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Abstract of The Dissertation 

Nanoscale Enhancement of Photosensitized Radionuclide Stimulated Therapy 

By 

Daniel D. Lane 

Doctor of Philosophy in Biomedical Engineering  

Washington University in St. Louis, 2021 

Professor Samuel Achilefu, Chair 

 

Photodynamic therapy (PDT) provides efficient tumor killing through the generation of 

reactive oxygen species (ROS) from the optical excitation of a photosensitizer (PS). 

Furthermore, this mechanism is highly immune stimulating, providing systemic tumor immunity 

with a reduction in metastasis. However, these materials had previously been limited by their 

dependence upon external light sources, allowing treatment of only laser-accessible malignancy. 

With the recent development of photosensitized radiation stimulated therapy (PRaST) this depth 

dependence is broken through co-localization of radionuclides and semiconducting 

photosensitizers.  

This dissertation focuses on the enhancement of titanium dioxide (TiO2) based PRaST 

agents through understanding of TiO2 material parameters as well as adsorbed surface coatings 

to enhance therapeutic outcomes. TiO2 has several known crystal phases and can be generated 



 

x 

 

from an atomic cluster to micrometer size. To improve its therapeutic potential, we first 

investigated the effect these parameters had on its primary constraints, namely ROS generation 

and biodistribution, finding an interplay between 5 nm and 25 nm TiO2 crystal domains. 

Furthermore, we sought to overcome the central tumor resistance mechanism to PDT, that of 

oxygen dependence. ROS generation from molecular PS traditionally use near infra-red (NIR) 

optical excitation of electrons, this energy then being transferred to an associated molecular 

oxygen. Nanoscale TiO2 can use both electron and hole intersystem crossing, generating ROS 

from adsorbed oxygen and hydrolysis. To enhance these pathways, we investigated the ability of 

chromium VI ions to increase TiO2 hole flux as well as the ability of adsorbed dichromate to act 

as an oxygen independent metallo-therapeutic. Finally, we develop a polymer stabilized 

perfluorocarbon nanoemulsion able to be tracked with near-infrared fluorescent imaging and 

increase the oxygen tension of hypoxic tumor tissue. This normalization can boost ROS 

generation and normalize tumor microenvironments. Combined, these developments point to 

new nano-design strategies to improve upon novel PRaST, optimizing the particles to both 

improve ROS generation and decrease tumor resistance.  
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Chapter 1: Introduction 

1.1 Cancer Therapy 

Cancer remains the 2nd leading cause of death globally, bringing undue suffering.1 The 

treatment of the pain, both personal and societal, remains an essential goal of medicine. In 

pursuit of this cause there has been year over year funding increases from both governmental and 

charity sources, with large advances in survivability being achieved.2 However, complete 

remission remains elusive due to metastasis, drug resistance and/or quiescence.3,4 Complete 

remission of cancer requires systemic therapies which can exploit the bodies inherent defensive 

mechanisms as well as provide direct targeting of subtle differences between malignant cells and 

surrounding tissue.5,6 One such disparity, metabolic dysregulation, results in an unbalanced 

cellular redox state. This imbalance makes cancerous cells particularly sensitive to additional 

strain on redox control mechanisms and effective therapy can be induced through the delivery of 

reactive oxygen species (ROS). 

1.2 Reactive Oxygen Species and Cancer Biology 

Undesired reactive molecules are byproducts of cellular metabolism and must be 

carefully controlled to maintain stable growth and replication/function for normal tissue. One 

primary class of metabolic byproducts are ROS whose highly energetic nature can damage lipids, 

proteins, and nucleic acids.7 Normal cells control ROS through anti-oxidants and enzymes which 
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de-energize them to ground state.8,9 Cancers, however, have dysregulated metabolic processes 

and increased survival signaling, leading to elevated intracellular ROS concentration.10  

Mitochondria produce ROS during aerobic metabolism, producing superoxide, which can 

interconvert into hydrogen peroxide, and hydroxyl radicals.11,12 The pathways which limit off-

target damage are legion but the major systems revolve around glutathione and ascorbate redox 

cycling.13 As the primary chemical anti-oxidants within the cell, the sulfur and hydroxyl groups 

can both reduce ROS before catalytic recovery either through enzymes or the NADH cycle.14 

Specific enzymes also exist for ROS such as singlet oxygen dismutase, which stabilizes singlet 

oxygen to hydrogen peroxide.15,16 Peroxides are further degraded by ascorbate and glutathione 

peroxidase, both recovering the chemical anti-oxidants and degrading peroxides to water and 

oxygen.17  

Cancers tend to have elevated levels of ROS within their cytosol due to dysregulation of 

these redox control pathways. In active tumors, this is due to elevated metabolism but this effect 

persists in quiescent cells due to dysregulation of cell death pathways and other signaling 

processes.3 As over production of ROS can lead to a variety of cell death signals, cancer tissue 

must bypass them, particularly the HIF1-α and P53 mechanisms.18 This increases susceptibility 

to further ROS damage while also generating highly immune stimulating damage-associated 

molecular patterns (DAMP).19,20 Cells that perish from ROS stress undergo immune surveillance, 

further stimulated by DAMPs within the cellular detritus, increasing recruitment of dendritic 

cells, activated T-Cells, and possible anti-cancer beta cell generation. This increased immune 

reactivity makes ROS induced DAMPs effective in generating systemic immune targeting of 

cancer, limiting the relapse of tumors and attacking metastasis.21,22 
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1.3 History of Photodynamic Therapy 

Photodynamic therapy (PDT) is one of the primary methods for generating ROS. Driven 

by the absorbance of optical energy by a photosensitizer (PS), it can transfer energy into ROS 

(Figure 1-1).23,24 Light has long been recognized for its healing properties, predating even 

Herodotus, with modern recognition of its benefits amplified by a Nobel prize awarded in 1903 

for lupus treatment.23 However, the combination of a PS and light was first described in 1900 by 

the doctoral student Oscar Raab who accidentally exposed suspended protozoa stained with 

acridine orange to a bright light.25 The description of the eukaryote’s death was quickly 

published.26 Raab and his mentors then brought the method to clinic before the end of the 1900’s 

which proved effective on skin tumors. However, the therapy received little notice, dropping 

from common medical use.27 This technique would later become photodynamic therapy (PDT) 

which emerged briefly in the 1950s with interest in porphyrins then slowly being investigated 

until the late 1970’s when the clinical relevance of PDT was brought to the world by Dougherty 

et. al.28–30 Their work resulted in the first clinically approved photosensitizer (PS), Photofrin 

(1993) for use on bladder cancer.31 Since that time PDT has passed through three generations and 

is entering its fourth.5,24,32–35 

While Photofrin heralded the first generation of porphyrin based PS, it had several side 

effects and shortcomings.36,37 The most apparent of these issues were depth of penetration and 

systemic light sensitization, limiting treatment to laser accessible sites and requiring indoor 

quarantine for a week or more.38,39 To overcome this impediment the second generation 

attempted to modify the porphyrin structure itself or expand into new dyes, increasing the 

wavelength of activation and site selectively. One example is ALA-5, is enzymatically activated 



 

4 

 

to PP-IX when reaching the target tissue, a conversion that favors metabolically active cancers 

and is activatable by NIR light.40–43 While the 2nd generation increased the depth of penetration, 

the limit remained ~ 1 cm, primarily due to tissue heating effects of NIR lasers.44 Additionally, 

choice of the NIR wavelengths came at the cost of lower optical energy, also lowering the energy 

of the generated ROS. The third generation remains ongoing and is categorized by nanoparticle 

(NP) and/or antibody targeting of existing PS but has little to improve the penetration depth of 

therapy.  

A new generation of PS is currently being developed that can return to higher energy 

ROS generation and/or overcome depth of penetration issues. Using either two-photon 

absorbance for molecular photosensitizers, like aggregation-induced emission lumigens 

(AIEgens), or up-conversion NP like NaYF3:Eu:Yb, the energy level of delivered light can be 

increased.45–47 However, these still rely on external laser sources limited depth of penetration. To 

overcome both depth and energy concerns, sonodynamic therapy has used sonosensitizers for 

ROS generation but this carries the downside of direct beam targeting and limited reduction of 

satellite malignancy.48,49 Photodynamic radiation-stimulated therapy (PRaST), recently 

developed within our lab, can overcome both penetration depth and energy restrictions while 

providing systemic targeting.   
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Figure 0-1: The mechanism of photodynamic therapy. 
The photosensitizer (PS) absorbs light and an electron moves to the first short-lived excited singlet state. This is followed by 
intersystem crossing, in which the excited electron changes its spin and produces a longer-lived triplet state. The PS triplet 
transfers energy to ROS, in this case ground-state triplet oxygen, which produces reactive singlet oxygen (1O2). ROS can directly 
kill tumor cells by the induction of necrosis and/or apoptosis, can cause destruction of tumor vasculature and produces DAMP 
activating leukocytes such as dendritic cells and neutrophils.50  
 

1.4 PRaST 

Instead of directly relying upon photon energy, PRaST exploits multiple energy delivery 

mechanisms resulting from radio decay to drive the PDT (Figure 1-2), showing great effect in 

mouse models of cancer.51,52 PRaST utilizes non-toxic doses of radiation, below that normally 

required for direct radio-therapy and allowing energy release anywhere within the body.53,54 This 

systemic delivery is supplemented by the cancer seeking nature of existing PET radio tracers 

whose beta emission provides easily exploitable energy and offers imaging capabilities. The 

energy types emitted by beta decay are Cherenkov radiation, beta capture and daughter redox 

reactions (Figure 1-2). To utilize these requires the use of specifically designed PS and 

knowledge of each’s properties. 
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Figure 0-2: PRaST energy delivery mechanisms. 
After a sufficiently energetic beta decay (either positron or electron) Cherenkov light is generated in dielectric media for PS 
excitation. The particle can then annihilate or be captured by a material, generating multiple excited Auger electrons. Finally, the 
daughter product undergoes separate redox reactions to return to ground state.  
 

Cherenkov radiation (CR) is a byproduct of the faster-than-light travel of a charged 

particle in dielectric media. The travel of the particle causes polarization of the media along its 

path, relaxing and generating an electromagnetic wave. CR pulls energy from the particle and 

transfers it into optical emission, reducing the velocity of the particle to below the speed of light 

for the medium.55–58 The spectrum produced depends upon the medium and the energy of the 

particle but follows the proportion of 1/�^3 (λ being wavelength) vs photon flux.56,59 The 

combination of water absorbance and the exponential decay proportionality places the tissue 

intensity maximum near 200 nm (UV-C light, Figure 1-3), with a mean free path of <1 mm in 

tissue.60 Visible to the naked eye at high radiation doses as a blue glow, Figure 1-3B shows the 

luminescence of 64Cu, a beta emitter, under an open filter in an IVIS (in vivo imaging system) 
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imager. Figure 1-3C shows the lack of photon flux above a 500 nm cutoff (specifically the built-

in GFP filter, pass range 515-575 nm) leaving most of the flux in the UV, unable to activate 

existing PS.  

The second energy transfer mechanism for PRaST is scintillation, a process particularly 

relevant to nanoscale inorganic materials which can regenerate from the process.61 The direct 

capture of a beta particle can occur up to 10 mm from the decay source in tissue, depending upon 

the emission energy.62 In the case of both positron and electron capture, the resulting energy can 

cause a multiple electron energy transfer cascade known as the Auger process, able to generate 

several trapped, excited electrons, and therefore ROS. The final PRaST energy mechanism is 

daughter product redox equilibration. As the original atom’s nucleus ejects a beta particle the 

resulting nucleus is often left with residual energy due to electron imbalance. This excited atom 

then undergoes energy decay processes, including redox reactions, till reaching ground state. 

Directing this energy to specific regions, however, is challenging and more often leads to non-

specific reactions. This process is inherent in radioactive decay and does generate ROS but does 

not directly involve a PS, simply adding to redox imbalances. These combined energy delivery 

mechanisms, with their limited travel distance in tissue, keeps PRaST energy within a 

malignancy and benefits from co-targeting of both the radionuclide and PS.  

When considering the PS to use with PRaST, however, these three energy mechanisms 

must be considered and require a rethink of current PS canon. Instead of needing high quantum 

efficiencies in the NIR window developed in the 2nd generation, PRaST requires high UV and 

beta capture density. Considering these factors titanium dixoide NPs have proven effective as 

PRaST PS.  
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Figure 0-3: Decay based Cherenkov radiation generation. 
A) Luminescence decay of 64Cu in water alone or in the presence of 25 nm TiO2. Decay half-life follows that of 64Cu’s 12 hr. 
Luminescence image of 64Cu at 200 µCi with a B) open or C) 515 nm high pass filter, scale bar for both is located right. 
 

1.5 Titanium Dioxide PRaST 

In 2014 our lab developed titanium dioxide (TiO2) as a PRaST agent, using FDG and 

64Cu as beta emitters for stimulation (Figure 1-4).51 TiO2 is a heavily investigated semiconductor 

known for its catalytic properties and absorbance characteristics which make it an ideal catalyst 

for both industry and academic purposes.63 TiO2 is highly bio-tolerated, has a catalytic surface 
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with tunable hydrophilicity, electron/hole trapping energies sufficient for hydrolysis, can be 

easily synthesized into NP and has a high optical and radio-absorbance density.64 When 

combined with beta emitters this system showed remission of murine breast tumors in a 

subcutaneous mouse model and showed great promise for a new generation of PS. The work 

contained herein focuses on the refinement and enhancement of TiO2 based pRaST to further 

increase its conversion efficiency and limit tumor resistance mechanisms.  

 
Figure 0-4: In vivo PRaST Efficacy. 
A) Schematic of the Cherenkov-mediated excitation of TiO2 NPs to generate cytotoxic hydroxyl and superoxide radicals from 
water and dissolved oxygen, respectively, through electron–hole pair generation. B) In vivo PRaST through a one-time systemic 
administration in tumor-bearing Athymic nu/nu mice. **P < 0.01, ***P < 0.001. ExtUV, external ultraviolet. C)The Kaplan–
Meier survival curves represent treatment with 0.87 mCi/0.1 ml FDG. ***P<0.001. D) The survival curves represent treatment 
with 0.14 and 0.43 mCi/0.1 ml FDG (n = 4 mice per group). **P < 0.01. E) In vivo CRIT in A549-tumor-bearing Athymic nu/nu 
mice using TiO2-Tf-Tc and FDG. ***P < 0.001. 51  
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1.8 Aims of this Dissertation 

The objective of this dissertation is to enhance TiO2 based PRaST through nanoscale 

modification. We accomplished this by undertaking the following research: 

Chapter 2: The Effect of Size and Crystal Structure on ROS Generation and Biodistribution of 

TiO2 Nanoaggregates 

Chapter 3: Chromate Based Hole Injection for Oxygen Independence in TiO2 Photosensitization 

Chapter 4: Cr(VI) Ion State Change Therapy for Cancer Suppression 

Chapter 5: Oxygen Delivery by Perfluoronated Nanoemulsions 
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Chapter 2: The Effect of Size and Crystal 

Structure on ROS Generation and 

Biodistribution of TiO2 Nanoaggregates 

Lane, Daniel D. et al. 2020. “Effects of Core Titanium Crystal Dimension and Crystal Phase on 
ROS Generation and Tumor Accumulation of Transferrin Coated Titanium Dioxide 
Nanoaggregates.” RSC Advances 10(40): 23759–66. 

2.1 Chapter Summary 

Transferrin-TiO2 (Tf-TiO2) has been proven to be an effective PRaST agent. However, 

the material properties of TiO2 had not been investigated to maximize its bio-efficacy, 

specifically considering biodistribution and ROS generation. Here we sought to improve both 

aspects through reduction of TiO2’s core dimension (cTd) and alteration of the crystal structure. 

Investigation of sub-50 nm cTd showed stable particles averaging a diameter of 108 nm by 

dialysis. This consistent structure was investigated by TEM, revealing that Tf-TiO2 particles 

consisted of nanoaggregates (NAG) that packed varying numbers of TiO2 cores into a Tf coated, 

fixed volume. While the NAG size remained consistent with cTd, the ROS generation was 

altered with peak generation occurring at 25 nm cTd. Alteration of crystal type from anatase to 

amorphous improved ROS generation but NAG stability suffered. Finally, the biodistribution of 

5 and 25 nm NAGs showed higher uptake by 5 nm Tf-TiO2, with a tumor-to-muscle ratio of 13.3 

by ICP and 6.02 by fluorescence. Combined, this information suggests cTd’s of <25 nm is ideal 
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for full in vivo investigation of PRaST to balance the tumor uptake against the ROS generation 

capabilities.  

2.2 Introduction 

Titanium Dioxide 

Titanium dioxide (TiO2) is a semiconductor capable of regenerative photocatalysis and 

has been heavily investigated since its optical catalysis was described by Fujishima et al. in the 

1970s.65 Fujishima discovered that UV exposed TiO2 could lower the energy of water hydrolysis 

well below that normally required. Further investigation showed the surface of titanium dioxide 

has efficient trap sites for high energy holes and electrons generated from the optical excitation.66 

TiO2 trap sites exist at the materials interface allowing environmental electrical conjugation to 

adsorbed molecular species, namely water and oxygen. These traps also limit exciton 

recombination, the major mechanism of energy loss, leading to high catalytic efficiency.67 

Solution studies against ROS reporter dyes revealed TiO2 catalysis also comes, in part, from 

ROS generated upon UV excitation, including highly reactive hydroxyl radicals generated 

directly from water. As ROS therapy had been conceptualized in the 1980s, several attempts 

were made to convert TiO2 into an anti-cancer theraputic.68,69 However, its dependence on UV 

light, and challenging particle stabilization limited its efficacy.  

With the advent of PRaST, the UV absorbance from TiO2’s large bandgap became a boon 

as it improved electron/hole redox potential relative to current generation photosensitizers.70,71 

Particularly, the ability to generate high energy hydroxyl radicals through hole based reactions 

facilitates low oxygen ROS generation. The surface bound hydroxyls are rapidly replaced by 
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adsorbed water through deprotonation allowing unlimited catalytic recovery. Tumors generate 

hypoxic regions due to malformed vasculature and high metabolic rate.4,72,73 The generation of 

hydroxyl radical from water also requires a redox energy of +2.27 V vs. standard hydrogen 

electrode (SHE), an energy too high for near-infrared photosensitizers.70,74 Additionally, TiO2’s 

bandgap and electron density increase beta capture efficacy over most standard carbon based 

PS.75 These ROS generation properties, along with a stable crystal structure, strong UV band 

optical density and electron-dense structure make TiO2 ideal for PRaST energy absorption 

through Cherenkov radiation and beta capture.56,76–78  

Exciton Trapping and Crystal Effects 

The efficiency of PDT is directly affected by electron and hole separation in a material. 

An exciton (electron/hole pair) can easily recombine in materials that lack extended electrical 

conjugation, which allows exciton travel, and trapping groups. If an exciton does recombine, the 

energy is lost to bond resonance or fluorescence/phosphorescence.79 In an aqueous environment, 

TiO2 shows rapid trapping of electrons/holes in oxygen/titanium defects, respectively, limiting 

recombination.80–82 The trapping rate relies on the defect density in TiO2, specifically acidic 

titanium or hydroxyl sites, with a higher density increasing the overall photoactivity.83 

Furthermore, TiO2’s hole traps correlate with adsorbed water/hydroxyl sites, facilitating rapid 

oxidation and release of hydroxyl radicals.84 The electron traps are surface oxygen defects and 

reduce molecular oxygen to singlet oxygen and other ROS.74 

The surface defect rate has been associated with several factors, including TiO2’s bulk 

crystal phase, core TiO2 crystal dimension (cTd), and surface coating.85 Early investigations of 

the natural crystal phases, anatase and rutile, revealed anatase to have a higher ROS production 
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potential.64,86 This is attributed to the higher bandgap and surface potential of anatase, as well as 

increased trap density on the (0,0,1) plane.87,88 Some evidence suggests amorphous/mixed crystal 

phase TiO2 have higher ROS quantum yields due to undefined surface regions, higher total 

surface defect rate, and exciton splitting between different crystal sub-domains.89 These 

conclusions, however, often conflict due to the heterogeneity of synthesized amorphous 

materials. One example of increased ROS generation is P25 Degussa TiO2, the gold standard for 

catalysis, a mixed phase crystal material with increased photocatalytic yield relative to pure 

anatase.90,91  

The cTd also alters ROS generation rates, often breaking the catalytic surface area 

dependence when approaching the nanoscale. At the nanoscale TiO2 particles have increased 

crystallinity which limits the number of surface defects, lowering ROS conversion.89 

Additionally, recent work by Shen et al. shows multiple defect sites must be co-localized on a 

oxide surface to generate ROS, this being scarce as surface area decreases.84 Overall, the cTd 

investigated across several TiO2 photocatalytic systems shows peak ROS generation in the 7-40 

nm range.89,92,93  

Transferrin Coating 

The 80 kDa β-globulin Tf has the combined advantages of high affinity to Ti+3 ions, non-

toxicity, and tumor targeting effects.94–96 Tf itself is the third most common protein in serum, 

being a vital iron transporter. Additionally, Tf has a well-known record as a tumor targeting 

agent, increasing the therapeutic outcome of molecular species and nanoformulations.97,98 This is 

a result of EPR enhancement and tumor upregulation of the Tf-receptor to feed a metabolically 

enhanced iron demand, increasing Tf retention in cancer tissue.99–101  



 

15 

 

Tf also regulates iron trafficking to the brain where iron demand is high, specifically 

shuttling iron to astrocytes.102,103 After being bound and trafficked through the clathrin coated 

endosomal pathway, the bound iron is released. This iron is then transported in the cytoplasm 

where it is bound to ferroportin and is separately transported into the spinal fluid. The Tf and 

covalently bound materials are then recycled back into the blood-stream, limiting blood brain 

barrier transport.104  

Biodistribution of Nanoparticles 

For maximum therapeutic effect, NP design requires high, tumor specific bio-

distribution, requiring consideration of surface properties, material size and targeting groups. The 

most vital biological properties these parameters effect are the enhanced permeability and 

retention (EPR) effect, caused by leaky tumor vasculature, the as well as liver, kidney and spleen 

filtration.6,105,106 In general, particles must limit all non-tumor uptake, being larger than the 

hydrodynamic diameter limit of 7 nm for nephron filtration, and smaller than 150 nm to avoid 

macrophage uptake in liver and spleen.6,107 For solid NPs like TiO2, the effective size is modified 

by protein adsorption.108,109 Previous studies have tracked renal excretion and, using quantum 

dots, showed about 5.5 nm is the limit for hard nanostructures.110  

2.3 Experimental Method 

Materials 

Apo-Transferrin was purchased from Athens Research and Technology (Athens, GA), 

TiO2 cTd’s were provided by the Biswas lab, all chemicals were purchased from Sigma-Aldrich 

(St. Louis, MO).  
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TiO2 Core Synthesis and Crystal Structure 

TiO2 cTds of various sizes (5 - 1000 nm diameter) were prepared by hydrothermal 

reaction of titanium alkoxide (titanium isopropoxide: TTIP) stabilized in an acidic ethanol-water 

(1:2 to 1:8 v/v) solution by modifying the method previously proposed.111 The 25 nm anatase 

TiO2 synthesis is used as an example for the rest of the experimental section. The pH of an 

ethanol and water solution was adjusted to 0.7 with 1 M nitric acid. 100 µL of 0.02 M TTIP 

(97%) was added dropwise to this solution. The reaction was magnetically stirred at 400 rpm (25 

°C) followed by 4 hrs thermal treatment at 220 °C. Synthesized crystals were washed several 

times with ethanol to remove un-reacted alkoxide. The materials were then either dried under 

vacuum or dispersed in a solvent for further use. For different crystal structures, the calcination 

conditions were altered to 250 °C for 4 hrs for anatase-rutile and 2 hrs at 120 °C for 

amorphous.112  

The size and morphology of the TiO2 cTds was investigated using transmission electron 

microscopy (TEM) with an 80 keV FEI Tecnai Spirit Transmission Electron Microscope. A 2 μL 

sample was placed on an ultrathin lacey carbon grid, 400 mesh (Ted Pella Inc.) and allowed to sit 

for 5 min before removal of the droplet via wicking with a Chemwipe and vacuum drying. To 

visualize the Tf coating, a dried grid sample was stained for 1 min with uranyl acetate (UA), 3 

µL drop of 4% (w/v), before blotting and vacuum drying to limit UA crystal contamination. X-

ray diffraction (XRD) was performed to confirm the crystal phase of TiO2 NPs.113 25 mg of dry 

TiO2 powder was added to a low background silicon sample holder and scanned (coupled two-

theta/theta) from 5-60 degrees with a 15 rpm sample rotation and anti-scatter fins in place. The 

data was analyzed with Bruker DIFFRAC.EVA program. 
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Stabilization of Tf-TiO2 NAGs 

TiO2 cTd solutions (1 mg/mL) were prepared in 1x Dulbecco's phosphate-buffered saline 

(DPBS) and vortexed to homogeneity. Immediately, Tf was added at a mass ratio of 1:3 (TiO2 to 

Tf) and mixed until dissolved. This solution was then separated into 2 mL aliquots before 

sonication by a small-bore probe at 3 W output for 40 seconds (kept below 50 °C from sonic 

heating) to form Tf-TiO2 NAGs. Post sonication, the aliquots were filtered through a Millex-HV 

PVDF 0.22 μm filter, unless otherwise stated. Note that due to size, >200 nm cores were not 

filtered, but instead centrifuged at 1k for 1 min before resuspension under sonication.  

Characterization of Tf-TiO2 Particles 

Hydrodynamic diameter and zeta potential of the suspensions were both determined with 

the Malvern Zetasizer Nano ZS. Particle measurements were performed in a 2 cm path-length 

quartz cuvette and a folded capillary zeta cell (Malvern Instruments Ltd), respectively. A 

triplicate of each sample was diluted to 0.01 mg/mL TiO2 to produce an optically clear solution 

of the particles in DPBS for dynamic light scattering (DLS) and deionized water (diH2O) for zeta 

potential measurements. Z-average size and polydispersity index (PDI) of the TiO2 NAGs were 

obtained with an average of 12 runs. TEM was performed to validate morphology and size of the 

coated particles. Quantification of protein coating was carried out using a Pierce BCA Protein 

Assay kit to determine Tf concentration (1) before coating, (2) remaining in the supernatant after 

coating and centrifugation, and (3) the amount remaining in the particle sample. Long-term 

stability was quantified using three separate 2 mL samples at 1 mg/mL of Sigma-Aldrich Tf-

TiO2, prepared in water. These were stored at 4 °C and 100 μL samples were diluted to 0.01 

mg/mL in water and analyzed on DLS as described above. 
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ROS Quantification  

Dichlorofluorescein diacetate (DCF-DA) was used to quantify general ROS production 

from Tf-TiO2, and hydroxyphenyl fluorescein (HPF) was used to detect hydroxyl radicals.114 

DCF-DA was activated to DCF by adding DCF-DA (45 µL, 5.55 mM) in Dimethyl sulfoxide 

(DMSO) to NaOH (5 µL, 1 N) and incubating for 10 min, producing a 5 mM stock that was 

refreshed for each sample run. DCF and HPF were added to TiO2 samples from DMSO with 5 

mM starting concentrations. The Tf-TiO2 samples were prepared as above but not filtered to 

preserve the concentration more closely, relying on orbital shaking between reads to maintain 

homogeneity. The initial Tf-TiO2 formulation (1 and 3 mg/mL TiO2 and Tf, respectively) was 

then diluted to 0.01 mg/mL TiO2 in 1 mL and 5 µM HPF or DCF was added.  

 An uncoated, black walled, flat and clear bottom 96 well plate (Greiner Bio-One) 

containing 150 µL sample per well was used for ROS quantification. Each plating was 

performed in triplicate with a well geometry that allowed an average power of 1.9 mW across 

each triplicate set. For comparison between runs, a bare 25 nm TiO2 DCF control was always 

plated to quantify variability. After loading, the plate was shaken for 20 seconds in a double 

orbital pattern and analyzed on a plate reader (BioTek Synergy Neo2) using 487 nm excitation 

and 528 nm emission. Subsequently, the plate was automatically exposed to UV light for 80 

seconds before being shaken again, repeating the process. This was carried out for a total of 30 

min for each plate and the data was compiled into pseudo-first-order kinetic curves for reporting. 

In Vivo Tumor Model and Biodistribution 

All studies were conducted in compliance with Washington University Animal Welfare 

Committee’s requirements for the care and use of laboratory animals in research. Fluorescent 
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imaging of biodistribution was carried out in HT1080 fibrosarcoma model nu/nu mice. Cells 

were injected at 1 x 106 and grown till reaching 10 mm by caliper. Freshly prepared 5 and 25 nm 

Tf-TiO2 NAGs in PBS were injected via tail vein (100 µL, 1 mg/mL). Imaging was done on a Li-

Core PEARL imager with the 700 nm channel (ex 685/em 720 nm) pre-injection and 2, 4 and 24 

hrs post-injection. At 24 hrs animals were euthanized and organs excised for biodistribution.  

ICP-MS biodistribution was quantified on breast cancer (4T1)-bearing BALB/c mice 

(n=4/group). 4T1 (1 X 106 cells) were injected subcutaneously and grown to 10 mm by caliper. 

The animals were euthanized 24 hrs post-injection. To quantify the TiO2 biodistribution, major 

organs and tumor tissue were harvested, homogenized, and degraded using nitric acid and H2O2 

(hydrogen peroxide) and Ti content in each organ was quantified by an Elan DRC II. 

2.4 Results 

Synthesis and Characterization of TiO2 Core NPs  

Different sizes (5, 15, 25, 30, 50, 100, 200, and 1000 nm) of TiO2 cTd as described above 

(Figure 2.1) were prepared through sol-gel synthesis. The electrophoretic zeta potential of the 

cores was between -19 and -35 mV. Using 25 nm cTds as a base cTd, three different crystal 

phases were synthesized and characterized - anatase, anatase-rutile, and amorphous. DLS 

measurements showed an average PDI of 0.15 +/- 0.035 at pH 5.8 in ethanol across all cores. 
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Figure 0-1: Sol-gel synthesized TiO2 crystals. 
TEM images of TiO2 A) 5, B) 15, C) 50, D) 200 nm.  

 

XRD analysis shows three core crystal phases matching 26º, 37º, and 55º peaks for 

anatase and 36º, 42º, and 54º peaks for rutile (Figure 2-2B). Amorphous particles have weaker 

facets of both phases due to the lack of annealing during synthesis. TEM of the synthesized cores 

shows clustering in aqueous media that can range from a single cTd to multi micron aggregates. 

The crystallites match the expected pseudo-octahedral crystal shape, appearing as slight 

elongated, rhomboid shapes. Preferential elongation along a single axis was observed as the 
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particle size increased, creating NPs with a standard aspect ratio of near 2:1 for 200 nm 

tetragonal crystals (Figure 2-1D). The anatase crystal structure was further shown in the 

diffraction bands (Figure 2-2A) whose graph analyses exhibited two patterns with a spacing of 

0.3312 ± 0.0811 nm and 0.3568 ± 0.0993 nm for each (~3.5 Å literature).115 The different sizes 

and crystal phases provided diverse parameters to assess their ROS-generating properties and 

biodistribution.  

 
Figure 0-2: TiO2 crystal structure confirmation. 
A) TEM of an anatase particle, insert figure is ImageJ peak picking of crystal facets for lattice spacing determination. B) Xray 
diffraction of anatase, mixed anatase rutile and amorphous particles used in our examination. 

 

Coating of Core TiO2 NPs with Tf Produces Distinct NAGs 

To stabilize the random aggregates seen above the TiO2 cTds were coated with Tf, which 

served as both a dispersing and tumor-targeting agent. Previous results from within our group 

had shown the coating of 25 nm cTd TiO2 with apo-transferrin (Tf) produced Tf-TiO2 particles 

with individual cores near 30 nm by TEM. However, this conflicted with DLS measures 

averaging 108 nm which suggested either a unique structured water layer, a thick Tf coating, or 

multiple cTd per particle. Observation of the clusters by TEM showed consistent NAG structure 
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across all Tf-TiO2 particles. For 25 nm core NPs, they appeared as agglomerated TiO2 cores 

coated with Tf, with an average size of 105.1 ± 59.15 nm (Figure 2-3D) generated from edge 

finding algorithms in Image-J. Visual analysis suggests the number of cores in each particle 

decreases with increasing core size. Due to this decrease, it is possible the final NAG size is 

governed by entropic effects in water, causing a volume-restricted stable point that is then filled 

by a number of cores stabilized by Tf, forming a stable (low PDI) NAG. BCA analysis of 25 nm 

anatase Tf-TiO2 NAGs showed 95 ± 2.9 Tf per particle. Adjusting for the expected volume of a 

Tf layer this size indicates a monolayer to bilayer coating the NAG surface. Interestingly the size 

distribution narrowed as the core size approached the filter cutoff, dropping from PDI 0.17 to 

0.03 suggesting higher selectivity. This is likely driven by selection of a narrowing gaussian edge 

of cTd by the filter. 

Attempts to coat TiO2 with holo-Tf resulted in uncontrolled aggregation of TiO2 to >1 

µm (PDI of 1) compared to the stable apo-Tf. This suggests that iron binding limits TiO2 coating, 

possibly due to direct interaction of Tf’s binding site with surface titanium defects. For apo-Tf 

DLS analysis provided an average NAG size of 108 ± 1.13 nm for 5 to 35 nm core NPs (Figure 

2-3C). This consistent NAG size was disrupted at 50 nm cTd where it gradually increased as the 

core size increased. It was difficult to obtain an accurate measurement post 200 nm cTd due to 

rapid settling.  



 

23 

 

 
Figure 0-3: Effect of TiO2 cTd on Tf-TiO2 particle size. 
 A) Schematic depicting the Tf coating of multiple cTd forming similarly sized NAGs. B) Intensity % histogram of a Tf-TiO2, 25 
nm cTd particle by DLS. C) Z-average size and PDI of various cTd and crystal structures after Tf coating. TEM of Tf-TiO2 25 
nm cTd particles D) unstained and E) stained with uranyl acetate showing Tf layer on NAGs. 
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The crystal phase also influenced the overall NAG size. This effect was not driven by 

differences in buffer conditions as each crystal type was synthesized through the same process, 

differing only in the finishing temperatures. The PBS buffer was used to maintain the 

formulation at pH 7 for all NPs. Amorphous particles show a larger average particle size, likely 

due to increased surface energy and hydroxylation in aqueous solution. This increased water 

affinity and lack of exposed Ti+3/+4 on the surface, characteristic of amorphous TiO2, likely 

lowers the affinity for Tf. This lack of affinity removes the stabilizing coating and drives 

aggregation, limiting the overall stability of amorphous NAGs.94,116 NAG size of the mixed 

anatase-rutile TiO2 collapsed from the anatase cTd along with a drastic increase in size 

heterogeneity indicated by PDI (Figure 2-3C). This was driven in part by high filter retention, 

suggesting the Tf coating was unstable on these particles.  

A fundamental problem with many NP formulations is the poor shelf life. Thus, 25 nm 

core NAGs stored at 2 ⁰C were monitored for over two months in diH2O and PBS (Figure 2-4). 

Longitudinal tracking of size and PDI via DLS show the dispersion of NPs in diH2O exhibiting 

high stability over 60 days, with consistent PDI below 0.2. PBS had a larger particle size during 

storage and seemed to become destabilized before the 60-day mark. The result suggests that 

diH2O is useful in maintaining NAG’s integrity for long term storage. 
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Figure 0-4: Tf-TiO2 particle stability in various media. 
25 nm Tf-TiO2 NAG storage stability in A)PBS or B) di-water measured by DLS. C) Tf-TiO2 serum stability over 24 hr.  

 

ROS Production Exhibits Non-linear Relationship with NP Size 

ROS producing capacity of the NPs varied with size and crystal phase. Comparison of all 

the NPs prepared showed that the 25 nm core NAGs produced the most ROS in both HPF and 

DCF measurements (Figure 2-5A). This finding contrasts with standard catalytic particle theory, 

which suggests increased surface area per gram should show the highest ROS.117 The results here 

show 25 nm NPs have 180% enhanced DCF conversion rate vs. 15 nm and a 190% enhanced 

HPF rate over 5 nm particles, its nearest competitors for the respective reporters. Our results 

agree with data originally generated against non-UV exposed, bare TiO2 which suggested low 

cTd have decreased surface defect rate below 25 nm.89 As Ti3+ defects act as binding sites for 

surface hydroxyls and oxygen, they are essential for exciton separation and catalysis. Therefore, 
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the loss of defects for 5 nm cTd TiO2 limits the ROS production.82 The drop off above 25 nm 

approximates the canonical loss of surface area, a 1/r3 decrease.118 Furthermore, the HPF signal 

increased relative to DCF at 5nm cTd. This phenomenon is likely driven by increased exciton 

confinement near the Bohr radius of the exciton (~3.2 nm in TiO2). That confinement further 

increases the absorbed energy, which favors hydroxyl radical generation by holes but has little 

effect on oxygen catalysis.70 This shift toward hydroxyl generation may be vital in hypoxic 

tumor cores as water splitting is the main transfer path for hydroxyl radicals, possibly removing 

oxygen dependence, a vulnerability of many small molecule photosensitizers.119 

Crystal Type Affects ROS Generation in Tf-TiO2 NAGs 

Previous studies demonstrated that amorphous particles can improve ROS quantum 

yield.89 Here we explored whether this pattern can translate to NAGs using 25 nm core NPs. Our 

results show a 260% increase in ROS production of amorphous over anatase (Figure 2-5B). This 

increase is likely caused by an increased surface defect rate. Since amorphous particles lack 

regular crystal structure (Figure 2-2B), they leave grain boundaries that propagate to the surface 

and increase trapping. Additionally, the amorphous cTd’s lack of calcination leaves a higher oxy 

anion concentration on the surface of particles, which has been shown to increase the catalytic 

rate.83 It is also apparent that the rutile content reduces overall ROS yield, as reported 

previously.120 This is caused by a decrease in surface energy compared to the high defect rate 

anatase active crystal plane (101), which, when combined with anatase-rutile’s lower band gap 

decreases it’s ROS yield compared to anatase.80 These data point to the importance of the 

presence of TiO2 surface defects in maximizing ROS generation. 
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Figure 0-5: ROS generation for each cTd and crystal type. 
A) ROS generation rate by cTd, denoted by rate of fluorescence increase fit by pseudo-first order constant. B) ROS generation by 
different crystal types for Tf-TiO2 particles. C) Bandgaps for each cTd determined by Tauc plot from diffuse reflectance spectra 
assuming indirect bandgap. D) Hydroxyl radical generation relative to a set amount of hydrogen peroxide split by the Fenton 
reaction, normalized for mass. 

 

Small TiO2 Core NAGs Exhibit High Tumor Retention  

For in vivo biodistribution studies 5 and 25 nm cTd NPs were selected for their high ROS 

and similar NAG size. Using Alexafluor-680 bound apo-Tf the cTds were coated and tracked via 

fluorescence. Figure 2-6C shows that after 4 hr, particle accumulation is likely near its peak and 

persists within the tumor. When the tissue was excised, the biodistribution of 5 nm NAGs 

showed higher tumor uptake with a tumor to muscle ratio of 6.2 v 25 nm TiO2/Cr’s 4.53. This 
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result was not statistically significant however, and some bladder signal was present which 

suggested kidney clearance, which should be impossible without nephron damage, for TiO2 

particles.  

 
Figure 0-6: Fluorescent biodistribution of Alexa680-Tf coated on 5 and 25 nm TiO2. 

Fluorescent images of the A) 5nm and B) 25 nm Ti/Alexa-680 Tf particles. C) The mean tumor signal over time for both 
particles. D) Fluorescent biodistribution of excised organs from all mice. (n=5, n.s.) 

 

To more accurately track the biodistribution of titanium, ICP-MS on degraded tissue was 

run for 5 and 25 nm NAG. ICP-MS measurement of 48Ti accumulation showed an increase in 

tumor localization per unit mass for 5 nm core NAGs with a total of 2.7 µg/g (Figure 2-7). 

Further, a six-fold higher tumor to muscle ratio was observed between 5 nm core NAGs (13.3) 

compared to the 25 nm core (2.83). Although the NAG sizes for the two NP cores are similar, 

our result suggests the in vivo biological distribution may differ. Possibly due to stripping of 
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transferrin from the NAGs in circulation, high intravenous shear force, or other biological 

interactions which may dissociate the NAGs, thereby reducing the size to more closely match the 

cTd. To discount the possible serum displacement the stability of the NAGs over 24 hours was 

tracked and showed no relevant change in the particle size, staying within sampling error out to 

24 hours.  

ICP tracking showed apparent uptake in the brain. This is likely caused by a combination 

of 48Ti interference by 48Ca and the uptake of NAGs by astrocytes via transferrin mediated 

internalization.103,121  

 

Figure 0-7: Biodistribution of titanium in vivo by ICP-MS. 
Run against 5 and 25 nm cTd Tf-TiO2, n=8. (*P < 0.01). Measure is μg of Ti ion per gram tissue. 
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2.5 Discussion 

Analysis of the TiO2 core size and crystal reveal their direct impact on ROS generation 

and in vivo biodistribution. First, cTd appears to have little impact on the size of the NAGs 

formed in aqueous suspensions, likely due to the formulation size being driven by the particle 

surface energy and not physical core dimensions. This is most apparent when comparing 

differing crystal phases against the final formulated size, with higher surface energy cores 

resulting in larger Tf-TiO2 NAGs. While the core size had little effect on the final NAG, it did 

significantly impact the ROS production. The 25 nm core NAGs clearly generated the most 

ROS, which held true for both bare TiO2 and Tf-TiO2 NAGs. The 5 nm NAGs produced the next 

largest amount of ROS at half the rate of the 25 nm NAGs. This is likely due to the 5 nm NP’s 

large increase in the surface area over 25 nm which partially compensated for the reduction in 

defect sites. Furthermore, the defect hypothesis was corroborated by the highest ROS production 

rate from the amorphous crystal structure, having a 200% enhancement in rate. Unfortunately, 

amorphous NAGs sit near 200 nm which limits its utility. Additionally, the increase in HPF 

production at 5 nm implies small cTd may be used to fine-tune oxygen sensitivity of TiO2 but at 

the cost of absorbance range.  

Finally, 5 nm cTd NAGs also show improved tumor localization over 25 nm, showing the 

importance of cTd in tumor accumulation properties. With this in mind, there must be a balance 

between the nearly 2-fold enhancement of ROS generation by the 25 nm over the 5 nm particles 

versus the nearly 3-fold increase in the tumor uptake of the 5 nm over the 25 nm NPs when 

designing PRaST strategies. For PRaST TiO2 photosensitizers must both generate high amounts 
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of ROS as well as significantly accumulate with radionuclides in tumors. Assuming linearity, 

this 3x to 2x ratio suggests the ideal cTd size would lean towards the 5 nm NAGs. 

2.6 Conclusion 

Overall, depth-independent photodynamic therapy offers broad potential in the 

treatment of cancer, with TiO2 based nanophotosensitizers having already shown in vivo 

promise. However, the material properties play a direct role in the efficacy of the 

treatment. Herein, we have elucidated key parameters in the design of TiO2-based 

nanophotosensitizers that refine both the ROS-generating and biodistribution necessary to 

enhance therapeutic effect in vitro. Future therapy studies in mouse models of cancer are 

ongoing to identify which of the two factors dominate therapeutic response. These design 

features include the use of cTds that contain significant numbers of surface defect sites 

that generate ROS, whether in anatase or amorphous form, and the use of smaller crystals 

(< 25 nm) with higher tumor accumulation, which should be incorporated into the future 

design of TiO2 photodynamic agents. 

  



 

32 

 

Chapter 3: Titanium Dioxide/Chromate Hole 

Injection 

Lane, Daniel D. et al. 2020. “Chromate-coated Titanium Dioxide Nanoaggregates Enhance Hole 
Injection and Intracellular Chromium Ion Delivery for Photosensitized-Radiation 
Stimulated Therapy” PLOSOne. (Under Review) 

3.1 Chapter Summary 

Electron injection via a sensitizer dye was recently investigated by our group to reduce 

TiO2’s dependence on oxygen for PDT.122 However, electron injection can only improve electron 

flux, a pathway shown to increase the energy level of molecular oxygen radicals. Here we show 

that TiO2/Cr(VI) particles can be generated for hole injection for hydrolysis. This absorption is 

concentration-dependent indicating surface equilibrium, binding 1.03 ug Cr(VI) per mg TiO2 at 

pH 5. However, at pH 5 the speciation of Cr(VI) shifts to dichromate which cannot provide ROS 

enhancement. This was confirmed by pH-based ROS investigation which shows enhancement 

only when above pH 7, when Cr(VI) exists as chromate. To preserve this ROS enhancement at 

biological pH, Tf was added to trap the chromate. While this did increase the retention rate of 

chromate, the ROS enhancement was only temporarily preserved and was unable to last through 

the longer oxygen testing. Finally, we describe a possible nano-scale chromate-based trap that 

can utilize chromate at biological pH.  
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3.2 Introduction 

Electron Injection 

Photo-activation of TiO2 generates excited electrons and holes which can react with molecular 

oxygen and water to from ROS (Figure 3-1). However, the specific ROS have differing energies 

and lifetimes, altering their damage patterns. 

 
Figure 0-1: TiO2 ROS generation pathways and their electron and/or hole requirements. 
A) Generation pathways for hydroxyl radicals and peroxides. B) Generation path for singlet oxygen. C) Sensitization of TiO2 
using N3 for increased conversion of peroxide to hydroxyl radicals via oxygen independent pathways. Image reprinted from 
collaboration work with R. Gilson et. al.122 

 

The ROS energy can be increased through multiple electron or hole reactions, with one such 

chain beginning with oxygen’s reduction to superoxide, a further reduction to peroxyl radicals 

before a final electron/hole catalyzed split to hydroxyl radicals. Normally, these additional 
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electrons/holes come from UV photogenerated excitons, but sensitizers can provide extra 

electron/hole flux.  

Sensitizers can inject photo-excited electrons into a material, a process that requires 

higher photo-energy than the conduction band edge of an acceptor material. PRaST compatible 

sensitizers must be able to: 1) bind the surface with geometry conducive to hole injection; 2) be 

photo-excited at Cherenkov radiation wavelengths (UV-C band); and 3) have sufficient excited 

hole potential to inject into TiO2’s valance band. Anatase TiO2 has a bandgap of 3.18 eV with 

maximum electron and hole potential of -0.52 and 2.53 V vs. SHE, respectively.70 The best 

known sensitizers for TiO2 electron injection are ruthenium-based polypyridyl dyes, such as 

Ruthenium Black or N3 Dye.123 Their combination of carbonyl conjugation to TiO2’s surface, 

multident binding, high photo-excited electron potential make them ideal for sensitization.  

 
Figure 0-2: Relative ROS generation rates in hypoxic conditions. 
A) hydroxyl radical B) hydrogen peroxide and C) singlet oxygen from TiO2 and TiO2-N3. This shows a shift away from 
hydrogen peroxide and towards higher energy hydroxyl radicals by the addition of N3.122 

 

These dyes also expand TiO2’s optical absorbance beyond 365 nm and into the visible spectrum, 

increasing solar efficiency.90 Recent work within our lab showed the ability of N3 to generate 
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higher energy hydroxyl radicals in oxygen depleted conditions (Figure 3-2). This was a shift 

away from lower energy peroxides and more efficient use of the low oxygen levels.  

Hole Injection 

While N3 increases ROS energy at low oxygen levels, it was still dependent on electron 

based, oxygen-dependent initiation.122 An alternative is to use TiO2 hole oxidation, which uses 

hydrolysis to generate ROS. Hole injection functions much like the intersystem crossing of 

electrons, though the sensitizer in question must now have a hole reduction potential higher than 

the valance band of TiO2. However, TiO2’s relatively large semiconductor bandgap and highly 

stable crystal structure results in a large valence band potential (2.27 V vs. SHE). Combined with 

the other requirements, only two molecules are able to perform hole injection, a ruthenium tri-

nuclear cluster, and chromate.124 

Chromate Reduction Potential and TiO2 Interaction 

Cr(VI) alone has a reduction potential of 0.55-0.6 vs. SHE for its conversion to Cr(V).125 

However, when suspended in water, CrO4
-2, Cr(VI) major species above pH 7, has increased 

reduction potential of 3.4 V vs. SHE.126 This ion, known as chromate, has peak absorption at 440 

nm with a second UV peak at 350 nm, allowing short wave sensitization typical of Cherenkov 

light. Finally, chromate is a tetrahedrally coordinated, multi-oxygen structure allowing both 

hydrogen bonding and Ti defect-ligand interactions. Combined, these factors make Cr(VI) the 

ideal candidate for hole sensitization of TiO2. 

Cr(VI) also exists in several other states in water depending upon pH and concentration 

(Figure 3-3A). These have been shown to affect the association to TiO2, both due to charge 
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repulsion differences when TiO2 passes through its isoelectric point (pH 6) as well as multiple 

oxygen interactions when binding dichromate.127,128  

 
Figure 0-3: Effect of pH on Cr(VI) structure in water. 
A) Cr(VI) state by pH in a 30 mM aqueous solution. Chromate being present above pH 6. B) The molecular structure of the 
various chromate states. C) Spectral data showing the shift in peak absorbance with speciation shifting from dichromate to 
chromate. A) Reprinted from Brito, F et al.(1997)129 
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3.3 Experimental Methods 

Materials 

Apo-Transferrin was purchased from Athens Research and Technology. All water was deionized 

to 18.2 MΩ resistance with a MilliQ Direct-Q3 water purification system. P25 TiO2, potassium 

dichromate (K2Cr2O7), sulfuric acid, Cr(VI) traceCERT ICP standard, diphenylcarbazide Cr(VI) 

assay kit, dichlorofluorescein diacetate (DCF-DA), NaOH, HCl, Tetraethyl orthosilicate (TEOS), 

titanium butoxide, hydroxypropyl cellulose (HPC), and 2-(N-morpholino)ethanesulfonic acid 

(MES) were all purchased from Sigma-Aldrich (St. Louis, MO, USA) without further 

purification. pH alterations were all carried out with 1N sodium hydroxide (NaOH) or 

hydrochloric acid (HCl).  

TiO2/Cr Adsorption 

TiO2 was prepared at 10 mg/mL in 2 mM potassium dichromate solution at pH 4.5-5 

unless otherwise specified. The solution was then placed in a bath sonicator for 10 min before 

transferring to a rocking table overnight at room temperature (r.t.). Excess dichromate was 

removed through centrifugation-washing at 10k relative centrifugal force (rcf) for 10 min before 

resuspending in water. After decanting, the vials were cooled to -80 °C before lyophilization on a 

Savant SpeedVac overnight. Samples were stored in the dark at r.t. and new stocks were made 

after 2 weeks to limit Cr(VI) to Cr(III) surface conversion.  

Transferrin was coated to TiO2/Cr particles according to the protocol by Kotagiri et al.51 

Briefly, Tf-TiO2/Cr was generated in water by dissolving a 3:1 mass ratio of Tf and TiO2/Cr. The 
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sample was then probe sonicated at 4 W until the temperature reached 50 ⁰C, followed by 

filtering through a 0.22 μm PES syringe filter.  

Cr Adsorption Quantification 

Adsorption efficiency was determined in several ways. First, the absorption spectra were 

investigated at 250 and 350 nm on a Beckman-Coulter 640 UV-Vis spectrophotometer (Brea, 

CA, USA). The change in supernatant absorbance after the 1st wash was used to quantify the 

absorbance against K2Cr2O7 standards. To eliminate possible chromium state change by TiO2, all 

chromium on purified particles was quantified via a PerkinElmer Elan DRCII ICP-MS 

(Waltham, MA, USA). TiO2/Cr samples were digested in sulfuric acid at 280 °C for 1 hr. If any 

residue remained within the vials, they were further heated to 320 °C for an additional 30 min. 

All vials were precleaned for 10 min at 320 ⁰C with sulfuric acid. The samples were then 

diluted to 1% sulfuric acid with water and run against Cr(VI) standards. 

Quantification of Cr(VI) ion concentration was performed with a Diphenylcarbazide 

based assay kit. All samples (250 µL) contained at least 1 mg/mL TiO2/Cr, which were then 

diluted with 50 µL of the combined assay and incubated for 20 min at r.t. TiO2 was then 

precipitated by centrifugation at 10k rcf for 10 min and the supernatant was tested at 480 nm in a 

96 well plate on a Biotage Neo2 plate reader (Uppsala, Sweden). 

Tf-TiO2/Cr Properties 
Particle size and surface potential were determined on a Malvern Zetasizer Nano-ZS 

(Malvern, UK) in PBS. Size measurements were confirmed with a JOEL JEM-1400Plus TEM 

(Peabody, MA , USA) at 120 kV on a formvar carbon grid (Ted Pella, Redding, CA, USA). To 

visualize protein coating on the Tf-TiO2/Cr NPs, the grids were further stained with uranyl 
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acetate at 2% in water, incubating for 3 min before washing to limit uranyl acetate 

recrystallization. Bandgap was determined using diffuse powder reflectance UV-vis 

spectroscopy (Horiba Fluorimeter and attached Quanta-ϕ integrating sphere, Kyoto, Japan). A 

Spectralon scattering blank was used to calibrate the sphere before dry powdered TiO2/Cr was 

run in a sample cup with a quartz coverslip, integration time 0.5 sec. 

ROS Quantification 

ROS production was measured by DCF-DA conversion and driven by a medium pressure 

365 nm center wavelength UV lamp. DCF-DA was activated to DCF by incubating 5.55 mM 

DCF-DA in DMSO with 1 N NaOH for 15 min (final concentration of 5mM). DCF was then 

added to all samples at 5 μM final concentration. Samples were run at 0.01 mg/mL of Tf-TiO2/Cr 

NPs in 96 well plates with 150 μL per well and arranged such that the average UV power was 1 

mW/cm2 for the activation duration. Sample readings were excited at 495 nm and emission was 

detected at 525 nm (20 nm slit window) every 80 seconds of UV exposure for 30 min. Results 

were reported as pseudo first-order rate constants. 

Anaerobic ROS Production  

ROS production was quantified using DCF as above in an oxygen-depleted glove 

chamber. Argon was used to decrease atmospheric O2 below 1% and the plate was rocked for 20 

min to reach equilibrium. Using a slit for the UV lamp, a row of wells was exposed to 0.7 

mW/cm2 for an allotted time. After exposure, the plate was removed and imaged on the plate 

reader. Experiments under normoxic conditions were also performed within the glove box, 

equilibrated to atmospheric oxygen. Oxygen levels were quantified via an Ocean Optics NeoFox 

sensor fitted with a FOSPOR probe (Orlando, FL, USA).  
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Silica Generation 

Silica NPs were generated following the Stöber method. Briefly, 2 g TEOS was added 

quickly to a solution of 30% ammonia (10mL), distilled water (11mL) and ethanol (75mL) under 

heavy stirring. This solution was left overnight at r.t. and the resulting silica particles were 

purified via centrifugation and washing with one round ethanol and two rounds di-water. The 

final powder was then lyophilized and stored at r.t. 

TiO2 Shell Formation 

TiO2 was coated onto the silica NPs via sol-gel coating. 10 mg/mL silica in anhydrous 

ethanol was dispersed well via sonication. To this was added dissolved HPC in water to a final 

concentration of 3 mg/L HPC and 0.5 M di-water. Titanium butoxide dissolved in ethanol at 0.6 

g/mL was added dropwise to the solution under heavy stirring over 1 hr, final concentration of 

57 mg/mL. The solution was then sealed and heated to 85 °C for 1.5 hr. The resulting TiO2-silica 

was then purified through centrifugation and washing with ethanol.  

Silica etching was done with 3 mg/mL resuspended particles in 50 mL di-water. The 

solution pH was raised to 12 and sonicated to homogeneity. The solution was then transferred 

into a pressure vessel which was then heated to 140 °C for 6 hr. After cooling the solution was 

purified via centrifugation against di-water. The final cores were imaged on TEM and size 

analyzed with Image-J. 

TiO2 Shell/Cr Coating  

TiO2 shells at 1 mg/mL were coated with pyridium chlorochromate at 50 mM. The pH 

was raised to >10 and mixed via stir bar overnight. The solution was then purified via multiple 

centrifugation-washes.  
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3.4 Results and Discussion 

Adsorption of Cr(VI) to TiO2 

Adsorption was investigated across a range of pH, sampling the major Cr(VI) states, 

namely dichromate, chromate, and chromic acid. Figure 3-4A shows the remaining percentage of 

a 2 mM chromate solution exposed to TiO2 at 10 mg/mL from pH 2.5-11.5. Low pH produced 

visibly yellowed TiO2 with direct measurement of the supernatant (controlled for changes in 

spectra) showing a Cr(VI) concentration loss of -6.3 ± 0.42 μmol K2Cr2O7/(g TiO2*pH Cr(VI). 

Biding was also linearly dependent on TiO2 concentration (Figure 3-4B). The standardized 

coating condition was then set to pH 5, corresponding to 1.00 ± 0.08 µg/mg TiO2 by ICP-MS.  

Diffuse reflectance spectroscopy (Figure 3-4C) shows a red shift in TiO2/Cr’s spectra in 

the range of 350-500 nm when freshly coated. The peak increase in absorbance occurred at 430 

nm suggesting dichromate adhesion, the major state of Cr(VI) at pH 5. Prolonged dark storage of 

TiO2/Cr showed a loss of this shoulder and shifting absorbance to 600 nm. This absorbance 

corresponds to Cr(III), a well-known conversion sought after in industrial waste catalysis.130 This 

conversion to Cr(III) is drastically increased by UV exposure (Figure 4-1A). Analysis of this 

coatings stability over time was carried out via diphenylcarbohydrazide assay which is selective 

for Cr(VI). TiO2 is known to have background catalytic activity without light activation and this 

generation seems to reduce Cr(VI) to Cr(III) over time. Cr(VI) levels decreased with increased 

storage time at a rate of 0.65 ± 0.03 % initial bound chromate per day. Using this information 

variations in the amount of chromate remaining on the particles was maintained within 10% by 

regenerating the particles every two weeks.  
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Figure 0-4: Coating of TiO2 with Cr(VI). 
A) The concentration removed from 2 mM K2Cr2O7 solution upon incubation at various pH against 10 mg/mL TiO2, indicating 
surface adsorbance. B) Change in 2 mM K2Cr2O7 absorbance upon addition of various amounts of TiO2, showing concentration 
dependence. C) Diffuse reflectance spectra of TiO2/Cr construct coated at pH 5 in powder mode. 

 

Tf-TiO2/Cr Solution Properties 

Coating with Tf increased particle stability with a hydrodynamic diameter of 209.2 ± 

6.71 nm and a PDI of 0.182 ± 0.016. This size parallels existing Tf-TiO2 formulation though has 

a radical shift in zeta potential from 20 ± 0.83 mV to -4.34 ± 0.732. This shift also shows an 

association of the chromate ions beyond electrostatic effects, pushing the zeta potential over 

neutral. Once filtered the final particle size is 169.3 ± 4.19 nm with a PDI of 0.092 ± 0.018 

(Figure 3-5A). TEM showed the particles mirror the NAG structure of Tf-TiO2, being 

monodisperse (178.4 ± 76.9 nm, Figure 3-5B) which improves when filtered (94.3 ± 8.73 nm, 
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Figure 3-5C). When stained with uranyl acetate (Figure 3-5E) Tf appeared as a coating, filling in 

the gaps within the NAG structure as well as on the surface ~5-10 nm in depth, indicating a 

monolayer (hydrodynamic diameter of Tf = 4-5 nm).131  

 
Figure 0-5: TiO2/Cr particle structure. 
A) DLS intensity distribution of Tf-TiO2 /Cr filtered and unfiltered. B) Representative TEM images of Tf-TiO2/Cr unfiltered. C) 
Representative TEM images of Tf-TiO2/Cr filtered. D) Zoom in view of Tf-TiO2/Cr unfiltered. E) Zoom in view of Tf-TiO2/Cr 
unfiltered, stained with uranyl acetate for Tf visualization. 
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ROS Generation from TiO2/Cr 

With a standardized particle generation method, the effect on ROS generation was 

investigated under UV light exposure. Chromate itself showed low DCF conversion (Figure 3-

6B) against UV light. Additionally, the standardized Tf-TiO2/Cr showed a slight decrease in 

ROS generation rate (Figure 3-6A) in both hypoxic and normoxic conditions. This is likely due 

to dichromate reduction to lower ionic states, consuming photo-excited electrons in non-ROS 

generating reaction. As the Cr(VI)/(V) and OII/I photo-excitation is the primary charge separation 

mechanism, it appears the bridging oxygen in dichromate lowers the energy of the photo-

generated hole. As mono-chromate had been proven an effective hole donor, the experiment was 

rerun from pH 3-10 without Tf and in excess Cr(VI). At pH 10 there was a clear increase in the 

ROS generation from TiO2/Cr, whereas the other conditions showed no statistical difference with 

bare TiO2 (Figure 3-6D). This suggested the ROS generation exists only from the mono-

chromate state. As indicated above, however, adsorption is limited to lower pH, where 

dichromate or chromic acid dominates 

To trap chromate to the surface of TiO2, Tf was coated onto the surface after a single spin 

centrifugation of pH 10 TiO2/Cr. Trapping showed increased ROS generation capacity of Tf-

TiO2/Cr relative to adding Tf before incubating against pH 10 chromate solution which would 

not sterically trap any chromate to the surface (Figure 3-6B).  
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Figure 0-6: ROS generation from TiO2/Cr. 
A) ROS generation by pH 5 coated TiO2/Cr in hypoxic and normoxic conditions. B) ROS generation rate of Tf-TiO2/Cr to 
compare trapping to TiO2 surface. C) Cartoon of hole donation energies from chromate into TiO2’s valence band. ROS 
generation by TiO2/Cr coated in excess chromate conditions by pH. D) The order of coating by chromate at pH 10 either before 
or after Tf coating is indicated by the order of names. 

 

While the coating of TiO2/Cr at pH 10 with Tf did improve the ROS generation it was 

found that this increase was unstable over time (not shown) making this impractical as a 

mechanism for the current iteration of TiO2/Cr. This made the generation of an alternative 

structure necessary to trap chromate.  

TiO2 Shell Synthesis 

The size of silica NP generated by the Ströber process was determined via TEM analysis 

to be 203 ± 3.65 nm (Figure 3-7A). These were then coated with TiO2 which increased the 
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particle size to 344.5 ± 6.8 nm (Figure 3-7C). When etched, the shells fused into mesoporous 

amorphous TiO2 with a shell thickness of 70 nm. The shells showed no apparent crystal structure 

via HR-TEM or electron diffraction measurements.  

 
Figure 0-7: TiO2 shell stepwise TEM. 
TEM images of each step of shell creation, A) Bare silica particles, B) TiO2 coated particles. C) TiO2 shells post silica etch. D) 
Chromate coated shell. Patches of increased contrast indicate areas of Cr addition. All images set to 100 nm scale bar. 

 

TiO2 Shell/Cr ROS Properties  

The adhesion of chromate was far lower for TiO2 Shell/Cr which remained optically 

white after full purification, as opposed to the yellowing of TiO2/Cr. This was also seen in the 

ROS generation which showed an initial ROS increase in excess chromate conditions, but this 

was stripped after purification. Additionally, the shells showed almost no ROS generation 
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themselves. This is primarily caused by a lack of calcination and any cohesive crystal structure. 

Without calcining the shells exist as an agglomerate of 3 nm average TiO2 cTds which suffer 

heavily from quantum confinement, limiting their activation.  

 
Figure 0-8: ROS generation from TiO2 shell/Cr particles. 
Cr coating was done at pH 10 followed by centrifugation purification. The number of spins is denoted by S#. 25nm TiO2 controls 
included for reference.  
 

3.5 Conclusion 

The generation of Tf-TiO2/Cr particles was successfully standardized, forming 

structurally similar NAGs to those generated for initial PRaST invesitgation. However, the 

ability of these particles to improve the oxygen dependence in biologically relevant pH appears 

limited. Adhesion of Cr(VI) to the surface of the particles is severely limited at circulation pH 

(7.4) and the stability of Tf trapped chromate at that pH. Generation of the shell structure shows 

promise but requires investigation of calcination effects on both chromate and shell structure. 

Should chromate trapping can be achieved, however, it will provide an effective sensitizer for 

TiO2 phototherapy.  
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Chapter 4: TiO2/Cr State Change Therapy 

4.1 Chapter Summary 

Metallo-therapies are an effective method for cancer treatment, utilizing compounds from 

cisplatin to arsenic trioxide.132,133 The development and coating characteristics of TiO2/Cr, 

though unable to directly enhance ROS at biological pH, does provide a major avenue for Cr(VI) 

delivery. As Cr(VI)’s cellular toxicity mechanism stems from ROS generation, its combination 

with PRaST can further imbalance cellular redox.134 Here we show TiO2/Cr has a release profile 

of 1 hrs in sink conditions and 4 hrs in cell culture. Experimental investigation of Tf-TiO2/Cr 

against cell culture shows enhanced toxicity relative to free Cr(VI) (LC50 0.0173 µg/mL v 11 

µg/mL135), suggesting improved cellular uptake of Cr(VI) as TiO2 alone shows no toxicity within 

this range. Finally, mouse PRaST studies show a 60 % reduction in tumor size compared to no 

radiation controls. 

4.2 Introduction 

Cr(VI) Metabolism and Toxicity  

Cr(VI) species is a well-known carcinogen within mammalian cells, with evidence of 

DNA chelation and ROS production.136 Cr(VI)’s toxicity stems from its high solubility in water 

and cellular permeability, passing through the mixed anion transporter.137 Once there it reacts 

quickly with cellular anti-oxidants, namely glutathione and ascorbate (vitamin C), on the order of 

8 min to total reduction of Cr(VI).138 The reduction generates Cr(V), a unstable state, detected 

through electron paramagnetic resonance and known for its Fenton-like reaction, catalytically 
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splitting peroxides to hydroxyl and peroxyl radicals.139 This reaction generates a large amount of 

ROS in the vicinity of the mitochondria, activating ROS-initiated P53 signaling pathways.140 In 

addition, this eventually produces Cr(III) which is known to chelate DNA.138  

TiO2 Photocatalytic Cr(VI) Conversion 

The reduction of Cr(VI) by TiO2 is a well-studied mechanism used to purify wastewater 

from industrial processing.141–143 Under heavy irradiation this rapidly converts Cr(VI) to Cr(III) 

which then is precipitated from solution as Cr(III)(OH)x at pH 7. We seek to use this conversion 

to deliver and generate Cr(V) to cells to supplement existing PRaST.  

4.3 Experimental Methods 

Stock TiO2/Cr Generation 

TiO2/Cr generation was standardized from results in chapter 3. Briefly, pH 4.5-5 aqueous 

solution with 10 mg/mL P25 TiO2 and 2 mM potassium dichromate was probe sonicated for 10 

min on ice at 4 watts before transferring to a rocking table for an additional hour. Excess 

dichromate was removed through centrifugation. The TiO2/Cr was then lyophilized on a Savant 

SpeedVac overnight before weighing and storage. Samples were stored in the dark at r.t. and 

stocks were replenished every 2 weeks.  

Cr(VI) to Cr(III) conversion 

Direct confirmation of chromium conversion was evaluated through a closed reactor 

design. 1 mg/mL TiO2/Cr in PBS (pH 7.1) was placed in a 100 mL beaker with a 9 W medium 

pressure UV lamp (Coospider Sun JUP-01), positioned centrally within the liquid. The solution 

pH was adjusted to 2 to prevent Cr(III) precipitation. The solution was then homogenized and 
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stirred for 24 hr. Reactor aliquots were taken, washed via centrifugation and UV-vis spectra were 

recorded. The solution pH was then increased to 10, precipitating Cr(III) to its hydroxide form, 

normally present at pH 7.4. The reactor was then UV stimulated for another 24 hrs and samples 

were tested the same way as above. The decrease of the chromate feature peak at 350 nm and the 

appearance of the Cr(III) feature peak at 580 nm from the sample solutions were quantified. 

The pH conversion rate over Tf-TiO2/Cr particles was confirmed using a 10 mg/mL 

solution of the standard TiO2/Cr in MES or PBS buffer from 5-7.5 pH. These solutions were 

placed in 2 mL microcentrifuge tubes and exposed to a 365 nm UV light (1 mW/cm2) for 30 min. 

Cr(VI) conversion was then verified through the Cr(VI) assay kit. 

TiO2/Cr Sink Release  

Cr(VI)’s adsorption stability was quantified via dialysis against 1L PBS. 10 mg/mL 

TiO2/Cr was placed in a 3,500 MW cutoff SnakeSkin Dialysis membrane (Thermo-Fischer 

Scientific, Waltham, MA, USA). The first 200 μL samples were taken after 10 min and then 

every hour for 8 hours. The Cr(VI) concentration was confirmed with Cr(VI) assay kit.  

In Vitro TiO2/Cr Toxicity and Stability 

In vitro cellular studies were performed on HT1080 fibrosarcoma cells. Cells were 

cultured at 5% CO2 within a 37 °C humidified incubator. All studies were performed in 24 well 

clear corning plates, seeding 25,000 cells per well in 800 μL of DMEM supplemented with 10% 

fetal bovine serum, L-glutamine (2 mM), penicillin (100 units/ml) and streptomycin (100 µg/ml). 

Tf-TiO2/Cr was generated as previously described and added to cell plates from PBS stocks at 1 

mg/mL. Cells were given at least 12 hours to attach before a concentration dose response curve 

was generated from 0-100 μg/mL. Total incubation time of Tf-TiO2/Cr in culture was 2.5 days 
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before survival was determined using Promega AQueous One Cell Proliferation Assay (MTS). 

To avoid scattering effects on the colorimetric assay, the plate was hand agitated and the 

particles removed from the well, followed by backfilling with 800 μL PBS and 60 μL MTS assay 

in each well. The assay was incubated for 30 min before 200 μL was transferred to a 96 well 

plate and measured on a Biotage Neo plate reader at 480 nm. 

 Cr(VI) release toxicity was quantified from a 100 μg/mL Tf-TiO2/Cr sample, and cells 

were cultured in the same way as described above. After incubating for the desired time, the 

plates were shaken to re-suspend any settled particles and the media was removed. 800 μL of 

fresh media was added to replace removed volume in the well, and total incubation time was 2.5 

days. 

In Vivo Tumor Therapy 

All studies were conducted in compliance with Washington University Animal Welfare 

Committee’s requirements for the care and use of laboratory animals in research. Lewis Lung 

Carcinoma (LLC) cells were implanted subcutaneously into the flank of FOX Chase SCID Beige 

mice at a concentration of 1 x 106 cells per tumor. Once the tumors became palpable, the tumor 

size was measured before they were injected with 30 μL of Tf-TiO2/Cr or Tf-TiO2 at 1 mg/mL 

intratumorally. For radiation treatment, 24 hrs post particle injection a dose of 31 MBq of FDG 

in 85 µL was intraperitoneally injected after 6 hrs of fasting. Along with controls, 5 treatment 

groups were evaluated (n = 4/group): (1) untreated controls, (2) Tf-TiO2/Cr alone, (3) Tf-TiO2 

alone, (4) Tf-TiO2/Cr + FDG, and (5) Tf-TiO2 + FDG. The mouse weight and any physical signs 

for distress were monitored closely, and mice were euthanized by cervical dislocation after 

anesthesia with 5% isoflurane when the tumor size reached 2 cm.  



 

52 

 

4.4 Results and Discussion 

Cr(VI)->Cr(III) Conversion 

Evidence of TiO2/Cr reduction of Cr(VI) to Cr(III) was present in the diffuse reflectance 

spectra of long stored TiO2/Cr stocks (Figure 3-4A). However, this represented passive 

conversion at a timescale beyond that of any therapy. To confirm active conversion a closed 

batch reactor with excess Cr(VI) was tested against TiO2. The pH was lowered to pH 2, 

facilitating strong TiO2/Cr binding as well as limiting Cr(III) precipitation. 24 hrs exposure 

showed a 90 % reduction in Cr(VI) signal and the emergence of a Cr(III) peak at 550 nm (Figure 

4-1A). To test for the regeneration of Cr(III)(OH)3 to chromate the reactor pH was adjusted to 10 

before again treating the reactor for 24 hrs. This returned the level of Cr(VI) to 25% initial values 

and indicated reactions in both directions take place on TiO2. To confirm Cr(VI) can be reduced 

from the TiO2/Cr NAGs at biological pH, the Cr(VI) conversion was tested at 5.5-7.5 with MES 

and PBS buffer (Figure 4-1B). This showed conversion was independent of pH but did appear to 

change with buffer. Spectral analysis of the supernatant showed no visible Cr(III) signal, 

however, meaning most of the chromium was likely in Cr(V) or Cr(IV) state which are Fenton-

like reagents. The independence of conversion rate on pH is likely due to pre-adsorption of 

Cr(VI), removing binding affinity as a factor in solution for Cr(VI) conversion. The choice of 

buffer did affect the conversion rate, however, due to a combination of the increased UV 

absorption by MES and possible ROS quenching by MES’s tertiary amine. 



 

53 

 

 

Figure 0-1: Chromium conversion from Cr(VI) to Cr(III). 
A) Spectra of batch reactor conversion of Cr(VI) to Cr(III) (green) at pH 2 followed by recovery of Cr(VI) at pH 10 (blue). Insert 
is the remaining Cr(VI) concentration after each reaction. B) Cr(VI) conversion from TiO2/Cr in 2 different buffers, MES and 
PBS, at various pH Reported as % initial values. **P < 0.01. 

Chromate Shedding and Cellular toxicity 

With effective UV conversion of Cr(VI) to reactive lower states, TiO2/Cr particles 

unstimulated release rate and toxicity was investigated. Using dialysis against PBS of the 

standardized TiO2/Cr coating, the release half-life was 1.04 ± 0.06 hrs vs. 0.19 ± 0.01 hrs for 

Cr(VI) alone. As this is in sink conditions, we postulated this rate would be slowed in cell culture 

when in the full Tf-TiO2/Cr formulation, both due to steric trapping as indicated in the ROS 

experiments and the lower volume of culture.  

As Cr(VI) is a known toxin, the cellular response had to be verified before any in vivo 

toxicity/PRaST experimentation. HT1080-RFP cells were stressed against Tf-TiO2/Cr at 100 

µg/mL, the concentration often used for cellular PRaST, with significant killing observed. As a 

result, a dosing ladder was used to find the ideal range for Tf-TiO2/Cr in cell culture. The EC50 
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value for Tf-TiO2/Cr was 17.3 ± 0.62 µg/mL (Figure 4-2C), while Tf-TiO2 showed no toxicity 

up to 1000 µg/mL, as previously reported.51 Interestingly, potassium dichromate solution at 34 

μM was required to reach the same toxicity as 0.34 μM on Tf-TiO2/Cr. This suggests Tf-TiO2/Cr 

conjugated drastically increase the toxicity of the released chromate. This is possibly driven by 

intracellular trafficking of the Cr(VI) through the transferrin receptor or dark catalytic conversion 

to unstable Fenton-like reagents Cr(V) and Cr(IV) by TiO2.  

 
Figure 0-2: Cr(VI) release rate and toxicity for TiO2/Cr. 
A) Diagram for equilibrium stability of chromate on TiO2. B) Release rate of Cr(VI) from TiO2/Cr against sink dialysis 
conditions. Included for comparison are free Cr(VI) and bare TiO2. Decay fits are indicated by dotted lines and are source of half-
life parameter. C) Dose response curves for TiO2/Cr against HT1080 cells. D) Incubation time response curve for TiO2/Cr. 
Response determined through sigmoidal fit (green dashed line). 
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To test if this enhanced toxicity was related to the release of the chromate, an incubation 

time series was run using 100 µg/mL Tf-TiO2/Cr. This showed that an incubation time of 4.094 

± 0.22 hrs led to 50% cell death (Figure 4-2D). Previous investigations against chromate in cell 

culture have shown the reduction time for chromate intracellularly to be ~8.5 min.132,138 

Additionally, these studies showed full reduction effects in viability before 3 hr. There reports 

indicate the lag in toxicity is driven by the Tf-TiO2/Cr NAGs themselves.  

In Vivo Tf-TiO2/Cr PRaST 

Further investigation of the effect of Cr(VI) toxicity on PRaST was carried out in vivo in 

an aggressive LLC subcutaneous mouse model. TiO2 samples were administered via intratumoral 

injection to limit the effect of non-specific liver uptake and potential chromate toxicity for the 

initial study. FDG (31 MBq) was systemically administered 24 hrs after particle injection and the 

tumor size tracked via caliper (Fig 6). Tf-TiO2/Cr showed substantial tumor growth inhibition 

both with (10% control, p=0.0005) and without (24% control, p=0.046) FDG treatment two days 

after injection. This is relative to Tf-TiO2 with a single dose of FDG producing no significant 

difference relative to control. This tumor suppression persisted beyond the 24 hrs, after FDG 

decay. While the increased tumor suppression of Tf-TiO2/Cr with or without FDG was not 

statistically significant, optimization of the dosage regimen or use of a longer-lived beta emitter 

could improve the efficacy of treatment response by PRaST. Systemic toxicity outside of the 

tumor region was negligible with no statistical decrease in tracked weight showed over the time 

of study (Figure 4-3B). This was expected as the dose of Cr(VI) is well below toxicity limit in 

mice and rats.144 Further investigation of toxicity will be required, focusing on alterations in 

TiO2/Cr trafficking relative to free Cr(VI), especially in the liver. While the increased tumor 
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suppression of Tf-TiO2/Cr with or without FDG was not statistically significant, the combination 

of Tf-TiO2/Cr and FDG did provide the largest suppression of any treatment, and future higher-

powered studies with an optimized dosage regimen using a longer-lived beta emitter could 

improve the efficacy of treatment response by PRaST.  

 
Figure 0-3: Tf-TiO2/Cr PRaST of LLC flank tumors. 
A) In vivo PRaST through one-time intratumoral injection of NAG and FDG in LLC-tumor-bearing FOX Chase mice. Values are 
mean ± SEM. (n=4 mice per group). # = Sacrificed mice due to tumor burden. B) Mouse body weight.  
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4.5 Conclusion 

Overall, Tf-TiO2/Cr shows increased toxicity against cells relative to an equivalent 

concentration of free Cr(VI) indicating a targeting effect which increases the therapeutic 

window. This increased toxicity is supplemented by timed release within the uptake time of Tf-

TiO2 in tumor tissue. Combined this indicates possible compatibility with systemic therapy with 

a mechanism that mimics current NP formulations of cisplatin. Finally, initial mouse data 

indicates an enhanced tumor suppression both from Tf-TiO2/Cr alone and with 18FDG. 

Combined these factors make TiO2/Cr a prime candidate for enhanced PRaST therapy. 
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Chapter 5: Perfluorinated Polymer for 

Oxygen Delivery and Photosensitization 

5.1 Chapter Summary 

Existing TiO2 PDT loses ~ 30 % of ROS generation ability when at 3 % atmospheric 

oxygen, this level of hypoxia being common in solid tumors.4 Existing PDT has partially 

overcome this by directly delivering oxygen to tumors through hyperoxia gas therapy, ultrasound 

stimulated microbubbles, or through perfluorinated nanosystems. We sought to combine direct 

oxygen delivery with TiO2 PRaST through a polymeric perfluorocarbon system. Utilizing a 

radical addition fragmentation chain transfer (RAFT) polymer we stabilized a perfluorooctyl 

bromide (PFOB) nanoemulsion. This structure allows for facile modification through 

hydroxyethyl methacrylate groups by click or carbodiimide chemistry conjugation, radionuclide 

chelation and fluorescent imaging. Investigation of the ideal perfluorocarbon modification ratio 

on 9000 MW mPEGMA-HEMA backbone showed 40 % weight (wt) modification generated 

stable particles with a 20 nm diameter and 0.3 PDI. With this as a guide, two formulations of 2:1 

ratio PerfMA:mPEGMA polymers were generated, the first a single pot statistical copolymer 

PerfMA54-co-PEGMA45 and a two-step blocking of mPEGMA31-b-PerfMA69. The blocking 

produced a more stable PFC nanoemulsion with a final extruded size of 155.9 nm (PDI 0.253) 

construct with 20% by wt PFOB filler. Additionally, the particle was able to incorporate cypate 

at 26 μM for in vivo tracking. A 5 mg/mL solution of the emulsion delivered an additional 3% 
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oxygen per mL, relative to water. In vivo MSOT imaging showed a 20 % increase in hemoglobin 

O2 saturation 4 hrs post-injection. No change was seen in cypate regions of a PFOB free sham.  

5.2 Introduction 

Polymer Nanoparticles  

Polymeric NP’s flexibility has made them a staple across several scientific fields.145,146 

The most notable advantage being the ability to generate biodegradable structures that increase 

biocompatibility relative to “hard” systems like gold or semiconducting NPs. Additionally, facile 

modification through carbodiimide and click reactions allow multi-targeting and drug carrying 

capacity.147 From drug delivery to imaging to extra-cellular media mimicry, organic polymers 

can play a variety of roles and have a significant story in the 3rd generation of photosensitizers.148 

For our work, we focus on PFC modification.  

Perfluorocarbon Oxygen Carrying 

As stated previously, PDT efficiency drops in low cellular oxygen environments, most 

notably that of hypoxic tumor cores. To overcome this deficiency many different systems have 

been applied, from hyperoxia gas therapy to sequestered oxygen particles, each showing their 

own disadvantages.149–151 PFCs are one such system found to dissolve large amounts of oxygen 

due to their self-avidity and high electro-negativity.152 Due to these factors they have been 

heavily investigated as a blood substitute, eventually generating FDA approved Fluosol and 

Oxygent as synthetic emergency blood fillers.153 PFC particles have shown the ability to improve 

tumor oxygenation due to their increased oxygen solubility.154 Additionally, oxygen 
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normalization decreases metastasis rate from tumor tissues.155–157 These properties make PFC 

ideal for increasing PS efficiency in depleted oxygen environments.158  

 
 

Figure 0-1: Depiction of an oil-in-water nanoemulsion. 

 

RAFT Chemistry 

To generate stable nanoscale formulations, the components themselves must be well 

controlled and characterized. RAFT polymerization offers fine control of chain length and 

composition through living radical polymerization.159–161 The chemistry is based on a radical 

stabilizing, chain transfer agent (CTA) that kinetically controls growing polymer backbones, 

providing even chain growth and leaving a reactivatable end group for additional 

polymerization.145 In the case of PFCs, RAFT is one of the most economical methods for 

generating well-defined polymers.162  
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5.3 Experimental Methods 

Materials 

Our lab synthesized (E)-3-perfluoroalkoxy acrylic acid (XPAA). All Materials were 

purchased from Sigma-Aldrich unless otherwise stated. Abbreviations: Perfluorooctyl 

methacrylate (PerfMA). Methyl-(polyethylene glycol) Methacrylate (MW 950) (mPEGMA). 

Hydroxyethyl Metacrylate (HEMA). Diisopropyl carbodiimide (DIC), 4-Dimethylaminopyridine 

(DMAP). 4,4’-azobis(4-cyanovaleric acid) (ABCVA). 4-cyano-4-(phenylcarbonothioylthio) 

pentanoic acid (CTP). Perfluoroocytl bromide (PFOB). Perfluoro-15-crown-5 ether (CE). 

 
 
Figure 0-2: Molecular components of polymer structures. 
Left) The final polymer structure for mPEGMA-b-PerfMA. Right) HEMA monomer for DIC chemistry linkages and XPAA, the 
linked PFC for initial wt % testing. 
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RAFT Synthesis of mPEGMA5-co-HEMA28 

Initial backbone synthesis targeted a 30% mPEGMA, 70% HEMA. Synthesis was carried 

out in a 20 mL round bottom flask following work done by Lane et al.160 Briefly, polymerization 

was carried out assuming 80% monomer conversion with a 4:1 CTA/initiator ratio targeting a 

total degree of polymerization (DP) of 20. 1.8 g mPEGMA, 0.059 g CTP and 1.1 g HEMA were 

dissolved in a 15 mL flask in 11 mL 1,4-dioxane (Fischer Scientific). Then 0.019 g ABCVA was 

added and dissolved. Oxygen was removed through freeze-vacuum-thaw cycling 3x followed by 

10 min of argon purge. Polymerization was carried out on a temperature-controlled oil bath at 85 

⁰C for 24 hrs. The reaction was then placed on ice and oxygen quenched before being purified 

against chilled DEE via precipitation/centrifugation. The minimum volume of acetone was used 

to resuspend the polymer between each wash (~1 mL).  

The final composition of the polymer was confirmed in d-DMSO by proton NMR. 

Monomer conversion was determined by vinyl signal (2H – 6-5.8 ppm, 2H – 5.5-5.3 ppm, 

depending upon monomer). HEMA vs. mPEGMA composition was examined through ratio of 

PEG chain (86H – 3.45 ppm) and backbone peaks (5H – 0.85-1.4 ppm). Living chain end 

preservation and total monomer ratio was defined from the CTP phenolic protons (1H - 7.65 

ppm, 2H - 7.485, 7.9 ppm). CTA preservation was confirmed via UV-vis at 520 nm.  

Grafting XPAA to mPEGMA-co-HEMA via DIC Chemistry  

The mPEGMA5-co-HEMA28 was modified by DIC chemistry to XPAA. XPAA was 

weighed and dissolved in DCM assuming 100% reaction conversion. ~1 mg DMAP as a catalyst 

before a stock solution of 60 mg/mL mPEGMA5-co-HEMA28 was added and vortexed to 
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homogeneity. The solutions were then well mixed for 5 min before the addition of DIC at a 1:1 

molar ratio to XPAA. This was then placed on a shaker and incubated overnight.  

Purification was done with ice cold DEE as above. 1H NMR of purified stocks confirmed 

XPAA modification fraction through the alkane protons (2H - 7.54, 2H - 5.25) against the CTP 

chain ends (1H - 7.79, 1H - 8.28) (Figure 5-4). 

DLS was run in PBS from ethanol stocks targeting 1 mg/mL polymer in solution and <5 

% ethanol. Critical micellular concentration (CMC) was confirmed with rhodamine 6G 

sequestration in PBS, comparing both absorbance and fluorescence fits. 

PERFMA-co/b-mPEGMA Polymerization 

2:1 PerfMA/mPEGMA ratio chains were generated in two separate structures. PerfMA-

co-mPEGMA was performed in single pot, targeting a DP of 100, 80 % monomer conversion, 

CTA/I ratio of 4, and 20 wt % monomer in dioxane. PerfMA-b-mPEGMA was generated 

through a 2-step process, first synthesizing a mPEGMA macro-CTA with the same solution 

parameters above but targeting DP of 30. NMR was used to verify chain length and then PerfMA 

was used to extend the chain, targeting a DP of 60. Final polymer chain lengths and monomer 

ratios were verified by NMR. Structural imaging was done via TEM using 3% uranyl acetate to 

stain the polymer.  

Nanoemulsion Stability 

PFOB was encapsulated by the polymer through mixing with ethanol mPEGMA-b-

PerfMA stock at 50 mg/mL. The solution was well mixed before being injected into an aqueous 

solution and probe sonicated at 4 W for 5 min on ice. The resulting particles were sized by DLS. 
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Further narrowing of particle distribution was done via different sizes of NanoSizer MINI 

extruder (T&T Scientific). Sonicated particles were placed in a 2 mL syringe and passed 5x 

through the extrusion membrane at r.t. via hand pressure.  

Cypate, a NIR fluorescent dye (760 ex/830 em), was loaded into the emulsion for 

fluorescent tracking at 50 µg/mL and run through the emulsion stabilization process above. 

Incorporation was determined via UV-vis. Stability of the cypate incorporation was determined 

by dialysis against PBS using a 3,500 MW cutoff SnakeSkin Membrane (Fischer Scientific).  

Oxygen Delivery  

All oxygen delivery tests were run against 20 wt % PFOB mPEGMA-b-PerfMA 

nanoemulsions. Oxygen concentration was determined with an Ocean Optics (now Ocean 

Insight) Neofox oxygen sensor fitted with a FOSPOR probe. Calibration was run against pure 

argon, pure oxygen, and atmospheric oxygen. Oxygen delivery into solution was tracked in a 

sealed 10 mL round bottom flask that had been purged with argon via bubbling for 10 min pre-

injection of either the nanoemulsion or water. The nanoemulsion or water had oxygen loaded by 

bubbling for >1 hrs with pure oxygen. Injections were of 1 mL added rapidly and the oxygen 

tension within the round bottom tracked. After equilibration of oxygen in solution, the 

nanoemulsion was further destabilized via bath sonication and the O2 level tracked.  

MSOT Oxygenation Imaging  

HT1080 xenograft subcutaneous tumors were implanted into the flank of Athymic NCr 

nude mice. Tumors were implanted with 10k cells per injection and were grown to 2 cm before 

the start of experimentation. Imaging was done via iTheraMedical inVision MSOT imager over a 

full spectral sweep from 680-980 nm. Imaging was done pre-injection, and 2, 4, 24 hrs post-
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injection. Injections were 200 μL i.v. of either PerfMA-b-mPEGMA cypate with or without 20 % 

PFOB.  

Analysis was done on inVision’s proprietary software when images were extracted from 

slices within known tumor boundaries. Oxy/Deoxy-Hemoglobin ratios were determined against 

known cypate signal areas within MATLAB on a pixel by pixel basis and converted into oxygen 

saturation values. Selections also excluded any regions that had no signal on any of the channels. 

All analyses were then plotted by histogram for timepoint comparison.  

5.4 Results 

mPEGMA-co-HEMA Characterization and Functionalization 

Post purification the polymer composition was confirmed via NMR (Figure 5-4). The 

resulting monomer per chain of 5 units mPEGMA and 28 units HEMA provided a large range of 

possible modification with XPAA. Modification was carried out from 0-60 wt%, confirmed via 

NMR. DLS measurements of the different XPAA modifications showed the highest stability at a 

2:1 PFC to PEG mass ratio with a micellular size of 22.9 nm and PDI of 0.2 by DLS. As this size 

of mPEGMA(950)5-co-HEMA19-g-XPAA9 was ideal for future study, its micellular structure was 

confirmed via CMC using rhodamine 6G. Both absorbance (CMCA = 0.017 ± 0.004 mg/mL) and 

fluorescence (CMCF = 0.012 ± 0.003 mg/mL) averaged to a CMC of 0.0144 mg/mL.  
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Figure 0-3: Characterization of mPEGMA-HEMA and mPEGMA-co-HEMA-g-XPAA. 
Bottom) mPEGMA5-co-HEMA28 NMR spectra shows the characteristic peaks from CTP’s aromatic ring c1-3 and main PEG peak, 
a, for quantification. The top) spectra is mPEGMA5-co-HEMA19-g-XPAA9, quantified against the high resonance alkane protons 
g and f.  

 
Figure 0-4: Rhodamine 6G CMC determination of mPEGMA5-co-HEMA19-g-XPAA9. 
Determination done against both A) absorbance and B) fluorescence. Linear fits imaged as straight lines and intersection taken as 
CMC concentration. 
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PerfMA-mPEGMA Synthesis and Characterization 

With a ratio of 2:1 PFC to PEG for micelle generation selected, synthesis switched to a 

PerfMA monomer, reducing reaction complexity. First, a statistical copolymer was investigated 

as it provided a single pot reaction. Additionally, the rate of homo-addition for PerfMA should 

be far higher the hetero-addition to mPEGMA, generating a gradient copolymer with distinct 

domains. To increase the domain separation, a DP of 100 was chosen and NMR analysis 

confirmed a final polymer composition of mPEGMA46-co-PerfMA54. However, PFOB 

encapsulation studies showed unstable emulsion, requiring investigation of the nanostructure by 

TEM. Uranyl acetate staining reveled phase separated aggregates without a clear PFC domain 

(Figure 5-6A). To increase the domain separation, a second polymer was generated in a block 

structure, which, after two pot synthesis, yielded mPEGMA31-b-PerfMA69 by NMR. This was 

investigated by TEM which showed well defined micellular structures (Figure 5-6B) and gave 

stable PFOB emulsions.  

 
Figure 0-5: Uranyl acetate stained A) mPEGMA-co-PerfMA and B) mPEGMA-b-PerfMA. 
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As several fillers can be used for perfluorinated emulsions, two of the current gold 

standards were selected for testing, CE and PFOB. CE can be easily imaged by 19F MRI but has 

a slightly lower oxygen carrying capacity relative to PFOB origin. Both were incorporated into 

the mPEGMA31-b-PerfMA69 at 20% by volume and analyzed by DLS. The CE showed limited 

stability with a 10% upward trend in particle size over 30 min, averaging 120.6 ± 32.90 nm and a 

PDI of 0.435 ± 0.07 (Figure 5-7B). The PFOB showed stability at 68.12 ± 0.35 nm and a PDI of 

0.142 ± 0.01, with a slight decrease in size of 5% over 30 min.  

 
Figure 0-6: Perfluorocarbon nanoemulsion size optimization.  
A) mPEGMA5-co-HEMA28-g-XPAAx DLS measurements against the mass fraction of PFC. B) Histogram fit of intensity vs size 
by DLS for mPEGMA31-b-PerfMA69 emulsions of either PFOB or CE. C) mPEGMA31-b-PerfMA69 emulsions of different 
quantities of PFOB. D) Extruded sizes of mPEGMA31-b-PerfMA69 20 % PFOB emulsions using different extruder filters. 

 
With evidence of stable emulsions, the final size was refined via extrusion. Three 

separate filter sizes were tested, 200, 100 and 50 nm (Figure 5-7D). 50 nm extruder showed low 

particle yield, slow purification, and final particle sizes near 100 nm. The 200 nm extruder 
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showed no benefits to PDI. 100 nm showed improvement of PDI for 0.4 to 0.2 while reducing 

the average particle size to 155.9 nm. 

Cypate Incorporation for in vivo Tracking 

To track the nanoemulsions in vivo the NIR dye cypate was added at 50 µg/mL. UV-vis 

post purification revealed a final cypate concentration of 5.5 µg/mL in the emulsion and 4.79 

µg/mL in the polymer micelle alone at 1 mg/mL mPEGMA-b-PerfMA. The emulsions 

encapsulation was then tested for stability against PBS dialysis. The initial results show a burst 

release of cypate which stabilized at 76 % initial value, representing a final stable formulation of 

4.18 µg/mL cypate in a 5 mg/mL polymer weight emulsion.  

MSOT Oxygen and Particle Tracking 

Oxygen delivery was confirmed in deoxygenated water using a ruthenium, lifetime-based 

oxygen probe. Comparing the O2 change of a 1 mL injection of oxygenated 5 mg/mL polymer 20 

wt % PFOB emulsion vs oxygenated water the emulsion was able to increase O2 levels by an 

additional 3%, representing a 1.21 g oxygen/mol solubility increase over water (Figure 5-8A).  

 
Figure 0-7: Dissolved oxygen delivery by PFOB nanoemulsion. 
 A) Oxygen saturation change by injecting oxygenated water or 20 wt% PFOB nanoemulsion at 5 mg/mL polymer. B) Sonication 
of water alone or nanoemulsion. Destabilization by sonication of the emulsion shows release of sequestered oxygen. 
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With oxygen carrying capacity confirmed, the nanoemulsion was run in a pilot study 

against HT-1080 xenograft tumors. These were grown to 2 cm to generate hypoxic regions and 

provide sufficient volume for MSOT imaging. Oxygenated mPEGMA-b-PerfMA/cypate with 

and without PFOB filler were injected. Image slices within the tumor boundaries were selected 

and the areas of hemoglobin signal were colocalized with cypate. Figure 5-9A shows the 

delineation of particle containing regions. The oxy/deoxy hemoglobin signal was extracted, and 

oxygen saturation calculated pixel-by-pixel. The oxygen saturation increased from 40 to 57 % in 

the first hour (Figure 5-9B). This increased further at 4 hrs to 62 % before returning to 43% at 24 

hr. This is compared to no change seen over the 24-hour period (Figure 5-9D) using only 

oxygenated polymer micelles as control.  
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Figure 0-8: MSOT imaging of cypate and hemoglobin. 
Mice injected with oxygenated A) nanoemulsion at 4 hour and C) unloaded polymer micelle at each time point loaded with 
cypate. The selected area was aligned across each time point (pre, 2, 4, 24 hr) and analyzed for oxygen saturation. The histograms 
for the B) nanoemulsion and D) micelle were shown with the saturation mean shifts indicated with arrows. 
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5.5 Conclusion 

Here we investigated the ideal parameters for generating stable PFC emulsions for 

oxygen delivery in vivo. Grafting studies showed a 2:1 ratio of PFC to PEG generates a stable 

nanoemulsion with a PFOB filler. While the PFC polymer micelle did not increase oxygen 

delivery, forming a PFOB emulsion increased the oxygen solubility 30 % over water. The 

nanoemulsion’s ability to deliver dissolved oxygen to tumor tissue was then confirmed by 

MSOT imaging. Combining this system with TiO2 via co-delivery and/or direct linking of the 

nanoemulsion via chelating groups should provide direct enhancement for PRaST.  

  



 

73 

 

Chapter 6: Conclusions on Nanoscale PRaST 

Enhancement  

PRaST has proven effective in reducing tumor burden and stimulating immune response. 

Our work within this dissertation expands the future impact of PRaST within the clinical domain. 

Refinement of TiO2 physical parameters and their effects on ROS generation and biodistribution 

show an interplay at sub-25 nm cTd. Additionally, the apparent increase in hydroxyl yield within 

quantum confined TiO2 may be a method for further reducing oxygen dependence of PRaST. 

Investigation of TiO2/Cr resulted in effective metallo-therapy, both alone and when 

combined with PRaST, able to increase ROS generation through chromate and provide in vivo 

tumor suppression. The restriction of hole injection to chromate alone does present future 

challenges, requiring an increase in chromate’s retention at biological pH or another high energy 

donor. Initial investigation of a shell trap system shows promise and with calcination to reduce 

porosity and increase crystallinity can achieve permanent ROS enhancement. TiO2/Cr(VI)’s 

ability to increase toxicity of Cr in culture and in vivo shows promise as a standalone metallo-

therapeutic. The surface retention of Cr(VI) provides targeted delivery and clearance of Cr(III) 

will be investigated to confirm limited off target effects.  

Finally, the polymer-stabilized nanoemulsion provided effective oxygen delivery into 

tumors. Refinement of ideal mass ratios of PFC generated stable emulsions near the Tf-TiO2 

NAG size, ideal for co-localization. This system also showed encapsulate and in vivo tracking 

with cypate using novel MSOT imaging, while also increasing O2 saturation within the tumor 
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region. Direct combination with PRaST remains to be investigated but will indicate reduced 

tumor burden for the combination therapy.  

In conclusion, this dissertation focuses on maximizing the therapeutic benefit of PRaST 

through the generation of nanoscale systems able to overcome inherent tumor resistance 

mechanisms. The combination and enhancements these approaches provide have shown 

decreased tumor burden through ROS and metallo-therapy, benefiting both from controlled 

dosage and immune recruitment. Future investigations will focus on direct investigation of in 

vivo efficacy of each approach and combinations thereof. Overall, the systems represented here 

enhance existing TiO2 PRaST and advance the search for total cancer remission.  
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