from the 
TSS to 75kb downstream. 

M. Heatmap of correlation between fold-change in H3K27ac at intragenic regions and gene 
expression fold-change for MeCP2 KO and MeCP2 OE mice. Values are calculated as 
partial correlation for enhancers or control non-enhancer regions of the same size, 
removing the signal from the other class of element (see methods). Larger correlation for 
enhancers over control regions illustrates the link between enhancer regulation and 
transcriptional control. 

 
Data from cerebral cortex of 7-10 week old animals. For MeCP2 KO: n=5 per genotype for 
H3K27ac, n=6 per genotype for RNA-seq; for MeCP2 OE: n=3 per genotype for H3K27ac, n= 5 
per genotype for RNA-seq; n=2 wild-type for DNA methylation (Stroud et al., 2017). ATAC-seq 
peaks (Cusanovich et al., 2018). Note that some panels in C are repeated from Figure 2.4 to 
allow for comparisons.  
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Figure 2.13. Transcriptomic and epigenomic analysis of DNMT3A Baf53b-cKO. Related to 
Figure 2.5. 

A. Barplots of genome-wide methylation levels in the DNMT3A Baf53b-cKO at different 
CN dinucleotides. Data shown as means +\- SEM. *, p < 0.05, **, p < 10^-3; ***, p < 
10^-8 two-tailed t-test. 

B. Barplots of mCG (left) and mCA (right) levels in the DNMT3A Baf53b-cKO at genes, 
enhancers, and TSSs. Data shown as means +\- SEM. **, p < 10^-3; ***, p < 10^-8 
two-tailed t-test. 

C. Boxplots of mCG (left) and mCA (right) levels in the DNMT3A Baf53b-cKO within 
TADs that contain MeCP2-re- pressed genes, MeCP2-activated genes, or no dysregulated 
genes. ***, p < 10^-8 Wilcoxon rank-sum test. 

D. Heatmap of H3K27ac fold-changes for enhancers detected as significantly dysregulated 
in DNMT3A Baf53b-cKO mice by edgeR analysis (see methods). 

E. Heatmap of enrichment significance for the number of mC sites (mC/kb) within 
enhancers detected as significantly dysregulated in the DNMT3A Baf53b-cKO. 
Significance of enrichment or depletion was calculated by comparing occurrences of 
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mC/kb for each trinucleotide in the 2kb region surrounding enhancers to resampled sets 
of enhancers that are not significantly changed but matched to changed enhancers for 
H3K27ac signal (see methods). 

F. Plot of spearman correlations between H3K27ac fold-change at enhancers in the 
DNMT3A Baf53b-cKO and mC/kb levels in the wild-type brain for 500bp bins in and 
around the enhancers. Plots are centered at the summit of enhancer H3K27ac ChIP peaks. 

 
Data from cerebral cortex of 7-10 week old animals. n=6 per genotype for Bisulfite-seq analysis, 
n=6 per genotype for H3K27ac. 
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Chapter 3: DNMT3A haploinsufficiency results in behavioral 

deficits and global epigenomic dysregulation shared across 

neurodevelopment disorders 

 

This chapter is adapted from a manuscript submitted to Cell Reports and published on Biorxiv: 

 

Christian DL, Wu DY, Martin JR, Moore JR, Liu YR, Clemens AW, Nettles SA, Kirkland NM, 

Hill CA, Wozniak DF, Dougherty JD, Gabel HW. DNMT3A haploinsufficiency results in 

behavioral deficits and global epigenomic dysregulation shared across neurodevelopment 

disorders. bioRxiv 

. 2020;77(2):279-293.e8. doi:10.1101/2020.07.10.195859 

 

D.L.C and D.Y.W. are joint first authors, as each led critical components of the project and 

analysis. D.L.C., J.R.Ma., and Y.R.L. generated and analyzed in vitro biochemical data. Y.R.L. 

and S.A.N. generated primary neuronal culture samples. D.L.C. and J.R.Ma. generated skeletal 

samples. N.M.K. and C.A.H. carried out craniofacial analysis and D.L.C. carried out long bone 

analysis. D.L.C., J.R.Ma., T.P., D.F.W., and J.D.D. carried out behavioral tests and analysis. 

D.L.C., J.R.Ma., J.R.Mo., Y.R.L., and A.W.C. generated genomic data. D.Y.W. developed 

analysis algorithms and pipelines. D.L.C., D.Y.W., J.R.Mo, and A.W.C. completing genomic 
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analyses. H.W.G. conceived the project and H.W.G., D.L.C., and D.Y.W. designed the 

experiments. H.W.G., D.L.C., and D.Y.W. wrote the manuscript and all authors contributed to 

manuscript editing and revisions. 

3.1 Abstract 

Mutations in DNA methyltransferase 3A (DNMT3A) have been detected in autism and            

related disorders, but how these mutations disrupt nervous system function is unknown. Here we              

define the effects of DNMT3A mutations associated with neurodevelopmental disease. We show            

that diverse mutations affect different aspects of protein activity yet lead to shared deficiencies in               

neuronal DNA methylation. Heterozygous DNMT3A knockout mice mimicking DNMT3A         

disruption in disease display growth and behavioral alterations consistent with human           

phenotypes. Strikingly, in these mice we detect global disruption of neuron-enriched non-CG            

DNA methylation, a binding site for the Rett syndrome protein MeCP2. Loss of this methylation               

leads to enhancer and gene dysregulation that overlaps with models of Rett syndrome and              

autism. These findings define effects of DNMT3A haploinsufficiency in the brain and uncover             

disruption of the non-CG methylation pathway as a convergence point across           

neurodevelopmental disorders. 

3.2 Introduction 

Precise regulation of transcription through epigenetic mechanisms is critical for nervous           

system development (Cholewa-Waclaw et al., 2016). Exome sequencing studies have revealed           

mutations in genes encoding epigenetic modifiers of chromatin structure as major underlying            
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causes of neurodevelopmental diseases (NDD), including autism spectrum disorder (ASD)          

(McRae et al., 2017; Sanders et al., 2015; Satterstrom et al., 2019). A challenge emerging from                

these discoveries is to define the cellular functions of the disrupted proteins during normal              

development and to search for shared pathways between these proteins that can potentially be              

targeted for therapeutic development. 

Gene regulation mediated by DNA methylation has emerged as an epigenetic mechanism            

that plays a critical role in nervous system function (Kinde et al., 2015). In addition to the                 

classical methylation of cytosines found at CG dinucleotides (mCG), neurons contain uniquely            

high levels of methyl-cytosine (mC) in a non-CG context, with this mark occurring primarily at               

CA dinucleotides (mCA) (Guo et al., 2014; Lister et al., 2013; Xie et al., 2012). mCA is                 

deposited de novo through the activation of the DNA methyltransferase 3A (DNMT3A) enzyme             

during the early postnatal period (1-6 weeks of age in mice). Levels of mCA increase specifically                

in neurons until the number of methylation sites in the non-CG context is nearly equivalent to the                 

number of mCG sites (Guo et al., 2014; Lister et al., 2013; Xie et al., 2012). A critical function                   

for mCA is to serve as a binding site for a neuron-enriched chromatin protein, Methyl-CpG               

binding Protein 2 (MeCP2) (Chen et al., 2015; Gabel et al., 2015; Guo et al., 2014). MeCP2 was                  

initially defined by its high affinity for mCG, but biochemical and genomic studies indicate that               

it also tightly interacts with mCA to down-regulate transcription of genes with essential             

functions in the brain (Boxer et al., 2019; Gabel et al., 2015; Kinde et al., 2016; Lagger et al.,                   

2017; Lyst and Bird, 2015). Loss of MeCP2 leads to the severe neurological disorder Rett               

syndrome, while duplication causes MeCP2-duplication syndrome, an ASD, suggesting that          

read-out of mCA is critical to nervous system function (Amir et al., 1999; Van Esch et al., 2005). 
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Human exome sequencing studies have recently identified de novo mutations in           

DNMT3A in individuals with ASD (Feliciano et al., 2019; Iossifov et al., 2014; Sanders et al.,                

2015; Satterstrom et al., 2019). Separate studies have also defined heterozygous disruption of             

DNMT3A as the underlying cause of Tatton-Brown Rahman syndrome (TBRS), a heterogeneous            

NDD characterized by intellectual disability, overgrowth, craniofacial abnormalities, anxiety,         

and high penetrance of ASD (Tatton-Brown et al., 2014, 2018). While a small portion of the                

mutations identified in affected individuals are truncations that are predicted to cause complete             

inactivation of the enzyme, a majority of disease-associated alleles are missense mutations,            

raising questions about whether loss-of-function effects are a primary mechanism of disruption            

in DNMT3A disorders (Tatton-Brown et al., 2014, 2018). In addition, the large percentage of              

missense mutations identified in affected individuals raises the need to establish deleterious            

effects of these mutations, helping to definitively associate the mutations with NDD and end the               

“diagnostic odyssey” for affected individuals and care-takers (Sawyer et al., 2016). Finally,            

while heterozygous loss of DNMT3A has been studied in the context of oncogenesis in the               

hematopoietic system (Cole et al., 2017), the effects of partial loss of DNMT3A on nervous               

system function in vivo have not been examined and the consequences of possible methylation              

changes on neuronal gene regulation and behavior are unknown.  

Here we examine the molecular effects of neurodevelopmental disease-associated         

DNMT3A mutations and explore the consequences of heterozygous DNMT3A mutation on the            

neuronal epigenome. Our results indicate that missense mutations across canonical domains of            

DNMT3A disrupt different aspects of protein function, yet mutations in all domains reduce the              

enzyme’s capacity to deposit neuronal mCA. We then use DNMT3A heterozygous deletion mice             
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as a model to assess the impact of shared DNMT3A loss-of-function effects that occur in               

affected individuals with missense and deletion mutations. We detect altered growth and            

behavior in these mice, supporting haploinsufficiency as a driver of pathology in DNMT3A             

disorders. Through integrated epigenomic analysis, we reveal disruption of mCA throughout the            

brain of DNMT3A mutant mice. We show that this loss of mCA leads to disruption of distal                 

regulatory enhancer activity and changes in gene expression that overlap with models of MeCP2              

disorders and other ASDs. These findings define the effects of NDD-associated DNMT3A            

mutations for the first time and implicate the disruption of mCA-mediated epigenomic regulation             

as a convergence site across clinically distinct NDDs. 

3.3 Results 

Functional analysis of disease-associated DNMT3A mutations 

Multiple DNMT3A mutations have been identified in individuals with ASD and TBRS.            

However, the large number of missense mutations identified and the phenotypic heterogeneity of             

individuals with these mutations suggests that alterations of amino acids within different protein             

domains may have distinct consequences that dictate the nature and severity of disease.             

Furthermore, it is not clear if missense mutations identified in patient populations are truly              

disruptive, raising the need for direct assessment of molecular function to ascribe mutations as              

potentially causative. We therefore sought to assess the effects of disease-associated DNMT3A            

mutations on protein expression, cellular localization, and catalytic activity, looking for common            

effects that may be core to the development of NDD. 
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We engineered amino-acid alterations homologous to human disease mutations into a           

FLAG-tagged DNMT3A protein expression vector and assessed multiple mutations found within           

each functional domain of the protein (Figure 3.1A). These analyses included mutations in the              

chromatin interacting proline-tryptophan-tryptophan-proline (PWWP) domain, the      

auto-inhibitory Histone H3 lysine 4 interacting ATRX-DNMT3-DNMT3L (ADD) domain, and          

the well-defined methyltransferase catalytic domain (Gowher and Jeltsch, 2018). Transfection          

into heterologous cells facilitated rapid assessment of protein expression by western blot, cellular             

localization by immunocytochemistry, and catalytic activity by using an in vitro           

methyltransferase assay. Mutations in the PWWP domain resulted in a reduction in DNMT3A             

protein expression and loss of nuclear localization compared to wild-type controls (Figure            

3.1B-D, Figure 3.8A-C). When expressed at equal levels to that of wild-type protein however,              

these mutations exhibited normal catalytic activity in the in vitro methyltransferase analysis            

(Figure 3.1E,F). In contrast, mutations found in the catalytic methyltransferase domain of            

DNMT3A showed wild-type expression and localization but displayed deficits in catalytic           

activity in vitro (Figure 3.1B-F, Figure 3.8A-C). Mutations in the ADD domain of DNMT3A              

displayed normal protein localization and expression levels and exhibited equal or higher            

methylation activity compared to wild-type protein in vitro (Figure 3.1B-F, Figure 3.8A-C). 

To further evaluate the functional effects of disease-associated DNMT3A mutations in           

the context of endogenous chromatin, we tested the capacity of DNMT3A mutants to establish              

DNA methylation across the genome in mouse cortical neurons. For this analysis, we focused on               

the DNMT3A-dependent global build-up of mCA in postmitotic neurons (Gabel et al., 2015;             

Guo et al., 2014; Lister et al., 2013). Cultured neurons isolated from the cerebral cortex at                
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embryonic day 14.5 accumulate mCA in vitro and this build-up can be blocked by              

lentiviral-mediated delivery of Cre recombinase to DNMT3Aflx/flx cells at 3 days in vitro (DIV)              

(Figure 3.2A, Figure 3.8D,E). We co-transduced Cre with wild-type or mutant DNMT3A            

lentivirus at equal levels (Figure 3.8F) to test the capacity of each protein to rescue deposition of                 

DNA methylation. Testing of mutations across the major domains of DNMT3A detected deficits             

in mCA accumulation for all disease-associated mutations tested (Figure 3.2B). In this analysis,             

mutations in the ADD domain that exhibited robust catalytic activity in vitro displayed             

moderate-to-severe deficits in mCA deposition in neurons. The ADD domain has been            

implicated in both histone binding and auto-inhibition of the protein (Guo et al., 2015), thus               

results in this neuronal assay may indicate that loss of ADD function blocks the capacity of the                 

enzyme to engage with chromatin and promote DNMT3A methylation activity in cells. Notably,             

disease mutations that may be associated with more severe patient phenotypes (intellectual            

disability) show a near-complete loss of mCA rescue, while mutations associated with ASD but              

not ID (such as V665L) have a more moderate depletion of mCA. This suggests a possible                

gradient of disease phenotypes that may be driven by differential mutation severity. Unlike             

mCA, global mCG levels show no significant differences in this in vitro system, likely due to the                 

redundant function of the DNMT1 methyltransferase in maintaining methylation of CG sites            

(Figure 3.8G,H). Together our results indicate that although NDD-associated mutations in           

DNMT3A affect different protein domains and alter distinct aspects of protein function (e.g.             

localization, chromatin interaction, catalysis), these mutations share a common outcome of           

reduced enzymatic activity on neuronal DNA, with many mutations resulting in functionally null             

proteins. 
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In vivo growth and behavioral effects of heterozygous DNMT3A disruption 

Our in vitro findings that multiple NDD-associated missense mutations in DNMT3A           

result in complete or near-complete loss of function, coupled with the identification of deletion              

and nonsense mutations in TBRS patients, suggest that 50% reduction of DNMT3A activity             

occurs in a substantial fraction of affected individuals. Thus, studying the effects of heterozygous              

inactivation of DNMT3A in vivo is an important first step in understanding the potential              

epigenomic and systems level consequences of DNMT3A disruption in NDD. Previous studies            

have demonstrated severe developmental deficits, disruptions in movement, and perinatal          

lethality associated with constitutive complete loss of DNMT3A (homozygous null mutation)           

(Okano et al., 1999) and with removal of DNMT3A from the brain (conditional DNMT3A              

deletion) (Nguyen et al., 2007). However, the relevance of heterozygous mutation of DNMT3A             

to neurodevelopmental disease has only recently been uncovered, and the growth and behavioral             

effects of partial DNMT3A inactivation have not been systematically assessed. We therefore            

carried out growth, behavioral, and molecular analyses of mice carrying a constitutive            

heterozygous deletion of exon 19 of Dnmt3a (see methods) (Kaneda et al., 2004). We find that                

this mutation leads to 50% reduction of RNA and protein expression, allowing us to study the in                 

vivo effects of heterozygous null mutation of DNMT3A (referred to as DNMT3AKO/+) (Figure             

3.9A-C). 

We first examined phenotypes relevant to overgrowth in individuals with heterozygous           

DNMT3A mutations (Tatton-Brown et al., 2018), including enlarged body size and obesity            

(body weight), tall stature (long-bone length), and macrocephaly (skull dimensions).          
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DNMT3AKO/+ mice showed similar body weight to controls in the early postnatal period but were               

significantly heavier than controls as mature adults (Figure 3.3A). This phenotype mimics a             

maturity-associated trend toward increasing body weight observed in TBRS patients          

(Tatton-Brown et al., 2018). Measurements of leg bone length, a major determinant of height in               

humans (Duyar and Pelin, 2003), indicated a significant increase in total length of long leg               

bones, with significantly increased tibia length in DNMT3AKO/+ mice and a trend towards longer              

femur length (Figure 3.3B, Figure 3.10A-D). Morphometric analyses of the cranium and            

mandible indicated very subtle differences between DNMT3AKO/+ mice and their wild-type           

littermates (Figure 3.10E-G). One linear distance spanning the rostrocaudal length of the            

interparietal bone is larger in DNMT3AKO/+ mice relative to wild-type littermates. Two linear             

distances in the facial region were significantly larger in wild-type mice, while all other              

comparisons were not significantly different (Figure 3.10E). This result suggests very slight            

disruptions in growth of the facial region in DNMT3A KO/+ mice. Together these findings uncover               

effects on long bone length that mirror aspects of the human disorder, while skull development in                

DNMT3AKO/+ mice shows more limited effects. Additionally, enlarged body mass in these mice             

appears to mimic overgrowth and obesity detected in individuals with TBRS (Tatton-Brown et             

al., 2014, 2018). 

To examine neurological and behavioral phenotypes in DNMT3AKO/+ mice, we first           

assessed basic measures of sensation and motor performance such as balance (ledge test,             

platform test), grip strength (inverted screen test), motor coordination (walking initiation,           

rotarod), and sensorimotor gating (pre-pulse inhibition). DNMT3AKO/+ mice were not          

significantly different in these assays (Figure 3.11A-G), indicating that heterozygous loss of            
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DNMT3A does not grossly disrupt sensorimotor function. This allowed us to accurately assess             

more complex aspects of behavior and cognition.  

We next carried out a panel of assays with relevance to neuropathology observed in              

humans with DNMT3A mutations, including anxiety, autism, and intellectual disability.          

DNMT3AKO/+ mice displayed reduced exploratory behavior during open field testing, including           

reduced distance traveled and rearing (Figure 3.3C,D). DNMT3AKO/+ mice also displayed           

anxiety-like behavior in this assay, as they spent less time in the center of the open field arena                  

(Figure 3.3E). In tests of climbing behavior, DNMT3AKO/+ mice showed longer latency to climb              

to the bottom of a pole and to the top of mesh screens (Figure 3.11H-J), suggesting that                 

DNMT3AKO/+ mice display differences in volitional movement. To further assess anxiety-like           

behavior, we tested mice in the elevated plus maze and observed that DNMT3AKO/+ mice spent               

less time exploring the open arms of the maze with no change in percent entries made into all                  

arms (Figure 3.3F, Figure 3.11K). Overall, these results demonstrate that the DNMT3AKO/+ mice             

display changes in exploratory behavior, suggesting altered emotionality and increased          

anxiety-like behaviors.  

Intellectual disability is a highly penetrant phenotype observed in patients with DNMT3A            

mutations, so we assessed learning and memory in the DNMT3AKO/+ mice using fear             

conditioning and Morris water maze tests. In the foot-shock induced fear conditioning task,             

DNMT3AKO/+ mutants showed heightened freezing response during training, as well as           

contextual and auditory recall phases of conditioned fear testing (Figure 3.3G-I, Figure            

3.11L,M). Mutant mice also showed delayed extinction of freezing behavior in response to the              

auditory cue alone (Figure 3.11M). These alterations in responses do not arise from altered              
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sensation of pain from the shock (Figure 3.11N), and therefore suggest altered emotionality or              

cognition in the mutant mice. Assessment of spatial and contextual memory by Morris water              

maze testing demonstrated that DNMT3AKO/+ mice were slower to learn to find a visible platform               

and did not learn the location of the hidden platform over time to the level of wild-type controls                  

(Figure 3.11O,P), with no differences in swimming speed (Figure 3.11Q,R). There were no             

significant effects on distance traveled in target zone or platform crossings in the probe trial,               

though DNMT3AKO/+ mice trended towards fewer platform crossings (Figure 3.11S,T). These           

findings suggest that DNMT3AKO/+ mutants do not show severe deficits in learning and memory              

but do display differences in task performance that further suggest altered emotionality or             

cognition in these mice.  

DNMT3A has been identified as a high confidence autism gene (Sanders et al., 2015) and               

there is a high rate of autism diagnoses in patients with TBRS (Tatton-Brown et al., 2018). We                 

therefore sought to characterize common phenotypes examined in mouse models of autism            

(marble burying, three chamber social approach, ultrasonic vocalizations). We detected a           

significant reduction in marble burying activity for DNMT3AKO/+ mice, indicating alterations in            

repetitive digging behavior (Figure 3.3J, Figure 3.11U). Evaluation of social interaction           

behaviors in the three-chamber social approach assay for adult mice (Yang et al., 2011) revealed               

that DNMT3AKO/+ mice spend reduced time investigating both mice and objects. They also             

display reduced overall activity, with no change in preference index for sociability or novelty              

(Figure 3.12A-D) (Nygaard et al., 2019). Given that carrying out these tests under normal              

lighting and experimental conditions may induce anxiety responses in addition to probing            

sociability, we considered that the reduced exploration seen in DNMT3AKO/+ may reflect the             
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anxiety-like phenotypes of these animals rather than changes in sociability. Indeed, when we             

carried out three-chamber analysis under low lighting conditions to mitigate anxiety in the mice,              

we detected similar exploratory behavior, as well as similar sociability and social novelty             

seeking responses in wild-type and DNMT3AKO/+ mice (Figure 3.12E-H) (Manno et al., 2020).             

To explore changes in pro-communication behaviors, we measured maternal-isolation induced          

ultrasonic vocalizations (Barnes et al., 2017). We detected a reduction in the number of calls in                

DNMT3AKO/+ mice at postnatal day five, suggesting deficits in early pro-social behaviors or             

developmental delay in the normal acquisition of this behavior (Figure 3.3K). Together these             

results indicate alterations in some behaviors commonly assessed in mouse models of autism             

(Chang et al., 2017; Kazdoba et al., 2014; Mei et al., 2016; Simola and Granon, 2019; Takumi et                  

al., 2019), with our findings suggesting a reduction in activity and exploration, as well as               

changes in communication behaviors.  

Overall, our physiological and behavioral analyses demonstrate that heterozygous         

deletion of DNMT3A results in growth and behavior changes in mice with relevance to the               

overgrowth, anxiety, communication, and memory-associated phenotypes observed in patients         

with DNMT3A mutations. These data support a model in which DNMT3A haploinsufficiency            

contributes to altered growth and behavioral circuits to drive phenotypes in NDD. 

 

Global disruption of DNA methylation in the DNMT3AKO/+ brain 

We next investigated the epigenomic defects that may underlie the altered behaviors            

observed in DNMT3AKO/+ mice. We first used sparse whole-genome bisulfite sequencing to            

efficiently survey effects on global DNA methylation levels for multiple brain regions and liver              

93 



tissue isolated from wild type and DNMT3AKO/+ mice. This analysis detected limited reductions             

in genome-wide mCG levels in the DNMT3AKO/+ brain that were not apparent in non-neural              

tissue (liver, Figure 3.4A). In contrast, mCA levels were reduced by 30-50% across all brain               

regions examined in DNMT3AKO/+ mice (Figure 3.4B). Analysis of DNA methylation across            

postnatal development in the cerebral cortex, a brain region with high levels of mCA at 8 weeks,                 

suggested that deficits in mCA appear during initial accumulation of this methyl mark at 1-6               

weeks (Figure 3.4B). Thus, global mCA levels in the brain appear to be highly sensitive to                

heterozygous DNMT3A disruption, while overall global mCG levels are largely maintained. 

DNA methylation at specific genomic elements, including promoters, enhancers, and          

gene bodies is thought to play an important role in regulating transcription. Alterations in              

methylation at these regions can impact gene expression to affect the development and function              

of the brain (Clemens et al., 2019; Nord and West, 2019; Stroud et al., 2017). We therefore                 

assessed changes in methylation at base-pair resolution by high-depth whole-genome bisulfite           

sequencing to identify potential changes in mCA and mCG at these important regulatory sites.              

For this analysis we focused on the cerebral cortex, as this region is enriched for mCA (Figure                 

3.4B) and disrupted in ASD and MeCP2 disorders (Clemens et al., 2019; Satterstrom et al., 2019;                

Sceniak et al., 2016; de la Torre-Ubieta et al., 2016). High-resolution analysis of mCG confirmed               

the extremely subtle reduction in mCG across all classes of genomic elements (Figure 3.5A-D).              

We considered however, that CG dinucleotides in specific sites in the neuronal genome may be               

more sensitive to a partial reduction in DNMT3A activity. For example, in the hematopoietic              

system, heterozygous disruption of DNMT3A leads to reductions in DNA methylation in            

genomic regions that can be identified as sensitive to complete loss of DNMT3A (Cole et al.,                
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2017). We therefore evaluated CG-differentially methylated regions (CG-DMRs) previously         

identified as becoming highly methylated in the adult cortex (Figure 3.13A) (Lister et al., 2013).               

Because DNMT3A is the only de novo methyltransferase expressed in the postnatal brain, we              

hypothesized that adult-specific CG-DMRs might be sensitive to a reduction in enzyme activity.             

Indeed, we found that these sites build up mCG during postnatal development and do not become                

methylated in a brain-specific DNMT3A conditional knockout mouse (DNMT3A Nestin-cKO)          

(Stroud et al., 2017) (Figure 3.13B). Analysis of these adult-specific CG-DMRs in the             

DNMT3AKO/+ model indicated that these sites are particularly sensitive to partial inactivation of             

DNMT3A (Figure 3.5A,C,D).  

Because a substantial percentage of mCG in neurons can occur in an oxidized,             

hydroxymethyl form (hmCG), we performed oxidative bisulfite sequencing analysis of DNA           

from the cortex. This analysis revealed no clear evidence of widespread differential effects on              

the oxidized or unoxidized forms of mCG across classes of genomic regions in the DNMT3AKO/+               

(Figure 3.13C), suggesting that hmCG is largely preserved in the DNMT3AKO/+ brain. However,             

future experiments will be required to uncover if there are more subtle site-specific changes in               

hmCG. 

To further search for local sites of altered mCG in the DNMT3AKO/+, we performed de               

novo calling of CG-differentially methylated regions using the BSmooth algorithm (Hansen et            

al., 2012). We identified 6164 hypo- and 378 hyper-CG-DMRs across the genome that met high               

stringency filters for size and reproducibility (Figure 3.5A-C,E, Figure 3.13D, see methods). The             

hypo-DMRs significantly overlap with the previously identified adult-specific CG-DMRs (Lister          

et al., 2013) (Figure 3.5F, Figure 3.13E), further supporting the idea that DNMT3A is              
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haploinsufficient for postnatal mCG deposition at these sites. Examination of the genomic            

distribution of all DNMT3AKO/+ CG-DMRs revealed significant overlap of hypo-DMRs with           

putative enhancer regions, gene bodies, and promoters (Figure 3.5A-C,F, Figure 3.13E). DMRs            

were also highly enriched for overlap with CpG island shores, regions disrupted in studies of               

DNMT3A mutation outside of the nervous system (Cole et al., 2017; Spencer et al., 2017)               

(Figure 3.5C, Figure 3.13E). Together these findings indicate that a small subset of mCG sites               

are particularly sensitive to heterozygous loss of DNMT3A and that localization of these             

CG-DMRs to regulatory elements suggests that these methylation changes could impact gene            

expression.  

We next examined the profile of mCA at genomic elements of different scales that have               

relevance to gene regulation. In contrast to the limited mCG changes in the DNMT3AKO/+,              

analysis of mCA levels detected consistent 30-50% reductions at nearly all genomic regions             

examined (Figure 3.5G). This was true of gene bodies, promoters, and CpG island shores. CpG               

islands show very low mCA levels in wild-type cortex and displayed less reduction of mCA,               

possibly due to floor effects in bisulfite-sequencing (see methods). Comparing the mCA changes             

within each class of genomic elements as a function of wild-type mCA levels suggested that               

consistent reductions occurred across the genome, independent of the normal levels of mCA             

(Figure 3.13F). This result suggests that changes in mCA levels in the DNMT3AKO/+ do not               

preferentially impact specific classes of genomic elements, nor are they more severe in some              

regions based on the level of mCA normally deposited. 

Recent analysis has demonstrated that topologically-associating domains (TADs) of         

chromatin folding can impact gene regulation by influencing DNMT3A binding and subsequent            
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mCA deposition (Boxer et al., 2019; Clemens et al., 2019; Nothjunge et al., 2017). The average                

level of mCA within TADs is associated with the level of mCA at enhancers within TADs, and                 

high-mCA enhancers found in high-mCA TADs are particularly robust targets of repression by             

MeCP2 (Clemens et al., 2019). We therefore specifically assessed mCA levels at TADs and              

enhancers genome-wide. This analysis detected reductions in TAD mCA levels that were similar             

to global reductions in mCA at other genomic elements (Figure 3.5G). Enhancers also showed              

this pervasive depletion of mCA (Figure 3.5G). Thus, widespread loss of mCA for TADs, and               

the enhancer elements contained within them, occurs in DNMT3AKO/+ mice and has the potential              

to impact epigenetic control of regulatory elements by MeCP2.  

 

Enhancer dysregulation results from methylation deficits in DNMT3AKO/+ mice 

We next examined how disruption of DNA methylation can affect epigenetic regulation            

in DNMT3AKO/+ neurons to alter gene expression and disrupt nervous system function. Recent             

analyses indicate that mCA serves as a binding site for MeCP2 to mediate neuron-specific gene               

regulation, in part by controlling the activity of distal regulatory enhancer elements (Boxer et al.,               

2019; Clemens et al., 2019). Loss of MeCP2 in mice leads to genome-wide upregulation of the                

activating mark Histone H3 lysine 27 acetylation (H3K27ac) at enhancers that contain high             

levels of mCA and mCG sites, while overexpression of MeCP2 leads to reciprocal             

downregulation of highly methylated sites. Alterations in enhancer activity in MeCP2 mutants            

are linked to dysregulation of genes that can then drive nervous system dysfunction (Clemens et               

al., 2019). These findings suggest that reduced CA methylation in the DNMT3AKO/+ would             

remove binding sites for MeCP2 within enhancers, which could then result in dysregulation of              
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enhancer activity that partially phenocopies the effects we have observed in MeCP2 mutant             

mice.  

To investigate this possibility directly, we quantified the change in DNMT3AKO/+ mCA            

binding sites for enhancers significantly repressed by MeCP2 (Clemens et al., 2019). These             

enhancers contain a large number of mCA sites due to high mCA/CA levels and an enrichment                

of CA dinucleotides within these sequences. As a result, we found that the global 30-50%               

reduction of mCA in the DNMT3AKO/+ leads to a larger loss in the total number of mCA sites at                   

MeCP2-repressed enhancers than at other enhancers genome-wide (Figure 6A,B). Thus          

MeCP2-repressed enhancers are particularly susceptible to mCA binding site loss from           

heterozygous mutation of DNMT3A. 

To determine if the reduction of mCA sites at MeCP2-repressed enhancers affects their             

activity, we assessed changes in enhancer activation level by H3K27ac ChIP-seq analysis of the              

DNMT3AKO/+ and wild-type cerebral cortex. This analysis revealed significant changes in           

acetylation at MeCP2-repressed enhancers (Figure 3.6A,C). Consistent with these effects arising           

from 30-50% loss of the mCA that normally builds up post-mitotically at enhancers, we detect               

changes that are concordant with, but smaller than, effects on enhancers previously observed             

upon complete loss of post-mitotic mCA in the neuron-specific DNMT3A conditional knockout            

mouse (DNMT3A Baf53b-cKO) (Clemens et al., 2019) (Figure 3.6C). We also find that             

enhancers within highly methylated TADs show significantly higher increases in acetylation           

compared with enhancers in other TADs (Figure 3.13G). This finding further supports a model in               

which high mCA levels in TADs leads to repression of enhancers within these TADs by mCA                

and MeCP2.  
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Although significantly dysregulated enhancers can be detected in MeCP2 mutants, broad           

sub-significance-threshold effects also occur genome-wide upon MeCP2 mutation, with         

enhancers across the genome undergoing dysregulation that is proportional to the number of mC              

binding sites at these regions (Figure 3.6D) (Clemens et al., 2019). Analysis of H3K27ac              

changes at enhancers based on the normal density of mCA sites in these sequences genome-wide               

revealed broad mCA-associated derepression of enhancers in DNMT3AKO/+ mouse cortex that is            

similar to, but smaller in magnitude than, the effects observed in DNMT3A Baf53b-cKO and              

MeCP2 knockout mice (MeCP2 KO). These effects are also reciprocal to effects observed in              

MeCP2 overexpression mice (MeCP2 OE). Consistent with the limited disruption of mCG            

genome wide in the DNMT3AKO/+ mice, there was only a limited association between changes in               

enhancer activity and the level of mCG. This limited association contrasts with MeCP2 mutants,              

where loss of protein binding at both mCG and mCA sites leads to enhancer dysregulation that is                 

associated with both mCA and mCG (Clemens et al., 2019) (Figure 3.6D).  

Though there is limited evidence that a global change in mCG impacts enhancer activity              

in the DNMT3AKO/+ cortex, we considered the potential for site-specific changes in mCG             

(DMRs) to have functional effects on enhancers. We therefore assessed changes in acetylation at              

enhancers containing CG-DMRs in the DNMT3AKO/+ cortex. Indeed, enhancers containing          

hypo-CG-DMRs display subtle, but significant increases in acetylation compared to enhancers           

without a DMR (Figure 3.13H). The results thus provide evidence that site specific mCG              

changes in the DNMT3AKO/+ may result in functional consequences.  

Together, our epigenomic analyses demonstrate that loss of half of the normal mCA sites              

in the DNMT3AKO/+ cortex results in enhancer dysregulation that overlaps with MeCP2 mutant             
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mice. On a more limited scale, loss of CG methylation at specific enhancers can also impact                

enhancer activity. These findings therefore uncover a role for shared neuronal chromatin            

pathology between DNMT3A and MeCP2 disorders. 

 

Overlapping transcriptional pathology between DNMT3AKO/+, MeCP2 disorders, and ASD 

The epigenetic alterations we observe in DNMT3AKO/+ cerebral cortex can have direct            

consequences on gene expression to drive neurological dysfunction in mice. Furthermore, the            

overlapping effects on enhancers that we observe between DNMT3AKO/+ and MeCP2 mutant            

mice suggest that there may be shared transcriptional pathology occurring upon loss of mCA in               

DNMT3A disorders, as well as through disruption of MeCP2 in Rett syndrome and             

MeCP2-duplication syndrome. We therefore assessed changes in gene expression in          

DNMT3AKO/+ mice, interrogating the extent to which these effects overlap with those observed             

upon complete disruption of mCA in the DNMT3A Baf53b-cKO and those observed in MeCP2              

mutant mice. RNA-seq of DNMT3AKO/+ cerebral cortex identified subtle changes in gene            

expression that are consistent in magnitude with effects observed in other heterozygous NDD             

models (Fazel Darbandi et al., 2018; Gompers et al., 2017; Katayama et al., 2016) (Figure               

3.14A). Additional analysis of noncoding RNA showed no change across major classes of             

noncoding RNAs in the DNMT3AKO/+ cortex (Figure 3.14B).  

Gene Ontology analysis of gene expression changes detected terms associated with            

neurodevelopment processes, such as axonal guidance and recognition, that occur just before or             

during the period when DNMT3A deposits mCA in the brain (Figure 3.14C). This is consistent               

with the proposed role of DNMT3A in regulating transcriptional programs as neurons mature.             
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Additionally, we see significantly reduced expression of relevant ASD genes, Shank2 and            

Shank3, that suggest dysfunction at the synaptic level (Supplementary Table 3) (Guilmatre,            

Huguet, Delorme, and Bourgeron, 2014). Our transcriptomic results suggest that genes critical to             

the formation of neuronal circuits during development are affected upon heterozygous disruption            

of DNMT3A, with disrupted development resulting in behavioral alterations we observe.  

To determine the extent to which transcriptional dysregulation upon disruption of           

DNMT3A and MeCP2 result in shared effects, we examined the degree to which genes detected               

as significantly dysregulated in each mutant line overlap with the changes in the DNMT3AKO/+              

cortex. Indeed, the significantly dysregulated genes in the DNMT3AKO/+ overlapped extensively           

with genes identified as significantly dysregulated in DNMT3A Baf53b-cKO and MeCP2 mutant            

mice (Figure 3.6E) (Clemens et al., 2019). Notably, shared gene expression effects between these              

mouse models may have important functional impacts. For example, all three deletion models             

show upregulation of Shroom3, which is associated with developmental defects when mutated in             

humans (Das et al., 2014; Deshwar et al., 2020), and latrophilin-2, a post-synaptic adhesion              

molecule with roles in synapse targeting and assembly in multiple brain regions (Anderson et al.,               

2017; Zhang et al., 2020). The shared dysregulation of genes like these in DNMT3A and MeCP2                

disorders, may contribute to synaptic dysfunction and disease pathology. 

While a limited gene set is detected as significantly dysregulated in the DNMT3AKO/+, we              

considered if genome-wide alterations in enhancer activity could lead to widespread, subtle            

dysregulation of gene expression that is below the significance threshold of detection for             

individual genes. In this way, the transcriptional pathology in the DNMT3AKO/+ brain would             

overlap with similar subthreshold genome-wide effects observed upon loss of neuronal mCA            

101 



(DNMT3A Baf53b-cKO) and in models of Rett syndrome (MeCP2 KO) and ASD (MeCP2 OE)              

(Clemens et al., 2019; Gabel et al., 2015). Importantly, evidence from MeCP2 mutants suggests              

that disease pathology arises from thousands of small changes in gene expression rather than              

drastic changes in a few significant genes (Chen et al., 2015; Ip et al., 2018; Kinde et al., 2016).                   

As such, we may expect that disruption of the neuronal methylome in DNMT3AKO/+ may also               

lead to numerous changes in gene expression that escape statistical significance yet still             

contribute to disease pathology. To more comprehensively assess the degree to which subtle,             

transcriptome-wide changes in the DNMT3AKO/+ phenocopy these MeCP2 mutant and DNMT3A           

Baf53b-cKO models, we performed Generally Applicable Gene-set Enrichment (GAGE)         

analysis (Luo et al., 2009) of genes detected as dysregulated. GAGE analysis revealed highly              

significant, concordant changes in gene expression in the DNMT3AKO/+ for genes identified as             

dysregulated upon loss of mCA in the DNMT3A Baf53b-cKO and in MeCP2 mutants (Figure              

3.6F). 

To further explore a model in which loss of mCA and enhancer dysregulation drives gene               

expression changes in the DNMT3AKO/+, we examined enhancers associated with significantly           

upregulated genes. This analysis revealed that these enhancers are enriched for mCA, show a              

pronounced loss of mCA sites in the DNMT3A mutant, and display significant increases in              

enhancer acetylation compared to all other enhancers (Figure 3.14D,E). Analysis of genes            

containing enhancers that harbor a hypo-CG-DMR also detected significant upregulation in gene            

expression compared to all other genes (Figure 3.14F), suggesting that local changes in mCG              

may also contribute to transcriptomic changes in DNMT3AKO/+ mice. 
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Having detected overlap in transcriptomic pathology between models of DNMT3A and           

MeCP2 disorders, we explored if shared gene expression signatures in the DNMT3AKO/+ mice             

extend to models of disorders that do not have established mechanistic links to DNMT3A              

disorders. We therefore tested if DNMT3AKO/+ mice show significant alterations in gene sets             

identified as dysregulated in other mouse models of NDD and in human gene sets implicated as                

altered in the autistic brain. GAGE analysis across multiple datasets detected highly significant             

dysregulation of gene sets identified in CHD8 and PTEN mouse models of overgrowth and ASD               

(Gompers et al., 2017; Katayama et al., 2016; Tilot et al., 2016) as well as the SETD5 model of                   

NDD (Sessa et al., 2019) (Figure 3.7A). These findings support a role for overlapping gene               

dysregulation underlying common symptomology found in affected individuals carrying         

mutations in distinct epigenomic regulatory genes. We further extended our analysis to human             

gene sets dysregulated in ASD postmortem brains (Gandal et al., 2018; Voineagu et al., 2011).               

This analysis detected significant changes in the DNMT3AKO/+ cortex (Figure 3.7B), and            

indicated upregulation of candidate genes linked to ASD from human genetics studies            

(Abrahams et al., 2013; Banerjee-Basu and Packer, 2010) (Figure 3.7B). In addition, analysis of              

co-expression modules of human brain development (Parikshak et al., 2013) showed overlap            

with several neurodevelopmental modules including those that increase during early cortical           

development and are enriched for ASD risk genes (M13, M16, and M17) (Figure 3.14G).              

Modules involved in regulation of nucleic acids and gene regulation that are expressed early in               

development and decrease over time are also increased upon heterozygous loss of DNMT3A             

(M2 and M3) (Figure 3.14G). These results indicate that important sets of genes with opposing               

developmental trajectories and function are altered upon loss of DNMT3A regulation.           
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Resampling analysis indicates that significant dysregulation of these mouse and human gene sets             

is not driven by enriched expression of these genes in the cortex (Figure 3.14H). Together these                

findings suggest that the DNMT3AKO/+ mouse shares overlapping transcriptional pathology with           

gene expression changes underlying ASD. 

3.4 Discussion 

Our functional analysis of NDD-associated DNMT3A mutations together with our in vivo            

studies provide an initial working model of molecular etiology in DNMT3A disorders. Diverse             

de novo missense mutations that arise in affected individuals disrupt enzyme function by             

disabling the capacity of the enzyme to localize to chromatin in the nucleus, altering the               

ADD-regulatory domain, or disrupting the activity of the methyltransferase domain.          

Loss-of-function effects resulting from these missense mutations, or early truncations and gene            

deletions in other individuals, lead to insufficient DNMT3A activity. The limited DNMT3A            

activity in turn causes deficits in the deposition of mCG at specific sites during development, as                

well as a massive deficit in postnatal mCA accumulation throughout the brain. These changes in               

DNA methylation lead to alterations in epigenomic regulation, including subtle but widespread            

disruption of mCA-MeCP2-mediated enhancer regulation in adult neurons, resulting in gene           

expression changes that can contribute to deficits in nervous system function. 

Our studies of DNMT3A mutations not only provide insight into the molecular etiology             

of DNMT3A disorders, but also serve as a model for understanding the functional effects of               

diverse de novo mutations underlying neurodevelopmental disorders. Exome sequencing studies          

have identified a large and growing list of mutations in genes encoding epigenetic regulators in               
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individuals with NDD. Many of these are missense mutations and occur as heterozygous             

disruptions (McRae et al., 2017; Satterstrom et al., 2019), leaving it unclear if simple              

loss-of-function effects are sufficient to drive pathology through haploinsufficiency, or if more            

complex effects play a role when individual amino acids are altered. In addition, while              

identification of multiple mutations in a gene can implicate disruption of the gene as causative               

for NDD, it remains possible that a subset of the mutations identified in affected individuals,               

particularly missense mutations, are not in fact deleterious or causative. Functional testing of             

these variants is therefore necessary to determine whether they underlie disease. Here, our             

analysis of DNMT3A mutations in multiple functional assays has uncovered diverse mechanisms            

by which the protein can be disrupted while pointing to a shared loss of function in the                 

deposition of neuronal DNA methylation. Notably, it is only by assessing multiple aspects of              

protein function (i.e. expression, localization, activity, and cellular mCA levels) that we can             

detect deficits for each mutation tested. For example, mutation of the ADD domain only disrupts               

deposition of mCA in cells, possibly due to loss of regulation that can only be assessed in the                  

endogenous chromatin context. Together our findings establish deleterious effects of diverse           

DNMT3A mutations and underscore the importance of multidimensional analysis of de novo            

mutations to fully assess their role in NDD. 

Our in vivo analyses show that heterozygous deletion of DNMT3A mirrors multiple key             

features of DNMT3A disorders, including tall stature (increased long bone length), increased            

body weight, and behavioral alterations. Detection of robust anxiety-like phenotypes in multiple            

assays, deficits in pro-social communication, and alterations in repetitive behaviors align with            

observed human phenotypes. In contrast, lack of severe deficits in learning and memory assays              
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in our mouse model may indicate that some regions and systems in humans are more susceptible                

to DNMT3A disruption than in mice. However, we do detect subtle alterations in behavior in               

these assays and the lack of strong deficits may also reflect insensitivity of the methods used in                 

mice to measure specific aspects of disrupted cognition.  

In all, our in vivo analysis indicates that heterozygous deletion of DNMT3A results in              

effects which can guide future studies of molecular, cellular, and organismal dysfunction caused             

by mutation of DNMT3A. We employed the DNMT3AKO/+ mouse experimental system to assess             

how heterozygous DNMT3A disruption impacts epigenetic regulation in the brain. Our analysis            

of DNA methylation in tissues from DNMT3AKO/+ mice detected subtle changes in genome-wide             

mCG levels across brain regions, with no global mCG effects in non-neural tissue. Analysis of               

local changes in mCG in the brain detected evidence of disrupted CG methylation at sites               

methylated during postnatal development (i.e. adult hyper CG-DMRs) and at regulatory elements            

including enhancers. These effects have the potential to disrupt gene expression and contribute to              

neurological alterations in these mice. The limited nature of mCG effects is likely due to the                

redundant function of the other DNA methyltransferases. The maintenance methyltransferase          

DNMT1 has the capacity to preserve existing mCG patterns during cell divisions (Jeltsch et al.,               

2018). In addition, the de novo methyltransferase DNMT3B is expressed with DNMT3A in             

many tissues during early development and could provide critical redundancy for mCG            

patterning (Okano et al., 1999). Nonetheless, some site-specific changes in mCG are also likely              

to occur in early development and in non-neural tissues. For example, constitutive heterozygous             

deletion of DNMT3A has been shown to disrupt mCG patterns in the blood and alter               
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hematopoietic lineages (Cole et al., 2017). These changes in mCG can contribute to changes in               

growth and other phenotypes observed in mice and humans. 

In contrast to mCG, we detect a global reduction in mCA to approximately 30-50% of               

wild-type levels in DNMT3AKO/+ cortex, striatum, cerebellum, and hippocampus. These results           

generalize and extend findings in the hypothalamus (Sendžikaitė et al., 2019), demonstrating the             

susceptibility of broad neuronal types and circuits to heterozygous loss of DNMT3A. The             

susceptibility of mCA to heterozygous loss of DNMT3A is likely due to several related factors.               

For example, DNMT3B is not expressed in postnatal neurons (Lister et al., 2013), and DNMT1               

is not capable of depositing mCA (Jeltsch et al., 2018), making all mCA build-up in neurons                

dependent on DNMT3A. In addition, the enzyme has slow kinetics for activity on CA sites               

(Zhang et al., 2018) and deposition of mCA genome-wide by DNMT3A must take place in a                

restricted time window (1-6 weeks) when the enzyme is highly expressed and active in neurons               

(Clemens et al., 2019; Lister et al., 2013; Stroud et al., 2017). These constraints may make                

enzyme levels limiting for mCA accumulation in neurons, providing an explanation for why             

global mCA in the brain is sensitive to DNMT3A gene dosage. Notably, our findings suggest               

that manipulations that activate the remaining DNMT3A, or prolong its high early postnatal             

expression, might rescue deficits in mCA deposition. Conversely, duplication of the DNMT3A            

gene could result in too much deposition of mCA and possibly cause significant neural              

dysfunction akin to those effects seen in MeCP2 duplication disorder. Future studies can assess              

the feasibility of rescue approaches and explore if DNMT3A duplication alters brain function. 

Our analysis of chromatin changes downstream of altered DNA methylation has           

uncovered a striking point of shared molecular disruption across models of DNMT3A disorders,             

107 



Rett syndrome, and MeCP2 duplication syndrome. While the clinical profile and           

pathophysiology of DNMT3A disorders is clearly distinct from MeCP2 disorders, we have            

shown here that loss of approximately a quarter of MeCP2 binding sites across the neuronal               

genome in the DNMT3AKO/+ cortex results in subtle but widespread disruption of            

mCA-associated enhancer regulation that partially phenocopies loss of MeCP2. This enhancer           

dysregulation can be linked to shared alterations in gene expression across these models. Given              

the critical roles of MeCP2-regulated genes for nervous system function (Gabel et al., 2015;              

Lagger et al., 2017; Lyst and Bird, 2015), these overlapping epigenomic and transcriptomic             

effects likely contribute to aspects of neurologic dysfunction observed in DNMT3A disorders.  

Overall, we find that the behavioral effects observed in the DNMT3AKO/+ mice are less              

severe than homozygous conditional DNMT3A knockout and MeCP2 knockout mice, which           

present with decreases in motor coordination, severely reduced body size, and increased            

mortality (Nguyen et al., 2007; Stroud et al., 2017; Tillotson et al., 2017). These behavioral               

differences between models mirror the differences in effects on mCA deposition and readout in              

these strains, where DNMT3A conditional knockout mice lose all neuronal mCA and MeCP2             

KO mice lose a major reader of both mCA and mCG, while the DNMT3KO/+ mice lose only half                  

of the mCA sites and a limited set of localized mCG sites. The persistence of many mCA and                  

mCG binding sites for MeCP2 in the DNMT3AKO/+ may partially explain how DNMT3A             

mutations in humans manifest with less severe symptomology than in Rett Syndrome.            

Independently, absence of DNMT3A early in prenatal development can contribute to overgrowth            

and other non-overlapping aspects of DNMT3A and MeCP2 disorders. Together, our findings            

show that disruption of mCA-MeCP2 mediated enhancer regulation likely contributes to multiple            
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disorders with distinct symptomology, defining a site of convergent molecular etiology           

underlying heterogeneous clinical syndromes. 

Our transcriptomic analysis of changes of ASD/NDD gene sets in DNMT3A mice has             

further detected overlap with NDD beyond MeCP2 disorders, including both mouse models of             

NDD/ASD (e.g. CHD8) and gene sets identified in human idiopathic ASD. As additional             

transcriptomic studies of mouse models and human NDD brain emerge, systematic analyses of             

gene expression effects can identify shared aspects of transcriptional pathology that can            

contribute to cognitive and social deficits across diverse causes of NDD. Notably, the large              

number of chromatin-modifying enzymes mutated in these disorders raises the possibility that            

shared transcriptomic effects emerge from common chromatin pathology. Our study has           

identified alterations in mCA and enhancer regulation as a potential site of convergent             

dysfunction in MeCP2 and DNMT3A disorders. Future studies may identify additional gene            

disruptions in which alterations in mCA and enhancer dysregulation contribute to molecular            

pathology, expanding the role of “methylopathies” in neurodevelopmental disease. 

3.5 Methods 

Animal husbandry 
All animal protocols were approved by the Institutional Animal Care and Use Committee and the               
Animal Studies Committee of Washington University in St. Louis, and in accordance with             
guidelines from the National Institutes of Health (NIH). Mice were housed in a room on a 12:12                 
hour light/dark cycle, with controlled room temperature (20-22°C) and relative humidity (50%).            
Home cages measured 28.5 cm x 17.5 cm x 12 cm and were supplied with corncob bedding and                  
standard laboratory chow and water. All mice were group-housed and adequate measures were             
taken to minimize animal pain or discomfort.  
 
Transgenic animals 
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Male and female homozygous Dnmt3aflx/flx mice (Kaneda et al., 2004) were bred together for              
viral-mediated DNMT3A replacement assay culture experiments. To generate the DNMT3A          
heterozygous mouse model, Dnmt3aflx/flx mice were crossed to CMV:Cre         
(B6.C-Tg(CMV-cre)1Cgn/J) to generate Dnmt3aKO/+Cre:CMV+/- offspring.     
Dnmt3aKO/+Cre:CMV+/- progeny were bred to C57BL/6J to outcross the cre recombinase and            
generate experimental genotype (DNMT3AKO/+). Mice were genotyped with ear-DNA by PCR           
for Dnmt3a and Cre, and recombination was tested. Subsequent experimental animals were            
generated from Dnmt3aKO/+ males mated to C57BL/6J females to generate Dnmt3a KO/+ and            
Dnmt3a+/+ experimental and control animals for experiments. Dnmt3aKO/+ females were not used            
for breeding to avoid social differences in mothering from mutant dams. Mice were weighed at a                
variety of timepoints to assess growth.  
 
Method Details 
Immunocytochemistry 
Staining. Neuro-2a cells (ATCC, CCL-131) were grown on coverslips and transfected with            
FLAG-tagged WT or mutant mouse DNMT3A plasmids and GFP plasmid. This FLAG-tag            
allows for quantification of transfected DNMT3A protein only instead of endogenous DNMT3A.            
Coverslips were fixed with 4% paraformaldehyde in PBS for 20 minutes, permeabilized with             
0.1% Triton X-100 in PBS for 10 minutes, and blocked with 1% BSA in PBS for 1 hour all at                    
room temperature. Coverslips were incubated overnight at 4˚C in anti-DDDDK tag (FLAG-tag)            
primary antibody (Abcam, 1:5000, ab1162). Coverslips were then washed in PBS and incubated             
for 1 hour at room temperature with fluorescent secondary antibody (ThermoFisher, 1:500,            
A-11011) and counterstained with DAPI. Imaging. Images were captured using a Nikon A1Rsi             
confocal microscope with a 20x air objective. Laser settings were kept constant for each image.               
Analysis/Quantification. Cells were counted using an automatic threshold in FIJI and manually            
classified as displaying nuclear or non-nuclear signal by a blinded observer. This was determined              
by evaluating the overlap of FLAG signal (DNMT3A) with DAPI signal (nucleus). For mutants              
that did not reach expression levels comparable to the WT or for images that had too few                 
positive cells, cell number was counted manually. 8 separate transfections were run, with each              
mutant being counted over 3 or more independent experiments. Sample sizes are as follows: WT,               
15 images, 880 cells; W297del, 8 images, 435 cells; I310N, 8 images, 492 cells; S312fs11x, 12                
images, 321 cells; G532S, 9 images, 695 cells; M548K, 7 images, 333 cells; V665L, 6 images,                
635 cells; Y735C, 16 images, 613 cells; R749C, 8 images, 667 cells; P904L, 7 images, 692 cells.                 
While some mutants showed reduced protein expression, all proteins tested showed adequate            
signal assessed as nuclear or non-nuclear. Percent nuclear was assessed per image and a              
generalized linear model was run comparing each mutant to WT. P values for each mutant were                
then Bonferroni corrected. Localization to the nuclear periphery was evident for the WT             
FLAG-tagged protein and all nuclear-localized mutants, but no consistent differences in this            
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localization was observed between WT and any mutants. We chose to use a generalized linear               
model with Bonferroni correction to allow for us to compare ratios of percent nuclear signal               
while accounting for experimental and biological replicates.  
 
Modeling of DNMT3A disease mutations 
HEK293T (ATCC, ACS-4500) or Neuro-2a cells (ATCC, CCL-131) were transfected with GFP            
and FLAG-tagged WT or mutant mouse DNMT3A plasmids. Collected cell lysates were            
ruptured by 3 freeze/thaw cycles using liquid nitrogen, or sonication ~42 hours after transfection.              
Samples were then either used for western blotting (Neuro-2a cells), the in vitro radioactive              
methyltransferase assay (HEK293T cells).  
 
qRT-PCR 
RNA isolated from neuronal cortical culture or mouse brain tissue was reverse transcribed using              
the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Dnmt3a and Actb           
were measured by qPCR using the Power SYBR™ Green PCR Master Mix and primers Actb              
(F:AAGGCCAACCGTGAAAAGAT, R:GTGGTACGACCAGAGGCATAC) and Dnmt3a    
(F:GGCCTTCTCGACTCCAGATG, R:TTCCTCTTCTCAGCTGGCAC). Relative quantity of     
Actb and Dnmt3a cDNA was determined by comparing the Ct of each primer set in each sample                 
to a standard curve and then normalizing the DNMT3A signal by the ACTB signal. We chose to                 
compare experimental conditions to WT samples using Student’s T-Tests with Bonferroni           
correction, as these are two normally distributed groups (visually checked) with similar            
variability.  
 
In vitro radioactive methyltransferase assay 
30 µl of cell lysate from HEK293T cells was used in the methyltransferase reaction previously               
described (Russler-Germain et al., 2014). Lysates were incubated at 37˚C for 20 hours in 5 µl                
reaction buffer of 20 mM HEPES, 30 mM NaCl, 0.5 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA, 5                   
mM 3 H-labeled SAM (PerkinElmer, NET155050UC) and 500 ng/µl Poly(dI-dC) substrate           
(Sigma P4929). Substrate was purified (Macherey-Nagel NucleoSpin Gel and PCR Clean-up)           
and radioactivity measured using a scintillation counter. In instances where DNMT3A mutant            
showed altered protein expression, cell lysate was re-balanced to match protein expression of             
WT DNMT3A. The activity of endogenous DNMT3A present in the cells was accounted for by               
normalizing values to GFP alone. Only experimental replicates where WT DNMT3A showed a             
1.5-fold increase compared to GFP alone were used for subsequent analysis. Outliers beyond 2              
standard deviations above or below the mean were removed. Number of independent replicates             
are as follows: W297del, 18; I310N, 19; S312fs11x, 4; G532S, 10; M548K, 15; V665L, 11;               
Y375C, 13; R749C, 7; P904L, 14. Significance was assessed using a one-sample student’s t-test,              
as we are comparing groups normalized to WT and GFP back to the normalized value of 1. 
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Viral-mediated DNMT3A replacement assay 
Functional activity of DNMT3A mutants in cortical neurons was determined by measuring            
methylation build-up in vitro. Timed mating of DNMT3Aflx/flx females and DNMT3Aflx/flx males            
was performed to collect embryonic cortical DNMT3Aflx/flx neurons at embryonic day 14.5. At             
E14.5, DNMT3Aflx/flx cortical neurons were isolated and plated (DIV 0). On DIV 3, neurons were               
either not perturbed or virally transduced with one of three conditions: 1) Cre only, 2) Cre and                 
WT DNMT3A, or 3) Cre and mutant DNMT3A. DNA and RNA were isolated on DIV 12.5                
using the AllPrep DNA/RNA Kit (Qiagen, 80204). DNA was used for whole genome bisulfite              
sequencing, and RNA was used for qRT-PCR for DNMT3A. Results of pilot experiments (not              
shown) indicate that at this timepoint mCA is not saturated and sensitive to total levels of                
DNMT3A activity. Number of independent replicates are as follows: W297del, 5; S312fs11x, 4;             
G532S, 7; M548K, 6; V665L, 10; Y375C, 11; R749C, 6; P904L, 8. Buildup of methylation over                
development was carried out without performing any viral transduction. Significance was           
assessed using a one-sample student’s t-test or 1-way ANOVA. 
 
Ultrasonic vocalization and analysis 
A total of 76 DNMT3AKO/+ (n=30, 16 male and 14 female) and litter-matched WT (n=46, 25                
male and 21 female) mice were used for ultrasonic pup vocalization (USV) recording and              
analyzed as previously described (Barnes et al., 2017; Dougherty et al., 2013; Holy and Guo,               
2005). Dams were removed from the nest for a 10-minute acclimation, and individual pups had               
their body temperature measured using an infrared laser thermometer. Pups were then removed             
from their nest and placed in a dark, enclosed chamber. Ultrasonic vocalizations were recorded              
for 3 minutes with an Avisoft UltraSoundGate CM16 microphone and 416H amplifier using             
Avisoft Recorder software (gain = 6 dB, 16 bits, sampling rate = 250 kHz). Pups were then                 
weighed and returned to their nest and littermates. All mice were recorded at postnatal days 5, 7,                 
and 9, and on either day 11 or 15. Frequency sonograms were prepared and analyzed in                
MATLAB (frequency range = 40 kHz to 120 kHz, FFT size = 256, overlap = 50%) with                 
individual syllables identified and counted according to previously published methods          
(Dougherty et al., 2013; Holy and Guo, 2005). Significance was assessed using a within-subjects              
repeated measures ANOVA over timepoints 5-9, as these were when there was data from all               
experimental subjects, and these are optimal testing times where number of calls was highest.  
 
Marble burying 
A total of 27 DNMT3AKO/+ (n=13, 8 male and 5 female) and litter-matched WT (n=14, 7 male                 
and 7 female) mice were used for marble burying. Marble burying is a natural murine behavior                
and has been used to indicate repetitive digging as well as anxiety-related behaviors. Protocol              
was adapted from previously published methods (Lazic, 2015; Maloney et al., 2019a). In brief,              
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8-week old mice were placed in a transparent enclosure (28.5 cm x 17.5 cm x 12 cm) with clean                   
aspen bedding and 20 dark blue marbles evenly spaced in a 4 x 5 grid on top of the bedding.                    
Animals explored freely for 30 minutes. The number of buried marbles were counted every 5               
minutes by two independent blinded observers. Marbles were considered “buried” if they were at              
least two-thirds covered by bedding. Enclosure and marbles were cleaned thoroughly between            
animals. Significance was assessed using a within-subjects repeated measures ANOVA to           
determine if rate of burying marbles is different between genotypes. These statistical methods are              
more appropriate than a simple t-test at 30 minutes, as mice may have buried all marbles before                 
this timepoint, and significant changes in marble burying behavior may have occurred at earlier              
timepoints in the assay. 
 
Adult behavioral battery 
A total of 72 DNMT3AKO/+ (n=39, 18 male and 21 female) and litter-matched WT (n=33, 15                
male and 18 female) mice were used for adult behavioral testing. Mice were housed in mixed                
genotype home cages with 2-5 animals per cage, and all tests were performed during the light                
cycle. All experimenters were blinded to genotype during testing. For increased experimental            
rigor and reproducibility, we used three separate cohorts of mice to ensure quality and              
consistency in any observed phenotypes.  

Testing started when mice were 3-4 months of age. The sequence of behavioral testing              
was designed to minimize carry-over effects across behavioral tests. Most assays were performed             
on cohorts 1 and 2 with cohort 3 being performed to test for reproducibility in some assays.                 
Because of differences in testing sequences and exposure of mice to prior tests between cohorts,               
we examined separate cohorts individually and looked at combined cohorts. Testing was            
performed by the Washington University in St. Louis Animal Behavior Core.  
 
One-hour locomotor activity 
Locomotor activity was evaluated by computerized photobeam instrumentation in transparent          
polystyrene enclosures (47.6 cm x 25.4 cm x 20.6 cm) as previously described (Wozniak et al.,                
2004). Activity variables such as ambulations and vertical rearings were measured in addition to              
time spent in a 33 cm x 11 cm central zone. 
 
Sensorimotor battery 
Mice were assayed in walking initiation, balance (ledge and platform tests), volitional movement             
(pole and inclined screens), and strength (inverted screen) as previously described (Grady et al.,              
2006; Wozniak et al., 2004). For the walking initiation test, mice were placed on the surface in                 
the center of a 21 cm x 21 cm square marked with tape and the time for the mouse to leave the                      
square was recorded. During the balance tests, the time the mouse remained on an elevated               
plexiglass ledge (0.75 cm wide) or small circular wooden platform (3.0 cm in diameter) was               
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recorded. During the Pole test, mice were placed at the top of a vertical pole with nose pointing                  
upwards. The time for the mouse to turn and climb down the pole was recorded. For the inclined                  
screen tests, a mouse was placed (oriented head-down) in the middle of an elevated mesh grid                
measuring 16 squares per 10 cm angled at 60° or 90°. Time for the mouse to turn 180° and climb                    
to the top was recorded. For the inverted screen test, a mouse was placed on a similar screen and                   
when the mouse appeared to have a secure grasp of the screen, the screen was inverted 180° and                  
the latency for the mouse to fall was recorded. All tests had a duration of 60 seconds, except for                   
the pole test which was 120 seconds. Two separate trials were done on subsequent days and                
averaged time of both trials was used for analysis. Data from the walking initiation, ledge, and                
platform tests were not normally distributed and therefore analyzed using Mann-Whitney U tests.  
 
Continuous and accelerating rotarod 
Motor coordination and balance were assessed using the rotarod test (Rotamex-5, Columbus            
Instruments, Columbus, OH) with three conditions: a stationary rod (60-second maximum), a            
rotating rod at constant 5 rpm (60-second maximum), and a rod with accelerating rotational              
speed (5 – 20 rpm, 180-second maximum) as previously described (Grady et al., 2006). This               
protocol is designed to minimize learning and instead measure motor coordination, so testing             
sessions were separated by 4 days to allow for extinction. Testing included one trial on stationary                
rod, and two trials on both the constant-speed rotarod and accelerating rotarod. Later timepoints              
in the constant speed rotarod test failed tests of normality, as the majority of mice stayed on the                  
rotating rod for all 60 seconds. However, data were analyzed with two-way repeated-measures             
ANOVA.  
 
Morris water maze 
Spatial learning was assessed as previously described (Wozniak et al., 2004). Cued trials (visible              
platform, variable location) and place trials (submerged, hidden platform, consistent location)           
were conducted in which escape path latency, length, and swimming speeds were recorded.             
Animal tracking was done using a computerized system (ANY-maze, Stoelting). During cued            
trials, animals underwent 4 trials per day over 2 consecutive days with the platform being moved                
to a different location for each trial with few distal spatial cues available. Each trial lasted no                 
longer than 60 seconds, with a 30-minute interval between each trial. Performance was analyzed              
across four blocks of trials (2 trials/block). After a three-day rest period, animals were tested on                
place trials, in which mice were required to learn the single location of a submerged platform                
with several salient distal spatial cues. Place trials occurred over 5 consecutive days of training,               
with 2 blocks of 2 consecutive trials (60-second trial maximum, 30-second inter-trial-interval            
after the mouse has reached the platform) with each block separated by 2 hours. Mice were                
released into different quadrants over different trials. Place trials were averaged over each of the               
five consecutive days (4 trials/block). One hour after the final block, a probe trial occurred               

114 



(60-second trial maximum) in which the platform is removed, and the mouse is released from the                
quadrant opposite where the platform had been located. The time spent in pool quadrants, and               
the number of crossings over the exact platform location were recorded. DNMT3AKO/+ mice             
showed a small, but significant reduction in target zone time in cohort 2, though there was no                 
difference in cohort 1. Additionally, female mice had significantly faster swimming speeds than             
male mice across both genotypes.  
 
Elevated plus maze 
Anxiety-like behaviors were examined using the elevated plus maze as previously described            
(Boyle, 2006). The apparatus contains a central platform (5.5 cm x 5.5 cm) with two opposing                
open arms and two opposing closed arms (each 36 cm x 6.1 cm x 15 cm) constructed of black                   
Plexiglas. Mouse position is measured using beam-breaks from pairs of photocells configured in             
a 16 x 16 matrix and outputs are recorded using an interface assembly (Kinder Scientific) and                
analyzed using software (MotoMonitor, Kinder Scientific) to determine time spent, distance           
traveled, and entries made into open arms, closed arms, and the center area. Test sessions were                
conducted in a dimly lit room with each session lasting 5 minutes and each mouse tested over 3                  
consecutive days. Data shown are from day 1. All mice showed a decrease in time, distance, and                 
entries into open arms on days 2 and 3. There was no significant difference between genotypes in                 
percent entries into open arms (Figure 3.11K; P=0.137; unpaired Student’s T-Test) or total             
entries into arms (data not shown), indicating that both genotypes explored the maze. Percent              
distance traveled in open arms showed similar effects to percent time in open arms (Percent               
distance traveled: P=0.027; unpaired Student’s T-Test). Analysis of these data in individual            
cohorts detected DNMT3AKO/+ significant effects for the percent of open arm time on the first               
day in cohorts 1 and 3, with no evidence of an effect in cohort 2. Individual cohorts also showed                   
no significant difference between genotypes in percent open arm entries suggesting that mice             
explored the elevated plus maze sufficiently to detect anxiety-like behaviors. 
 
Acoustic startle/prepulse inhibition  
Sensorimotor gating was evaluated as previously described (Dougherty et al., 2013;           
Gallitano-Mendel et al., 2008; Hartman et al., 2001). In short, mice were presented with an               
acoustic startle response (120 dB auditory stimulus pulse, 40 ms broadband burst) and a              
pre-pulse (response to pre-pulse plus startle pulse). Stimulus onset began at 65 seconds, and 1ms               
force readings were obtained and averaged to produce an animal’s startle amplitude. 20 startle              
trials were presented in 20 minutes. The first 5 minutes were an acclimation period where no                
stimuli above the 65 dB background were presented. The session started and finished with 5               
consecutive startle (120 dB pulse) trials. The middle 10 trials were interspersed with pre-pulse              
trials, consisting of an additional 30 presentations of 120 dB startle stimuli preceded by pre-pulse               
stimuli of 4, 12, or 20 dB above background (10 trials for each PPI trial type). To calculate                  
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percent pre-pulse inhibition, we used %PPI = 100 × (ASRstartle pulse alone − ASRprepulse + startle               

pulse)/ASRstartle pulse alone. 
 
Conditioned fear 
Fear conditioning was done as previously described (Maloney et al., 2019a, 2019b). Mice were              
habituated to an acrylic chamber (26 cm x 18 cm x 18 cm) containing a metal grid floor and an                    
odorant and was illuminated by LED light which remained on for the duration of the trial. Day 1                  
testing lasted 5 minutes in which, after a brief baseline period with no tone, an 80 dB tone                  
sounded for 20 seconds at trial timepoints 100, 160, and 220 seconds. A 1.0 mA shock                
(unconditioned stimulus) occurred within the last 2 seconds of the tone (conditioned stimulus).             
Baseline freezing behavior during the first 2 minutes and the freezing behavior during the last 3                
minutes was quantified using image analysis (Actimetrics, Evanston, Illinois). On Day 2, testing             
lasted for 8 minutes in which the light was illuminated but no tones or shocks were presented. On                  
Day 3, testing lasted for 10 minutes in which the mouse was placed in an opaque chamber with a                   
different odorant than the original test chamber. After a brief baseline period with no tone, the 80                 
dB tone began at 120 seconds and lasted for the remainder of the trial and freezing behavior to                  
the conditioned auditory stimulus was quantified for the remaining 8 minutes. DNMT3AKO/+            
mice show elevated freezing levels during training and testing, which may reflect a baseline              
propensity to freeze, stronger fear conditioning, or an emotional hypersensitivity to the            
foot-shock. Additionally, our data suggest that the increased freezing in the DNMT3AKO/+ mice             
does not appear to be due to an increased pain response, as mutant mice showed similar levels of                  
shock sensitivity. Evaluation of baseline freezing levels in individual cohorts only showed            
significance in one of the two cohorts tested. 
 
3-Chamber social approach 
Sociability was assayed as previously described (Moy et al., 2004; Silverman et al., 2011). Mice               
were tested in a rectangular all-Plexiglas apparatus (each chamber measuring 19.5 cm x 39 cm x                
22cm) divided into three chambers with walls containing rectangular openings (5 cm x 8 cm) and                
sliding doors. The apparatus was in a room with indirect light and was cleaned between tests                
with Nolvasan solution. Stimulus mice were contained within a small stainless-steel withholding            
cage (10 cm height x 10 cm diameter; Galaxy Pencil/Utility Cup, Spectrum Diversified Designs),              
allowing minimal contact between mice without allowing fighting. Between tests, withholding           
cages were cleaned with 75% ethanol solution. A digital video camera recorded movement of the               
mouse within the apparatus and allowed for tracking with ANY-maze (Stoelting). Distance and             
time spent in each chamber and investigation zones surrounding the withholding cages were             
recorded. Zones were defined as 12 cm in diameter from the center of withholding cages.  
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The test sequence consisted of 4 consecutive 10-minute trials in which the test mouse is placed in                 
the middle chamber and allowed to freely explore the environment. In the first trial, the mouse is                 
placed in the middle chamber with the doors to other chambers shut. In the second trial, the                 
mouse is placed in the middle chamber and can explore all three chambers of the task, allowing it                  
to acclimate to the environment. Neither genotype tested showed a preference towards a side of               
the chamber during this habituation. For the third trial, a sex-matched novel conspecific was              
placed within a withholding cage with the other cage remaining empty. For the fourth trial, the                
same sex-matched conspecific was in one withholding cage, while a new unfamiliar sex-matched             
stimulus mouse was placed in the other withholding cage. The locations of stimuli mice were               
counterbalanced across groups for the third trial and randomized novel or familiar for the fourth               
trial.  
 
Reduced anxiety 3-chamber social approach 
An add-on cohort was used to investigate sociability in a low-light environment with minimal              
distractions and stressors. A total of 37 DNMT3AKO/+ (n=18, 9 male and 9 female) and               
litter-matched WT (n=19, 9 male and 10 female) mice 10-12 weeks of age were used. These                
mice had not been used for previous behavioral analysis. Two additional DNMT3A mice were              
removed from the cohort prior to analysis, as they appeared sickly and showed reduced              
movement. Social approach was carried out as described previously (Manno et al., 2020). In              
brief, mice were tested in a rectangular clear acrylic apparatus (60 cm x 40.5 cm) separated into                 
three equally sized chambers divided by walls with sliding doors (6 cm x 6 cm), and with one                  
cup placed in each of the edge chambers. The apparatus was in an isolated, quiet room with                 
minimal sound and low-light (270 lux). Three 10-minute phases were carried out. In the first               
phase, the test mouse freely explored all chambers of the apparatus. In the second phase, a                
sex-matched conspecific mouse was added to the one of the cups in the side chambers, and the                 
test mouse was allowed to freely explore. In the third phase, a sex-matched novel conspecific               
was added to the remaining empty cup and the test mouse was allowed to explore. Between                
experimental mice, the apparatus was cleaned with 70% ethanol. A digital video camera             
recorded the sessions and mouse location was measured. For analysis, only the first 5 minutes of                
each phase was used, as mice rapidly habituate to this task (Manno et al., 2020). 
 
Statistical analysis for behavioral tests 
Behavioral data were analyzed with R v3.3.2 (including the ANOVA function from the Car              
package in R (Fox and Weisberg, 2011)) and plots were made using GraphPad Prism 7.03a.               
Normality was assessed using the Shapiro-Wilkes test and visually confirmed. Data not normally             
distributed were analyzed using non-parametric tests, with the exception of continuous rotarod            
data. No consistent genotype by sex interaction effects were observed for any tests. As expected,               
bodyweights were significantly different between males and females and we therefore presented            
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this data separated by sex. Data were collapsed across sex for presentation across all other tests.                
Statistical testing was performed using planned assay-specific methods, such as using Student’s            
T-Tests for single parameter comparisons between genotypes, and within-subjects two-way          
repeated-measures ANOVA for comparisons across timepoints. Individual timepoints within         
repeated measures tests were evaluated using Sidak’s multiple comparisons test. Individual           
cohorts were analyzed separately and in aggregate with similar trends seen across cohorts             
(Supplementary Table 5), therefore data from all cohorts were included together. 
 
Tissue collection 
Brain tissue was dissected from DNMT3AKO/+ and WT littermate mice in ice-cold PBS,             
flash-frozen in liquid nitrogen, and stored at -80°C.  
 
Western blotting 
Western blotting from cell culture. Neuro-2a cells were collected and combined with 2x laemmli              
buffer with 5% β-mercaptoethanol. Samples were passed through a Wizard Column (Fisher,            
Wizard Minipreps Mini Columns, PRA7211), boiled for 5 minutes, and run on a BioRad 4-12%               
acrylamide gel at 125 V for 60 minutes. Samples were then transferred to a nitrocellulose               
membrane, which was bisected between 37kDa and 50kDa bands. Membranes were blocked            
with 3% bovine serum albumin in TBS-T for 1 hour at room temperature and then the lower                 
membrane was immunostained with anti-GFP (ThermoFisher, 1:2000, A-11122) while the upper           
membrane was immunostained with anti-DDDDK (Abcam, 1:1000, ab1162) for 12-16 hours at            
4°C. All primary and secondary antibodies were diluted in 3% Bovine Serum Albumin in              
TBS-T. Membranes were next washed with TBS-T, and then incubated for 1 hour at room               
temperature with IR-dye secondary antibody (IRDye 800CW Donkey anti-Rabbit, LI-COR          
Biosciences, 1:15,000, product number: 926-32213). Blots were then washed with PBS, imaged            
using the LiCOR Odyssey XCL system, and quantified using Image Studio Lite software             
(LI-COR Biosciences). FLAG (DDDDK) and GFP levels were normalized to a standard curve,             
and protein levels are expressed as normalized DDDDK values divided by normalized GFP             
 values to enable comparison of FLAG (DDDDK) levels between blots. Each blot included a              
standard curve and WT samples. Outliers beyond 2 standard deviations above or below the mean               
were removed. Number of independent replicates are as follows: WT, 29; W297del, 7; I310N, 7;               
S312fs11x, 12; G532S, 7; M548K, 9; V665L, 7; Y375C, 8; R749C, 6; P904L, 7. Significance               
was assessed using a one sample Student’s T-Test, as protein expression levels were normalized              
to GFP and WT, and mutant protein expression was compared to the normalized WT value of 1.  
 
Western blotting from tissue. Brain tissue samples were homogenized with a dounce            
homogenizer in buffer with protease inhibitors (10mM HEPES pH 7.9, 10mM KCl, 1.5mM             
MgCl2, 1mM DTT, 10mM EDTA). A portion of the lysate was removed and 1% SDS was                
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added. Samples were boiled for 10 minutes, followed by a 10-minute spin at 15,000g.              
Supernatant was collected and run through a Wizard Column (Fisher, Wizard Minipreps Mini             
Columns, PRA7211), then diluted in LDS sample buffer with 5% β-mercaptoethanol. Samples            
were boiled for 5 minutes, run on an 8% acrylamide gel for 60 minutes at 125 V, and transferred                   
to a nitrocellulose membrane. Membrane was bisected between 75kDa and 100kDa. Membranes            
were blocked with 3% bovine serum albumin in TBS-T for 1 hour at room temperature, and the                 
upper membrane was immunostained with anti-DNMT3A (Abcam, 1:1000, ab13888) while the           
lower membrane was immunostained with anti-α-Tubulin (Abcam, 1:1000, ab52866) for 12-16           
hours at 4°C. All primary and secondary antibodies were diluted in 3% Bovine Serum Albumin               
in TBS-T. Membranes were next washed with TBS-T, and then incubated for 1 hour at room                
temperature with IR-dye secondary antibody (IRDye 800CW Goat anti-Rabbit, or IRDye           
800CW Goat anti-Mouse, LI-COR Biosciences, 1:15,000, product numbers: 926-32211 and          
926-32210 respectively). Blots were then washed with PBS, imaged using the LiCOR Odyssey             
XCL system, and quantified using Image Studio Lite software (LI-COR Biosciences). DNMT3A            
and α-Tubulin levels were normalized to a standard curve, and protein levels are expressed as               
normalized DNMT3A values divided by normalized α-Tubulin values to enable comparison of            
DNMT3A levels between blots. For brain region analysis, sample sizes of n=4 per genotype (2               
male and 2 female pairs) were used. For time course analysis, sample sizes of n=2 per genotype                 
(1 male and 1 female pairs) were used for all time points except the 2-week timepoint in which                  
n=6 (3 male and 3 female pairs) was used. Significance was assessed using a Student’s T-Test                
for brain regions, and a two-way ANOVA considering genotype and time to determine if there               
was a detectable difference in protein expression over development.  
 
Bisulfite sequencing 
Whole genome bisulfite sequencing from cortical cultures. Samples were chosen for whole            
genome bisulfite sequencing if mutant and WT samples expressed equal amounts of Dnmt3a             
mRNA as measured by qRT-PCR (Figure 3.8F). DNA from cortical cultures was bisulfite             
converted and prepared for sequencing using the Tecan Ovation Ultralow Methyl-Seq Kit            
(Tecan, 0335-32) and the Epitect Bisulfite Kit (Qiagen, 59824) was used for bisulfite conversion.              
We used alternate bisulfite conversion cycling conditions ([95°C, 5 min; 60°C, 20 min] x 4               
cycles, 20°C hold) to ensure lowest possible bisulfite non-conversion rate. Libraries were            
PCR-amplified for 10-11 cycles. Libraries were then pooled and sequenced at a depth of              
0.01-0.03x genomic coverage using an Illumina MiSeq 2x150 through the Spike-In Cooperative            
at Washington University in St. Louis. Significance was assessed using a one-sample student’s             
t-test, as we are comparing groups normalized to WT and GFP back to the normalized value of 1. 
 
Whole genome bisulfite sequencing from tissue. DNA was isolated from tissue using the DNEasy              
Kit (Qiagen). 300 ng of DNA was prepared for sequencing using the Ovation Ultralow              

119 



Methyl-Seq Kit (Tecan, 0335-32) with and the Epitect Bisulfite Kit (Qiagen, 59824) was used              
for bisulfite conversion. For these samples, 300 ng of DNA was fragmented for 45 seconds with                
the Covaris E220 sonicator (10% Duty Factory, 175 Peak Incidence Power, 200 cycles per burst,               
milliTUBE 200µL AFA Fiber). DNA was then purified using 0.7 volumes of Agencourt Beads              
to select for long DNA inserts for sequencing. We used alternate bisulfite conversion cycling              
conditions ([95°C, 5 min; 60°C, 20 min] x 4 cycles, 20°C hold) to ensure lowest possible                
bisulfite non-conversion rate. Libraries were PCR-amplified for 12 cycles. Libraries were then            
pooled and sequenced using an Illumina MiSeq 2x150 through the Spike-In Cooperative at             
Washington University in St. Louis. Samples for shallow-depth sequencing (Figure 3.4A,B)           
were sequenced at 0.01-0.03x genomic coverage. For brain region and liver methylation, n=2 per              
genotype per region (one male pair, one female pair). For developmental time course             
methylation, n=3-4 per genotype per timepoint, with at least one male and one female pair.               
8-week cortex samples for deep sequencing (Figure 3.5, Figure 3.6A-D, Figure 3.13D-H) were             
sequenced at 25-27x coverage per genotype using two male and two female WT-DNMT3AKO/+             

pairs (n=4 per genotype). Samples were sequenced either using the HiSeq 3000 or NextSeq 500               
at 2x150 or 1x150, respectively. For shallow sequencing experiments, significance was assessed            
using either a two-sample Student’s T-Test to compare global methylation values of the cortex              
between two genotypes or using a two-way ANOVA to compare broad methylation changes             
across a variety of brain regions or timepoints. Genomic element comparisons were done using              
two-sample Student’s T-Tests with Bonferroni correction. 
 
Oxidative bisulfite sequencing from tissue. DNA was isolated from tissue using the DNEasy Kit              
(Qiagen, 69504). 450 ng of DNA was prepared for sequencing using the Ovation Ultralow              
Methyl-Seq Kit (Tecan, 0335-32) with TrueMethyl oxBS plugin (Tecan, 0414-32). For these            
samples, 450 ng of DNA was fragmented for 45 seconds with the Covaris E220 sonicator (10%                
Duty Factory, 175 Peak Incidence Power, 200 cycles per burst, milliTUBE 200µL AFA Fiber).              
DNA was then purified using 0.7 volumes of Agencourt Beads to select for long DNA inserts for                 
sequencing. 2/3 of the sample (~300 ng of DNA) was used for OxBS libraries, whereas the                
remaining 1/3 (~150 ng of DNA) was used for bisulfite libraries. We used alternate bisulfite               
conversion cycling conditions ([95°C, 5 min; 60°C, 20 min] x 2 cycles; 95°C, 5 min; 60°C, 40                 
min; 95°C, 5 min; 60°C, 45 min; 20°C hold) to ensure lowest possible bisulfite non-conversion               
rate. Bisulfite and oxidative bisulfite libraries were PCR-amplified for 11 and 13 cycles             
respectively. Libraries were then pooled and sequenced using an Illumina MiSeq 2x150 through             
the Spike-In Cooperative at Washington University in St. Louis. Samples were sequenced at             
0.8-2.2x genomic coverage per replicate (two male replicates per genotype). Genomic element            
comparisons were done using two-sample Student’s T-Tests with Bonferroni correction. 
 
Whole-genome bisulfite analysis 
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Bisulfite sequencing analysis was performed as previously described (Clemens et al., 2019).            
Briefly, data were adapter-trimmed, mapped to mm9, then deduplicated and called for            
methylation using BS-seeker2. Methylation levels across regions were assessed using bedtools           
map -o sum, summing the number of reads mapping to Cs (supporting mC) and the amount of                 
coverage in the region, then dividing those two numbers (Quinlan and Hall, 2010).             
Hydroxymethylation was calculated as the percent methylation found in the BS-seq minus the             
percent methylation found in the matching oxBS-seq. Due to count noise, this occasionally             
resulted in apparent negative hydroxymethylation. During bisulfite sequencing not all DNA can            
be efficiently bisulfite converted. Though our methods should maximize the amount of converted             
unmethylated C, there is still a small percentage of unmethylated cytosines that are called as               
methylated due to non-conversion (0.2-0.3%). Due to this non-conversion, very lowly           
methylated regions (e.g. mCA at CpG islands) may not show the same percent reduction in mCA                
as highly methylated regions. Data were visualized using the UCSC genome browser            
(http://genome.ucsc.edu) (Kent et al., 2002). CpG islands were obtained from the UCSC table             
browser (Haeussler et al., 2019), and CpG Shores were defined as the 8kb surrounding them.               
Average methylation per-sample is normally distributed in all regions examined, and variance            
between genotypes is similar, fitting the assumptions of a 2-sample t-test. Methylation levels for              
individual elements are not necessarily normally distributed, so non-parametric tests were used            
instead. This approach to mirrors multiple other studies quantifying mCA levels across the             
genome (Lister et al., 2013; Luo et al., 2017) where de novo calling of basepair resolution mCA                 
DMRs is avoided due to low statistical power because of low mCA/CA levels at any individual                
site, and instead focuses on quantification of mCA/CA levels in populations of pre-defined             
regions of known functional importance. 
 
Differentially methylated region detection 
BSmooth (Hansen et al., 2012) was used to call differentially CpG methylated regions between              
DNMT3AKO/+ and WT mice, using four biological replicates. CG sites were filtered for requiring              
at least 2x coverage in all replicates and differentially methylated regions were called with a               
statistical threshold of t-stat >2.0. These regions were further filtered for a length >100 bp and a                 
requirement that the smoothed per-rep methylation values were consistent. For hypomethylated           
regions all WT mCG/CG values needed to be greater than any KO mCG/CG value, and for                
hypermethylated regions all KO methylation values needed to be higher than all WT methylation              
values. Data fit the assumptions and requirements of BSmooth. Data were distributed evenly             
between chromosomes, and the overlap between DMRs and regions of interest fit a             
hypergeometric distribution, making a fisher's exact test appropriate. In order to calculate an             
expected overlap of DMRs and genomic regions, for each chromosome, an equal number of              
resampled DMRs were placed, at random throughout the chromosome, as true DMRs, ensuring             

121 

http://genome.ucsc.edu/


that the two do not overlap. From this, the overlap of genomic regions with resampled DMRs                
was compared to the same overlap with true DMRs. 
 
RNA sequencing 
Total RNA isolation was carried out as previously described (Clemens et al., 2019). In brief,               
cerebral cortex was dissected in ice-cold PBS from DNMT3AKO/+ and WT littermates at 8 weeks               
of age (n=7 pairs, 3 male, 4 female). Cortex was lysed in RLT buffer following the RNeasy Mini                  
Kit (Qiagen, 74104). RNA libraries were generated from 250 ng of RNA with NEBNext Ultra               
Directional RNA Library Prep Kit for Illumina (NEB) using a modified amplification protocol             
(37°C, 15 minutes; 98°C, 30 seconds; [98°C, 10 seconds; 65°C, 30 seconds; 72°C, 30              
seconds]x13; 72°C, 5 minutes; 4°C hold). RNA libraries were sequenced using Illumina            
HiSeq3000 1x50bp with the Genome Technology Access Center at Washington University in St.             
Louis, typically yielding 15-30 million single-end reads per sample.  
 
RNA sequencing analysis 
RNA sequencing analysis was performed as previously described (Clemens et al., 2019). Briefly,             
raw FASTQ files were trimmed with Trim Galore and rRNA sequences were filtered out with               
Bowtie. Remaining reads were aligned to mm9 using STAR (Dobin et al., 2013) with the default                
parameters. Reads mapping to multiple regions in the genome were then filtered out, and              
uniquely mapping reads were converted to BED files and separated into intronic and exonic              
reads. Finally, reads were assigned to genes using bedtools coverage -counts (Quinlan and Hall,              
2010). 
 
For gene annotation we defined a "flattened" list of longest transcript forms for each gene,               
generated on Ensgene annotations and obtained from the UCSC table browser. For each gene,              
Ensembl IDs were matched up to MGI gene names. Then, for each unique MGI gene name, the                 
most upstream Ensgene TSS and the most downstream TES were taken as that gene's start and                
stop. Based on these Ensembl gene models, we defined TSS regions and gene bodies.              
Differentially expressed genes were identified using a Wald test through DESeq2, running using             
default parameters on exonic reads from the DNMT3AKO/+ and WT.  
 
To assess effects on other noncoding RNAs in the DNMT3AKO/+ strain, we realigned our              
RNA-seq data to all mouse noncoding RNAs from RNAcentral (The RNAcentral Consortium            
2019, Nucleic Acids Res.), then ran DESeq2 on the counts from each noncoding transcript. 
 
Chromatin immunoprecipitation protocol 
Chromatin immunoprecipitation was performed as previously described (Clemens et al., 2019;           
Cohen et al., 2011). Cerebral cortex was dissected on ice in PBS from DNMT3AKO/+ and WT                
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littermates at 8-weeks old (n=5 pairs, 3 male, 2 female). The tissue was flash-frozen in liquid                
nitrogen and stored at -80°C. Chromatin was fragmented with the Covaris E220 sonicator (5%              
Duty Factory, 140 Peak Incidence Power, 200 cycles per burst, milliTUBE 1mL AFA Fiber).              
ChIP was performed with H3K27ac antibody (0.025-0.1µg; Abcam, ab4729) and libraries were            
generated using Ovation Ultralow Library System V2 (Tecan, 0344NB-32). Libraries were           
sequenced using Illumina HiSeq 3000 with the Genome Technology Access Center at            
Washington University in St. Louis, typically yielding 15-40 million single-end reads per            
sample. 
 
Chromatin immunoprecipitation analysis 
ChIP sequencing analysis was performed as previously described (Clemens et al., 2019). Briefly,             
reads were mapped to mm9 using bowtie2 and reads were extended based on library sizes and                
deduplicated. Bedtools coverage –counts was used to quantify ChIP signal at the transcriptional             
start site (TSS), gene body (GB), and transcriptional end site (TES) (Quinlan and Hall, 2010).               
edgeR was then used to determine differential ChIP-signal across genotypes. Data were            
visualized using the UCSC genome browser (http://genome.ucsc.edu) (Kent et al., 2002). 
 
Controlled resampling 
A similar resampling approach was used as previously described (Clemens et al., 2019). Briefly,              
for every entry in a sample set (e.g. DNMT3A-dysregulated genes), an entry in the control set                
(e.g. all other genes) with a similar desired characteristic (e.g. expression) was selected,             
generating a control set of the same size and variable distribution as the sample set. 
 
Identification of dysregulated enhancers 
Enhancer regions from Clemens et al. 2019 were used, and enhancers dysregulated in the              
DNMT3AKO/+ were called using the same method. Briefly, H3K27ac ChIP-seq reads were            
quantified in all acetyl peak regions, and edgeR was used to identify peaks with significantly               
different amounts of H3K27ac signal. Peak regions were then divided into promoters, enhancers,             
and non-identified peaks. Data fits the assumptions of BSmooth. Overlap between misregulated            
enhancers in different genotypes fit a hypergeometric distribution. 
 
GAGE 
Gene set enrichment analysis for the gene sets described was performed using the Generally              
Applicable Gene-set Enrichment (GAGE) program (Luo et al., 2009). The NDD models for             
comparison were chosen by searching for gene expression datasets meeting the following            
criteria: 1) NDD/ASD models that have at least some similar features to DNMT3A disorders              
(e.g. ID, ASD) 2) generated with the RNA-seq approach 3) analyzed brain tissue with enough               
similarity to our cortical analysis to justify a reasonable comparison. Analysis was performed             

123 

http://genome.ucsc.edu/


directionally on the shrunken, log-normalized exonic fold changes from DESeq2 analysis of            
DNMT3AKO/+ versus WT RNA-seq data. For each gene set, fold changes of genes in that set                
were compared to a background of all expressed genes. Gene sets with an FDR q-value below                
0.1 and an adjusted p-value below 0.5 following expression matched resampling repeated 1,000             
times were considered statistically significant. Gene sets were selected for analysis from both             
human and mouse studies of autism associated genes. SFARI genes (Abrahams et al., 2013) with               
scores of equal to or less than 3 were considered. Date accessed: 6/20/2019. 
 
GSEA 
Gene Set Enrichment Analysis (GSEA) (version 7.0, the Broad Institute of MIT and             
Harvard, http://software.broadinstitute.org/gsea/downloads.jsp) was performed on shrunken,    
log-normalized exonic fold changes from DESeq2 between DNMT3AKO+ and WT RNA-seq           
data. GSEA calculated a gene set Enrichment Score (ES) that analyzed genes were enriched in               
the biological signal conduction on the MsigDB (Molecular Signatures         
Database, http://software.broadinstitute.org/gsea/msigdb). Background was set to all expressed       
genes in this study and 1,000 permutations were set to generate a null distribution for enrichment                
score in the hallmark gene sets and functional annotation gene sets. The gene sets database used                
for enrichment analysis were ‘c5.all.v7.0.symbols.gmt’, ‘c5.bp.v7.0.symbols.gmt’,      
‘c5.cc.v7.0.symbols.gmt’and ‘c5.mf.v7.0.symbols.gmt’ and FDR <0.1 was defined as the cut-off          
criteria for significance. 
 
Craniofacial morphological analyses 
A total of 24 sex-matched littermate paired mice (DNMT3AKO/+ n=12, 7 male, 5 female; WT               
n=12, 7 male, 5 female) across 3 time-points (8 weeks DNMT3AKO/+ n=4, WT n=4; 20 weeks                
DNMT3AKO/+ n=4, WT n=4; 25 weeks DNMT3AKO/+ n=4, WT n=4) were fixed in 4%              
paraformaldehyde through intracardiac perfusion. Whole mouse heads were scanned at the           
Musculoskeletal Research Center at Washington University in St. Louis using a Scanco µCT40             
machine. CT images had voxel dimensions of 0.018 millimeters and were reconstructed on a              
2048x2048 pixel grid. The CT images were converted to 8bit images using ImageJ             
(https://imagej.nih.gov/ij/) and surface reconstructions were acquired in Avizo        
(http://www.vsg3d.com/). Thirty-five three-dimensional landmarks were collected from surface        
reconstructions of the cranium and mandible using Stratovan Checkpoint         
(https://www.stratovan.com/products/checkpoint). 
 
Generalized Procrustes Analysis in MorphoJ software was used to explore the differences and             
similarities of shape between the DNMT3AKO/+ mice and their WT littermates as previously             
described (Hill et al., 2013). To control for possible differences in size, the landmark coordinate               
data were natural log-transformed and analyzed with a linear regression model. Additionally, to             
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localize differences in form to specific linear distances, landmark data were analyzed using             
Euclidean Distance Matrix Analysis (EDMA). 

 
Bone length measurements 
We chose to quantify long bones that may directly relate to the height phenotype seen in patients.                 
A total of 24 sex-matched littermate paired mice (DNMT3AKO/+ n=12, 7 male, 5 female; WT               
n=12, 7 male, 5 female) across 3 time-points (8 weeks DNMT3AKO/+ n=4, WT n=4; 20 weeks                
DNMT3AKO/+ n=4, WT n=4; 25 weeks DNMT3AKO/+ n=4, WT n=4) were fixed in 4%              
paraformaldehyde through intracardiac perfusion. Decapitated mouse bodies were scanned at the           
Musculoskeletal Research Center at Washington University in St. Louis using a Faxitron Model             
UltraFocus100 Dual X-Ray machine. Bone lengths were measured using ImageJ. Data were            
taken over three age time-points: 8 weeks, 20 weeks, and 25 weeks of age for male and female                  
mice. There was no significant difference in bone lengths based upon sex, but there was a                
difference based by age. To normalize for this age effect, data were expressed as DNMT3AKO/+               
bone lengths normalized to the WT lengths within groups. This also mirrors how human data are                
presented. Left and right bones were measured and the larger was used for analysis.  
 
Experimental design 
Authenticated cell lines from ATCC (HEK293T, NEURO-2A) were used, and no mycoplasma            
contamination testing was needed. Sample sizes were chosen based upon previously published            
studies using similar techniques. Statistical tests and exclusion criteria (values beyond 2 standard             
deviations of the group mean) were similar to that of previously published studies and indicated               
in the appropriate methods. For all animal experiments, experimenters were blinded to genotype             
during data collection. No treatment conditions were used, so no samples or animals were              
allocated to experimental groups and no randomization was needed. Tests that assume equal             
variance were only run if group variances were similar, otherwise alternative tests were used. 
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3.8 Figures 

 

Figure 3.1. Disease-associated DNMT3A mutations disrupt distinct aspects of protein          
function. 

A. Schematic of human DNMT3A protein showing canonical domains and         
disease-associated mutations (Sanders et al., 2015; Tatton-Brown et al., 2018) that were            
tested in this study.  

B. Example immunoblot of DNMT3A mutant protein expression in Neuro-2a cells.  
C. Example images of DNMT3A protein immunocytochemistry from wild type and PWWP           

domain mutant in Neuro-2a cells. Scale bar = 20μm.  
D. Quantification of DNMT3A mutant protein localization (n=6-16 images; Generalized         

Linear Model test of percent nuclear expression per image for mutants compared to WT              
with Bonferroni correction).  

E. Schematic of in vitro methylation assay for DNMT3A mutant proteins isolated from            
HEK293T cells.  

F. Activity of DNMT3A mutant proteins in the in vitro methylation assay normalized to WT              
DNMT3A (set equal to 1) and GFP-only (set equal to 0) controls. (n=4-19; one-sample              
Student’s T-Test with Bonferroni correction).  

*, P<0.05; **, P<0.01; ***, P<0.001; #, P<0.0001. Bar graphs indicate mean and SEM.  
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Figure 3.2. Disease-associated DNMT3A mutations prevent buildup of neuronal CA          
methylation. 

A. Schematic of DNMT3A functional analysis in primary culture neurons. Cortical neurons           
are harvested from DNMT3Aflx/flx mice at E14.5 and cultured. After 3 days in vitro (DIV),               
neurons are virally transduced with Cre recombinase and WT or mutant FLAG-tagged            
DNMT3A. On DIV 12.5, DNA and RNA are collected. Equal DNMT3A mRNA            
expression is verified by qRT-PCR (Figure S1F) and DNA is used for whole genome              
bisulfite sequencing analysis.  

B. Relative mCA amount compared to Cre only (set equal to 0) and Cre+WT DNMT3A (set               
equal to 1) controls (n=4-11; one-sample Student’s T-Test with Bonferroni correction).  

*, P<0.05; **, P<0.01; ***, P<0.001; #, P<0.0001. Bar graphs indicate mean and SEM. 
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Figure 3.3. Heterozygous disruption of DNMT3A in vivo leads to growth and behavioral             
alterations. 

A. Body weight of DNMT3AKO/+ and WT mice at three developmental timepoints (Male            
P=0.038 genotype by age interaction effect, F(2,50)=3.494, n=6-18; Female P =0.0032          
genotype by age interaction effect, F(2,48)=6.498; Female P =0.0016 genotype effect,          
F(1,48)=11.18, n=5-17; two-way ANOVA).  

B. Lengths of femur and tibia bones measured by dual X-ray imaging shown as standard              
deviations from the WT mean for the DNMT3AKO/+ mice (n=12; paired Student’s            
T-Test).  

C. Total ambulations during 1-hour open-field testing, split into 10-minute bins (P=0.0008           
effect by genotype, F(1,46)=13.02, n=21,27; two-way repeated-measures ANOVA with         
Sidak’s multiple comparison test).  

D. Number of rearing events during 1-hour open-field testing, split into 10-minute bins            
(P=0.0103 effect by genotype, F(1,46)=7.161, n=21,27; two-way repeated-measures        
ANOVA with Sidak’s multiple comparison test).  

E. Total time spent in the center zone of field during open-field testing (P=0.0075, n=21,27;              
unpaired Student’s T-Test).  

F. Percent of time mice spent in the open arms compared to all arms during first day of                 
elevated-plus maze testing (P=0.0069; n=33,39; unpaired Student’s T-Test).  

G-I. Percent time spent freezing in  
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G. Conditioned fear training (Baseline: P=0.0071 effect by genotype, F(1,50)=7.897; Cue:          
P=0.0013 effect by genotype, F(1,50)=11.7; n=26; two-way repeated-measures ANOVA         
with Sidak’s multiple comparisons test),  

H. contextual fear trials (P=0.0215, n=26; unpaired Student’s T-Test), and  
I. cued fear trials (Before Cue: P=0.0606; After Cue: P=0.00014; n=26; unpaired Student’s            

T-Test).  
J. Quantification of marbles buried during 30 minutes of testing split into 5-minute bins             

(P=0.0374 effect by genotype, F(1,25)=4.834, n=14,13; two-way repeated-measures        
ANOVA with Sidak’s multiple comparison test).  

K. Number of ultrasonic calls from pup isolated from the nest for 3-minute testing at              
indicated developmental time points; P=0.0378 effect by genotype, F(1,285)=4.355, n=9-46;          
two-way ANOVA with Sidak’s multiple comparisons test.  

*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. Box plots contain 10th-90th percentiles of              
data, with remaining data represented as individual points. Line graphs and bar graphs indicate              
mean and SEM. 
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Figure 3.4. Global DNA methylation levels upon heterozygous loss of DNMT3A. 
A. Global mCG levels in DNA isolated from brain regions of 8-week old mice (left) 

(unpaired Student’s T-Test with Bonferroni correction), and developmental time course 

of global mCG in the cerebral cortex (right), as measured by sparse whole genome 

bisulfite sequencing (WGBS).  

B. Global mCA levels in DNA isolated from brain regions of 8-week old mice (left) 

(unpaired Student’s T-Test with Bonferroni correction), and developmental time course 

of global mCA in the cerebral cortex (right), as measured by sparse WGBS (P<0.0001 

effect by genotype, F(1,27)=1024; P <0.0001 effect by age F(5,27)=884.6; n=3-4; two-way 

ANOVA).  

Bonferroni corrected P-values indicated along the X-axis. *, P<0.05; ***, P<0.001. Line graphs 

indicate mean and SEM.   
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Figure 3.5. High-resolution analysis of DNA methylation changes in the DNMT3AKO/+           
cerebral cortex. 

A. Genome browser views of mCA and mCG in WT and DNMT3AKO/+ cerebral cortex as 

measured by high-depth WGBS. Broad view showing global reduction in mCA (left). 

Grey dashed line in mCA plots to facilitate visual comparison of global mCA levels 

between genotypes. Zoomed-in view of a DNMT3AKO/+ CG-hypo-DMR that overlaps an 
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enhancer (center) and a DNMT3AKO/+ CG-hypo-DMR at a CpG-island shore that overlaps 

with an adult-specific DMR (right). WT H3K27ac ChIP-seq signal (Clemens et al., 

2019), peaks of enhancer-associated H3K4me1 (Stamatoyannopoulos et al., 2012), peaks 

of promoter-associated H3K4me3 (Stamatoyannopoulos et al., 2012), CpG islands, and 

gene annotations (Haeussler et al., 2019) are shown below to illustrate overlap between 

DMRs and functional elements in the genome.  

B,C.Overlay of mCG signal for DMR regions shown in A.  

D. Violin plot of mCG/CG level (top) and percent reduction, (DNMT3AKO/+-WT)/WT, 

(bottom) in WT and DNMT3AKO/+ cerebral cortex across indicated classes of genomic 

regions. Mean mCG/CG levels per-replicate are overlaid as dots on the violin plot. (n=4 

per genotype; paired Student’s T-Test with Bonferroni correction).  

E. Heat map of CG DMRs called in the DNMT3AKO/+ cortex. Biological replicates (B1-B4) 

are indicated.  

F. Observed and background (from resampled DMRs, see methods) overlap between 

DNMT3AKO/+ cortex CG-DMRs and various genomic regions (Fisher’s Exact Test).  

G. Violin plot of mCA/CA level (top) and percent reduction, (DNMT3AKO/+-WT)/WT, 

(bottom) in WT and DNMT3AKO/+ cerebral cortex across indicated classes of genomic 

regions. Mean mCA/CA levels per-replicate are overlaid as dots on the violin plot. (n=4; 

paired Student’s T-Test with Bonferroni correction).  

*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. Bar graphs indicate mean and SEM 

across biological replicates.  
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Figure 3.6. DNMT3AKO/+ enhancer dysregulation and transcriptomic pathology overlaps         
with MeCP2 mutants. 

A. Genome browser view of DNA methylation and H3K27ac ChIP-seq data from WT and 

DNMT3AKO/+ cerebral cortex (top). Overlaid H3K27ac signal and mCA/CA levels at 

enhancer regions highlighted in blue that were identified as dysregulated enhancers upon 

disruption of mCA or MeCP2 (Clemens et al., 2019) (bottom).  

B. Mean mCA sites/kb in WT and DNMT3AKO/+ cortex (top) and number of mCA sites/kb 

lost in the DNMT3AKO/+ cortex (bottom) for enhancers significantly dysregulated in 
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MeCP2 mutants (**, P<0.01; ***, P<0.001; n=4; paired Student’s T-Test with 

Bonferroni correction).  

C. Boxplot of fold-change in H3K27ac signal in DNMT3A Baf53b-cKO and the 

DNMT3AKO/+ cortex for enhancers defined as significantly dysregulated in MeCP2 

mutants (***, P<10-8; **** P <10-12; n=5 biological replicates of DNMT3AKO/+ and WT; 

Wilcoxon test).  

D. Heatmap of changes in H3K27ac signal for indicated mutants across deciles of enhancers 

sorted by wild-type mCA or mCG sites/kb (P<2.2e-16, DNMT3AKO/+ mCA/kb; P <2.2e-16, 

DNMT3AKO/+ mCG/kb; Spearman Rho correlation).  

E. Observed versus background (estimated by resampling, see methods) overlap of 

significantly dysregulated genes (padj. < 0.1) in the DNMT3AKO/+ and genes dysregulated 

in DNMT3A Baf53b-cKO or MeCP2 mutant mice (***, P<e-5; ****, P <e-10; 

hypergeometric test).  

F. Significance of gene set expression changes in the indicated direction in the 

DNMT3AKO/+ cortex for GAGE analysis of gene sets identified as dysregulated in 

DNMT3A Baf53b-cKO or MeCP2 mutant mice (Clemens et al., 2019).  

Note: legend is shared in B and C. Box plots indicate median and quartiles. Bar graphs indicate 

mean and SEM.  
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Figure 3.7. Gene dysregulation in the DNMT3AKO/+ overlaps with other ASD/NDD           
disorders. 

A. GAGE analysis of expression changes in DNMT3AKO/+ for dysregulated gene sets 

identified in studies of NDD mouse models (Gompers et al., 2017; Katayama et al., 2016; 

Sessa et al., 2019; Tilot et al., 2016) (n=7 biological replicates of DNMT3AKO/+ and WT).  

B. GAGE analysis of expression changes in DNMT3AKO/+ for gene sets identified in studies 

of human ASD. ASD module 12 (synaptic) and 16 (immune) were previously identified 

in weighted-gene coexpression analysis of human ASD brain (Voineagu et al., 2011), and 

ASD-dysregulated genes were previously identified (Abrahams et al., 2013; Gandal et al., 

2018).  
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Figure 3.8 Related to Figures 3.1 and 3.2. 
A. Example images of DNMT3A mutant protein immunocytochemistry in Neuro-2a cells. 

Scale bar = 20μm.  
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B. Full example immunoblot from Figure 1B with the truncated S312fs11x DNMT3A 

mutant protein indicated with an asterisk.  

C. Quantification of immunoblot signal of DNMT3A (α-FLAG) from mutant proteins 

(n=6-30; unpaired Student’s T-Test with Bonferroni correction). Though PWWP mutants 

show reduced protein expression, the remaining protein expression was adequate to 

assess cellular localization.  

D. Genome wide mCA levels over time in WT neuronal cortical cultures, as measured by 

sparse WGBS (P=0.0035 effect by time, F(3,4)=29.45, n=2; one-way ANOVA).  

E. Genome-wide mCA levels in DNMT3A mutant add-back cortical cultures at DIV 12.5 

(n=7-11; unpaired Student’s T-Tests with Bonferroni correction).  

F. qRT-PCR of Dnmt3a normalized to Actb for samples analyzed by WGBS. (n=4-11; 

one-sample Student’s T-Test with Bonferroni correction).  

G. Genome wide mCG levels over time in neuronal cortical cultures, as measured by sparse 

WGBS (P>0.05 effect by time, F(3,4)=2.722, n=2; one-way ANOVA).  

H. Genome-wide mCG levels in DNMT3A mutant add-back cortical cultures at DIV 12.5 

(P>0.05; n=7-11; planned unpaired Student’s T-Tests with Bonferroni correction).  

***, P<0.001; ****, P<0.0001. Bar graphs indicate mean and SEM. Box plots contain 10th-90th 

percentiles of data, with remaining data represented as individual points.  
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Figure 3.9 Related to Figures 3.3,3.4,3.5,3.6 and 3.7. 
A. Normalized Dnmt3a mRNA and protein expression from 2-week cortices of          

DNMT3AKO/+ and wild-type littermates (mRNA n=5, protein n=4, unpaired Student’s          
T-Test).  

B. Protein expression of DNMT3A normalized to α-Tubulin measured by western blotting           
for cerebral cortex of DNMT3AKO/+ and wild-type littermates over developmental time           
(P=0.0157 effect by genotype, F(1,16)=7.303, n=2-5; two-way ANOVA).  

C. Protein expression of DNMT3A normalized to α-Tubulin measured by western blotting           
for hippocampus, striatum, and cerebellum (P=0.0010 effect by genotype, F(1,18)=15.48,          
n=4; two-way ANOVA).  

*, P<0.05; ****, P<0.0001. Line plots indicate mean and SEM. Box plots contain 10th-90th              
percentiles of data, with remaining data represented as individual points.  
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Figure 3.10 Related to Figure 3.3. 

A,B Measurements of A femur and B tibia by dual x-ray imaging in WT and DNMT3AKO/+               
mice at 8, 20, and 25 weeks of age. Lines indicate mean and SEM, with points indicating                 
individual animals.  

C Standard deviations from WT mean for DNMT3AKO/+ sum of femur and tibia. (n=12;             
paired Student’s T-Test). Bar plot indicates mean and SEM.  

D Example dual x-ray image of mouse body with femur and tibia indicated.  
E Example of reconstructed skull from µCT imaging with landmarks used for craniofacial            

analysis shown. Red line indicates distances that are significantly larger in the WT             
compared to the DNMT3AKO/+, while blue line indicates distance that is significantly            
smaller in the WT compared to the DNMT3AKO/+ (P <0.05).  

F,G Principal component analysis of F cranial and G mandibular shape shows no clear             
separation between groups along PC1 or PC2.  

**, P<0.01. Bar graph indicates mean and SEM.   
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Figure 3.11 Related to Figure 3.3. 
(A-J) Comparison of DNMT3AKO/+ and WT mice across a battery of sensorimotor assays.             
DNMT3AKO/+ mice show no significant difference in (A) walking initiation, or latency to fall off               
(B) ledge or (C) platform. (D-E) DNMT3AKO/+ mice show no difference compared to WT              
littermates in motor coordination as evidenced by time on a continuous (D) and accelerating (E)               
rotarod. (F) DNMT3AKO/+ mice show no difference in grip strength compared to WT littermates              
evidenced by no change in time on an inverted screen. (G) Mean % pre-pulse inhibition shows                
no significant difference between genotypes. DNMT3AKO/+ mice show a significant increase in            
time to (H) climb down a pole (P=0.016, n=21,27; unpaired Student’s T-Test), and to the top of                 
a (I) 60° inclined screen (P=0.039, n=21,27; unpaired Student’s T-Test) and a (J) 90° inclined               
screen (P=0.045, n=21,27; unpaired Student’s T-Test). (K) DNMT3AKO/+ mice show no deficit            
in elevated plus maze exploration as measured by percent entries into open arms. (L) Percent               
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time spent freezing in contextual fear trials (P=0.0215 effect by genotype, F(1,50)=5.633, n=26;             
two-way repeated-measures ANOVA), and (M) cued fear trials (Baseline: P=0.0606 effect by            
genotype, F(1,50)=3.685; Cue: P <0.0001 effect by genotype, F(1,50)=17.03; n=26; two-way          
repeated-measures ANOVA with Sidak’s multiple comparisons test). (N) Shock sensitivity          
during conditioned fear test as indicated by the minimum shock needed to exhibit a behavioral               
response in mice shows no significant difference between genotypes. (O-R) Path distance to             
escape platform and swim speeds in the Morris water maze task. DNMT3AKO/+ mice show              
increased path distance to escape platform in both (O) cued trials (P=0.0012 effect by genotype,               
F(1,46)=11.93; P =0.0433 interaction effect of genotype and trial block, F(3,138)=2.784; n=21,27;           
two-way repeated-measures ANOVA) and (P) place trials (P=0.0408 interaction effect of           
genotype and trial block, F(4,184)=2.55 n=21,27; two-way repeated-measures ANOVA). No          
significant difference is seen in swimming speed during (Q) cued trials (P=0.0634 effect by              
genotype, F(1,46)=3.619 n=21,27; two-way repeated-measures ANOVA) and (R) place trials          
(P=0.098 effect by genotype, F(1,46)=2.845, n=21,27; two-way repeated-measures ANOVA). (S)          
DNMT3AKO/+ mice show no significant difference in time spent in the target quadrant of a               
Morris water maze compared to WT littermates. (T) DNMT3AKO/+ mice show a trend towards a               
reduction in platform crossings in the probe trial (P=0.0609; n=21,27; unpaired Student’s            
T-Test). (U) After 30 minutes, DNMT3AKO/+ mice have significantly fewer total marbles buried             
(P=0.0438; n=13,14; unpaired Student’s T-Test).  
*, P<0.05; **, P<0.01; ****, P<0.0001. Bar graphs and line plots indicate mean and SEM. Box                
plots contain 10th-90th percentiles of data, with remaining data represented as individual points.  
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Figure 3.12 Related to Figure 3.3. 

A-D Social approach results from moderate-light apparatus show reduced activity in           
DNMT3AKO/+ mice.  

A Quantification of time spent in zones closest to each cup during phase with empty cup               
and novel conspecific (Empty, P=0.0026; Novel, P=0.0095; n=33,39; unpaired Student’s          
T-Test).  

B Time spent in zones closest to novel mouse and familiar mouse (Familiar, P=0.29; Novel,              
P=0.24; n=33,39; unpaired Student’s T-Test).  

C Preference Index for novel conspecific in the 3-chambered social approach task for WT             
and DNMT3AKO/+ mice using time spent in zones as calculated:          
Mouse/(Mouse+Object)x100 or Novel/(Novel+Familiar)x100 within each animal.  

D Total distance traveled during the 3-chambered social approach task for WT and            
DNMT3AKO/+ mice shows a broad reduction of distance traveled across all trials by             
DNMT3AKO/+ mice (P =0.018 effect by genotype, F(1,70)=5.862, n=33,39; two-way         
ANOVA).  

E-H Social approach results from low-light apparatus with minimal experimenter presence           
show no differences between wild-type and DNMT3AKO/+ mice.  

E Quantification of time spent in zones closest to each cup during phase with empty cup               
and novel conspecific (Empty, P=0.85 Novel, P=0.49; n=19,18; unpaired Student’s          
T-Test).  

F Time spent in zones closest to novel mouse and familiar mouse (Familiar, P=0.75; Novel,              
P=0.86; n=19,18; unpaired Student’s T-Test).  

G Preference Index for novel conspecific in the 3-chambered social approach task shows no             
change for WT and DNMT3AKO/+ mice calculated using the same approach as C.  
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H Total distance traveled during the 3-chambered social approach task for WT and            
DNMT3AKO/+ mice shows no reduction of distance traveled across trials by DNMT3AKO/+            
mice (P=0.77 effect by genotype, F(1,105)=0.08, n=19,18; two-way ANOVA).  

**, P<0.01. Box plots contain 10th-90th percentiles of data, with remaining data represented as              
individual points.  
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Figure 3.13 Related to Figures 3.4,3.5, and 3.6. 

A. Boxplots of CG methylation over postnatal development for regions called as having            
higher methylation in the frontal cortex of fetal versus adult tissue (Fetal-Specific DMR),             
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or called as having higher methylation in the frontal cortex of the adult versus fetal tissue                
(Adult-specific DMR). DMRs from Lister et al. 2013, methylation data from Stroud et al.              
2017. (Wilcoxon rank sum test with Bonferroni correction)  

B. Boxplots of cortical methylation of WT and DNMT3A Nestin-cKO (Stroud et al. 2017) at              
8 weeks postnatal within developmental DMRs shown in A (Wilcoxon rank sum test with              
Bonferroni correction).  

C. CG/CG (left) and hmCG/CG (right) from WT and DNMT3AKO/+ cortices in various            
genomic contexts as measured by oxidative bisulfite sequencing (paired Student’s T-Test           
with Bonferroni correction).  

D. Boxplots of cortical methylation of WT and DNMT3AKO/+ at 8 weeks postnatally within             
DMRs defined in the DNMT3AKO/+ model. DMRs are called on this data set, so no               
additional statistics were run on genotype differences.  

E. Heatmap of log2 odds-ratios of observed and background (derived from resampling, see            
methods) overlap between DNMT3AKO/+ cortex CG-DMRs and various genomic regions.          
Color indicates magnitude of enrichment (Observed/resampled), number indicates -log10         
p-value for Fisher-exact tests between observed and resampled values.  

F. Smooth scatter plots of WT and DNMT3AKO/+ mCA/CA for classes of genomic regions.  
G. Boxplot of fold-changes in H3K27ac signal in the DNMT3AKO/+ and WT cortex for             

enhancers found within TADs with high (top 10%) and low (bottom 10%) average levels              
of mCA/CA.  

H. Boxplot of fold-changes in H3K27ac signal in the DNMT3AKO/+ and WT cortices from             
enhancers containing hypo/hyper CG-DMRs, and from enhancers containing no DMRs.  

***, P<0.001; ****, P<0.0001; #, P<2.2e-16. Box plots indicate median and quartiles.  
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Figure 3.14 Related to Figures 6 and 7. 
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A. Volcano plot of DESeq log2 fold changes of the DNMT3AKO/+ versus WT. Genes             
reaching a significance of padj.<0.1 are colored in red.  

B. Boxplot of DESeq log2 fold changes from noncoding RNAs from RNAcentral, organized            
by RNA type.  

C. Top ten up- and down-regulated Gene Ontology terms from Broad GSEA Molecular            
Signatures Database version 7.0 (Subramanian et al., 2005). All terms are significant at             
an FDR<0.1.  

D. Mean mCA sites/kb in WT and DNMT3AKO/+ cortex (top) and number of mCA sites/kb              
lost in the DNMT3AKO/+ cortex (bottom) for enhancers found within genes called as             
significantly dysregulated in the DNMT3AKO/+ (n=4; paired Student’s T-Test with          
Bonferroni correction).  

E. Boxplot of fold-change in H3K27ac signal in enhancers found within genes called as            
significantly dysregulated in the DNMT3AKO/+ (n=5 biological replicates of DNMT3AKO/+          
and WT; Wilcoxon test)  

F. Boxplot of DESeq log2 fold changes of in gene expression in the DNMT3AKO/+ versus              
WT, for genes containing enhancers with hypo-CG-DMRs, genes containing enhancers          
with hyper-CG-DMRs, and all other genes containing enhancers.  

G. GAGE analysis of developmental expression modules (Parikshak et al., 2013).          
Significant modules (q-value<0.1) are colored in red (left). Expression matched          
resampling of each gene set was performed 1,000 times and analyzed using GAGE for              
enrichment in DNMT3AKO/+ fold-change data (gray violin). This was compared with the            
true gene set p-value (red point) to test for significance (right). Only the direction of               
dysregulation in which the gene sets showed the highest significance (i.e. DNMT3AKO/+            
greater or less) is shown.  

H. Expression matched resampling of GAGE analysis for gene sets displayed in Figures 6             
and 7. Only the direction of dysregulation in which the gene set showed significance (i.e.               
DNMT3AKO/+ greater or less) is shown.  

Note: legend is shared in D and E. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.  
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Chapter 4: Conclusions and future directions 

This dissertation begins to interrogate the influences on mCA deposition genome-wide, 

and how the megabase scale of topologically associating domains enables MeCP2 to repress 

many enhancers within highly methylated domains. As these enhancers preferentially contact the 

genes they are in, repression of these enhancers represses long, highly methylated genes that are 

likely to contain multiple enhancers (Clemens et al. 2020). This method of neural regulation may 

apply to multiple disease models, as we find that a mouse heterozygous knockout of DNMT3A 

(modeling TBRS) exhibits a 50% decrease in mCA with minor effects on mCG (Christian et al. 

2020). These methylation reductions contribute to overlapping gene expression and enhancer 

activity changes with the MeCP2 knockout, as MeCP2 is likely less able to bind to what were 

previously highly methylated enhancers.  

 

In preliminary research I have leveraged a library of existing ChIP-seq and bisulfite-seq 

data (Stroud et al., 2017) in order to interrogate the exact factors that affect mCA deposition in 

the genome. My work first verified that the observed pattern of a negative correlation between 

gene expression and that gene’s mCA levels. However, this relationship is known to be weak, 

with many highly expressed yet highly methylated genes, and lowly expressed, lowly methylated 

genes throughout the genome. Correlations between genic mCA and expression are also 

relatively low, with a Pearson r value of -0.18. Previous work noted that the methylation of the 

surrounding TAD can have large impacts on gene methylation (Clemens et al., 2020), so I used 
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both factors to build a linear model on both expression and TAD methylation (Figure 4.1). This 

model showed significant improvement over using either TAD methylation or expression alone 

(Pearson r2 = 0.33809). In addition, the model demonstrated a lowly significant interaction term 

between TAD methylation and gene expression, indicating that the expression-associated 

demethylation effect occurs independently from the amount of TAD methylation around the 

gene.  

 

While the expression-mCA inverse relationship has been noted in the literature (Stroud et 

al. 2017), less is known regarding the specific factors that might be associated with gene 

expression or TAD methylation that might impact genic mCA. For example, H3K36me3 within 

gene bodies is associated with expression (Kolasinska-Zwierz et al., 2009), but the presence of 

phosphoserine-5 polymerase II is the most direct indication of active transcription through the 

region (Komarnitsky et al. 2000; Ahn et al. 2004; Phatnani and Greenleaf 2006). Thus, it is 

important to determine exactly which ChIP-seq signals and histone marks may have a direct 

effect on DNMT3A binding and mCA deposition within the gene body. To this end, I analyzed a 

variety of ChIP-seq signals generated in 2-week postnatal mouse cortex (Stroud et al., 2017) and 

tested the performance of linear models on all pairwise comparisons of each of the ChIP marks 

(Figure 4.2). This analysis found that the predictive power of each variable was relatively 

dispersed, but several factor-pairs consistently resulted in better models than other signals. 

Phosphoserine Pol II generated well-performing models with a variety of paired signals, for 

instance, but H3K36me3 did not add much accuracy to many variables, suggesting that the 

relationship between expression and mCA is not mediated by H3K36me3 presence. 
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Interestingly, H3K9me2, while not generally well-predicting, makes the most predictive model 

of the set specifically when combined with H3K27me2, suggesting that the H3K9me2 

relationship to mCA is dependent on the amounts of H3K27me2 within the region.  

 

The analysis of these ChIP signals indicated that DNMT3A binding could not be 

predicted solely by a few biological signals, and that the relationship between these factors and 

mCA deposition may be more complicated than can be modeled linearly. To circumvent these 

limitations, I trained a random forest (RF) model with 5-fold cross-validation (Liaw et al. 2002; 

Stone 1974; Dietterich 1998) on all ChIP-seq marks previously used in my model. This approach 

successfully predicted mCA patterns with high accuracy (Pearson r2 = 0.685911), and feature 

importances roughly matched with the performance of each factor in linear modeling, with the 

most important factors being phosphoserine Pol II, and H3K27me2. Because it had been 

previously noted that the methylation of extragenic regions depended on different factors than 

the methylation of intragenic regions (Stroud et al., 2017), I also trained and tested a random 

forest model on extragenic data, as well as both extragenic and intragenic data. Many features 

between intragenic and extragenic data shared similar amounts of importance, but the most 

important factors between extragenic and intragenic regions were generally not shared. 

H3K27me2 and phosphoserine Pol II had minimal importance in the extragenic data, which had 

H3.3 as the best predicting mark directing methylation. This result may be driven by a bimodal 

relationship of mCA and H3.3, as there is a high correlation of H3.3 to mCA within the low 

levels of H3.3 in extragenic regions, but a negative correlation when H3.3 reaches higher levels 

within gene bodies (figure 4.3). 
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While the predictive power of the random forest model is higher than what could be 

achieved from a linear model or from any single factor individually, there still remains a large 

amount of variance unexplained (~30%). This gap could be due to noise in the measurement of 

mCA or ChIP signal, but it could also be due to a lack of relevant biological information, such as 

a chromatin mark or protein that recruits DNMT3A that wasn’t assessed in the original set of 

factors used. A particularly relevant factor to assess and test is H3K36me2, which has recently 

been suggested to bind DNMT3A in non-neural cells (Weinberg et al., 2019). In addition to the 

recent work linking DNMT3A and H3K36me2, mutations in NSD1, a histone methyltransferase 

responsible for depositing H3K36me2, cause Sotos syndrome, a disease with overlapping 

features with TBRS (Kurotaki et al., 2002). Further linking Sotos syndrome to mCA is evidence 

that methylation in general is disrupted in Sotos syndrome patient blood (Choufani et al., 2015). 

To examine if H3K36me2 occupancy could be used to predict mCA levels, we generated 

H3K36me2 ChIP-seq data from 2-week cortex, and I used this data to predict mCA, along with 

the other data generated previously. The results were somewhat surprising, as although 

H3K36me2 was the most important variable reported in a random forest model, its addition did 

not give the model any noticeable improvement in accuracy. This may be an effect of the high 

amount of noise in this additional assay, or an indication that the information that would be 

added by H3K36me2 could be interpolated from the many other factors used in the model.  

 

In order to define a minimal set of factors that could accurately predict mCA, and to see 

if H3K36me2 would be included in this minimal set, I implemented a recursive feature addition 
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approach that assessed the performances of models given different numbers of features. This 

approach found that 6-8 factors were required to predict mCA with 96-99% of the power of the 

full model, highlighting their importance to DNMT3A and mCA deposition. Further research 

focused on these factors has the potential to uncover critical regulators of mCA patterning across 

the genome. 

 

Given the known links between H3K36me2 and DNMT3A, the overlapping phenotypes 

exhibited in disruptions of H3K36me2 and mCA establishers, and the degree to which mCA 

patterns rely on this histone mark, there is a pressing need to verify the link between H3K36me2 

and mCA. Research into the relationship between NSD1 and the neuronal epigenome could also 

shed light into the mechanisms of Sotos syndrome and whether it is affected by alterations in 

mCA. To assess the effects of H3K36me2 loss on mCA, we are planning to generate a knockout 

of NSD1 within neurons and assess the transcriptomic and epigenomic effects this has within the 

brain. We predict that, unlike mutations of DNMT3A, that global mCA levels in the brain will be 

largely unchanged. However, it is likely that the patterns and distribution of mCA throughout the 

genome will be altered, and regions rich in H3K36me2 in wildtype conditions will have 

substantially lower methylation levels in the NSD1 knockout. Enhancers and genes within these 

newly demethylated regions would then be expected to increase in activity and expression, 

overlapping with effects observed in the DNMT3A and MeCP2 mutants. If we observe these 

effects, it will establish a previously unrecognized function for H3K36me2 in guiding mCA 

deposition, and provide direct evidence that mCA may be disrupted in another 

neurodevelopmental disorder, Sotos syndrome. 
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To further test the biological significance of the minimal set of mCA-predicting factors 

identified by machine learning approaches, we are also planning on assessing these marks in a 

separate region of the brain, the cerebellum, and applying a random forest model, previously 

trained on these marks within the cortex. The accuracy of these predictions, versus the accuracy 

of predictions made on a model trained on cerebellar data, will then tell us if the relationships 

between mCA and these different biological variables are consistent between brain regions. This 

approach would enable us to computationally verify the biological importance of these factors 

without requiring a lengthy biochemical assay or generating numerous knockout animals. 

 

In conclusion, my dissertation work finds that a small number of factors are predictive of 

neuronal mCA deposition, and are likely influenced by TADs, which are known to be regions of 

consistency of many histone modifications. This TAD-level of variance then establishes 

~100-kilobase sized regions of enriched mCA, which have the potential to contain tens or 

hundreds of enhancers and other regulatory elements. MeCP2 can bind and repress these 

enhancers en-masse in order to repress long, highly-methylated genes, which are preferentially 

linked to and activated by the many highly-methylated enhancers that they contain. This 

mechanism of repression by MeCP2 may apply to multiple neurodevelopmental disorders, each 

of which may alter different steps in the mCA establishment-readout pathway, generating 

different, but overlapping transcriptomic, epigenomic, and phenotypic features. More research 

into the proteins that surround and interact with this pathway has the potential to shed insight 

into a variety of neurodevelopmental disorders, as they may be linked to mCA-based regulation.  
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4.1 Figures 
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Figure 4.1. Machine learning approaches find a minimal set of mCA predictive factors 

A. Conceptual illustration of linear model combining expression and TAD mCA levels 

(mC/CA) to predict genic mCA levels. Lines linking components of the linear model are 

labeled with their weighted coefficients. Accuracy of final model fit is Pearson r2 = 

0.33809 

B. Heatmap of r2 values for linear models using ChIP-seq signals to fit mCA levels at genic 

regions, given combinations of 2 factors. Diagonal of matrix is the r2 value of a linear 

model given only that single factor. Models built with 5kb intragenic bins of the genome, 

placed at least 3kb away from transcriptional start sites. 

C. Density scatter plots of input-normalized H3.3 ChIP-seq signal and mCA levels at 5kb 

regions across the genome, either within or outside of genes. 

D. Line plot, plus bar plots, of the mean accuracy and feature importances of random forest 

prediction models, for increasing numbers of variables. Only the 10 best performing 

combinations of variables are plotted. Mean feature importances are calculated from their 

feature importances in each of the 10 best performing combinations of variables - a 

model that does not use that feature is considered to be an importance of 0. Mean feature 

importances are scaled to the performance of the models used, for readability, and all 

have total sums of importances of 1, prior to scaling.  

All analysis shown was carried out for mouse cerebral cortex. ChIP-seq data were generated 

from 2-week postnatal mice, and bisulfite-seq data is from 8-week postnatal cortex. H3K36me2 

ChIP-seq data was generated for this study, and the rest of the dataset was generated by (Stroud 

et al. 2017)  
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