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Combustion processes are ubiquitous to human technological development and provide many 

benefits such as large-scale power generation for electricity and transportation along with 

residential and commercial heating for manufacturing, cooking, and warmth. However, these 

various processes can also have harmful effects on human health and the environment via emission 

of CO2 and other pollutants such as NOx and particulate matter (PM; often in the form of soot). 

For these reasons, there is a continued need for controlling, improving, and optimizing combustion 

processes. Modeling of these processes provides powerful insights into system-level dynamics and 

their control.  Due to the size and complexity of industrial-scale combustion systems, there is a 

pressing need for the development of computationally-inexpensive models that can accurately 

predict gaseous and PM emissions. The research described in this dissertation addresses this need 

by: 1) careful evaluation of existing soot formation models for application in oxygen-enriched 

flames, 2) development of new, robust soot modeling capabilities with improved accuracy for 

flames outside of the normal fuel/air condition, and 3) production of a large data set for the 
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development of machine learning-based algorithms for predicting pollutant emissions under a wide 

range of combustion operating conditions. 

Over the past decades, several semi-empirical soot models have been developed for specific 

applications with unique characteristic timescales and/or validated only under fuel-air combustion 

conditions. Hence, their universal use, especially under oxygen-enriched combustion conditions, 

could lead to highly inaccurate predictions. Twelve semi-empirical models (1-step or 2-step) are 

evaluated based on their ability to respond to changes in stoichiometric mixture fraction (Zst) and 

strain in a series of ethylene counterflow flames spanning across the sooting-to-non-sooting 

(yellow to blue) transition. Results show that no existing model is able to predict a blue flame 

when Zst is increased beyond the experimentally-measured sooting limit.  

Motivated by this finding, a novel modeling approach is presented to account for the unique flame 

characteristics at elevated-Zst environments and their effect on soot formation. This modeling 

approach is designed to capture both the formation and the reversible processes that occur on the 

fuel-side of a diffusion flame in a robust yet simple manner and can be utilized in many industrial 

combustion applications. A new semi-empirical formulation is presented that achieves this goal. 

In addition, extensions are presented for two widely-used semi-empirical models (Leung-Lindstedt 

and Moss-Brookes) which would otherwise be inaccurate at these conditions. Upon application of 

this approach to counterflow flame systems, the predicted soot volume fraction profiles agree well 

with experimental findings reported by previous studies under low Zst. This improved approach 

also resulted in the prediction of blue (soot-free) limit conditions in a non-premixed counterflow 

flame for the first time. Thus, the performance of semi-empirical soot formation models can be 

dramatically improved when the reversible nature of soot formation at high temperature is 

considered.  
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The next goal was to develop a machine-learning based modelling approach for combustion 

systems. As part of this collaborative effort, a series of experiments were performed using a lab-

scale (25 kW) combustor that was operated under varying the fuel and air ratios. Measurements 

were made of temperature profiles along the reactor wall and gas composition and pollutants (CO, 

NOx, PM) in the exhaust. A series of tests were performed totaling 60 hours of runtime and 

140,000 data points corresponding to each parameter. Findings from these experiments highlight 

a series of trends in the reactor: low and high primary air flows lead to elevated PM and NOx 

emission levels, respectively; NOx levels correlate with varying swirl ratios under fixed fuel / air 

ratio. Based on the generated data set, a model may be developed to accurately predict pollutant 

levels and subsequently recommend optimized operating conditions for the combustion system. 
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Chapter 1: Introduction 
 

“For what is more beautiful than a fire, with all the vigor of its flames and the splendors of its 

light? And what more useful with its heat, its comfort, and its help in cooking? And yet nothing 

can cause more distress than the burns inflicted by fire. Thus a thing which is dangerous and 

destructive in some situations proves to be of the greatest utility when properly employed. Who 

could give a complete account of all the useful functions of fire in the whole universe?”  

– Augustine of Hippo, de Civitate Dei, X.4 (ca. 5th century AD) 

 

1.1 Overview / Motivation  
 

Since these words were written down in late antiquity, human dependence on combustion 

processes has not yet subsided. Ovens continue to generate heat for cooking with increasing levels 

of sophistication. Residential and bathhouse heat are still provided by burning natural gas. Even 

when these processes are driven by electricity, even then a majority of the energy source is derived 

from combustion. While the candle as a source of luminosity has been eclipsed by the light bulb, 

it is still a fire which gives light. 

The important of combustion processes has drawn large scientific interest to unravel the 

many complexities of these processes and to address many challenges which affect society at large. 

An example of a highly-complex process which is encountered by most humans is related to that 

visibly yellow region of a flame which is due to incandescent carbonaceous particulate matter, 

referred to as ‘soot’. This material is typically a fractal aggregate of micrometer scale and 

composed of spherical graphitic monomers of nanometer scale. Soot is produced in a wide range 

of combustion processes and to this day remains a significant area of research in the combustion 

community. There are unresolved questions related to its formation and unsolved challenges for 

applications such as engines, gas turbines, power generation furnaces, and fires of various sorts. 
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Soot can behave as a “good aerosol”, enhancing radiation when heat transfer is desired, and it can 

behave as a “bad aerosol” when emitted into the atmosphere or around human populations. It is 

therefore important to control and accurately predict soot formation to achieve optimal combustion 

conditions while preventing harmful emissions and modeling provides an avenue to achieve this 

aim. 

1.2 Modeling Combustion Processes 

An ideal model is like a “law” of physics, which can be universally applied in a controlled 

environment with little margin of error. Unfortunately, almost all real-world applications involve 

levels of complexities that require scientists and engineers to resort to either a) deeper and more 

fundament levels of physics and chemistry that can constrain the scope of a project due to current 

computational limits or b) adding empiricism in some form to achieve a modeling tool which 

becomes ‘simple’; i.e., it achieves goals for accuracy but at the cost of constraining the scope of 

applicability. In between these two extremes lies a spectrum of available models and modeling 

techniques. 

This dissertation will focus on two different modeling techniques which are relevant to 

predicting these pollutant quantities and possible ideal operating conditions: semi-empirical soot 

modeling for non-traditional flames and machine-learning algorithms for industrial combustion 

processes. The bulk portion of this research is focused on the former task and the remainder of the 

introduction reflects this focus. But the reader should be reminded that the particular challenge 

described here is related to a wide range of applications where modeling efforts can be challenged 

and improved for novel flame environments. 
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1.3 The Challenges of Novel Flame Environments 

The study of soot formation has a long-research history and many aspects of it can be 

considered as a mature field, barring notable exceptions such as the open questions related to 

precursors and particle inception. Soot has been studied in scales ranging from the well-known 

laboratory flames such as the coflow, counterflow, or shock-tube configurations to gas turbines 

and engines to industrial coal burning and forest wildfires. Most of the soot studies in these 

applications have been investigated with compositions close to that of pure fuel burning in air with 

little excess oxygen. However, some important combustion applications make use of non-

traditional compositions which can significantly affect soot formation. 

One of these non-traditional applications is oxygen-enhanced combustion (OEC), which 

generally describes a process where oxygen is used to supplement or replace air in the oxidizer of 

the flame. This technique has found uses in areas such as glass production, metallurgy, and 

developing power generation techniques such as oxy-coal combustion.  

Soot formation is known to be strongly affected by oxygen enrichment. Flames can even 

transition from soot-producing (yellow) to non-sooting (blue) through the combination of oxygen 

enrichment and fuel dilution [1, 2]. This result occurs even when the stoichiometric flame 

temperature is held constant and has been confirmed in a wide variety of non-premixed flame 

configurations including normal and inverted laminar coflow flames [3, 4], counterflow flames 

[5], and spherical flames produced in microgravity [6]. Soot formation is also strongly influenced 

by the characteristic time of the flame, as evidenced by the hydrodynamic suppression of soot 

formation in a coflow flame [7] and upon increasing strain rate (K) in the counterflow flame [5, 

8]. This result displays the importance of the flow field and residence time in the system of interest. 
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For these reasons described, there is still a need to predict soot quantities in systems using 

OEC or varying the characteristic time. While the changes to soot under these conditions have 

been studied above, there has not yet to date been a model capable of predicting soot quantities for 

such flames. 

1.4 Soot Modeling Scope 

The importance of capturing soot formation processes and accurately modelling them 

quantitatively can be attested to by the fact that the most recent model referred in this work is a 

mere five years old while the earliest is nearly fifty. Thus soot modeling is a research field with 

both a history of progress and also contemporary motivation. These models span a range of 

complexity and accuracy and are discussed in greater detail in chapter two below.  

Tremendous progress has been made towards the development of detailed soot formation 

models, which involve large chemical reaction mechanisms and aerosol dynamics to capture the 

complex processes of fuel pyrolysis, particle inception, growth and oxidation [9-16]. However, 

such models are often too computationally expensive to be included in CFD simulations of 

industrial systems, which are the targets of this work. There remains a need for less complex soot 

formation models that are easy to use and give a prediction of soot volume fraction with reasonable 

accuracy over a wide range of combustion conditions. For these reasons, some commercial CFD 

software packages, such as ANSYS FLUENT [17], include empirical or semi-empirical models 

for soot formation. However, many such models were developed and validated only for specific 

laboratory conditions and are limited to combustion of pure fuel in air. Therefore, the accuracy of 

these existing models may be questioned when applied to other situations such as oxygen-

enhanced combustion, or oxy-combustion for carbon capture [18].  
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1.5 Objective and Outline 

The goal of this research is to provide new modeling capabilities for predicting pollutants 

such as soot. The following chapter will briefly discus the theory of soot formation and give a 

review of various semi-empirical soot models and an overview of detailed modeling methods. 

Chapter 3 will show how these non-traditional combustion environments can significantly alter 

these soot formation processes. Chapter 4 will describe a methodology developed to evaluate soot 

models for non-traditional conditions in a counterflow flame. Chapter 5 will display results of the 

evaluation. Chapter 6 will unveil a series of new models and extensions to existing models which 

are capable of accurately predicting soot in these environments. Chapter 7 will introduce 

experimental data which will be used for training a machine learning-based simulation tool for 

optimizing combustion operating conditions for efficiency and emissions. Conclusions and 

recommendations for future work are given in Chapter 8. 
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Chapter 2: Review of Soot Formation Theory 

and Modeling 

2.1 Theory of Soot Formation 

2.1.1 Soot Chemistry 

Soot generation has been commonly described through the processes of gas pyrolysis, 

particle inception, and surface growth. Soot particles will also coagulate while its mass can be 

consumed via oxidation. These processes are highly dependent on chemical composition, 

temperature, and available reaction time of the surrounding flame environment. 

Combustion of hydrocarbons converts reactants to products of CO2 and H2O if sufficient 

oxygen is available. During this process intermediates are formed as the parent fuel is pyrolized, 

an important intermediate being acetylene (C2H2). Indeed, the formation of C2H2 from an aliphatic 

gaseous fuel is thermodynamically favorable due to its entropy increase from de-hydrogenization 

while being significantly endothermic [9]. Thus high heat, as provided in combustion, is needed 

to transform aliphatic fuels into C2H2. Given sufficient fuel, temperature, and time and insufficient 

oxygen, aromatic compounds will form. The first aromatic ring (benzene, A1) has been referred to 

as a “bottleneck” to soot formation [19]. Once this species is created, it grows via multiple 

pathways, two prevalent ones being hydrogen-abstraction-carbon-addition (HACA) and aromatic 

condensation. As the name implies, HACA describes a process where: 1) H+ radicals attack the 

hydrocarbon surface to create an open site and H2 (increasing entropy), 2) C2H2 bonds at the open 

site. This process is repeated and has been used to explain both initial ring generation and the 
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growth of additional rings on pre-existing aromatics. Also, aromatics can directly ‘condense’ onto 

other existing aromatics to create larger compounds. Through these processes, poly-cyclic 

aromatic hydrocarbons (PAH) are formed. Experimental evidence has long pointed to the 

coinciding of abundant PAH species with that of nascent soot. For this reason, these compounds 

have been thought to be the precursors for soot particles. 

2.1.2 Soot Inception 

Soot particulate has been extracted from experiments on soot inception flames, where 

flame conditions have been such that only nascent, rather than mature soot is formed. These 

experiments have shown that soot monomers can be characterized by a graphitic shell encasing an 

amorphous core. These results have given risen to a few theories about soot inception. It has been 

proposed that PAHs collide and form dimers, trimers, and transition to large amorphous PAH 

before collapsing into a spherical particle, a soot monomer. Pyrene (A4) is a commonly referenced 

PAH for the dimerization process, which has been used in detailed models as an inception step 

(see modeling discussion below). However, it has been demonstrated that A4 dimers are 

thermodynamically unstable at flame temperatures [20]. To achieve thermodynamic stability, 

PAHs must be a minimum size of coronene (A7) [9]. However, it has also been shown that the 

prevalence of PAH species rapidly decreases, at a rate of approximately an order of magnitude per 

additional ring size. An alternative model of soot inception has been recently proposed [21] where 

resonantly-stabilized radicals (RSR) were observed in high quantities and were hypothesized to be 

an inception precursor species through a chain-reaction-like process. Even with these new 

alternatives, the question of soot inception is still a contested area of research. 

The inception step has shown a large amount variety among semi-empirical models. For 

example, it has been modeled as a one-step conversion from fuel, acetylene, or benzene and phenol 
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(see Task 1.1). Species-based formulations may be problematic, as the inception process itself is 

not well understood at a fundamental level. Pyrene dimerization has been proposed to describe the 

nucleation step [13, 16, 22, 23], although such a dimer has been shown to be unstable for 

temperatures experienced in a flame [9, 20, 24]. Since the dimerization of polycyclic aromatic 

hydrocarbons (PAH) much larger than pyrene, such as coronene, have been shown to be more 

stable in flames [9], recent detailed models have begun to account for such larger PAH [25, 26]. 

However, there are still questions regarding the chemistry behind the inception process [27] which 

must be addressed.  

2.1.3 Soot Growth & Destruction 

 Once nascent particles are formed, they growth through surface-based growth processes. 

These reactions account for the dominant pathways of mass addition to the particles; inception 

merely provides the seed to grow upon. There is a plethora of potential growth reactions on a soot 

particle in the hot bath of hydrocarbons it encounters during the combustion process. However, 

unlike the inception step, there is a general consensus on surface growth processes which can 

qualitatively be categorized as either HACA reactions or aromatic condensation, both of which are 

described above. Soot will also be attacked via surface-based oxidation in the presence of oxygen 

and high temperatures. Flames which emit soot due to insufficient oxidative attack are referred to 

as “smoking”. 

 Soot also undergoes classical aerosol processes such as coagulation, where monomers 

collide and form aggregates; soot has a fractal dimension of 1.8. Soot is also affected by particle 

transport processes such as thermophoresis due to the large temperature gradients experienced in 

a flame. Mature soot particles have historically been considered sufficiently large enough to ignore 

the effect of Brownian motion for modeling purposes in flames with significant gas velocities. 
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2.2 Overview and Types of Models 

As mentioned above, soot formation modeling is a field which lacks neither depth nor 

breadth. To distinguish models, then, some important metrics should be considered. The ideal soot 

model should be measured in terms of its 1) accuracy, 2) simplicity, and 3) generality. Accuracy 

denotes the ability of a model to predict measured quantities, of which is a hierarchy; for example, 

all models seek to predict fraction and particle number, while obtaining size distributions and 

morphology requires more detailed models. Simplicity describes the aim to efficiently capture 

information; good models are ‘concise’ but not ‘simplistic’ in the naïve connation of the term. In 

comparing two models which have the same level of accuracy, the simpler model should be seen 

as advantageous, because it efficiently captures the information. However, this judgment is related 

to the desired level of accuracy; a simpler model may be sufficient for capturing soot fraction 

whereas a less-simple model might be necessary for capturing the size distribution. Generality 

denotes that a model should be widely applicable; for present purposes, this can mean a wide range 

of fuels, flame conditions, and flame types including, but not limited to, turbulent systems and 

fuel-dilute / oxygen-enriched systems. 

The most recent comprehensive review on semi empirical soot modeling was published by 

Kennedy in 1997 [28]. Since then several improvements to these models have been proposed [29-

35]. In this review, models were distinguished between empirical, semi-empirical, and detailed 

types. Empirical models were those fitted to certain quantities thought to be relevant to soot 

generation; an example used is by Khan [36]. Semi-empirical models were stated to consider more 

of physics behind the soot formation process; examples listed in this category included the models 

of Moss, Leung-Lindstedt, and Delichatsios below. Our review classifies these models and several 

others post-1997 collectively as “semi-empirical”.  
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Among the semi-empirical models considered in this study, a classification is made between 

one-step or two-step. For some models, generation is considered through one formation term that 

produces mature soot particles. For other models, generation is modeled through separate 

inception and surface growth steps. The inception term produces nascent soot particles. This 

distinction between formation and inception will remain throughout this proposal. In the first case, 

the formation rate of soot, ωs, is calculated by assuming that mature soot particles are formed 

directly from a gaseous precursor species in one step. In a two-step model, soot mass formation 

occurs by both particle inception and surface growth, as shown in Eq. (2-1).  In this case, the particle 

population balance equation must also be considered, and assumptions about the incipient particle 

size and particle morphology must be made in order to calculate the particle surface area available 

for growth. The soot particle number formation rate, ωn, is given in Eq. (2-2), which includes 

particle inception and loss by coagulation.  

𝜔𝑠 = 𝜔𝑖𝑛𝑐 +𝜔𝑠𝑔      (2-1) 

𝜔𝑛 =
𝑁𝐴𝑣

𝑀𝑊𝐶𝑁𝐶,𝑖𝑛𝑐
𝜔𝑖𝑛𝑐 − 𝛽𝑛

2    (2-2) 

Where the various reaction rates are Arrhenius-type functions of concentration, temperature, 

physical constants, and empirical constants.  

Finally, detailed models are full chemical mechanisms which can range from twenty 

equations to a several hundred. What distinguishes these models as detailed is that they require 

detailed chemistry, notably for the inception step(s) which requires the use of one or more PAHs 

(minimum size A4) as a precursor. Additionally, reactions account for surface site openings (which 

requires knowledge of hydrogen radical species), surface HACA growth, aromatic condensation, 

and oxidation. This level of detail is in-line with an attempt to match the reactions as close as 
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possible to the current understanding of precursor species. These models also account for 

coagulation and track particle size distributions through various methods (see further below). 

Each stage of the modeling hierarchy has its advantages and challenges. Semi-empirical 

models have the advantage of low computational cost (simplicity), which makes them desirable in 

many practical applications, which can be large-scale, three-dimensional, and turbulent and where 

the addition of each conservation equation adds large computational costs and time to a simulation.  

However, even with the low computational cost, the generality of many of these semi-empirical 

models is under question. Many of them are fine-tined to a specific set of conditions: flame type 

(pre-mixed, non-pre-mixed) or configuration (co-flow, counter-flow, furnace), and fuel type 

(methane, ethylene, diesel fuel, coal, etc.). Deviation from these parameters results in a need to re-

configure some of the model constants. This re-fitting requirement compromises the predictive 

capability of a model for untested conditions. Further, these models show deviations concerning 

oxidative species and surface area dependences which pertain to the flames they were validated 

against. Other criticisms note that semi-empirical models have inception rates based on the fuel, 

acetylene, benzene, pyrene, or lumped PAH concentrations, which are not considered true 

precursors; however, as will be noted shortly, a criticism of inception modeling also extends to 

detailed models. 

On the other hand, detailed models require greater computational expense with the 

presumed advantage of greater accuracy. Indeed, these models can provide details to a level that 

cannot be obtained with semi-empirical models (e.g. the size distribution). However, the open 

status of the inception question has generated a series of problems for modelers which must 

compensate in various ways (adjusting PAH concentration, creating sticking efficiencies for 

pseudo-irreversible dimerization, etc.); these steps are discussed in greater detail below. Since the 
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inception step is a bottleneck for the entire soot formation process, improvement of these models 

is a continual work-in-progress. In brief, while detailed soot models perhaps show greater long-

term promise for sufficiently capturing all relevant soot quantities, it should not be immediately 

assumed that these models in their current state will always provide a tremendous improvement of 

accuracy over other models for any given flame. 

These criticisms notwithstanding, the results of this research will demonstrate that semi-

empirical models have the capability of matching the accuracy of detailed models in terms of soot 

mass fraction and both model types can match experimentally measured soot fraction relatively 

well in certain circumstances. This research has focused primarily on semi-empirical models due 

to considerations of computational expense, with some additional results for detailed models 

included to highlight a conceptual point about how soot formation is generally approached by 

modelers. However, little-to-no modeling of either kind has been done for flames with an enriched 

oxidizer where the accuracy of such models remains an open question. Before addressing this 

question, individual models are discussed in greater detail to serve as a review and to provide 

information which will benefit the subsequent analysis. 

2.3 Semi-Empirical Models 

Despite a near consensus on which processes to model (inception, surface growth, 

coagulation, and oxidation), the modeling description of these processes are somewhat divergent. 

The nucleation species could be acetylene, benzene, or PAH. Most surface growth processes model 

HACA using acetylene, with some differences in the importance of surface area; some, but not all 

include PAH condensation. Oxidation is not always included, and its form varies widely with 

differences among the oxidizing species; some use OH, others O2. Questions reside concerning the 
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role of surface; if included, it is usually on the order of 1 or ½ (square root). Units for all equations 

are: kg, m, s, Pa, K.  

Khan and Greeves (KG) developed one of the earliest soot formation models for diesel 

engines, which was considered a pre-mixed system [36, 37]. The model, as originally proposed is: 

𝜔𝑓𝑜𝑟𝑚 = 4.68 ∗ 10
5 𝑉𝑢

𝑉𝑛𝑡𝑝
 𝜙3 𝑃𝐹 𝑒

−
20,202

𝑇     (2-3) 

Where 𝑉𝑢 and 𝑉𝑛𝑡𝑝 are jet velocities in the intake. The velocity terms are commonly dropped when 

this model is used in applications other than diesel engines. The equivalence ratio exponent was 

found in Khan and Greeves [36] by data fitting. Modifications to this exponent have been proposed 

[38, 39]. This model has found frequent usage in coal combustion for traditionally fired systems 

[40, 41] and for oxy-coal combustion [42]. In these cases, the local equivalence ratio is used for 𝜙 

and the variables pertaining to jet velocities have been removed. Examples of these modified 

versions are shown in Eqs. 2-4, 2-5. 

𝜔𝑓𝑜𝑟𝑚 = 1.5 𝜙
3 𝑃𝐹 𝑒

−
2,000

𝑇      (2-4) 

and is shown in Eq. (2-5): 

𝜔𝑠 = 4.68 ∗ 10
5 𝜙3 𝑃𝐹 exp (−

20,202

𝑇
)    (2-5) 

Lautenberger, et al. [31] developed a model for non-premixed coflow flames using separable 

functions of mixture fraction (Z) and temperature by assuming that soot was formed in a small 

region in mixture fraction space. Soot formation was suppressed except for a region where non-

zero soot production is described by 3rd-order mixture fraction polynomials fitted to experimental 
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data. Fitting occurs between points of onset, peak, and termination of formation rate. These 

quantities are assumed to be multiples of Zst with a ‘fuel-independent’ constant.  

𝜔 = 𝜔𝑓𝑜𝑟𝑚(𝑍, 𝑇) − 𝜔𝑜𝑥𝑖𝑑(𝑍, 𝑇)    (2-6) 

𝜔𝑓𝑜𝑟𝑚 = 𝑓𝑓𝑜𝑟𝑚(𝑍)𝑔𝑓𝑜𝑟𝑚(𝑇); 𝜔𝑜𝑥𝑖𝑑 = 𝑓𝑜𝑥𝑖𝑑(𝑍)𝑔𝑜𝑥𝑖𝑑(𝑇)  (2-7) 

This assumption was justified on the claim that in heavier-sooting flames or regions of a flame, 

homogenous processes dominate. As a result, volumetric formation is more important than 

surface-dependent formation. However, this formulation leads to an inability to reproduce the blue 

soot-free zone in lightly-sooting flames without manually suppressing the formation at low 

residence times. Observing that soot forms in a parabolic trend in mixture fraction space, formation 

suppression is accomplished by forcing the rate to be zero until a certain mixture fraction limit ZH, 

rising to peak at ZP, and again becoming zero at Zst. A similar (negative) trend was found for the 

oxidative side of stoichiometry. All of these quantities of Z are assumed to be multiples of Zst, with 

the multiplicative constant being fuel-independent. The f(Z) 𝑓𝑓𝑜𝑟𝑚(𝑍)functions used in the models 

were taken to be a 3rd-order polynomials fitted to experimental data. Likewise, 𝑔𝑓𝑜𝑟𝑚(𝑇) was also 

taken to be a 3rd order polynomial (note this is a rare deviation form Arrhenius dependence seem 

in most models), while 𝑔𝑜𝑥𝑖𝑑(𝑇) increased linearly with temperature. These relationships are 

shown in Table 2-1. 

Parameter Location 

ψZL 1.05*Zst 

ψZP 1.77* Zst 

ψZH 2.05* Zst 

fform(ψZP) 1.10 kg/m3s 

 

Table 2-1: Fitting parameters for mixture fraction polynomial, Lautenberger model. 
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Parameter Location 

TL T = 1375K 

TP T = 1625 K 

TH T = 1825 K 

 

Table 2-2: Fitting parameters for temperature polynomial, Lautenberger model. 

 

Relationships for temperature fitting are in Table 2-2. An example of the mixture fraction 

polynomial for an ethylene-air flame (Zst =0.064) is below: 

𝑓𝑓𝑜𝑟𝑚(𝑍) = −16986 ∗ 𝑍
3 + 4418.1 ∗ 𝑍2 − 349.43 ∗ 𝑍 + 8.69   (2-8) 

This model was compared to non-premixed co-flow flames. While this model provides 

applicability to various fuels through its Zst formulation, these relationships are only valid for low-

Zst flames. As Zst is increased, these relationships result in the widening of the soot formation zone, 

which contradicts experimental data. Further, if Zst  > 0.465 then ZH > 1 (a physical impossibility), 

and thus this formulation breaks down at high Zst. These issues render this model inapplicable to 

soot modeling for oxygen-enhanced combustion. 

The Delichatsios (D) group has developed a series of semi-empirical soot models [32-35, 43] 

which have been validated for several types of non-premixed flames. Initially, the model, shown 

in Eq. 2-9, predicted that soot formation was proportional to fuel mass fraction, in line with 

experimental results [44, 45]: 

𝜔𝑓𝑜𝑟𝑚 = 𝐶𝑠𝑝 𝜌
2 (𝑌𝐹0

𝑍−𝑍𝑠𝑡

1−𝑍𝑠𝑡
)𝑇2.25 exp (−

2000

𝑇
)        (𝑍𝑜𝑥 < 𝑍 < 𝑍𝑐𝑟) (2-9) 

𝑍𝑜𝑥 = 𝑍𝐶 𝑂⁄ =0.6 ; 𝑍𝑐𝑟 = 2.05 ∗ 𝑍𝑠𝑡       (2-10) 
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The first parenthetical term is equivalent to local fuel mass fraction in a burning mixture (𝑌𝐹,𝐵), 

assuming a one-step combustion reaction (this quantity includes all hydrocarbons). Like 

Lautenberger above [31], this rate was suppressed to zero except in a certain region of mixture 

fraction space defined between Zox and Zcr. The onset boundary (Zcr) was based on that of 

Lautenberger and is proportional to Zst for a given flame and suffers from the same issues described 

above. The termination (Zox) boundary is calculated from values found in Kumfer [46] of critical 

local C/O ratio at the sooting limit. The integration of these values for the boundary is an important 

milestone for soot formation modeling in oxy-combustion, even though the Delichatsios group did 

not investigate this topic further. This model makes heavy use of the experimentally-determined 

smoke point of a fuel and even proposed developing a ‘library’ of smoke points could allow for 

easy fuel conversion for the model, as all the other parameters and trends are claimed to be fuel-

independent. These papers varied on their approach to oxidation. Earlier papers did not consider 

oxidation [32] or used a constant rate [33], while later papers [34, 35] used the oxidation rate 

provided by Leung et al [47], whose model is discussed in the next section. This model was verified 

in laminar and turbulent non-premixed jets, as well as pool fires.  

Tesner (T), et al. [48] developed a two-step formation model for an acetylene-hydrogen 

laminar coflow flame. The first equation is a population balance for soot precursors, n*, between 

inception, branching, and termination reactions, as show in Eq. (2-11). The inception term is 

expanded into Eq. (2-12). The second population balance, Eq. (2-13), describes the net formation 

of mature soot particles, n,  
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𝜔𝑛∗ = 𝑛0
∗ + (𝑓 − 𝑔)𝑛∗ − 𝑔0𝑛𝑛

∗   (2-11) 

𝑛0
∗ = 1013[𝐶2𝐻2] exp (−

8.8∗104

𝑇
)   (2-12) 

𝜔𝑛 = (𝑎 − 𝑏𝑛)𝑛
∗    (2-13) 

Where n is a soot precursor, termed ‘radical nuclei’, f and g represent chain branching and 

termination ratios, g0 is the termination coefficient for soot particles, N is a formed soot particle, a 

and b are fitted coefficients. where 𝑓 − 𝑔 is 102, 𝑔0 is 109 , a is 105, and b is 8 ∗ 108 according 

to the author’s fitting to the experimental data. The acetylene concentration is in terms of molecules 

per cubic centimeter. The precursors are formed from acetylene-based kinetics as well as chain 

branching; they are destroyed by collision with soot particles. This work gave an early 

consideration to the acetylene-based rate of formation. Soot particles form linearly with respect to 

precursors and are destroyed by collision with precursors. The various constants were obtained 

from fitting to experimental data taken from soot extraction measurements. Some of which change 

with experimental conditions, as seen in Table 2-3 below: 

Burner 

Diameter 

a f-g g0 b n0 EA 

1 mm 105  100 10-9 10-7 2*1013 180 kcal/mol 

3mm 105  100 10-9 10-6 1.5*1012 170 kcal/mol 

Table 2-3: Values used for fitted parameters in the Tesner model. 

The burner diameter and experimental set-up are described in [48]. As these conditions were 

determined for acetylene, it has been proposed that they would require modification before the 

model can be applied to other fuels [49].  
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Moss (M), et al. [50] produced a fuel-based two-step model for coflow (slot) flames that is 

still in use [51-53]. This model accounts for both particle mass and number and includes 

expressions for inception, surface growth, nucleation, and coagulation. The mass production rate 

(Eq. 2-14) is dependent on the fraction of unburned fuel, XF,B. Moss emphasized the importance 

of high temperature and noted that significant soot formation only occurs in a very limited range 

of Z (Eq. 2-14),  however, this constraint has been removed in this study so that it can be tested at 

higher Zst. While temperature is the principal sensitivity in the mechanism, the use of the fuel mass 

fraction truncates the formation at the flame location (one step combustion chemistry is assumed).  

This termination is important, as the model did not originally have an oxidation mechanism; a later 

addition included this feature. This model was also of the firsts to use a surface area-dependent 

growth rate (Eq. 15), and it is assumed that the surface growth is directly proportional to the 

number of particles. 

𝜔𝑖𝑛𝑐 = 2.45 ∗ 10
10𝜌2 𝑇0.5𝑋𝐹,𝐵 exp (−

46,100

𝑇
)   (0.06 < 𝑍 < 0.20)  (2-14) 

𝜔𝑠𝑔 = 𝑓(𝑆) ∗ 4.2 ∗ 10
−17𝜌𝑋𝐹,𝐵 exp (−

12600

𝑇
)  (2-15) 

  𝑓(𝑆) = 𝑛     (2-16) 

Kennedy et al. [54] developed a soot model whose formation rate was fitted to a Gaussian 

curve in mixture fraction space, as in their earlier work [55] (changes in nucleation rate with 

changing flame conditions were not accounted for [28]). Justification for this method is that most 

of the soot mass is produced through surface growth reactions [54] and that the distribution did 

not greatly affect results so long as the total number of particles was constant [55]: 
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“[m]easurements in many flames have shown that the number density of particles decays very 

quickly as a result of rapid coagulation near the particle inception zone. As a result, Kennedy et 

al. [28] ignored the equation for particle number density in favor of an average number density 

and hence they did not account for possible variations in nucleation rate with changing flame 

conditions.” The particle formation region was determined by temperature boundaries of 1500-

1600 K, leading to a peak at a mixture fraction of 0.22 and a standard deviation of 0.02 as seen in 

Eq. 2-17. The authors noted that the distribution did not great affect results so long as the total 

number of particles was constant. [55]. 

𝑓(𝑍) =
1

√2𝜋(0.02)
 𝑒
− 
(𝑍−0.22)2

2(0.02)2     (2-17) 

Since this model ‘does not account for possible variations in nucleation rate with changing flame 

conditions’, it is not applicable to our focus. It may be further added that these conclusions were 

not tested for large Zst. 

Leung, Lindstedt, and Jones (LL) [47] proposed a model for counterflow flames which is 

similar to that of Moss et al. [50], but acetylene was selected as the dependent species for both 

inception (Eq. 2-18) and surface growth (Eq. 2-19) instead of the parent fuel. The authors also 

gave a review of activation temperatures and concluded that previous estimations were too high. 

A geometry-based formulation for the surface area was derived, shown in Eq. (2-20), before an 

empirically-based square root was added to capture aging effects on the particle. 

𝜔𝑖𝑛𝑐 = 10
4 [𝐶2𝐻2] exp (−

21100

𝑇
)    (2-18) 
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𝜔𝑠𝑔 = 𝑓(𝑆) ∗ 6 ∗ 10
3 [𝐶2𝐻2] exp (−

12100

𝑇
)    (2-19) 

  𝑓(𝑆) = (𝐴𝑠)
0.5 = (𝜋𝑑𝑝

2 ∗ 𝜌𝑛)
0.5
= (𝜋 (

6

𝜋

1

𝜌𝑆

𝑌𝑆

𝑛
)

2

3
 𝜌𝑛)

0.5

   (2-20) 

Lindstedt later modified this model [56], promoting a benzene-based inception step to include 

with the existing C2H2-based inception step (Eq. 2-21) and investigated alternative surface area 

formulations. Four different relationships (La, Lb, Lc, Ld) were used: 1) particle surface area that 

included a term to account for surface aging through HACA (𝜒) (Eq. 2-23), or 2) particle surface 

area which did not include 𝜒 (Eq. 2-24), 3) particle number (Eq. 2-25), 4) a constant value (Eq. 2-

26). According to Lindstedt, the particle number formulation (Eq. 2-25) yielded the best fit to 

experimental data for the C2H4 counter flow flames in the study. All four formulas are evaluated 

in this study. 

𝜔𝑖𝑛𝑐 = 6.3 ∗ 10
3[𝐶2𝐻2] exp (−

21000

𝑇
) + 7 ∗ 103[𝐶6𝐻6] exp (−

21000

𝑇
) (2-21) 

𝜔𝑠𝑔 = 𝑓(𝑆) ∗ 6 ∗ 10
3 [𝐶2𝐻2] exp (−

12100

𝑇
)    (2-22) 

𝑓(𝑆) = 𝜒 ∗ 𝐴𝑠 = 𝜒 ∗ (𝜋 (
6

𝜋

1

𝜌𝑆

𝑌𝑆

𝑛
)

2

3
 𝜌𝑛)

1

   (2-23) 

𝑓(𝑆) = 𝐴𝑠 = (𝜋 (
6

𝜋

1

𝜌𝑆

𝑌𝑆

𝑛
)

2

3
 𝜌𝑛)

1

    (2-24) 

𝑓(𝑆) = 𝑛       (2-25) 

𝑓(𝑆) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     (2-26) 
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Brookes and Moss (MB) [29] also developed an acetylene-based soot model for non-

premixed, methane, turbulent-jet flames. The framework is similar to the Leung-Lindstedt model 

above, but some parameters were changed so that predicted soot volume fraction would match 

experimental data. 

𝜔𝑖𝑛𝑐 = 7.78 ∗ 10
3[𝐶2𝐻2] exp (−

21100

𝑇
)   (2-27) 

𝜔𝑠𝑔 = 𝑓(𝑆) ∗ 30.7 ∗ [𝐶2𝐻2]
0.4 exp (−

12100

𝑇
)   (2-28) 

𝑆 = 𝐴𝑠 = 𝜋𝑑𝑝
2 ∗ 𝜌𝑛 = (𝜋 (

6

𝜋

1

𝜌𝑆

𝑌𝑆

𝑛
)

2

3
 𝜌𝑛)

1

   (2-29) 

The activation energy was taken from Leung above [47], making the two inception models nearly 

identical with the exception of the leading constant (the models differ for other terms).  

This model was fitted for methane and was therefore limited to light gaseous fuels, before 

being extended by Hall (MBH) et al. [30], and reported by Wen et al. [57], for the combustion of 

heavier fuels such as kerosene. This extension includes an inception rate based on the formation 

rates of 2 and 3-ringed aromatics aromatic species, and is shown in Eq. (2-30), with retaining the 

other terms of the Moss-Brookes model.  

𝜔𝑖𝑛𝑐 = 8 ∗ 127 ∗ 10
8.88 [(

𝑌𝐶2𝐻2

𝑀𝑊𝐶2𝐻2

)
2
𝑌𝐶6𝐻5𝑊𝐻2

𝑊𝐶6𝐻5
𝑌𝐻2

 ] exp (−
4378

𝑇
)  

+ 8 ∗ 178 ∗ 109.5 [
𝑌𝐶2𝐻2

𝑊𝐶2𝐻2

𝑌𝐶6𝐻6𝑊𝐻2

𝑊𝐶6𝐻6𝑌𝐻2

𝑌𝐶6𝐻5𝑊𝐻2

𝑊𝐶6𝐻5
𝑌𝐻2

 ] exp (−
6390

𝑇
)  (2-30) 

Except where indicated above, these models were chosen for evaluation in high Zst flames for 

a variety of reasons. ANSYS Fluent includes the KG, T, MB, MBH, models for commercial use 
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[17]. In recent years, the LL model remains one of the more widely used models in CFD 

simulations by researchers [58-63]. Less-popular models used in this study provide a contrast in 

the level of complexity. One example is this variance is the species chosen for as a chemical 

precursor. KG and M are fuel-based; their inclusion considers whether fuel alone is a sufficient 

precursor. LL and MB are C2H2-based, while La-Ld and MBH add an A1-based inception to LL 

and MB, respectively. Another model description showing significant variance is the surface area 

function. The models LL use the same equation for SG as MB, and MBH, but with different fitting 

constants for the C2H2 and SA dependencies. La-Ld use novel expressions for the SA term. T was 

added, despite its age, because of its unique two-step formulation. D was added due to its 

description of boundaries of the soot formation zone based on Z or local C/O ratio. Thus, all models 

included in this evaluation were either pre-existing in commercial software or offer conceptual 

alternatives that could either potentially capture the changes in soot formation at these conditions 

or else offer insights into which modeling features are necessary. Table 2-4 below shows all 

models, outlining their distinctive features in a concise fashion.  
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Table 2-4: Overview of semi-empirical soot formation models. 

 

A few authors have previously compared some of these models. Nmira et al. [64] compared 

the models of Lindstedt et al [56], Lautenberger et al [31], and Yao et al [34] (referred to in this 

work as one of Delichatsios’ models) with the following conclusions: the application of the smoke-

point concept is questionable for weakly-sooting fuels, using the smoke-point concept leads to the 

over-prediction of soot, all the models reproduced the smoking behavior of very strongly smoking 

flames, that Lautenberger provides a better agreements than Yao for inverse diffusion flames, and 

that Lindstedt and Lautenberger computed radiation fractions within 10% of experimental data, 

while Yao had less accurate agreement. However, no author has comprehensively compared all of 

these models together for any flame conditions and none of these models, to this author’s 

knowledge, have been evaluated against elevated- Zst flames. The methods used to evaluate these 

models are described in chapter four. But first, a brief overview of detailed soot modeling is given. 
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2.4 Detailed Models 

While the focus of soot modeling in this dissertation centers on semi-empirical models, 

detailed soot models play a minor role and will be briefly discussed here. These models use kinetic 

expressions to calculate the rates for the processes mentioned above (inception, various growth 

pathways, oxidation). The different expressions used by modelers are discussed below, 

individually. These models are also compliant with particle tracking methods such as the method 

of moments and the sectional method. The use of these methods is required to obtain information 

about the PSD. Most models include kinetic reactions. As these models often have computational 

costs too high to be considered in applications of our interest, this section will be brief in its 

summary of various models. 

Chernov et al [13] modeled soot in a laminar co-flow non-premixed system using a discrete 

sectional method. This type of soot modeling divides the particle size distribution into 35 discrete 

sections based on the mass. The mass of each section is left unchanged and a geometric series is 

assumed to represent the mass of each section. This assumption is used because of computational 

constraints. The soot in each section is composed of fractal-like aggregates (Df = 1.8). All 

aggregates are assumed to be identical within a section and their respective sections are determined 

by their mass. In each section a transport equation for the number density is solved. The nucleation 

step connects the gaseous incipient species to the solid phase and places these particles in the first 

section. PAH dimerization is taken to be the nucleation step. Lower section particles move to 

higher sections by surface growth (HACA + PAH condensation) or coagulation. Particles move 

from higher to lower sections by oxidation or fragmentation. 
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Chen et al [14] used a population balance solver by coupling the PAH-PP model [11] with 

the KMC-AS model [25]. This model simulates soot aggregates that are comprised of primary 

particles which are comprised of individual PAH molecules. The coupling with the KMC-AS 

model allows for detailed modeling of active sites on the surfaces of the PAH molecules. Processes 

considered are: inception (PAH dimerization), surface reactions of growth and oxidation consider 

18 different processes on these active sites. Coagulation and condensation are included and are 

directly imported from the PAH-PP model. Sintering is also included, while fragmentation is not. 

Bisetti et al [65] modeled soot in a turbulent non-premixed flame. To save computational 

expense, a method of moments was employed. Nucleation is described as the collision of two 

dimers, each dimer being formed as the self-collision of naphthalene. Growth can occur by dimer 

condensation on a pre-existing particle and by HACA. Coagulation is considered and oxidation 

is a semi-empirical rate of concentrations of OH and O2. 

 The model of Appel, Bockhorn, and Frencklach (ABF) [16] will be analyzed in Section 6. 

For the ABF mode, there is one equation for the inception: A4 dimerization, which creates a nascent 

soot particle comprised of C atoms, H atoms, open sites, and closed sites (Eq. 2-31). Then Eq. 2-

32 flips closed sites to become open via H-abstraction. Open sites are then available for C2H2-

based surface growth (Eq. 2-33) and aromatic condensation (Eq. 2-34) may even occur on closed 

sites. 

2𝐴4 → 𝐶(𝑠) + 𝑜𝑝𝑒𝑛(𝑠𝑒) + 𝐻(𝑠𝑒)    (2-31) 

𝐻(𝑠𝑒)  +  𝐻 −>  𝑜𝑝𝑒𝑛(𝑠𝑒)     (2-32) 

𝑂𝑝𝑒𝑛(𝑠𝑒)  + 𝐶2𝐻2  =  𝐶(𝑠)     (2-33) 

𝐻(𝑠𝑒)  + 𝐴𝑖  =  𝐶(𝑠)      (2-34) 
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Wang et al. [10] developed a gas and soot mechanism, “KM2” to calculate soot in a 

counterflow diffusion flame. Inception was modelled as the dimerization of 8 different PAHs (A4 

– A7) leading to a combination of 36 different reactions, which create C atoms, H atoms, and closed 

sites (but no open sites, see Eq. 2-35). Surface growth is similar to HACA above, but expanded (H 

abstraction can occur from any of H, OH, CH3, C3H3, C2H). PAH condensation is considered. 

Coagulation was modeled, while agglomeration and fragmentation were not. Particle tracked used 

a method of moments. 

2𝐴𝑖  −>  𝐶(𝑠)  +  𝐻(𝑠𝑒)    (2-35) 

Unlike semi-empirical models, detailed models have the ability to resolve the particle size 

distribution. This is done through either the method of moments or by the section method. For the 

former method, a series of moments is calculated by: 

𝑀𝑥𝑦 = ∑ 𝑉𝑖
𝑥𝑆𝑖

𝑦
𝑁𝑖𝑖      (2-31) 

Where M is the moment of order x with respect to volume (V) and of order y with respect to surface 

area (S), and N is number density. The resulting moments are used to calculate physical dimensions 

such as the primary particle diameter, the number of particles per aggregate. The sectional method 

tracks the size by accounting for the number of particles in a certain bin-sized. As particles grow / 

shrink through various reactions, they move to bins of larger / smaller particle size after crossing 

a certain size threshold. Inception creates particles in the smallest bin and when being attacked by 

oxidation, particles in the smallest bin are eliminated accordingly.  
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Chapter 3: Review of Stoichiometric Mixture 

Fraction (Zst) and Soot Formation 

3.1 Introduction to Zst and Its Effect on Soot Formation 

Mixture fraction (Z) is a conserved scalar and is thus a quantity which is invariant to chemical 

reaction. It is defined as the fraction of mass that originated from the fuel inlet for any particular 

location in the combustion system and thus expresses the mixing progress for non-premixed 

flames. The mixture fraction at the location at stoichiometry, i.e. the stoichiometric mixture 

fraction (Zst, Eq. 3-1) marks the flame location in a nonpremixed flame. 

𝑍𝑠𝑡 = (1 +
𝑌𝐹,0𝑊𝑂𝜈0

𝑌𝑂,0𝑊𝐹𝜈𝐹
)
−1

      (3-1) 

Modification to a fuel-air flame by either fuel dilution and/or oxygen-enrichment increases 

Zst and alters the flame structure of a nonpremixed flame [19, 66]. Consequently, soot formation 

is significantly affected by changes in Zst. An example of this behavior can be seen in Fig. 301 for 

a series of coflame images taken from the literature. The presence of soot can be visibly seen in 

three of the four flames. Moving from left to right, Zst increases (see values in Fig. 301) as inert is 

shifted from the oxidizer to the fuel, while maintaining a constant flame temperature. Accordingly, 

soot formation is steadily diminished until a blue flame is achieved for the further right image at 

Zst = 0.4. The underlying causes for this reduction and eventual suppression of soot formation 

under these flames conditions has been the study of several authors reviewed below. 
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Figure 3-1. A series of coflow flames of increasing Zst for the same adiabatic flame temperature taken from [4]. 

Soot zone is indicated by white light. 

3.2 Proposed causes of soot suppression 

Early investigations into changes in flame structure resulting from increased Zst showed 

that the soot formation zone can be described by two boundaries in mixture fraction space [3, 46, 

67], which are shown in Fig 3-2a. The first boundary, where soot formation begins, termed the 

‘onset’ boundary (labeled C1 in Fig. 3-2a.), is characterized by the location where requirements of 

sufficient fuel, temperature, and available reaction time are satisfied. The location of this boundary 

is related to the gas pyrolysis and particle inception processes. The second boundary, where soot 

formation ceases, termed the ‘termination’ boundary (labeled B1 in Fig. 3-2a), is characterized by 

a critical local C/O ratio that was shown to be equivalent, for a given fuel to the critical, global 

C/O ratio necessary for soot formation in premixed flames [46]. With increasing fuel dilution 

and/or oxygen enrichment, these two boundaries approach each other, leading to a smaller soot 
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formation zone as seen in Fig. 3-2b. With further increase these two boundaries will converge and 

no soot will be formed, resulting in a non-sooting, blue flame (Fig. 3-2c).   

          

 

Figure 3-2: Flame structure and soot formation zone changes for increased Zst in mixture fraction space 

for: a) Zst = 0.064, b) Zst = 0.30, c) Zst = 0.60. Figures taken from Kumfer et al. [46] 

 

The work of Kumfer et al. [46] examined the soot inception limits in nonpremixed coflow 

flames for a variety of fuels. A high-temperature boundary of the soot-formation zone was 

observed which was on the fuel side of the flame front.  Those locations were characterized by a 

critical local equivalence C/O ratio [46] for several different aliphatic fuels and are shown in Table 

3-1. For example, C/O)cr for ethylene was determined to be 0.53 [46], which is relatively far from 

the location of stoichiometry (C/O = 0.33).  

 

a) b

) 

c) 
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Fuel Measured critical C/O [54] Stoichiometric C/O 

CH4 0.42 0.25 

C2H6 0.54 0.29 

C3H8 0.58 0.30 

C2H4 0.60 0.33 

C2H2 0.71 0.40 

 

Table 3-1. Critical C/O values below which no soot can form as measured by Kumfer et al. 

[46], followed by the C/O of stoichiometry for each fuel. 

 

3.3 Soot Precursor Chemistry and Zst 

Significant work has been done on the role of soot precursor chemistry, whether precursor 

consumption [68] or the reversal of pathways leading to aromatic ring formation [9, 69]. Skeen, et 

al. [19] examined the effect of Zst on chemical reaction pathways critical to soot inception by 

modeling a series of counterflow flames with the USC-II mechanism. Propargyl self-combination 

was seen as the dominant pathway for aromatic ring formation and the authors concluded that this 

formation reaction reverses at high Zst due to an increase in H+ radicals. Skeen et al. analyzed 

several potential pathways to aromatic formation, two of which are shown in Eqs. 3-2 – 3-3. They 

argued that Eq. 3-2 should be given precedence over Eq. 3-3 because its integrated contribution 

was seven times larger and that Eq. 3-2 was affected by Zst-based flame structure effects while Eq. 

3-3 was pyrolysis-based and controlled by dilution. They also noted that Eq. 3-2 is endothermic, 

being predominant at higher temperatures (>1600 K) before reaching the H+ pool while Eq. 3-3 is 

exothermic and favored and lower temperatures (<1600 K) 

2𝐶3𝐻3 = 𝐴1
− + 𝐻      (3-2) 

𝐶4𝐻52 + 𝐶2𝐻2 = 𝐴1 + 𝐻     (3-3) 
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Skeen et al. also hypothesized that these behaviors would be observed for other soot-precursor-

growth reactions where H+ is generated as a product, e.g. there would be a reduction in PAH 

growth due to this set of reactions. This claim is further investigated in Section 6.  

3.4 The Challenge of Zst for Soot Modeling 

High Zst environments alter flames structures and soot formation in ways that challenge the 

description of soot as pyrolysis-driven process for traditional fuel-air flames. Reversibility of 

chemical pathways which otherwise promote soot formation can play a critical role in these 

environments. Thus, capturing these effects can be important for accurately modeling soot fraction 

in these environments. The following chapters will describe a methodology to evaluate existing 

soot models based upon this premise and then offer alternative modeling methods. 
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Chapter 4: Methodology 
 

4.1 Counterflow Flames 

4.1.1 Background 

The laminar counterflow flame is chosen for this study due to the availability of 

experimental datasets in the literature as well as the applicability of the results to laminar 

“flamelets” which are present within larger turbulent structures. This flame setup is composed of 

two opposed flow jets, one for fuel and the other for oxidizer in the case of nonpremixed (NPM) 

flames, as used in this research. These two streams meet at the gas stagnation plane (gsp) where 

the axial velocity of the gas is zero. For the sake of maintaining continuity of momentum, a radial 

component of the velocity develops by which the gas and other products leave the system. Thus, 

the streamlines are similar to that indicated in the diagram shown in Fig. 4-1. 

 

Figure 4-1. Diagram indicating basic features of a soot-forming (low Zst) counterflow flame. Gas 

streamlines are indicated by solid blue lines. Drawing not to scale. 
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The flame location in a counterflow flame will vary as the inlet compositions are modified. 

In a NPM system, the flame is always located at the location of stoichiometry (Zst or 𝛷 = 0.5). 

However, the location of stoichiometry is affected by a modified Zst. At low Zst, such as in a fuel-

air flame, the flame is located on the oxidizer side of the gsp, as depicted in Fig. 4-1. As Zst is 

increased, the flame shifts in physical space towards the fuel inlet. At Zst = 0.5, the flame will be 

located in the gsp when the jet velocities and boundary conditions are the same due to the system 

of the flow system.  

Finally, under appropriate flame conditions soot will occur on the fuel side of the flame. 

When the flame is on the oxidizer side of the gsp, soot follows the streamlines and is convected 

away from the flame towards the gsp. Due to the effect of thermophoresis on the particles, soot 

travels beyond the gsp before it reaches the psp where the average particle axial velocity is zero 

and the particles are ejected from the system due to the radial component of their velocity obtain 

via drag. Mature soot particles are considered large enough for Brownian motion to be neglected. 

Absent from this description of soot formation and transport is oxidation. Recall that 

immediately after the inception process occurs that the nascent particles are transported away from 

not only the oxidizer region, but also the flame region. Thus, soot particles face no chemical attack 

in these flames once they are formed. For this reason, these types of flames have been referred to 

as soot-forming (SF). The soot fraction profile has a distinctive shape under this flame 

configuration, where the quantity steadily increases from the flame until the psp, where there is a 

total loss of soot particles as they are ejected from the system. The profiles of temperature, soot 

formation, C2H2 (an important growth species), and soot volume fraction are shown in Fig. 4-2, 

which is a visual aid corresponding to Fig. 4-1. In contrast to SF flames, when the flame is on the 
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fuel side of the gsp, soot will be convected towards the oxidation region and consumed. These 

flames are characterized as soot-forming-oxidizing (SFO) flames. 

 

Figure 4-2. Profiles temperature, C2H2 mass fraction, soot formation rate, and soot volume fraction in a 

soot-forming counterflow flame. Quantities were obtained by solving the KM2 mechanism [10]. 

 

4.1.2 Soot inception limits 

Soot formation can be greatly affected in the counterflow flame and even eliminated such 

that a blue flame is produced, by increasing either Zst or K. This phenomenon is demonstrated by 

the soot inception limits measured by Du and Axelbaum [5] and Wang et al. [8] shown in Fig. 4-

3. The soot inception limit data corresponds to the flame conditions at which the transition from 

yellow to blue occurs. The region to the left of the limit line corresponds to flame conditions for 

which visible emissions from soot particles could be observed; to the right of the limit the soot 

concentration is below the detection limits and appears blue.  
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Figure 4-3. Simulated flame conditions (red) and experimentally reported sooting limits (Wang et al. [5] in 

black circles, Du, Axelbaum (DA) [8] in black squares) in terms of K (velocity gradient upstream of the 

flame on the oxidizer side [70]) and Zst. Soot forms for flames to the left of the limit (“yellow”) and does 

not form for flames to the right of the limit (“blue”). 

 

Wang et al. reported soot inception limits in terms of gas concentrations and jet velocities 

(measurements reproduced in Fig. 4-4) while Axelbaum et al. reported the limits in terms of Zst 

and K (as with Fig. 4-3 above). The latter values are used for this study and it was thus necessary 

to convert the former data into terms of the latter. The factor of temperature also must be 

considered as the mapping from Wang et al. allows temperature to vary. Fig. 4-4 shows lines of 

constant adiabatic flame temperature imposed on the inception limit data of Wang. At the location 

where a constant temperature curve (red) crosses a constant velocity limit curve (blue), that 

location has a uniquely determined velocity, temperature, and Zst. 
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Figure 4-4. Map of soot inception limits measured by Wang et al. [8] (blue) in terms of O2 and C2H4 mole 

fractions for a given jet velocity, with constant flame temperature curves imposed (red). 

 

The burners used in both studies had a separation distance of 8 mm and attempted plug 

flow conditions. Wang et al. reported velocity conditions which were used to obtain, via modeling, 

the velocity gradient upstream of the flame (oxidizer side) at the soot inception limit for the given 

Zst and TAD. To do so, simulations were performed with the gas composition and inlet jet velocities 

as indicated in the work of Wang et al. Then a series of lines were impose on the plot in an attempt 

to find the radial gradient on either the oxidizer (Fig. 4-5a) or fuel (Fig. 4-5b) side by matching the 

tangent of the velocity prior to the flame. As can be seen from the U60 case, several different 

boundary conditions were used for the radial gradient to confirm that there was not a strong 

deviation in the upstream gradient prior to the flame. This information allowed a direct comparison 

between the two strain variables when comparing the inception limits of Wang et al. (jet velocity) 

vs. Axelbaum et al. (velocity gradient). 
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Figure 4-5. Velocity (cm/s) vs. physical space (cm) for simulations of  counterflow flames with varying jet 

velocities with linear velocity gradients imposed to observe the gradient upstream of the flame on a) the 

fuel side, b) the oxidizer side, of the flame. 
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With the same metric for both measurements, that inception limit point can then be plotted 

in terms of Zst and K for a given temperature. The limit data from these two studies can now be 

plotted together as shown in Fig. 4-6. There is good agreement observed for the intermediate flame 

temperature (2519 K), which was used for Fig. 4-3 above. The reason for the disagreement for 

other flame temperatures for this is unclear. Once Xf, Xo, and T are specified, then Zst is uniquely 

determined. There could be potential error in converting from jet velocity to velocity gradient. It 

could be speculated that the exercies done in Fig. 4-5 is specific to a flame temperature; however, 

the purpose of choosing the velocity gradient upstream of the flame is to avoid any flame-induced 

velocity perturbations in defining strain rate. This question currently remains unresolved, but there 

is sufficient agreement at 2519 K for the model evaluations done in this research.  

 

Figure 4-6. Full measurements of the soot inception limit in a counterflow flame by Du, Axelbaum for 

various flame temperatures (black) with inception limits from Wang, et al. (blue) as calculated by the 

method described above. 
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4.1.3 Simulated flame conditions 

In order for a soot model to be useful in situations beyond the standard fuel-air flame, it 

should not predict substantial quantities of soot in flames that are intrinsically soot-free. The semi-

emperical soot models under consideration are therefore challenged by utilizing them in simulated 

flames which span a broad range of Zst and K that includes the yellow to blue transition. While the 

corresponding investigations into the flame conditions at the limit [5] did not report the minimum 

svf necessary to register a yellow flame, a previous study [44] which provided the diagnostic basis 

for the limit study [5] did report measured svf values in soot-producing flames down to 10-8. For 

this study, any model which predicts svf greater than this value of 10-8 for flame conditions which 

are experimentally known to be blue is considered to be giving an inaccurate result. 

The flames simulated in this study are shown above in Fig. 4-3 and the flame conditions 

are listed in Table 4-1. These conditions are designed to observe each models’ prediction of soot 

formation in response to either increased Zst or increased K. In one set of conditions K is held 

constant while Zst is increased (Series 1 in Table 4-1); for the other, Zst is held constant while K is 

increased (Series 2 in Table 4-1). Adiabatic flame temperature was held constant for all these 

conditions (2519 K). 
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Flame Name YF,0 YO2,0 Zst K (1/sec) 

0 1.0 0.276 0.074 78 

1.1 0.380 0.318 0.196 78 

1.2 0.256 0.360 0.291 78 

1.3 0.215 0.391 0.347 78 

1.4 0.190 0.422 0.393 78 

2.1 1.0 0.25 0.074 115 

2.2 1.0 0.25 0.074 168 

2.3 1.0 0.25 0.074 263 

2.4 1.0 0.25 0.074 315 

Table 4-1. Flame conditions for simulations. The adiabatic flame temperature was held constant at 2519 K. 
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4.2 Modeling Soot in Counterflow Flames 
 

4.2.1 Chemkin Flame Simulations 

Simulations of counterflow flames are performed using the CHEMKIN Pro [71] Opposed 

Flow module. The KM2 detailed combustion mechanism [10] is used to obtain the velocity, 

temperature and gas-phase species distributions. It should be noted that this mechanism has not 

been experimentally validated for the full set of flame conditions considered here (higher-Zst). 

Additional simulations using the ABF model [16] were performed to confirm that the results of 

semi-empirical model evaluations were not significantly affected by the choice of detailed gas 

mechanism; these results can be found in Figs. 4-9, 4-10 in Section 4.3 (Supplemental Material). 

The CHEMKIN output data is post-processed in a MATLAB subroutine to solve the soot 

conservation equation(s) and calculate soot volume fraction. While the MATLAB routine is not 

fully coupled to CHEMKIN, the flame simulations included the detailed KM2 soot mechanism as 

proxy to account for the effects of precursor consumption and soot radiation. Further, the soot 

fraction is relatively small (< 1 ppm) in these flames studied here, so these effects are negligible.  

4.2.2 Matlab Post-Process Soot Code 

Following modeling techniques used for droplets in studies of spray combustion in the 

counterflow configuration [72-74], both axial and radial convection are mathematically considered 

in the soot conservation equations, since one-dimensional transport leads to a mathematical 

singularity at the particle stagnation plane [72, 75]. Given that the inertial force associated with 

soot particles is very small compared to the drag force (Stk << 1) the similarity solution for gas 

species in a stagnation flow can also be utilized for particle transport [76]. Thermophoresis in the 
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axial direction is also considered [77]. This particle conservation equation is discretized into an 

Eulerian, time-dependent, upwind finite differencing equation, shown in Eq. (4-1), 

𝜁𝑖
𝑛+1 = 𝜁𝑖

𝑛 +
∆𝑡

𝜌𝑖
(𝜔𝑖 −

∆𝜌(𝑢+𝑣𝑡ℎ)𝜁

∆𝑥
+ 𝜌𝜁𝐺|𝑖)    (4-1) 

𝐺 =
𝜌𝑣

𝑟
      (4-2) 

where G is the similarity parameter defined in Eq. (4-2). Eq. (4-1) is iteratively solved until 

convergence is achieved. The criteria for convergence is when  the relative change in peak soot 

volume fraction (svf) is less than 10-5 [77, 78]. 

The models are evaluated in counterflow flames of sufficiently low Zst such that all formed 

soot is convected towards the fuel source, away from the stoichiometric flame location. Oxidation 

reactions are, therefore, expected to be negligible [2, 56, 79]. However, surface oxidation reactions 

for most two-step models (M, LL, La-Ld, MB, MBH) have also been included using the original 

model formulations (see respective references [29, 30, 47, 50, 56, 80]). Oxidation is found to only 

have a minor impact on the peak svf for some models. See Fig. 4-11 in Section 4.3 (Supplemental 

Material) and subsequent discussion for more information. 

For validation of the modeling approach and particle subroutine, numerical results from 

the Leung and Lindstedt model [47] in an ethylene counterflow flame are compared with the 

experimental results of Hwang et al. [2] and with corresponding modeling results of Hernandez et 

al. [77], who also utilized the Leung and Lindstedt model for the same flame set, as shown in Fig. 

4-7. The data set includes measurements of soot volume fraction in three flames with variable 

oxygen fractions in the oxidizer stream (20%, 24%, and 28%). The results of our simulation are in 

good agreement with the modeling results of Hernandez et al et al. [74].   
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Figure 4-7.  Soot volume fraction (svf) profiles resulting from the use of the Leung and Lindstedt (LL) model in this 

work and comparisons to reference numerical (Hernandez et al. [77]) and experimental (Hwang et al. [2]) data. 

 

4.2.3 Normalization Process 

Many of the semi-empirical soot models used in this study were not developed specifically 

for use in counterflow flames and were not validated for this flame type. Therefore, prior to the 

evaluation, all formation rate equations are adjusted such that the resulting peak svf is matched 

with an experimental measurement [10, 81] for the low Zst, low K flame (“Wang Reference” in 

Fig. 4-1, Flame 0 in Table 4-1) to achieve a more reasonable comparison between models and to 

ensure a fair evaluation. To accomplish this end, the soot formation rates were scaled by 

multiplying the inception and surface growth terms in Eqs. 2-1, 2-2 by a normlization factor. By 

normalizing both inception and surface growth, soot formation rates are adjusted without creating 

bias against any model’s developed balance between these terms. The relevance of inception and 

surface growth to total soot formation are discussed in the results section. Normalization results 

are shown in Fig. 4-8 and normalization factors are listed in Table 4-2. All modified models are 

shown to produce a svf profile that is in reasonable agreement with the experimental data, though 
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some models predict levels of soot higher than experimental data in the region of 0.5-1.5 mm. 

Comparatively, when there is no normalization, values for svf ranged over several orders of 

magnitude (see Fig. 4-8b). Aside from the standard normalization, the Tesner model required 

further augmentation to achieve a matching peak svf after it was found that elevating k higher than 

18 resulted in unstable behavior of the soot formation equations. The growth term of mature 

particles (term “a” in Eq. 2-13) was further multiplied by 2E4. 

 

Figure 4-8. The effect of normalization for a svf profile a) normalized semi-empirical models with experimental data 

(linear scale) b) unnormalized semi-empirical models with experimental data (log scale). Fig 4-10a is equivalent to 

Fig. 3 in the main article and has been reproduced here for ease of comparison. Note that the flame conditions are 

the same between figures. 
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Table 4-2. Normalization factors used for soot formation rates. 

  

Model Abbreviation 
Normalization 

Factor 

Khan, Greeves [36, 37] KG 220 

Delichatsios et al. [32-35, 43] D 0.90 

Tesner [48] T 
18 

kinc = 2E4 

Moss et al. [50] M 0.049 

Leung-Lindstedt [47] LL 1.44 

Lindstedt A [56] La 3.05 

Lindstedt B [56] Lb 2.12 

Lindstedt C [56] Lc 0.6 

Lindstedt D [56] Ld 1.13 

Moss-Brookes [29] MB 3.75 

Moss-Brookes-Hall [57] MBH 0.375 
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4.3 Supplemental Material 
 

KM2 

 

ABF 

  

Figure 4-9. The effect of gas combustion mechanism on peak and integrated svf for changing Zst. a) peak svf, KM2, 

b) integrated svf, KM2, c) peak svf ABF, d) integrated svf, ABF. Figures 4-7a,b are reproduced in Section 5 but are 

shown here for ease of comparison. 
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KM2 

 

ABF 

 

Figure 4-10. The effect of gas combustion mechanism on peak and integrated svf for changing K. a) peak svf, KM2, 

b) integrated svf, KM2, c) peak svf ABF, d) integrated svf, ABF. Figures 4-8a,b are reproduced in Section 5, but 

shown here for ease of comparison. 
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With Soot Oxidation 

 

Excluding Soot Oxidation 

 

Figure 4-11. The effect of oxidation on peak and integrated svf for changing Zst. a) peak svf with oxidation, b) 

integrated svf with oxidation, c) peak svf without oxidation, d) integrated svf without oxidation. Figures 4-9a,b are 

reproduced in Section 5, but shown here for ease of comparison. 
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Oxidation occurs, according to the model rate equations, due to attack from OH (M, MB, 

MBH) or O2 (LL, La-d) which has leaked across the flame front. The region of oxidative attack is 

far away from the bulk region of soot formation and growth for most models (Φ > 0.6). The largest 

effect due to oxidation is observed in the Moss model, which displays for Zst = 0.393 a variance of 

peak svf by a factor of 3 and a variance of integrated svf by a factor of 5. All other models show a 

modification by less than a factor of 2 for Zst = 0.393 (the flame condition with the highest svf 

variability) when comparing the two cases. The reason for the strong effect of oxidation on the 

Moss model is its fitting constants (namely its high Arrhenius temperature) result in a prediction 

of a soot formation zone which, compared to the other models, is much closer to the flame (see 

Section 5), which is where the oxidative species are more abundant.  
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Chapter 5: Semi-Empirical Model Results 
 

5.1 Zst Evaluation Results 

Results for the Zst evaluation (flame series 1) are shown in Fig. 5-1, which includes the 

predicted peak (Fig 5-1a) and integrated (Fig. 5-1b) svf as a function of Zst at constant adiabatic 

flame temperature. Recall from Fig. 4-1 that Flame 1.4 (Zst = 0.4) was experimentally determined 

to be blue. Nonetheless, all models predict significant fractions of soot at this flame condition, and 

all models, with the exception of the Moss (M) model (factor of six), predicted a peak svf of at 

least one order of magnitude above the diagnostic soot detection limit of 10-8. Several models 

predicted increases in peak svf as Zst increased and some showed only minor variation. Three 

models, Delichatsios and Moss-Brookes and Lindstedt A, showed monotonic increases in 

integrated svf (total soot formed) over the range of Zst. 
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Figure 5-1. Collective results for all semi-empirical models for flames with increasing Zst. a) peak svf vs. Zst b) 

integrated svf vs. Zst. 
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To better understand the underlying causes of these results, a unique analytical approach is 

taken. The profiles of soot formation rate and other key quantities are plotted in local equivalence 

ratio (𝛷) space. It is advantageous to plot the results in 𝛷 space, as opposed to physical space, in 

order to deemphasize the effects of fluid convective flow on the profile shape and focus attention 

on how key quantities are related to the overall progress of fuel conversion. While Z space (Z) is 

often used, it is less helpful for these studies since the flame location varies in Z space when Zst is 

modified, leading to a more complicated result when results from many flames are plotted together. 

Local C/O ratio has been also proposed as a preferred space to study soot formation in non-

premixed flames [48]. The quantity chosen for this work, 𝜑, can be calculated numerous ways, 

either in terms of unburned reactants or in terms of Z, as in Eq. (5-1). It can also be derived from 

mass of atomic carbon, hydrogen, and oxygen, as is commonly done in CFD packages such as 

ANSYS Fluent. 

𝜑 = 𝜈 ∗
𝑌𝐹,𝑈

𝑌𝑂,𝑈
 =  

𝑍

1−𝑍
∗
1−𝑍𝑠𝑡

𝑍𝑠𝑡
=

𝑚𝐶+𝑚𝐻
𝑚𝑂⁄

(
𝑚𝐶+𝑚𝐻

𝑚𝑂⁄ )
𝑆𝑇

   (5-1) 

A normalized 𝜑 is used in this study to obtain a finite range of values: 

𝛷 = 
𝜑

𝜑+1
      (5-2) 

Some potential advantages to using local equivalence ratio are: 1) Like Z and C/O ratio, 𝜑 is 

invariant with chemical reaction; 2) Unlike Z and C/O, the location of stoichiometry does not 

change with flame conditions or with fuel species, being always located at 𝜑 = 1, (𝛷 = 0.5). and 

3) 𝜑 includes hydrogen, which is considered to play an important role in soot formation and in the 

cessation of soot formation [19]. 

An example of soot growth rate in 𝛷 space for low-Zst flames can be seen in Fig. 5-2, which 

was obtained by calculating the formation rate from the conservation equation and using measured 
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svf profiles [2]. The svf profiles used are from Hwang et al. [2], Wang et al. [81], and Xu et al. 

[82]. The Wang data set corresponds to the low Zst, low K flame used in the evaluation (and for 

normalization) and can be considered a helpful guide for visualizing soot formation rate in 𝛷 space. 

The soot formation zone is bounded on the left-hand side around 0.60 < 𝛷 0.65 and around 0.90 < 

𝛷 < 0.95 on the right hand side, and peaks between 0.70 < 𝛷 < 0.80. The left boundary corresponds 

to a critical location where soot inception and growth are no longer favorable. Skeen et al. noted 

that, for ethylene flames, aromatic ring formation is cut off where C/O < 0.53 (corresponding to 𝛷 

< 0.64) and this was attributed to the location of abundance of H+ radicals. The right boundary 

corresponds to the location of the psp, where particles are ejected from the system. 

 

Figure 5-2. Soot formation rate vs. 𝛷, calculated from experimental data from Hwang et al. [2], Wang et al. [81], 

and Xu et al. [82]. The arrow denotes the location of the psp for all flame condtions. 

 

Soot formation rates for all semi-empirical models are plotted as a function of 𝛷 in Fig. 5-

3. By inspecting these models in 𝛷 space, several important features are highlighted. The results 

in Fig. 5-3(a) reveal a large variation in the resulting soot formation zones across all models, even 
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in this case of the “typical” low- Zst flame. Location of peak soot formation varies from 𝛷 = 0.58 

(Tesner) to 𝛷 = 0.83 (Khan). Many models show a formation rate with similar bounds as observed 

in Fig. 5-2, especially for those which are dependent on C2H2 for surface growth. The Tesner 

model also show peak production shifted towards the flame as a result of their high Arrhenius 

temperature. In contrast, the model of Khan-Greeves shows less soot production when 𝛷 < 0.83 

(location of peak formation) as a result of the 𝜙3 term in Eq. (2-3), as compared to all other models. 

All models show a formation rate bounded on the right-hand side by the psp, as seen in Fig. 5-2. 

As Zst is increased the psp shifts to lower values of 𝛷 and higher temperature and intrudes into the 

soot formation zone (Fig. 5-3c-e). As a result, surface growth abruptly ceases for some models 

(La, Lb, MB) because the psp has been reached and there is no longer any surface on which to 

grow. Note that this behavior is not observed for one-step models (KG, D, Ld), which show varying 

amounts soot formation on both sides of the psp. The observed effects of increasing Zst on select 

individual soot model performance is described below in more detail, beginning with one-step 

models. 
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Figure 5-3. Total soot formation rate predictions from semi-empirical models vs. 𝛷 for a) Zst = 0.064, b) Zst = 0.196, 

c) Zst = 0.291, d) Zst = 0.347, e) Zst = 0.393. Some models are scaled (see legend). The arrows denote the direction of 

flow for particles and the dashed vertical lined indicates the psp. The reader is referred to the online version for color. 
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Results of the Khan model for svf and formation rate are shown in Fig. 5-4. As Zst increases, 

the Khan model is strongly affected by dilution through its dependence on fuel concentration and 

by the 𝛷-temperature relationship. This results in a sharp reduction in soot formation rate with 

increasing Zst, and a shift in location of peak formation to lower 𝛷. 

 

 

Figure 5-4. Results from the Khan model for all Zst in the changing Zst evalulation; a) svf vs. distance from psp; b) 

total formation rate vs. 𝛷. Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 

 

Results of the Delichatsios model for svf and formation rate are shown in Fig. 5-5. This 

model has a soot production profile that is unique among other models, due to its formulations of 

the boundaries of the soot formation zone described in Eq. (6). The “oxidation” boundary, where 

soot formation stops was based on an experimentally-determined local C/O ratio at the soot 

inception limit [35, 46]. The “critical” low-temperature onset boundary, where soot formation 

begins, was based on a multiple of Zst (see Eq. 2-10). Consequently, the low-temperature onset 

boundary shifts in the wrong direction by increasing the zone of soot formation, as seen throughout 

Fig. 5-5. For this reason, the soot production zone grows larger for higher Zst, leading to the 

increase of integrated svf with increased Zst as seen in Fig. 5-1b. Also, the profile mainly trends 

with fuel concentration due to the low Arrhenius temperature of the model.  
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Figure 5-5. Results from the Delichatsios model for all Zst in the changing Zst evalulation; a) svf vs. distance from psp; 

b) total formation rate vs. 𝛷. Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 

 

The Tesner model is shown Fig. 5-6. The high Arrhenius temperature in the inception term 

for soot precursors (Eq. 8) biases the peak formation rate to lower 𝛷. For all other two-step models, 

any increase in the amount of mature soot mass results in increased capacity for soot production 

through the various surface growth functions. However, increased mature soot mass in the Tesner 

model does not yield a greater propensity for growth, but rather leads to diminished production 

due to “termination” terms in the production rate equation for both soot precursors (third term in 

Eq. 2-11) and mature soot (second term in Eq. 2-13). 
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Figure 5-6. Results from the Tesner model for all Zst in the changing Zst evalulation; a) svf vs. distance from psp; b) 

total formation rate vs. 𝛷. Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 

 

Some key trends associated with the remaining two-step models are generally observed. 

Two-step models produce soot mass mainly through surface growth reactions, which are coupled 

to existing soot mass and/or particle number through the surface area term. Some unique features 

in these models are observed which result from the combination of surface growth dominance and 

the changes to flame structure for increases in Zst; e.g. the counter-intuitive observation of 

increased peak svf as Zst increases, which has also been observed in other modeling results [83]. 

Consider the case of a fuel-air flame, where soot is generated and then transported to the 

psp. Here the svf reaches a peak, as it accumulates on the psp. The magnitude of the peak is 

determined by the amount of soot generated chemically and by the balance in the mass flux. For 

these types of flames, the region of soot generation is distinct from the location of peak svf.  When 

Zst is increased, the region of physical space between the flame and the psp narrows, increasing 

the mass gradient and yielding a higher peak svf. Additionally, soot production now occurs at the 

psp (and thus the location of peak svf), because it shifts into the surface growth region where higher 

temperature and abundant growth species reside.  
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These simultaneous contributions lead to rapid increase in svf at the psp and can explain 

how peak svf can increase even while integrated svf decreases (less total soot) for many two-step 

models. However, to explain why some two-step models predict increased integrated svf with 

increased Zst, a third factor must be considered: the positive feedback between soot mass and soot 

production rate which results from the two factors above. Changes in soot mass and number affect 

the particle surface area, which is a critical component to surface growth in these models. When 

soot mass increases rapidly, such as near the psp and especially when the first two effects are 

simultaneously present, the surface growth rate is significantly augmented, which further increases 

soot mass, etc. This feature can strongly affect model results (see discussion below). Feedback 

occurs for all two-step models, but the feedback strength is dependent on each model and its 

respective sensitivity to either the surface area factor or the chemical Arrhenius factor, defined in 

Eq. (5-3).  

𝜔𝑆𝐺 = 𝑓(𝑆)𝑎⏟  
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 𝐹𝑎𝑐𝑡𝑜𝑟

∙ [𝑃𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟]𝑏 ∙ exp (−
𝑇𝐴

𝑇
)⏟                

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝐴𝑟𝑟ℎ𝑒𝑛𝑖𝑢𝑠 𝐹𝑎𝑐𝑡𝑜𝑟

   (5-3) 

The Moss model (Fig. 5-7) results in a steep and steady decline in the total formation rate 

with increasing Zst (but does not predict the blue limit). In this model 𝑓(𝑆) = 𝑛, 𝑎 = 1, 𝑏 = 1 

and the “surface area” is quantified by the particle number (see Eq. 2-14). As with all two-step 

models considered here, particle number is depleted due to coagulation. For the Moss model 

𝜔𝑆𝐺  ~ 𝑛 and is therefore more strongly affected by coagulation, as compared to other models.  
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Figure 5-7. Results from the Moss model for all Zst in the changing Zst evalulation; a) svf vs. distance from psp; b) 

total formation rate vs. 𝛷. Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 

 

The results for the Leung-Lindstedt and Lindstedt a-d models are shown in Fig. 5-8. For 

Leung-Lindstedt, (𝑆) = 𝐴𝑠, 𝑎 = 0.5, 𝑏 = 1 , in Eq. (5-3). It has a reduced dependence on surface 

area which is physcially attributed to surface aging. The formation rate(s) subsequently follow the 

chemical Arrhenius factor unless psp interference occurs. Noticeable but minor feedback can be 

observed for higher Zst flames. The reduced dependence on surface area prevents the feedback 

scenario described above. 

For Lindstedt A, 𝑓(𝑆) = 𝜒𝐴𝑠, while for Lindstedt B, 𝑓(𝑆) = 𝐴𝑠. For both of these models, 

𝑎 = 1, 𝑏 = 1. Both models show significant feedback behavior for higher Zst flames due to the 

linear dependence on surface area, which is a function of existing soot mass. This behavior is 

weaker for Lindstedt A because the 𝜒 term biases the formation rate towards lower 𝛷, thus 

reducing the psp interference. For Lindstedt C, 𝑓(𝑆) = 𝑛, 𝑎 = 1, 𝑏 = 1. This model was 

considered the best performing model in the originating publication [56] and this model also 

performs the best for this evaluation. Because of the linear dependence on particle number of this 

model, its behavior is similar to that of the Moss model (see comments above), with the exception 
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of location in 𝛷-space due to a different soot precursor species and Arrhenius temperature. Finally, 

for Lindstedt D, 𝑓(𝑆) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑎 = 0, 𝑏 = 1 – there is no dependence on particle number or 

existing soot mass (this model can be classified as a one-equation model). The soot formation zone 

is therefore broader with no effects from the psp and only decreases due to the reduction in C2H2 

and temperature as Zst increases.  
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Figure 5-8. Results for all Zst in the changing Zst evalulation; a) Leung-Lindstedt svf vs. distance from psp; b) Leung-

Lindstedt total formation rate vs. 𝛷. c) Lindstedt A svf vs. distance from psp; d) Lindstedt A total formation rate vs. 

𝛷; e) Lindstedt B svf vs. distance from psp; f) Lindstedt B total formation rate vs. 𝛷; g) Lindstedt C svf vs. distance 

from psp; h) Lindstedt C total formation rate vs. 𝛷; i) Lindstedt D svf vs. distance from psp; j) Lindstedt D total 

formation rate vs. 𝛷;  Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 
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The results for the Moss-Brookes and Moss-Brookes-Hall models are shown in Fig. 5-9. 

For both models (𝑆) = 𝐴𝑠, 𝑎 = 1, 𝑏 = 0.4 in Eq. (5-3) and surface growth production 

consequently is heavily dependent on surface area and less dependent on the chemical Arrhenius 

factor. The Moss-Brookes model hits a critical feedback as described above and incorrectly 

predicts an increase in integrated svf (total soot formed) with increased Zst. This result could be 

interpreted to confirm the surface area aging and/or call into question the difference in chemical 

growth of soot between counterflow and coflow flames, since Leung-Lindstedt was developed for 

the former and Moss-Brookes was developed for the latter. This feedback behavior could also be 

expected for the Moss-Brookes-Hall model, but this model has such a high inception rate that it 

(incorrectly) contributes largely to soot mass formation and reduces the dependence of the total 

formation rate on surface growth, see Fig. 5-10. Such a high inception rate is potentially due to 

this model’s targeted application to kerosene pool fires and not for light gaseous fuels such as 

C2H4. Note that at higher Zst there is still an effect from psp interference even for this model. 
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Figure 5-9. Results for all Zst in the changing Zst evalulation; a) Moss-Brookes svf vs. distance from psp; b) Moss-

Brookes total formation rate vs. 𝛷; c) Moss-Brookes-Hall svf vs. distance from psp; d) Moss-Brookes-Hall total 

formation rate vs. 𝛷.  Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 
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Figure 5-10. Rates of inception, surface growth, and total formation rate for the Moss-Brookes-Hall model in 𝛷 space 

for: a) Zst = 0.074, K = 78 1/s, b) Zst = 0.291, K = 78 1/s, c) Zst = 0.393, K = 78 1/s, d) Zst = 0.074, K = 315 1/s 

 

All semi-empirical models above propose soot formation to be a process of irreversible 

pyrolysis from fuel. This conceptual way of predicting soot cannot account for the reversibility 

and suppression of soot chemistry which occurs at higher Zst, as mentioned in Section 2 and further 

investigated in Section 6 below. These processes are not typically considered in the development 

of semi-empirical soot models. Therefore, existing semi-empirical models which conceptualize 

soot inception as a direct pyrolysis pathway and cannot predict this reversibility and subsequent 
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soot suppression. For these models, soot will always form in the presence of sufficient fuel and 

temperature. 

5.2 K Evaluation 

Results for the strain (K) evaluation are shown in Fig. 5-11. Two models (MB, La) were able to 

predict a blue flame at the inception limit with a third model (Lb) also showing notable reduction. 

All other models showed only minor reductions in soot formation. The behavior of these models 

is more straightforward to interpret without a shifting psp. Individual model results are shown in 

Fig. 5-13(a-v); all models yield a reduction in peak svf, even when the formation rate is not changed 

significantly. The svf decreases necessarily when velocity is increased due to mass conservation 

(from an Eulerian perspective, mass is reduced to conserve the mass flux in the continuity equation 

as velocity increases; from a Lagrangian perspective, there is a reduced residence time for a parcel 

of fuel to form soot) . The clearest example can be seen in comparison of Figs. 5-13c,d where there 

is no change in rate but a reduction in svf proportional to the increase in K. However, many models 

(M, LL, La-c, MB, MBH) also show a reduction in formation rate (Figs. 5-13 h, j, l, n, p, t, v), 

especially for two-step models, which further contributes to reductions in svf. This reduction is 

primarily due to the feedback mechanism mentioned in the previous section. Whereas previously 

there existed positive feedback for increasing Zst due to psp intrusion, there is now negative 

feedback: reduced soot mass and / or particle number due to increased flux reduces the surface 

area, which reduces the surface growth rate, which reduces the mass, etc. This feedback is strongest 

for Lindstedt A, B and Moss-Brookes because of the linear surface area dependence of these 

models (see Eq. 5-3 and notes above). While these models result in incorrect trends in the Zst 

evaluation, they are the best-performing models for the K evaluation.   
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Figure 5-11: Collective results for all semi-empirical models for flames with increasing K. a) peak svf vs. K b) 

integrated svf vs. K. 

 

A few additional notes are given on specific models, with corresponding rate profiles 

shown together in Fig. 5-12. The first three models show either no change in formation rate 

(Delichatsios model) or a slight increase in rate (Khan, Tesner models). As mentioned above, for 

all three of these models, svf drops as K increases solely due to mass flux.  

For the Khan model, the trend in rate is based on the local temperature and the bias in peak 

rate caused by the use of 𝜙3, which causes the location of peak soot production to be shifted to the 

region of 𝛷 > 0.8. Detailed chemistry was used for the gas flame simulations with the result that 

there are minor differences in the temperature profiles across this series of flames. In the region of 

0.7 < 𝛷 < 0.9, the local temperature was found to increase by up to 25 (K) with increasing strain 

(Fig. 5-12). Subsequently, the Khan model predicts higher soot formation with increased strain, 

following the temperature trend in this region. 
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Figure 5-12. Mass fraction and temperature in 𝛷 space for increasing K. a) C2H2 b) C6H6 

Recall that the Tesner model is highly coupled, with soot number increasing linearly with 

particle number (nascent concentration in Eq. 2-11 and mature concentration in Eq. 2-13) and 

decreasing with the square of particle number (nascent multiplied by mature concentration for both 

Eqs. 2-11, 2-13). Also note that both the nascent and mature particle concentration will drop due 

to the mass flux as strain increases. This change results in a larger decrease in the coagulation 

terms, as compared to the formation terms, upon increasing strain. Accordingly, the net production 

of particles is predicted to slightly increase with strain.  

The Moss model has the same temperature feature as the Khan model for increased strain. 

Additionally, surface growth in the Moss model is based on particle number, which drops with 

increased strain due to mass flux. However, the increase to rate due to temperature is greater than 

the decrease due to particle number.   

For the remaining two-step models, all have some form of negative feedback described 

above in context of the Moss-Brookes model. For all these models, svf and/or particle number 

drops as K increases due to mass flux while also having notable reductions in formation rate. The 
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rate for the Leung-Lindstedt model decreases notably, but because of its diminished dependence 

on surface area (attributed to surface aging) the feedback is insufficient to predict a blue flame.  

Lindstedt A and B both display strong negative feedback from their surface area 

dependence described above.  Lindstedt A predicts a blue flame for this evaluation. The effect of 

the HACA term (𝜒) in Eq. (2-23) on Lindstedt A is a shift in the formation rate to lower 𝛷 and a 

narrowing of the formation rate profile. Lindstedt C does not exhibit strong feedback behavior 

because its surface area function depends on particle number alone. Lindstedt D has no change in 

rate because there is no ‘surface area’ dependency (Eq. 2-25) and therefore no feedback. The 

surface growth is only affected by C2H2 and temperature, both of which are rather insensitive to 

K. 

The Moss-Brookes rate is very sensitive to K due to the feedback from its strong surface 

area dependence and can thus accurately predict a blue flame (see above). The Moss-Brookes-Hall 

rate, because it has strong contributions from the inception rate, has a diminished feedback 

behavior with respect to surface growth. However, unlike Lindstedt D which was very dependent 

on C2H2, the Moss-Brookes-Hall model shows some sensitivity to K despite lacking significant 

feedback. This is because the Moss-Brookes-Hall inception term is dependent on aromatic species 

which are more sensitive to K than C2H2 (see Supp. Fig. 5-12). A similar trend has been noticed in 

turbulent combustion modeling, where a larger aromatic species (A2) was shown to be more 

sensitive to scalar dissipation than C2H2 [65]. 
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Figure 5-13. Results for all K in the changing K evalulation; a) Khan svf vs. distance from psp; b) Khan total formation 

rate vs. 𝛷 c) Delichatsios svf vs. distance from psp; d) Delichatsios total formation rate vs. 𝛷 e) Tesner svf vs. distance 

from psp; f) Tesner total formation rate vs. 𝛷. g) Moss svf vs. distance from psp; h) Moss total formation rate vs. 𝛷 i) 

Leung-Lindstedt svf vs. distance from psp; j) Leung-Lindstedt total formation rate vs. 𝛷. k) Lindstedt a svf vs. distance 

from psp; l) Lindstedt a total formation rate vs. 𝛷; m) Lindstedt b svf vs. distance from psp; n) Lindstedt b total 

formation rate vs. 𝛷; o) Lindstedt c svf vs. distance from psp; p) Lindstedt c total formation rate vs. 𝛷; q) Lindstedt d 

svf vs. distance from psp; r) Lindstedt d total formation rate vs. 𝛷; s) Moss-Brookes svf vs. distance from psp; t) Moss-

Brookes total formation rate vs. 𝛷. u) Moss-Brookes-Hall svf vs. distance from psp; v) Moss-Brookes-Hall total 

formation rate vs. 𝛷.  Soot-free flame designated in blue. Diagnostic limit for svf shown in a) by red line. 

 

5.3 Semi-Empirical Evaluation Conclusions 

Semi-empirical models for soot formation were reviewed and applied to a series of non-

premixed ethylene counterflow flames which span the experimental sooting-to-non-sooting 

transition by increasing Zst and K.  No model predicted a blue flame for increased Zst and most 
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models predicted peak svf amounts of at least one order-of-magnitude higher than necessary to 

register a blue flame. Two models, (MB, La), predicted a blue flame for increased K. Many models 

showed an increase in peak svf even with a reduced integrated svf due to these changes in flame 

conditions. Some models erroneously predicted increased integrated svf with increased Zst. A 

unique approach of plotting in normalized, local equivalence ratio was introduced to aid in the 

analysis of formation rate changes as flame conditions were modified. 

An in-depth analysis was performed for each model. The varying results from two-step 

models were largely due to differences in the surface area dependent growth terms. All models 

treat soot formation as an irreversible process deriving from fuel pyrolysis and are not formulated 

to account for changes in flame structure and reversibilities that occur with increased Zst. As such, 

they fail to predict soot suppression at higher Zst. 

Based on the results and analysis of both evaluations, the use of MB, La, and Lb is 

recommended for CFD simulations of highly-strained flames at low Zst, with inclusion of 

normalization factors (Table 5-1).  The KG model could also be considered for cases with elevated 

Zst as it is one of the better performers and is sensitive to Zst through the relationship between 

temperature and local equivalence ratio (𝜙). Many of the models evaluated are found to produce 

a soot formation profile that, when plotted in 𝛷-space, is consistent with experimental findings, 

and thus are well-positioned for further improvement by considering soot formation reversibilities 

that occur in elevated Zst flames. 

It is noted that all evaluated models were designed for low-Zst and low-to-moderate K 

environments. Their authors did not propose their use in such challenging and unique 

environments. Nevertheless, it has been demonstrated that there remains a significant need for a 
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computationally-efficient model which can capture variations in soot production due to increases 

in Zst and K, which may vary significantly in many industrial applications. 

5.4 Detailed Model Results 

In addition to evaluating semi-empirical soot models, results from the detailed soot 

mechanism of KM2 and ABF were also investigated. The methodology used to obtain these results 

follows that for the semi-empirical models above, with the exception that the detailed modeling 

results did not require a post-processing code, but were taken directly from the Chemkin solution 

(which includes a solid-phase mechanism in addition to the gas-phase combustion mechanism). 

These models were not modified or normalized for this evaluation, as these models rely upon 

detailed chemistry and are expected to be more robust than a semi-empirical model.  

Predictions for KM2 are show in Fig. 5-14. The svf profiles, shown in Fig. 5-14a, appear 

comparable to some of the semi-empirical models above (e.g. LL), where the overall soot 

production decreases but the peak svf steadily increases along with Zst due to feedback effects. A 

notable difference is that for Zst = 0.074, the peak svf is over a factor of two lower than expected 

from the reference measurement of Wang. Before analyzing the reaction pathways, it is helpful to 

recall the overall soot mechanism for KM2 from Section 2 above. 

The inception rate (Eq. 2-35) is plotted in Fig. 5-14b and rapidly decreases as Zst increases. 

The inception rate peaks at higher Phi for Zst = 0.074 because aromatic species are not completely 

destroyed but are convected to the psp (compare the location of A1 in Fig. 5-12). Despite these 

trends, the closed sites produced by this model (Fig. 5-14c) are initially consistent for all Zst, 

stopping only at the psp for each respective flame. The open site concentration (Fig. 5-14d) mirrors 

the earlier production of closed sites (but at a smaller magnitude), but are only available closer to 

the flame, where there is an abundance of H+ radicals to create them from existing closed sites . 



76 

 

Finally, the total soot formation rate (Fig. 5-14e) is almost complete driven by surface reactions. 

The importance of HACA to the total formation rate as evidenced by the similarity in profile shapes 

between Figs. 5-14d-e. Collectively, the mechanism shows a strong reduction in inception (as 

PAHs are strongly diminished) as Zst increases. However, the creation of reaction sites and 

therefore surface growth reactions are somewhat sustained and are only slightly decreased as Zst 

increases. This leads to minor reductions in overall soot production and (as with the semi-empirical 

models above), an increased peak svf across these flames. While this model is no-less-worse than 

other semi-empirical models above, it does not show significant improvement in predictions of 

svf. 
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Figure 5-14. KM2 predictions of soot vs 𝛷.. A) svf , b) inception rate, c) closed site concentration, d) open site 

concentration, e) total formation rate 
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In contrast, the ABF model predicts svf profile (Fig. 5-15a) where very little soot is created 

until the psp is reached, at which the svf increases rapidly. While the inception rate for ABF (Fig. 

5-15b) is somewhat similar to that of KM2, there is a defining difference in the mechanism, shown 

in Eqs. 2-31. Open sites are directly created from inception, being thus continually created and 

transported with soot particles towards the psp, where they stack up (compare Figs. 5-15c , 5-15b). 

Since surface growth will occur where this are open sites, the total formation rate (Fig. 5-15d) and 

the svf profile are all similarly shaped in a manner unlike that of experimentally measured soot 

profiles. Further, the peak for Zst = 0.074 is a factor of three too small. Thus, while this model does 

predict a blue flame for Zst = 0.393, it also predicts blue flames for Zst = 0.196, 0.291, and 0.347.  

This model therefore cannot be recommended for use in these types of flames. 
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Figure 5-15. KM2 predictions of soot vs.𝛷. A) svf , b) inception rate, c) closed site concentration, d) open site 

concentration, e) total formation rate. 

 

5.5 Overall conclusions 

 For both semi-empirical and detailed models, soot formation is thought of fundamentally 

as irreversible pyrolysis-type process where sufficient fuel and temperature will produce soot. 

There are no mechanisms to counteract, reverse, or suppress soot inception or the later growth 

steps. Some models could be criticized for their relationships between surface growth and 

inception (level of feedback through a surface area term or through open site concentration), but 

this issue appears to be secondary to controlling for the reduction and elimination of soot inception. 

The model correctives introduced in the next chapter will examine this hypothesis. 
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Chapter 6: New Models 

6.1 Detailed Chemistry and Soot Reversibility 

The goal of the semi-empirical model formulations produced in this work is to capture 

important chemical phenomena during soot formation in the most concise and accurate manner as 

possible. It is helpful, then to recall important chemical pathways which are relevant in the flame 

environments of interest. Soot formation is often thought to proceed everywhere on the fuel-side 

of the non-premixed flame, until the pool of oxidative species (e.g. O2, OH) is reached, as 

evidenced by the formulation of existing semi-empirical models. However, other processes 

counteract soot formation which occur in all flames and become more pronounced, even critical, 

at elevated Zst. Previous studies have indicated that soot stops forming prior to reaching the 

location of oxidizing species, due to various reversibilities in the soot formation process. 

Temperature is a potential source of soot reversibility due to the exothermic nature of the C2H2-

to-A1 pathway [9]. Temperataure can also play a role in PAH fragmentation [9]. Elvati and Violi 

[20] have shown that PAH dimers are thermodynamically unstable at high temperatures. 

Accounting for reversibility in aromatic condensation has also been shown to be important for 

predicting particle morphology [24].  

As alluded to in Section 3.3, further analysis is not made into the role of reversible chemical 

pathways related to aromatics species. These results can be observed in Fig. 6-1, which shows the 

pathways of A1 formation for Zst = 0.074 (Fig. 6-1a) and for the soot inception limit flame (Zst = 

0.393, Fig. 6-1b). While Eq. 6-1 is still larger than Eq. 6-2 in terms of peak and integrated rate, 

these metrics mask the local importance of each reaction. In the region where Eq. 6-2 has reversed 
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(0.6 < 𝛷 < 0.7), it is counteracting Eq. 6-1. Moving from the fuel inlet to the flame (right to left in 

Fig. 6-1), the main contribution to A1 generation is initially due to Eq. 6-2, then a mix of Eqs. 6-

1,6-2, then Eq. 6-1, and finally the net reaction flips and A1 is destroyed due to a combination of 

Eq. 5, oxidation from OH, and other contributions. Note that in the location where Eq. 6-1 peaks, 

the net A1 ROP is actually negative due to the factors of reversibility and oxidation. The overall 

result of these effects is that the net A1 ROP more closely follows Eq. 6-2 in its profile shape and 

reverses in the high temperature zone. For Zst = 0.393, these features are similar with the notable 

observation that all rates are reduced. Fig. 6-1c shows the A1 ROP comparison for these two 

flames. For Zst = 0.074, the reversal happens around 𝛷 = 0.68 and for Zst = 0.393, 𝛷 = 0.65. Given 

that Eq. 3-3 reverses with the H+ pool, these arguments further promote the overall argument of 

Skeen et al., that H+ is an important contributor in the reversal of soot-promoting pathways. The 

novelty of these observations is the emphasis on the locality (𝛷 ~ 0.65) at which this occurs for all 

Zst rather than on the qualitative reverses which happens as Zst is increased. 
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Figure 6-1. A1 Rate of Production vs 𝛷. a) Various pathways for Zst = 0.074, b) Various 

pathways for Zst = 0.074, c) comparison of net A1 ROP against Zst = 0.074 and 0.393. 
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Skeen et al. also hypothesized that these behaviors would be observed for other soot-precursor-

growth reactions where H+ is generated as a product, e.g. there would be a reduction in PAH 

growth due to this set of reactions. To investigate this claim, an analysis was performed on all 

carbon addition reactions from A1 up to A7 in the KM2 mechanism. Examples of these types of 

reactions involving acetylene are shown in Eqs. 6-3 – 6-5 below.  

𝐴1
− + 𝐶2𝐻2 ↔ 𝐴1𝐶2𝐻 + 𝐻    (6-3) 

𝐴2 − 1 + 𝐶2𝐻2 ↔ 𝐴2𝐶2𝐻2    (6-4) 

𝐴2𝐶2𝐻𝐴
∗ + 𝐶2𝐻2 → 𝐴3 − 4     (6-5) 

Other important carbon-addition reactions, many of which are reversible, are listed in Section 

6.7 - Supplemental Material. These carbon-reactions are summed together and plotted in Fig. 6-

2a, for both low-and high-Zst flames. The various carbon-adding reactions are grouped according 

to their by-products: reactions with no by-product (Eq. 6-5), reactions with a by-product of H+ (Eq. 

6-3), and reactions with a by-product of H2 (Eq. 6-4). These three reaction groupings are plotted 

separately for Zst = 0.074 in Fig. 4b,. A complete list of reactions used is included in Section 6.7 - 

Supplemental Material. For the flame condition of Zst = 0.74, at the location near 𝛷 = 0.65 there 

is a reversal in the net chemical rate where the reactions are no longer favorable for carbon 

addition; rather, reverse reactions are promoted which remove attached carbon species. For the 

soot inception limit flame (Zst = 0.393), the transition occurs closer to  𝛷  = 0.60 but the trend is 

similar (notably, the positive quantity of carbon addition is also reduced due the diminished 

formation of precursors, e.g. A1 as noted by Skeen et al.). Fig. 6-2b indicates that while there are 

multiple reaction types which contribute to net carbon addition, the reversal effect is solely due to 
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reactions where a by-product of H+ is produced. This result is consistent with the H+-based reversal 

of Eqs. 3-2 – 3-3 above and collectively, these reactions demonstrate that H+-based reversals occur 

at all levels of soot formation (C3H3 formation, aromatic creation, PAH growth) and that the 

reversibility of soot formation occurs in the region of 0.60 <  𝛷 < 0.70.  

 

Figure 6-2. Analysis of carbon-addition pathways from A1 to A7 for the KM2 mechanism. a) All reactions summed 

for Zst = 0.074 and Zst = 0.393. b) Reactions grouped and summed according to reaction by-product for Zst = 0.074. 
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These results are consistent with the findings of Kumfer, et al. concerning an observed high-

temperature boundary of the soot-formation zone away from flame front where soot could no 

longer form. In that work, this location can be characterized by a critical local equivalence C/O 

ratio [46] for several different aliphatic fuels in a non-premixed coflow flame. For ethylene, C/O)cr 

was determined to be 0.53 [46], which is relatively far from the location of stoichiometry (C/O = 

0.33). By converting the various C/O ratios to 𝛷, this boundary can be spoken of more generally. 

As seen in Table 6-1, the critical value(s) take a very narrow range (0.63-0.66) upon conversion 

from C/O to 𝛷, as the latter is general for all fuel species. Beyond this location the local gas 

composition and/or temperature are not favorable for soot inception. It is now hypothesized that 

there is a balance in the formation and reversing processes at this location such that there is no net 

soot formation beyond this location for all flame conditions. As Zst increases, the soot formation 

zone shrinks in size until the location of initial soot formation coincides with this critical location 

[3].  

Fuel Measured critical C/O [54] Stoichiometric C/O 𝜙𝑐𝑟 𝛷𝑐𝑟 

CH4 0.42 0.25 1.68 0.63 

C2H6 0.54 0.29 1.89 0.65 

C3H8 0.58 0.30 1.93 0.66 

C2H4 0.60 0.33 1.80 0.64 

C2H2 0.71 0.40 1.78 0.64 
Table 6-1. Critical C/O values below which no soot can form as measured by Kumfer, followed by the C/O of 

stoichiometry for each fuel, and the critical values converted to 𝜙 and 𝛷. 

 

Given the observed importance of these reversible reactions and the role that hydrogen plays 

in this process, it would be beneficial to capture these features in a semi-empirical soot model. As 

with previous work, the target will be semi-empirical models due to an application focus and desire 

to capture important chemical details in a simple manner. The latter point is non-trivial as the 
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ability to concisely describe physical phenomenon coincides with elucidating important features. 

In brief, then, a new reversibility term is proposed for use in semi-empirical soot modeling. 

Because hydrogen radical modeling would require an extensive mechanism, instead a temperature-

based reversibility term is added which serves as a proxy for a H+-based reactions that counteract 

soot formation. This analogy is shown in Eq. 6-6 below.  

𝜔𝑟𝑒𝑣 = 𝑘𝑟𝑒𝑣 exp (−
𝑇𝐴,𝑟𝑒𝑣

𝑇
)~ 𝑘𝐻+[𝐻

+]    (6-6) 

High temperature can be a good indicator of the location of H+ radicals, as seen in Fig. 6-

3 where the peak of H+ is located somewhat close to the flame (but on the fuel side) and quickly 

declines as temperature drops. An additional reason for basing the reversibility term below (Eq. 6-

42) on temperature is the various temperature-based reversibilities hindering soot inception 

described above. Capturing these features, while less critical for traditional fuel-air flames, is 

essential for high-Zst environments where these processes can suppress and even inhibit soot 

formation. 

 

Figure 6-3. Hydrogen radical fraction vs. 𝛷 as predicted by KM2 for various Zst.  
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6.2 Initial One-Step Model 

 The development of this model begins with the classic consideration the need for sufficient 

fuel, temperature, and time needed to create a nascent soot particle from a parent fuel. Detailed 

chemistry is avoided, leaving the option of using fuel fraction (total hydrocarbon count) or 

acetylene as a soot precursor. It was noted above in the semi-empirical evaluation that soot 

formation is essentially a pyrolysis-driven process. The fault of the models at high Zst was not due 

to an incorrect understanding of this feature, but rather because these models did not account for 

other processes which become important under these flame conditions. It is now argued that the 

choice between fuel fraction and acetylene is one of increased accuracy and detail, but which does 

not fundamentally alter the model. Accordingly, the early stages of model development used a 

fuel-based Arrhenius term. 

𝜔𝑠 = 𝑌𝐹 exp (−
𝑇

𝑇𝐴𝑟𝑟
)     (6-7) 

 While this formulation satisfies the dependence of soot on fuel and temperature, the need 

for sufficient time is not accounted for. Comparing to a detailed model can be insightful here. By 

modeling each step of the soot process (see Eq. 6-8), each kinetic barrier will be accounted for and 

the finite time needed for soot to form will be manifest in the model. In contrast, by assuming that 

soot can form directly from fuel (Eq. 6-9), a series of kinetic bottlenecks are bypassed. To account 

for this discrepancy, a term is added to the model (𝜏 in Eq. 6-10) to explicitly account for the 

available reaction time. In a sense, the addition of this variable modifies the fuel fraction in a way 

that together “𝜏𝑌𝐹” is a transformed species that better approximates soot precursors. 
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𝐹𝑢𝑒𝑙 → 𝐶2𝐻2 → 𝐴𝑖 → 𝑃𝐴𝐻 → 𝑛    (6-8) 

𝐹𝑢𝑒𝑙 → 𝑛      (6-9) 

𝜔𝑠 = 𝜏𝑌𝐹 exp (−
𝑇

𝑇𝐴𝑟𝑟
)    (6-10) 

The appropriate time quantity chosen for this model could vary depending on the flame type / 

application. For example, scalar dissipation could be considered for coflow flames. For use in 

counterflow flames, the inverse of the strain rate (1/K) is an appropriate measure of the available 

reaction time in the system. 

 Next, the soot model must account for the various reversibilities discussed above. The 

initial way this process was modeling was by stating that soot formation would be cut-off at a 

critical value of 𝛷. This is not unlike the approach of Delichatsios above, where soot formation 

was not allowed below a critical C/O value. (Recall, that the above criticism of that model centered 

around the low-temperature boundary, not the C/O boundary). A way to naturally shut down soot 

formation (rather than abruptly) is seen in the additional 𝛷-based term in Eq. 6-11: 

𝜔𝑠 = 𝑘𝑌𝐹
(𝛷−𝛷𝑐𝑟𝑖𝑡)

𝑛

𝐾𝑚
 exp (−

𝑇

𝑇𝐴𝑟𝑟
)    (6-11) 

A rate constant (k) and two fitting constants (m, n) have also been included in the above equation 

to account for the fact that these terms have an empirical element to them. 

 Optimization of the model was performed using a grid search within certain bounds which 

are listed in Table 6-2 below. The bounds were the same for all runs, except for a special case 

where 𝛷𝑐𝑟𝑖𝑡 was restricted, resulting in Case 2. Results from Case 1 (full optimization) are shown 

in Fig. 6-4. From the svf profiles (Fig. 6-4a), it can be seen that this model is able to predict a blue 
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flame. The formation rate (Fig. 6-4b) rapidly decreases as Zst increases. However, 𝛷𝑐𝑟𝑖𝑡 is too 

large, maxing out at the upper bound of the optimization range. The result is a formation rate 

profile that is shifted too close to the fuel inlet and is not a physically realizable result. 

Variable Name Lower Bound Upper Bound Case 1 Case 2 

m 0 5 3 0.5 

n 0 3 2.5 4 

𝛷𝑐𝑟𝑖𝑡 0.55 0.75 0.75 -- 

𝛷𝑐𝑟𝑖𝑡 0.55 0.65 -- 0.55 

𝑇𝐴𝑟𝑟(1000 K) 12 24 16 20 

k -- -- 2.79E13 3E9 

Table 6-2. Optimization bounds of fitting constants and values as determined by optimization procedure to minimize 

peak svf for Zst = 0.393. 

 

 

Figure 6-4. Results from full-range optimization of model in Eq. 6-11 for the Zst evaluation flames, a) svf vs. 

distance from the psp, b) soot formation rate vs. 𝛷. 

 

 An attempted was made to remedy the profiles location in 𝛷 space by lowering the cap on 

𝛷𝑐𝑟𝑖𝑡. However, making this adjustment prevented the model from predicting a blue flame. The 

results of the optimized parameters which yielded the lowest peak svf for Zst = 0.393 are shown in 
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Fig. 6-5a. While there is a steady reduction in peak svf as Zst increases (unlike most existing models 

evaluated above). As a result, this model formulation shows a mixed result: by utilizing 𝛷𝑐𝑟𝑖𝑡 as a 

cut-off, soot formation reductions can be correctly predicted; however, the fitting parameters and 

formation rate profile do no correlate to expected characteristics of soot formation. In conclusion, 

this model framework will be modified to capture the essential features while resulting in a 

phenomenologically-insightful model.  

  

Figure 6-5. Results from constrained optimization of model in Eq. 6-11 for the Zst evaluation flames, a) svf vs. 

distance from the psp, b) soot formation rate vs. 𝛷. 

 

6.3 Kinetic-Phenomenological Derivations 

To address this question and to place this early model on a firmer theoretical foundation, a 

series of phenomenological kinetic derivations were made in an inquiry into possible dependencies 

soot formation might have on a local equivalence ratio. These exercises are performed at a high 

level; for example, both fuel and oxygen species use a lumped quantity (O2, OH, or even CO2 can 

attack soot). These methods keep the chemistry simple and are also necessary to show any 

dependency on 𝜙 or 𝛷. The derivations begin with the simplest models of soot formation and 



91 

 

follow with progressively more complex models. None reach the level of chemistry found in 

detailed soot models. 

Scheme 1 

This is the simplest of models. Soot forms directly from fuel and oxygen attacks fuel and 

soot. This model is not informative, but serves as a foundation and contrast to other models. 

𝐹 → 𝑆 

 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝑆 + 𝑂𝑙𝑢𝑢𝑚𝑝𝑒𝑑 → 𝑃

𝑑𝑆

𝑑𝑡
= 𝑘1[𝐹] − 𝑘3[𝑆][𝑂]     (6-12) 

Scheme 2 

Soot is still formed directly from the fuel species. However, there are now separate 

inception and surface growth routes and both of these are reversible. Still, this model is not 

particularly insightful as these terms are all standalone. 

𝐹 ↔ 𝑆 

𝑆 + 𝐹 ↔ 𝑆 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝑆 + 𝑂𝑙𝑢𝑢𝑚𝑝𝑒𝑑 → 𝑃

𝑑𝑆

𝑑𝑡
= 𝑘1𝑓[𝐹] − 𝑘1𝑏[𝑆] + 𝑘2𝑓[𝑆][𝐹] − 𝑘4[𝑆][𝑂]   (6-13) 
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Scheme 3 

Here, an intermediate is introduced through a reversible reaction. This variable is a 

precursor to soot, which is created through an irreversible reaction, and also the growth species. 

Without further assumptions, this model will look similar to Scheme 2, but with species [I] 

replaced [F] in Eq. 6-13 For the sake of exploration, the steady-steady assumption will be evoked 

for I, with the result shown in Eq. 6-14 and reformatted in Eq. 6-15. Interestingly, soot formation 

is now a function of a formation term which is driven by fuel availability and divided by the sum 

of processes which counteract soot formation. There is also an oxidation attack on soot. 

𝐹 ↔ 𝐼 

𝐼 → 𝑆 

𝑆 + 𝐼 → 𝑆 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐼 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝑆 + 𝑂𝑙𝑢𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝑑𝑆

𝑑𝑡
=

(𝑘2+𝑘3[𝑆])𝑘1𝑓[𝐹]

𝑘1𝑏+𝑘2+𝑘3[𝑆]+𝑘5[𝑂]
− 𝑘6[𝑆][𝑂]    (6-14) 

𝑑𝑆

𝑑𝑡
=

𝐾1𝑒𝑞[𝐹]

1

𝑘2+𝑘3[𝑆]
+

1

𝑘1𝑏
+

𝑘5[𝑂]

𝑘1𝑏(𝑘2+𝑘3[𝑆])

− 𝑘6[𝑆][𝑂]   (6-15) 

If this latter oxidation term is negligible (away from the flame front), then soot formation 

can be further simplified depending on which kinetic regime the model is in. When soot formation 

and growth are dominant over the intermediate reversibility, then soot formation is only a function 

of the fuel concentration and the forward rate of its pyrolysis (Eq. 6-16). When the reversibility of 

the first step is negative (Eq. 6-17), soot formation goes like the availability of fuel, the equilibrium 

constant of reaction 1, and is separately dependent on inception and surface growth. When 

oxidation scavenging of the intermediate is much greater than the routes of soot formation or 

reversibility back into fuel (Eq. 6-18), then soot formation is a function of fuel divided by the 
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lumped oxygen quantity. This fraction is the definition of the local equivalence ratio, shown in the 

second formulation of Eq. 6-18. 

If 𝑘2 + 𝑘3[𝑆] ≫ 𝑘1𝑏 

𝑑𝑆

𝑑𝑡
= 𝑘1𝑓[𝐹]     (6-16) 

If 𝑘1𝑏 ≫ 𝑘2 + 𝑘3[𝑆] 

𝑑𝑆

𝑑𝑡
= 𝐾1𝑒𝑞(𝑘2[𝐹] + 𝑘3[𝑆][𝐹])   (6-17) 

If (𝑘5𝑂 ≫ 𝑘1𝑏 and 𝑘5𝑂 ≫ 𝑘2 + 𝑘3[𝑆]) 

 

𝑑𝑆

𝑑𝑡
= (𝑘2 + 𝑘3[𝑆])

𝑘1𝑓

𝑘5

[𝐹]

[𝑂𝑙𝑢𝑚𝑝𝑒𝑑]
 = (𝑘2 + 𝑘3[𝑆])

𝑘1𝑓

𝑘5
𝜙  (6-18) 

 

While this formula achieves the intended aim of demonstrating a dependency of soot 

formation on 𝜙, it does so by making a series of questionable assumptions regarding the SSA of 

[I] and the assumption about oxygen scavenging being dominant. In the derivations which follow, 

more chemical details were included in the hopes that addition chemistry would strengthen the 

above result.
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Scheme 3b 

A derivation similar to Scheme 3 can take place but with pyrolysis step (F -> I) occurring 

irreversibly from fuel and the inception step being reversible. These changes are more 

representative of soot precursor chemistry.  

𝐹 → 𝐼 

𝐼 ↔ 𝑆 

𝑆 + 𝐼 → 𝑆 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐼 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝑆 + 𝑂𝑙𝑢𝑢𝑚𝑝𝑒𝑑 → 𝑃 
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Overall Equation: 

𝑑𝑆

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
|𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 −

𝑑𝑆

𝑑𝑡
|𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 −

𝑑𝑆

𝑑𝑡
|𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛  (6-19) 

 

𝑑𝐼

𝑑𝑡
= 𝑘1[𝐹] − 𝑘2𝑓[𝐼] + 𝑘2𝑏[𝑆] − 𝑘3[𝑆][𝐼] − 𝑘5[𝑂𝑙][𝐼] = 0  (6-20) 

 

𝑑𝑆

𝑑𝑡
|𝑓𝑜𝑟𝑚 =

(𝑘2+𝑘3[𝑆])𝑘1𝑓[𝐹]

𝑘2+𝑘3[𝑆]−𝑘2𝑏𝑆+𝑘5[𝑂]
   (6-21) 

 

The results will be similar to Scheme 3, except with −𝑘2𝑏𝑆 in place of 𝑘1𝑏 in Eq. 6-15. 
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Scheme 4 

Fuel pyrolizes to an intermediate, I, which is like an aromatic for this scheme. It is a large 

precursor, since it is formed reversibly from fuel, shedding H, but does not shed any H when it 

forms soot (something comparable to an aromatic). Soot also grows from I. Lumped oxygenated 

species will attack C-H species. The analysis now keeps the formation, reversibility, and oxidation 

terms separate. By evoking the SSA again for I, formation (Eq. 6-24) is driven by F and 

reversibility (Eq. 6-25) by existing soot, although the terms are still quite involved. 

𝐹 ↔ 𝐼 + 𝐻 

𝐼 ↔ 𝑆 

𝑆 + 𝐼 → 𝑆 

 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐼 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐻 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝑆 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

 

𝑑𝑆

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
|𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 −

𝑑𝑆

𝑑𝑡
|𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 −

𝑑𝑆

𝑑𝑡
|𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛    (6-22) 

𝑑𝑆

𝑑𝑡
|𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 𝑘7[𝑆][𝑂]      (6-23) 

𝑑𝑆

𝑑𝑡
|𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =

(𝑘2+𝑘3𝑓[𝑆])

𝑘1𝑏[𝐻]+𝑘2𝑓+𝑘3𝑓[𝑆]+𝑘5𝑂
𝑘1𝑓[𝐹]    (6-24) 

𝑑𝑆

𝑑𝑡
|𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = (1 −

𝑘2+𝑘3𝑓[𝑆]

𝑘1𝑏[𝐻]+𝑘2𝑓+𝑘3𝑓[𝑆]+𝑘5𝑂
) 𝑘2𝑏[𝑆]  (6-25) 

If SSA is evoke for both I & H then the reactions (Eqs. 6-26, 6-27) are still quite complex. 

This derivation was not ultimately fruitful in its own right, but facilitated a more enlightening 

example below. 



97 

 

𝑑𝑆

𝑑𝑡
|𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =

(𝑘2+𝑘3𝑓[𝑆])𝑘1𝑓[𝐹])

𝑘1𝑏𝑘1𝑓[𝐹]

𝑘1𝑏[𝐼]+𝑘6[𝑂]
+𝑘2𝑓+𝑘3𝑓[𝑆]+𝑘5𝑂

    (6-26) 

𝑑𝑆

𝑑𝑡
|𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = (1 +

𝑘2+𝑘3𝑓[𝑆]

𝑘1𝑏𝑘1𝑓[𝐹]

𝑘1𝑏[𝐼]+𝑘6[𝑂]
+𝑘2𝑓+𝑘3𝑓[𝑆]+𝑘5𝑂

)𝑘2𝑏[𝑆]  (6-27

Scheme 5 

In this scheme, I is more like acetylene. It is formed irreversibly and does shed H when it 

forms soot, as if it still had aromatic growth to do and thus had to lower the C/H ratio. If SSA is 

evoked for H, the result is seen in Eq. 6-28. If SSA is evoked for both I & H, the result is Eq. 6-

29. The latter two terms in Eq. 6-30 are higher order terms and can be assumed to be smaller than 

the first two terms. This simplification leads to the result of Eq. 6-31. 

𝐹 → 𝐼 + 𝐻 

𝐼 ↔ 𝑆𝛼 + 𝐻 

𝑆𝛼 + 𝐼 → 𝑆𝛽 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐼 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐻 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

 

𝑑𝑆𝑇

𝑑𝑡
= [𝐼](𝑘3𝑆𝛼 + 𝑘2𝑓 (1 −

1

1+
𝑘6[𝑂]

𝑘2𝑏[𝑆𝛼]

)) −
𝑘1[𝐹]

1+
𝑘6[𝑂]

𝑘2𝑏[𝑆𝛼]

   (6-28) 

𝑑𝑆𝑇

𝑑𝑡
= 𝑘1𝑓[𝐹] (

1

1+
𝑘5[𝑂]

𝑘2𝑓+𝑘3[𝑆𝛼]

−
1

1+
𝑘6[𝑂]

𝑘2𝑏[𝑆𝛼]

) +
𝑘2𝑏[𝑆𝛼][𝐻]

1+
𝑘5[𝑂]

𝑘2𝑓+𝑘3[𝑆𝛼]

−
𝑘2𝑓[𝐼]

1+
𝑘6[𝑂]

𝑘2𝑏[𝑆𝛼]

  (6-29) 
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𝑑𝑆

𝑑𝑡
= 𝑘1𝑓[𝐹] (

1

1+
𝑘5[𝑂]

𝑘2𝑓+𝑘3[𝑆𝛼]

−
1

1+
𝑘6[𝑂]

𝑘2𝑏[𝑆𝛼]

)   (6-30) 

 Now the formula is somewhat simple, with soot formation trending with the concentration 

of available F and the rate constant being based on a competition between pathways promoting 

soot formation, the reversal of soot formation, and the attack from oxidizing species. If again, we 

assume that the intermediates are scavenged by oxygen faster than they participate in soot 

reactions, then soot formation can be shown (Eqs. 6-31 - 6-32) to be a function of inception, surface 

growth, and reversibility, with all terms are functions of 𝜙. By re-arranging (Eq. 6-33), it is 

observed that soot trends with 𝜙 with a rate constant based on high temperature inception (𝑘𝑖) and 

surface growth, which is a function of existing nascent soot ([𝑆𝛼]) and the competition between 

low temperature growth (𝑘𝑖𝑖) and high temperature reversibility (𝑘𝑖𝑖𝑖). 

If 𝑘5𝑓[𝑂] ≫ 𝑘2𝑓 + 𝑘3[𝑆𝛼] & If 𝑘6𝑓[𝑂] ≫ 𝑘2𝑏[𝑆𝛼] 

𝑑𝑆𝑇

𝑑𝑡
= (

𝑘1𝑘2𝑓

𝑘5
)𝜙 + (

𝑘1𝑘3

𝑘5
) [𝑆𝛼]𝜙 − (

𝑘2𝑏

𝑘6
) [𝑆𝛼]𝜙  (6-31) 

𝑑𝑆𝛼

𝑑𝑡
= (

𝑘1𝑘2𝑓

𝑘5
)𝜙 − (

𝑘2𝑏

𝑘6
) [𝑆𝛼]𝜙   (6-32) 

𝑑𝑆

𝑑𝑡
= 𝜙 ∗ (𝑘𝑖 + 𝑆𝛼(𝑘𝑖𝑖 − 𝑘𝑖𝑖𝑖))   (6-33) 
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Scheme 6 

Lastly, a derivation made by expanding the intermediates from Scheme 5. Below there are 

two intermediates, one of which (I) is like acetylene and the other (A) is more like an aromatic. 

The inception process is a two-step pyrolysis from fuel to soot, where nascent soot is formed. 

Surface growth can then occur on either nascent or mature soot. This level of detail makes the 

analysis quite complex (see Eq. 122), even with species A and H being considered small enough 

to treat with the SSA and the higher order terms (Eq. 6-33) removed. Several of the terms in Eq. 

6-34are given underscores which communicate which process is being represented. 

𝐹 → 𝐼 + 𝐻 

𝐼 ↔ 𝐴 + 𝐻 

𝐴 ↔ 𝑆𝛼 + 𝐻 

𝑆𝛼 + 𝐼 → 𝑆𝛽 

𝑆𝛼 + 𝐴 → 𝑆𝛽 

𝐹 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐼 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐴 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

𝐻 + 𝑂𝑙𝑢𝑚𝑝𝑒𝑑 → 𝑃 

Assume A, H are in steady-state. 

𝑑𝑆

𝑑𝑡
=

(

 
 
𝑘2𝑓

(

 
 1

1+
𝑘2𝑏𝐻+𝑘8𝑂

𝑘3𝑓+𝑘5𝑆𝛼⏟      
𝐼𝑛𝑐𝑒𝑝 & 𝑆𝐺 𝑓𝑟𝑜𝑚 𝐴

−
1

1+
𝑘2𝑏𝐴+𝑘9𝑂

𝑘3𝑏𝑆𝛼⏟      
𝑅𝑒𝑣 𝐼𝑛𝑐𝑒𝑝 𝑓𝑟𝑜𝑚 𝐻)

 
 
+ 𝑘4𝑆𝛼⏟
𝑆𝐺 𝑣𝑖𝑎 𝐼

)

 
 
𝐼 − (𝑘10𝑆𝛼 + 𝑘11𝑆𝛽)𝑂 (6-34) 

𝑑𝑆

𝑑𝑡
|𝐻.𝑂.𝑇. =

𝑘3𝑏𝑆𝛼𝐻

1+
𝑘2𝑏𝐻+𝑘8𝑂

𝑘3𝑓+𝑘5𝑆𝛼

−
𝑘3𝑓𝐴

1+
𝑘2𝑏𝐴+𝑘9𝑂

𝑘3𝑏𝑆𝛼

   (6-35) 
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Since there are two intermediates now and I is closer to an acetylene-type species, the 

steady-state assumption should not be assumed for I. As a result, all soot formation in Eq. 6-34is 

dependent on I rather than F as with other schemes above. If SSA is used for I, the first term in Eq. 

6-34becomes Eq. 6-36with another higher-ordered term in Eq. 6-37. 

𝑑𝑆

𝑑𝑡
=

(

 
 
𝑘2𝑓

(

 
 1

1+
𝑘2𝑏𝐻+𝑘8𝑂

𝑘3𝑓+𝑘5𝑆𝛼⏟      
𝐼𝑛𝑐𝑒𝑝 & 𝑆𝐺 𝑓𝑟𝑜𝑚 𝐴

−
1

1+
𝑘2𝑏𝐴+𝑘9𝑂

𝑘3𝑏𝑆𝛼⏟      
𝑅𝑒𝑣 𝐼𝑛𝑐𝑒𝑝 𝑓𝑟𝑜𝑚 𝐻)

 
 
+ 𝑘4𝑆𝛼⏟
𝑆𝐺 𝑣𝑖𝑎 𝐼

)

 
 𝑘1[𝐹]

𝑘2𝑓+𝑘4𝑆𝛼+𝑘7𝑂 
   (6-36) 

𝑑𝑆

𝑑𝑡
|𝐻.𝑂.𝑇. =

(

 
 1

1+
(𝑘4𝑆𝛼+𝑘7𝑂)

𝑘2𝑓

(

 
 1

1+
𝑘2𝑏𝐻+𝑘8𝑂

𝑘3𝑓+𝑘5𝑆𝛼⏟      
𝐼𝑛𝑐𝑒𝑝 & 𝑆𝐺 𝑓𝑟𝑜𝑚 𝐴

−
1

1+
𝑘2𝑏𝐴+𝑘9𝑂

𝑘3𝑏𝑆𝛼⏟      
𝑅𝑒𝑣 𝐼𝑛𝑐𝑒𝑝 𝑓𝑟𝑜𝑚 𝐻)

 
 
+ 𝑘4𝑆𝛼⏟
𝑆𝐺 𝑣𝑖𝑎 𝐼

)

 
 
𝑘2𝑏[𝐴][𝐻] (6-37) 

 

The collective features of these models are somewhat straightforward. In the cold region 

away from the flame formation >> “oxidation” ( 𝑘2 + 𝑘3[𝑆] ≫ 𝑘[𝑂]𝑙 ) and then many of these 

models collapse to: 

𝜔𝑠 = 𝑘1[𝐹]     (6-38) 

i.e. soot directly forms from fuel. Here, the inception and surface growth distinction disappears. 

When SSA is used on the soot precursor and then it is further assumed that soot formation 

dominates the competition for the precursor, then effectively any fuel that becomes the 

intermediate will become soot. When oxidation >> formation ( 𝑘[𝑂]𝑙 ≫ 𝑘2 + 𝑘3[𝑆] ), then the 

models become: 

𝜔𝑆 = 𝜙 ( 𝑘𝑖𝑛𝑐 + 𝑘𝑆𝐺[𝑆] − 𝑘𝑟𝑒𝑣[𝑆] )    (6-39) 
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Where the 3 important processes related to formation are distinct (oxidation would also be included 

for a full treatment). The fuel dependency would come through the phi parameter. While this was 

the desired formula, this applies to a regime close to the flame, where the intermediate is attacked 

by lumped oxygen but some is still available for soot formation. In between these two regimes, the 

chemical expression is too complex to derive a 𝜙-based model. At best, soot formation can be seen 

as defined by the behaviors of two boundaries, with the bulk intermediate region being a mixture 

of these chemical regimes. While this method ultimately did not come to fruition in terms of 

validating the initial 𝛷 based model, it did enable developments in the model as seen below where 

formation and reversibility are modeled as distinct processes. 

 

6.4 Formation – Reversibility Soot Model 

6.4.1 Motivations 

Given these various considerations, we propose an alternative semi-empirical modeling 

approach with the aim to capture both the competition between formation and the reversing 

processes that occur on the fuel-side of a diffusion flame. This two-term formulation indicates 

competition between these processes, with the total soot formation being the net sum between the 

two. For this new model, the net soot production is zero at the location 𝛷𝑐𝑟𝑖𝑡 = 0.65, indicating 

that the soot-formation process is balanced by reversibility. This value was chosen as the median 

value of the reversibility region as observed in Figs. 1, M and was in the bounds of 𝛷 as determined 

by Table N. we seek to capture this effect conceptually, concisely, and recognize that to fully 

capture the nuances of this phenomenon would require modeling effects whose detail is beyond 
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the aim and scope of this project. This effect is achieved by fitting the various rate constants so 

that the overall rate becomes zero at this location, as described further below.  

Formation-Reversible Model: 

𝜔𝑆 = 𝜔𝑓𝑜𝑟𝑚 − 𝜔𝑟𝑒𝑣      (6-40) 

𝜔𝑓𝑜𝑟𝑚 = 𝑘𝑓𝑜𝑟𝑚𝑌𝐹,𝐵 exp (−
𝑇𝐴,𝑓𝑜𝑟𝑚

𝑇
)    (6-41) 

𝜔𝑟𝑒𝑣 = 𝑘𝑟𝑒𝑣 exp (−
𝑇𝐴,𝑟𝑒𝑣

𝑇
)     (6-42) 

where 

𝑌𝐹,𝐵 = 𝑌𝐹,0
𝑍−𝑍𝑠𝑡

1−𝑍𝑠𝑡
     (6-43) 

 

6.4.2 Normalization Method 

The formation Arrhenius temperature for a one-step soot formation process is set to 𝑇𝐴,𝑓𝑜𝑟𝑚 =

15,600 𝐾, as determined from measurements found the literature [84]. The leading constants for 

the two terms in the model and the activation temperature in Eq. (12) are determined by fitting to 

experimental data available in the literature and by using the procedure outlined below. In solving 

for the constants, three criteria are imposed: 1) that the resulting peak svf matches that of an 

experimental measurement for a particular reference flame condition [81] which is described 

below, 2) that no soot forms at 𝛷 ≤ 0.65 for the soot inception limit flame (the formation and 

reversibility are equivalent at this location), and 3) that the model predict a blue (soot-free) flame 

for the sooting limit flame (as quantified in Chapter 4). With these three conditions, the three 

remaining unknowns of Eq. 6-41 – 6-42 (𝑘𝑓𝑜𝑟𝑚, 𝑘𝑟𝑒𝑣, 𝑇𝐴,𝑟𝑒𝑣) can be found.  
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6.4.3 Evaluation Results 

The modeling constraints were satisfied with kform = 1.19E5, krev = 22.4, TA,rev = 8,500 K and 

the results are shown in Fig. 6-5. Predictions of svf are shown in Fig. 6-5a; soot forms and is 

transported via convection (designated by arrows) to the psp where it accumulates, leading to the 

signature svf profile of the counterflow flame. The new model agrees well with the measured svf 

values at Zst = 0.074 [81], which can be directly verified by comparison with the experimental data 

points in Fig. 6-5a. The model also predicts the experimentally observed soot-free (blue) 

conditions for Zst = 0.393, as the peak svf is below the limit line designating svf of 0.01 ppm. 

The predicted soot formation rate profile is shown in Fig. 6-5b. Model results indicate that soot 

can form in a region between two boundaries as discussed in the theory section. Near the fuel inlet, 

soot beings to form (𝛷 ~ 0.92 for Zst = 0.074) as sufficient temperature is reached for the given 

fuel availability. On the high temperature side of the soot formation zone (𝛷 ~ 0.58 for Zst = 0.074), 

net soot production ceases as the reversing reactions surpass formation reactions. The region 

between this location and the flame front is not conducive to soot formation. As Zst increases, the 

soot formation zone shrinks from both the right (high-𝛷) and left (low-𝛷) side of the zone. The 

model predicts a reduction of soot formation at higher-𝛷 due to the effect of dilution diminishes 

the fuel available to form soot. The model also predicts a reduction of soot formation at lower-𝛷 

due to the effects captured by the reversibility term (Eq. 6-42). There are no direct experimental 

comparisons to the three intermediates Zst (0.196, 0.291, 0.347) flames, which are displayed in Fig. 

6-5 to indicate the gradual and continuous reduction of soot formation. Finally, at Zst = 0.393, these 

reductions coincide to yield zero net soot formation. For this flame condition, no soot can form at 

𝛷 lower than the critical value, thus satisfying the third modeling constraint. This suppression of 

soot formation can also be seen by viewing the different formation (Eq. 6-41) and reversibility 
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(Eq. 6-42) rates, as shown in Fig. 6-5c for Zst = 0.074, 0.291, and 0.393. For Zst = 0.074, there is a 

region where the formation rate is significantly higher than the reversibility rate. As Zst increases, 

this gap narrows until at Zst = 0.393, when reversibility has overtaken the formation rate 

everywhere. 

  

  

Figure 6-6: Results from the new model for all Zst in the changing Zst evalulation; a) predicted and experimentally 

measured svf vs. distance from psp; diagnostic limit for svf shown by red line. Arrows indicate direction of gas 

convection. b) total formation rate vs. 𝛷; c) formation and reversibility rates vs. 𝛷 for 3 different Zst; d) H+ radical 

mass fraction vs. 𝛷. 
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Finally, the reversibility term in Fig. 6-5c can be compared to the mass fraction of 𝐻+ 

radicals predicted by the detailed KM2 model for varying Zst in Fig. 6-3. It is apparent that these 

two curves are similar in their shape, peak location, and their trend with Zst. Therefore, it is with 

great interest that we note that the fitting parameters and therefore the shape of the reversibility 

curve were determined solely by the criteria of zeroing below 𝛷𝑐𝑟 and balancing the limit value at 

high Zst. While it is recognized that the reversibility process is multi-faceted, this approach appears 

to capture the main feature. As a final note, the reversibility processes described in this paper are 

more focused on precursor chemistry and therefore could be seen to more directly affect the soot 

inception process rather than all soot formation. The following section will use this model 

framework to reverse the inception process only.   

 

6.5 Semi-Empirical Extensions 

6.5.1 Motivations 

 

Since the formation-reversible model showed considerable successes at elevated Zst, 

another layer of detail and potential accuracy was investigated where inception and surface growth 

are separately considered. Rather than develop new models, two established two-step semi-

empirical models were used: the Leung-Lindstedt (LL) model [47] and the Moss-Brookes (MB) 

model [29]. These two were chosen based on their popularity and because they show similarity of 

form but with varying fitting constants that result in different results for the same flame conditions 

(e.g. see results in [85]). Previous work by this group has shown their inadequacy at elevated Zst, 

making them fitting candidates to investigate a reversibility-based remedy. The modified equations 
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are shown below with terms from the original models (Eqs. 6-46 – 6-48, 6-49 - 6-51) included. 

The reversible forms of the models are labelled LLR and MBR, respectively. 

Semi-Empirical Models, with Modification: 

𝜔𝑆 = 𝑘𝑛𝑜𝑟𝑚 ((𝜔𝑖𝑛𝑐 − 𝜔𝑟𝑒𝑣) + 𝜔𝑠𝑔)      (6-44) 

𝜔𝑛 = 𝑘𝑛𝑜𝑟𝑚 (
𝑁𝐴𝑉

𝑀𝑃
 (𝜔𝑖𝑛𝑐 − 𝜔𝑟𝑒𝑣)) − 𝜔𝑐𝑜𝑎𝑔    (6-45) 

Leung-Lindstedt 

𝜔𝑖𝑛𝑐 = 10
4 [𝐶2𝐻2] exp (−

21100

𝑇
)     (6-46) 

𝜔𝑠𝑔 = 𝑓(𝑆) ∗ 6 ∗ 10
3 [𝐶2𝐻2] exp (−

12100

𝑇
)    (6-47) 

  𝑓(𝑆) = (𝐴𝑠)
0.5 = (𝜋𝑑𝑝

2 ∗ 𝜌𝑛)
0.5
= (𝜋 (

6

𝜋

1

𝜌𝑆

𝑌𝑆

𝑛
)

2

3
 𝜌𝑛)

0.5

   (6-48) 

 

Moss-Brookes 

𝜔𝑖𝑛𝑐 = 7.78 ∗ 10
3[𝐶2𝐻2] exp (−

21100

𝑇
)    (6-49) 

𝜔𝑠𝑔 = 𝑓(𝑆) ∗ 30.7 ∗ [𝐶2𝐻2]
0.4 exp (−

12100

𝑇
)    (6-50) 

𝑆 = 𝐴𝑠 = 𝜋𝑑𝑝
2 ∗ 𝜌𝑛 = (𝜋 (

6

𝜋

1

𝜌𝑆

𝑌𝑆

𝑛
)

2

3
 𝜌𝑛)

1

    (6-51) 

 

Semi-Empirical Reversible Terms 

𝜔𝑟𝑒𝑣,𝐿𝐿 = 𝑘𝑟𝑒𝑣,𝐿𝐿 exp (−
𝑇𝐴,𝑟𝑒𝑣

𝑇
)    (6-52) 

𝜔𝑟𝑒𝑣,𝑀𝐵 = 𝑘𝑟𝑒𝑣,𝑀𝐵 exp (−
𝑇𝐴,𝑟𝑒𝑣

𝑇
)    (6-53) 
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6.5.2 Normalization Method 

The value of 𝑇𝐴,𝑟𝑒𝑣 is retained as used in the formation-reversible model above (8500 K). 

However, since the reversibility term is only applicable to inception rather than total soot formation 

as in the former model, 𝑘𝑟𝑒𝑣 must be found by a different condition for these models. Similar to 

condition (2) above, here the condition is that no soot forms at 𝛷 ≤ 0.65 at the soot inception limit 

(Zst = 0.393, see  Chapter 4); the inception and reversibility are now equivalent at this location. 

Finally, there is a normalization factor imposed on these semi-empirical models to adjust them 

such that that the peak svf match that of an experimental measurement for a particular reference 

flame condition [81] which is described below, as in condition (1) above, and described previously 

for semi-empirical models [85]. The normalization factor is multiplied on the net inception 

(𝜔𝑖𝑛𝑐 − 𝜔𝑟𝑒𝑣) and mass surface growth (𝜔𝑠𝑔) terms (see Eqs. 6-44 - 6-45). The values of these 

constants are 𝑘𝑛𝑜𝑟𝑚= 1.39, 𝑘𝑟𝑒𝑣,𝐿𝐿 = 1.6E-3 (LLR) and  𝑘𝑛𝑜𝑟𝑚= 4.8, 𝑘𝑟𝑒𝑣,𝑀𝐵 = 1.2E-3 (MBR). 

Note that these normalization factors differ from those in Table 4.2, because the equations for these 

models have been modified. 

6.5.3 Evaluation Results 

Results for the LLR model are shown in Fig. 6-6. The svf profiles, seen in Fig. 6-6a, show 

a steady decrease in peak svf as Zst increases. At Zst = 0.074, the peak value matches the 

experimental svf. For the experimental blue flame, the predicted peak is below the limit, thus 

correctly predicing soot-free conditions. In Fig. 6-6b, the predicted soot formation rate is shown. 

The rate is always bounded between 0.6 < 𝛷 < 0.9. As Zst increases, the zone region shrinks and 

the formation rate decreases. As the blue condition is approached, the peak formation rate location 

shifts to 𝛷 = 0.65. This result is consistent with the experimental observation as described above 

for the 𝛷𝑐𝑟 boundary. In Fig. 6-6c, the net nucleation rate for LLR is shown. Similar to the toal 
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formation rate, there is steady decrease of the inception rate magnitude and the zone size also 

decreases. At Zst = 0.393 (blue), there is no inception. For comparison, the LL inception without 

reversibility is shown in Fig. 6-6d. 

 

 

Figure 6-7: Results from the Leung-Lindstedt-Reversible model for the changing Zst evalulation; a) predicted and 

experimentally measured svf vs. distance from psp; diagnostic limit for svf shown by red line. Arrows indicate 

direction of gas convection. b) total formation rate vs. 𝛷; c) net inception (𝜔𝑖𝑛𝑐 − 𝜔𝑟𝑒𝑣) rate vs. 𝛷; d) inception rate 

(𝜔𝑖𝑛𝑐) vs. 𝛷. 

 

 The results for the MBR model are shown in Fig. 6-7 and are similar to the LLR model. 

The rate is more strongly affected (diminishes faster) at elevated Zst due to the greater sensitivity 

of the surface term (Eq. 6-46 has 𝜔𝑆 ~ 𝐴𝑠 while Eq. 6-43 has 𝜔𝑆 ~ 𝐴𝑠
0.5). The comparison of this 

effect between two models has been previously discussed [85].  
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Figure 6-8: Results from the Moss-Brookes-Reversible model for the changing Zst evalulation; a) predicted and 

experimentally measured svf vs. distance from psp; diagnostic limit for svf shown by red line. Arrows indicate direction 

of gas convection. b) total formation rate vs. 𝛷; c) net inception (𝜔𝑖𝑛𝑐 − 𝜔𝑟𝑒𝑣) rate vs. 𝛷;  d) inception rate vs. 𝛷. 

 

Fig. 6-8 shows the three reversible models (Eq. 6-40, LLR, MBR) plus the original models 

(LL, MB) for three increasing Zst flame conditions, so that the model progression can be observed. 

While all models show agreeable predictions of svf compared to experimental measurements for 

the low Zst flame (Fig. 6-8a), only the three reversible models predict soot quantities under the 

diagnostic limit for the blue flame, while the LL and MB models over-predict (discussed in [85]). 

The fact that even a one-step models can outperform standard semi-empirical models at this 

condition by including a single temperature-based reversibility term highlights the importance of 
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accounting for this feature at these conditions. Including reversibility is a necessary and sufficient 

condition for modeling soot at elevated Zst. 

  

 

Figure 6-9. Predicted svf vs 𝛷. for all models. Arrows indicate direction of gas convection. a) Zst = 0.074 (includes 

experimentally measured svf and diagnostic limit for svf shown by red line) ; b) Zst = 0.291; c) Zst = 0.393. Note: the 

reference of “Eq. 4” refers to Eq. 6-40, which was listed as “Eq. 4” in the journal manuscript from which this figure 

was taken. 

 

6.5.4 Other Results 

 

To show the robust nature of these reversible models, predictions from the five models are 

shown in Fig. 6-9 for two other counterflow flames where svf profiles have been measured. Results 

comparing predictions against measurements found in Hwang et al. [2] can be seen in Fig. 6-9a. 

This flame has different burner dimensions, inlet velocities (lower strain rate), and flame 
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temperature (2322 K) than the flames listed above (2517 K); full details are in Table 6-3. For this 

flame, the original LL model overpredicted the experimental peak svf by a factor of 3 while the 

LLR aligns with the measurements perfectly. The MB model overpredicted the peak svf by over 

an order of magnitude while the MBR underpredicted by an order of magnitude. The FR model is 

close to the experimental measurements, only slightly underpredicting the peak svf. 

Flame Name, Source YF,0 YO2,0 Zst TAD U0 (cm/s) D (cm) 

Hwang SF 20 [2] 1.0 0.222 0.055 2322 19.5 1.42 

Xu SF 30 [82] 1.0 0.329 0.088 2649 20 0.8 

Table 6-3: List of flame conditions for simulations. 

 

Results comparing predictions against measurements from Xu, et al. [82] are shown in Fig. 

6-9b. This flame condition has enriched the oxygen concentration (𝑋𝑂2 = 0.30) such that Zst 

slightly increases but the flame temperature increases (2649 K) significantly compared to the flame 

series above. Here, both the LL and LLR are very close and both align well with the experimental 

svf. The MB and MBR models overpredict the experimental svf by over a factor of three and four, 

respectively. The model from Eq. 6-40 again performs well, with very slight overprediction. It is 

emphasized that the reversible models required no further adjustment to the fitting constants from 

the earlier results of Section 6 (but have been adjusted from Section 5). These results indicate that 

LLR will either maintain the same predictions or will improve them compared to LL. The results 

for MB and MBR are less conclusive for these flames as neither model performs very well. This 

is not surprising considering that the LL surface growth constants were fitted in a counterflow 

flame while MB was fitted for a coflow flame where growth regimes can be different (compare 

Eqns. 6-47, 6-48 with Eqns. 6-50, 6-51). We therefore assert that the reversibility term proposed 
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here is a robust feature that does not diminish prediction capability in more-traditional non-

premixed counterflow flame environments. These results indicate that the Eq. 6-40 and LLR 

models are accurate for a wide range of counterflow flame conditions and that the reversibility 

framework yields a net modeling improvement, although further research is needed to fully 

validate these models under alternate flame conditions and flame types. 

 

Figure 6-10. Predicted svf vs. distance from psp for all models. Arrows indicate direction of gas convection. a) 

Hwang SF 0.20; b) Xu SF 0.30. Note: the reference of “Eq. 4” refers to Eq. 6-40, which was listed as “Eq. 4” in the 

journal manuscript from which this figure was taken. 
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6.6 Conclusions 

A new approach has been developed for semi-empirical soot models which can capture the 

changes in soot formation as Zst is modified by accounting for both formation processes as well as 

important reversibilities which counteract formation. This approach uses a temperature-based term 

to approximate the chemical reversibilities which counter soot formation. This reversibility term 

was used alongside an original one-step formation model and was also added as an extension to 

two existing semi-empirical models (Leung-Lindstedt and Moss-Brookes). 

Using this modeling approach resulted in all three models matching experimental 

measurements at low Zst (25% O2). More importantly, all three models correctly predicted blue 

(soot-free) conditions in a non-premixed counterflow flame for the first time. By comparison with 

models that did not include reversibility, it was demonstrated that this result cannot be obtained by 

considering formation processes alone. This study, therefore, shows that the performance of semi-

empirical soot formation models can be dramatically improved when applied to higher-Zst flames 

if the reversible nature of soot formation at high temperature is considered. 

The models produced in this study showed good agreement with experimental svf profiles for 

sample flames of two other experimental data sets. Results showed that Leung-Lindstedt was either 

improved or that an accurate status quo was achieved while the Moss-Brookes results were less 

accurate (with or without the reversibility term). By using a variety of flame conditions, it is shown 

that while this reversibility framework is simple, it is also robust and applicable for a wide range 

of counterflow flames. Finally, here is a need for additional experimental measurement of svf in 

higher-Zst flames to validate such models. 
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6.7 Supplemental Material 

Categorization of Reactions (by Reaction Number in the KM2 mechanism): 

C1: 

R: CH2, P: 

H 

R:CH3, 

P: 

R:CH3, 

P: H 

R:CH3, 

P: H2 

R: CH2O, 

P: 

R:CH3, P: 

OH 

R: CH2, P: 

H2 

R: CH4, P: 

H 

1153 765 -777 1165 949 -988 1137 -1138  
-990 -979 

 
950 

   

 
1104 -982 

     

 
1162 1103 

     

 
-1163 1154 

     

  
-1157 

     

 

C2: 

R: C2H, P: 

H 

R: C2H2, 

P:  

R: C2H2, 

P: H 

R: C2H3, 

P: H 

R: C2H3, 

P: 

R: C2H3, P: 

H2 

R: C2H3, P: 

H3 

784 785 786 794 795 999 960 

814 812 826 796 973 1034 961 

815 -813 827 797 977 
  

825 835 836 927 
   

833 846 847 971 
   

834 871 872 975 
   

870 -980 873 1010 
   

966 1008 890 1015 
   

967 1009 1004 1021 
   

1036 1020 1030 
    

 
-1031 1033 

    

 
1032 1035 

    

 
-1055 1054 

    

 
1121 -1087 

    

 
1242 -1091 

    

 
1291 1098 

    

 
1292 -1101 

    

 
1306 1122 

    

  
1234 

    

  
1272 

    

  
1273 
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1274 

    

  
1275 

    

  
1276 

    

  
1315 

    

  
1325 

    

  
1333 

    

  
1351 

    

 

C2, continued: 

R: C2H4, P: 

H 

R: C2H4, P: R: C2H4, P: 

H2 

R: C2H5, P: 

H 

R: C2H5, 

P: 

R: C2H6, 

P: H 

944 947 1011 -939 -943 1110 

974 
 

1016 
   

978 
 

1022 
   

 

C3 Addition: 

R: C3H3, 

P: H2 

R: 

C3H3, 

P:  

R: C3H3, 

P: H 

R: 

C3H2, 

P:  

R: C3H2, 

P: H 

R: C3H5, 

P:H2 

R: CH2CO, 

P: OH 

R: 

CH2CO, 

P: O 

1039 1092 1119 1127 1136 1150 -1267 -1268  
1096 1120 

 
1147 1151 -1270 -1295  

1124 1125 
 

1148 
 

-1294 
 

 
1126 1146 

   
-1297 

 

      
-1341 

 

 

C9 Dimerization: 

1152 

Aromatic-Condensation: 

R: A1, P: H R: A1, 

P:  

R: A1, P: 

H2 

R: A1, P: H, 

H2 

R: A2, 

P: H 

R: A2, P: 

H2 

867 884 1014 959 1316 1317 

868 886 1118 1013 
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869 
     

883 
     

887 
     

1123 
     

 

List of Reactions Used: 

         765. A1-+CH3=C6H5CH3 

         777. C6H5CH2+H=A1-+CH3 

         784. A1+C2H=A1C2H+H 

         785. A1-+C2H2=n-A1C2H2 

         786. A1-+C2H2=A1C2H+H 

         794. A1+C2H3=A1C2H3+H 

         795. A1-+C2H3=A1C2H3 

         796. A1-+C2H3=i-A1C2H2+H 

         797. A1-+C2H3=n-A1C2H2+H 

         812. A1C2H*+C2H2=>A1C2HC2H2 

         813. A1C2HC2H2=>A1C2H*+C2H2 

         814. A1C2H*+C2H2=A1C2H_2+H 

         815. A1C2H*+C2H2=naphthyn+H 

         825. A1C2H+C2H=A1C2H_2+H 

         826. A1C2H3*+C2H2=>A2+H 

         827. n-A1C2H2+C2H2=>A2+H 

         833. A2+C2H=A2C2HA+H 

         834. A2+C2H=A2C2HB+H 

         835. A2-1+C2H2=A2C2H2 

         836. A2-1+C2H2=A2C2HA+H 

         846. A2C2HB*+C2H2=>A3-1 

         847. A2C2HB*+C2H2=A2C2H_2+H 

         867. A1C2H*+A1=>A3+H 

         868. A1-+A1C2H=>A3+H 

         869. A1-+A1C2H=>A3+H 

         870. A3+C2H=A3C2H+H 

         871. A3-4+C2H2=A3C2H2 

         872. A3-4+C2H2=A3C2H+H 

         873. A3-4+C2H2=>A4+H 

         883. A1+A1-=P2+H 

         884. A1+A1-=P2-H 

         886. A1-+A1-=P2 

         887. A1-+A1-=P2-+H 

         890. P2-+C2H2=>A3+H 

         927. A1C2H+C2H3=>A2+H 

         939. A1C2H5+H=A1+C2H5 

         943. A1C2H5=A1-+C2H5 

         944. A1C2H*+C2H4=>A2+H 

         947. A1-+C2H4=A1C2H4 

         949. A1-+CH2O=A1CH2O 

         950. A1-+CH2O=A1CHO+H 

         959. A2+A1-=>FLTN+H+H2 

         960. A2+C2H3=A2C2H2+H2 

         961. A2+C2H3=A2C2H2B+H2 

         966. A2C2H2+C2H2=>A3+H 

         967. A2C2H2B+C2H2=>A3+H 

         971. A2C2HA+C2H3=>A3+H 

         973. A2C2HA*+C2H3=>A3 



116 

 

         974. A2C2HA*+C2H4=>A3+H 

         975. A2C2HB+C2H3=>A3+H 

         977. A2C2HB*+C2H3=>A3 

         978. A2C2HB*+C2H4=>A3+H 

         979. A2CH2+H=A2-1+CH3 

         980. A2CH2=C9H7+C2H2 

         982. A2CH3+H=A2+CH3 

         990. A2CH3=A2-1+CH3 

         999. A2R5+C2H3=A2R5C2H2+H2 

        1004. A2R5C2H2+C2H2=>A3R5+H 

        1008. A2R5C2HY+C2H2=>A3R5X 

        1009. A2R5-+C2H2=A2R5C2H2 

        1010. A2R5-+C2H3=A2R5C2H2+H 

        1011. A2R5-+C2H4=A2R5C2H2+H2 

        1013. A2-1+A1=>FLTN+H+H2 

        1014. A2-1+A1-=>FLTN+H2 

        1015. A2-1+C2H3=A2C2H2+H 

        1016. A2-1+C2H4=A2C2H2+H2 

        1020. A2-2+C2H2=A2C2H2B 

        1021. A2-2+C2H3=A2C2H2B+H 

        1022. A2-2+C2H4=A2C2H2B+H2 

        1030. A3R5X+C2H2=A4R5+H 

        1031. A3-4=>A2R5-+C2H2 

        1032. A2R5-+C2H2=>A3-4 

        1033. A3-1+C2H2=A3R5+H 

        1034. A3-1+C2H3=A3R5+H2 

        1035. A4-2+C2H2=A4R5+H 

        1036. C6H2+C2H=C8H2+H 

        1039. C9H7+C3H3=A2R5+H2 

        1054. C6H5CH2+C2H2=C9H8+H 

        1055. C6H5CH2=c-C5H5+C2H2 

        1087. C7H6+H=>c-C5H5+C2H2 

        1091. C7H5+H=C5H4+C2H2 

        1092. C7H5(+M)=C4H2+C3H3(+M) 

        1096. c-C5H5(+M)=C2H2+C3H3(+M) 

        1098. C3H3+C2H2=C5H4+H 

        1101. C5H3+H=C3H2+C2H2 

        1103. C6H5CH2+CH2=A1C2H3+H 

        1104. C6H5CH2+CH3=A1C2H5 

        1110. A1-+C2H6=A1C2H5+H 

        1118. A1-+A1-=BIPHEN+H2 

        1119. A1-+C3H3=A1C3H2+H 

        1120. A1C3H2+C3H3=P2-+H 

        1121. C7H6+C2H2=C9H8 

        1122. C7H6+C2H2=C9H7+H 

        1123. A1-+AC3H4=C9H8+H 

        1124. A1-+C3H3=C9H8 

        1125. A1+C3H3=C9H8+H 

        1126. C6H5CH2+C3H3=C10H10 

        1127. C6H5CH3+C3H2=C10H10 

        1136. C9H7+C3H2=A2R5+H 

        1138. C6H5CH3+H=A1-+CH4 

        1146. A2CH2+C3H3=>A3+H+H 

        1147. A2CH3+C3H2=>A3+2H 

        1148. A2CH2+C3H2=>A3+H 

        1150. A2CH2+C3H5-A=>A3+H2+H2 

        1151. A2CH2+C3H5-S=>A3+H2+H2 

        1153. A3CH2+CH2=>A4+H2+H 
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        1154. A3-4+CH3=A3CH2+H 

        1157. A3CH3+H=A3+CH3 

        1162. c-C5H5+CH3=>C5H5CH3 

        1163. C5H5CH3=>c-C5H5+CH3 

        1165. c-C5H5+CH3=C5H4CH2+H2 

        1234. A3-1+C2H2=A3C2H-2+H 

        1242. A3C2H-JS+C2H2=CHRYSENJ1 

        1272. 

CHRYSENJ4+C2H2=BAPYR+H 

        1273. 

CHRYSENJ5+C2H2=BAPYR+H 

        1274. A4-1+C2H2=PYC2H-1+H 

        1275. A4-2+C2H2=PYC2H-2+H 

        1276. A4-4+C2H2=PYC2H-4+H 

        1291. PYC2H-1JP+C2H2=>BAPYRJS 

        1292. PYC2H-2JS+C2H2=>BAPYRJS 

        1306. PYC2H-

4JS+C2H2=>BEPYRENJS 

        1315. 

BEPYRENJS+C2H2=>BGHIPER+H 

        1316. A2-1+A2-1=>PERYLEN+2H 

        1317. A2-1+A2=>PERYLEN+H2+H 

        1325. 

PERYLENJS+C2H2=>BGHIPER+H 

        1333. 

BAPYRJS+C2H2=>ANTHAN+H 

1351. BGHIPEJS1+C2H2=>CORONEN+H 
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Chapter 7: Expanding Emission Predictions 

through Machine Learning 
 

7.1 Introduction 

Combustion process are important for a vast array of industries such as energy production, 

cement, food processing, and heating. However, an abundance of excess air is provided to avoid 

incomplete combustion which would waste fuel and create emissions such as CO and PM. By 

operating at more optimal conditions (closer to stoichiometric) and increasing boiler efficiency 

through processes such as by using less air, less heat will be rejected from the system, leading to 

lower fuel usage (lowering costs) and lower CO2 emissions. Ideally, future efficiency in the system 

could be predicted based on current internal and external factors, and then adjustments made to 

the airflow in real time to mitigate low performance even before it occurs. However, external 

factors like weather, fuel quality, and aging equipment (the average age of American power plants 

is over 28 years old [2]) drastically change what are the optimal operating conditions to achieve 

perfect combustion. In addition to efficiency concerns, there is a continued challenge to meet 

increasingly stringent demands on emissions such as NOX and PM. At times, there is a trade-off 

between these two types of emissions due to chemical regime which favors one or the other 

pollutant (low excess O2 can favor CO creation while high excess O2 can favor NOx creation). 

A variety of potential remedies exist for pollutant related issues, such as modifying operating 

conditions (inputs) or processing the exhaust gas (outputs). Pursuing alternative operating 

conditions appears to be far cheaper than adding modifications to existing power plants such as 

catalytic reactors for NOx [86] and can also directly address the efficiency issues describes above. 
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To find these alternative operating conditions, recourse can be made to either heavy monitoring of 

the boiler or else to modelling the system. The current standard for combustion monitoring is to 

use dedicated sensors for each variable of interest – potentially several dozens for a large facility. 

These sensors are difficult to install, expensive to maintain,. [87] susceptible to harsh combustion 

environments lead to constant maintenance and frequent calibration [88, 89], and are slow to 

process dynamic changes in complex combustion environments. Further, by solely relying on 

monitoring, operators may not even be aware of certain conditions which are optimal for 

performance and emissions. Better understanding of the exact combustion conditions can improve 

power plant efficiency, reduce operating and maintenance costs, and help maintain a reliable and 

resilient energy infrastructure by ensuring the operators are able to achieve and maintain optimal 

performance. 

Therefore, modelling the system has significant potential for meeting these constraints in a 

cost-effective manner. Several modelling options exist. One option is that of an input-output map, 

but these ‘models’ are ad-hoc and lose effectiveness with system aging. The system in question 

could also be modeled in a detailed manner; however, this option can be computationally 

expensive [87], challenging [86, 89], or even inaccurate [88] due to the multitude of complexity 

of NOx formation pathways. These criticisms leave open the option of developing new models 

using artificial intelligence (AI), which offers the ability not only to model the system but also to 

optimize the system operation conditions [89, 90]. Analysts can run in silico experiments with 

these models to optimize thermal efficiency and train algorithms to recommend ideal plant settings 

in real-time. Thus, using artificial intelligence and high-performance computing our proposed 

solution could help fossil fuel users address the challenges caused by increasing supply of 

intermittent energy on the grid and emission reduction goals. Next, a brief review is given of some 
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attempts to model combustion problems using various AI techniques, followed by the need for a 

novel algorithm to address operational optimization for a powerplant boiler. 

Machine learning algorithms have already been developed for a range of varying combustion 

applications. An important application can be found in engines, which are highly complex to their 

high-pressure and transient nature. An overview of work done in this area can be found in Table 

7-1, which includes predictions of NOx and soot and also operational parameter optimization. 

Machine learning techniques have also been utilized in coal combustion applications. These 

studies have primary focused on the emission of NOX, a quantity which would be difficult to 

predict even with the availability of detailed chemical mechanisms. Many different techniques and 

algorithms have been used to address this prediction and are catalogued in Table 7-2. An 

assortment of other machine learning applications to combustion can be found in Table 7-3. The 

work of Tan et al. is particularly insightful. These authors have indicated that ELM was favorable 

to traditional ANN and LSTM was favorable to SVM and has also noted that “the training process 

can become intractable with a large data set (2016) and has focused on updating models to handle 

transient boiler operations. F. Wang lists many issues with previous attempts to use data driven 

methods on NOx which encompass both data collection and modelling techniques. 
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First Author 

& Citation 
Year Application 

Inputs / 

Diagnostics 
Algorithms Used 

Outputs /  

Predictions 

Alcan [91] 2019 diesel 

engines  

 gated recurrent unit (GRU) 

network; 

nonlinear autoregressive with 

exogenous input (NARX) 

Soot emission 

Potenza [92] 2020 Turbo-

charged 

GDI 

 Neural Network Two Color 

(NNTC)  

Soot 

Badra [93] 2019 Gasoline 

compression 

ignition 

(GCI) 

 Machine Learning-Grid 

Gradient Algorithm (ML-

GGA)  

Machine learning Genetic 

Algorithm (ML-GA), 

optimize the 

operating 

conditions (case 1) 

and the piston 

bowl design (case 

2) 

Mao  [94] 2019 ethanol-diesel 

engine 

ethanol, 

power, 

engine 

speed. 

back-propagation (BP), 

Elman network, radial basis 

network (RBF)  

generalized regression neural 

network (GRNN) 

brake specific fuel 

consumption 

(BSFC), effective 

brake specific fuel 

consumption 

(EBSFC), 

 effective brake 

thermal efficiency 

(EBTE), exhaust 

gas temperature 

(EGT), 

CO, HC, NOX, 

Soot 

Pan [95] 2020 PCCI engine cylinder 

pressure, 

engine 

combining principal 

component analysis (PCA) to 

reduce inputs dimensions 

NOx, Soot 
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operations 

parameters 

with a multi-layer perceptron 

(MLP) neural network 

Liu [96] 2016 diesel engine  principal component analysis 

(PCA) 

genetic algorithm (GA) 

support vector machine 

(SVM) 

NOx 

Lughofer [87] 2011 Internal 

combustion 

engine 

 (short for FLEXible Fuzzy 

Inference Systems) 

NOx 

(prediction) 

Yu [97] 2019 Reactivity 

Controlled 

Compression 

Ignition 

(RCCI) 

engines 

local 

equivalence 

ratio (ER) 

and 

temperature 

K-means clustering algorithm Soot 

 

Table 7-1. Literature survey of machine learning advancements related to engine-based 

combustion. 
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First Author & 

Citation 
Year Application 

Inputs / 

Diagnostics 
Algorithms 

Outputs / 

Predictions 

Buyamin [98] 2013 

power 

generation 

plant 

 
hybrid Genetic Algorithm 

Linear Regression (GA-LR) 
NOx emissions 

F. Wang [88] 2018 
coal-fired 

power plants 
 deep belief network (DBN) NO emission 

P. Tan [86] 2016 
coal-fired 

power plant 

10000 

samples 

from the real 

power plant, 

covering 7 

days? 

ELM (extreme learning 

machine) 

HS (harmony search) 

NOx 

P. Tan [99] 2019 
coal-fired 

power plant 

10000 

samples 

from the real 

power plant, 

covering 7 

days? 

long short-term memory 

(LSTM) 

support vector machine 

(SVM) 

NOx 

Zheng [100] 2009 
coal-fired 

utility boiler 
 

Support vector regression 

(SVR) 

ant colony optimization 

(ACO) 

genetic algorithm (GA) 

particle swarm optimization 

(PSO) 

NOx 

(optimization) 

C. Wang [101] 2020 
coal-fired 

boiler 
 

Gaussian Process (GP) 

Genetic Algorithm (GA) 

Support Vector Machines 

(SVM) 

NOx 

(optimization) 
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Zhou [102] 2004 

large 

capacity 

pulverized 

coal fired 

boiler 

over-fire-air 

(OFA) flow 

rates, coal 

properties, 

boiler load, 

air 

distribution 

scheme and 

nozzle tilt 

artificial neural networks 

(ANN) 

NOx 

Carbon burnout 

(optimization) 

Lv [89, 103] 2015 
coal-fired 

boiler 

“real 

operation 

data” 

adaptive least squares support 

vector machine (LSSVM) 

NOx 

(prediction) 

Lv [89, 103] 2013 
coal-fired 

boiler 

“real 

operation 

data” 

partial least squares (PLS) 

adaptive least squares support 

vector machine (LSSVM) 

NOx 

(prediction) 

Hao  [104] 2001 
coal burned 

utility boiler 
 neural network 

NOx 

(optimization) 

N. Li [105] 2015 
biomass 

combustion 

flame radical 

imaging 
deep learning (DL) 

NOx emissions 

(Prediction) 

Ilamathi 2013 

210 MW 

pulverized 

coal-fired 

boiler 

flue gas O2, 

coal prop, 

coal flow, 

boiler load, 

air dist. 

scheme, 

flue gas  

temp., 

nozzle tilt 

artificial neural network 

(ANN) 

genetic algorithm (GA) 

NOx 

(prediction and 

optimization) 

P. Tan [90] 2016 

coal-fired 

utility 

boilers 

 

principle component analysis 

(PCA) 

support vector regression 

(SVR) 

NOX emissions 
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artificial neural network 

(ANN) 

Han [106]  

coal and 

biomass 

combustion 

applications 

 
stacked sparse autoencoder 

based deep neural networks 

combustion stability 

monitoring 

 

Table 7-2. Literature survey of machine learning advancements related to powerplant 

(coal-based) combustion. 

  



126 

 

 

 

First Author 

& Citation 
Year Application 

Inputs / 

Diagnostics 
Algorithms 

Outputs / 

Predictions 

Cuccu 2017 
heavy-duty 

gas turbines 

Operating 

parameters 
 Emission predictions 

Li [107] 2020 Roadside  Random Forest (RF) PM2.5 and NOx 

Ren [108] 2019 
Hencken flat 

flame 

spectral 

infrared 

emission 

measurements 

neural networks 
Temperature, 

CO, CO2, and H2O 

Grant-Jacob 2018 general images Neural networks 

Material, number of 

microspheres, 

mapping of location on 

the substrate, 

real-time detection of 

airborne pollutants 

Tamas 

[109] 
2016 air quality 

ozone (O3), 

nitrogen 

dioxide (NO2) 

and particulate 

matter (PM10) 

MultiLayer Perceptron 

(MLP), hybridized with 

hierarchical clustering and 

with a combination of self-

organizing map and k-

means clustering 

forecasting models 

Garcés 

[110] 
 

total 

radiation, 

flame 

temperature 

 

extreme learning machines 

(ELM) based methods and 

partial least squares (PLS) 

regression 

of estimating energy 

efficiency 

 

Table 7-3. Miscellaneous machine learning applications to combustion. 
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Research in the area of machine-learning based approaches to combustion is a developing 

field, with the above survey attesting to the willingness of investigators to develop new models. 

However, the ultimate success of such models is largely dependent upon the availability of 

sufficient operating data for model training and validation. The objective of this work is to perform 

a series of experiments in a laboratory-scale combustor to provide data to train, via machine 

learning, and to validate a combustion emissions model through exploratory data analysis and 

supervised simulations. In so doing, the feasibility and utility of machine learning-based 

combustion models can be demonstrated and evaluated.  A validated combustion emissions model 

can be used to determine the ideal operating conditions for a system through stochastic 

optimization and, ultimately, enable operators to run fast, inexpensive in silico experiments on 

their facilities without disrupting operations and an optimizer that maximizes combustion 

efficiency with more accurate controls, lowering greenhouse gas emissions, saving operators’ time 

and the company money in fuel costs. 

 

7.2 Experimental Methods 

Experiments were performed in a 25 kW horizontally-fired reaction with a triaxial burner 

was used and has been previously described [111]. The burner was of a tri-axial configuration with 

three gas flow inputs: fuel (methane), primary oxidizer (PO), and secondary oxidizer (SO). The 

secondary oxidizer was split into axial and swirl streams. Axial flow was achieved in the former 

stream by passing through flow straighteners. The swirl stream was introduced tangentially to the 

wall, mixing with the axial stream. The proportion of these two streams determines the extent of 
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swirl in the SO and is quantified by Eq. 7-3.  All gas flows were set manually with control valves 

and measured with rotameters.  

The combustion chamber was 2.43 m in length with a 16.7 cm inner diameter and was 

followed downstream by a second section for complete exhaust gas mixing, soot burnout, and heat 

rejection that was 120 cm in length and 37 cm inner diameter. Eight type-K thermocouples were 

placed at intervals along the reactor, with the first thermocouple measuring the entering air velocity 

and the last thermocouple placed in the burnout section. The burnout section was connected to the 

facility ventilation system which pulled a slight vacuum. Exhaust gas was extracted for 

measurement via sampling probe which was inserted into the burnout section of the reactor. A 

diagram of the burner and diagnostics are shown in Fig. 7-1.  

 

 

Figure 7-1. Experimental setup of combustor with gas inputs, exhaust outputs, and various diagnostics to measure 

temperature, exhaust composition and emission quantities. 

 

The sampling line was passed to an in-house condensation trap surrounded by an ice bath. 

After exiting the trap, the sampling line was split. One section was passed through an inline filter 
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before entering a Testo350 continuous emissions monitor (CEM) which measured concentrations 

of O2, CO, NO, and CO2. The accuracy of these quantities are listed in Table 7-4 below. N2 

concentration was calculated by the Testo as the remaining quantity. The second split in the 

sampling line was passed to a SidePak™ Personal Aerosol Monitor AM520 (light-scattering laser 

photometer) to measure the scattering signal of particulate matter under 2.5 micrometers (PM2.5). 

All measured gaseous and PM emission concentrations were converted to units of weight per unit 

thermal input. Since the SidePak is calibrated using Arizona road dust, and the carbonaceous 

particulate formed in this system differs from road dust with respect to size distribution and optical 

properties, the measured quantity is a relative rather than absolute amount. Therefore, PM2.5 

emissions are reported in arbitrary units.  

 

 

Table 7-4. Accuracy listings from the Testo350 for the gas quantities as a function of the measurement range. 

 

Quantity Measurement Range Accuracy 

CO 

0 to 199 ppm CO ±5 ppm 

200 to 2000 ppm CO ±5% of mv 

2001 to 10000 ppm CO ±10% of mv 

NOx 

0 to 99 ppm NO ± 5 ppm 

100 to 1999.9 ppm NO ±5% of mv 

2000 to 4000 ppm NO ±10% of mv 

CO2 

 

0 to 25 vol.% CO2 ±0.3 vol. % CO2+ 1% of mv 

>25 to 50 vol.% CO2 ±0.5 vol. % CO2+ 1.5% of mv 

O2 0 to 25 vol.% O2 ± ±0.2% of vol. 
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Combinations of the four input controls of the reactor (fuel, PO, SO Swirl, and SO Axial) 

lead to four calculated quantities which characterize the combustion process: thermal input, 

stoichiometric ratio (𝜆), stoichiometric ratio of the PO (𝜆𝑃𝑂), and swirl percent. These quantities 

are defined in Eqs. 7-1 – 7-3.  

𝜆 =
(𝐹 𝐴⁄ )

(𝐹 𝐴⁄ )
𝑠𝑡

      (7-1) 

𝜆𝑃𝑂 =
(𝐹 𝐴⁄ )

𝑃𝑂

(𝐹 𝐴⁄ )
𝑠𝑡

      (7-2) 

𝑆𝑤𝑖𝑟𝑙 % =
�̇�𝑆𝑤𝑖𝑟𝑙

�̇�𝑆𝑤𝑖𝑟𝑙+�̇�𝐴𝑥𝑖𝑎𝑙
     (7-3) 

The relationships between the primary inputs (gas flows) and derived inputs (Eqs. 7-1 – 7-

3, plus thermal input), and measured outputs (Table 7.4) are shown in Fig. 7-2. While the 

relationships between primary and derived inputs can be interconnected, the relationships are 

algebraic in nature and therefore deterministic. On the contrary, the relationship between derived 

inputs and outputs can be complex (see CO, NO, and PM in Fig. 7-2) and dependent on multiple 

kinetic pathways. The algorithm developed here will be trained to capture these complexities and 

be able to predict future outputs from given inputs. To provide a comprehensive data set for 

algorithm training, these quantities were varied in a systematic manner in order to obtain all 

possible combinations of input variables (𝑘𝑊, 𝜆, 𝜆𝑃𝑂, 𝑆𝑤𝑖𝑟𝑙 %). A summary of these conditions is 

listed in Table 7-5, which the varied quantity in italics. A full set of the conditions (rather than 

ranges) can be found in Section 7.6 (Supplemental Material). 
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Figure 7-2 Causal diagram indicating the relationships between primary inputs (physical quantities controlled in the 

system), derived inputs (calculated quantities), and outputs (measured quantities). 

 

Recordings were made of temperature, O2, CO2, CO, NO, and PM2.5. Experiments were 

typically performed by preheating the reactor for 2-3 hours to achieve a steady temperature 

distribution. Then, 5-6 conditions were met between the range in consideration, with each 

condition being held at 30 minutes. Diagnostic resolution was initially at 5 sec, but later refined to 

1 sec. In sum, over 66 hours were spent running the reactor with over 57 hours being allocated to 

data-generating conditions, generating over 140,000 total data points for the algorithm training. 
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Fuel (kW) SR, Total (λ) SR, PO (λ) Swirl % Experiment # 

12 1.2-1.4 0.3 66.7% 6, 12 

14 1.07-1.37 0.3 66.7% 5, 13 

14 1.39 0.2-0.29 66.7% 3 

16 1.06-1.55 0.3 66.7% 1 

16 1.07-1.11 0.3 0-100% 11 

16 1.35-1.52 0.3 0-100% 10 

16 1.39 0.2-0.39 66.7% 3 

16 1.1 0.2-0.38 66.7% 14 

18 1.08-1.46 0.3 66.7% 8 

20 1.08-1.41 0.3 66.7% 9 

20 1.3 0.16-0.36 66.7% 16 

20 1.1 0.2-0.34 66.7% 15 

20 1.05 0.3 0-100% 17 

20 1.05 0.4 0-100% 18 

 

Table 7-5. Operating condition ranges for experimental base set used to train algorithm. The experiment 

number is used as a reference for the figures legends in the results section. 
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7.3 Results 

While producing this data set for model training, several noteworthy trends were observed 

regarding the role that gas inputs have on emission outputs. Firstly, NOx emission was contingent 

on several operating parameters as seen in Fig. 7-3. Each data point plotted contains approximately 

thirty minutes worth of data averaged out over that time span. The role of thermal input is seen in 

Fig. 7-3a, where the collective data from all experiments shows NOx values steadily increasing 

with greater thermal input. This trend is consistent with the known tendency for increased 

temperature to promote NOx formation, and thermal input typically correlated with increased 

temperatures in these experiments. Next, 𝜆𝑃𝑂 played an important role on NOx (Fig. 7-3b), as 

these two quantities increased together. The reason for this behavior is that by increasing 𝜆𝑃𝑂, 

there is a greater presence of NOx precursors (N2, O2) in the high-temperature regions of the flame, 

creating a reaction environment conducive to NOx formation. Finally, increased swirl promoted 

NOx emission, as seen in Fig. 7-3c. The reasons is that swirl increases the mixing of air into a high 

temperature zone compared to the axial case. 
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Figure 7-3. Measurements of NOx averaged over a thirty-minute condition vs. a) thermal inputs (kW), b) primary air 

ratio 𝜆𝑃𝑂, c) swirl %. 

 

 The emission of CO was comparatively straightforward, as seen in Fig. 7-4. The dominant 

factor was overall excess air (Fig. 7-4a). The role of 𝜆𝑃𝑂 (Fig. 7-4b) had a secondary effect, but 

the underlying reasons are not obvious, but is likely related back to the overall excess air. 
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Figure 7-4. Measurements of CO averaged over a thirty-minute condition vs. total air (𝜆) with emissions shown in a) 

linear scaling and b) logarithmic scaling. 

 

 The emission of PM was similarly increased by reducing the air inputs. For 𝜆 < 1.1, there 

is significant PM emission as seen in Fig. 7-5a, although there is significant production for 𝜆 ≥ 1.2 

for cases when 𝜆𝑃𝑂 is low. The effect of 𝜆𝑃𝑂 on PM can be seen in Fig. 7-5b, where there is an 

uptick in PM creation for 𝜆𝑃𝑂< 0.25. These two values work in tandem. When 𝜆 is lowered, the 

𝜆𝑃𝑂 threshold for PM emission is also lowered and vice-versa. There was no correlation observed 

between swirl and PM (not shown). 

  

Figure 7-5. Measurements of particulate matter (PM) averaged over a thirty-minute condition vs. a) total air ratio 

(𝜆), b) primary air ratio 𝜆𝑃𝑂.  
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7.4 Conclusions 

 A full test campaign has been performed in a 25-kW combustor using CH4 fuel and 

measuring temperature, exhaust gas composition, and pollutants. This data is being used to train a 

machine learning algorithm, still under development. Several important trends were noted 

experimentally regarding the effects that primary air ratio and swirl number can have on the 

production and emission of NOx and PM2.5. 
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7.5 Supplemental Material 

Below is a list of every condition used in the test campaign to train the algorithm. The 

vast majority of these conditions were for thirty minutes. 

 

 

Fuel (kW) SR, Total (λ) SR, PO (λ) Swirl % 

12 1.2 0.3 66.7% 

12 1.25 0.3 66.7% 

12 1.3 0.3 66.7% 

12 1.36 0.3 66.7% 

12 1.39 0.3 66.7% 

12 1.4 0.3 66.7% 
 

12 1.2 0.3 66.7% 

12 1.25 0.3 66.7% 

12 1.3 0.3 66.7% 

12 1.36 0.3 66.7% 

12 1.39 0.3 66.7% 

12 1.4 0.3 66.7% 
 

14 1.07 0.3 66.7% 

14 1.12 0.3 66.7% 

14 1.16 0.3 66.7% 

14 1.21 0.3 66.7% 

14 1.25 0.3 66.7% 

14 1.3 0.3 66.7% 
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14 1.37 0.3 66.7% 
 

14 1.07 0.3 66.7% 

14 1.12 0.3 66.7% 

14 1.16 0.3 66.7% 

14 1.21 0.3 66.7% 

14 1.25 0.3 66.7% 

14 1.3 0.3 66.7% 

14 1.37 0.3 66.7% 
 

16 1.06 0.3 66.7% 

16 1.12 0.3 66.7% 

16 1.16 0.3 66.7% 

16 1.20 0.3 66.7% 

16 1.24 0.3 66.7% 

16 1.28 0.3 66.7% 

16 1.32 0.3 66.7% 

16 1.38 0.3 66.7% 

16 1.47 0.3 66.7% 

16 1.55 0.3 66.7% 
 

16 1.07 0.3 0.0% 

16 1.07 0.3 15.0% 

16 1.05 0.3 31.0% 

16 1.04 0.3 51.0% 

16 1.06 0.3 70.0% 

16 1.11 0.3 100.0% 
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16 1.39 0.20 66.7% 

16 1.39 0.22 66.7% 

16 1.39 0.24 66.7% 

16 1.39 0.26 66.7% 

16 1.39 0.28 66.7% 

16 1.39 0.31 66.7% 

16 1.39 0.33 66.7% 

16 1.39 0.35 66.7% 

16 1.39 0.37 66.7% 

16 1.39 0.39 66.7% 
 

16 1.1 0.2 66.7% 

16 1.1 0.24 66.7% 

16 1.1 0.27 66.7% 

16 1.1 0.31 66.7% 

16 1.1 0.33 66.7% 

16 1.1 0.37 66.7% 

16 1.1 0.38 66.7% 
 

16 1.49 0.3 0.0% 

16 1.33 0.3 11.0% 

16 1.36 0.3 22.0% 

16 1.35 0.3 34.0% 

16 1.35 0.3 46.0% 

16 1.36 0.3 52.0% 

16 1.37 0.3 57.0% 
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16 1.40 0.3 80.0% 

16 1.43 0.3 90.0% 

16 1.52 0.3 100.0% 
 

18 1.08 0.3 66.7% 

18 1.12 0.3 66.7% 

18 1.15 0.3 66.7% 

18 1.19 0.3 66.7% 

18 1.2 0.3 66.7% 

18 1.25 0.3 66.7% 

18 1.32 0.3 66.7% 

18 1.40 0.3 66.7% 

18 1.46 0.3 66.7% 
 

20 1.08 0.3 66.7% 

20 1.12 0.3 66.7% 

20 1.15 0.3 66.7% 

20 1.21 0.3 66.7% 

20 1.24 0.3 66.7% 

20 1.28 0.3 66.7% 

20 1.30 0.3 66.7% 

20 1.39 0.3 66.7% 

20 1.41 0.3 66.7% 
 

20 1.3 0.16 66.7% 

20 1.3 0.21 66.7% 

20 1.3 0.27 66.7% 
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20 1.3 0.30 66.7% 

20 1.3 0.36 66.7% 
 

20 1.1 0.20 66.7% 

20 1.1 0.23 66.7% 

20 1.1 0.27 66.7% 

20 1.1 0.30 66.7% 

20 1.1 0.34 66.7% 
 

20 1.05 0.3 0.0% 

20 1.05 0.3 31.0% 

20 1.05 0.3 50.0% 

20 1.05 0.3 68.0% 

20 1.05 0.3 100.0% 
 

20 1.05 0.4 0.0% 

20 1.05 0.4 50.0% 

20 1.05 0.4 100.0% 
 

16.3 1.4 0.3 66.7% 

11.3 1.4 0.3 66.7% 

20 1.4 0.3 66.7% 

11.3 1.4 0.3 66.7% 

13.8 1.4 0.3 66.7% 

18.5 1.4 0.3 66.7% 

15.2 1.4 0.3 66.7% 
 

12.05 1.25 0.3 66.7% 



142 

 

 

 

Table 7-6. All experimental conditions for test campaign which generated data to train the machine learning algorithm. 

  

14.11 1.24 0.3 66.7% 

16.12 1.25 0.3 66.7% 

18.11 1.29 0.3 66.7% 

20.19 1.27 0.3 66.7% 
 

20.05 1.18 0.3 66.7% 

17.89 1.20 0.3 66.7% 

16.12 1.15 0.3 66.7% 

14.11 1.16 0.3 66.7% 

12.05 1.20 0.3 66.7% 

 

14.52 1.39 0.29 66.7% 

14.52 1.39 0.27 66.7% 

14.52 1.39 0.25 66.7% 

14.52 1.39 0.22 66.7% 

14.52 1.39 0.20 66.7% 
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Chapter 8: Conclusions and Future Work 
 

 

8.1 Conclusions 

 This research has developed new modeling capabilities for the prediction of combustion 

emissions through diverse toolsets ranging from semi-empirical soot modeling for unique flame 

applications to machine learning algorithms targeting industrial combustion processes at large. 

 Several notable achievements have been made with regard to soot modeling at high Zst. 

The first is the demonstration that existing soot-models are inadequate to predict soot fraction 

under these conditions. Next, the subsequent analysis of the physical-chemical processes in soot 

formation granted insights into the importance of reversibility. As part of this analysis, the 

utilization of plotting gas species and soot in equivalence ratio (𝛷) space was established as tool 

which has universal appeal to combustion applications. Developments were made in understanding 

the high-temperature region prior to the flame where soot particles cannot form and 𝛷-space was 

an essential aid in this analysis. Taking this new knowledge together, a semi-empirical framework 

was proposed which includes soot reversibility as a solution for soot modeling a high Zst. This 

framework was used to introduce a new model with one-step formation and also to modify two 

popular semi-empirical models. All three of these models were able to predict blue (soot-free) 

flames, which is a novel achievement for this field. In addition to offering these modeling tools, a 

fundamental point has been made that reversibility is an important process which should be 

considered for soot formation, especially the inception process for all flames (both for low, but 

especially for, high Zst).  
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 Finally, machine learning techniques offer a fresh approach to modeling complex physical 

and chemical processes which occur in combustion systems. A large data set has been generated 

which has demonstrated several important trends for the reactor regarding operational parameters 

and pollutants of interest such as NOx and PM2.5. Next steps involve model validation and 

prediction of optimized input conditions for this system. 

8.2 Future Work 

 The research accomplishments here provide significant opportunities for advancement. 

The developed soot models can and should be applied to other flame types to determine their 

universal validity. More experimental data could be generated in the counterflow flame, where full 

soot profiles of intermediate Zst would aid in the optimization of the current model. A proposed 

immediate step for modeling purposes would be to introduce these models into coflow flames, 

where there already exists a data set [4] of measured soot fraction across a wide range of Zst. Given 

that the semi-empirical focus was chosen for its appeal to large-scale applications, these models 

should also be applied to furnaces, engines, and gas turbines. For these flame types, some measures 

must be taken to include oxidation reactions. The research included in this dissertation 

intentionally designed the counterflow flame conditions to focus on soot formation and non-

oxidation counteractive effects. Oxidation terms exist in wide variety for semi-empirical models, 

but use of such terms would require refitting of the empirical constants and would be contingent 

on which proposed model is used. 

In regards to machine learning efforts, future work is already underway, as validation test 

cases are being run and the model is continually refined. Further tests will examine the ability of 
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the model to notify operators of needed input changes in real-time. Finally, application of this 

model to industrial settings will be pursued. 
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