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ABSTRACT OF THE DISSERTATION

Deep Learning for Task-Based Image Quality Assessment in Medical Imaging

by

Weimin Zhou

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2021

Professor Joseph A. O’Sullivan, Chair

Professor Mark A. Anastasio, Co-Chair

It has been advocated to use objective measures of image quality (IQ) for assessing and

optimizing medical imaging systems. Objective measures of IQ quantify the performance

of an observer at a specific diagnostic task. Binary signal detection tasks and joint signal

detection and localization (detection-localization) tasks are commonly considered in medical

imaging. When optimizing imaging systems for binary signal detection tasks, the performance

of the Bayesian Ideal Observer (IO) has been advocated for use as a figure-of-merit (FOM).

The IO maximizes the observer performance that is summarized by the receiver operating

characteristic (ROC) curve. When signal detection-localization tasks are considered, the IO

that implements a modified generalized likelihood ratio test (MGLRT) maximizes the observer

performance as measured by the localization ROC (LROC) curve. However, computation of

the IO test statistic generally is analytically intractable. To address this difficulty, sampling-

based methods that employ Markov-Chain Monte Carlo (MCMC) techniques have been

proposed. However, current applications of MCMC methods have been limited to relatively

simple stochastic object models (SOMs). When the IO is difficult or intractable to compute,

the optimal linear observer, known as the Hotelling Observer (HO), can be employed to

evaluate objective measures of IQ. Although computation of the HO is easier than that of the

xvii



IO, it can still be challenging or even intractable because a potentially large covariance matrix

needs to be estimated and subsequently inverted. In the first part of the dissertation, we

introduce supervised learning-based methods for approximating the IO and the HO for binary

signal detection tasks. The use of convolutional neural networks (CNNs) to approximate the

IO and the use of single layer neural networks (SLNNs) to directly estimate the Hotelling

template without computing and inverting covariance matrices are demonstrated. In the

second part, a supervised learning method that employs CNNs to approximate the IO for

signal detection-localization tasks is presented. This method represents a deep-learning-based

implementation of a MGLRT that defines the IO decision strategy for signal detection-

localization tasks.

When evaluating observer performance for assessing and optimizing imaging systems by use

of objective measures of IQ, all sources of variability in the measured image data should

be accounted for. One important source of variability that can significantly affect observer

performance is the variation in the ensemble of objects to-be-imaged. To describe this

variability, a SOM can be established. A SOM is a generative model that can produce an

ensemble of simulated objects with prescribed statistical properties. In order to establish

a realistic SOM, it is desirable to use experimental data. Generative adversarial networks

(GANs) hold great potential for establishing SOMs. However, images produced by imaging

systems are affected by the measurement noise and a potential reconstruction process.

Therefore, GANs that are trained by use of these images cannot represent SOMs because

they are not established to learn object variability alone. An augmented GAN architecture

named AmbientGAN that includes a measurement operator was proposed to address this

issue. However, AmbientGANs cannot be immediately implemented with advanced GAN

training strategies such as progressive growing of GANs (ProGANs). Therefore, the ability

of AmbientGANs to establish realistic and sophisticated SOMs is limited. In the third part

xviii



of this dissertation, we propose a novel deep learning method named progressively growing

AmbientGANs (ProAmGANs) that incorporates the advanced progressive growing training

procedure and therefore enables the AmbientGAN to be applied to realistically sized medical

image data. Stylized numerical studies involving a variety of object ensembles with common

medical imaging modalities are presented.

Finally, a novel sampling-based method named MCMC-GAN is developed to approximate

the IO. This method applies MCMC algorithms to SOMs that are established by use of

GAN techniques. Because the implementation of GANs is general and not limited to specific

images, our proposed method can be implemented with sophisticated object models and

therefore extends the domain of applicability of the MCMC techniques. Numerical studies

involving clinical brain positron emission tomography (PET) images and brain magnetic

resonance (MR) images are presented.
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Chapter 1

Introduction

The goals of this dissertation are to investigate and develop deep learning approaches to

facilitate the assessment and optimization of imaging systems and data-acquisition designs by

use of objective measures of image quality (IQ). In this chapter, a brief overview of objective

measures of IQ and motivations of the dissertation are presented.

1.1 Overview and Motivation

Medical imaging systems and data-acquisition designs are commonly assessed and optimized

by use of objective measures of image quality (IQ) that quantify the performance of an

observer at specific tasks [9, 68, 81, 82, 96, 118, 119, 123, 125]. Common diagnostic

tasks in medical imaging include signal detection tasks (e.g., detection of a tumor) and

signal detection-localization tasks (e.g., joint detection and localization of a tumor). The

receiver operating characteristic (ROC) curve is commonly employed to summarize observer

performance on binary signal detection tasks [9]. When optimizing imaging systems for

binary signal detection tasks, the performance of the Bayesian Ideal Observer (IO) has been

1



advocated for use in computing a figure-of-merit (FOM). In this way, imaging systems can

be optimized so that the amount of task-specific information in the measured image data is

maximized. The IO implements a test statistic that can be any monotonic transformation

of the likelihood ratio and maximizes the observer performance as measured by the area

under the ROC curve (AUC) [9]. When signal detection-localization tasks are considered, the

localization ROC (LROC) curve can be employed to summarize observer performance, and

the IO that implements a modified generalized likelihood ratio test (MGLRT) maximizes the

observer performance as measured by the area under the LROC curve (ALROC) [62]. The

IO performance measured by the ALROC can be used to provide a FOM for assessing and

optimizing imaging systems for signal detection-localization tasks. The IO performance can

also be employed to assess the efficiency of the human observer and other model observers [18].

However, computation of the IO test statistic is analytically intractable in the majority of

cases. Sampling-based methods that employ Markov-Chain Monte Carlo (MCMC) techniques

have been developed to numerically estimate likelihood ratios [68]. However, to properly

implement MCMC methods, many practical issues such as the design of proposal density

function from which the Markov chain can be efficiently generated need to be addressed.

Current applications of MCMC methods have been limited to relatively simple stochastic

object models (SOMs) such as a lumpy object model [68, 85], a binary texture model [2]

and a parametrized torso phantom [50]. The applicability of the MCMC methods to other

more sophisticated SOMs remains under-explored. Other strategies that employ the Fisher

information with surrogate FOMs have been developed for circumventing the difficulty of the

IO computation [23, 27, 56].

When the IO test statistic is difficult to compute, the optimal linear observer, known as the

Hotelling Observer (HO), can be employed to assess and optimize imaging systems and data-

acquisition designs [9]. The HO is optimal in the sense that it maximizes the signal-to-noise

2



ratio (SNR) of the test statistic among all linear observers [9]. Although the HO computation

is typically easier than the IO computation, it is not without any challenge. Specifically,

the implementation of the HO requires the estimation and inversion of a covariance matrix,

which can be computational challenging and even intractable when high-dimensional image

data are considered. To circumvent this limitation, dimensionality reduction methods that

employ channel mechanisms have been developed [9, 16, 38, 69, 81]. However, to properly

implement such methods for approximating the HO, the design of efficient channels that can

preserve task-specific information in the channelized data needs to be addressed.

Supervised learning methods hold significant promise for designing and implementing model

observers [3, 16, 75, 107]. Imaging systems and data-acquisition designs are commonly

assessed and optimized via computer-simulation. In such applications, large amounts of

data can be simulated for training complicated inference models to be used for assessing

objective measures of IQ. It is known that artificial neural networks (ANNs) that possess

sufficient computational capacities can approximate any continuous function [54]. Therefore,

in principle, ANNs can be trained to approximate functions that compute test statistics

of model observers. A previous work demonstrated the ability of fully-connected neural

networks (FCNNs) to approximate the IO acting on low-dimensional feature vectors that are

extracted from image data [68]. However, because each neuron in FCNNs is fully connected

to all neurons in the previous layer, the dimension of the input layer and the depth of the

network that can be trained effectively are limited. As such, FCNNs do not scale well to

large dimensional data and are not well suited to be employed for approximating the IO that

directly acts on image data.

Convolutional neural networks (CNNs) have been developed to circumvent this limitation, and

they have achieved success in many image classification tasks [22, 40, 70, 71]. In Chapter 3,

supervised learning methods that employ CNNs to approximate the IO that directly acts on
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image data for binary signal detection tasks are introduced. Supervised learning methods that

employ single-layer neural networks (SLNNs) to approximate the HO are also described. This

method enables a direct estimation of the Hotelling template without explicitly estimating

and inverting covariance matrices. In Chapter 4, a supervised learning method that employs

CNNs to approximate the IO for signal detection-localization tasks are presented. This

method represents a deep-learning-based implementation of the IO decision strategy defined

by a MGLRT.

When the performance of an observer at specific tasks is evaluated for assessing and optimizing

imaging systems, all sources of variability in the measured image data should be accounted for.

The variation in the ensemble of objects to-be-imaged is an important source of variability

that can significantly limit observer performance. This variability can be described by a

stochastic object model (SOM). A SOM is a generative model that can produce an ensemble

of objects with prescribed statistical properties. Previously established SOMs include lumpy

object models [91] , clustered lumpy object models [13], and binary texture models [2]. Other

mathematical or voxelized computational phantoms [19, 28, 72, 94, 95, 109, 112, 126] have

been proposed for simulating medical images. However, the majority of these phantoms

were established by use of only few subjects. Therefore, they may not be able to completely

and accurately describe the statistical properties of the ensemble of objects. A variety of

anatomical shape models have also been developed to describe common geometric features

and geometric variability for shape analysis applications [4, 29, 30, 37, 47, 51, 97, 103].

However, to date, these models have not been systematically explored for the purpose of

establishing SOMs that capture realistic object textures and anatomical variations for use in

assessing objective measures of IQ.

In order to establish SOMs that capture realistic object variability, it is desirable to use

experimental data. However, SOMs that are defined to provide an in silico representation
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of the ensemble of objects to-be-imaged should be independent of the imaging system,

measurement noise and reconstruction algorithm. To address this need, Kupinski et al.

proposed an explicit generative modeling method to estimate parameters associated with

some specific SOMs by use of noisy imaging measurement data and well-characterized

imaging system models [66]. Implementations of this method to establish lumpy and clustered

lumpy object models have been demonstrated [66]. However, this method has been limited

to situations where the characteristic function of the imaging measurement data can be

analytically computed. There is still a significant need to develop a generalized method to

establish more realistic and complicated SOMs.

Deep learning methods that employ generative adversarial networks (GANs) [46] hold great

potential to establish SOMs that can produce an ensemble of objects having statistical proper-

ties that are consistent with training data. However, conventional GANs are typically trained

with reconstructed images that are influenced by the measurement noise and reconstruction

process. To address this issue, an augmented GAN architecture named AmbientGAN [15] has

been proposed. The AmbientGAN architecture augments the conventional GAN architecture

with a measurement process. This architecture enables the establishment of generative models

that describe object variability from noisy and indirect imaging measurement data. However,

similar to conventional GANs, the training process of AmbientGANs can be unstable. This

training instability limits the ability of AmbientGANs to generate high-dimensional medical

images that depict object properties of interest.

An advanced GAN training strategy named progressive growing of GANs (ProGANs) [59] has

been introduced to improve the training stability of GANs. ProGANs adopt a multi-resolution

strategy to stabilize the adversarial training process. It has been demonstrated that ProGANs

can be successfully employed to generate high-resolution images [59]. However, similar to

conventional GANs, ProGANs that are trained on images produced by imaging systems
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can not represent SOMs because they are affected by measurement noise and a potential

reconstruction operator. In Chapter 5, a novel AmbientGAN method named progressively

growing AmbientGANs (ProAmGANs) is proposed that permits the implementation of the

progressive growing strategy with the training of AmbientGANs. The proposed ProAmGAN

method enables the establishment of SOMs from imaging measurements that can yield

high-dimensional images.

The ability of modern GAN techniques to establish realistic SOMs also enables the development

of sampling-based methods for approximating the IO for realistic diagnostic tasks. In

Chapter 6, a novel sampling-based method named MCMC-GAN for approximating the IO is

provided. This method approximates the IO test statistic by applying MCMC techniques

with SOMs learned by use of GANs. Compared to the previous MCMC methods that have

been limited to some relatively simple SOMs, MCMC-GAN can be implemented with more

realistic and sophisticated SOMs that can be learned by use of GANs. Therefore, this method

extends the domain of applicability of MCMC approaches to approximate the IO for assessing

and optimizing imaging systems and data-acquisition designs.

1.2 Outline

The dissertation provides background information on objective-measures of IQ in Chapter 2.

Signal detection theory and previous works on approximating the IO and HO are reviewed.

In Chapter 3, a supervised learning method that employs CNNs to approximate the IO acting

on image data for binary signal detection tasks is introduced. Supervised learning-based

methods that employ SLNNs to approximate the HO are also provided. This work was

proposed and described previously [118, 123, 125].
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In Chapter 4, a supervised learning-based method that employs CNNs to approximate the

IO for signal detection-localization tasks is discussed. This work was proposed and described

previously [117, 124].

In Chapter 5, a novel AmbientGAN training approach named progressively growing Ambient-

GANs (ProAmGANs) to learn realistic SOMs from imaging measurements is presented. This

work was proposed and described previously [120, 121].

In Chapter 6, a novel sampling-based method named MCMC-GAN to approximate the

IO is provided. This method extends the domain of applicability of MCMC techniques

to approximate the IO for assessing objective measures of IQ. A preliminary study of this

method was described previously [119].

Finally, the dissertation is summarized with a discussion in Chapter 7.
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Chapter 2

Background on statistical inference

Statistical inference can be divided into two categories: classification and parameter estima-

tion [9]. This chapter provides background information on classification tasks that are often

considered for evaluating objective measures of image quality in medical imaging.

2.1 Imaging process

A digital imaging system can be mathematically described as:

g = Hf(r) + n, (2.1)

where g ∈ RM denotes the measured image data, f(r) is a function of a spatial coordinate

r ∈ Rd that describes the object being imaged, H denotes a continuous-to-discrete (C-D)

imaging operator that maps L2(Rd) → RM , and n ∈ RM is the measurement noise. Because

the measurement noise n is random, the measured image data g is random. Object variability

is known to limit observer performance [84]. Therefore, the object function f(r) can be
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either deterministic or stochastic, depending on the specification of the diagnostic task to be

assessed. When a linear imaging operator is considered, the measured image data can be

described as:

gm =

∫
Rd

dr hm(r)f(r) + nm, (2.2)

where gm is the mth element of the vector g, nm is the mth element of the vector n, and hm(r)

is the point response function (PRF) that describes the sensitivity of the mth measurement

gm to the object function f(r) at point r. The notation f will be employed to denote f(r)

when the spatial dependence of the object function is not important to highlight.

Below, reviews of binary signal detection tasks and signal detection-localization tasks that

are frequently considered in medical imaging are provided.

2.2 Binary signal detection tasks

When a binary signal detection task is considered, an observer is required to classify an image

as satisfying either a signal-absent hypothesis (H0) or a signal-present hypothesis (H1). The

imaging processes under H0 and H1 can be described as:

H0 : g = b + n,

Hj : g = b + s + n,
(2.3)

where b ≡ Hfb(r) is the image of the background fb(r), and s ≡ Hfs(r) is the image of the

signal fs(r). Denote the mth component of b and s as bm and sm, respectively. When the
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imaging operator H is linear, these quantities can be computed as:

bm =

∫
Rd

dr hm(r)fb(r),

sm =

∫
Rd

dr hm(r)fs(r).
(2.4)

When background-known-exactly (BKE) signal detection tasks are considered, fb(r) is

deterministic, whereas when background-known-statistically (BKS) signal detection tasks are

considered, fb(r) is random. Similarly, when signal-known-exactly (SKE) signal detection

tasks are considered, fs(r) is deterministic, whereas when signal-known-statistically (SKS)

signal detection tasks are considered, fs(r) is random.

To perform a binary signal detection task, an observer computes a test statistic t(g) that

maps the measured image data g to a real-valued scalar. The test statistic t(g) is compared to

a pre-determined threshold τ to classify g: if t(g) > τ , classify g as satisfying H1, otherwise,

classify g as satisfying H0. A receiver operating characteristic (ROC) curve that depicts

the trade-off between the false-positive fraction (FPF) and the true-positive fraction (TPF)

can be plotted by varying the threshold τ . The area under the ROC curve (AUC) can be

subsequently computed to quantify the observer performance.

2.2.1 Bayesian Ideal Observer (IO)

The Bayesian Ideal Observer (IO) employs complete statistical knowledge and sets an upper

performance limit among all observers. The IO computes a test statistic that can be any

monotonic transformation of the likelihood ratio Λ(g), which is defined as [9, 67, 68]:

Λ(g) = p(g|H1)

p(g|H0)
, (2.5)
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where p(g|Hj) is the conditional probability density function that describes the likelihood of

the measured image data g under the hypothesis Hj (j = 0, 1). One important monotonic

transformation of Λ(g) that will prove useful is the posterior probability Pr(H1|g):

Pr(H1|g) =
[Pr(H1)/Pr(H0)]Λ(g)

1 + [Pr(H1)/Pr(H0)]Λ(g)
, (2.6)

where Pr(H0) and Pr(H1) are the prior probabilities associated with the two hypotheses.

However, computation of the IO test statistic is analytically intractable in the majority of

cases. To address this issue, Kupinski et al. proposed a sampling based method that employs

Markov-Chain Monte Carlo (MCMC) techniques to numerically compute the likelihood ratio

Λ(g) [68]. When a signal-known-exactly (SKE) binary signal detection task is considered,

the likelihood ratio Λ(g) can be computed as [68]:

Λ(g) =
∫
db pb(b)p(g|b, H1)∫
db pb(b)p(g|b, H0)

≡
∫

db ΛBKE(g|b)p(b|g, H0), (2.7)

where ΛBKE(g|b) is the likelihood ratio given a background b and p(b|g, H0) is a posterior

probability density function. These quantities can be computed as:

ΛBKE(g|b) =
p(g|b, H1)

p(g|b, H0)
. (2.8a)

p(b|g, H0) =
p(g|b, H0)pb(b)∫

db′p(g|b′, H0)pb(b′)
. (2.8b)

When the background b can be described by a stochastic object model (SOM) that takes a

set of random variables θ as the input, i.e., b ≡ b(θ), the likelihood ratio described in Eq.

(2.7) can be computed as [68]:

Λ(g) =
∫

dθ ΛBKE(g|b(θ))p(θ|g, H0). (2.9)
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Monte Carlo integration can be subsequently employed to approximate the likelihood ratio

[68]:

Λ̂(g) = 1

Nc

Nc∑
i=1

ΛBKE(g|b(θi)), (2.10)

where Λ̂(g) is the MCMC approximation of the likelihood ratio Λ(g), Nc is the number of

samples used in Monte Carlo integration, and θi is drawn from the posterior probability

function p(θ|g, H0). To draw samples θi from the posterior probability function p(θ|g, H0),

a Markov Chain having the stationary density p(θ|g, H0) can be generated. To achieve this,

a Metropolis-Hastings algorithm can be implemented. Specifically, an initial vector θ0 is

selected and a proposal density function q(θ|θi) is specified. For a vector θi, a candidate

vector θ̂ is sampled from the proposal density q(θ|θi) and is accepted with the probability

pa(θ̂|θj,g), which is defined as:

pa(θ̂|θj,g) = min

[
1,

p(g|b(θ̂), H0)p(θ̂)q(θ
j|θ̂)

p(g|b(θj), H0)p(θj)q(θ̂|θj)

]
. (2.11)

If the candidate vector θ̂ is accepted, it is added to the Markov Chain: θi+1 = θ̂; otherwise,

θi+1 = θi.

Park et al. extended this MCMC approach to signal-known-statistically (SKS) signal detection

tasks [85]. If the signal can be described by a stochastic model that takes a set of random

variables α as the input, i.e., s = s(α), the likelihood ratio Λ(g) can be computed as [85]:

Λ(g) =
∫

dα

∫
dθ ΛBSKE(g|b(θ), s(α))p(θ|g, H0)p(α), (2.12)

where ΛBSKE(g|b(θ), s(α)) is the likelihood ratio given a background b(θ) and a signal s(α):

ΛBSKE(g|b(θ), s(α)) =
p(g|b(θ), s(α), H1)

p(g|b(θ), H0)
. (2.13)
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The likelihood ratio Λ(g) can be subsequently approximated as:

Λ̂(g) = 1

J

J∑
j=1

ΛBSKE(g|b(θj), s(αj)). (2.14)

Here, (θj,αj) are sampled from the probability density function p(θ|g, H0)p(α) by use of

MCMC methods. Again, to construct a Markov chain, a Metropolis-Hastings algorithm with

a proposal density q(θ|θi) and q(α|αi) can be employed. The acceptance probability of a

candidate vector (θ̂, α̂) can be computed as:

pa(θ̂, α̂|θj,αj,g) = min

[
1,

p(g|b(θ̂), H0)p(θ̂)p(α̂)q(θj|θ̂)q(αj|α̂)

p(g|b(θj), H0)p(θj)p(αj)q(θ̂|θj)q(α̂|αj)

]
. (2.15)

However, current applications of MCMC methods have been limited to relatively simple

SOMs such as a lumpy object model [68], a binary texture model [2], and a parameterized

torso phantom [50]. It remains unclear how to implement these MCMC methods with other

SOMs.

2.2.2 Hotelling Observer (HO)

When the IO test statistic is intractable or difficult to compute, the Hotelling observer (HO)

can be employed to assess objective measures of IQ for optimizing imaging systems and

data-acquisition designs. The HO test statistic tHO(g) can be computed as [9]:

tHO(g) = wT
HOg, (2.16)
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where wHO ∈ RM×1 is the Hotelling template, which is defined as [9]:

wHO =

[
1

2
(K0 + K1)

]−1

∆¯̄g. (2.17)

Here, Kj is the covariance matrix of the measured image data g under the hypothesis Hj

(j = 0, 1) and ∆¯̄g is the difference between the mean of the measured image data g under

the hypothesis H1 and H0. Denote the conditional mean of the measured image data g

given an object f as ḡ(f) ≡ 〈g〉g|f, and denote the mean of ḡ(f) under the hypothesis Hj as

¯̄gj ≡ 〈ḡ(f)〉f|Hj
. The quantities ∆¯̄g and Kj can computed as:

∆¯̄g = ¯̄g1 − ¯̄g0, (2.18a)

Kj =
〈
〈[g − ¯̄gj][g − ¯̄gj]

T 〉g|f
〉

f|Hj
. (2.18b)

When computing the Hotelling template wHO, it is sometimes useful to decompose the

covariance matrix Kj as [9]:

Kj = 〈Kn|f〉f|Hj
+ Kḡ(f)|Hj

, (2.19)

where Kn|f = 〈[g−ḡ(f)][g−ḡ(f)]T 〉g|f is the covariance matrix associated with the measurement

noise given an object f, 〈Kn|f〉f|Hj
is the mean of Kn|f under the hypothesis Hj , and Kḡ(f)|Hj

=

〈[ḡ(f)− ¯̄gj][ḡ(f)− ¯̄gj]
T 〉f|Hj

is the covariance matrix associated with the object f under the

hypothesis Hj.

The signal-to-noise ratio associated with a test statistic, denoted as SNRt, is a commonly

used FOM to assess observer performance at signal detection tasks. The SNRt is defined
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as [9]:

SNRt =
〈t〉1 − 〈t〉0√
1
2
σ2
0 +

1
2
σ2
1

, (2.20)

where 〈t〉j is the mean of a test statistic t under the hypothesis Hj and σ2
j =

〈
(t− 〈t〉j)2

〉
j

is

the variance of t under the hypothesis Hj. The HO maximizes the value of SNRt among all

linear observers that can be computed as [9]:

SNR2
HO = ∆¯̄gTwHO. (2.21)

When the likelihood function p(g|H0) and p(g|H1) can be described by a Gaussian probability

density function that have the same covariance matrix, i.e., K0 = K1, the HO is equivalent

to the IO.

2.3 Joint signal detection and localization tasks

When a signal location is modeled as a discrete parameter having J possible values, a

signal detection-localization task requires an observer to classify a measured image data g as

satisfying either a signal-absent hypothesis H0 or one of the signal-present hypotheses Hj

that corresponds to the jth signal location (j = 1, 2, ..., J) [62]. The imaging processes under

these hypotheses can be described as:

H0 : g = b + n,

Hj : g = b + sj + n,
(2.22)

where b ≡ Hfb(r) is the image of a background fb(r) and sj ≡ Hfsj(r) is the image of a

signal fsj(r) at the jth location (j = 1, 2, ..., J). Denote the mth element of b and sj as bm
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and sjm , respectively. These quantities can be computed as:

bm =

∫
Rd

dr hm(r)fb(r),

sjm =

∫
Rd

dr hm(r)fsj(r).
(2.23)

Scanning observers are typically employed for performing signal detection-localization tasks [43].

A scanning observer computes a test statistic for each possible location and a decision can be

subsequently made by employing a max-statistic rule. This decision strategy can be described

as [43]:

t(g) = max
j∈{1,...,J}

λj(g)

j∗(g) = arg max
j∈{1,...,J}

λj(g)

Decide Hj∗(g) if t(g) > τ , else decide H0.

(2.24)

Here, the function λj(g) maps a measured image data g to a real-valued test statistic

corresponding to the jth signal location. The maximum test statistic among the J test

statistics that correspond to the J possible signal locations is compared to a pre-determined

threshold τ to make a decision. A localization receiver operating characteristic (LROC) curve

that depicts the tradeoff between the probability of correct localization and the false-positive

rate can be plotted by varying the threshold τ . The observer performance can be subsequently

quantified by the area under the LROC curve (ALROC). A two-alternative forced-choice

(2AFC) test can also be employed to compute the ALROC without plotting the LROC

curve [24].
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2.3.1 Scanning Ideal Observer

The scanning IO that employs a modified generalized likelihood ratio test (MGLRT) maximizes

the observer performance at signal detection-localization tasks as measured by the ALROC [62].

The MGLRT can be represented as [62]:

tLR(g) = max
j∈{1,...,J}

Pr(Hj)p(g|Hj)

p(g|H0)

j∗LR(g) = arg max
j∈{1,...,J}

Pr(Hj)p(g|Hj)

p(g|H0)

Decide Hj∗LR(g) if tLR(g) > τLR, else decide H0.

(2.25)

It is useful to note that, according to Bayes rule, the MGLRT described in Eq. (2.25) is

equivalent to a posterior ratio test [117]:

tPR(g) = max
j∈{1,...,J}

Pr(Hj|g)
Pr(H0|g)

j∗PR(g) = arg max
j∈{1,...,J}

Pr(Hj|g)
Pr(H0|g)

Decide Hj∗PR(g) if tPR(g) > τPR, else decide H0.

(2.26)

In the case where threshold τPR is set to one, the probability of error is minimized, and the

corresponding decision rule is called minimum-error criterion or the maximum a posterior

(MAP) criterion [9]. In addition, a possible IO test statistic for the simplified binary signal

detection task can be computed as a posterior probability Pr(Hpresent|g) that describes the

probability of the signal-present hypothesis Hpresent given a measured image data g:

Pr(Hpresent|g) =
J∑

j=1

Pr(Hj|g) ≡ 1− Pr(H0|g). (2.27)
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When the computation of the IO test statistic is analytically intractable, the MCMC method

can be employed for some SOMs that describe the background as: b = b(θ). The likelihood

ratio Λj(g) ≡ p(g|Hj)

p(g|H0)
can be approximated as [68]:

Λ̂j(g) =
1

Nc

Nc∑
i=1

ΛBKEj
(g|b(θi)), (2.28)

where ΛBKEj
(g|b(θi)) =

p(g|b(θi),Hj)

p(g|b(θi),H0)
is the likelihood ratio corresponding to the jth signal

location conditioned on a background b(θi). The vector θi can be sampled from a posterior

distribution p(b|g, H0) by constructing a Markov chain using a Metropolis-Hastings algorithm

as discussed in Section 2.2.1.

2.3.2 Scanning Hotelling Observer

When the likelihood p(g|Hj) can be described by a Gaussian probability densify function

having the covariance matrix K under each hypothesis Hj (j = 0, 1, 2, ..., J), the scanning

IO is equivalent to the scanning HO [10, 41, 43]. Let b̄ denote the mean of background

images: b̄ = 〈b〉b. When the prior probability Pr(Hj) is a constant, the scanning HO can be

computed as:

tHO(g) = max
j∈{1,...,J}

wT
HOj

(
g − b̄ − sj

2

)
j∗HO(g) = arg max

j∈{1,...,J}
wT

HOj

(
g − b̄ − sj

2

)
Decide Hj∗HO(g) if tHO(g) > τHO, else decide H0,

(2.29)

where wHOj
= K−1sj is the Hotelling template corresponding to the jth signal location.

Because the computation of the scanning HO is relatively easy, it can be employed to
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assess and optimize imaging systems and data-acquisition designs when the scanning IO is

intractable or difficult to compute.

It should be noted that the scanning observers described above correspond to a discrete

signal location model in which the search tolerance is not involved. Detailed discussions

on the search tolerance can be found in [62]. The considered scanning observers can be

generalized to the signal location models that involve search tolerances according to [62]. In

this dissertation, we will focus on the discrete signal location model without search tolerances.
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Chapter 3

Approximating the Ideal Observer

and the Hotelling Observer for binary

signal detection tasks by use of

supervised learning methods

3.1 Overview

When binary signal detection tasks are considered for assessing and optimizing imaging

systems and data-acquisition designs, the performance of the Ideal Observer (IO) has been

advocated for use as a figure-of-merit (FOM). As introduced in Chapter 2, the IO test statistic

involves the likelihood ratio that is intractable to compute in the majority cases. Sampling-

based methods that employ Markov-Chain Monte Carlo (MCMC) techniques have been

proposed to address this difficulty [2, 68]. However, to properly implement MCMC methods,
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many practical issues such as the design of proposal density function from which Markov

chains can be efficiently constructed need to be addressed. Current applications of MCMC

methods have been limited to some relatively simple object models such lumpy object models

[68], binary texture models [2] and parameterized torso phantoms [50]. The Hotelling observer

(HO), which the optimal linear observer, can be employed to assess objective measures of

IQ when the IO is difficult or intractable to compute. However, as discussed in Chapter 2,

computation of the HO can be challenging because a potentially large covariance matrix

needs to be estimated and subsequently inverted. These computational challenges limit the

utilization of objective measures of IQ for assessing and optimizing imaging systems and

data-acquisition designs.

Supervised learning methods that employ artificial neural networks (ANNs) hold great

promise for the design and implementation of model observers [3, 16, 75, 107]. When

optimizing imaging systems and data-acquisition designs, computer-simulation data are

commonly employed. In such applications, large amounts of data can be generated for

training complicated inference models that are represented by ANNs. Kupinski et al. have

demonstrated the ability of fully-connected neural networks (FCNNs) to approximate the IO

that acts on low-dimensional image feature vectors [67]. However, because each neuron in

FCNNs is connected to all neurons in the previous layer, the dimensionality of the input layer

and the depth of the FCNN that can be effectively trained are limited. Therefore, FCNNs do

not scale well to high dimensional image data.

Modern deep learning methods that employ convolutional neural networks (CNNs) have been

developed to address this limitation [22, 40, 70, 71]. In this chapter, inspired by the success

of CNNs in image classification tasks, we propose and investigate a supervised learning

method that employs CNNs to approximate the IO that directly acts on image data for

binary signal detection tasks. Novel supervised learning methods that employ single layer
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neural networks (SLNNs) to approximate the HO are also provided. The proposed methods

directly estimate the Hotelling template without explicitly estimating and inverting covariance

matrices. Therefore, they can be used for computing the HO for large images.

3.2 Approximating the IO for signal detection tasks by

use of convolutional neural networks (CNNs)

According to Eq. (2.6), the IO test statistic can be computed as a posterior probability

Pr(H1|g), which is a monotonic transformation of the likelihood ratio. To train a CNN

for approximating Pr(H1|g), a sigmoid function is employed in the last layer of the CNN.

In this way, the output of the CNN can be interpreted as a probability. Denote a set of

all weight parameters of a CNN as Θ. Let the probability represented by the CNN be

denoted as Pr(H1|g,Θ). The vector Θ is determined in the training of the CNN such that

the difference between the actual probability Pr(H1|g) and the CNN-represented probability

Pr(H1|g,Θ) is small. The probability Pr(H0|g) can be subsequently approximated by

Pr(H0|g,Θ) ≡ 1− Pr(H1|g,Θ).

The maximum likelihood (ML) estimate of the CNN parameters Θ can be obtained by use of

a supervised learning method. Denote the label of the measured image data g as y ∈ {0, 1},

where y = 0 corresponds to the signal-absent hypothesis H0 and y = 1 corresponds to the

signal-present hypothesis H1. Given the joint probability distribution p(g, Hy), the ML

estimate of the CNN parameters Θ can be obtained by minimizing the generalization error,

which is defined as the ensemble average of the cross-entropy over p(g, Hy):

ΘML = arg min
Θ

〈
− log

[
Pr(Hy|g,Θ)

]〉
(g,Hy)

, (3.1)
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where 〈.〉(g,Hy) represents the average over the joint probability distribution p(g, Hy). If the

CNN is sufficiently complex to represent any functional form, Pr(H1|g,ΘML) = Pr(H1|g)

when the global minimum of Eq. (3.1) is achieved. To see this, one can compute the

generalization error as:

〈
− log

[
Pr(Hy|g,Θ)

]〉
(g,Hy)

= −
∫
RM

[
log
(

Pr(H1|g,Θ)
)
p(g, H1) + log

(
1− Pr(H1|g,Θ)

)
p(g, H0)

]
dMg.

(3.2)

The cross-entropy
〈
− log

[
Pr(Hy|g,Θ)

]〉
(g,Hy)

can be considered as a functional of Pr(H1|g,Θ).

Here, Pr(H1|g,Θ) is a function of g. The functional derivative of
〈
− log

[
Pr(Hy|g,Θ)

]〉
(g,Hy)

with respect to Pr(H1|g,Θ), which is known as a Fréchet derivative, can be computed as:

∂
〈
− log

[
Pr(Hy|g,Θ)

]〉
(g,Hy)

∂ Pr(H1|g,Θ)
= −

[
Pr(H1|g)

Pr(H1|g,Θ)
− 1− Pr(H1|g)

1− Pr(H1|g,Θ)

]
p(g). (3.3)

For any g ∈ {g|p(g) 6= 0}, the derivative in Eq. (3.3) equals zero when Pr(H1|g)
Pr(H1|g,Θ)

= 1−Pr(H1|g)
1−Pr(H1|g,Θ)

,

from which Pr(H1|g,ΘML) = Pr(H1|g).

Given a set of training data that comprises N labeled images {(gi, yi)}Ni=1, ΘML can be

estimated by minimizing the empirical error function, which is defined as the average of the

cross-entropy over the training dataset:

Θ̂ML = arg min
Θ

[
− 1

N

N∑
i=1

log
(

Pr(Hyi |gi,Θ)
)]

, (3.4)

where Θ̂ML is an empirical estimate of ΘML. It should be noted that minimizing empirical

errors on small dataset can cause overfitting and large generalization errors [45]. To reduce

the rate at which overfitting happens, mini-batch stochastic gradient descent algorithms can
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be employed. When online learning is implemented, mini-batches are drawn on-the-fly from

the joint distribution p(g, Hy) [45].

3.3 Approximating the HO by use of single layer neural

networks

The use of SLNNs to approximate the HO is presented in this section.

3.3.1 Training the HO by use of supervised learning method

As discussed in Chapter 2, the HO implements a test statistic that is a linear function of the

measured image data g. To represent a linear function, a single-layer neural network (SLNN)

that has a linear fully connected layer can be employed. Denote the vector of SLNN weight

parameters as w ∈ RM×1. The test statistic computed by a SLNN can be represented as:

tSLNN(g) = wTg. (3.5)

To approximate the HO, the SLNN is trained to maximize SNRt by solving the following

optimization problem:

minimize
w

1

2

〈
[wTg − wT ¯̄g0]

2
〉
0
+

1

2

〈
[wTg − wT ¯̄g1]

2
〉
1

subject to wT ¯̄g1 − wT ¯̄g0 = C,

(3.6)

where C is a real-valued positive scalar. The Lagrangian function associated with this

constrained optimization problem can be computed as:

L(w, λ) =
1

2

〈
[wTg − wT ¯̄g0]

2
〉
0
+

1

2

〈
[wTg − wT ¯̄g1]

2
〉
1
− λ(wT ¯̄g1 − wT ¯̄g0 − C). (3.7)
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The optimal solution w∗ satisfies the Lagrange multiplier conditions that can be represented

as:

∇wL(w∗, λ∗) = [K0 + K1]w∗ − λ∗∆¯̄g = 0, (3.8a)

∇λL(w∗, λ∗) = −
[
w∗T∆¯̄g − C

]
= 0, (3.8b)

where λ∗ denotes the Lagrange multiplier. According to Eq. (3.8), w∗ and λ∗ can be computed

as:

w∗ =

[
1

λ∗ (K0 + K1)

]−1

∆¯̄g, (3.9a)

λ∗ =
C

∆¯̄gT (K0 + K1)−1∆¯̄g . (3.9b)

Because the Lagrangian function in Eq. (3.7) is convex, w∗ is the global minimum of L(w, λ∗)

and the constrained optimization problem defined in Eq. (3.6) can be solved by minimizing

L(w, λ∗) with respect to w. In addition, because minimizing L(w, λ∗) with respect to w is

equivalent to minimizing L(w, λ∗)− λ∗C with respect to w, the generalization error to be

minimized is defined as:

l(w) = L(w, λ∗)− λ∗C

=
1

2

〈
[wT (g − ¯̄g0)]

2
〉
0
+

1

2

〈
[wT (g − ¯̄g1)]

2
〉
1
− λ∗wT∆¯̄g.

(3.10)

In order to have w∗ = wHO, λ∗ is set to 2.

Given a set of training image data {gi, yi}Ni=1 in which half of them are signal-absent and

half of them are signal-present, wHO can be estimated by minimizing the empirical error:

l̂(w) =
1

N

N∑
i=1

{
(1− yi)

[
wT (gi − ĝ0)

]2
+ yi

[
wT (gi − ĝ1)

]2 }− 2wT∆ĝ, (3.11)
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where ĝ0 = 2
N

∑N
i=1(1 − yi)gi, ĝ1 = 2

N

∑N
i=1 yigi, and ∆ĝ = ĝ1 − ĝ0. Any gradient-based

algorithm can be employed to minimize the empirical error l̂(w) to estimate the Hotelling

template. Because this method does not need to explicitly estimate and invert the covariance

matrix, it can scale well to large images.

3.3.2 Learning the HO by use of a Covariance-Matrix Decomposi-

tion

Methods that employ a covariance-matrix decomposition have been developed to estimate

and invert covariance matrices for computing the Hotelling template [9, 65]. As discussed

in Eq. (2.19), the covariance matrix Kj associated with the hypothesis Hj (j = 0, 1) can

be decomposed as: Kj = 〈Kn|f〉f|Hj
+ Kḡ(f)|Hj

. When computer-simulation is conducted for

assessing and optimizing imaging systems, the covariance matrix associated with the noise

Kn|f is known. When uncorrelated noise is considered, 〈Kn|f〉f|Hj
is a diagonal matrix. In

cases where detectors introduce correlations in the measurement data, 〈Kn|f〉f|Hj
may be a

banded and nearly diagonal matrix. In this section, a novel supervised learning method is

proposed to approximate the HO by use of a covariance-matrix decomposition.

According to the covariance-matrix decomposition described in Eq. (2.19), the variance of

the test statistic under the hypothesis Hj can be computed as:

〈
(wTg − 〈wTg〉j)2

〉
j
= wTKḡ(f)|Hj

w + wT 〈Kn|f〉f|Hj
w. (3.12)

Let Kn denote the averaged covariance matrix associated with the noise, which is assumed

known:

Kn ≡ 1

2
(〈Kn|f〉f|H0 + 〈Kn|f〉f|H1). (3.13)
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The generalization error defined in Eq. (3.10) can be written as:

l(w) =
〈
(wTb − wT b̄)2

〉
fb
+

1

2

〈
(wT s − wT s̄)2

〉
fs
+ wTKnw − 2wT s̄, (3.14)

where b̄ = 〈b〉fb , and s̄ = 〈s〉fs .

Given a set of background images {bi}Ni=1 and a set of signal images {si}Ni=1, the empirical

error to be minimized is:

l̂(w) =
1

N

N∑
i=1

{
[wTbi − wT b̂]2 + 1

2
[wT si − wT ŝ]2

}
+ wTKnw − 2wT ŝ, (3.15)

where b̂ = 1
N

∑N
i=1 bi, and ŝ = 1

N

∑N
i=1 si. Any gradient-based algorithms can be employed

to minimize the empirical error defined in Eq. (3.15) to estimate the Hotelling template. This

method also does not need to explicitly invert covariance matrix and therefore, it can scale

well to large images.

3.4 Numerical studies

To investigate and validate the proposed supervised learning methods for approximating the

IO and HO test statistics, computer-simulation studies that involve four different binary

signal detection tasks were conducted. A signal-known-exactly and background-known-exactly

(SKE/BKE) signal detection task was considered in which the IO and HO can be analytically

computed. A signal-known-exactly and background-known-statistically (SKE/BKS) detection

task and a signal-known-statistically and background-known-statistically (SKS/BKS) detection

task were considered in which the background is modeled by a lumpy object model [91]. For

these two BKS signal detection tasks that employ a lumpy object model, the IO test statistic

can be computed by use of MCMC methods [68, 85]. Finally, a SKE/BKS signal detection
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task that employs a clustered lumpy background (CLB) object model [13] was considered. To

the best of our knowledge, current applications of the MCMC methods to CLB object model

have not been reported [2]. For all considered binary signal detection tasks, the observer

performance was assessed by use of the ROC curve that was fit by use of the Metz-ROC

software [76] that utilized the “proper” binormal model [77, 87].

The imaging system in this study was simulated by a linear C-D mapping with a Gaussian

kernel that was motivated by an idealized parallel-hole collimator system [66, 68]:

hm(r) =
h

2πw2
exp

(
− (r − rm)T (r − rm)

2w2

)
, (3.16)

where the height h = 40 and the width w = 0.5. The details for each binary signal detection

task and the training of neural networks are given in the following subsections.

3.4.1 Signal-known-exactly (SKE) and background-known-exactly

(BKE) signal detection task

In this case, both the signal and background were non-random. The image size was 64× 64

and the background image was specified as b = 0. The signal function fs(r) was a 2D

symmetric Gaussian function:

fs(r) = A exp

(
− (r − rc)T (r − rc)

2w2
s

)
, (3.17)

where A = 0.2 is the amplitude, rc = [32, 32]T is the coordinate of the signal location, and

ws = 3 is the width of the signal. The signal image s can be computed as:

sm =
Ahw2

s

(w2 + w2
s)

exp
(
−(rm − rc)T (rm − rc)

2(w2 + w2
s)

)
. (3.18)
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To demonstrate the ability of CNNs to approximate a non-linear IO test statistic, a Laplacian

distribution that has been employed to describe fine details of mammographic images was

considered [25]. Specifically, the measurement data g were simulated by adding independent

and identically distributed (i.i.d.) Laplacian noise: nm ∼ L(0, c), where L(0, c) denotes a

Laplacian distribution with the mean of 0 and the exponential decay of c. The value of c was

set to 30/
√
2 that corresponds to standard deviation 30.

The IO test statistic for this case can be computed as [25]:

Λ(g) = exp

[
1

c

M∑
m=1

(|gm − bm| − |gm − bm − sm|)

]
. (3.19)

The Hotelling template can be computed by analytically inverting the covariance matrix

Kj ∈ RM×M (j = 0, 1):

K−1
j (m,n) =


1
2c2

, if m = n

0, if m 6= n,

(3.20)

where K−1
j (m,n) denotes the component at the mth row and the nth column (1 ≤ m,n ≤ M)

of K−1
j . The observer performances produced by the proposed supervised learning methods

were compared to those produced by the analytical computations as described above.
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3.4.2 SKE and background-known-statistically (BKS) signal de-

tection task with a lumpy background model

The image size was 64× 64 for this case. A non-random signal described by Eq. (3.17) was

employed and the background was modeled by a stochastic lumpy object model [91]:

fb(r) =
Nb∑
n=1

l(r − rn|a, s), (3.21)

where Nb is the number of lumps that is drawn from Poisson distribution with the mean N :

Nb ∼ P(N). Here, P(N) denotes a Poisson distribution with the mean N , which was set to

5, and l(r − rn|a, s) is a lumpy function that was modeled by a 2D Gaussian function with

the amplitude a and width s:

l(r − rn|a, s) = a exp
(
−(r − rn)T (r − rn)

2s2

)
. (3.22)

Here, a was set to 1, s was set to 7, and rn is the location of the nth lump that was drawn

from uniform distribution over the field of view. The background image b was analytically

computed as:

bm =
ahs2

w2 + s2

Nb∑
n=1

exp
(
−(rn − rm)T (rn − rm)

2(w2 + s2)

)
. (3.23)

The measurement noise was an i.i.d. Gaussian noise that can model electronic noise: nm ∼

N (0, δ2), where N (0, δ2) denotes a Gaussian distribution with the mean 0 and the standard

deviation δ, which was set to 20. Examples of signal-present images are shown in the top row

of Fig. 3.1.
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The IO and HO test statistics cannot be analytically determined for this case. The MCMC

method was employed to serve as a surrogate for ground truth of the IO. In each Markov

Chain, 200,000 background images were simulated according to the proposal density and the

acceptance probability defined in [68]. The traditional HO test statistic was computed by

use of the covariance-matrix decomposition [9] in which the background covariance matrix

was empirically calculated by use of 100,000 background images.

3.4.3 Signal-known-statistically (SKS) and BKS signal detection

task with a lumpy background model

This case employed the same stochastic lumpy background model that was specified in the

SKE/BKS case described above. The signal was random and modeled by a 2D Gaussian

function with a random location and a random shape, which can be mathematically represented

as:

fs(r) = A exp
(
− [Rθ (r − rc)]T D−1 [Rθ(r − rc)]

)
. (3.24)

Here, Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 is a rotation matrix that rotates a vector through an angle θ

in Euclidean space, and D =

2w2
1 0

0 2w2
2

 determines the width of the Gaussian function

along each coordinate axis. The signal image s was analytically computed as:

sm = A′ exp
(
− [Rθ (rm − rc)]T D′−1 [Rθ(rm − rc)]

)
, (3.25)
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where A′ = Ahw1w2

√
1

(w2+w2
1)(w

2+w2
2)

and D′ =

2(w2 + w2
1) 0

0 2(w2 + w2
2)

. The value of A

was set to 0.2, θ was drawn from a uniform distribution: θ ∼ U(0, 2π), w1 and w2 were

sampled from a uniform distribution: w1, w2 ∼ U(2, 4), and rc was uniformly distributed

over the image field of view. The measurement noise was Gaussian having zero mean and a

standard deviation of 10.

The MCMC method was employed to provide a surrogate for ground truth for the IO. In

each Markov Chain, 400,000 background images were sampled according to the proposal

density and the acceptance probability described in [85]. The traditional HO test statistic

was calculated by use of the covariance-matrix decomposition [9] with an empirical object

covariance matrix that was estimated by use of 100,000 background images and 100,000

signal images.

Because linear observers typically are unable to detect signals with random locations, the

HO was expected to perform poorly. Multi-template model observers [20, 34, 115] and

the scanning HO [10, 42] can be employed to detect variable signals. Sub-ensemble-based

approaches have also been developed that can assess the performance on variable signal

detection tasks [36, 74]. In this paper, we do not provide a method for training these observers.

The approximation of these observers by use of a supervised learning method represents a

topic for future investigation.

3.4.4 SKE and BKS signal detection task with a clustered lumpy

background model (CLB)

Another SKE/BKS detection task associated with a more sophisticated stochastic background

model, the clustered lumpy background (CLB), was considered also. The CLB model can be
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employed to synthesize images that resemble mammographic images [13]. In this study, the

image size was set to 128× 128 and a CLB realization was simulated as:

bm =
K∑
k=1

Nk∑
n=1

l (rm − rk − rkn|Rθkn) , (3.26)

where K ∼ P(K) is the number of clusters, Nk ∼ P(N) is the number of blobs in the kth

cluster, rk is the location of the kth cluster, and rkn is the location of the nth blob in the

kth cluster. Here, rk was sampled from a uniform distribution over the image field of view,

rkn was sampled from a Gaussian distribution with standard deviation σ and center rk, and

l(r|Rθkn) is the blob function:

l(r|Rθkn) = a exp
(
−α

‖Rθknr‖β

L(Rθknr)

)
, (3.27)

where a, α and β are adjustable parameters. The rotation matrix Rθkn is associated with the

angle θkn ∼ U(0, 2π), and L(r) is the “radius” of the ellipse with half-axes Lx and Ly:

L(r) = LxLy√
L2
x sin2(θr) + L2

y cos2(θr)
, (3.28)

where θr = arctan( ry
rx
). Here, rx and ry denote the components of r. The parameters employed

for generating the CLB images are summarized in Table 3.1.

Table 3.1: Parameters for generating CLB images.

K N Lx Ly α β σ a

150 20 5 2 2.1 0.5 12 100
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The signal image was generated as a 2D symmetric Gaussian function centered in the image

with an amplitude of 500 and a width of 12. Mixed Poisson-Gaussian noise that models both

photon noise and electronic noise was employed. The standard deviation of Gaussian noise

was set to 10. Examples of signal-present images are shown in the bottom row of Fig. 3.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: (a)-(c) Samples of the signal-present measurements for the SKE/BKS detection
task with the lumpy background model. (d) An image showing the signal contained in (a)-(c).
(e)-(g) Samples of the signal-present measurements for the SKE/BKS detection task with the
CLB model. (h) An image showing the signal contained in (e)-(g). (© IEEE 2019)

To the best of our knowledge, current MCMC methods have not been applied to the CLB

object model and the mixed Poisson-Gaussian noise model. To provide a surrogate for

ground truth for the HO, the traditional HO was computed by use of covariance-matrix

34



decomposition with the empirical background covariance matrix estimated using 400,000

background images.

3.4.5 Details of training neural networks

Here, details regarding the implementation of the supervised learning-based methods for

approximating the IO and HO for the tasks above are described.

The train-validation-test scheme [45] was employed to evaluate the proposed supervised

learning approaches. Specifically, the CNNs and SLNNs were trained on a training dataset.

Subsequently, these neural networks were specified based upon a validation dataset and

the detection performances of these networks were finally assessed on a testing dataset. To

prepare training datasets for the BKS detection tasks, 100,000 lumpy background [91] images

and 400,000 CLB images [13] were generated. When training the CNNs for approximating

IOs, to mitigate the overfitting that can be caused by insufficient training data, a “semi-online

learning” method was proposed and employed. In this approach, the measurement noise

was generated on-the-fly and added to noiseless images drawn from the finite datasets. The

validation dataset and testing dataset both comprised 200 images for each class.

To approximate the HO test statistic, SLNNs that represent linear functions were trained

by use of the proposed method employing the covariance-matrix decomposition described in

Eq. (3.15). This was possible because the noise models for the considered detection tasks

were known. At each iteration in training processes, the parameters of SLNNs were updated

by minimizing error function Eq. (3.15) on mini-batches drawn from the training dataset.

Specifically, when training the SLNN for the SKE/BKE detection task, the signal and

background that were known exactly were employed and each mini-batch contained the fixed

signal image and background image. When training the SLNNs for the SKE/BKS detection

35



tasks, the known signals were employed and each mini-batch contained 200 background

images and the fixed signal image. For training the SLNN for the SKS/BKS detection

task, each mini-batch contained 200 background images and 200 signal images. The weight

vector w that produced the maximum SNRt value evaluated on the validation dataset was

specified to approximate the Hotelling template. The feasibility of the proposed methods for

approximating the HO from a reduced number of images was also investigated. Specifically,

the SLNNs were trained for the SKE/BKS detection task with the CLB model by minimizing

Eq. (3.11) and Eq. (3.15) on datasets comprising 2000 labeled measurements (contained

1000 signal-present images and 1000 signal-absent images) and 2000 background images,

respectively.

As opposed to the case of the HO approximation where the network architecture is known

linear, to specify the CNN architecture for approximating the IO, a family of CNNs that

possess different numbers of convolutional (CONV) layers was explored. Specifically, an initial

CNN having one CONV layer was firstly trained by minimizing the cross-entropy described in

Eq. (3.4). Subsequently, CNNs having additional CONV layers were trained according to Eq.

(3.4) until the network did not significantly decrease the cross-entropy on a validation dataset.

The cross-entropy was considered as significantly decreased if its decrement is at least 1.0%

of that produced by the previous CNN. Finally the CNN having the minimum validation

cross-entropy was selected as the optimal CNN in the explored architecture family. For all

the considered CNN architectures in this architecture family, each CONV layer comprised 32

filters with 5× 5 spatial support and was followed by a LeakyReLU activation function [99], a

max-pooling layer [93] following the last CONV layer was employed to subsample the feature

maps, and finally a fully connected (FC) layer using a sigmoid activation function computed

the posterior probability Pr(H1|g,Θ). It should be noted that these architecture parameters

were determined heuristically and may not be optimal for many signal detection tasks. One
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Figure 3.2: One instance of the CNN architecture employed for approximating the IO test
statistic. (© IEEE 2019)

instance of the implemented CNN architecture is illustrated in Fig. 3.2. These CNNs were

trained by minimizing the error function defined in Eq. (3.4) on mini-batches at each iteration.

Each mini-batch contained 200 signal-absent images and 200 signal-present images. Because

the HO detection performance is a lower bound of the IO detection performance, the selected

optimal CNN should not perform worse than the SLNN-approximated HO (SLNN-HO) on

the corresponding signal detection task if that CNN approximates IO. If this occurs, the

architecture parameters need to be re-specified and a different family of CNN architectures

should be considered.

The Adam algorithm [63], which is a stochastic gradient descent algorithm, was employed in

Tensorflow [1] to minimize the error functions for approximating the IO and HO. All networks

were trained on a single NVIDIA TITAN X GPU.
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3.5 Results

3.5.1 SKE and BKE signal detection task

3.5.1.1 HO approximation

A linear SLNN was trained for 1000 mini-batches and the weight vector w that produced the

maximum SNRt value evaluated on the validation dataset was selected to approximate the

Hotelling template. The linear templates employed by the SLNN-HO and the analytical HO

are shown in Fig. 3.3. The results corresponding to the SLNN-HO closely approximate those

of the analytical HO.

Figure 3.3: Comparison of the Hotelling template in the SKE/BKE case: (a) Analytical
Hotelling template; (b) SLNN-HO template; (c) Center line profiles in (a) and (b). The
estimated templates are nearly identical. (© IEEE 2019)
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The ROC curve produced by the SLNN-HO (purple dashed curve) is compared to that

produced by the analytical HO (yellow curve) in Fig. 3.4 (b). These two curves nearly

overlap.

3.5.1.2 IO approximation

The CNNs having one to three CONV layers were trained for 100,000 mini-batches and the

corresponding validation cross-entropy values are plotted in Fig. 3.4 (a). The validation

cross-entropy was not significantly decreased after adding the third CONV layer. Therefore,

we stopped adding more CONV layers and the CNN having the minimum validation cross-

entropy, which was the CNN that possesses 3 CONV layers, was selected. The detection

performance of this selected CNN was evaluated on the testing dataset and the resulting AUC

value was 0.890, which was greater than that of the SLNN-HO (i.e., 0.831). Subsequently,

the selected CNN was employed to approximate the IO. The testing ROC curve of the

CNN-approximated IO (CNN-IO) (red-dashed curve) was compared to that of the analytical

IO (blue curve) in Fig. 3.4 (b). The efficiency of the CNN-IO, which can be computed as the

squared ratio of the detectability index [83] of the CNN-IO to that of the IO, was 99.14%.

The mean squared error (MSE) of the posterior probabilities computed by the analytical IO

and the CNN-IO was 0.30%. These quantities were evaluated on the testing dataset.
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(a) (b)

Figure 3.4: (a) Validation cross-entropy values of CNNs having one to three CONV layers;
(b) Testing ROC curves for the IO and HO approximations. (© IEEE 2019)

3.5.2 SKE and BKS signal detection task with a lumpy back-

ground

3.5.2.1 HO approximation

The SLNN was trained for 1000 mini-batches (i.e., 2 epochs) and the weight vector w that

produced the maximum SNRt value evaluated on the validation dataset was selected to

approximate the Hotelling template. The linear templates employed by the SLNN-HO and

the traditional HO are shown in Fig. 3.5. The results corresponding to the SLNN-HO closely

approximate those of the traditional HO.
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Figure 3.5: Comparison of the Hotelling template in the SKE/BKS case: (a) Traditional
Hotelling template; (b) SLNN-HO template; (c) Center line profiles in (a) and (b). The
estimated templates are nearly identical. (© IEEE 2019)

The ROC curves corresponding to the traditional HO (yellow curve) and the SLNN-HO

(purple-dashed curve) are compared in Fig. 3.6 (b). Two ROC curves nearly overlap.

3.5.2.2 IO approximation

The CNNs having 1, 3, 5, and 7 CONV layers were trained for 100,000 mini-batches (i.e.,

200 epochs) and the corresponding validation cross-entropy values are plotted in Fig. 3.6 (a).

There was no significant difference of the validation cross-entropy between the CNNs having

5 and 7 CONV layers. Therefore, we stopped adding more CONV layers and the CNN having

the minimum validation cross-entropy, which was the CNN that possesses 7 CONV layers,

was selected. The selected CNN was evaluated on the testing dataset and the resulting AUC

value was 0.907, which was greater than that of the SLNN-HO (i.e., 0.808). Subsequently, the
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selected CNN was employed to approximate the IO. The testing ROC curve of the CNN-IO

(red-dashed curve) is compared to that of the MCMC-computed IO (MCMC-IO) (blue curve)

in Fig. 3.6 (b). The efficiency of the CNN-IO was 94.64% with respect to the MCMC-IO,

and the MSE of the posterior probabilities computed by the CNN-IO and the MCMC-IO

was 0.84%. These quantities were evaluated on the testing dataset.

(a) (b)

Figure 3.6: (a) Validation cross-entropy values of CNNs having one to seven CONV layers;
(b) Testing ROC curves for the IO and HO approximations. (© IEEE 2019)
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3.5.3 SKS and BKS signal detection task with a lumpy back-

ground

3.5.3.1 HO approximation

A linear SLNN was trained for 1000 mini-batches (i.e., 2 epochs) and the weight vector w

that produced the maximum SNRt value evaluated on the validation dataset was selected to

approximate the Hotelling template. The linear templates employed by the SLNN-HO and

the traditional HO are shown in Fig. 3.7. The results corresponding to the SLNN-HO closely

approximate those of the traditional HO.

Figure 3.7: Comparison of the Hotelling template in the SKS/BKS case: (a) Traditional
Hotelling template; (b) SLNN-HO template; (c) Center line profiles in (a) and (b). The
estimated templates are nearly identical. (© IEEE 2019)
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The ROC curves corresponding to the SLNN-HO (purple dashed curve) and the traditional

HO (yellow curve) are compared in Fig. 3.8 (b). The two ROC curves nearly overlap. The

HO performed nearly as a random guess for this task as expected.

3.5.3.2 IO approximation

Convolutional neural networks having 1, 5, 9, and 13 CONV layers were trained for 300,000

mini-batches (i.e., 600 epochs) and the corresponding validation cross-entropy values are

plotted in Fig. 3.8 (a). Because there was no significant decrement of the validation cross-

entropy value after adding 4 CONV layers to the CNN having 9 CONV layers, we stopped

adding more CONV layers and the CNN having the minimum validation cross-entropy value,

which was the CNN with 13 CONV layers, was selected. The selected CNN was evaluated on

the testing dataset and the resulting AUC value was 0.853, which was greater than that of the

SLNN-HO (i.e., 0.508). Subsequently, the selected CNN was employed to approximate the

IO. The testing ROC curve produced by the CNN-IO (red-dashed curve) is compared to that

produced by the MCMC-IO (blue curve) in Fig. 3.8 (b). The efficiency of the CNN-IO was

95.14% with respect to the MCMC-IO and the MSE of the posterior probabilities computed

by the CNN-IO and the MCMC-IO was 1.46%. These quantities were evaluated on the

testing dataset.
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(a) (b)

Figure 3.8: (a) Validation cross-entropy values produced by CNNs having 1 to 13 CONV
layers; (b) Testing ROC curves for the IO and HO approximations. (© IEEE 2019)

3.5.3.3 CNN visualization

Feature maps extracted by CONV layers enabled us to understand how CNNs were able

to extract task-specific features for performing signal detection tasks. In this case, the 32

subsampled feature maps output from the max-pooling layer were weighted by the weight

parameters of the last FC layer and then summed to produce a single 2D image for the

visualization. That single 2D image was referred to as the signal feature map and is shown in

Fig. 3.9. The signal to be detected was nearly invisible in the signal-present measurements

but can be easily observed in the signal feature map.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: (a) Signal-present measurements; (b) Image showing the signal contained in (a);
(c) The signal feature map corresponding to (a); (d) Signal-absent measurements; (e) Image
showing that the signal is absent in (d); (f) The signal feature map corresponding to (d). In
the signal feature maps, the regions around the signals were activated by the CNN. (© IEEE
2019)

3.5.4 SKE and BKS signal detection task with a CLB

3.5.4.1 HO approximation

The SLNN was trained for 40,000 mini-batches (i.e., 20 epochs) and the weight vector w that

produced the maximum validation SNRt was selected to approximate the Hotelling template.
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The traditional HO template and the SLNN-HO template are compared in Fig. 3.10. The

results corresponding to the SLNN-HO closely approximate those of the traditional HO.

Figure 3.10: Comparison of the Hotelling template: (a) Traditional Hotelling template; (b)
SLNN-HO template; (c) Center line profiles in (a) and (b). The estimated templates are
nearly identical. (© IEEE 2019)

The ROC curve of the SLNN-HO (yellow-dashed curve) compares to that of the traditional

HO (red curve) in Fig. 3.11 (b). Two curves nearly overlap.

47



(a) (b)
Figure 3.11: (a) Validation cross-entropy values of CNNs having one to three CONV layers;
(b) Testing ROC curves for the IO and HO approximations. (© IEEE 2019)

3.5.4.2 IO approximation

Convolutional neural networks having one to three CONV layers were trained for 100,000

mini-batches (i.e., 50 epochs) and the corresponding validation cross-entropy values are

plotted in Fig. 3.11 (a). Because the validation cross-entropy was not significantly decreased

by adding the third CONV layer, we stopped adding more CONV layers and the CNN having

the minimum validation cross-entropy value, which was the CNN with three CONV layers,

was selected. The detection performance of this selected CNN was evaluated on the testing

dataset and the resulting AUC value was 0.887, which was greater than that of the SLNN-HO

(i.e., 0.845). Subsequently, the selected CNN was employed to approximate the IO. The

CNN-IO was evaluated on the testing dataset and the resulting ROC curve is plotted in

Fig. 3.11 (b). To show how the signal detection performance varied when the number of
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CONV layers was increased, the AUC values evaluated on the testing dataset corresponding

to the CNNs with one to three CONV layers are illustrated in Fig. 3.12. These AUC values

were estimated by use of the “proper” binormal model [77, 87]. The AUC value was increased

when more CONV layers were employed until convergence.

Figure 3.12: Testing AUC values of CNNs having one to three CONV layers. (© IEEE 2019)

Because MCMC applications to the CLB object model have not been reported to date,

validation for the IO approximation was not provided in this case. To the best of our

knowledge, we are the first to approximate the IO test statistic for the CLB object model.

3.5.4.3 HO approximation from a reduced number of images

To solve the dimensionality problem of inverting a large covariance matrix for computing

the Hotelling template, the matrix-inversion lemma has been implemented in which the

covariance matrix is approximated by use of a small number of images [9]. However, this

method can introduce significant positive bias on the estimate of SNRHO [65]. To investigate

the ability of our proposed methods to approximate the HO performance when small dataset
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is employed, the linear SLNNs were trained by minimizing Eq. (3.11) and Eq. (3.15) on

2000 noisy measurements and 2000 background images, respectively, for 400 epochs. In the

training processes, overfitting occurred as revealed by the curves of validation SNRt with

respect to the number of epochs shown in Fig. 3.13.

(a) (b)
Figure 3.13: Curves of validation SNRt with respect to the number of epochs. (a) Validation
SNRt curve of the SLNN trained on labeled noisy measurements. (b) Validation SNRt curve
of the SLNN trained on background images using decomposition of covariance matrix. The
vertical gray line indicates the epoch having the maximum validation SNRt value. Overfitting
occurred after the overall curves of validation SNRt start to decrease. (© IEEE 2019)

However, an early-stopping strategy can be employed in which training is stopped at the

epoch having the maximum validation SNRt. The values of SNR2
HO, which were computed

according to Eq. (2.21), evaluated at the 400th epoch and at the epoch having the maximum

validation SNRt are shown in Table 3.2. These data reveal that overfitting caused a significant

positive bias on SNR2
HO while the early-stopping strategy accurately approximated the

reference SNR2
HO, which was computed by using the Hotelling template of the traditional

HO that was shown in Fig. 3.10 (a). The Hotelling template was also computed by using the
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matrix-inversion lemma [9] on 2000 background images, and the corresponding SNR2
HO had

a significant positive bias shown in Table 3.2 as observed by others [65].

Table 3.2: SNR2
HO computed from both background images b and measurements g. The

Hotelling template computed from few images can cause significant positive bias. However,
when SLNNs were trained using our proposed methods, early-stopping strategy in which
the epoch having the maximum validation SNRt was selected could be employed to closely
approximate the HO performance. (© IEEE 2019)

Methods 400th epoch Early-stopping

Minimizing Eq. (3.11) 4.0421 2.0940

Minimizing Eq. (3.15) 3.1101 2.1380

Matrix-inversion lemma 5.7979

Reference 2.1075

3.6 Discussion and Conclusion

In this chapter, we proposed a supervised learning-based method that employs CNNs to

approximate the IO for binary signal detection tasks. This method represents an alternative

approach to conventional numerical approaches such as MCMC methods for estimating the

IO performance to be used in optimizing medical imaging systems and data-acquisition

designs. Practical advantages of the proposed method over the MCMC methods exist. To run

MCMC methods appropriately, practical issues such as designs of proposal density functions

from which Markov chains can be effectively generated need to be addressed. Current

applications of the MCMC methods have been limited to some specific object models that

include parameterized torso phantoms [50], lumpy background models [68] and a binary

texture model [2]. Supervised learning-based approaches may be easier to deploy with
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sophisticated object models than are MCMC methods. To demonstrate this, in the numerical

study, we applied the proposed supervised learning method with a CLB object model, for

which the IO computation has not been addressed by MCMC methods to date [2]. Another

practical advantage of the proposed method is that supervised learning-based methods are

becoming widespread in their usage and many researchers are becoming experienced on

training feed-forward ANNs.

In this study, to specify the CNN architecture for approximating the IO, we explored a family

of CNNs that possess different numbers of CONV layers. By adding more CONV layers,

the representation capacity of the network is increased and the test statistic can be more

accurately approximated. This study does not investigate other architecture parameters such

as the number of FC layers and the size of convolutional filters. Recent work [31] proposed a

method that optimizes the network architecture in the training process. This represents a

possible approach for jointly optimizing the network architecture and weights to approximate

the IO test statistic.

We also proposed a supervised learning-based method using a simple linear SLNN to ap-

proximate the HO that represents the optimal linear observer. The proposed methodology

directly learns the Hotelling template without estimating and inverting covariance matrices.

Accordingly, the proposed method can scale well to large images. When approximating the

HO test statistic, one can employ a linear SLNN because the HO test statistic depends

linearly on the input image. We also provided an alternative method to learn the HO by

use of a covariance-matrix decomposition. The feasibility of both methods to learn the HO

from a reduced number of images was investigated. For the case where 2000 clustered lumpy

images with the dimension 128× 128 were employed to approximate the HO, our proposed

learning-based methods could still produce accurate estimates of SNRHO by incorporating

an early-stopping strategy.
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Numerous topics remain for future investigation. With regards to approximating IOs by

use of experimental images, there is a need to investigate methods to train CNN models by

use of limited training data. To accomplish this, one may investigate transfer learning [88]

or domain adaptation methods [39] to learn features of images in target domain (e.g.,

experimental images) by use of images in source domain (e.g., computer-simulated images).

Given experimental images, one may also employ the method proposed by Kupinski et al. [66]

or train a generative adversarial network [46] to establish a stochastic object model (SOM)

that can produce large datasets for use in the CNN training. Finally, it will be important to

extend the proposed methods to more complicated tasks. A supervised learning method to

approximate the IO for joint signal detection and localization tasks is provided in the next

chapter.
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Chapter 4

Approximating the Ideal Observer for

joint signal detection and localization

tasks by use of supervised learning

method

4.1 Overview

Joint signal detection and localization (detection-localization) tasks are often considered in

medical imaging [42, 44, 100, 108, 116]. When imaging systems and data-acquisition designs

are optimized for such tasks, the Ideal Observer (IO) that maximizes the area under the

LROC curve (ALROC) has been advocated to provide a FOM. As discussed in Chapter 2,

the IO implements a modified generalized likelihood ratio test (MGLRT) [62]. However, the

MGLRT employs likelihood ratios that are generally intractable to compute analytically. To
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address this limitation, sampling-based methods that employ Markov-Chain Monte Carlo

(MCMC) techniques [68] have been developed. However, to run MCMC methods appropriately,

practical issues such as the design of proposal density function from which Markov chains

can be simulated in a efficient way need to be addressed. Current applications of MCMC

methods have been limited to some specific object models that include lumpy object models

[68], binary texture models [2] and parameterized torso phantoms [50]. It remains unclear

how MCMC methods can be applied for cases where the objects to-be-imaged cannot be

described by these object models.

Computer-simulation is an important approach that is commonly employed for the design

and optimization of imaging systems. In such cases, supervised learning methods can

be implemented with large amounts of simulated data to train inference models that are

represented by artificial neural networks (ANNs) for establishing numerical observers. A

previous work of Kupinski et al. explored the use of fully-connected neural networks (FCNNs)

to approximate the IO that acts on low-dimensional feature vectors for binary signal detection

tasks [67]. In Chapter 3, we investigated a supervised learning-based method that employs

convolutional neural networks (CNNs) to approximate the IO that acts on 2D image data for

binary signal detection tasks.

In this chapter, a supervised learning-based method that employs CNNs to approximate

the IO for signal detection-localization tasks is explored. The proposed method represents

a deep-learning-based implementation of the IO decision strategy proposed in the seminal

theoretical work by Khurd and Gindi [62]. The considered signal detection-localization

tasks involve various object models in combination with several realistic measurement noise

models. Numerical observer performance is assessed via the LROC analysis. The results of

the proposed supervised-learning method are compared to those produced by the MCMC

method or analytical computations when feasible.
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4.2 Approximating the IO for signal detection-localization

tasks by use of CNNs

As discussed in Chapter 2, the IO for signal detection-localization tasks implements a MGLRT.

According to Eq. (2.26), the MGLRT is equivalent to a posterior ratio test. Therefore, to

approximate the IO for a signal detection-localization task, a CNN can be trained to

approximate a set of posterior probabilities that are employed in the posterior ratio test in Eq.

(2.26). To achieve this, the softmax function is employed in the last layer of the CNN, the

so-called softmax layer [90], so that the output of the CNN can be interpreted as probabilities.

Let Θ denote the vector of weight parameters of a CNN and let z(g;Θ) ∈ RJ+1 denote the

output of the last hidden layer of the CNN, which is also the input to the softmax layer. The

CNN-approximated posterior probabilities can be computed as:

Pr(Hj|g,Θ) ≡ exp[zj(g;Θ)]∑J
j′=0 exp[zj′(g;Θ)]

, j = 0, 1, ..., J, (4.1)

where zj(g;Θ) is the (j + 1)th element of z(g;Θ). The CNN parameter vector Θ is to be

determined such that the difference between the CNN-approximated posterior probability

Pr(Hj|g,Θ) and the actual posterior probability Pr(Hj|g) is minimized.

The maximum likelihood (ML) estimate of Θ can be approximated by use of a supervised

learning method [67]. Let y ∈ {0, 1, ..., J} denote the label of the measured image g, where

y = j corresponds to the hypothesis Hj. Given the joint probability distribution p(g, Hy),

the ML estimate of the CNN weight parameters ΘML can be obtained by minimizing the

generalization error, which is defined as the ensemble average of the cross-entropy over the
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distribution p(g, Hy) [67, 123]:

ΘML = arg min
Θ

〈− log[Pr(Hy|g,Θ)]〉(g,y), (4.2)

where 〈·〉(g,y) denotes the ensemble average over the distribution p(g, Hy). When the CNN

possesses sufficient representation capacity such that z(g;Θ) can take any functional form,

Pr(Hj|g,ΘML) = Pr(Hj|g). To see this, one can compute the gradient of the cross-entropy

with respect to zj(g;Θ) as:

∂〈− log[Pr(Hy|g,Θ)]〉(g,y)
∂zj(g;Θ)

= p(g)
[ exp[zj(g;Θ)]∑J

j′=0 exp[zj′(g;Θ)]
− Pr(Hj|g)

]
.

(4.3)

The derivation of this gradient computation can be found in Appendix A. Because z(g;Θ)

can take any functional form when the CNN possesses sufficient representation capacity,

determining ΘML involves finding z(g;Θ) that minimizes the cross-entropy defined in Eq. (4.2).

According to Eq. (4.3), for any g ∈ {g|p(g) 6= 0}, the optimal solution zj(g;ΘML) that has

zero gradient value satisfies exp[zj(g;ΘML)]∑J
j′=0 exp[zj′ (g;ΘML)]

= Pr(Hj|g), from which Pr(Hj|g,ΘML) =

Pr(Hj|g).

Given a training dataset that contains N independent training samples {(gi, yi)}Ni=1, ΘML

can be estimated by minimizing the empirical error as:

Θ̂ML = arg min
Θ

1

N

N∑
i=1

− log[Pr(Hyi |gi,Θ)], (4.4)

where Θ̂ML is an empirical estimate of ΘML. The posterior probability Pr(Hj|g) can be

subsequently approximated by the CNN-represented posterior probability Pr(Hj|g, Θ̂ML)

and the decision strategy described in Eq. (2.26) can be implemented. It should be noted
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that minimizing empirical error on a small training dataset can result in overfitting and large

generalization errors. Mini-batch stochastic gradient descent algorithms can be employed

to reduce the rate of overfitting [45]. These mini-batches can be generated on-the-fly when

online learning is implemented.

4.3 Numerical studies

Computer-simulation studies were conducted to investigate the supervised learning-based

method for approximating the IO for signal detection-localization tasks. The considered

signal detection-localization tasks included two background-known-exactly (BKE) tasks and

two background-known-statistically (BKS) tasks. A lumpy background (LB) model [64] and

a clustered lumpy background (CLB) model [13] were employed in the BKS tasks.

The imaging system considered was an idealized parallel-hole collimator system that was

described by a linear C-D mapping with Gaussian point response functions (PRFs) given by

[66, 68]:

hm(r) =
h

2πw2
h

exp
(
−(r − rm)T (r − rm)

2w2
h

)
, (4.5)

where h and wh are the height and width of the PRFs, respectively. Imaging systems with

larger h have greater sensitivity while imaging systems with larger wh have lower resolution.

Denote r̃j = Rθj(r − rcj), the signal to be detected and localized was modeled by a 2D

Gaussian function with 9 possible locations:

fsj(r) = asj exp
(
−r̃Tj D−1

j r̃j
)
, (4.6)
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where asj is the signal amplitude, Rθj =

cos(θj) − sin(θj)

sin(θj) cos(θj)

 is a rotation matrix correspond-

ing to the rotating angle θj , Dj =

2w2
1j

0

0 2w2
2j

 is a matrix that determines the width of the

jth signal along each axis, and rcj is the center location of the jth signal. With consideration of

the specified imaging system, the mth element sjm of the signal image sj can be subsequently

computed as:

sjm = Aj exp
(
−r̃TjmD′−1

j r̃jm
)
, (4.7)

where Aj = asjhw1jw2j

√
1

(w2
h+w2

1j
)(w2

h+w2
2j

)
, D′

j =

2(w2
h + w2

1j
) 0

0 2(w2
h + w2

2j
)

 and r̃jm =

Rθj(rm − rcj).

For each task described below, the LROC curves were fit by use of LROC software [57] that

implements Swensson’s fitting algorithm [101] and the IO performance was quantified by the

ALROC.

4.3.1 BKE signal detection-localization tasks

For the BKE tasks, the size of background image was 64× 64 pixels and b = 0. The signal

to be detected and localized had the signal amplitude asj = 0.2, width w1j = w2j = 3, and

Rθj = 0 for all 9 possible locations j = 1, 2, ..., 9. Two imaging systems described by different

PRFs were considered. The first imaging system, “System 1”, was described by h = 60 and

wh = 5. The second imaging system, “System 2”, was described by h = 144 and wh = 12.

The signals at different locations imaged through the two imaging systems are illustrated in

Fig. 4.1.
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(a) (b)

Figure 4.1: (a) Signal images corresponding to “System 1”. (b) Signal images corresponding
to “System 2”. (© IEEE 2020)

To investigate the ability of the CNN to approximate a non-linear IO test statistic, a Laplacian

probability density function, which has been utilized to describe histograms of fine details

in digital mammographic images [25, 52], was employed to model the likelihood function

p(g|Hj). Specifically, the measured image data g were simulated by adding independent and

identically distributed (i.i.d.) Laplacian noise [25]: nm ∼ L(0, c), where L(0, c) denotes a

Laplacian distribution with the mean of 0 and the exponential decay of c, which was set to

20/
√
2 corresponding to a standard deviation of 20. In this case, the likelihood ratio can be

analytically computed as [25]:

Λj(g) = exp

[
1

c

M∑
m=1

(|gm − bm| − |gm − bm − sjm |)

]
. (4.8)
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The IO decision strategy described by Eq. (2.25) was subsequently implemented by use of

the likelihood ratios given by Eq. (4.8), and the resulting LROC curves and ALROC values

were compared to those produced by the proposed supervised learning method.

Rank ordering of imaging system designs depends on specifications of tasks [79]. The two

imaging systems were ranked by use of the IO performance for the considered signal detection-

location tasks via LROC analysis. In addition, to demonstrate that the imaging system

design optimized by use of the IO for signal detection-localization tasks may differ from that

optimized by use of the IO for the simplified binary signal detection tasks, the two imaging

systems were also assessed by use of the IO performance for the simplified binary signal

detection tasks via ROC analysis. The ROC curves were fit by use of Metz-ROC software

[76] using the “proper” binormal model [77].

4.3.2 BKS signal detection-localization task with a lumpy back-

ground model

The first BKS task utilized a lumpy object model to emulate background variability [64].

The considered lumpy background models are described as [9, 64]:

fb(r) =
Nb∑
n=1

l(r − rn|a, wb), (4.9)

where Nb ∼ P (N̄) denotes the number of the lumps, P (N̄) denotes a Poisson distribution

with mean of N̄ = 8, and l(r − rn|a, wb) denotes the lump function that was modeled by a

2D Gaussian function:

l(r − rn|a, wb) = a exp
(
−(r − rn)T (r − rn)

2w2
b

)
. (4.10)
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Here, a = 1, wb = 7, and rn denotes the center location of the nth lump that was sampled

from a uniform distribution over the image field of view. The imaging system PRF was

specified by h = 40 and wh = 1.5. The image size was 64× 64 and the mth (1 ≤ m ≤ 4096)

element of the background image bm is given by:

bm =
ahw2

b

w2
h + w2

b

exp
(
−(rm − rn)T (rm − rn)

2(w2
h + w2

b )

)
. (4.11)

The measurement noise considered in this case was i.i.d. Gaussian noise with a mean of 0

and a standard deviation of 20. Three realizations of the signal-absent images are shown in

the top row in Fig. 4.2. The signals to be detected and localized were specified by Eq. (4.6)

with asj = 0.5, w1j = w2j = 2, and Rθj = 0 for all 9 possible locations j = 1, 2, ..., 9. The

signal at different locations is illustrated in Fig. 4.3 (a).

Because the likelihood ratios Λj(g) in this case cannot be analytically computed, the MCMC

method developed by Kupinski et al. [68] was implemented as a reference method. The

MCMC method computed the likelihood ratio as:

Λj(g) ≈
1

Nc

Nc∑
i=1

ΛBKEj
(g|b(i)), (4.12)

where ΛBKEj
(g|b(i)) ≡ p(g|b(i),Hj)

p(g|b(i),H0)
is the BKE likelihood ratio conditional on the ith background

image b(i) and Nc is the number of samples used in Monte Carlo integration. Because Gaussian

noise was considered in this case, ΛBKEj
(g|b(i)) can be analytically computed as:

ΛBKEj
(g|b(i)) = exp

[
(g − b(i) − sj/2)TK−1

n sj
]
, (4.13)

where Kn is the covariance matrix of the measurement noise n. The ith background image b(i)

was sampled from the probability density function p(b|g, H0) by constructing a Markov chain
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according to the method described in [68]. Each Markov chain was simulated by running

200,000 iterations.

4.3.3 BKS signal detection-localization task with a CLB model

The second BKS task utilized a clustered lumpy background (CLB) model to emulate

background variability. This model was developed to synthesize mammographic image

textures [13]. In this case, the background image b had the dimension of 128× 128 pixels

and its mth element bm is computed as [13]:

bm =
K∑
k=1

Nk∑
n=1

l (rm − rk − rkn|Rθkn) . (4.14)

Here, K denotes the number of clusters that was sampled from a Poisson distribution with

the mean of K̄: K ∼ P (K̄), Nk denotes the number of blobs in the kth cluster that was

sampled from a Poisson distribution with the mean of N̄ : Nk ∼ P (N̄), rk denotes the center

location of the kth cluster that was sampled uniformly over the image field of view, and

rkn denotes the center location of the nth blob in the kth cluster that was sampled from a

Gaussian distribution with the center of rk and standard deviation of σ. The blob function

l (r|Rθkn) was specified as:

l (r|Rθkn) = A exp
(
−α

‖Rθknr‖β

L(Rθknr)

)
, (4.15)

where L(r) is computed as the “radius” of the ellipse with half-axes Lx and Ly, and Rθkn

is the rotation matrix corresponding to the angle θkn that was sampled from a uniform

distribution between 0 and 2π. The parameters of the CLB model employed in this study

are shown in Table. 4.1
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Table 4.1: Parameters for generating CLB images

K N Lx Ly α β σ A

50 20 5 2 2.1 0.5 12 40

The measurement noise was modeled by a mixed Poisson-Gaussian noise model [9] in which

the standard deviation of Gaussian noise was set to 20. Three examples of the signal-absent

images are shown in the bottom row in Fig. 4.2.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a)-(c) Signal-absent images corresponding to the LB model. (d)-(f) Signal-absent
images corresponding to the CLB model. (© IEEE 2020)
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The signal sj had the amplitude of 80, the width of sj along each axis took a value from {5,

8, 10}, and the rotation angle of sj took a value from {−π/4, 0, π/4}. The signal at different

locations is illustrated in Fig. 4.3 (b).

(a) (b)

Figure 4.3: (a) Signal images corresponding to the 9 possible signal locations employed in
the BKS task with the LB model. (b) Signal images corresponding to the 9 possible signal
locations employed in the BKS task with the CLB model. (© IEEE 2020)

4.3.4 CNN training details

The conventional train-validation-test scheme was employed to evaluate the proposed su-

pervised learning approaches. The CNNs were trained on a training dataset, the CNN

architectures and weight parameters were subsequently specified by assessing performance

on a validation dataset and, finally, the performances of the CNNs on the signal detection-

localization tasks were evaluated on a testing dataset. The training datasets were comprised

of 100,000 lumpy background images and 400,000 CLB background images for the considered
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BKS detection-localization tasks. Additionally, a “semi-online learning” method in which

the measurement noise was generated on-the-fly was employed to mitigate the over-fitting

problem [123]. Specifically, when training CNNs, the training data were simulated by adding

measurement noise that was generated on-the-fly to the finite number of noiseless images

[123]. In this way, the number of images employed to train the CNNs could be increased.

Both the validation dataset and testing dataset comprised 200 images for each class.

Specifications of CNN architectures that possess the ability to approximate the posterior

probability Pr(Hj|g) are required. A family of CNNs that comprise different number of

convolutional (CONV) layers was explored to specify the CNN architecture. Specifically, a

CNN having an initial architecture was firstly trained by minimizing the average of the cross-

entropy over the training dataset defined Eq. (4.4). CNNs having more CONV layers were

subsequently trained until the average of the cross-entropy over the validation dataset did not

have significant decrement. A cross-entropy decrement of at least 1% of that produced by the

previous CNN architecture was considered significant. The CNN that produced the minimum

cross-entropy evaluated on the validation dataset was selected. All CNN architectures in the

considered architecture family comprised CONV layers having 32 filters with the dimension of

5×5, a max-pooling layer [93], and a fully connected layer. A LeakyReLU activation function

[99] was applied to the feature maps produced by each CONV layer and a softmax function

was applied to the output of the fully connected layer. An instance of the considered CNN

architecture is illustrated in Fig. 4.4. This architecture family was determined heuristically

and may not be optimal for many other tasks. At each iteration of the training, the CNN

weight parameters were updated by minimizing the empirical error function on mini-batches

by use of the Adam algorithm [63], which is a stochastic gradient-based method.
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Figure 4.4: An instance of the CNN architecture for approximating a set of posterior
probabilities for maximizing the ALROC. (© IEEE 2020)

4.4 Results

4.4.1 BKE signal detection-localization task

Convolutional neural networks that comprised one, three, and five CONV layers were trained

for 500,000 mini-batches with each mini-batch comprising 80 images for each class. For both

“System 1” and “System 2”, the validation cross-entropy was not significant decreased after

5 CONV layers were employed in the CNNs. Accordingly, we stopped training CNNs with

more CONV layers, and the CNN corresponding to the smallest validation cross-entropy was

selected, which was the CNN having five CONV layer.

For the joint detection-localization task, with both imaging systems, the LROC curves

produced by the analytical computation (solid curves) are compared to those produced by the

CNN (dashed curves) in Fig. 4.5 (a). In addition, for the simplified binary signal detection
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tasks, the ROC curves produced by the analytical computation (solid curves) are compared

to those produced by the CNN (dashed curves) in Fig. 4.5 (b). The curves corresponding to

the analytically computed IO and the CNN approximation of the IO (CNN-IO) are in close

agreement in both cases. As shown in Fig. 4.5, the rankings of the two imaging systems are

different when the joint detection-localization task and the simplified binary signal detection

task were considered. When the signal detection-localization task is considered, “system 1” >

“system 2”, while if the binary signal detection task is considered, “system 2” > “system 1”.

(a) (b)

Figure 4.5: (a) LROC curves corresponding to the IO for the BKE signal detection-localization
tasks. (b) ROC curves corresponding to the IO for the simplified binary signal detection
tasks. (© IEEE 2020)
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4.4.2 BKS signal detection-localization task with a lumpy back-

ground model

Convolutional neural networks comprising 1, 3, 5, 7, 9, and 11 CONV layers were trained

for 500,000 mini-batches with each mini-batch comprising 80 images for each class. The

validation cross-entropy value was not significantly decreased after 11 CONV layers were

employed in the CNN, and therefore the CNN having 11 CONV layers was selected for

approximating the IO. The performance of the CNN for the signal detection-localization task

was characterized by the LROC curve that was evaluated on the testing dataset. Note that

the ALROC value produced by the CNN-IO was 0.711± 0.011, which was larger than the

0.530± 0.012 produced by the scanning HO.

The MCMC simulation provided further validation of the CNN-IO. The LROC curve produced

by the MCMC method (blue curve) is compared to that produced by the CNN-IO (red-dashed

curve) in Fig. 4.6. The curves are in close agreement. The ALROC values were 0.713± 0.011

and 0.711± 0.011 corresponding to the MCMC and the CNN-IO, respectively.
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Figure 4.6: The LROC curves produced by the MCMC-IO (blue), CNN-IO (red-dashed),
and the scanning HO (yellow) for the BKS task with the lumpy background model. The
LROC curve corresponding to the CNN-IO closely approximates that corresponding to the
MCMC-IO and is higher than that produced by the scanning HO. (© IEEE 2020)

4.4.3 BKS signal detection-localization task with a CLB model

Convolutional neural networks that comprised 1, 3, 5, and 7 CONV layers were trained for

500,000 mini-batches with each mini-batch comprising 20 images for each class. The validation

cross-entropy value was not significantly decreased after 7 CONV layers were employed in

the CNN, and therefore the CNN having 7 CONV layers was selected for approximating the

IO. The performance of the selected CNN was quantified by computing the LROC curve
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and ALROC value on the testing dataset. The CNN-IO was compared to the scanning HO.

The ALROC value produced by the CNN-IO was 0.749± 0.010, which was larger than the

0.637± 0.012 produced by the scanning HO as expected. The LROC curves corresponding

to the CNN-IO and the scanning HO are displayed in Fig. 4.7.

Figure 4.7: The LROC curves produced by CNN-IO (red) and the scanning HO (yellow)
for the BKS task with the CLB model. As expected, the LROC curve corresponding to the
CNN-IO is higher than that produced by the scanning HO. (© IEEE 2020)

Because the computation of the IO test statistic has not been addressed by MCMC methods

for CLB models, validation corresponding to MCMC methods was not provided in this case.
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4.5 Summary

Signal detection-localization tasks are of high interest when optimizing medical imaging

systems and scanning numerical observers have been proposed to address them. However, there

remains a scarcity of methods that can be implemented readily for approximating the IO for

detection-localization tasks. In this chapter, a deep-learning-based method was investigated

to address this need. Specifically, the proposed method provides a generalized framework

for approximating the IO test statistic for multi-class classifications tasks. Compared to

methods that employ MCMC techniques, supervised learning methods may be easier to

implement. To properly run MCMC methods, numerous practical issues such as the design

of proposal densities from which the Markov chain can be efficiently generated need to be

addressed. Because of this, current applications of MCMC methods have been limited to

relative simple object models such as a lumpy object model and a binary texture model. As

such, the proposed supervised learning methods may possess a larger domain of applicability

for approximating the IO than the MCMC methods. To demonstrate this, the proposed

supervised learning method was applied to approximate the IO for a clustered lumpy object

model, for which the IO approximation has not been achieved by the current MCMC methods.

The proposed supervised learning-based method may require a large amount of training data

to accurately approximate the IO. Such data may be available when optimizing imaging

systems and data acquisition designs via computer-simulation. In order to conduct a realistic

computer-simulation, it is desirable to simulate images that capture anatomical variations and

textures within a realistic object ensemble. To achieve this, one may establish a stochastic

object model (SOM) from experimental data by training an AmbientGAN [15, 120, 121,

122]. Having a well-established SOM, one can produce large amount of training samples to

train CNNs to accurately approximate the IO by use of the proposed supervised learning
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method. Such computer-simulation studies enable the exploration and assessment of a variety

of imaging systems and data acquisition designs.

There remains several other topics for future investigation. It will be important to quantify

the effect of the number of data used in the proposed method on the IO approximation. In

addition, to implement the proposed supervised learning methods for approximating the

IO in situations where only a limited number of experimental data is available, it will be

important to investigate methods to train deep neural networks on limited training data.

To achieve this, one may investigate the methods that employ domain adaptation [39, 49]

and transfer learning [88]. Finally, it will be important to investigate supervised learning

methods for approximating IOs for other more general tasks such as joint signal detection

and estimation tasks associated with the estimation ROC (EROC) curve.
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Chapter 5

Learning stochastic object models

(SOMs) from medical imaging

measurements using

Progressively-Growing AmbientGANs

5.1 Introduction

Computer-simulation remains an important approach for the design and optimization of

imaging systems. Such approaches can permit the exploration, refinement, and assessment of

a variety of system designs that would be infeasible through experimental studies alone. In

the field of medical imaging, it has been advocated that imaging systems and reconstruction

algorithms should be assessed and optimized by use of objective measures of image quality

(IQ) that quantify the performance of an observer at specific diagnostic tasks [5, 9, 11, 80,
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104]. To accomplish this, all sources of variability in the measured data should be accounted

for. One important source of variability that can significantly limit observer performance

is variation in the objects to-be-imaged [91]. This source of variability can be described by

stochastic object models (SOMs) [66]. A SOM is a generative model that can be employed to

produce an ensemble of to-be-imaged objects that possess prescribed statistical properties.

Available SOMs include texture models of mammographic images with clustered lumpy

backgrounds [13], simple lumpy background models [91], and more realistic anatomical

phantoms that can be randomly perturbed [95]. A variety of other computational phantoms

[19, 28, 72, 94, 95, 109, 112, 126], either voxelized or mathematical, have been proposed for

medical imaging simulation, aiming to provide a practical solution to characterize object

variability. However, the majority of these were established by use of image data corresponding

to a few subjects. Therefore, they may not accurately describe the statistical properties of

the ensemble of objects that is relevant to an imaging system optimization task. A variety of

anatomical shape models have also been proposed to describe both the common geometric

features and the geometric variability among instances of the population for shape analysis

applications [4, 29, 30, 37, 47, 51, 97, 103]. To date, these have not been systematically

explored for the purpose of constructing SOMs that capture realistic anatomical variations

for use in imaging system optimization.

In order to establish SOMs that capture realistic textures and anatomical variations, it is

desirable to utilize experimental imaging data. By definition, however, SOMs should be

independent of the imaging system, measurement noise and any reconstruction method

employed. In other words, they should provide an in silico representation of the ensemble

of objects to-be-imaged and not estimates of them that would be indirectly measured or

computed by imaging systems. To address this need, Kupinski et al. [66] proposed an

explicit generative model for describing object statistics that was trained by use of noisy
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imaging measurements and a computational model of a well-characterized imaging system [66].

However, applications of this method have been limited to situations where the characteristic

function of the corresponding imaging measurements can be analytically determined, such

as with lumpy and clustered lumpy object models [13, 64]. As such, there remains a need

to generalize the method so that anatomically realistic and more complicated SOMs can be

established from experimental imaging measurements.

Deep generative neural networks, such as generative adversarial networks (GANs) [46], hold

great potential for establishing SOMs that describe discretized objects. However, conventional

GANs are typically trained by use of reconstructed images that are influenced by the effects

of measurement noise and the reconstruction process. To circumvent this, an AmbientGAN

has been proposed [15] that augments a GAN with a measurement operator. This permits

a generative model that describes object randomness to be learned from indirect and noisy

measurements of the objects themselves. In a preliminary study, the AmbientGAN was

explored for the establishing SOMs from imaging measurements for use in optimizing imaging

systems [122]. However, similar to conventional GANs, the process of training AmbientGANs

is inherently unstable. Moreover, the original AmbientGAN cannot immediately benefit from

robust GAN training procedures, such as progressive growing [59], which limits its ability to

synthesize high-dimensional images that depict objects of interest in medical imaging studies.

In this chapter, a new AmbientGAN approach is proposed that permits the utilization of

the progressive growing strategy for training. In this way, SOMs can be established from

noisy imaging measurements that can yield high-dimensional images that depict objects.

The new approach, referred to as a Progressive Growing AmbientGAN (ProAmGAN), can

utilize the progressive growing training strategy due to augmentation of the conventional

AmbientGAN architecture with an image reconstruction operator. Stylized numerical studies

corresponding to X-ray computed tomography (CT) and magnetic resonance (MR) imaging
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are conducted to investigate the proposed ProAmGAN for establishing SOMs. Preliminary

validation studies are presented that utilize standard quantitative measures for evaluating

GANs and also objective measures based on signal detection performance.

5.2 Background

Consider a discrete-to-discrete (D-D) description of a linear imaging system given by [9]:

g = Hf + n, (5.1)

where g ∈ RM is a vector that describes the measured image data, f ∈ RN denotes the

finite-dimensional representation of the object being imaged, H ∈ RM×N denotes a D-D

imaging operator RN → RM that maps an object in the Hilbert space U to the measured

discrete data in the Hilbert space V, and the random vector n ∈ RM denotes the measurement

noise. Below, the imaging process described in Eq. (5.1) is denoted as: g = Hn(f). It is

assumed that the D-D imaging model is a sufficiently accurate representation of the true

continuous-to-discrete (C-D) imaging model that describes a digital imaging system and the

impact of model error will be neglected. When optimizing imaging system performance by

use of objective measures of IQ, all sources of randomness in g should be considered. In

diagnostic imaging applications, object variability is an important factor that limits observer

performance. In such applications, the object f should be described as a random vector that

is characterized by a multivariate probability density function (PDF) pr(f) that specifies the

statistical properties of the ensemble of objects to-be-imaged.

Direct estimation of pr(f) is rarely tractable in medical imaging applications due to the high

dimensionality of f. To circumvent this difficulty, a parameterized generative model, referred

to throughout this work as a SOM, can be introduced and established by use of an ensemble
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of experimental measurements. The generative model can be explicit or implicit. Explicit

generative models seek to approximate pr(f), or equivalently, its characteristic function, from

which samples f can subsequently be drawn. On the other hand, implicit generative models

do not seek to estimate pr(f) directly, but rather define a stochastic process that seeks to

draw samples from pr(f) without having to explicitly specify it. Variational autoencoders and

GANs are examples of explicit and implicit generative models, respectively, that have been

actively explored [45]. Two previous works that sought to learn SOMs from noisy and indirect

imaging measurements by use of explicit and implicit generative models are presented below.

5.2.1 Establishing SOMs by use of explicit generative modeling:

Propagation of characteristic functionals

The first method to learn SOMs from imaging measurements was introduced by Kupinski et

al. [66]. In that work, a C-D imaging model was considered in which a function that describes

the object is mapped to a finite-dimensional image vector g. For C-D operators, it has been

demonstrated that the characteristic functional (CFl) describing the object can be readily

related to the characteristic function (CF) of the measured data vector g [26]. This provides

a relationship between the PDFs of the object and measured image data. In their method,

an object that was parameterized by the vector Θ was considered and analytic expressions

for the CFl were utilized. Subsequently, by use of the known imaging operator and noise

model, the corresponding CF was computed. The vector Θ was estimated by minimizing the

discrepancy between this model-based CF and an empirical estimate of the CF computed

from an ensemble of noisy imaging measurements. From the estimated CFl, an ensemble of

objects could be generated. This method was applied to establish SOMs where the CFl of

the object can be analytically determined. Such cases include the lumpy object model [64]

78



and clustered lumpy object model [13]. The applicability of the method to more complicated

object models remains unexplored.

5.2.2 Establishing SOMs by use of implicit generative modeling:

Generative adversarial networks (GANs) and AmbientGANs

Generative adversarial networks (GANs) [6, 7, 8, 17, 32, 46, 48, 73, 89, 92, 98] are implicit

generative models that have been actively explored to learn the statistical properties of

ensembles of images and generate new images that are consistent with them. A traditional

GAN consists of two deep neural networks—a generator and a discriminator. The generator

is jointly trained with the discriminator through an adversarial process. During its training

process, the generator is trained to map random low-dimensional latent vectors to higher

dimensional images that represent samples from the distribution of training images. The

discriminator is trained to distinguish the generated, or synthesized, images from the actual

training images. These are often referred to as the “fake” and “real” images in the GAN

literature. Subsequent to training, the discriminator is discarded and the generator and

associated latent vector probability distribution form as an implicit generative model that

can sample from the data distribution to produce new images. However, images produced

by imaging systems are contaminated by measurement noise and potentially an image

reconstruction process. Therefore, GANs trained directly on images do not generally represent

SOMs because they do not characterize object variability alone.

An augmented GAN architecture named AmbientGAN has been proposed [15] that enables

learning an SOM from noisy indirect measurements of an object. As shown in Fig. 5.1, the

AmbientGAN architecture includes the measurement operator Hn, defined in Eq. (5.1), into

the traditional GAN framework. During the AmbientGAN training process, the generator is
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Figure 5.1: An illustration of the AmbientGAN architecture. The generator G is trained
to generate objects, which are subsequently employed to simulate measurement data. The
discriminator D is trained to distinguish “real” measurement data to the “fake” measurement
data that are simulated by use of the generated objects.

trained to map a random vector z ∈ Rk described by a latent probability distribution to a

generated object f̂ = G(z;ΘG), where G : Rk → RN represents the generator network that

is parameterized by a vector of trainable parameters ΘG. Subsequently, the corresponding

simulated imaging measurements are computed as ĝ = Hn(̂f). The discriminator neural

network D : RN → R, which is parameterized by the vector ΘD, is trained to distinguish

the real and simulated imaging measurements by mapping them to real-valued scalar s.

The adversarial training process can be represented by the following two-player minimax

game [46]:

min
ΘG

max
ΘD

V (D,G) = Eg∼pg [l (D(g;ΘD))] + Eĝ∼pĝ [l(1−D (ĝ;ΘD))], (5.2)

where l(·) represents a loss function. When the distribution of objects pr(f) uniquely induces

the distribution of imaging measurements pr(g), i.e., when the imaging operator is injective,

and the minimax game achieves the global optimum, the trained generator can be employed

to produce object samples drawn from pr(f) [15, 46].

Zhou et al. have demonstrated the ability of the AmbientGAN to learn a simple SOM

corresponding to a lumpy object model that could be employed to produce small (64× 64)
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object samples [122]. However, adversarial training is known to be unstable and the use of

AmbientGANs to establish realistic and large-scale SOMs has, to-date, been limited.

5.2.3 Progressively-Growing GAN Training Strategy

A novel training strategy for GANs—progressive growing of GANs (ProGANs)—has been

recently developed to improve the stability of the GAN training process [59] and hence the

ability to learn generators that sample from distributions of high-resolution images. GANs

are conventionally trained directly on full size images through the entire training process. In

contrast, ProGANs adopt a multi-resolution approach to training. Initially, a generator and

discriminator are trained by use of down-sampled (low resolution) training images. During

each subsequent training stage, higher resolution versions of the original training images

are employed to train progressively deeper discriminators and generators, continuing until a

final version of the generator is trained by use of the original high-resolution images. While

this progressively growing training strategy has found widespread success with conventional

GANs, as described below, it cannot generally be employed with AmbientGANs. A solution

to this problem is described next.

5.3 Establishing SOMs by use of Progressively-Growing

AmbientGANs

As discussed above, AmbientGANs enable the learning of SOMs from noisy imaging measure-

ments but can be difficult to train, while ProGANs can be stably trained and established

by use of higher-dimensional image data that are generally affected by noise and the image
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formation process. Below, a novel strategy, Progressively Growing AmbientGANs (ProAm-

GANs), is proposed to enable progressive growing of AmbientGANs for learning realistic

SOMs from noisy and indirect imaging measurements.

The ProAmGAN progressively grows the generator to establish the SOM from its low-

resolution version to full-resolution version. As with the AmbientGANs, the imaging measure-

ments are subsequently simulated by applying the measurement operator to the generator-

produced objects. However, imaging measurements acquired in most medical imaging systems

are indirect representations of objects to-be-imaged (e.g., Radon transform data, k-space

data). In such cases, the low-resolution version of the measured image data and the low-

resolution version of the objects may not be simply related because they reside in generally

different Hilbert spaces. Accordingly, in these cases, the progressive growing strategy cannot

be directly applied because the generator in the original ProGAN produces images that reside

in the same Hilbert space as the training data employed by the discriminator. To address

this issue, in addition to including the measurement operator as with the AmbientGAN

training strategy, an image reconstruction operator O: RM → RN is included in the proposed

ProAmGAN training strategy. In this way, the generator can be trained to produce images

that reside in the same Hilbert space as the images employed by the discriminator and

the progressive growing strategy can be subsequently employed. The ProAmGAN training

strategy is illustrated in Fig. 5.2.
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Figure 5.2: An illustration of ProAmGAN training. The training starts with low image
resolution (e.g., 4× 4) and the image resolution is increased progressively by adding more
layers to the generator and the discriminator. The discriminator is trained to distinguish
between the ground-truth and generated reconstructed objects.

Given a training dataset that comprises measured data g, a set of reconstructed objects frecon

is computed by applying the operator O to the measured data g: frecon = O(g) ≡ O(Hn(f)).

Denote the reconstructed object corresponding to the generator-produced measured data ĝ as

f̂recon: f̂recon = O(ĝ) ≡ O
(
Hn
(
G(z;ΘG)

))
. The discriminator in the ProAmGAN is trained

to distinguish between f̂recon and frecon, and the generator is trained to generate objects

f̂ = G(z;ΘG) such that the corresponding reconstructed objects f̂recon are indistinguishable

from the reconstructed objects frecon that were reconstructed from the provided measurement

data (i.e., training data). As with the AmbientGAN, when the distribution of objects pr(f)

uniquely induces the distribution of reconstructed objects pr(frecon), and the ProAmGAN

achieves the global optimal at the final full-resolution stage, the trained generator can be
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employed to produce object samples drawn from the distribution pr(f). In special cases where

the imaging operator H is full-rank and the measurement noise n = 0, ProAmGANs reduce

to original ProGANs that are directly trained on objects.

5.4 Numerical studies

Computer-simulation studies were conducted to demonstrate the ability of the proposed

ProAmGAN to establish realistic SOMs from imaging measurements corresponding to different

stylized imaging modalities. Details regarding the design of the computer-simulation studies

are provided below.

5.4.1 Idealized direct imaging system

An idealized direct imaging system that acquired chest radiographs, modeled as: g = f + n,

was considered first. By design, it was assumed that the measurement noise was the only

source of image degradation. The motivation for this study was to demonstrate the ability of

the ProAmGAN to learn an SOM from noisy images.

An NIH database of clinical chest X-ray images [105] was employed to serve as ground

truth objects f. Three thousand images were selected from this dataset. These images were

centrally cropped and resized to the dimension of 512 × 512 and were normalized to the

range between 0 and 1. A collection of 3000 simulated measured images g were produced by

adding independent and identically distributed (i.i.d.) Gaussian noise with zero mean and

the standard deviation of 2% to the collection of objects f. An example of the objects and

the corresponding noisy imaging measurement are shown in Fig. 5.3.
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Figure 5.3: An illustration of idealized planar X-ray imaging system that acquires noisy
imaging measurements.

From the ensemble of simulated measured data, with the knowledge of the measurement noise

model, a ProAmGAN was trained to establish a SOM that characterizes the distribution

of objects f. The architecture of the generator and the discriminator employed in the

ProAmGAN is described in Table 5.1 (a). Because the idealized planar X-ray imaging system

acquires direct representations of objects (i.e., V = U), the reconstruction operator O(·) was

set to be the identity operator in the ProAmGAN training process.

For comparison, by use of the same ensemble of simulated measured images g, a ProGAN

was trained. In this case, the generator was trained to learn the distribution of measured

images g themselves, which are contaminated by measurement noise, instead of learning the

distribution of objects f (i.e., the SOM). The ProGAN employed a generator and discriminator

with the same architectures as those employed in the ProAmGAN.
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Generator Act. Output shape

Latent vector - 512×1×1

Conv 4×4 LReLU 512×4×4

Conv 3×3 LReLU 512×4×4

Upscale - 512×8×8

Conv 3×3 LReLU 512×8×8

Conv 3×3 LReLU 512×8×8

Upscale - 512×16×16

Conv 3×3 LReLU 512×16×16

Conv 3×3 LReLU 512×16×16

Upscale - 512×32×32

Conv 3×3 LReLU 512×32×32

Conv 3×3 LReLU 512×32×32

Upscale - 512×64×64

Conv 3×3 LReLU 256×64×64

Conv 3×3 LReLU 256×64×64

Upscale - 256×128×128

Conv 3×3 LReLU 128×128×128

Conv 3×3 LReLU 128×128×128

Upscale - 128×256×256

Conv 3×3 LReLU 64×256×256

Conv 3×3 LReLU 64×256×256

Upscale - 64×512×512

Conv 3×3 LReLU 32×512×512

Conv 3×3 LReLU 32×512×512

Conv 1×1 linear 1×512×512

Discriminator Act. Output shape

Input image - 1× 512× 512

Conv 1× 1 LReLU 32× 512× 512

Conv 3× 3 LReLU 32× 512× 512

Conv 3× 3 LReLU 64× 512× 512

Downscale - 64× 256× 256

Conv 3× 3 LReLU 64× 256× 256

Conv 3× 3 LReLU 128× 256× 256

Downscale - 128× 128× 128

Conv 3× 3 LReLU 128× 128× 128

Conv 3× 3 LReLU 256× 128× 128

Downscale - 256× 64× 64

Conv 3× 3 LReLU 256× 64× 64

Conv 3× 3 LReLU 512× 64× 64

Downscale - 512× 32× 32

Conv 3× 3 LReLU 512× 32× 32

Conv 3× 3 LReLU 512× 32× 32

Downscale - 512× 16× 16

Conv 3× 3 LReLU 512× 16× 16

Conv 3× 3 LReLU 512× 16× 16

Downscale - 512× 8× 8

Conv 3× 3 LReLU 512× 8× 8

Conv 3× 3 LReLU 512× 8× 8

Downscale - 512× 4× 4

Minibatch stddev - 513× 4× 4

Conv 3× 3 LReLU 512× 4× 4

Conv 4× 4 LReLU 512× 1× 1

Fully-connected linear 1× 1× 1

(a)

Generator Act. Output shape

Latent vector - 512×1×1

Conv 4×4 LReLU 512×4×4

Conv 3×3 LReLU 512×4×4

Upscale - 512×8×8

Conv 3×3 LReLU 512×8×8

Conv 3×3 LReLU 512×8×8

Upscale - 512×16×16

Conv 3×3 LReLU 512×16×16

Conv 3×3 LReLU 512×16×16

Upscale - 512×32×32

Conv 3×3 LReLU 512×32×32

Conv 3×3 LReLU 512×32×32

Upscale - 512×64×64

Conv 3×3 LReLU 256×64×64

Conv 3×3 LReLU 256×64×64

Upscale - 256×128×128

Conv 3×3 LReLU 128×128×128

Conv 3×3 LReLU 128×128×128

Upscale - 128×256×256

Conv 3×3 LReLU 64×256×256

Conv 3×3 LReLU 64×256×256

Conv 1×1 linear 1×256×256

Discriminator Act. Output shape

Input image - 1× 256× 256

Conv 1× 1 LReLU 64× 256× 256

Conv 3× 3 LReLU 64× 256× 256

Conv 3× 3 LReLU 128× 256× 256

Downscale - 128× 128× 128

Conv 3× 3 LReLU 128× 128× 128

Conv 3× 3 LReLU 256× 128× 128

Downscale - 256× 64× 64

Conv 3× 3 LReLU 256× 64× 64

Conv 3× 3 LReLU 512× 64× 64

Downscale - 512× 32× 32

Conv 3× 3 LReLU 512× 32× 32

Conv 3× 3 LReLU 512× 32× 32

Downscale - 512× 16× 16

Conv 3× 3 LReLU 512× 16× 16

Conv 3× 3 LReLU 512× 16× 16

Downscale - 512× 8× 8

Conv 3× 3 LReLU 512× 8× 8

Conv 3× 3 LReLU 512× 8× 8

Downscale - 512× 4× 4

Minibatch stddev - 513× 4× 4

Conv 3× 3 LReLU 512× 4× 4

Conv 4× 4 LReLU 512× 1× 1

Fully-connected linear 1× 1× 1

(b)

Table 5.1: The architectures of the generator and discriminator for generating 512 × 512
images (a) and those for generating 256×256 images (b). More details about each component
in the architecture can be found in ProGAN paper [59].

The Fréchet Inception Distance (FID) [53] score, a widely employed metric to evaluate the

performance of generative models, was computed to evaluate the performance of the original

ProGAN and the proposed ProAmGAN. The FID score quantifies the distance between the

features extracted by the Inception-v3 network [102] from the ground-truth (“real”) and
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generated objects (“fake”). Lower FID score indicates better quality and diversity of the

generated objects. The FID scores were computed by use of 3000 ground-truth objects, 3000

ProGAN-generated objects and 3000 ProAmGAN-generated objects.

The structural similarity index (SSIM) [106] is a figure-of-merit describing the similarity of

two digital images. As another form of evaluation, SSIM values were computed for different

pairs of images. First, SSIM values were computed from 500,000 random pairs of ground

truth objects. Next, SSIM values were computed from 500,000 random pairs of ProAmGAN-

generated and ground truth objects. Finally, as a comparison, SSIM values were computed

from 500,000 random pairs of ProGAN-generated and ground truth objects. From these three

collections of SSIM values, three histograms were formed. The overlap area between any two

of the histograms (i.e., empirical PDFs) and the two-sample Kolmogorov-Smirnov (KS) test

statistics [111] were computed.

5.4.2 Stylized computed tomographic imaging system

A stylized tomographic imaging system was investigated next. This imaging system was

described as: g = Rf + n, where R denotes a 2D discrete Radon transform [58] that maps a

2D object f to a sinogram. The angular scanning range was 180 degrees and tomographic

views were evenly spaced with a 1 degree angular step.

An NIH-sponsored database of clinical chest CT images [110] was employed to serve as ground

truth objects f. Three thousand images of dimension of 512× 512 were selected from this

dataset and were normalized to the range between 0 and 1. A collection of 3000 measured

data g were simulated by acting R on each object and adding i.i.d. Gaussian noise with

a standard deviation of 10%. An example of the objects and the corresponding measured

imaging data are shown in Fig. 5.4.
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Figure 5.4: An illustration of tomographic imaging system that acquires Radon transform
data.

From the collection of measured data g, a set of reconstructed objects frecon was generated by

use of a filtered back-projection (FBP) reconstruction algorithm that employed a Ram-Lak

filter. With the knowledge of the imaging operator and the measurement noise model, a

ProAmGAN was subsequently trained by use of the reconstructed objects. The ProAmGAN

employed the generator and discriminator with the architectures described in Table 5.1 (a).

In the ProAmGAN training process, the Radon transform R and the FBP operator were

applied to the generated objects as discussed in Sec. 5.3.

As a comparison, a ProGAN was trained by use of reconstructed objects frecon. The generator

in the ProGAN was trained to learn the distribution of frecon instead of learning the distribution

of f. The ProGAN employed a generator and discriminator with the same architectures as

those employed in the ProAmGAN. The FID scores and empirical PDFs of SSIM values were

computed as described in Sec. 5.4.1.
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5.4.3 Stylized magnetic resonance (MR) imaging system with com-

plete k-space data

A stylized MR imaging system that acquires fully-sampled k-space data was investigated.

This imaging system was described as: g = F(f) + n, where F denotes a 2D discrete Fourier

transform (DFT). A database of clinical brain MR images [21] were employed to serve as

ground truth objects f. Three thousand images having the dimension of 512 × 512 were

selected from this dataset and were normalized to the range between 0 and 1. A collection of

3000 measured image data g were simulated by computing the 2D DFT of the objects and

adding i.i.d. zero mean Gaussian noise with a standard deviation of 10 to both the real and

imaginary components. An example of the objects and the corresponding magnitude of the

measured k-space data are shown in Fig. 5.5.

Figure 5.5: MR imaging system with complete k-space data. Logarithm of one plus the
magnitude of k-space data was displayed.

From the ensemble of measured images, an ensemble of reconstructed images frecon was

generated by acting a 2D inverse discrete Fourier transform (IDFT) to each measured image
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data g. A ProAmGAN was subsequently trained to establish a SOM that characterizes

the distribution of objects f by use of the ensemble of reconstructed images frecon. The

ProAmGAN employed a generator and discriminator with architectures described in Table 5.1

(a). In the training process, the 2D DFT and IDFT were applied to the generator-produced

objects as discussed in Sec. 5.3.

For comparison, a ProGAN was trained by use of reconstructed images frecon. The ProGAN

employed a generator and discriminator with the same architectures as those employed in

the ProAmGAN. The FID score and empirical PDFs of SSIM values were also computed as

described in Sec. 5.4.1.

5.4.4 Stylized MR imaging system with under-sampled k-space

data

MR imaging systems sometimes acquire under-sampled k-space data to accelerate the data-

acquisition process. In such cases, the imaging operator H has a non-trivial null space and

only the measurement component fmeas = H†Hf can be observed through the imaging system.

Here, H† denotes the Moore-Penrose pseudo-inverse of H and can be computed by applying a

2D IDFT to the zero-filled k-space data. In this study, the impact of k-space under-sampling

on images produced by the ProAmGAN was investigated.

Clinical brain MR images contained in the NYU fastMRI Initiative database [113] were

employed to serve as ground truth objects f. Three thousand images having dimension of

320× 320 were selected from this database for use in this study. These images were resized

to the dimension of 256 × 256 and were normalized to the range between 0 and 1. Five

data-acquisition designs corresponding to different k-space sampling ratios were considered:

1/1, 4/5, 1/2, 1/4, and 1/8. Here, the k-space sampling ratio was defined as the ratio of the
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number of sampled k-space components to the number of complete k-space components. The

sampling patterns are illustrated in the top row of Fig. 5.6. For each considered design, a

collection of 3000 measured data g were simulated by computing and sampling the k-space

data and adding i.i.d. zero mean Gaussian noise with a standard deviation of 2 to both the

real and imaginary components.

Figure 5.6: Top: k-space sampling patterns corresponding to different sampling ratios of
1/1, 4/5, 1/2, 1/4, and 1/8 from left to right; Bottom: images reconstructed by use of H†

corresponding to the k-space sampling patterns in the top row.

For each data-acquisition design, reconstructed objects frecon were produced by acting the

pseudo-inverse operator H† on the given measured image data g. Examples of reconstructed

images using pseudo-inverse method corresponding to the considered sampling patterns are

shown in the bottom row of Fig. 5.6. A ProAmGAN was subsequently trained to establish a

SOM for each data-acquisition design. The architecture of the generator and the discriminator

employed in the ProAmGAN is described in Table 5.1 (b). In the training process, H and

H† were applied to the generator-produced objects as discussed in Sec. 5.3. The FID score

was computed by use of 3000 ground-truth objects f and 3000 ProAmGAN-generated objects
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f̂ for each data-acquisition design. Because only the measurement component fmeas = H†Hf

can be measured by imaging systems, the ability of ProAmGANs to learn the variation in

the measurement components was investigated. Specifically, the FID score was computed by

use of the ground-truth measurement components fmeas = H†Hf and ProAmGAN-generated

measurement components f̂meas = H†Hf̂ for each data-acquisition design.

As a comparison, an original ProGAN was trained by use of the reconstructed objects frecon

for each data-acquisition design. The ProGAN employed the generator and the discriminator

with the same architecture as those employed in the ProAmGAN. The ProGAN-produced

images were compared to the ProAmGAN-produced images.

5.4.5 Task-based image quality assessment

In this study, the ProAmGAN-established SOMs corresponding to fastMRI brain objects

were evaluated by use of objective measures of IQ. Specifically, the ProAmGAN-established

SOMs were evaluated by comparing task-specific image quality measures computed by use of

generated objects to those computed by use of ground-truth objects. A signal-known-exactly

binary classification task was considered in which an observer classifies noisy MR images

as satisfying either a signal-absent hypothesis (H0) or signal-present hypothesis (H1). The

imaging processes under these two hypotheses can be described as:

H0 : g = f + n, (5.3a)

H1 : g = f + s + n, (5.3b)

where s denotes a signal image and n is i.i.d. zero-mean Gaussian noise. Two different noise

levels with standard deviations of 1% and 5%, and five different signals were considered. The

considered signals are shown in Fig. 5.7.
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Figure 5.7: Five signals considered in the signal detection study.

Each considered signal detection task was performed on a region of interest (ROI) of dimension

of 50× 50 pixels centered at the signal location. The signal-to-noise ratio of the Hotelling

observer (HO) test statistic SNRHO was employed as the figure-of-merit for assessing the

image quality [9]:

SNRHO =
√

sROI
TK−1sROI , (5.4)

where sROI ∈ R2500×1 denotes the vectorized signal image in the ROI, and K ∈ R2500×2500

denotes the covariance matrix corresponding to the ROIs in the noisy MR images. When

computing SNRHO, K−1 was calculated by use of a covariance matrix decomposition [9]. The

values of SNRHO computed by use of 3000 ground truth objects and 3000 generated objects

were compared.

5.4.6 Training details

All ProAmGANs and ProGANs were trained by use of Tensorflow [1] by use of 4 NVIDIA

Tesla V100 GPUs. The Adam algorithm [63], which is a stochastic gradient algorithm, was

employed as the optimizer in the training process. The ProAmGANs were implemented by

modifying the ProGAN code (https://github.com/tkarras/progressive_growing_of_

gans) according to the proposed ProAmGAN architecture illustrated in Fig. 5.2. Specifically,
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for each considered imaging system, the corresponding measurement operator and the

reconstruction operator were applied to the generator-produced images, and the output

images were subsequently employed by the discriminator. The training of all ProAmGANs

and ProGANs started with a resolution of 4× 4. During the training process, the resolution

was doubled by gradually adding more layers to the generator and the discriminator until

the final resolution was achieved. More details regarding the progressive training details can

be found in the literature [59].

5.5 Results

5.5.1 Visual assessments

The ground-truth (top row) and ProAmGAN-generated objects (bottom row) corresponding

to chest X-ray images are shown in Fig. 5.8. The ProAmGAN-generated objects have similar

visual appearances to the ground-truth ones.
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Figure 5.8: Top: Ground-truth chest X-ray objects f. Bottom: ProAmGAN-generated chest
X-ray objects f̂.

Synthetic images produced by the ProAmGAN at different training steps corresponding to

different image resolutions are shown in Fig. 5.9. FID scores corresponding to different image

resolutions were computed.

Figure 5.9: ProAmGAN-generated chest X-ray images at different training steps. FID scores
decreased as the resolution increased in the training process.
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A ProGAN-generated and ProAmGAN-generated objects are further compared in Fig. 5.10.

It is clear that the ProAmGAN-produced chest X-ray image contains less noise than the

one produced by the ProGAN. This demonstrates the ability of the ProAmGAN to mitigate

measurement noise when establishing SOMs.

Figure 5.10: A ProGAN-generated (left panel) and ProAmGAN-generated (right panel) chest
X-ray object.

The ground-truth (top row) and ProAmGAN-generated objects (bottom row) corresponding

to chest CT images are shown in Fig. 5.11. The ProAmGAN-generated objects have similar

visual appearances to ground-truth ones.
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Figure 5.11: Top: Ground-truth chest CT objects f. Bottom: ProAmGAN-generated chest
CT objects f̂.

Synthetic chest CT images produced by the ProAmGAN at different training steps corre-

sponding to different image resolutions are shown in Fig. 5.12. FID scores corresponding to

different image resolutions were computed.

Figure 5.12: ProAmGAN-generated chest CT images at different training steps. FID scores
decreased as the resolution increased in the training process.
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ProGAN-generated and ProAmGAN-generated chest CT images are shown in more detail in

Fig. 5.13. It is clear that the ProAmGAN-produced chest CT image in Fig. 5.13 contains

fewer artifacts than the one produced by the ProGAN. This demonstrates the ability of the

ProAmGAN to mitigate reconstruction artifacts when establishing SOMs.

Figure 5.13: A ProGAN-generated (left panel) and ProAmGAN-generated (right panel) chest
CT object.

The ground-truth (top row) and ProAmGAN-generated objects (bottom row) corresponding

to brain MR images are shown in Figs. 5.14. The ProAmGAN-generated objects have similar

visual appearances to ground-truth ones.
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Figure 5.14: Top: Ground-truth brain MR objects f. Bottom: ProAmGAN-generated brain
MR objects f̂.

Synthetic brain MR images produced by the ProAmGAN at different training steps corre-

sponding to different image resolutions are shown in Fig. 5.15. FID scores corresponding to

different image resolutions were computed.

Figure 5.15: ProAmGAN-generated brain MR images at different training steps. FID scores
decreased as the resolution increased in the training process.
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ProGAN-generated and ProAmGAN-generated brain MR images are shown in more detail

in Fig. 5.16. The ProAmGAN-produced brain MR image in Fig. 5.16 contains less noise

than the one produced by the ProGAN. This demonstrates the ability of the ProAmGAN to

mitigate the noise in the reconstructed images when establishing SOMs.

Figure 5.16: A ProGAN-generated (left panel) and ProAmGAN-generated (right panel) brain
MR object.

5.5.2 Quantitative assessments

The FID scores corresponding to ProGANs and ProAmGANs for the idealized direct imaging

system, computed tomographic imaging system and MR imaging system with complete
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k-space data are shown in Table 5.2. The ProAmGANs had smaller FID scores than the

ProGANs, which indicates that the ProAmGANs outperformed the ProGANs.

ProGAN ProAmGAN

X-ray CT MRI X-ray CT MRI

FID score 65.5830 62.3854 47.2472 28.7975 30.6161 41.6365

SSIM PDF overlap area 0.1635 0.5230 0.7208 0.9570 0.9599 0.9804

Two-sample KS test statistic 0.8365 0.4772 0.2793 0.0429 0.0384 0.0173

Table 5.2: FID and metrics that evaluate PDFs of SSIMs. Here, “X-ray”, “CT”, and “MRI”
correspond to the idealized direct imaging system, computed tomographic imaging system
and MR imaging system with complete k-space data, respectively.

The empirical PDFs of SSIMs corresponding to the idealized direct imaging system, computed

tomographic imaging system and MR imaging system with complete k-space data are shown

in Fig. 5.17, and the corresponding PDF overlap areas and two-sample KS test statistics are

summarized in Table 5.2. The PDFs of SSIMs corresponding to the ProAmGAN-generated and

ground-truth objects largely overlap, while the one corresponding to the ProGAN-generated

images had a significant discrepancy to the ground-truth PDF.
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(a) Idealized direct imaging system

(b) Computed tomographic imaging system

(c) MR imaging system with complete k-space data

Figure 5.17: Empirical PDFs of SSIMs corresponding to ground-truth image pairs (red curves),
ground-truth and ProAmGAN-generated image pairs (blue curves), and ground-truth and
ProGAN-generated image pairs (yellow curves).

5.5.3 MR imaging system with under-sampled k-space data

The ground-truth (top row) objects and ProAmGAN-generated objects trained with 4/5

k-space sampling ratio (bottom row) are shown in Fig. 5.18. The ProAmGAN-generated

objects have similar visual appearances to the ground-truth objects.
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Figure 5.18: Top: Examples of ground-truth objects f. Bottom: Examples of ProAmGAN-
generated objects f̂ corresponding to the data-acquisition design with 4/5 k-space sampling
ratio.

Objects produced by ProAmGANs and ProGANs trained with different data-acquisition

designs are shown in Fig. 5.19. It was observed that the ProAmGAN-generated objects (top

row) are visually plausible for the k-space sampling ratios that range from 1/2 to 1/1, while

the noise and aliasing artifacts appear in the ProGAN-generated objects (bottom row).
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Figure 5.19: ProAmGAN-generated objects (top row) and ProGAN-generated objects (bottom
row). From left to right, the ProGAN and ProAmGAN trained with the k-space sampling
ratio of 1/1, 4/5, 1/2, 1/4, and 1/8.

The FID corresponding to the objects f and that corresponding to the measurement com-

ponents fmeas were computed for evaluating the ProAmGAN that was trained with each

data-acquisition design. These FID scores are summarized in Table 5.3. It is observed that

the FID between f and f̂ increased when the k-space sampling ratio decreased, while the FID

between fmeas and f̂meas were not significantly changed. This indicates that the ProAmGANs

were unable to establish SOMs by use of measurement data that were acquired by imaging

systems having a non-trivial null space, while the variation in the measurement components

can be learned.

k-space sampling ratio 1/1 4/5 1/2 1/4 1/8

FID between f and f̂ 30.2247 38.5101 65.4784 105.6070 144.3667

FID between fmeas and f̂meas 30.2247 24.0327 20.3832 19.1034 20.1216

Table 5.3: FID scores corresponding to the objects and the measurement components.
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5.5.4 Task-based image quality assessment

The Hotelling observer performance was computed according to Eq. (5.4) and is shown in Fig.

5.20. It was observed that SNRHO has a positive bias when the ProAmGAN is trained with

imaging systems that acquire under-sampled k-space data. This is because the ProAmGAN

was not able to learn the complete object variation when the imaging system has a non-trivial

null-space. When the noise level was increased, the object variation became relatively less

important in terms of limiting the observer performance, and the positive bias of SNRHO

subsequently became less significant. This is consistent with the observation in reference [65].

Figure 5.20: Hotelling observer performance corresponding to different tasks with different
signals, noise levels, and k-space sampling ratios.
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5.6 Discussion and Conclusion

Variation in the objects to-be-imaged can significantly limit the performance of an observer.

When conducting computer-simulation studies, this variation can be described by SOMs. In

this work, a deep-learning-based method that employed ProAmGANs was developed and

investigated for establishing SOMs from measured image data. The proposed ProAmGAN

strategy incorporates the advanced progressive growing training procedure and therefore

enables the AmbientGAN to be applied to realistically sized medical image data. To

demonstrate this, stylized numerical studies were conducted in which ProAmGANs were

trained on different object ensembles corresponding to common medical imaging modalities.

Both visual examinations and quantitative analyses including task-specific validations indicate

that the proposed ProAmGANs hold promise to establish realistic SOMs from imaging

measurements.

In addition to objectively assessing imaging systems and data-acquisition designs, the

ProAmGAN-established SOMs can be employed to regularize image reconstruction problems.

Recent methods have been developed for regularizing image reconstruction problems based on

GANs such as Compressed Sensing using Generative Models (CSGM) [14] and image-adaptive

GAN-based reconstruction methods (IAGAN) [12, 55]. These methods can be readily em-

ployed with the SOMs established by use of the proposed ProAmGANs. ProAmGANs can

also be used to produce clean reference images for training deep neural networks for solving

other image-processing problems such as image denoising [114] and image super-resolution

[33].

It is desirable to establish three-dimensional (3D) object models. A preliminary study

developed a progressive-growing 3D GAN [35] and demonstrated its ability to generate

3D MR brain images with the dimension of 64 × 64 × 64. Our proposed method can be
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readily extended to establish 3D object models by adopting such 3D GAN training strategies.

Establishing a 3D version of the ProAmGAN will be explored in the future.

There remain additional topics for future investigation. It is critical to validate the learned

SOMs for specific diagnostic tasks. We have conducted preliminary task-specific validation

studies by use of the Hotelling Observer [9, 125] and simple binary signal detection tasks. It

will be important to validate the learned SOMs for more complicated tasks by use of other

observers such as the ideal observer [117, 118, 119, 123] and anthropomorphic observers [75].

Finally, our proposed method can be readily employed with other GAN architectures such as

the style-based generator architecture (StyleGAN) [60, 61] that can provide the additional

ability to control certain features of generated-images and potentially can further improve

the quality of generated-images.
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Chapter 6

Markov-Chain Monte Carlo

Approximation of the Ideal Observer

using Generative Adversarial

Networks

6.1 Introduction

As discussed in Chapters 1 and 3. the Ideal Observer (IO) performance has been advocated

for use in computing a figure-of-merit (FOM) for assessing and optimizing medical imaging

systems. In this way, imaging systems can be optimized in such a way that the amount of

task-specific information in the measurement data is maximized. However, the IO test statistic

implements the likelihood ratio that is intractable to analytically compute in the majority

of cases. To address this difficulty, a sampling-based method that employs Markov-Chain
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Monte Carlo (MCMC) techniques [68] was proposed. However, current applications of this

method have been limited to some relatively simple stochastic object models (SOMs) such

as a lumpy background model [67], a binary texture model [2], and a parameterized torso

phantom [50]. It remains unclear how the MCMC techniques can be implemented with other

more sophisticated object models.

In this chapter, inspired by the MCMC algorithm developed by Kupinski et al. [68], we

propose a novel methodology called MCMC-GAN for approximating the IO that implements

MCMC techniques with SOMs established by use of GANs. Because the implementation of

GANs is general and not limited to specific objects, the proposed MCMC-GAN method can

be implemented with sophisticated object models that can be trained by use of GANs and

therefore the domain of applicability of MCMC methods can be extended. In numerical studies,

binary signal detection tasks that involve clinical brain magnetic resonance (MR) images

and clinical brain positron emission tomography (PET) images are considered. Receiver

operating characteristic (ROC) curves and the area under the ROC curve (AUC) values

corresponding to the proposed MCMC-GAN algorithm are compared to those corresponding

to the CNN-approximated IO described in Chapter 3.

6.2 Markov-Chain Monte Carlo method for approxi-

mating the IO

Consider a binary signal detection task that requires an observer to classify an image g as

satisfying a signal-absent hypothesis (H0) or a signal-present hypothesis (H1). The imaging
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processes can be represented as:

H0 : g = b + n, (6.1a)

H1 : g = b + s + n, (6.1b)

where b ∈ RM denotes an image of background, s ∈ RM denotes the signal to be detected,

and n ∈ RM denotes the random measurement noise.

As introduced in Chapter 2, the Ideal Observer (IO) sets an upper performance limit among

all observers, and the IO test statistic can be computed as any monotonic transformation of

the likelihood ratio:

Λ(g) = p(g|H1)

p(g|H0)
. (6.2)

However, computation of Λ(g) generally is intractable analytically.

Kupinski et al. proposed a method to numerically approximate the IO test statistic by

employing MCMC techniques [68]. For a signal-known-exactly (SKE) binary signal detection

task, the likelihood ratio can be written as [68]:

Λ(g) =
∫
db pb(b)p(g|b, H1)∫
db pb(b)p(g|b, H0)

≡
∫

db ΛBKE(g|b)p(b|g, H0), (6.3)

where ΛBKE(g|b) = p(g|b,H1)
p(g|b,H0)

and p(b|g, H0) =
p(g|b,H0)pb(b)∫

db′p(g|b′,H0)pb(b′)
. The BKE likelihood ratio

ΛBKE(g|b) sometimes has an analytical form that is dependent on the type of measurement

noise [67]. In cases where the background can be described by a stochastic object model

(SOM) with a set of stochastic parameters θ, i.e., b ≡ b(θ), the likelihood ratio described

in Eq. (6.3) can be written as [68]: Λ(g) =
∫
dθ ΛBKE(g|b(θ))p(θ|g, H0). Subsequently, the
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likelihood ratio can be approximated as:

Λ̂(g) = 1

J

J∑
j=1

ΛBKE(g|b(θj)). (6.4)

Here, each θj is sampled from the posterior distribution p(θ|g, H0). To sample θj from

the distribution p(θ|g, H0), a Markov chain with the stationary density p(θ|g, H0) can be

generated. To do this, an initial vector θ0 is chosen and a proposal density function q(θ|θj)

is specified. Given θj, the candidate vector θ̂ is sampled from the proposal density q(θ|θj)

and it is accepted with probability [68]:

pa(θ̂|θj,g) = min

[
1,

p(g|b(θ̂), H0)p(θ̂)q(θ
j|θ̂)

p(g|b(θj), H0)p(θj)q(θ̂|θj)

]
. (6.5)

The vector θj+1 ≡ θ̂ if the candidate is accepted; otherwise θj+1 ≡ θj. If the proposal

density is designed to be symmetric, i.e., q(θ̂|θj) = q(θj|θ̂), the sampling strategy described

above becomes a Metropolis-Hastings approach and the factors corresponding to the proposal

density are cancelled.

Park et al. extended the MCMC approach to signal-known-statistically (SKS) signal detection

tasks [85] where the signal s is random. If the signal can be described by a set of stochastic

parameters α, i.e., s = s(α), the likelihood ratio Λ(g) can be written as [85] :

Λ(g) =
∫

dα

∫
dθ ΛBSKE(g|b(θ), s(α))p(θ|g, H0)p(α), (6.6)

where ΛBSKE(g|b(θ), s(α)) = p(g|b(θ),s(α),H1)
p(g|b(θ),H0)

. The likelihood ratio can be subsequently ap-

proximated as:

Λ̂(g) = 1

J

J∑
j=1

ΛBSKE(g|b(θj), s(αj)). (6.7)
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Here, (θj,αj) are sampled from the distribution p(θ|g, H0)p(α). The Markov chain can be

constructed with acceptance probability:

pa(θ̂, α̂|θj,αj,g) = min

[
1,

p(g|b(θ̂), H0)p(θ̂)p(α̂)q(θj|θ̂)q(αj|α̂)

p(g|b(θj), H0)p(θj)p(αj)q(θ̂|θj)q(α̂|αj)

]
. (6.8)

Again, if the proposal densities are designed to be symmetric, the factors corresponding to

the proposal density in Eq. (6.8) are canceled.

However, implementations of these MCMC methods can be difficult due to practical issues

such as the design of proposal density for the considered object model. In addition, it remains

unclear how to apply these methods for situations where the background cannot be described

by well-established SOMs.

6.3 Markov-Chain Monte Carlo approximation of the

IO by use of GANs

As introduced in Chapter 5, deep generative neural networks such as generative adversarial

networks (GANs) [46] hold great potential to learn statistical properties of training images

and generate new images that consistent with them. Once a GAN has been trained on a set

of background images b, the generator can be employed to generate synthesized background

images b̂: b̂ = G(z;ΘG). Here, G(· ΘG) : Rk → RM is a mapping function represented by a

deep neural network with a weight vector ΘG, and z ∈ Rk is a latent vector that is sampled

from a known distribution such as normal distribution. The probability distribution of the

real background images pb can be subsequently approximated by the probability distribution

of the GAN-produced background images pb̂.
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The IO test statistic for SKE binary signal detection tasks can be subsequently approximated

as:

Λ(g) =
∫
db̂ pb̂(b̂)p(g|b̂, H1)∫
db̂ pb̂(b̂)p(g|b̂, H0)

≡
∫

db̂ ΛBKE(g|b̂)p(b̂|g, H0), (6.9)

where ΛBKE(g|b̂) = p(g|b̂,H1)

p(g|b̂,H0)
and p(b̂|g, H0) = p(g|b̂, H0)pb̂(b̂)/

∫
db̂′ p(g|b̂′, H0)pb̂(b̂′). Be-

cause p(b̂|g, H0) =
∫
dz δ(b̂ −G(z;ΘG))p(z|g, H0), where δ(·) is a Dirac delta function and

p(z|g, H0) =
p(g|G(z;ΘG),H0)pz(z)∫

dz′p(g|G(z′;ΘG),H0)pz(z′)
, the likelihood ratio can be rewritten as:

Λ(g) =
∫

db̂
∫

dz ΛBKE(g|b̂)δ(b̂ −G(z;ΘG))p(z|g, H0)

=

∫
dz ΛBKE(g|G(z;ΘG))p(z|g, H0),

(6.10)

where ΛBKE(g|G(z;ΘG)) is evaluated on the synthetic background image generated by the

GAN. The likelihood ratio subsequently can be approximated as:

Λ̂(g) = 1

J

J∑
j=1

ΛBKE(g|G(zj;ΘG)), (6.11)

where zj is sampled from the posterior distribution p(z|g, H0). To produce zj, a Markov

chain can be constructed by specifying a proposal density function q(z|zj). Given the current

sample zj, a candidate latent vector ẑ is drawn from the proposal density function and is

accepted to the Markov chain with the acceptance probability:

pa(ẑ|zj,g) = min

[
1,

p
(
g|G(ẑ;ΘG), H0

)
pz(ẑ)q(zj|ẑ)

p
(
g|G(zj;ΘG), H0

)
pz(zj)q(ẑ|zj)

]
. (6.12)

Here, the probability density function pz(·) has a simple analytical form because the latent

vector z is sampled from a known distribution such as the normal distribution. When a

random walk Metropolis-Hastings (RWMH) algorithm [86] is employed, the proposal density

q(ẑ|zj) can be chosen as a Gaussian density. Additionally, because the gradient of the function
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represented by the generator G(z;ΘG) with respect to the latent vector z can be readily

computed, more advanced MH algorithms including Metropolis adjusted Langevin algorithms

(MALA) and Hamiltonian Monte Carlo (HMC) [86] that employ gradient information can be

employed.

6.4 Numerical studies

Computer-simulation studies were conducted to investigate the ability of the proposed MCMC-

GAN method to approximate the IO test statistic associated with SOMs that are established

by use of GANs. Two SKE/BKS binary signal detection tasks that involve clinical brain

PET images and clinical brain MR images were considered. The observer performance was

assessed by use of the ROC curve that was fit by use of the Metz-ROC software [76] that

utilized the “proper” binormal model [77, 87]. Details of the computer-simulation studies are

provided below.

6.4.1 Clinical brain positron emission tomography (PET) images

A clinical brain PET dataset sponsored by Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [78] was considered. Eleven thousand high quality images having the dimension

of 128× 128 were selected to form a dataset for training a GAN for establishing the SOM.

These images were subsequently normalized between 0 and 1 for use as training images for

training a GAN. After the training, the generator in the trained GAN was employed as

a SOM. Poisson noise was employed to simulate the low-dose PET images for use in the

considered signal detection task. Specifically, the signal-absent low-dose PET images were

generated from the Poisson distribution with the mean b̂ that is the generator-produced

images multiplied with 20, and the signal-present low-dose PET images were generated from
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the Poisson distribution with the mean b̂ + s. Let G(z;ΘG) denote the function that maps

a latent vector z to the scaled GAN-generated image. The synthesized background image

can be represented as: b̂ = G(z;ΘG). An example of the original PET brain images b and

the corresponding signal-absent low-dose PET image g are shown in Fig. 6.1 (a) and (b),

respectively. The signal image s corresponding to the considered signal detection task is

shown in Fig. 6.1 (c).

(a) (b) (c)

Figure 6.1: (a) An image from the ADNI PET dataset. (b) A simulated low-dose PET image
corresponding to (a). (c) The signal image corresponds to the considered signal detection
task.

The binary signal detection task was performed on a region of interest (ROI) of dimension

of 16 × 16 pixels centered at the signal location. Let b̂ROI(zj) denote the ROI of the

GAN-produced background image b̂(zj) ≡ G(zj; ΘG) and ˆgROI denote the ROI of the

measured image ĝ that corresponds to the GAN-produced image. The IO test statistic can

be approximated as:

Λ̂(ĝROI) =
1

J

J∑
j=1

ΛBKE(ĝROI |b̂ROI(zj)), (6.13)
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where b̂ROI(zj) is the ROI of b̂(zj) ≡ G(zj; ΘG) and ĝROI is the ROI of ĝ. Because Poisson

noise was considered, the BKE likelihood ratio ΛBKE(ĝROI |b̂ROI(zj)) can be computed as:

ΛBKE(ĝROI |b̂ROI(zj)) =
M∏

m=1

(
1 +

sm
bm

)gm

exp(−sm), (6.14)

where M = 256 and bm, gm and sm are respectively the mth element of b̂ROI(zj), ĝROI and

sROI . Here, sROI denotes the ROI of the signal image s. The latent vector zj was drawn

from the posterior distribution p(z|ĝROI , H0):

p(z|ĝROI , H0) ∝ p(ĝROI |b̂ROI(zj), H0)pz(z). (6.15)

Because Poisson noise was considered, the likelihood function p(ĝROI |b̂ROI(zj), H0) can be

described as:

p(ĝROI |b̂ROI(zj), H0) =
M∏

m=1

exp(−bm)
(bm)

gm

gm!
. (6.16)

The probability density function pz(z) was described by a standard normal distribution

because of the specification of the latent vector z in the GAN training. To construct the

Markov chain, the RWMH algorithm with a proposal density function q(z|zj) that was

described by a multivariate Gaussian distribution was employed:

q(ẑ|zj) ∝ exp
(
− 1

2σ2
||ẑ − zj||22

)
. (6.17)

Here, the standard deviation σ was set to 0.06. The IO performance was evaluated on 200

signal-absent images and 200 signal-present images. For each image, a Markov chain was

constructed by running 500,000 iterations with 5000 burn-in iterations that were discarded.

To validate the proposed MCMC-GAN method, the supervised learning method described in

Chapter 3 that employs convolutional neural networks (CNNs) was implemented as a reference
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method. When training CNNs, a training dataset that comprised one million GAN-generated

background images and a “semi-online learning” method in which the measurement noise

was generated on-the-fly were employed. A CNN having 13 convolutional (CONV) layers was

specified to approximate the IO. Each CONV layer comprised 32 filters with 5 × 5 spatial

support and was followed by a LeakyReLU activation function. The last CONV layer was

followed by a max-pooling layer and a fully connected (FC) layer. The Hotelling observer (HO)

was also computed to provide an additional comparison to the MCMC-GAN approximated

IO. The Hotelling template was computed by use of a covariance matrix decomposition in

which the background covariance matrix was estimated by use of one million GAN-generated

images.

6.4.2 Clinical brain MR images

A clinical brain MR dataset sponsored by ADNI [78] was employed for establishing a SOM

by use of GANs. Twelve thousand high quality sagittal brain MR images were selected and

resized to the dimension of 128× 128. These images were subsequently normalized between 0

and 1 for use as training images for training a GAN. After the training, the generator in the

trained GAN was employed as a SOM that describes the variability of the background images

b. The noise n was modeled by independent and identically distributed distributed (i.i.d.)

Gaussian random vector with a standard deviation of 0.1. An example of the considered MR

brain images b and the corresponding measured noisy MR images g is shown in Fig. 6.2 (a)

and (b), respectively. The signal image s for the considered signal detection task is shown in

Fig. 6.2 (c).
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(a) (b) (c)

Figure 6.2: (a) An image from the ADNI MR dataset. (b) A signal-absent image that is
generated by adding i.i.d. Gaussian noise to (a). (c) The signal image corresponds to the
considered signal detection task.

A binary signal detection task was performed on a region of interest (ROI) of dimension of

16× 16 pixels centered at the signal location. The IO test statistic corresponding to the ROI

can be approximated as:

Λ̂(ĝROI) =
1

J

J∑
j=1

ΛBKE(ĝROI |b̂ROI(zj)). (6.18)

Because i.i.d. Gaussian noise was considered, the BKE likelihood ratio ΛBKE(ĝROI |b̂ROI(zj))

can be computed as:

ΛBKE(ĝROI |b̂ROI(zj)) = exp
[
(ĝROI − b̂ROI(zj)− sROI/2)

TK−1
n sROI

]
, (6.19)

where Kn is the covariance matrix corresponding to i.i.d. Gaussian noise with standard

deviation of 0.1. The latent vector zj was drawn from the posterior distribution p(z|ĝROI , H0):

p(z|ĝROI , H0) ∝ p(ĝROI |b̂ROI(zj), H0)pz(z). (6.20)
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The likelihood function p(ĝROI |b̂ROI(zj), H0) for Gaussian noise can be described as:

p(ĝROI |b̂ROI(zj), H0) ∝ exp
[
−1

2
(ĝROI − b̂ROI(zj))TK−1

n (ĝROI − b̂ROI(zj))

]
. (6.21)

The probability density function pz(z) was described by a standard normal distribution

because of the specification of the latent vector z in the GAN training. To construct the

Markov chain, the RWMH algorithm with a proposal density function q(z|zj) that was

described by a multivariate Gaussian distribution was employed:

q(ẑ|zj) ∝ exp
(
− 1

2σ2
||ẑ − zj||22

)
. (6.22)

Here, the standard deviation σ was set to 0.06. The IO performance was evaluated on 200

signal-absent images and 200 signal-present images. For each image, a Markov chain was

constructed by running 500,000 iterations with 5000 burn-in iterations that were discarded.

To validate the proposed MCMC-GAN method, the supervised learning method described in

Chapter 3 that employs convolutional neural networks (CNNs) was implemented as a reference

method. When training CNNs, a training dataset that comprised one million GAN-generated

background images and a “semi-online learning” method in which the measurement noise

was generated on-the-fly were employed. A CNN having 13 convolutional (CONV) layers was

specified to approximate the IO. Each CONV layer comprised 32 filters with 5 × 5 spatial

support and was followed by a LeakyReLU activation function. The last CONV layer was

followed by a max-pooling layer and a fully connected (FC) layer. The Hotelling observer (HO)

was also computed to provide an additional comparison to the MCMC-GAN approximated

IO. The Hotelling template was computed by use of a covariance matrix decomposition in

which the background covariance matrix was estimated by use of one million GAN-generated

images.
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6.4.3 GAN training details

Progressively growing GANs (ProGANs) [63] were trained on the considered image datasets to

establish SOMs. A latent vector having 64 elements was employed as the input to the generator.

More details of the ProGAN architecture used in this study is summarized in Table 6.1. The

ProGAN was implemented by use of the ProGAN code (https://github.com/tkarras/

progressive_growing_of_gans). The ProGANs were trained by use of Tensorflow [1] by

use of 4 NVIDIA Quadro RTX 8000 GPUs. The Adam algorithm [63] was employed as the

optimizer in the training process.
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Generator Act. Output shape

Latent vector - 64×1×1

Conv 4×4 LReLU 64×4×4

Conv 3×3 LReLU 64×4×4

Upscale - 64×8×8

Conv 3×3 LReLU 64×8×8

Conv 3×3 LReLU 64×8×8

Upscale - 64×16×16

Conv 3×3 LReLU 64×16×16

Conv 3×3 LReLU 64×16×16

Upscale - 64×32×32

Conv 3×3 LReLU 64×32×32

Conv 3×3 LReLU 64×32×32

Upscale - 64×64×64

Conv 3×3 LReLU 64×64×64

Conv 3×3 LReLU 64×64×64

Upscale - 64×128×128

Conv 3×3 LReLU 64×128×128

Conv 3×3 LReLU 64×128×128

Conv 1×1 linear 1×128×128

Discriminator Act. Output shape

Input image - 1× 128× 128

Conv 1× 1 LReLU 64× 128× 128

Conv 3× 3 LReLU 64× 128× 128

Conv 3× 3 LReLU 64× 128× 128

Downscale - 64× 64× 64

Conv 3× 3 LReLU 64× 64× 64

Conv 3× 3 LReLU 64× 64× 64

Downscale - 64× 32× 32

Conv 3× 3 LReLU 64× 32× 32

Conv 3× 3 LReLU 64× 32× 32

Downscale - 64× 16× 16

Conv 3× 3 LReLU 64× 16× 16

Conv 3× 3 LReLU 64× 16× 16

Downscale - 64× 8× 8

Conv 3× 3 LReLU 64× 8× 8

Conv 3× 3 LReLU 64× 8× 8

Downscale - 64× 4× 4

Minibatch stddev - 65× 4× 4

Conv 3× 3 LReLU 64× 4× 4

Conv 4× 4 LReLU 64× 1× 1

Fully-connected linear 1× 1× 1

Table 6.1: The architecture of the generator and discriminator for establishing SOMs corre-
sponding to the considered brain PET and MR images. More details about each component
in the architecture can be found in ProGAN paper [59].
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6.5 Results

6.5.1 Clinical brain PET images

The GAN-generated images (bottom row) and ground-truth images (top row) are shown in

Fig. 6.3. The ProGAN-generated images have similar visual appearances to the ground-truth

ones.

Figure 6.3: Top: Examples of ground-truth PET images. Bottom: Examples of ProGAN-
generated PET images.

The ProGAN-generated images have similar visual appearance to the ground-truth images.

The Fréchet Inception Distance (FID) [53] score was computed to evaluate the performance

of the ProGAN. Lower FID score indicates better quality and diversity of the generated

objects. The FID score was 7.7496 that was evaluated on the original 11,000 ground-truth

images and 11,000 ProGAN-generated images.
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The ROC curves corresponding to the MCMC-GAN IO (blue curve), CNN-IO (red-dashed

curve) and the HO (yellow curve) are shown in Fig. 6.6. The curves of the MCMC-GAN IO

and CNN-IO are in close agreement, and are higher than the curve of the HO as expected.

The AUC value corresponding to the MCMC-GAN IO, CNN-IO and the HO are 0.804±0.021,

0.799± 0.022 and 0.618± 0.027, respectively.

Figure 6.4: The ROC curve corresponding to the MCMC-GAN IO, CNN-IO and the HO. The
ROC curve corresponding to the MCMC-GAN IO is in close agreement with the CNN-IO
and is higher than the HO.
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6.5.2 Clinical brain MR images

The GAN-generated images (bottom row) and ground-truth images (top row) are shown in

Fig. 6.5. The ProGAN-generated images have similar visual appearances to the ground-truth

ones.

Figure 6.5: Top: Examples of ground-truth MR images. Bottom: Examples of ProGAN-
generated MR images.

The ProGAN-generated images have similar visual appearance to the ground-truth images.

The Fréchet Inception Distance (FID) [53] score was computed to evaluate the performance

of the ProGAN. Lower FID score indicates better quality and diversity of the generated

objects. The FID score was 20.9297 that was evaluated on the original 12,000 ground-truth

images and 12,000 ProGAN-generated images.

The ROC curves corresponding to the MCMC-GAN IO (blue curve), CNN-IO (red-dashed

curve) and the HO (yellow curve) are shown in Fig. 6.6. The curves of the MCMC-GAN IO

and CNN-IO are in close agreement, and are higher than the curve of the HO as expected.
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The AUC value corresponding to the MCMC-GAN IO, CNN-IO and the HO are 0.861±0.018,

0.857± 0.018 and 0.730± 0.025, respectively.

Figure 6.6: The ROC curve corresponding to the MCMC-GAN IO, CNN-IO and the HO. The
ROC curve corresponding to the MCMC-GAN IO is in close agreement with the CNN-IO
and is higher than the HO.

6.6 Discussion and Conclusion

In this chapter, we proposed a novel sampling-based method that employs MCMC techniques

and deep generative models trained by use of GANs to approximate the IO. Although the

conventional MCMC methods have been employed to approximate the IO, they have been
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limited to some relatively simple object models such as lumpy object models, binary texture

models and parameterized torso phantoms. Our proposed method extends the domain of

applicability of the MCMC techniques and can be implemented with more sophisticated

object models. This is because the implementation of GANs is general and not limited to

specific images. To demonstrate this, we applied the proposed MCMC-GAN method to the

GAN-represented SOMs trained with clinical brain PET images and MR images. The IO

performances corresponding to the MCMC-GAN were consistent with those corresponding

to the CNN approximated IO. To the best of our knowledge, this is the first time that the

MCMC techniques are applied to the SOMs established by use of clinical brain PET and MR

data.

It is critical to evaluate the GAN-represented SOMs. In this study, visual assessment of

GAN-produced images was conducted and the FID score, a widely used metric to assess

GANs in GAN literatures, was reported. However, in medical imaging, it is still important to

evaluate GAN-represented SOMs for optimizing imaging systems and data-acquisition designs

by use of task-based measures of image quality. For example, a GAN can be potentially

assessed by comparing the rank ordering of a set of imaging systems determined by use of a

GAN-represented SOM to that produced by use of the ground-truth SOM. Evaluating GANs

for optimizing imaging systems by use of task-based measures of image quality represents an

important topic for investigation.

There remain additional topics for future investigation. In this study, a random walk

Metropolis-Hastings (RWMH) algorithm with a simple Gaussian proposal density function

was employed. More advanced MCMC algorithms such as Metropolis adjusted Langevin

algorithms (MALA) and Hamiltonian Monte Carlo (HMC) [86] can be readily implemented

in our proposed MCMC-GAN framework. This is because the gradient of the generator

in GANs with respect to the latent vector can be readily computed on machine learning
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platforms such as Tensorflow [1]. Finally, it should be noted that our proposed method can

be readily applied to approximate the IO for signal detection-localization tasks that were

introduced in Chapter 4.
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Chapter 7

Summary

In this dissertation, we have developed and investigated machine learning and deep learning

methods for assessing task-based measures of image quality (IQ) that quantify the perfor-

mance of an observer at specific tasks. Supervised learning based methods that employ

convolutional neural networks (CNNs) were proposed to approximate the Ideal Observer (IO)

for binary signal detection tasks and signal detection-localization tasks. We also proposed

supervised learning based methods that employ single layer neural networks (SLNNs) to

approximate the Hotelling Observer (HO) without estimating and inverting large covariance

matrices. Moreover, a novel deep learning method named progressively-growing Ambient-

GANs (ProAmGANs) was developed to establish realistic stochastic object models (SOMs)

from noisy imaging measurement data. This method further facilitates computer-simulation

for optimizing imaging systems and data-acquisition designs. Finally, a novel sampling

based method named MCMC-GAN was developed for approximating the IO. This method

can be implemented with sophisticated object models and therefore extends the domain of

applicability of MCMC techniques.
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A supervised learning-based method that employs CNNs to approximate the IO for binary

signal detection tasks was proposed. The considered binary signal detection tasks involved

various object models in combination with several measurement noise models. The IO perfor-

mance that was assessed by the receiver operating characteristic (ROC) curve corresponding

to the proposed method was compared to that corresponding to the analytical computation

or MCMC method when feasible. Those IO performances were in close agreement. It was

also demonstrated that the proposed supervised learning method can still be implemented to

a clustered lumpy object model [13] for which the IO computation has not been addressed

by the MCMC method. Supervised learning based methods that employ SLNNs were also

developed to approximate the HO. These methods directly learn the Hotelling template

without estimating and inverting covariance matrices. Accordingly, they can scale well to

large images.

Moreover, a supervised learning-based method that employs CNNs to approximate the IO

for signal detection-localization tasks was proposed. This method represents a deep-learning-

implementation of the IO decision strategy proposed by Khurd and Gindi [62] that optimizes

the localization ROC curve (LROC). The considered signal detection-localization tasks

involved various object models in combination with several measurement noise models. The

observer performance was assessed via the LROC analysis. The LROC curves produced by

the proposed supervised-learning method were compared to those produced by the analytical

computation or MCMC methods when feasible. Those LROC curves were in close agreement.

In addition, it was demonstrated that the proposed supervised learning method can still be

implemented to a clustered lumpy object model for which the IO computation has not been

addressed by the MCMC method.

An important factor that can significantly limit the performance of an observer is the variation

in the objects to-be-imaged. This variation can be described by SOMs. In this dissertation, we
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developed a deep learning-based method that employed ProAmGANs for establishing SOMs

from measured image data. The proposed ProAmGAN strategy incorporates the advanced

progressive growing training procedure and therefore enables the AmbientGAN to be applied

to realistically sized medical image data. To demonstrate this, stylized numerical studies were

conducted in which ProAmGANs were trained on different object ensembles corresponding

to common medical imaging modalities. Both visual examinations and quantitative analyses

including task-specific validations indicate that the proposed ProAmGANs hold promise to

establish realistic SOMs from measured image data.

Moreover, a novel sampling-based method that employs MCMC techniques and deep genera-

tive models trained by use of GAN techniques were proposed to approximate the IO. This

method applies the MCMC methods to SOMs that are established by use of GAN techniques.

Because the implementation of GANs is general and not limited to specific images, our

proposed method can be implemented with sophisticated object models and therefore extends

the domain of applicability of the MCMC techniques. To demonstrate this, we applied the

proposed MCMC-GAN method to the GAN-represented SOMs trained with clinical brain

PET images and MR images. To the best of our knowledge, this is the first time that the

MCMC techniques are applied to SOMs established by use of clinical brain PET and MR

data.

Many topics remain for future investigation. It will be important to quantify the effect of

the number of data used in the proposed supervised learning methods for approximating

the IO and HO. In addition, to implement the proposed supervised learning methods for

approximating the IO in situations where only a limited number of experimental data is

available, it will be important to investigate methods to train deep neural networks on

limited training data. To achieve this, one may investigate the methods that employ domain

adaptation [39, 49] and transfer learning [88]. It will also be important to investigate
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supervised learning methods for approximating IOs for other more general tasks such as

joint signal detection and estimation tasks associated with the estimation ROC (EROC)

curve. Moreover, it is critical to evaluate the GAN-represented SOMs for optimizing imaging

systems and data-acquisition designs for diagnostic tasks. Finally, it will be important to

investigate advanced MCMC algorithms such as Metropolis adjusted Langevin algorithms

(MALA) and Hamiltonian Monte Carlo (HMC) [86] for use in our proposed MCMC-GAN

framework for approximating the IO.
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Appendix A

Gradient of cross-entropy

The cross-entropy can be written as:

〈− log[Pr(Hy|g,Θ)]〉(g,y)

=−
∫

dg
[

J∑
y=0

p(g, Hy) log exp [zy(g;Θ)]∑J
j′=0 exp [zj′(g;Θ)]

]

=−
∫

dg
{ J∑

y=0

p(g, Hy)zy(g;Θ)

−
J∑

y=0

p(g, Hy) log
( J∑
j′=0

exp [zj′(g;Θ)]
)}

.

(A.1)

Here, the cross-entropy 〈− log[Pr(Hy|g,Θ)]〉(g,y) is considered as a functional of the zj(g;Θ),

viewed as functions of g. The derivative of 〈− log[Pr(Hy|g,Θ)]〉(g,y) with respect to zj(g;Θ),

which is a functional derivative known as a Fréchet derivative, can subsequently be computed
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as:
∂〈− log[Pr(Hy|g,Θ)]〉(g,y)

∂zj(g;Θ)

= −p(g, Hj) +
J∑

y=0

p(g, Hy)
exp [zj(g;Θ)]∑J

j′=0 exp [zj′(g;Θ)]

= −p(g)
[
p(Hj|g)−

exp [zj(g;Θ)]∑J
j′=0 exp [zj′(g;Θ)]

]
.

(A.2)

The last step in Eq. (A.2) is derived because p(g, Hj) = p(g)p(Hj|g) and
∑J

y=0 p(g, Hy) =

p(g).
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