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Abstract of The Dissertation

Nanoscale Enhancement of Photosensitized Radionuclide Stimulated Therapy

By

Daniel D. Lane

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2021

Professor Samuel Achilefu, Chair

Photodynamic therapy (PDT) provides efficient tumor killing through the generation of
reactive oxygen species (ROS) from the optical excitation of a photosensitizer (PS).
Furthermore, this mechanism is highly immune stimulating, providing systemic tumor immunity
with a reduction in metastasis. However, these materials had previously been limited by their
dependence upon external light sources, allowing treatment of only laser-accessible malignancy.
With the recent development of photosensitized radiation stimulated therapy (PRaST) this depth
dependence is broken through co-localization of radionuclides and semiconducting

photosensitizers.

This dissertation focuses on the enhancement of titanium dioxide (Ti0O2) based PRaST
agents through understanding of TiO, material parameters as well as adsorbed surface coatings

to enhance therapeutic outcomes. TiO; has several known crystal phases and can be generated



from an atomic cluster to micrometer size. To improve its therapeutic potential, we first
investigated the effect these parameters had on its primary constraints, namely ROS generation
and biodistribution, finding an interplay between 5 nm and 25 nm TiO; crystal domains.
Furthermore, we sought to overcome the central tumor resistance mechanism to PDT, that of
oxygen dependence. ROS generation from molecular PS traditionally use near infra-red (NIR)
optical excitation of electrons, this energy then being transferred to an associated molecular
oxygen. Nanoscale TiO; can use both electron and hole intersystem crossing, generating ROS
from adsorbed oxygen and hydrolysis. To enhance these pathways, we investigated the ability of
chromium VT ions to increase TiO> hole flux as well as the ability of adsorbed dichromate to act
as an oxygen independent metallo-therapeutic. Finally, we develop a polymer stabilized
perfluorocarbon nanoemulsion able to be tracked with near-infrared fluorescent imaging and
increase the oxygen tension of hypoxic tumor tissue. This normalization can boost ROS
generation and normalize tumor microenvironments. Combined, these developments point to
new nano-design strategies to improve upon novel PRaST, optimizing the particles to both

improve ROS generation and decrease tumor resistance.



Chapter 1: Introduction

1.1 Cancer Therapy

Cancer remains the 2" leading cause of death globally, bringing undue suffering.! The
treatment of the pain, both personal and societal, remains an essential goal of medicine. In
pursuit of this cause there has been year over year funding increases from both governmental and
charity sources, with large advances in survivability being achieved.? However, complete
remission remains elusive due to metastasis, drug resistance and/or quiescence.>* Complete
remission of cancer requires systemic therapies which can exploit the bodies inherent defensive
mechanisms as well as provide direct targeting of subtle differences between malignant cells and
surrounding tissue.>% One such disparity, metabolic dysregulation, results in an unbalanced
cellular redox state. This imbalance makes cancerous cells particularly sensitive to additional
strain on redox control mechanisms and effective therapy can be induced through the delivery of

reactive oxygen species (ROS).

1.2 Reactive Oxygen Species and Cancer Biology

Undesired reactive molecules are byproducts of cellular metabolism and must be
carefully controlled to maintain stable growth and replication/function for normal tissue. One
primary class of metabolic byproducts are ROS whose highly energetic nature can damage lipids,

proteins, and nucleic acids.” Normal cells control ROS through anti-oxidants and enzymes which



de-energize them to ground state.®® Cancers, however, have dysregulated metabolic processes

and increased survival signaling, leading to elevated intracellular ROS concentration. !

Mitochondria produce ROS during aerobic metabolism, producing superoxide, which can
interconvert into hydrogen peroxide, and hydroxyl radicals.!!'? The pathways which limit off-
target damage are legion but the major systems revolve around glutathione and ascorbate redox
cycling.'® As the primary chemical anti-oxidants within the cell, the sulfur and hydroxyl groups
can both reduce ROS before catalytic recovery either through enzymes or the NADH cycle.!'*
Specific enzymes also exist for ROS such as singlet oxygen dismutase, which stabilizes singlet
oxygen to hydrogen peroxide.'>!¢ Peroxides are further degraded by ascorbate and glutathione
peroxidase, both recovering the chemical anti-oxidants and degrading peroxides to water and

oxygen.!”

Cancers tend to have elevated levels of ROS within their cytosol due to dysregulation of
these redox control pathways. In active tumors, this is due to elevated metabolism but this effect
persists in quiescent cells due to dysregulation of cell death pathways and other signaling
processes.® As over production of ROS can lead to a variety of cell death signals, cancer tissue
must bypass them, particularly the HIF1-a and P53 mechanisms.'® This increases susceptibility
to further ROS damage while also generating highly immune stimulating damage-associated
molecular patterns (DAMP).!%? Cells that perish from ROS stress undergo immune surveillance,
further stimulated by DAMPs within the cellular detritus, increasing recruitment of dendritic
cells, activated T-Cells, and possible anti-cancer beta cell generation. This increased immune
reactivity makes ROS induced DAMPs effective in generating systemic immune targeting of

cancer, limiting the relapse of tumors and attacking metastasis.?!*?



1.3 History of Photodynamic Therapy

Photodynamic therapy (PDT) is one of the primary methods for generating ROS. Driven
by the absorbance of optical energy by a photosensitizer (PS), it can transfer energy into ROS
(Figure 1-1).2%?* Light has long been recognized for its healing properties, predating even
Herodotus, with modern recognition of its benefits amplified by a Nobel prize awarded in 1903
for lupus treatment.?> However, the combination of a PS and light was first described in 1900 by
the doctoral student Oscar Raab who accidentally exposed suspended protozoa stained with

acridine orange to a bright light.?®

The description of the eukaryote’s death was quickly
published.?® Raab and his mentors then brought the method to clinic before the end of the 1900’s
which proved effective on skin tumors. However, the therapy received little notice, dropping
from common medical use.?’ This technique would later become photodynamic therapy (PDT)
which emerged briefly in the 1950s with interest in porphyrins then slowly being investigated
until the late 1970’s when the clinical relevance of PDT was brought to the world by Dougherty
et. al.?®3% Their work resulted in the first clinically approved photosensitizer (PS), Photofrin
(1993) for use on bladder cancer.’! Since that time PDT has passed through three generations and

is entering its fourth.>>+32-35

While Photofrin heralded the first generation of porphyrin based PS, it had several side
effects and shortcomings.>®” The most apparent of these issues were depth of penetration and
systemic light sensitization, limiting treatment to laser accessible sites and requiring indoor
quarantine for a week or more.*®* To overcome this impediment the second generation
attempted to modify the porphyrin structure itself or expand into new dyes, increasing the

wavelength of activation and site selectively. One example is ALA-5, is enzymatically activated



to PP-IX when reaching the target tissue, a conversion that favors metabolically active cancers
and is activatable by NIR light.*** While the 2" generation increased the depth of penetration,
the limit remained ~ 1 cm, primarily due to tissue heating effects of NIR lasers.** Additionally,
choice of the NIR wavelengths came at the cost of lower optical energy, also lowering the energy
of the generated ROS. The third generation remains ongoing and is categorized by nanoparticle
(NP) and/or antibody targeting of existing PS but has little to improve the penetration depth of

therapy.

A new generation of PS is currently being developed that can return to higher energy
ROS generation and/or overcome depth of penetration issues. Using either two-photon
absorbance for molecular photosensitizers, like aggregation-induced emission lumigens
(AlEgens), or up-conversion NP like NaYF3:Eu:Yb, the energy level of delivered light can be
increased.**7 However, these still rely on external laser sources limited depth of penetration. To
overcome both depth and energy concerns, sonodynamic therapy has used sonosensitizers for
ROS generation but this carries the downside of direct beam targeting and limited reduction of
satellite malignancy.*®*’ Photodynamic radiation-stimulated therapy (PRaST), recently
developed within our lab, can overcome both penetration depth and energy restrictions while

providing systemic targeting.
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Figure 0-1: The mechanism of photodynamic therapy.

The photosensitizer (PS) absorbs light and an electron moves to the first short-lived excited singlet state. This is followed by
intersystem crossing, in which the excited electron changes its spin and produces a longer-lived triplet state. The PS triplet
transfers energy to ROS, in this case ground-state triplet oxygen, which produces reactive singlet oxygen ('0z). ROS can directly
kill tumor cells by the induction of necrosis and/or apoptosis, can cause destruction of tumor vasculature and produces DAMP
activating leukocytes such as dendritic cells and neutrophils.>

1.4 PRaST

Instead of directly relying upon photon energy, PRaST exploits multiple energy delivery
mechanisms resulting from radio decay to drive the PDT (Figure 1-2), showing great effect in
mouse models of cancer.’'>> PRaST utilizes non-toxic doses of radiation, below that normally
required for direct radio-therapy and allowing energy release anywhere within the body.’>> This
systemic delivery is supplemented by the cancer seeking nature of existing PET radio tracers
whose beta emission provides easily exploitable energy and offers imaging capabilities. The
energy types emitted by beta decay are Cherenkov radiation, beta capture and daughter redox
reactions (Figure 1-2). To utilize these requires the use of specifically designed PS and

knowledge of each’s properties.
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Figure 0-2: PRaST energy delivery mechanisms.

After a sufficiently energetic beta decay (either positron or electron) Cherenkov light is generated in dielectric media for PS
excitation. The particle can then annihilate or be captured by a material, generating multiple excited Auger electrons. Finally, the
daughter product undergoes separate redox reactions to return to ground state.

Cherenkov radiation (CR) is a byproduct of the faster-than-light travel of a charged
particle in dielectric media. The travel of the particle causes polarization of the media along its
path, relaxing and generating an electromagnetic wave. CR pulls energy from the particle and
transfers it into optical emission, reducing the velocity of the particle to below the speed of light
for the medium.>>>® The spectrum produced depends upon the medium and the energy of the
particle but follows the proportion of 1/A3 (A being wavelength) vs photon flux.’®* The
combination of water absorbance and the exponential decay proportionality places the tissue
intensity maximum near 200 nm (UV-C light, Figure 1-3), with a mean free path of <1 mm in
tissue.%’ Visible to the naked eye at high radiation doses as a blue glow, Figure 1-3B shows the

luminescence of ®*Cu, a beta emitter, under an open filter in an IVIS (in vivo imaging system)



imager. Figure 1-3C shows the lack of photon flux above a 500 nm cutoff (specifically the built-
in GFP filter, pass range 515-575 nm) leaving most of the flux in the UV, unable to activate

existing PS.

The second energy transfer mechanism for PRaST is scintillation, a process particularly
relevant to nanoscale inorganic materials which can regenerate from the process.®' The direct
capture of a beta particle can occur up to 10 mm from the decay source in tissue, depending upon
the emission energy.®? In the case of both positron and electron capture, the resulting energy can
cause a multiple electron energy transfer cascade known as the Auger process, able to generate
several trapped, excited electrons, and therefore ROS. The final PRaST energy mechanism is
daughter product redox equilibration. As the original atom’s nucleus ejects a beta particle the
resulting nucleus is often left with residual energy due to electron imbalance. This excited atom
then undergoes energy decay processes, including redox reactions, till reaching ground state.
Directing this energy to specific regions, however, is challenging and more often leads to non-
specific reactions. This process is inherent in radioactive decay and does generate ROS but does
not directly involve a PS, simply adding to redox imbalances. These combined energy delivery
mechanisms, with their limited travel distance in tissue, keeps PRaST energy within a

malignancy and benefits from co-targeting of both the radionuclide and PS.

When considering the PS to use with PRaST, however, these three energy mechanisms
must be considered and require a rethink of current PS canon. Instead of needing high quantum
efficiencies in the NIR window developed in the 2™ generation, PRaST requires high UV and
beta capture density. Considering these factors titanium dixoide NPs have proven effective as

PRaST PS.
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Figure 0-3: Decay based Cherenkov radiation generation.
A) Luminescence decay of ®*Cu in water alone or in the presence of 25 nm TiO2. Decay half-life follows that of ®*Cu’s 12 hr.
Luminescence image of ®Cu at 200 pCi with a B) open or C) 515 nm high pass filter, scale bar for both is located right.

1.5 Titanium Dioxide PRaST

In 2014 our lab developed titanium dioxide (Ti0>) as a PRaST agent, using FDG and
%4Cu as beta emitters for stimulation (Figure 1-4).>! TiOz is a heavily investigated semiconductor
known for its catalytic properties and absorbance characteristics which make it an ideal catalyst

for both industry and academic purposes.®® TiO; is highly bio-tolerated, has a catalytic surface



with tunable hydrophilicity, electron/hole trapping energies sufficient for hydrolysis, can be
easily synthesized into NP and has a high optical and radio-absorbance density.** When
combined with beta emitters this system showed remission of murine breast tumors in a
subcutaneous mouse model and showed great promise for a new generation of PS. The work
contained herein focuses on the refinement and enhancement of TiO; based pRaST to further

increase its conversion efficiency and limit tumor resistance mechanisms.
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Figure 0-4: In vivo PRaST Efficacy.

A) Schematic of the Cherenkov-mediated excitation of TiO2 NPs to generate cytotoxic hydroxyl and superoxide radicals from
water and dissolved oxygen, respectively, through electron—hole pair generation. B) In vivo PRaST through a one-time systemic
administration in tumor-bearing Athymic nu/nu mice. **P <0.01, ***P < 0.001. ExtUV, external ultraviolet. C)The Kaplan—
Meier survival curves represent treatment with 0.87 mCi/0.1 ml FDG. ***P<0.001. D) The survival curves represent treatment

with 0.14 and 0.43 mCi/0.1 ml FDG (n = 4 mice per group). **P < 0.01. E) In vivo CRIT in A549-tumor-bearing Athymic nu/nu
mice using TiO2-Tf-Tc and FDG. ***P < (0.001. ¥/



1.8 Aims of this Dissertation

The objective of this dissertation is to enhance TiO; based PRaST through nanoscale

modification. We accomplished this by undertaking the following research:

Chapter 2: The Effect of Size and Crystal Structure on ROS Generation and Biodistribution of

TiO2 Nanoaggregates
Chapter 3: Chromate Based Hole Injection for Oxygen Independence in TiO2 Photosensitization
Chapter 4: Cr(VI) Ion State Change Therapy for Cancer Suppression

Chapter 5: Oxygen Delivery by Perfluoronated Nanoemulsions
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Chapter 2: The Effect of Size and Crystal

Structure on ROS Generation and

Biodistribution of TiO> Nanoaggregates

Lane, Daniel D. et al. 2020. “Effects of Core Titanium Crystal Dimension and Crystal Phase on
ROS Generation and Tumor Accumulation of Transferrin Coated Titanium Dioxide
Nanoaggregates.” RSC Advances 10(40): 23759—-66.

2.1 Chapter Summary

Transferrin-TiO2 (Tf-Ti0O2) has been proven to be an effective PRaST agent. However,
the material properties of TiO> had not been investigated to maximize its bio-efficacy,
specifically considering biodistribution and ROS generation. Here we sought to improve both
aspects through reduction of TiO’s core dimension (cTd) and alteration of the crystal structure.
Investigation of sub-50 nm ¢Td showed stable particles averaging a diameter of 108 nm by
dialysis. This consistent structure was investigated by TEM, revealing that Tf-TiO, particles
consisted of nanoaggregates (NAG) that packed varying numbers of TiO> cores into a Tf coated,
fixed volume. While the NAG size remained consistent with cTd, the ROS generation was
altered with peak generation occurring at 25 nm cTd. Alteration of crystal type from anatase to
amorphous improved ROS generation but NAG stability suffered. Finally, the biodistribution of
5 and 25 nm NAGs showed higher uptake by 5 nm T{-TiO», with a tumor-to-muscle ratio of 13.3

by ICP and 6.02 by fluorescence. Combined, this information suggests cTd’s of <25 nm is ideal
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for full in vivo investigation of PRaST to balance the tumor uptake against the ROS generation

capabilities.

2.2 Introduction

Titanium Dioxide

Titanium dioxide (TiO3) is a semiconductor capable of regenerative photocatalysis and
has been heavily investigated since its optical catalysis was described by Fujishima et al. in the
1970s.5° Fujishima discovered that UV exposed TiO: could lower the energy of water hydrolysis
well below that normally required. Further investigation showed the surface of titanium dioxide
has efficient trap sites for high energy holes and electrons generated from the optical excitation.®®
TiO trap sites exist at the materials interface allowing environmental electrical conjugation to
adsorbed molecular species, namely water and oxygen. These traps also limit exciton
recombination, the major mechanism of energy loss, leading to high catalytic efficiency.®’
Solution studies against ROS reporter dyes revealed TiO: catalysis also comes, in part, from
ROS generated upon UV excitation, including highly reactive hydroxyl radicals generated
directly from water. As ROS therapy had been conceptualized in the 1980s, several attempts

were made to convert TiO; into an anti-cancer theraputic.®®%° However, its dependence on UV

light, and challenging particle stabilization limited its efficacy.

With the advent of PRaST, the UV absorbance from TiO:’s large bandgap became a boon
as it improved electron/hole redox potential relative to current generation photosensitizers.’®’!

Particularly, the ability to generate high energy hydroxyl radicals through hole based reactions

facilitates low oxygen ROS generation. The surface bound hydroxyls are rapidly replaced by
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adsorbed water through deprotonation allowing unlimited catalytic recovery. Tumors generate
hypoxic regions due to malformed vasculature and high metabolic rate.*’>” The generation of
hydroxyl radical from water also requires a redox energy of +2.27 V vs. standard hydrogen
electrode (SHE), an energy too high for near-infrared photosensitizers.”®™* Additionally, TiO2’s
bandgap and electron density increase beta capture efficacy over most standard carbon based
PS.” These ROS generation properties, along with a stable crystal structure, strong UV band
optical density and electron-dense structure make TiO> ideal for PRaST energy absorption

through Cherenkov radiation and beta capture.’®’¢78

Exciton Trapping and Crystal Effects

The efficiency of PDT is directly affected by electron and hole separation in a material.
An exciton (electron/hole pair) can easily recombine in materials that lack extended electrical
conjugation, which allows exciton travel, and trapping groups. If an exciton does recombine, the
energy is lost to bond resonance or fluorescence/phosphorescence.” In an aqueous environment,
TiO2 shows rapid trapping of electrons/holes in oxygen/titanium defects, respectively, limiting
recombination.®*#? The trapping rate relies on the defect density in TiO>, specifically acidic
titanium or hydroxyl sites, with a higher density increasing the overall photoactivity.®®
Furthermore, TiO2’s hole traps correlate with adsorbed water/hydroxyl sites, facilitating rapid
oxidation and release of hydroxyl radicals.?* The electron traps are surface oxygen defects and

reduce molecular oxygen to singlet oxygen and other ROS.”*

The surface defect rate has been associated with several factors, including TiO>’s bulk
crystal phase, core TiOz crystal dimension (cTd), and surface coating.®> Early investigations of

the natural crystal phases, anatase and rutile, revealed anatase to have a higher ROS production
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potential.**3¢ This is attributed to the higher bandgap and surface potential of anatase, as well as
increased trap density on the (0,0,1) plane.?”-%® Some evidence suggests amorphous/mixed crystal
phase TiO2 have higher ROS quantum yields due to undefined surface regions, higher total
surface defect rate, and exciton splitting between different crystal sub-domains.®’ These
conclusions, however, often conflict due to the heterogeneity of synthesized amorphous
materials. One example of increased ROS generation is P25 Degussa TiO, the gold standard for
catalysis, a mixed phase crystal material with increased photocatalytic yield relative to pure

anatase.”%’!

The c¢Td also alters ROS generation rates, often breaking the catalytic surface area
dependence when approaching the nanoscale. At the nanoscale TiO> particles have increased
crystallinity which limits the number of surface defects, lowering ROS conversion.®
Additionally, recent work by Shen et al. shows multiple defect sites must be co-localized on a
oxide surface to generate ROS, this being scarce as surface area decreases.’* Overall, the cTd
investigated across several TiO2 photocatalytic systems shows peak ROS generation in the 7-40

nm range.89’92’93

Transferrin Coating

The 80 kDa B-globulin Tf has the combined advantages of high affinity to Ti"* ions, non-
toxicity, and tumor targeting effects.”* ¢ Tf itself is the third most common protein in serum,
being a vital iron transporter. Additionally, Tf has a well-known record as a tumor targeting
agent, increasing the therapeutic outcome of molecular species and nanoformulations.””® This is
a result of EPR enhancement and tumor upregulation of the Tf-receptor to feed a metabolically

enhanced iron demand, increasing Tf retention in cancer tissue.”!°!
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Tf also regulates iron trafficking to the brain where iron demand is high, specifically
shuttling iron to astrocytes.!?>1% After being bound and trafficked through the clathrin coated
endosomal pathway, the bound iron is released. This iron is then transported in the cytoplasm
where it is bound to ferroportin and is separately transported into the spinal fluid. The Tf and
covalently bound materials are then recycled back into the blood-stream, limiting blood brain

barrier transport.'!%

Biodistribution of Nanoparticles

For maximum therapeutic effect, NP design requires high, tumor specific bio-
distribution, requiring consideration of surface properties, material size and targeting groups. The
most vital biological properties these parameters effect are the enhanced permeability and
retention (EPR) effect, caused by leaky tumor vasculature, the as well as liver, kidney and spleen
filtration.®!95:1% In general, particles must limit all non-tumor uptake, being larger than the
hydrodynamic diameter limit of 7 nm for nephron filtration, and smaller than 150 nm to avoid
macrophage uptake in liver and spleen.®!°” For solid NPs like TiO», the effective size is modified
by protein adsorption.!?1% Previous studies have tracked renal excretion and, using quantum

dots, showed about 5.5 nm is the limit for hard nanostructures.' '’

2.3 Experimental Method

Materials
Apo-Transferrin was purchased from Athens Research and Technology (Athens, GA),
Ti0, cTd’s were provided by the Biswas lab, all chemicals were purchased from Sigma-Aldrich

(St. Louis, MO).
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TiO2 Core Synthesis and Crystal Structure

TiOz cTds of various sizes (5 - 1000 nm diameter) were prepared by hydrothermal
reaction of titanium alkoxide (titanium isopropoxide: TTIP) stabilized in an acidic ethanol-water
(1:2 to 1:8 v/v) solution by modifying the method previously proposed.'!! The 25 nm anatase
TiO> synthesis is used as an example for the rest of the experimental section. The pH of an
ethanol and water solution was adjusted to 0.7 with 1 M nitric acid. 100 pL of 0.02 M TTIP
(97%) was added dropwise to this solution. The reaction was magnetically stirred at 400 rpm (25
°C) followed by 4 hrs thermal treatment at 220 °C. Synthesized crystals were washed several
times with ethanol to remove un-reacted alkoxide. The materials were then either dried under
vacuum or dispersed in a solvent for further use. For different crystal structures, the calcination
conditions were altered to 250 °C for 4 hrs for anatase-rutile and 2 hrs at 120 °C for

amorphous.'!?

The size and morphology of the TiO; cTds was investigated using transmission electron
microscopy (TEM) with an 80 keV FEI Tecnai Spirit Transmission Electron Microscope. A 2 puL
sample was placed on an ultrathin lacey carbon grid, 400 mesh (Ted Pella Inc.) and allowed to sit
for 5 min before removal of the droplet via wicking with a Chemwipe and vacuum drying. To
visualize the Tf coating, a dried grid sample was stained for 1 min with uranyl acetate (UA), 3
uL drop of 4% (w/v), before blotting and vacuum drying to limit UA crystal contamination. X-
ray diffraction (XRD) was performed to confirm the crystal phase of TiO, NPs.!!3 25 mg of dry
TiO2 powder was added to a low background silicon sample holder and scanned (coupled two-
theta/theta) from 5-60 degrees with a 15 rpm sample rotation and anti-scatter fins in place. The

data was analyzed with Bruker DIFFRAC.EV A program.
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Stabilization of Tf-TiO2 NAGs

TiO2 ¢Td solutions (1 mg/mL) were prepared in 1x Dulbecco's phosphate-buffered saline
(DPBS) and vortexed to homogeneity. Immediately, Tf was added at a mass ratio of 1:3 (TiO2 to
Tf) and mixed until dissolved. This solution was then separated into 2 mL aliquots before
sonication by a small-bore probe at 3 W output for 40 seconds (kept below 50 °C from sonic
heating) to form Tf-TiO2 NAGs. Post sonication, the aliquots were filtered through a Millex-HV
PVDF 0.22 pm filter, unless otherwise stated. Note that due to size, >200 nm cores were not

filtered, but instead centrifuged at 1k for 1 min before resuspension under sonication.

Characterization of Tf-TiO2 Particles

Hydrodynamic diameter and zeta potential of the suspensions were both determined with
the Malvern Zetasizer Nano ZS. Particle measurements were performed in a 2 cm path-length
quartz cuvette and a folded capillary zeta cell (Malvern Instruments Ltd), respectively. A
triplicate of each sample was diluted to 0.01 mg/mL TiO- to produce an optically clear solution
of the particles in DPBS for dynamic light scattering (DLS) and deionized water (diH>0) for zeta
potential measurements. Z-average size and polydispersity index (PDI) of the TiO2 NAGs were
obtained with an average of 12 runs. TEM was performed to validate morphology and size of the
coated particles. Quantification of protein coating was carried out using a Pierce BCA Protein
Assay kit to determine Tf concentration (1) before coating, (2) remaining in the supernatant after
coating and centrifugation, and (3) the amount remaining in the particle sample. Long-term
stability was quantified using three separate 2 mL samples at 1 mg/mL of Sigma-Aldrich Tf-
TiOz, prepared in water. These were stored at 4 °C and 100 pL samples were diluted to 0.01

mg/mL in water and analyzed on DLS as described above.
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ROS Quantification

Dichlorofluorescein diacetate (DCF-DA) was used to quantify general ROS production
from Tf-TiO2, and hydroxyphenyl fluorescein (HPF) was used to detect hydroxyl radicals.!'*
DCF-DA was activated to DCF by adding DCF-DA (45 pL, 5.55 mM) in Dimethyl sulfoxide
(DMSO) to NaOH (5 pL, 1 N) and incubating for 10 min, producing a 5 mM stock that was
refreshed for each sample run. DCF and HPF were added to TiO2 samples from DMSO with 5
mM starting concentrations. The Tf-TiO2 samples were prepared as above but not filtered to
preserve the concentration more closely, relying on orbital shaking between reads to maintain

homogeneity. The initial Tf-TiO2 formulation (1 and 3 mg/mL TiO; and Tf, respectively) was

then diluted to 0.01 mg/mL TiOz in 1 mL and 5 uM HPF or DCF was added.

An uncoated, black walled, flat and clear bottom 96 well plate (Greiner Bio-One)
containing 150 pL sample per well was used for ROS quantification. Each plating was
performed in triplicate with a well geometry that allowed an average power of 1.9 mW across
each triplicate set. For comparison between runs, a bare 25 nm TiO> DCF control was always
plated to quantify variability. After loading, the plate was shaken for 20 seconds in a double
orbital pattern and analyzed on a plate reader (BioTek Synergy Neo2) using 487 nm excitation
and 528 nm emission. Subsequently, the plate was automatically exposed to UV light for 80
seconds before being shaken again, repeating the process. This was carried out for a total of 30

min for each plate and the data was compiled into pseudo-first-order kinetic curves for reporting.

In Vivo Tumor Model and Biodistribution
All studies were conducted in compliance with Washington University Animal Welfare

Committee’s requirements for the care and use of laboratory animals in research. Fluorescent
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imaging of biodistribution was carried out in HT1080 fibrosarcoma model nu/nu mice. Cells

were injected at 1 x 10%and grown till reaching 10 mm by caliper. Freshly prepared 5 and 25 nm
Tf-TiO2 NAGs in PBS were injected via tail vein (100 uL, 1 mg/mL). Imaging was done on a Li-
Core PEARL imager with the 700 nm channel (ex 685/em 720 nm) pre-injection and 2, 4 and 24

hrs post-injection. At 24 hrs animals were euthanized and organs excised for biodistribution.

ICP-MS biodistribution was quantified on breast cancer (4T1)-bearing BALB/c mice
(n=4/group). 4T1 (1 X 10° cells) were injected subcutaneously and grown to 10 mm by caliper.
The animals were euthanized 24 hrs post-injection. To quantify the TiO» biodistribution, major
organs and tumor tissue were harvested, homogenized, and degraded using nitric acid and H>O»

(hydrogen peroxide) and Ti content in each organ was quantified by an Elan DRC II.

2.4 Results

Synthesis and Characterization of TiO2 Core NPs

Different sizes (5, 15, 25, 30, 50, 100, 200, and 1000 nm) of TiO> ¢Td as described above
(Figure 2.1) were prepared through sol-gel synthesis. The electrophoretic zeta potential of the
cores was between -19 and -35 mV. Using 25 nm c¢Tds as a base c¢Td, three different crystal
phases were synthesized and characterized - anatase, anatase-rutile, and amorphous. DLS

measurements showed an average PDI of 0.15 +/- 0.035 at pH 5.8 in ethanol across all cores.
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'Fie 0-1: Sol-gel synthesized TiO; crystals.
TEM images of TiO2 A) 5, B) 15, C) 50, D) 200 nm.

XRD analysis shows three core crystal phases matching 26°, 37°, and 55° peaks for
anatase and 36°, 42°, and 54° peaks for rutile (Figure 2-2B). Amorphous particles have weaker
facets of both phases due to the lack of annealing during synthesis. TEM of the synthesized cores
shows clustering in aqueous media that can range from a single cTd to multi micron aggregates.

The crystallites match the expected pseudo-octahedral crystal shape, appearing as slight

elongated, rhomboid shapes. Preferential elongation along a single axis was observed as the
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particle size increased, creating NPs with a standard aspect ratio of near 2:1 for 200 nm
tetragonal crystals (Figure 2-1D). The anatase crystal structure was further shown in the
diffraction bands (Figure 2-2A) whose graph analyses exhibited two patterns with a spacing of
0.3312 + 0.0811 nm and 0.3568 + 0.0993 nm for each (~3.5 A literature).!!> The different sizes
and crystal phases provided diverse parameters to assess their ROS-generating properties and

biodistribution.
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Figure 0-2: TiO: crystal structure confirmation.
A) TEM of an anatase particle, insert figure is ImageJ peak picking of crystal facets for lattice spacing determination. B) Xray
diffraction of anatase, mixed anatase rutile and amorphous particles used in our examination.

Coating of Core TiO2 NPs with Tf Produces Distinct NAGs

To stabilize the random aggregates seen above the TiO, cTds were coated with Tf, which
served as both a dispersing and tumor-targeting agent. Previous results from within our group
had shown the coating of 25 nm ¢Td TiO; with apo-transferrin (Tf) produced T{-TiO> particles
with individual cores near 30 nm by TEM. However, this conflicted with DLS measures
averaging 108 nm which suggested either a unique structured water layer, a thick Tf coating, or

multiple ¢Td per particle. Observation of the clusters by TEM showed consistent NAG structure
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across all Tf-TiO; particles. For 25 nm core NPs, they appeared as agglomerated TiO> cores
coated with Tf, with an average size of 105.1 = 59.15 nm (Figure 2-3D) generated from edge
finding algorithms in Image-J. Visual analysis suggests the number of cores in each particle
decreases with increasing core size. Due to this decrease, it is possible the final NAG size is
governed by entropic effects in water, causing a volume-restricted stable point that is then filled
by a number of cores stabilized by Tf, forming a stable (low PDI) NAG. BCA analysis of 25 nm
anatase Tf-TiO> NAGs showed 95 + 2.9 Tf per particle. Adjusting for the expected volume of a
Tf layer this size indicates a monolayer to bilayer coating the NAG surface. Interestingly the size
distribution narrowed as the core size approached the filter cutoff, dropping from PDI 0.17 to
0.03 suggesting higher selectivity. This is likely driven by selection of a narrowing gaussian edge

of cTd by the filter.

Attempts to coat TiO2 with holo-Tf resulted in uncontrolled aggregation of TiO; to >1
um (PDI of 1) compared to the stable apo-Tf. This suggests that iron binding limits TiO> coating,
possibly due to direct interaction of Tf’s binding site with surface titanium defects. For apo-Tf
DLS analysis provided an average NAG size of 108 + 1.13 nm for 5 to 35 nm core NPs (Figure
2-3C). This consistent NAG size was disrupted at 50 nm c¢Td where it gradually increased as the
core size increased. It was difficult to obtain an accurate measurement post 200 nm c¢Td due to

rapid settling.
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Figure 0-3: Effect of TiO2c¢Td on Tf-TiO: particle size.

A) Schematic depicting the Tf coating of multiple cTd forming similarly sized NAGs. B) Intensity % histogram of a Tf-TiOz, 25
nm cTd particle by DLS. C) Z-average size and PDI of various cTd and crystal structures after Tf coating. TEM of T{-TiOz 25
nm cTd particles D) unstained and E) stained with uranyl acetate showing Tf layer on NAGs.
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The crystal phase also influenced the overall NAG size. This effect was not driven by
differences in buffer conditions as each crystal type was synthesized through the same process,
differing only in the finishing temperatures. The PBS buffer was used to maintain the
formulation at pH 7 for all NPs. Amorphous particles show a larger average particle size, likely
due to increased surface energy and hydroxylation in aqueous solution. This increased water

affinity and lack of exposed Ti*¥*

on the surface, characteristic of amorphous TiO2, likely
lowers the affinity for Tf. This lack of affinity removes the stabilizing coating and drives
aggregation, limiting the overall stability of amorphous NAGs.”*!'® NAG size of the mixed
anatase-rutile TiO2 collapsed from the anatase cTd along with a drastic increase in size

heterogeneity indicated by PDI (Figure 2-3C). This was driven in part by high filter retention,

suggesting the Tf coating was unstable on these particles.

A fundamental problem with many NP formulations is the poor shelf life. Thus, 25 nm
core NAGs stored at 2 [JC were monitored for over two months in diH,O and PBS (Figure 2-4).
Longitudinal tracking of size and PDI via DLS show the dispersion of NPs in diH2O exhibiting
high stability over 60 days, with consistent PDI below 0.2. PBS had a larger particle size during
storage and seemed to become destabilized before the 60-day mark. The result suggests that

diH:O0 is useful in maintaining NAG’s integrity for long term storage.

24



>
e

1000- -0.3 180 98
—*- Z-Average * Z-Average
—_ —~ 160
= = PDI £ = PDI
£ - 0.2 £ 140 0.2
= o
& 3 ¥ S
5 ]
g PYREN S .1
N N
100
0 r r T 0.0
0 20 40 60 80 scé 20 40 60 800'0
Days Days
C 1657 - 0.22
] - Size (nm)
. -+ PDI
3 T -0.20
=
o I 1 -
g 160 -0.18 O
s =4
<
N -0.16
155 T T 0.14
0 10 20 30
Time (Hrs)

Figure 0-4: Tf-TiO2 particle stability in various media.
25 nm T{-TiO2 NAG storage stability in A)PBS or B) di-water measured by DLS. C) Tf-TiOz serum stability over 24 hr.

ROS Production Exhibits Non-linear Relationship with NP Size

ROS producing capacity of the NPs varied with size and crystal phase. Comparison of all
the NPs prepared showed that the 25 nm core NAGs produced the most ROS in both HPF and
DCF measurements (Figure 2-5A). This finding contrasts with standard catalytic particle theory,
which suggests increased surface area per gram should show the highest ROS.!!"” The results here
show 25 nm NPs have 180% enhanced DCF conversion rate vs. 15 nm and a 190% enhanced
HPF rate over 5 nm particles, its nearest competitors for the respective reporters. Our results
agree with data originally generated against non-UV exposed, bare TiO> which suggested low
cTd have decreased surface defect rate below 25 nm.?’ As Ti** defects act as binding sites for

surface hydroxyls and oxygen, they are essential for exciton separation and catalysis. Therefore,
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the loss of defects for 5 nm c¢Td TiO> limits the ROS production.®? The drop off above 25 nm
approximates the canonical loss of surface area, a 1/r°> decrease.!'® Furthermore, the HPF signal
increased relative to DCF at Snm cTd. This phenomenon is likely driven by increased exciton
confinement near the Bohr radius of the exciton (~3.2 nm in TiO;). That confinement further
increases the absorbed energy, which favors hydroxyl radical generation by holes but has little
effect on oxygen catalysis.”® This shift toward hydroxyl generation may be vital in hypoxic
tumor cores as water splitting is the main transfer path for hydroxyl radicals, possibly removing

oxygen dependence, a vulnerability of many small molecule photosensitizers.'"”

Crystal Type Affects ROS Generation in Tf-TiO2 NAGs

Previous studies demonstrated that amorphous particles can improve ROS quantum
yield.®* Here we explored whether this pattern can translate to NAGs using 25 nm core NPs. Our
results show a 260% increase in ROS production of amorphous over anatase (Figure 2-5B). This
increase is likely caused by an increased surface defect rate. Since amorphous particles lack
regular crystal structure (Figure 2-2B), they leave grain boundaries that propagate to the surface
and increase trapping. Additionally, the amorphous ¢Td’s lack of calcination leaves a higher oxy
anion concentration on the surface of particles, which has been shown to increase the catalytic
rate.®® It is also apparent that the rutile content reduces overall ROS yield, as reported
previously.'?° This is caused by a decrease in surface energy compared to the high defect rate
anatase active crystal plane (101), which, when combined with anatase-rutile’s lower band gap
decreases it’s ROS yield compared to anatase.’’ These data point to the importance of the

presence of TiO> surface defects in maximizing ROS generation.
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Figure 0-5: ROS generation for each c¢Td and crystal type.

A) ROS generation rate by cTd, denoted by rate of fluorescence increase fit by pseudo-first order constant. B) ROS generation by
different crystal types for Tf-TiO: particles. C) Bandgaps for each cTd determined by Tauc plot from diffuse reflectance spectra
assuming indirect bandgap. D) Hydroxyl radical generation relative to a set amount of hydrogen peroxide split by the Fenton
reaction, normalized for mass.

Small TiO2 Core NAGs Exhibit High Tumor Retention

For in vivo biodistribution studies 5 and 25 nm cTd NPs were selected for their high ROS
and similar NAG size. Using Alexafluor-680 bound apo-Tf the cTds were coated and tracked via
fluorescence. Figure 2-6C shows that after 4 hr, particle accumulation is likely near its peak and
persists within the tumor. When the tissue was excised, the biodistribution of 5 nm NAGs

showed higher tumor uptake with a tumor to muscle ratio of 6.2 v 25 nm TiO/Cr’s 4.53. This
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result was not statistically significant however, and some bladder signal was present which
suggested kidney clearance, which should be impossible without nephron damage, for TiO>

particles.
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Figure 0-6: Fluorescent biodistribution of Alexa680-Tf coated on 5 and 25 nm TiOx.
Fluorescent images of the A) Snm and B) 25 nm Ti/Alexa-680 Tf particles. C) The mean tumor signal over time for both
particles. D) Fluorescent biodistribution of excised organs from all mice. (n=5, n.s.)

To more accurately track the biodistribution of titanium, ICP-MS on degraded tissue was
run for 5 and 25 nm NAG. ICP-MS measurement of **Ti accumulation showed an increase in
tumor localization per unit mass for 5 nm core NAGs with a total of 2.7 pg/g (Figure 2-7).
Further, a six-fold higher tumor to muscle ratio was observed between 5 nm core NAGs (13.3)
compared to the 25 nm core (2.83). Although the NAG sizes for the two NP cores are similar,

our result suggests the in vivo biological distribution may differ. Possibly due to stripping of
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transferrin from the NAGs in circulation, high intravenous shear force, or other biological
interactions which may dissociate the NAGs, thereby reducing the size to more closely match the
cTd. To discount the possible serum displacement the stability of the NAGs over 24 hours was
tracked and showed no relevant change in the particle size, staying within sampling error out to

24 hours.

ICP tracking showed apparent uptake in the brain. This is likely caused by a combination

of *®T1i interference by **Ca and the uptake of NAGs by astrocytes via transferrin mediated

internalization.'%312!

5 B 5nm
B 25nm

Figure 0-7: Biodistribution of titanium in vivo by ICP-MS.
Run against 5 and 25 nm cTd T{-TiO2, n=8. (*P < 0.01). Measure is pg of Ti ion per gram tissue.
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2.5 Discussion

Analysis of the TiO» core size and crystal reveal their direct impact on ROS generation
and in vivo biodistribution. First, cTd appears to have little impact on the size of the NAGs
formed in aqueous suspensions, likely due to the formulation size being driven by the particle
surface energy and not physical core dimensions. This is most apparent when comparing
differing crystal phases against the final formulated size, with higher surface energy cores
resulting in larger Tf-TiO> NAGs. While the core size had little effect on the final NAG, it did
significantly impact the ROS production. The 25 nm core NAGs clearly generated the most
ROS, which held true for both bare TiO> and Tf-TiO2, NAGs. The 5 nm NAGs produced the next
largest amount of ROS at half the rate of the 25 nm NAGs. This is likely due to the 5 nm NP’s
large increase in the surface area over 25 nm which partially compensated for the reduction in
defect sites. Furthermore, the defect hypothesis was corroborated by the highest ROS production
rate from the amorphous crystal structure, having a 200% enhancement in rate. Unfortunately,
amorphous NAGs sit near 200 nm which limits its utility. Additionally, the increase in HPF
production at 5 nm implies small cTd may be used to fine-tune oxygen sensitivity of TiO> but at

the cost of absorbance range.

Finally, 5 nm cTd NAGs also show improved tumor localization over 25 nm, showing the
importance of ¢Td in tumor accumulation properties. With this in mind, there must be a balance
between the nearly 2-fold enhancement of ROS generation by the 25 nm over the 5 nm particles
versus the nearly 3-fold increase in the tumor uptake of the 5 nm over the 25 nm NPs when

designing PRaST strategies. For PRaST TiO: photosensitizers must both generate high amounts
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of ROS as well as significantly accumulate with radionuclides in tumors. Assuming linearity,

this 3x to 2x ratio suggests the ideal cTd size would lean towards the 5 nm NAGs.

2.6 Conclusion

Overall, depth-independent photodynamic therapy offers broad potential in the
treatment of cancer, with TiO, based nanophotosensitizers having already shown in vivo
promise. However, the material properties play a direct role in the efficacy of the
treatment. Herein, we have elucidated key parameters in the design of TiO»-based
nanophotosensitizers that refine both the ROS-generating and biodistribution necessary to
enhance therapeutic effect in vitro. Future therapy studies in mouse models of cancer are
ongoing to identify which of the two factors dominate therapeutic response. These design
features include the use of ¢Tds that contain significant numbers of surface defect sites
that generate ROS, whether in anatase or amorphous form, and the use of smaller crystals
(< 25 nm) with higher tumor accumulation, which should be incorporated into the future

design of TiO> photodynamic agents.
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Chapter 3: Titanium Dioxide/Chromate Hole

Injection

Lane, Daniel D. et al. 2020. “Chromate-coated Titanium Dioxide Nanoaggregates Enhance Hole
Injection and Intracellular Chromium Ion Delivery for Photosensitized-Radiation
Stimulated Therapy” PLOSOne. (Under Review)

3.1 Chapter Summary

Electron injection via a sensitizer dye was recently investigated by our group to reduce
TiO2’s dependence on oxygen for PDT.'?? However, electron injection can only improve electron
flux, a pathway shown to increase the energy level of molecular oxygen radicals. Here we show
that TiO,/Cr(V]) particles can be generated for hole injection for hydrolysis. This absorption is
concentration-dependent indicating surface equilibrium, binding 1.03 ug Cr(VI) per mg TiO> at
pH 5. However, at pH 5 the speciation of Cr(VI) shifts to dichromate which cannot provide ROS
enhancement. This was confirmed by pH-based ROS investigation which shows enhancement
only when above pH 7, when Cr(VI) exists as chromate. To preserve this ROS enhancement at
biological pH, Tf was added to trap the chromate. While this did increase the retention rate of
chromate, the ROS enhancement was only temporarily preserved and was unable to last through
the longer oxygen testing. Finally, we describe a possible nano-scale chromate-based trap that

can utilize chromate at biological pH.
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3.2 Introduction

Electron Injection
Photo-activation of TiO; generates excited electrons and holes which can react with molecular
oxygen and water to from ROS (Figure 3-1). However, the specific ROS have differing energies

and lifetimes, altering their damage patterns.

a. Hydrogen Peroxide (H,0,) Hydroxyl Radicals (‘OH) b. singlet Oxygen ('0,)

o'® on A
]
ro, @5 )® o, _ @
: @ . @ TiO,
4

e © Pt -

C. N3 injects electrons into TiO,-N3, enhancing H,0, and ‘OH production.

Type of reactions

Type I: Oxygen independent
.

Type Il: Oxygen dependent

-
o

Figure 0-1: TiO2 ROS generation pathways and their electron and/or hole requirements.

A) Generation pathways for hydroxyl radicals and peroxides. B) Generation path for singlet oxygen. C) Sensitization of TiO2
using N3 for increased conversion of peroxide to hydroxyl radicals via oxygen independent pathways. Image reprinted from
collaboration work with R. Gilson et. al.’??

The ROS energy can be increased through multiple electron or hole reactions, with one such
chain beginning with oxygen’s reduction to superoxide, a further reduction to peroxyl radicals

before a final electron/hole catalyzed split to hydroxyl radicals. Normally, these additional
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electrons/holes come from UV photogenerated excitons, but sensitizers can provide extra

electron/hole flux.

Sensitizers can inject photo-excited electrons into a material, a process that requires
higher photo-energy than the conduction band edge of an acceptor material. PRaST compatible
sensitizers must be able to: 1) bind the surface with geometry conducive to hole injection; 2) be
photo-excited at Cherenkov radiation wavelengths (UV-C band); and 3) have sufficient excited
hole potential to inject into TiO>’s valance band. Anatase TiO> has a bandgap of 3.18 eV with
maximum electron and hole potential of -0.52 and 2.53 V vs. SHE, respectively.’® The best
known sensitizers for TiO electron injection are ruthenium-based polypyridyl dyes, such as
Ruthenium Black or N3 Dye.!?* Their combination of carbonyl conjugation to TiO2’s surface,

multident binding, high photo-excited electron potential make them ideal for sensitization.
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Figure 0-2: Relative ROS generation rates in hypoxic conditions.
A) hydroxyl radical B) hydrogen peroxide and C) singlet oxygen from TiO2 and TiO2-N3. This shows a shift away from
hydrogen peroxide and towards higher energy hydroxyl radicals by the addition of N3.722

These dyes also expand TiO>’s optical absorbance beyond 365 nm and into the visible spectrum,

increasing solar efficiency.”’ Recent work within our lab showed the ability of N3 to generate
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higher energy hydroxyl radicals in oxygen depleted conditions (Figure 3-2). This was a shift

away from lower energy peroxides and more efficient use of the low oxygen levels.

Hole Injection

While N3 increases ROS energy at low oxygen levels, it was still dependent on electron
based, oxygen-dependent initiation.!?? An alternative is to use TiO> hole oxidation, which uses
hydrolysis to generate ROS. Hole injection functions much like the intersystem crossing of
electrons, though the sensitizer in question must now have a hole reduction potential higher than
the valance band of TiO>. However, Ti0O>’s relatively large semiconductor bandgap and highly
stable crystal structure results in a large valence band potential (2.27 V vs. SHE). Combined with
the other requirements, only two molecules are able to perform hole injection, a ruthenium tri-

nuclear cluster, and chromate.'?*

Chromate Reduction Potential and TiO: Interaction

Cr(VI) alone has a reduction potential of 0.55-0.6 vs. SHE for its conversion to Cr(V).!??
However, when suspended in water, CrO42, Cr(VI) major species above pH 7, has increased
reduction potential of 3.4 V vs. SHE.!? This ion, known as chromate, has peak absorption at 440
nm with a second UV peak at 350 nm, allowing short wave sensitization typical of Cherenkov
light. Finally, chromate is a tetrahedrally coordinated, multi-oxygen structure allowing both
hydrogen bonding and Ti defect-ligand interactions. Combined, these factors make Cr(VI) the

1deal candidate for hole sensitization of TiOx.

Cr(VI) also exists in several other states in water depending upon pH and concentration

(Figure 3-3A). These have been shown to affect the association to TiO», both due to charge
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repulsion differences when TiO; passes through its isoelectric point (pH 6) as well as multiple

oxygen interactions when binding dichromate.!?”:18
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Figure 0-3: Effect of pH on Cr(VI) structure in water.

A) Cr(VI) state by pH in a 30 mM aqueous solution. Chromate being present above pH 6. B) The molecular structure of the
various chromate states. C) Spectral data showing the shift in peak absorbance with speciation shifting from dichromate to
chromate. A) Reprinted from Brito, F et al.(1997)/%°
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3.3 Experimental Methods

Materials

Apo-Transferrin was purchased from Athens Research and Technology. All water was deionized
to 18.2 MQ resistance with a MilliQ Direct-Q3 water purification system. P25 TiO, potassium
dichromate (K>Cr207), sulfuric acid, Cr(VI) traceCERT ICP standard, diphenylcarbazide Cr(VI)
assay kit, dichlorofluorescein diacetate (DCF-DA), NaOH, HCI, Tetraethyl orthosilicate (TEOS),
titanium butoxide, hydroxypropyl cellulose (HPC), and 2-(N-morpholino)ethanesulfonic acid
(MES) were all purchased from Sigma-Aldrich (St. Louis, MO, USA) without further
purification. pH alterations were all carried out with 1N sodium hydroxide (NaOH) or

hydrochloric acid (HCI).

TiO2/Cr Adsorption

TiO2 was prepared at 10 mg/mL in 2 mM potassium dichromate solution at pH 4.5-5
unless otherwise specified. The solution was then placed in a bath sonicator for 10 min before
transferring to a rocking table overnight at room temperature (r.t.). Excess dichromate was
removed through centrifugation-washing at 10k relative centrifugal force (rcf) for 10 min before
resuspending in water. After decanting, the vials were cooled to -80 °C before lyophilization on a
Savant SpeedVac overnight. Samples were stored in the dark at r.t. and new stocks were made

after 2 weeks to limit Cr(VI) to Cr(III) surface conversion.

Transferrin was coated to TiO2/Cr particles according to the protocol by Kotagiri et al.>!

Briefly, Tf-TiO2/Cr was generated in water by dissolving a 3:1 mass ratio of Tf and TiO,/Cr. The
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sample was then probe sonicated at 4 W until the temperature reached 50 [C, followed by

filtering through a 0.22 um PES syringe filter.

Cr Adsorption Quantification

Adsorption efficiency was determined in several ways. First, the absorption spectra were
investigated at 250 and 350 nm on a Beckman-Coulter 640 UV-Vis spectrophotometer (Brea,
CA, USA). The change in supernatant absorbance after the 1% wash was used to quantify the
absorbance against KoCr,O7 standards. To eliminate possible chromium state change by TiO», all
chromium on purified particles was quantified via a PerkinElmer Elan DRCII ICP-MS
(Waltham, MA, USA). TiO,/Cr samples were digested in sulfuric acid at 280 °C for 1 hr. If any
residue remained within the vials, they were further heated to 320 °C for an additional 30 min.
All vials were precleaned for 10 min at 320 [/ C with sulfuric acid. The samples were then

diluted to 1% sulfuric acid with water and run against Cr(VI) standards.

Quantification of Cr(VI) ion concentration was performed with a Diphenylcarbazide
based assay kit. All samples (250 pL) contained at least 1 mg/mL TiO»/Cr, which were then
diluted with 50 puL of the combined assay and incubated for 20 min at r.t. TiO2 was then
precipitated by centrifugation at 10k rcf for 10 min and the supernatant was tested at 480 nm in a

96 well plate on a Biotage Neo2 plate reader (Uppsala, Sweden).

Tf-TiO2/Cr Properties

Particle size and surface potential were determined on a Malvern Zetasizer Nano-ZS
(Malvern, UK) in PBS. Size measurements were confirmed with a JOEL JEM-1400Plus TEM
(Peabody, MA , USA) at 120 kV on a formvar carbon grid (Ted Pella, Redding, CA, USA). To
visualize protein coating on the Tf-TiO2/Cr NPs, the grids were further stained with uranyl
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acetate at 2% in water, incubating for 3 min before washing to limit uranyl acetate
recrystallization. Bandgap was determined using diffuse powder reflectance UV-vis
spectroscopy (Horiba Fluorimeter and attached Quanta-¢ integrating sphere, Kyoto, Japan). A
Spectralon scattering blank was used to calibrate the sphere before dry powdered TiO,/Cr was

run in a sample cup with a quartz coverslip, integration time 0.5 sec.

ROS Quantification

ROS production was measured by DCF-DA conversion and driven by a medium pressure
365 nm center wavelength UV lamp. DCF-DA was activated to DCF by incubating 5.55 mM
DCF-DA in DMSO with 1 N NaOH for 15 min (final concentration of SmM). DCF was then
added to all samples at 5 pM final concentration. Samples were run at 0.01 mg/mL of T{-TiO2/Cr
NPs in 96 well plates with 150 pL per well and arranged such that the average UV power was 1
mW/cm? for the activation duration. Sample readings were excited at 495 nm and emission was
detected at 525 nm (20 nm slit window) every 80 seconds of UV exposure for 30 min. Results

were reported as pseudo first-order rate constants.

Anaerobic ROS Production

ROS production was quantified using DCF as above in an oxygen-depleted glove
chamber. Argon was used to decrease atmospheric Oz below 1% and the plate was rocked for 20
min to reach equilibrium. Using a slit for the UV lamp, a row of wells was exposed to 0.7
mW/cm? for an allotted time. After exposure, the plate was removed and imaged on the plate
reader. Experiments under normoxic conditions were also performed within the glove box,
equilibrated to atmospheric oxygen. Oxygen levels were quantified via an Ocean Optics NeoFox

sensor fitted with a FOSPOR probe (Orlando, FL, USA).
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Silica Generation

Silica NPs were generated following the Stober method. Briefly, 2 g TEOS was added
quickly to a solution of 30% ammonia (10mL), distilled water (11mL) and ethanol (75mL) under
heavy stirring. This solution was left overnight at r.t. and the resulting silica particles were
purified via centrifugation and washing with one round ethanol and two rounds di-water. The

final powder was then lyophilized and stored at r.t.

TiO:2 Shell Formation

Ti0, was coated onto the silica NPs via sol-gel coating. 10 mg/mL silica in anhydrous
ethanol was dispersed well via sonication. To this was added dissolved HPC in water to a final
concentration of 3 mg/L HPC and 0.5 M di-water. Titanium butoxide dissolved in ethanol at 0.6
g/mL was added dropwise to the solution under heavy stirring over 1 hr, final concentration of
57 mg/mL. The solution was then sealed and heated to 85 °C for 1.5 hr. The resulting TiO;-silica

was then purified through centrifugation and washing with ethanol.

Silica etching was done with 3 mg/mL resuspended particles in 50 mL di-water. The
solution pH was raised to 12 and sonicated to homogeneity. The solution was then transferred
into a pressure vessel which was then heated to 140 °C for 6 hr. After cooling the solution was
purified via centrifugation against di-water. The final cores were imaged on TEM and size

analyzed with Image-J.

TiO:2 Shell/Cr Coating

TiOz shells at 1 mg/mL were coated with pyridium chlorochromate at 50 mM. The pH
was raised to >10 and mixed via stir bar overnight. The solution was then purified via multiple
centrifugation-washes.
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3.4 Results and Discussion

Adsorption of Cr(VI) to TiO2

Adsorption was investigated across a range of pH, sampling the major Cr(VI) states,
namely dichromate, chromate, and chromic acid. Figure 3-4A shows the remaining percentage of
a 2 mM chromate solution exposed to TiO> at 10 mg/mL from pH 2.5-11.5. Low pH produced
visibly yellowed TiO» with direct measurement of the supernatant (controlled for changes in
spectra) showing a Cr(VI) concentration loss of -6.3 £ 0.42 umol K>Cr2O7/(g TiO2*pH Cr(VI).
Biding was also linearly dependent on TiO; concentration (Figure 3-4B). The standardized

coating condition was then set to pH 5, corresponding to 1.00 = 0.08 pg/mg TiO; by ICP-MS.

Diffuse reflectance spectroscopy (Figure 3-4C) shows a red shift in TiO2/Cr’s spectra in
the range of 350-500 nm when freshly coated. The peak increase in absorbance occurred at 430
nm suggesting dichromate adhesion, the major state of Cr(VI) at pH 5. Prolonged dark storage of
TiO2/Cr showed a loss of this shoulder and shifting absorbance to 600 nm. This absorbance
corresponds to Cr(III), a well-known conversion sought after in industrial waste catalysis.'** This
conversion to Cr(IIl) is drastically increased by UV exposure (Figure 4-1A). Analysis of this
coatings stability over time was carried out via diphenylcarbohydrazide assay which is selective
for Cr(VI). TiO2 is known to have background catalytic activity without light activation and this
generation seems to reduce Cr(VI) to Cr(IIl) over time. Cr(VI) levels decreased with increased
storage time at a rate of 0.65 + 0.03 % initial bound chromate per day. Using this information
variations in the amount of chromate remaining on the particles was maintained within 10% by

regenerating the particles every two weeks.

41



A B
0.6 0.5-
s 0.4+
@
£ 0.4] £
5 8 031
O o
Q, 8 0.2
¥ 0.2 s ’
< 0.1
0.0 T T : . L 0.0 T T T T 1
2 4 6 8 10 12 0.0 0.5 1.0 1.5 2.0 2.5
pH [TiO5] (mg/mL)
C
100
~ 80 i crill
)
8 604 — T
8
"g 404 —_— TIOQ/CF
= — 3 month TiO,/Cr
x g4
0 ~FE T
400 500 600

Wavelength (nm)

Figure 0-4: Coating of TiO2 with Cr(VI).

A) The concentration removed from 2 mM K>Cr207 solution upon incubation at various pH against 10 mg/mL TiOz, indicating
surface adsorbance. B) Change in 2 mM K2Cr207 absorbance upon addition of various amounts of TiO2, showing concentration
dependence. C) Diffuse reflectance spectra of TiO2/Cr construct coated at pH 5 in powder mode.

Tf-TiO2/Cr Solution Properties

Coating with Tf increased particle stability with a hydrodynamic diameter of 209.2 +
6.71 nm and a PDI of 0.182 + 0.016. This size parallels existing Tf-TiO> formulation though has
a radical shift in zeta potential from 20 = 0.83 mV to -4.34 + 0.732. This shift also shows an
association of the chromate ions beyond electrostatic effects, pushing the zeta potential over
neutral. Once filtered the final particle size is 169.3 = 4.19 nm with a PDI 0f 0.092 + 0.018
(Figure 3-5A). TEM showed the particles mirror the NAG structure of Tf-TiO2, being

monodisperse (178.4 = 76.9 nm, Figure 3-5B) which improves when filtered (94.3 &+ 8.73 nm,
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Figure 3-5C). When stained with uranyl acetate (Figure 3-5E) Tt appeared as a coating, filling in
the gaps within the NAG structure as well as on the surface ~5-10 nm in depth, indicating a

monolayer (hydrodynamic diameter of Tf = 4-5 nm).!3!
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Figure 0-5: TiO2/Cr particle structure.
A) DLS intensity distribution of Tf-TiO2 /Cr filtered and unfiltered. B) Representative TEM images of Tf-TiO2/Cr unfiltered. C)
Representative TEM images of Tf-TiO2/Cr filtered. D) Zoom in view of Tf-TiO2/Cr unfiltered. E) Zoom in view of Tf-TiO2/Cr
unfiltered, stained with uranyl acetate for Tf visualization.
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ROS Generation from TiO2/Cr

With a standardized particle generation method, the effect on ROS generation was
investigated under UV light exposure. Chromate itself showed low DCF conversion (Figure 3-
6B) against UV light. Additionally, the standardized Tf-TiO2/Cr showed a slight decrease in
ROS generation rate (Figure 3-6A) in both hypoxic and normoxic conditions. This is likely due
to dichromate reduction to lower ionic states, consuming photo-excited electrons in non-ROS
generating reaction. As the Cr(VI)/(V) and O'! photo-excitation is the primary charge separation
mechanism, it appears the bridging oxygen in dichromate lowers the energy of the photo-
generated hole. As mono-chromate had been proven an effective hole donor, the experiment was
rerun from pH 3-10 without Tf and in excess Cr(VI). At pH 10 there was a clear increase in the
ROS generation from TiO/Cr, whereas the other conditions showed no statistical difference with
bare TiO; (Figure 3-6D). This suggested the ROS generation exists only from the mono-
chromate state. As indicated above, however, adsorption is limited to lower pH, where

dichromate or chromic acid dominates

To trap chromate to the surface of TiO2, Tf was coated onto the surface after a single spin
centrifugation of pH 10 TiO2/Cr. Trapping showed increased ROS generation capacity of Tf-
TiO2/Cr relative to adding Tf before incubating against pH 10 chromate solution which would

not sterically trap any chromate to the surface (Figure 3-6B).
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Figure 0-6: ROS generation from TiO2/Cr.
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A) ROS generation by pH 5 coated TiO2/Cr in hypoxic and normoxic conditions. B) ROS generation rate of T{-TiO2/Cr to
compare trapping to TiOz surface. C) Cartoon of hole donation energies from chromate into TiO2’s valence band. ROS
generation by TiO2/Cr coated in excess chromate conditions by pH. D) The order of coating by chromate at pH 10 either before

or after Tf coating is indicated by the order of names.

While the coating of TiO2/Cr at pH 10 with Tf did improve the ROS generation it was

found that this increase was unstable over time (not shown) making this impractical as a

mechanism for the current iteration of TiO,/Cr. This made the generation of an alternative

structure necessary to trap chromate.

TiO2 Shell Synthesis

The size of silica NP generated by the Strober process was determined via TEM analysis

to be 203 + 3.65 nm (Figure 3-7A). These were then coated with TiO> which increased the



particle size to 344.5 + 6.8 nm (Figure 3-7C). When etched, the shells fused into mesoporous
amorphous TiO2 with a shell thickness of 70 nm. The shells showed no apparent crystal structure

via HR-TEM or electron diffraction measurements.

Figure 0-7: TiOz shell stepwise TEM.
TEM images of each step of shell creation, A) Bare silica particles, B) TiO2 coated particles. C) TiOz shells post silica etch. D)
Chromate coated shell. Patches of increased contrast indicate areas of Cr addition. All images set to 100 nm scale bar.

TiO2 Shell/Cr ROS Properties

The adhesion of chromate was far lower for TiO> Shell/Cr which remained optically
white after full purification, as opposed to the yellowing of TiO»/Cr. This was also seen in the
ROS generation which showed an initial ROS increase in excess chromate conditions, but this

was stripped after purification. Additionally, the shells showed almost no ROS generation
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themselves. This is primarily caused by a lack of calcination and any cohesive crystal structure.
Without calcining the shells exist as an agglomerate of 3 nm average TiO> cTds which suffer

heavily from quantum confinement, limiting their activation.
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Figure 0-8: ROS generation from TiO:z shell/Cr particles.
Cr coating was done at pH 10 followed by centrifugation purification. The number of spins is denoted by S#. 25nm TiO: controls

included for reference.

3.5 Conclusion

The generation of Tf-TiO2/Cr particles was successfully standardized, forming
structurally similar NAGs to those generated for initial PRaST invesitgation. However, the
ability of these particles to improve the oxygen dependence in biologically relevant pH appears
limited. Adhesion of Cr(VI) to the surface of the particles is severely limited at circulation pH
(7.4) and the stability of Tf trapped chromate at that pH. Generation of the shell structure shows
promise but requires investigation of calcination effects on both chromate and shell structure.
Should chromate trapping can be achieved, however, it will provide an effective sensitizer for

TiO: phototherapy.
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Chapter 4: TiO2/Cr State Change Therapy

4.1 Chapter Summary

Metallo-therapies are an effective method for cancer treatment, utilizing compounds from
cisplatin to arsenic trioxide.'**!3* The development and coating characteristics of TiO2/Cr,
though unable to directly enhance ROS at biological pH, does provide a major avenue for Cr(VI)
delivery. As Cr(VI)’s cellular toxicity mechanism stems from ROS generation, its combination
with PRaST can further imbalance cellular redox.!** Here we show TiO»/Cr has a release profile
of 1 hrs in sink conditions and 4 hrs in cell culture. Experimental investigation of Tf-TiO»/Cr
against cell culture shows enhanced toxicity relative to free Cr(VI) (LC50 0.0173 pg/mL v 11
ng/mL!¥), suggesting improved cellular uptake of Cr(VI) as TiOz alone shows no toxicity within
this range. Finally, mouse PRaST studies show a 60 % reduction in tumor size compared to no

radiation controls.

4.2 Introduction

Cr(VI) Metabolism and Toxicity

Cr(VI) species is a well-known carcinogen within mammalian cells, with evidence of
DNA chelation and ROS production.'*® Cr(VI)’s toxicity stems from its high solubility in water
and cellular permeability, passing through the mixed anion transporter.'*” Once there it reacts
quickly with cellular anti-oxidants, namely glutathione and ascorbate (vitamin C), on the order of
8 min to total reduction of Cr(VI).!3® The reduction generates Cr(V), a unstable state, detected

through electron paramagnetic resonance and known for its Fenton-like reaction, catalytically
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splitting peroxides to hydroxyl and peroxyl radicals.!* This reaction generates a large amount of
ROS in the vicinity of the mitochondria, activating ROS-initiated P53 signaling pathways.'*" In

addition, this eventually produces Cr(III) which is known to chelate DNA.!*

TiO2 Photocatalytic Cr(VI) Conversion

The reduction of Cr(VI) by TiO; is a well-studied mechanism used to purify wastewater
from industrial processing.!*!~!%* Under heavy irradiation this rapidly converts Cr(VI) to Cr(III)
which then is precipitated from solution as Cr(III)(OH)x at pH 7. We seek to use this conversion

to deliver and generate Cr(V) to cells to supplement existing PRaST.

4.3 Experimental Methods

Stock TiO2/Cr Generation

Ti0,/Cr generation was standardized from results in chapter 3. Briefly, pH 4.5-5 aqueous
solution with 10 mg/mL P25 TiO; and 2 mM potassium dichromate was probe sonicated for 10
min on ice at 4 watts before transferring to a rocking table for an additional hour. Excess
dichromate was removed through centrifugation. The TiO2/Cr was then lyophilized on a Savant
SpeedVac overnight before weighing and storage. Samples were stored in the dark at r.t. and

stocks were replenished every 2 weeks.

Cr(VI) to Cr(I1II) conversion

Direct confirmation of chromium conversion was evaluated through a closed reactor
design. 1 mg/mL TiO2/Cr in PBS (pH 7.1) was placed in a 100 mL beaker with a 9 W medium
pressure UV lamp (Coospider Sun JUP-01), positioned centrally within the liquid. The solution

pH was adjusted to 2 to prevent Cr(III) precipitation. The solution was then homogenized and
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stirred for 24 hr. Reactor aliquots were taken, washed via centrifugation and UV-vis spectra were
recorded. The solution pH was then increased to 10, precipitating Cr(III) to its hydroxide form,
normally present at pH 7.4. The reactor was then UV stimulated for another 24 hrs and samples
were tested the same way as above. The decrease of the chromate feature peak at 350 nm and the

appearance of the Cr(III) feature peak at 580 nm from the sample solutions were quantified.

The pH conversion rate over Tf-TiO»/Cr particles was confirmed using a 10 mg/mL
solution of the standard TiO»/Cr in MES or PBS buffer from 5-7.5 pH. These solutions were
placed in 2 mL microcentrifuge tubes and exposed to a 365 nm UV light (1 mW/cm?) for 30 min.

Cr(VI) conversion was then verified through the Cr(VI) assay kit.

TiO2/Cr Sink Release

Cr(VI)’s adsorption stability was quantified via dialysis against 1L PBS. 10 mg/mL
Ti0,/Cr was placed in a 3,500 MW cutoff SnakeSkin Dialysis membrane (Thermo-Fischer
Scientific, Waltham, MA, USA). The first 200 pL samples were taken after 10 min and then

every hour for 8 hours. The Cr(VI) concentration was confirmed with Cr(V]) assay kit.

In Vitro TiO2/Cr Toxicity and Stability

In vitro cellular studies were performed on HT1080 fibrosarcoma cells. Cells were
cultured at 5% CO; within a 37 °C humidified incubator. All studies were performed in 24 well
clear corning plates, seeding 25,000 cells per well in 800 uL. of DMEM supplemented with 10%
fetal bovine serum, L-glutamine (2 mM), penicillin (100 units/ml) and streptomycin (100 pg/ml).
T{-TiO2/Cr was generated as previously described and added to cell plates from PBS stocks at 1
mg/mL. Cells were given at least 12 hours to attach before a concentration dose response curve

was generated from 0-100 pg/mL. Total incubation time of Tf-TiO2/Cr in culture was 2.5 days
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before survival was determined using Promega AQueous One Cell Proliferation Assay (MTS).
To avoid scattering effects on the colorimetric assay, the plate was hand agitated and the
particles removed from the well, followed by backfilling with 800 uL. PBS and 60 uL. MTS assay
in each well. The assay was incubated for 30 min before 200 pL was transferred to a 96 well

plate and measured on a Biotage Neo plate reader at 480 nm.

Cr(V]) release toxicity was quantified from a 100 pg/mL Tf-TiO2/Cr sample, and cells
were cultured in the same way as described above. After incubating for the desired time, the
plates were shaken to re-suspend any settled particles and the media was removed. 800 uL of
fresh media was added to replace removed volume in the well, and total incubation time was 2.5

days.

In Vivo Tumor Therapy

All studies were conducted in compliance with Washington University Animal Welfare
Committee’s requirements for the care and use of laboratory animals in research. Lewis Lung

Carcinoma (LLC) cells were implanted subcutaneously into the flank of FOX Chase SCID Beige
mice at a concentration of 1 x 10° cells per tumor. Once the tumors became palpable, the tumor
size was measured before they were injected with 30 pLL of Tf-TiO,/Cr or Tf-TiO; at 1 mg/mL
intratumorally. For radiation treatment, 24 hrs post particle injection a dose of 31 MBq of FDG
in 85 uL was intraperitoneally injected after 6 hrs of fasting. Along with controls, 5 treatment
groups were evaluated (n = 4/group): (1) untreated controls, (2) Tf-TiO»/Cr alone, (3) Tf-TiO>
alone, (4) Tf-TiO2/Cr + FDG, and (5) Tf-TiO, + FDG. The mouse weight and any physical signs
for distress were monitored closely, and mice were euthanized by cervical dislocation after

anesthesia with 5% isoflurane when the tumor size reached 2 cm.
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4.4 Results and Discussion

Cr(VI)->Cr(II) Conversion

Evidence of TiO2/Cr reduction of Cr(VI) to Cr(IIl) was present in the diffuse reflectance
spectra of long stored TiO»/Cr stocks (Figure 3-4A). However, this represented passive
conversion at a timescale beyond that of any therapy. To confirm active conversion a closed
batch reactor with excess Cr(VI) was tested against TiO2. The pH was lowered to pH 2,
facilitating strong TiO2/Cr binding as well as limiting Cr(III) precipitation. 24 hrs exposure
showed a 90 % reduction in Cr(VI) signal and the emergence of a Cr(IIl) peak at 550 nm (Figure
4-1A). To test for the regeneration of Cr(III)(OH); to chromate the reactor pH was adjusted to 10
before again treating the reactor for 24 hrs. This returned the level of Cr(VI) to 25% initial values
and indicated reactions in both directions take place on TiO>. To confirm Cr(VI) can be reduced
from the TiO>/Cr NAGs at biological pH, the Cr(VI) conversion was tested at 5.5-7.5 with MES
and PBS buffer (Figure 4-1B). This showed conversion was independent of pH but did appear to
change with buffer. Spectral analysis of the supernatant showed no visible Cr(III) signal,
however, meaning most of the chromium was likely in Cr(V) or Cr(IV) state which are Fenton-
like reagents. The independence of conversion rate on pH is likely due to pre-adsorption of
Cr(VI), removing binding affinity as a factor in solution for Cr(VI) conversion. The choice of
buffer did affect the conversion rate, however, due to a combination of the increased UV

absorption by MES and possible ROS quenching by MES’s tertiary amine.
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Figure 0-1: Chromium conversion from Cr(VI) to Cr(III).

A) Spectra of batch reactor conversion of Cr(VI) to Cr(III) (green) at pH 2 followed by recovery of Cr(VI) at pH 10 (blue). Insert
is the remaining Cr(VI) concentration after each reaction. B) Cr(VI) conversion from TiO2/Cr in 2 different buffers, MES and
PBS, at various pH Reported as % initial values. **P <0.01.

Chromate Shedding and Cellular toxicity

With effective UV conversion of Cr(VI) to reactive lower states, TiO2/Cr particles
unstimulated release rate and toxicity was investigated. Using dialysis against PBS of the
standardized TiO2/Cr coating, the release half-life was 1.04 + 0.06 hrs vs. 0.19 = 0.01 hrs for
Cr(VI) alone. As this is in sink conditions, we postulated this rate would be slowed in cell culture
when in the full Tf-TiO/Cr formulation, both due to steric trapping as indicated in the ROS

experiments and the lower volume of culture.

As Cr(VI) is a known toxin, the cellular response had to be verified before any in vivo
toxicity/PRaST experimentation. HT1080-RFP cells were stressed against Tf-TiO2/Cr at 100
png/mL, the concentration often used for cellular PRaST, with significant killing observed. As a

result, a dosing ladder was used to find the ideal range for Tf-TiO2/Cr in cell culture. The EC50
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value for Tf-TiO2/Cr was 17.3 £ 0.62 pg/mL (Figure 4-2C), while Tf-TiO> showed no toxicity

up to 1000 pg/mL, as previously reported.’! Interestingly, potassium dichromate solution at 34

uM was required to reach the same toxicity as 0.34 uM on T{-TiO,/Cr. This suggests Tf-TiO»/Cr

conjugated drastically increase the toxicity of the released chromate. This is possibly driven by

intracellular trafficking of the Cr(VI) through the transferrin receptor or dark catalytic conversion

to unstable Fenton-like reagents Cr(V) and Cr(IV) by TiOs,.
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Figure 0-2: Cr(VI) release rate and toxicity for TiO2/Cr.
A) Diagram for equilibrium stability of chromate on TiO2. B) Release rate of Cr(VI) from TiO2/Cr against sink dialysis
conditions. Included for comparison are free Cr(VI) and bare TiOa. Decay fits are indicated by dotted lines and are source of half-
life parameter. C) Dose response curves for TiO2/Cr against HT1080 cells. D) Incubation time response curve for TiO2/Cr.

Response determined through sigmoidal fit (green dashed line).
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To test if this enhanced toxicity was related to the release of the chromate, an incubation
time series was run using 100 pg/mL Tf-TiO2/Cr. This showed that an incubation time of 4.094
+ 0.22 hrs led to 50% cell death (Figure 4-2D). Previous investigations against chromate in cell
culture have shown the reduction time for chromate intracellularly to be ~8.5 min,!3%!38

Additionally, these studies showed full reduction effects in viability before 3 hr. There reports

indicate the lag in toxicity is driven by the Tf-TiO2/Cr NAGs themselves.

In Vivo Tf-TiO2/Cr PRaST

Further investigation of the effect of Cr(VI) toxicity on PRaST was carried out in vivo in
an aggressive LLC subcutaneous mouse model. TiO> samples were administered via intratumoral
injection to limit the effect of non-specific liver uptake and potential chromate toxicity for the
initial study. FDG (31 MBq) was systemically administered 24 hrs after particle injection and the
tumor size tracked via caliper (Fig 6). Tf-TiO,/Cr showed substantial tumor growth inhibition
both with (10% control, p=0.0005) and without (24% control, p=0.046) FDG treatment two days
after injection. This is relative to Tf-TiO2 with a single dose of FDG producing no significant
difference relative to control. This tumor suppression persisted beyond the 24 hrs, after FDG
decay. While the increased tumor suppression of Tf-TiO,/Cr with or without FDG was not
statistically significant, optimization of the dosage regimen or use of a longer-lived beta emitter
could improve the efficacy of treatment response by PRaST. Systemic toxicity outside of the
tumor region was negligible with no statistical decrease in tracked weight showed over the time
of study (Figure 4-3B). This was expected as the dose of Cr(VI) is well below toxicity limit in
mice and rats.!** Further investigation of toxicity will be required, focusing on alterations in

TiO2/Cr trafficking relative to free Cr(VI), especially in the liver. While the increased tumor
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suppression of Tf-TiO2/Cr with or without FDG was not statistically significant, the combination
of Tf-TiO2/Cr and FDG did provide the largest suppression of any treatment, and future higher-
powered studies with an optimized dosage regimen using a longer-lived beta emitter could

improve the efficacy of treatment response by PRaST.
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Figure 0-3: Tf-TiO2/Cr PRaST of LLC flank tumors.

A) In vivo PRaST through one-time intratumoral injection of NAG and FDG in LLC-tumor-bearing FOX Chase mice. Values are
mean + SEM. (n=4 mice per group). # = Sacrificed mice due to tumor burden. B) Mouse body weight.
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4.5 Conclusion

Overall, Tf-Ti0,/Cr shows increased toxicity against cells relative to an equivalent
concentration of free Cr(VI) indicating a targeting effect which increases the therapeutic
window. This increased toxicity is supplemented by timed release within the uptake time of Tt-
Ti0> in tumor tissue. Combined this indicates possible compatibility with systemic therapy with
a mechanism that mimics current NP formulations of cisplatin. Finally, initial mouse data
indicates an enhanced tumor suppression both from Tf-TiO»/Cr alone and with '*FDG.

Combined these factors make TiO,/Cr a prime candidate for enhanced PRaST therapy.
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Chapter 5: Perfluorinated Polymer for

Oxygen Delivery and Photosensitization

5.1 Chapter Summary

Existing TiO2 PDT loses ~ 30 % of ROS generation ability when at 3 % atmospheric
oxygen, this level of hypoxia being common in solid tumors.* Existing PDT has partially
overcome this by directly delivering oxygen to tumors through hyperoxia gas therapy, ultrasound
stimulated microbubbles, or through perfluorinated nanosystems. We sought to combine direct
oxygen delivery with TiO, PRaST through a polymeric perfluorocarbon system. Utilizing a
radical addition fragmentation chain transfer (RAFT) polymer we stabilized a perfluorooctyl
bromide (PFOB) nanoemulsion. This structure allows for facile modification through
hydroxyethyl methacrylate groups by click or carbodiimide chemistry conjugation, radionuclide
chelation and fluorescent imaging. Investigation of the ideal perfluorocarbon modification ratio
on 9000 MW mPEGMA-HEMA backbone showed 40 % weight (wt) modification generated
stable particles with a 20 nm diameter and 0.3 PDI. With this as a guide, two formulations of 2:1
ratio PerfMA:mPEGMA polymers were generated, the first a single pot statistical copolymer
PerfMAss-co-PEGMA4s and a two-step blocking of mPEGMA3;1-b-PerfM Ago. The blocking
produced a more stable PFC nanoemulsion with a final extruded size of 155.9 nm (PDI 0.253)
construct with 20% by wt PFOB filler. Additionally, the particle was able to incorporate cypate

at 26 uM for in vivo tracking. A 5 mg/mL solution of the emulsion delivered an additional 3%
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oxygen per mL, relative to water. In vivo MSOT imaging showed a 20 % increase in hemoglobin

Os saturation 4 hrs post-injection. No change was seen in cypate regions of a PFOB free sham.

5.2 Introduction

Polymer Nanoparticles

Polymeric NP’s flexibility has made them a staple across several scientific fields.!4>146
The most notable advantage being the ability to generate biodegradable structures that increase
biocompatibility relative to “hard” systems like gold or semiconducting NPs. Additionally, facile
modification through carbodiimide and click reactions allow multi-targeting and drug carrying
capacity.'*’ From drug delivery to imaging to extra-cellular media mimicry, organic polymers

can play a variety of roles and have a significant story in the 3™ generation of photosensitizers.'*®

For our work, we focus on PFC modification.

Perfluorocarbon Oxygen Carrying

As stated previously, PDT efficiency drops in low cellular oxygen environments, most
notably that of hypoxic tumor cores. To overcome this deficiency many different systems have
been applied, from hyperoxia gas therapy to sequestered oxygen particles, each showing their
own disadvantages.!**~13! PFCs are one such system found to dissolve large amounts of oxygen
due to their self-avidity and high electro-negativity.!>? Due to these factors they have been
heavily investigated as a blood substitute, eventually generating FDA approved Fluosol and
Oxygent as synthetic emergency blood fillers.'** PFC particles have shown the ability to improve

tumor oxygenation due to their increased oxygen solubility.'** Additionally, oxygen
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normalization decreases metastasis rate from tumor tissues.!>>!>” These properties make PFC

158

ideal for increasing PS efficiency in depleted oxygen environments.

Figure 0-1: Depiction of an oil-in-water nanoemulsion.
RAFT Chemistry

To generate stable nanoscale formulations, the components themselves must be well
controlled and characterized. RAFT polymerization offers fine control of chain length and
composition through living radical polymerization.!*~!®! The chemistry is based on a radical
stabilizing, chain transfer agent (CTA) that kinetically controls growing polymer backbones,
providing even chain growth and leaving a reactivatable end group for additional
polymerization.!* In the case of PFCs, RAFT is one of the most economical methods for

generating well-defined polymers.'®?
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5.3 Experimental Methods

Materials

Our lab synthesized (E)-3-perfluoroalkoxy acrylic acid (XPAA). All Materials were
purchased from Sigma-Aldrich unless otherwise stated. Abbreviations: Perfluorooctyl
methacrylate (PerfMA). Methyl-(polyethylene glycol) Methacrylate (MW 950) (mPEGMA).
Hydroxyethyl Metacrylate (HEMA). Diisopropyl carbodiimide (DIC), 4-Dimethylaminopyridine
(DMAP). 4,4’-azobis(4-cyanovaleric acid) (ABCVA). 4-cyano-4-(phenylcarbonothioylthio)

pentanoic acid (CTP). Perfluoroocytl bromide (PFOB). Perfluoro-15-crown-5 ether (CE).
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Figure 0-2: Molecular components of polymer structures.
Left) The final polymer structure for mPEGMA-b-PerfMA. Right) HEMA monomer for DIC chemistry linkages and XPAA, the
linked PFC for initial wt % testing.
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RAFT Synthesis of mPEGMAs-co-HEMA2s

Initial backbone synthesis targeted a 30% mPEGMA, 70% HEMA. Synthesis was carried
out in a 20 mL round bottom flask following work done by Lane et al.'*° Briefly, polymerization
was carried out assuming 80% monomer conversion with a 4:1 CTA/initiator ratio targeting a
total degree of polymerization (DP) of 20. 1.8 g mPEGMA, 0.059 g CTP and 1.1 g HEMA were
dissolved in a 15 mL flask in 11 mL 1,4-dioxane (Fischer Scientific). Then 0.019 g ABCVA was
added and dissolved. Oxygen was removed through freeze-vacuum-thaw cycling 3x followed by
10 min of argon purge. Polymerization was carried out on a temperature-controlled oil bath at 85
"1C for 24 hrs. The reaction was then placed on ice and oxygen quenched before being purified
against chilled DEE via precipitation/centrifugation. The minimum volume of acetone was used

to resuspend the polymer between each wash (~1 mL).

The final composition of the polymer was confirmed in d-DMSO by proton NMR.
Monomer conversion was determined by vinyl signal (2H — 6-5.8 ppm, 2H — 5.5-5.3 ppm,
depending upon monomer). HEMA vs. mPEGMA composition was examined through ratio of
PEG chain (86H — 3.45 ppm) and backbone peaks (SH — 0.85-1.4 ppm). Living chain end
preservation and total monomer ratio was defined from the CTP phenolic protons (1H - 7.65

ppm, 2H - 7.485, 7.9 ppm). CTA preservation was confirmed via UV-vis at 520 nm.

Grafting XPAA to mPEGMA-co-HEMA via DIC Chemistry
The mPEGMA;s-co-HEMA s was modified by DIC chemistry to XPAA. XPAA was
weighed and dissolved in DCM assuming 100% reaction conversion. ~1 mg DMAP as a catalyst

before a stock solution of 60 mg/mL mPEGMAs-co-HEMA s was added and vortexed to
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homogeneity. The solutions were then well mixed for 5 min before the addition of DIC ata 1:1

molar ratio to XPAA. This was then placed on a shaker and incubated overnight.

Purification was done with ice cold DEE as above. 'H NMR of purified stocks confirmed
XPAA modification fraction through the alkane protons (2H - 7.54, 2H - 5.25) against the CTP

chain ends (1H - 7.79, 1H - 8.28) (Figure 5-4).

DLS was run in PBS from ethanol stocks targeting 1 mg/mL polymer in solution and <5
% ethanol. Critical micellular concentration (CMC) was confirmed with rhodamine 6G

sequestration in PBS, comparing both absorbance and fluorescence fits.

PERFMA-co/b-mPEGMA Polymerization

2:1 PerfMA/mPEGMA ratio chains were generated in two separate structures. PerfMA-
co-mPEGMA was performed in single pot, targeting a DP of 100, 80 % monomer conversion,
CTA/1 ratio of 4, and 20 wt % monomer in dioxane. PerfMA-b-mPEGMA was generated
through a 2-step process, first synthesizing a mPEGMA macro-CTA with the same solution
parameters above but targeting DP of 30. NMR was used to verify chain length and then PerfMA
was used to extend the chain, targeting a DP of 60. Final polymer chain lengths and monomer
ratios were verified by NMR. Structural imaging was done via TEM using 3% uranyl acetate to

stain the polymer.

Nanoemulsion Stability
PFOB was encapsulated by the polymer through mixing with ethanol mPEGMA-b-
PerfMA stock at 50 mg/mL. The solution was well mixed before being injected into an aqueous

solution and probe sonicated at 4 W for 5 min on ice. The resulting particles were sized by DLS.
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Further narrowing of particle distribution was done via different sizes of NanoSizer MINI
extruder (T&T Scientific). Sonicated particles were placed in a 2 mL syringe and passed 5x

through the extrusion membrane at r.t. via hand pressure.

Cypate, a NIR fluorescent dye (760 ex/830 em), was loaded into the emulsion for
fluorescent tracking at 50 pg/mL and run through the emulsion stabilization process above.
Incorporation was determined via UV-vis. Stability of the cypate incorporation was determined

by dialysis against PBS using a 3,500 MW cutoff SnakeSkin Membrane (Fischer Scientific).

Oxygen Delivery

All oxygen delivery tests were run against 20 wt % PFOB mPEGMA-b-PerfMA
nanoemulsions. Oxygen concentration was determined with an Ocean Optics (now Ocean
Insight) Neofox oxygen sensor fitted with a FOSPOR probe. Calibration was run against pure
argon, pure oxygen, and atmospheric oxygen. Oxygen delivery into solution was tracked in a
sealed 10 mL round bottom flask that had been purged with argon via bubbling for 10 min pre-
injection of either the nanoemulsion or water. The nanoemulsion or water had oxygen loaded by
bubbling for >1 hrs with pure oxygen. Injections were of 1 mL added rapidly and the oxygen
tension within the round bottom tracked. After equilibration of oxygen in solution, the

nanoemulsion was further destabilized via bath sonication and the O; level tracked.

MSOT Oxygenation Imaging

HT1080 xenograft subcutaneous tumors were implanted into the flank of Athymic NCr
nude mice. Tumors were implanted with 10k cells per injection and were grown to 2 cm before
the start of experimentation. Imaging was done via iTheraMedical inVision MSOT imager over a
full spectral sweep from 680-980 nm. Imaging was done pre-injection, and 2, 4, 24 hrs post-
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injection. Injections were 200 pL i.v. of either PerfMA-b-mPEGMA cypate with or without 20 %

PFOB.

Analysis was done on inVision’s proprietary software when images were extracted from
slices within known tumor boundaries. Oxy/Deoxy-Hemoglobin ratios were determined against
known cypate signal areas within MATLAB on a pixel by pixel basis and converted into oxygen
saturation values. Selections also excluded any regions that had no signal on any of the channels.

All analyses were then plotted by histogram for timepoint comparison.

5.4 Results

mPEGMA-co-HEMA Characterization and Functionalization
Post purification the polymer composition was confirmed via NMR (Figure 5-4). The

resulting monomer per chain of 5 units mPEGMA and 28 units HEMA provided a large range of
possible modification with XPAA. Modification was carried out from 0-60 wt%, confirmed via
NMR. DLS measurements of the different XPAA modifications showed the highest stability at a
2:1 PFC to PEG mass ratio with a micellular size of 22.9 nm and PDI of 0.2 by DLS. As this size
of mMPEGMA(950)s-co-HEMA 19-g-XPA A9 was ideal for future study, its micellular structure was
confirmed via CMC using rhodamine 6G. Both absorbance (CMCa=0.017 + 0.004 mg/mL) and

fluorescence (CMCr=0.012 + 0.003 mg/mL) averaged to a CMC of 0.0144 mg/mL.
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Figure 0-3: Characterization of mPEGMA-HEMA and mPEGMA-co-HEMA-g-XPAA.

Bottom) mPEGMAs-co-HEMA2s NMR spectra shows the characteristic peaks from CTP’s aromatic ring c1-3 and main PEG peak,
a, for quantification. The top) spectra is mMPEGMAs-co-HEMA 19-g-XPA Ao, quantified against the high resonance alkane protons
gand f.
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Figure 0-4: Rhodamine 6G CMC determination of mPEGMAs-co-HEMA19-g-XPAAo.
Determination done against both A) absorbance and B) fluorescence. Linear fits imaged as straight lines and intersection taken as
CMC concentration.

66



PerfMA-mPEGMA Synthesis and Characterization

With a ratio of 2:1 PFC to PEG for micelle generation selected, synthesis switched to a
PerfM A monomer, reducing reaction complexity. First, a statistical copolymer was investigated
as it provided a single pot reaction. Additionally, the rate of homo-addition for PerfMA should
be far higher the hetero-addition to mPEGMA, generating a gradient copolymer with distinct
domains. To increase the domain separation, a DP of 100 was chosen and NMR analysis
confirmed a final polymer composition of mPEGMA4s-co-PerfMAs4. However, PFOB
encapsulation studies showed unstable emulsion, requiring investigation of the nanostructure by
TEM. Uranyl acetate staining reveled phase separated aggregates without a clear PFC domain
(Figure 5-6A). To increase the domain separation, a second polymer was generated in a block
structure, which, after two pot synthesis, yielded mPEGMA3;-b-PerfMAgo by NMR. This was
investigated by TEM which showed well defined micellular structures (Figure 5-6B) and gave

stable PFOB emulsions.

A

Figure 0-5: Uranyl acetate stained A) mPEGMA-co-PerfMA and B) mPEGMA-b-PerfMA.
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As several fillers can be used for perfluorinated emulsions, two of the current gold
standards were selected for testing, CE and PFOB. CE can be easily imaged by '°F MRI but has
a slightly lower oxygen carrying capacity relative to PFOB origin. Both were incorporated into
the mPEGMA;31-b-PerfM Ago at 20% by volume and analyzed by DLS. The CE showed limited
stability with a 10% upward trend in particle size over 30 min, averaging 120.6 + 32.90 nm and a
PDI of 0.435 + 0.07 (Figure 5-7B). The PFOB showed stability at 68.12 &+ 0.35 nm and a PDI of

0.142 £ 0.01, with a slight decrease in size of 5% over 30 min.
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Figure 0-6: Perfluorocarbon nanoemulsion size optimization.

A) mPEGMAs-co-HEMA2s-g-XPAAx DLS measurements against the mass fraction of PFC. B) Histogram fit of intensity vs size
by DLS for mPEGMAG1-b-PerfMAgy emulsions of either PFOB or CE. C) mPEGMA31-b-PerfM Ago emulsions of different
quantities of PFOB. D) Extruded sizes of mPEGMA3,-b-PerfMAeso 20 % PFOB emulsions using different extruder filters.

With evidence of stable emulsions, the final size was refined via extrusion. Three
separate filter sizes were tested, 200, 100 and 50 nm (Figure 5-7D). 50 nm extruder showed low

particle yield, slow purification, and final particle sizes near 100 nm. The 200 nm extruder
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showed no benefits to PDI. 100 nm showed improvement of PDI for 0.4 to 0.2 while reducing

the average particle size to 155.9 nm.

Cypate Incorporation for in vivo Tracking

To track the nanoemulsions in vivo the NIR dye cypate was added at 50 pg/mL. UV-vis
post purification revealed a final cypate concentration of 5.5 pg/mL in the emulsion and 4.79
pg/mL in the polymer micelle alone at 1 mg/mL mPEGMA-b-PerfMA. The emulsions
encapsulation was then tested for stability against PBS dialysis. The initial results show a burst
release of cypate which stabilized at 76 % initial value, representing a final stable formulation of

4.18 ug/mL cypate in a 5 mg/mL polymer weight emulsion.

MSOT Oxygen and Particle Tracking

Oxygen delivery was confirmed in deoxygenated water using a ruthenium, lifetime-based
oxygen probe. Comparing the O, change of a 1 mL injection of oxygenated 5 mg/mL polymer 20
wt % PFOB emulsion vs oxygenated water the emulsion was able to increase O levels by an

additional 3%, representing a 1.21 g oxygen/mol solubility increase over water (Figure 5-8A).
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Figure 0-7: Dissolved oxygen delivery by PFOB nanoemulsion.
A) Oxygen saturation change by injecting oxygenated water or 20 wt% PFOB nanoemulsion at 5 mg/mL polymer. B) Sonication
of water alone or nanoemulsion. Destabilization by sonication of the emulsion shows release of sequestered oxygen.
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With oxygen carrying capacity confirmed, the nanoemulsion was run in a pilot study
against HT-1080 xenograft tumors. These were grown to 2 cm to generate hypoxic regions and
provide sufficient volume for MSOT imaging. Oxygenated mPEGMA-b-PerfMA/cypate with
and without PFOB filler were injected. Image slices within the tumor boundaries were selected
and the areas of hemoglobin signal were colocalized with cypate. Figure 5-9A shows the
delineation of particle containing regions. The oxy/deoxy hemoglobin signal was extracted, and
oxygen saturation calculated pixel-by-pixel. The oxygen saturation increased from 40 to 57 % in
the first hour (Figure 5-9B). This increased further at 4 hrs to 62 % before returning to 43% at 24
hr. This is compared to no change seen over the 24-hour period (Figure 5-9D) using only

oxygenated polymer micelles as control.
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Figure 0-8: MSOT imaging of cypate and hemoglobin.
Mice injected with oxygenated A) nanoemulsion at 4 hour and C) unloaded polymer micelle at each time point loaded with
cypate. The selected area was aligned across each time point (pre, 2, 4, 24 hr) and analyzed for oxygen saturation. The histograms
for the B) nanoemulsion and D) micelle were shown with the saturation mean shifts indicated with arrows.
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5.5 Conclusion

Here we investigated the ideal parameters for generating stable PFC emulsions for
oxygen delivery in vivo. Grafting studies showed a 2:1 ratio of PFC to PEG generates a stable
nanoemulsion with a PFOB filler. While the PFC polymer micelle did not increase oxygen
delivery, forming a PFOB emulsion increased the oxygen solubility 30 % over water. The
nanoemulsion’s ability to deliver dissolved oxygen to tumor tissue was then confirmed by
MSOT imaging. Combining this system with TiO» via co-delivery and/or direct linking of the

nanoemulsion via chelating groups should provide direct enhancement for PRaST.
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Chapter 6: Conclusions on Nanoscale PRaST

Enhancement

PRaST has proven effective in reducing tumor burden and stimulating immune response.
Our work within this dissertation expands the future impact of PRaST within the clinical domain.
Refinement of TiO; physical parameters and their effects on ROS generation and biodistribution
show an interplay at sub-25 nm cTd. Additionally, the apparent increase in hydroxyl yield within

quantum confined TiO, may be a method for further reducing oxygen dependence of PRaST.

Investigation of TiO/Cr resulted in effective metallo-therapy, both alone and when
combined with PRaST, able to increase ROS generation through chromate and provide in vivo
tumor suppression. The restriction of hole injection to chromate alone does present future
challenges, requiring an increase in chromate’s retention at biological pH or another high energy
donor. Initial investigation of a shell trap system shows promise and with calcination to reduce
porosity and increase crystallinity can achieve permanent ROS enhancement. TiO2/Cr(VI)’s
ability to increase toxicity of Cr in culture and in vivo shows promise as a standalone metallo-
therapeutic. The surface retention of Cr(VI) provides targeted delivery and clearance of Cr(III)

will be investigated to confirm limited off target effects.

Finally, the polymer-stabilized nanoemulsion provided effective oxygen delivery into
tumors. Refinement of ideal mass ratios of PFC generated stable emulsions near the Tf-TiO»
NAG size, ideal for co-localization. This system also showed encapsulate and in vivo tracking

with cypate using novel MSOT imaging, while also increasing O» saturation within the tumor
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region. Direct combination with PRaST remains to be investigated but will indicate reduced

tumor burden for the combination therapy.

In conclusion, this dissertation focuses on maximizing the therapeutic benefit of PRaST
through the generation of nanoscale systems able to overcome inherent tumor resistance
mechanisms. The combination and enhancements these approaches provide have shown
decreased tumor burden through ROS and metallo-therapy, benefiting both from controlled
dosage and immune recruitment. Future investigations will focus on direct investigation of in
vivo efficacy of each approach and combinations thereof. Overall, the systems represented here

enhance existing TiO> PRaST and advance the search for total cancer remission.
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