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Proteins, one of the most fundamental biomolecules, adopt unique higher order structures (HOS) 

to enable diverse biological functions. Deciphering protein HOS is crucial to gain deeper insights 

of their working mechanisms and to develop biotherapeutics. Mass spectrometry (MS)-based 

approaches evolved rapidly in the past 30 years and are now playing critical roles in protein HOS 

characterization. One of those approaches is MS-based footprinting whose principle is to map the 

solvent accessible surface area (SASA) to deliver structural information. Protein footprinting can 

be achieved by reversible labeling, e.g., hydrogen-deuterium exchange (HDX), and by 

irreversible labeling using radical-based reagents or other targeted labeling reagents. Irreversible 

labeling such as fast photochemical oxidation of protein (FPOP) and cross-linking (XL) delivers 

the information of the reactive amino acid side chains, whereas HDX allows the analysis of the 

backbone amides. Information from the two aspects are different yet complementing to each 

other. In Chapter 1, the two MS-based footprinting methodologies are reviewed and discussed in 

detail including the fundamental, history, and recent applications.  
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In the second section, development of the irreversible radical footprinting is the primary focus, 

specifically the elaboration of FPOP platform. Chapter 2 describes the generation and evaluation 

of a new radical reagent, the carbonate radical anion, on the FPOP platform; a radical that can 

selectively label methionine and aromatic residues, complementing others radical reagents in the 

footprinter “toolbox”. Chapter 3 demonstrates a novel way of elaborating FPOP platform that is 

to follow protein unfolding by coupling two lasers together: one to induce protein 

conformational changes by pH jump and the other to label protein with radical reagents. A time 

delay between the two lasers enables the characterization of the dominant protein conformations 

at different stages of unfolding. 

The third section emphasizes the integration of several footprinting approaches as well as 

computational methods for comprehensive analysis of protein HOS. In Chapter 4 and 5, HDX, 

XL-MS and molecular docking are combined to determine protein-protein binding interfaces and 

to map epitope/paratope of an antigen-antibody complex, respectively. In particular, Chapter 4 

discusses the potential of using HDX to adjudicate candidate docking models for quaternary 

structure elucidation. Besides molecular docking, homology modeling in combination with XL-

MS is also a successful marriage to decipher protein structures, an example is demonstrated in 

Chapter 6. Restraints derived from cross-links help modify and validate a predicted structure of 

phycolisome, contributing to the first proposed architecture of the protein complex in 

cyanobacteria.  

The six chapters combine to demonstrate the development and application of MS-based 

footprinting in protein HOS characterization. Given the effectiveness and powerfulness of these 

methods, significant contributions by MS-related approaches are well to be expected in the field 

of structural proteomics.  
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Chapter 1: Introduction to Mass Spectrometry-Based 

Footprinting for Higher Order Protein Structure 

Analysis* 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* This chapter is based on the following publication: Liu, X. R.; Zhang, M. M.; Gross, M. L. 

Mass Spectrometry-Based Protein Footprinting for Higher Order Structure Analysis: 

Fundamentals and Applications Chem. Rev. 2020, 120, 4355-4454. 
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1.1 Abstract 

Proteins exhibit diverse higher order structures (HOS) that contribute to their distinctive 

functionalities. Characterization of protein HOS is crucial to allow deeper understanding of their 

interactions and enable better designs of biotherapeutics. There are many biophysical approaches 

to probe protein HOS: traditional optical methods that provide fast but low-resolution 

information and high-resolution techniques (X-ray crystallography and nuclear magnetic 

resonance) that deliver atomic-level information. Mass spectrometry-based (MS) approaches 

offer middle-to-high resolution data and complement the others while providing significant 

advantages (e.g., fast throughput, sensitive detection, in-solution characterization). One of the 

essential components of the MS-based approaches is protein footprinting, which utilizes different 

labeling reagents to map the solvent-accessible area (SASA) of proteins to describe HOS. 

Reversible footprinting utilizes H-D exchange for a relatively unbiased labeling on the backbone 

amide hydrogens; however, reagents employed in irreversible footprinting react, often with high 

specificity, with the side chains of accessible residues. In addition, the labeling time scale, 

sample preparation and experimental set-up are all different for the two footprinting methods, 

contributing to different applications. This chapter summarizes and compares these differences in 

detail including the historical and fundamental aspects, providing a comprehensive background 

for the thesis.  

1.2 Introduction 

Proteins are one of the fundamental biomolecules, regulating complex yet delicate bioactivity 

networks. The diverse functionalities1 of proteins include (i) providing mechanical support as the 

cell skeleton; (ii) transporting other biomolecules to the targeted locations; (iii) transmitting 
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signals to coordinate different types of biological process; (iv) catalyzing cellular reactions to 

assist new molecules formation; (v) binding to pathogens to provide immune protection. To 

afford distinctive biological functions, protein three-dimensional (3D) structures are highly 

diverse, which in turn leads to several mechanisms that are taken to execute their various roles. 

Therefore, it is crucial to characterize protein higher order structure (HOS), and that insight can 

not only deepen our understanding of their functions mechanistically but will also aid the design 

of biotherapeutics along the way.  

There are four orders of protein structures, namely (i) primary structure that consists of the 

amino acids sequence encoded genetically in nucleic acids; (ii) secondary structure that arises by 

folding of the primary structure to give, for example, α-helices, β-sheets, and β-turns; (iii) 

tertiary structure resulting from assembly of all local structures into an overall 3D architecture; 

(iv) quaternary structure that forms when one protein interacts with another to give a protein 

complex. Characterization of protein HOS typically refers the secondary structure and beyond, 

and this class of structure can be addressed by many biophysical approaches.  

To probe globally the secondary structure content or the conformational changes near a label, 

CD, FT-IR, FRET and UV can be good candidates. Although these optical techniques provide 

relatively low resolution, they deliver the results efficiently and rapidly. On the other hand, the 

approaches that have the highest resolution, X-ray crystallography,2 nuclear magnetic resonance 

(NMR)3-5 and cryo EM6-7, give atomic-level information but also show some disadvantages. X-

ray crystallography relies on the diffraction pattern of a crystalized protein sample, which can be 

challenging to obtain. In addition, the information derived from a solid-state structure may not be 

relevant in solution. NMR does probe the protein structures in solution,8-9 but the required 

sample amount is large, typically milligrams. Furthermore, the long signal-averaging time and 
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complicated data analysis also limit its applications. Recently developed cryo-EM also enables 

the characterization of non-crystalline samples10-11 with low sample amount and straightforward 

sample preparation. The approach, however, favors high-molecular-proteins, typically larger 

than 100 kDa.12 

Over the past three decades, mass spectrometry-based methods have evolved from a few 

scattered studies in specific amino acid labeling and HDX to many applications that give middle-

to-high resolution. The sensitive detection, fast throughput, low amount of protein sample 

(nanogram to microgram level) in solution, rapidly developed instrumentation, and advanced 

data analyzing software greatly promote its adoption to various biological questions and protein 

systems.  

One critical aspect to characterize protein HOS is MS-based footprinting13, which maps solvent-

accessible surface area (SASA) on protein or protein complexes. MS-based footprinting can be 

further subdivided into two classifications, namely reversible and irreversible footprinting. The 

most common example of reversible footprinting is based on the H-D exchange on the backbone 

amide hydrogens; this approach is also known as the hydrogen-deuterium exchange MS (HDX-

MS). Irreversible footprinting makes use of targeted-labeling reagents with slower chemistry 

(mins to hours) and radical-labeling reagents that can react with residue side chains on the micro 

to millisec time scale. When combined with bottom-up MS analysis, these approaches resolve 

the structural information from peptide level to residue level.  

In this chapter, we review the history, fundamentals, experimental designs, and key applications 

of both the reversible and irreversible footprinting. The review serves to introduce the 

development and application of the MS-footprinting approaches as a theme of this thesis. 
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1.3 Reversible Protein Footprinting: Hydrogen-Deuterium 

Exchange 

1.3.1 History and Fundamentals 

Hydrogen deuterium exchange (HDX), a rapid emerging technique in recent years, has been 

adopted widely to study protein conformations and dynamics. In 1954, Hvidt and Linderstrøm-

Lang carried out the first HDX on protein with pork insulin, establishing the connection between 

the H/D exchange rate and protein dynamics.14 Later, HDX was coupled with other analytical 

techniques (e.g., NMR15-17 and Fourier transform infrared (FTIR) spectroscopy) to achieve better 

spatial resolution. The marriage of HDX and NMR not only enables residue-level information 

for small proteins18 but also allows the determination of exchange rates for individual amide 

protons3, 19. The broad application of HDX-NMR has been largely limited, however, by the 

complications of handling large proteins. Instead, the integration with mass spectrometry brought 

forth a more sensitive and broadly applicable approach. Given the sensitive detection of MS and 

the apparent mass shift when exchanged into deuterium, HDX-MS enabled advances to larger 

proteins at lower concentration. The first study of HDX-ESI-MS was carried out by Katta and 

Chait20 in 1991. After deuterium exchange, they observed a shift of the centroid mass on the 

isotopic envelope of the global protein. Later, Zhang and Smith21 coupled a proteolytic approach 

with HDX to locate the structural changes at regional resolution, a pioneer study setting up the 

paradigm for the HDX analysis today.  

HDX delivers the structural information of proteins by describing the local solvent accessibility 

and hydrogen bonding networks on amide backbone. The backbone amide hydrogens that are 

exposed to solvent on a protein surface and involved weakly in hydrogen bonding are more 
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labile, and they exchange more rapidly than the ones that are buried inside the protein structure 

and stabilized by H-bonds. The hydrogens on the sidechains, however, are even faster 

exchangers that are difficult for most experiments to measure. The negligible exchange on side 

chain hydrogens makes the information from HDX an “unbiased” readout that reports all amino 

acids containing an N-H hydrogen on backbone. The rate constant of N-H to N-D, kch, is 

determined by pD, temperature, and the local environment of the residues. HDX is both acid and 

base-catalyzed, giving a minimal kch at pH around 2.5. 22-23 Practically, the apparent HDX 

exchange rate, kHDX, is much smaller than kch, mainly affected by the accessibility to the amide 

sites and the intramolecular interaction of N-H···O=C among peptide bonds.24 The breathing 

motion of the H-bonds comes with an opening and a closing transition (expressed as kop and kcl, 

respectively), which can compete with kch, contributing to different HDX regimes, EX1 and EX2 

(eq 1.1). In EXI where kch >> kcl, the apparent kHDX = kop, indicting an immediate exchange to 

deuterium after the initial opening event. In EX2 where kcl >> kch, the apparent HDX exchange 

rate is characterized as kHDX = Kopkch, in which Kop = kop/kcl. Generally, the EX2 regime is more 

prevalent than EX125-26, whereas the combination of the two is also common to see27-28.⇌ 

 N-Hclosed  N-Hopen  N-Dopen  N-Dclosed   (1.1) 

1.3.2 Experimental Setup and Applications 

Most HDX experiments are conducted differentially between two states, for example a bound 

and an unbound protein or a wildtype and a protein mutant. The changes in SASA that result 

from the binding interactions or conformational alterations are represented by the deuterium 

uptake extent. In practice, HDX is often coupled with bottom-up analysis to get regional or even 

residue-level information. Prior to a differential HDX experiment, peptide mapping is an 

essential step to create a list of peptides that can be monitored to afford spatial resolution. The 
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main components in peptide mapping is to optimize the quenching condition for a maximal 

denaturation of the targeted protein and, at the same time, minimal back exchange of the 

incorporated D to H. Concentration of the denaturant and the reducing regent as well as the 

incubation time and temperature all require careful consideration. The optimized quenching, 

digestion protocol, and MS method are then applied in the HDX experiment (workflow is shown 

in Figure 1.1).  

The HDX data obtained are typically analyzed by commercial software (e.g., HDExaminer,29 

HDX Workbench,30), where a built-in algorism fits the isotopic distribution of each peptide, 

giving the centroid of the pattern and the average deuterium uptake compared no exchange.  

 

Figure 1.1 Schematic representation of HDX-MS workflow.  

HDX-MS being a valuable asset in the characterization toolbox for protein HOS analysis has 

many advantages. The use of deuterium as a footprinting reagents introduces minimal 

perturbation on protein structure and provides a “unbiased” labeling on nearly all residues 

(except Proline), comparing to other protein labeling techniques. In addition, the interface with 

mass spectrometry enables a fast throughput of data acquisition. Recent developments of HDX 

data processing software further contribute to more efficient data analysis, promoting wide 

applications in both academic and industrial research laboratories. Up to now, HDX-MS has 

been successfully applied to map epitope/paratope of biotherapeutics (an example is discussed in 
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detail in Chapter 5),31-34 to characterize protein binding interface with other biomolecules (an 

example is discussed in detail in Chapter 4),35-38 to follow protein folding/unfolding dynamics,39-

40 and to address the allosteric regions of protein or protein complexes.41  

There are challenges for further advancing the approach. To increase the spatial resolution, even 

to individual amino acid level, researchers have made considerable effort including multi-

enzyme digestion to increase overlapping peptides,42-43 high-pressure digestion for enhanced 

digestion efficiency,44-45 and employment of ETD or ECD for orthogonal fragmentations with 

minimal HD scrambling46-48. Furthermore, the demanding adaptability of HDX-MS to membrane 

proteins is also a concern, wherein the on-line removal of lipids can be troublesome. Although 

the recent development of using zirconium (IV) oxide to remove detergent and lipids49 represents 

a promising solution, a robust methodology is still on the way.   

1.4 Irreversible Protein Footprinting: Chemical Cross-

linking 

The 20 amino acids have different kinds of functional groups on their side chains; most have 

functional groups (COOH, SH, NH2, OH, CONH2, aromatic ring) that can be labeled with 

chemical reagents that react specifically, usually with one or two amino acids. These modifying 

reactions can be used for footprinting provided the reactivity of these groups depends on SASA 

of the protein, and the modifications in the early stages do not affect the protein structure, 

minimizing the biased report during the footprinting itself. Reagents react directly and usually 

slowly with specific solvent-accessible side chains in contrast to free radicals, which react 

rapidly. The product contains a characteristic mass tag that can be detected by MS analysis. 

Although numerous reagents have been developed to react with the amino acid side chains, a 



9 

 

qualified protein footprinting reagent needs to label the protein under physiological conditions 

with reasonable efficiency and speed. The size and hydrophilicity of the reagent should be close 

to that of water to ensure its reactivity is an indicator of SASA. Most of these reagents developed 

to date are highly specific, targeting one or two side chains or functional groups although some 

can react with more than two.  

Residue-specific reagents have a long history of development for various purposes, while their 

applications in protein footprinting generally started from 1990s. This field is well reviewed in 

two articles50-51, hence is not covered in this section. Chemical crosslinkers, which can be viewed 

as bifunctional footprinters, are discussed in detail.  

1.4.1 Assessing Topology and Stoichiometry through Chemical Cross-linking 

Chemical cross-linking has developed as a complementary area of research owing to its 

capability to probe HOS and to locate and define protein/protein interfaces. Our intention, 

however, is not to review this topic comprehensively, but to describe the workflow, show how 

XL can be viewed as a means of footprinting (i.e., “double footprinting”), discuss its role in 

integrated approaches, and highlight some recent developments to unify the methodology 

described in this work.  

Cross-linking mass spectrometry (XL-MS) is effective at assessing protein complex topologies 

and elucidating protein structures besides capturing protein-protein interactions. Conceptually, 

XL utilizes bifunctional labeling reagents to cross-link (footprint) the constituent proteins 

forming an interface, thus providing information on the interacting species and their interfaces. 

When dealing with large proteins, XL can also report on the overall protein conformation.  
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Figure 1.2 Workflow of bottom-up cross-linking mass spectrometry 

To date, most of the MS-based XL studies have been by a bottom-up approach, whose workflow 

is presented in Figure 1.2. Briefly, proteins are first incubated with chosen cross-linkers under 

the optimized conditions that are established usually by monitoring with techniques simpler than 

MS (e.g., gel electrophoresis). The tethered proteins are then submitted to enzymatic digestion, 

enrichment of informative peptides, and LC-MS/MS for separation and detection. The MS data 

are further analyzed by using search engines to identify cross-linked peptides with an uncertainty 

specified by mass tolerance and false discovery rate (FDR). Significant advances since 2008 in 

data analysis have facilitated this approach; new software includes but is not limited to pLink,52 

xQuest,53 XlinkX,54 and StavroX55. Generated cross-link maps not only identify the connectivity 

of the adjacent protein subunits but also provide distance restraints as given roughly by the 

molecular separation between the two reactive functional groups of the cross-linker.  

XL-MS alone is a middle-to-low spatial resolution approach because usually there are limited 

number of reactive residues at or near an interface of two proteins, and few crosslinks form. 

Young et al.56 in 2000 showed that by combining XL distance restraints and computational 

modeling is a compelling way to improve the resolution for elucidating protein structures. The 

workflows can be adapted for integrative modeling57-58 and de novo structure prediction59-60. The 
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major challenges of computational studies are the sampling and scoring of the generated 

models61. Larger data sets derived from XL-MS effectively decrease the size of the sampling 

space and benefit the scoring function, thus promoting efforts to find high-confidence models. 

Given there can be various reactive groups and spacer lengths on cross-linkers, a strategy 

involving multiple reagents should be taken to insure comprehensive information.  

In 2014, Chait and coworkers58 demonstrated the use of disuccinimidyl suberate (DSS) and a 

zero-length EDC in characterization of the nuclear pore sub complex of Nup84. Two data sets 

generated from the use of two reagents delivered different but complementary structural 

information that significantly benefited the subsequent model construction. Many other studies 

adopted similar ideas by combining amine-targeting reagents and carboxyl-targeting reagents 

(e.g., dihydrazides62-63) or nonselective cross-linkers64-65. In addition, the use of reagent 

combinations with different spacer lengths is recommended because short cross-linkers yield 

fewer cross-links but with narrower distance restraints, whereas long cross-linkers afford more 

cross-links but less structural definition because the distance assignments are over a broader 

range.61  

New sample preparation methods also have developed rapidly (e.g., on-bead cross-linking60), 

improving the cross-linking chemistry and providing better analysis sensitivity. Many examples 

are discussed in recent reviews.66-68   

By way of contrast, footprinting by targeted and free-radical reagents and/or by HDX maps 

solvent accessible regions and reflects differences in protein dynamics or binding events. This 

information provides deeper understanding of the entire protein structure, not just interfaces, and 

can adjudicate constructed 3D models from XL for in-solution proten.69-71 
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XL is not limited to structural characterization of a single protein complex, but rather it can 

promote protein-protein interactions (PPIs) studies in proteome-wide investigations.52, 72-74 To 

meet the need for understanding the roles, functionalities, and mechanistic behavior of many 

protein complexes through their PPIs maps, cleavable XL reagents have been developed,75 

simplifying and increasing the accuracy for identification of cross-linked peptides. Incorporation 

of affinity groups and sophisticated enrichment procedure have led to success; examples are 

studies performed on E. coli73 and Caenorhabditis elegans (C. elegans).74 For example, the Heck 

group54 reported a XL-MS study of whole human cell lysates in which they identified 2179 

unique cross-links. These protein complexes (e.g., 80S ribosomal core complex) reveal novel 

interactions and provide new structural insights. 

To summarize, the increasing number of publications based on XL-MS continue to demonstrate 

its utility in MS-based biophysics, particularly in combination of other techniques. Integrating 

XL with other methods enables characterization of dynamic biological systems even of 

heterogeneous systems. The continuing development of cross-linkers will increase applications. 

Reagents that react more rapidly and target more and more amino acids, instrumentation 

advances that provide new fragmentation methods in MS/MS (e.g., CID, ETD, EThCD and 

UVPD), and software are expected for the future. Furthermore, improved separation and 

enrichment procedures will accommodate the increasing mixture complexity following XL and 

digestion and allow detection of low abundant yet informative cross-linked species.  

1.4.2 Chemical Cross-linkers 

Chemical cross-linking occurs via the formation of covalent bonds between interacting proteins 

and within a protein on adjoining regions.76-78 This structural proteomics tool often uses a 

bifunctional chemical reagent and can be viewed as bifunctional footprinting. Many reagents 
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have been developed, promoting more and more applications of chemical cross-linking. The 

character of a cross-linking reagent is determined by the nature of chemistry, spacer length, and 

built-in functional groups. Cross-linking can be an effective complement to monofunctional 

reagents that serve as footprinters, and therefore the subject is briefly covered in this review 

particularly to make that point. The emphasis is on the commonly used reagents, which fits the 

theme of footprinting. Indeed, the location of monolinks can be viewed as a footprint. Our 

discussion is organized around the cross-linking reagents as follows.  

1.4.2.1 Amine-reactive Cross-linkers: NHS-Ester and Imidoester 

N-hydroxysuccinimide Ester 

NHS-esters are the most widely used cross-linkers in field. The ester group undergoes attack by 

nearby nucleophilic sites (e.g., primary amines on Lys side chains or at the N-terminus of a 

protein/peptides, hydroxyl groups on Ser or Thr, and even sulfhydryl groups on Met) to form C-

X bonds (X = N, O, S). The differing reactivities with various nucleophilic groups, however, 

depends on reaction conditions and can introduce bias. Primary amines possess the highest 

reactivity at physiological pH, and their reactivity can be further enhanced when the pH is > 7.79-

80 Hydrolysis of NHS-esters has a half-life of 4-5 hours at pH 7 and 0 °C81; the hydrolysis, 

however, is accelerated under alkaline conditions and at higher temperature.82-83 Other possible 

products (i.e., esters and thioesters formed with Ser/Thr or Met) are less stable and undergo more 

rapid hydrolysis.83 Although the reaction is favored under acidic conditions (pH = 6.0), cross-

linking at pH = 7 still occurs. The current consensus is to consider all possible residues as sites 

for reactions in simple protein systems, whereas only Lys residues and the N-termini are 

recommended for cross-linking a large complex or in a whole proteome study to minimize 

dispersion of cross links and maximize probability for detecting the cross-links.84  
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Scheme 1.1 Common NHS-ester cross-linkers 

 

The first NHS-ester originated in late 1970s as a homo-bifunctional cross-linker.85 Since then, 

many NHS-esters possessing useful physical and chemical properties have become suitable for 

answering a range of biological questions. Designs include cross-linkers with high 

hydrophobicity and zero charge, being lipophilic and membrane-permeable and ideal for 

intramembrane cross-linking (e.g., DSS) and disuccinimidyl glutarate (DSG), Scheme 1.1). 

Other cross-linkers incorporate a sulfonate group, which imparts water-solubility and avoids 

steps of pre-dissolution in organic solvents that could perturb aqueous conditions and cause some 

protein denaturation.  

Currently, sulfo-NHS esters have become the dominant cross-linkers in characterizing soluble 

proteins and their interactions. bis(Sulfosuccinimidyl)suberate (BS3, Scheme 1.1), the most 

extensively used sulfo-NHS cross-linker, can be encoded with deuterium to facilitate better 

cross-link assignment. The spacer length is 11.4 Å, allowing cross-linking for residues separated 
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by 27 Å measured between two α carbons in an amino acid residues that are linked (termed 

Cα).86  

New developments in NHS-esters resonate well with the rapid growth in proteomics research 

enabled by advanced MS. More complicated systems with larger-scale protein candidates require 

better sequencing in MS/MS for a confident cross-linking identification. The disadvantage of 

using conventional cross-linkers is that the user must sequence species made up of two cross-

linked peptides and the cross-linker, introducing complexity into fragmentation and challenging 

the acquisition of high-quality, readily interpretable MS/MS data. Cleavable cross-linkers are, 

therefore, designed to address that problem.68 NHS-esters have incorporated chemical-cleavable 

motifs (e.g., S-S bond in 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP)79) and CID-

cleavable functional groups that include C-S bonds (e.g., disuccinimidyl sulfoxide (DSSO)87 and 

cyanurbiotindimercaptopropionyl succinimide (CBDPS)88) and C-N bonds (e.g., disuccinimidyl 

dibutyric urea (DSBU)89 and N-hydroxyphthalamide ester of biotin aspartate proline (BDP-

NHP)90). Chemical structures of these cross-linkers are shown in Scheme 1.1. In addition, some 

NHS-crosslinkers contain biotin tags (e.g., CBDPS and BDP-NHP), to provide a means of 

enriching the crosslinked species by affinity purification. 

Imidoester 

Scheme 1.2 Common imidoester cross-linkers 

 

Imidoesters, introduced in 1966 as one of the oldest reagents for protein cross-linking, are water-

soluble reagents that react specifically with primary amines (see Lys footprinting section 
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above).91 The functional imidate group reacts to form an amide bond via intermediates at an 

optimized pH range of 8-10.82 One major advantages of using imidoester cross-linkers is that the 

reaction product, an amidine, carries one positive charge. Charge removal that occurs with most 

lysine-targeting cross-linkers may disrupt intramolecular and intermolecular interactions and 

distort protein conformation, giving a biased result. The lifetime of imidoesters, however, is 

limited by rapid hydrolysis, being less than 30 min.92-93 The most commonly used cross-linkers 

in this class are dimethyl pimelimidate (DMP), dimethyl suberimidate (DMS) and a cleavable 

analog, dimethyl 3,3′-dithiobispropionimidate (DTBP), as depicted in Scheme 1.2. 

1.4.2.2 Carboxylic Acid-reactive Cross-linkers: Carbodiimide and Dihydrazides 

Scheme 1.3 Common carbodiimide and dihydrazide cross-linkers 

 

The most widely used carbomiimide is EDC (Scheme 1.3), also known as a “zero-length” cross-

linker.94-95 When this reagent facilitates cross-linking of carboxylate groups and primary amines, 

there is no spacer chain inserted between the targeted proteins, but rather an amide bond (~ 3 Å) 

between COOH and NH2-containing sidechains.94-95 One critical reaction intermediate, O-

acylisourea, is not stable in aqueous condition (Scheme 1.6), and it continues to degrade back to 

the carboxyl group. Therefore, sulfo-NHS is often incorporated in the cross-linking protocol to 

transform the O-acylisourea into a stabilized NHS-ester for more efficient conjugation. EDC 

cross-linking shows the highest reactivity at pH 4.5 and still a moderate reaction efficiency at 

neutral pH.76 2-(N-Morpholino) ethanesulfonic acid (MES) and phosphate buffer are compatible 
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with carbodiimide reagents; however, more concentrated reagents should be used in the latter 

buffer owing to the reduced reactivity.  

Other commonly used cross-linker for Asp and Glu are dihydrazides. In 2008, Kruppa and 

Novak96 first reported its use in combination with EDC activation. The reaction was carried out 

in acidic conditions (pH = 5.5), which is not physiologically friendly, to give a low cross-linking 

yield. Later in 2014, Aebersold and coworkers63 reported a new coupling reagent (other than 

EDC), 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM), and 

achieved significantly increased reaction yields and better biocompatibility at neutral pH. 

Recently, Lei and coworkers97 developed a coupling, reagent-free crosslinker, 

bis(trimethylsilyldiazomethyl)dioxaoctane (Scheme 1.3), that offers selectivity and efficiency 

under physiological conditions. Isotopic encoded dihydrazides are now commercially available 

with different spacer lengths (e.g., adipic acid dihydrazide (ADH) and pimelic acid dihydrazide 

(PDH), Scheme 1.3). 

1.4.2.3 Sulfhydryl-reactive Cross-linkers: Maleimide 

Maleimide cross-linkers react specifically with sulfhydryl groups at pH 6.5-7.5 to form stable 

thioethers.98-99 Under alkaline conditions (pH > 8.5), primary amines are also possible targets but 

not Tyr and His.100 One major concern in maleimide cross-linking is to conjugate free sulfhydryl 

groups, requiring prior reduction of existing disulfide bonds; breaking the -S-S- bond has high 

potential to distort protein native structure. A more common way of employing maleimide 

chemistry is in combination with NHS-esters, where both functional groups are coupled onto a 

heterobifunctional cross-linker. These cross-linkers can be incubated with a protein sample in a 

stepwise manner, reducing disulfide bonds after reaction with primary amines.82 In addition, to 
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ensure the best cross-linking performance, many thiol-containing compounds (e.g., DTT and 

BME) should be eliminated in the reaction buffer. 

1.4.2.4 Carbonyl-reactive Cross-linkers: Hydrazide 

Hydrazides are carbonyl-reactive reagents that exhibit highest reactivity at pH 5-7. Aldehydes 

and ketones are major targets that can be found in glycoproteins introduced by oxidation of the 

polysaccharide.82 The hydrazone bonds thus formed are moderately stable in aqueous solution 

and can be further secured by reducing the double bond to a secondary amine.  

1.4.2.5. Photoreactive Cross-linkers: Aryl Azide and Diazirine 

Photoreactive cross-linkers are generally nonspecific owing to the high reactivity of the 

intermediate species, a nitrene, carbene, or free radical. The most adopted chemistry utilizes 

nitrenes and carbenes, whose precursors are azides or diazirines, respectively. Among the three 

major categories, phenyl azides play a dominant role in current applications. Different 

substituents on the aromatic rings shift their UV absorption dramatically; therefore, they are 

selected with a biological question in mind.82 Nitrophenyl azides, which can be activated at 300-

460 nm, are compatible with most studies because this long wavelength causes minimal damage 

to protein molecules. Upon UV activation, the nitrene diradical can insert into most chemical 

bonds but with a preference for active C-H and N-H sites.101 Diazirines are a relatively new 

class, first reported in the 1990s, and they have better photostability than phenyl azides.102  

Scheme 1.4 Chemical structure of common photoreactive cross-linkers, ANB-NOS and sulfo-

SDA 

 



19 

 

Carbene diradicals are usually generated photochemically at ~ 355 nm, and they show reactivity 

with both single and double bonds. Like the nitrene diradical, heteroatom-H bonds undergo 

easier insertion. Some diazirine reagents are designed as analogs of amino acids (e.g., photo-Leu 

and photo-Met103) that can be incorporated into the protein sequence during translation for in-situ 

radical generation. High reactivity of carbenes and nitrenes can also cause problems in cross-link 

identification. The use of homo-bifunctional photoreactive cross-linkers tends to make product 

analysis complex; therefore, one radical precursor is usually combined with an amine- or 

sulfhydryl-reactive motif. The commonly used cross-linkers are N-5-azido-2-

nitrobenzoyloxysuccinimide (ANB-NOS)104 and sulfosuccinimidyl 4,4'-azipentanoate (sulfo-

NHS-diazirine, sulfo-SDA), as seen in Scheme 1.4. 

1.4.3 Conclusion and Perspective 

Protein footprinting takes advantage of early research that provided many effective chemical 

reactions for protein labeling. These reagents can now serve as probes to characterize protein 

SASA and as a basis to reason about protein HOS. The sites of modification can now be 

efficiently measured by MS, owing to the rapid development of LC separations and hybrid mass 

spectrometers with MS/MS capabilities. The chemical cross-linker, which is viewed as a 

bifunctional protein footprinter, when connected to two proteins offers valuable distance 

restraints between the proteins. These targeted footprinting reagents coupled with MS detection 

now are utilized to answer several biological questions and are becoming increasingly significant 

in structural biology. 

A limitation of targeted footprinting is that reagents primarily react with one or a few residues 

that contain functional groups including bases, acids, nucleophiles and aromatic rings, leaving a 

sizable fraction of the amino acid residues to be “silent”. Bulky reagents may be unable to 
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penetrate an interface, suggesting that the lack of reaction may not signal the lack of an interface. 

Moreover, the footprinting reactions are relatively slow, making most targeted footprinters 

unable to characterize fast protein dynamics (e.g., protein folding and protein aggregation). To 

overcome these drawbacks requires a new approach that has broader residue coverage and higher 

reaction rate. Fast footprinting reagents represented by reactive radical species meet these 

requirements as discussed in section 1.5.  

1.5 Fast Labeling Reagents: Reactive Radical Species 

1.5.1 Hydroxyl Radical  

Hydroxyl radical (HO●), a reactive oxygen species (ROS), forms naturally in the cellular 

environment through partial reduction of oxygen. The ROS levels determine cellular oxidative 

stress, which mediates the modification of nucleic acids, proteins, and lipids, regulating signaling 

pathways and contributing to multiple diseases105-107. The hydroxyl radical as a footprinting 

reagent was initiated nucleic acid research108 and promoted later for protein HOS analysis. 

Currently, HO● is the most widely used radical-based footprinter given its many advantages. 

First of all, the size and hydrophobicity of HO● are comparable with the water molecular, 

making it readily accessible to the exposed protein surface. Secondly, its natural presence in 

biological fluids demonstrates the comparability of HO● with most of the protein systems. In 

addition, being a relatively strong oxidant (E0 = 2.30 V), HO● can react with most of amino 

acids, providing broad residue coverage and comprehensive SASA information. The reaction 

rate with different amino acids, however, range over a few orders of magnitude as seen in earlier 

studies109-111 with free amino acids (Table 1.1). 
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Table 1.1 Rate constants for reactions between amino acids and HO●109-110 

Free Amino Acid Rate Constant (M-1s-1) pHa 

Cys 3.5 × 1010 7.0 

Trp 1.3 × 1010 6.5 – 8.5 

Tyr 1.3 × 1010 7.0 

Met 8.5 × 109 6 – 7 

Phe 6.9 × 109 7 – 8 

His 4.8 × 109 7.5 

Arg 3.5 × 109 6.5 – 7.5 

cystine 2.1 × 109 6.5 

Ile 1.8 × 109 6.6 

Leu 1.7 × 109 ~6 

Val 8.5 × 108 6.9 

Pro 6.5 × 108 6.8 

Gln 5.4 × 108 6.0 

Thr 5.1 × 108 6.6 

Lys 3.5 × 108 6.6 

Ser 3.2 × 108 ~6 

Glu 2.3 × 108 6.5 

Ala 7.7 × 107 5.8 

Asp 7.5 × 107 6.9 

Asn 4.9 × 107 6.6 

Gly 1.7 × 107 5.9 

1.5.1.1 Fenton Chemistry 

In 1890s, H.J.H Fenton discovered the first oxidation of tartaric acid by hydrogen peroxide under 

ferrous iron (II) catalysis. 112 The “Fenton-like” reactions were further promoted by other 

transition metals, for example, Fe(II), Cu(I). 113-116 The well-recognized mechanism of Fenton’s 

reaction is the listed “classical Fenton pathways” (eq 1.2-1.8), proposed initially by Haber and 

Weiss 117-118 and later revised by Barb and co-workers119-120. The chain reactions start from Fe(II) 

and Fe(III) catalysis (eq 1.2 and 1.3) and terminate by oxidation of Fe (II) to Fe (III) (eq 1.8). 

The reduction and oxidation of ferrous and ferric ions, together with their reactions with H2O2, 

contribute to the propagating generation of HO● (eq 1.4 – 1.7).  

Fe2+ + H2O2 → Fe3+ + HO● + OH- (1.2) 

Fe3+ + H2O2 → Fe2+ + HO2
● + H+ (1.3) 

H2O2 + HO● → HO2
● + H2O (1.4) 
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HO2
● ↔ O2

-● + H+ (1.5) 

Fe3+ + HO2
● → Fe2+ + O2 + H+ (1.6) 

Fe3+ + O2
-● → Fe2+ + O2 (1.7) 

Fe2+ + HO● + H+ → Fe3+ + H2O (1.8) 

Hydroxyl radicals generated from Fenton chemistry were first used for footprinting in 1985, 

when Tullius and Dombroski 121-123 mapped protein binding sites on DNA. The well-designed 

Fenton system contains H2O2, Fe(II)-EDTA complex, which can increase the metal ion 

concentration and allow favorable formation of Fe(III)-EDTA during propagation, and ascorbate, 

which reduces Fe(III) back to Fe(II) to complete a catalytic cycle. Such design established a 

benchmark approach for nucleic acid footprinting and was further expanded with other transition 

metals124-129 including Cu(II), Mn(II), Co(II), and Cd(II). 

In 1990, the Fenton system was improved by employing a synthetic metal-chelate complex, Fe-

(S)-1-(p-bromoacetimidobenzyl)-EDTA (Fe-BABE) 130-132. The Fe-BABE tethers the metal and 

catalyzes HO● formation at specific sites of a protein, for example, the location where cysteine 

residues reside. In addition, the spacer component in the chelating complex delivers spatial 

information of the interacting biomolecules, opening a possibility to capture conformational 

changes. The Fe-BABE system has many advantages compared to the traditional Fenton 

systems, including higher HO● productivity at neutral pH and the capability of site-directed 

oxidation. Its limitations, however, are those of all “Fenton-like” reactions: long timescale for the 

radical chemistry (usually minutes), the possibility that conformational changes occur during 

labeling, and the large amount of H2O2 (30%) 133 that can be detrimental to targeted 

biomolecules.   
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1.5.1.2 Synchrotron Radiolysis of Water 

Synchrotron X-ray is a powerful source to generate HO● through radiolysis of water. The 

generated photons transfer energy to electrons, giving hydrated electrons (eaq
-). Then, the ionized 

water reacts with another to produce HO● (eq 1.9 - 1.11).110 The generated HO● undergoes self-

quenching (eq 1.12) or accepts a hydrated electron to form a hydroxyl anion (eq 1.13).134 

2H2O + e- (ionizing irradiation) → H2O
+● + H2O* + eaq

- (1.9) 

H2O
+● + H2O → HO● + H3O

+ (1.10) 

H2O* → HO● + H● (1.12) 

HO● + eaq
- → OH- (1.12) 

2 HO● → H2O2 (1.13) 

Chance and coworkers first put the National Synchrotron Light Source at Brookhaven National 

Laboratory to use for footprinting in both nucleic acids and protein systems. 135-137 In a radiolysis 

experiment, HO● dosimetry, the effect of beam current, the effect of different buffers and 

additives need to be carefully considered. A detailed discussion is available in a review article.110 

Hydroxyl radical footprinting enabled by synchrotron radiolysis of water has significant 

advantages. Water, as the radical precursor, is physiological-related and compatible with almost 

all bio-systems. In addition, the amount of water (~55 M) is in large excess with respect to the 

targeted biomolecules, maximizing labeling probability. What’s more, the radical dosage can be 

easily controlled by a shutter electronically138, enabling the millisecond formation of HO●. The 

disadvantage, however, is the limited access to a synchrotron sources, which can be overcome in 

part by the development of new beamlines.  
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1.5.1.3 Laser Photolysis 

Upon UV irradiation, homolytic cleavage of H2O2 into HO● will occur at the quantum yield of 

0.4-0.5. The subsequent chain reactions follow the Haber-Weiss cycle (Table 1.2) and terminate 

by self-quenching.  

Table 1.2 Reaction scheme and rate constant of hydroxyl radical generation from hydrogen 

peroxide upon laser photolysis 

 Reaction Rate Constant (M-1s-1) 

1 H2O2 + hv →2 HO● Φ248 = 0.4-0.5[139-140] 

2 HO● + H2O2 → H2O + HO2
●  2.7 × 107 [140] 

3 HO2
● + H2O2 → H2O + O2 + HO● 3.06 × 105 [140] 

5 HO● + HO● → H2O2 7.0 × 109 [141] 

Although UV photolysis of H2O2 had been accepted in some industrial process (e.g., water 

treatment) the first attempt for protein footpriting was reported in 2004 by Sharp and his co-

workers142. They utilized a UV lamp to photolyze 15% H2O2 in protein solutions for 5 mins. The 

mapped SASA of lysozyme and β-lactoglobulin are consistent with literature structures, 

demonstrating the success as a footprinter. However, the high H2O2 concentration and long 

exposure time are of concern for broader applications.  

To overcome the aforementioned limitations, Aye and Sze143 employed a pulsed Nd:YAG laser 

at 266 nm and photolyzed H2O2 in a static system. Only 0.3% H2O2 was added just before the 

laser photolysis to minimize prior oxidation from the radical precursor. At the same time, 

Hambly and Gross141 reported a KrF excimer-laser-based method (248 nm) that can generate 

HO● and give subsequent labeling in a flow system. In addition, they incorporated a scavenger 

reagent such as Glu141 and His144 to control the primary radical lifetime at micro-seconds level. 

An experimental setup (Figure 2.1) and detailed discussion are in Chapter 2. In brief, the 

combination of a flow system and the utilization of a radical scavenger enables the protein of 
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interest to be irradiated and submitted to radical reactions only once per pulse of the laser, 

minimizing repetitive labeling on the protein that may be altered in conformation upon the initial 

oxidation. The oxidized protein samples will then be collected in a quenching buffer that 

contains Met and catalase to scavenge the H2O2 and avoid post oxidation.  

The H2O2 photolysis has an obvious advantage comparing to synchrotron radiolysis, which is the 

portable laser source that is more accessible to any laboratory. The limitation, however, mainly 

relates to the oxidative nature of the H2O2 precursor, raising concerns for proteins that are prone 

to oxidation. Over the years, the fast photochemical oxidation of protein (FPOP) approach has 

successfully addressed many biological questions such as binding interfaces in a protein/protein 

or protein/ligand complex145-146, protein aggregation147, binding affinity 148-150, and protein 

dynamics151-152. The widespread adoption to industrial research, however, can be limited by 

associated safety concerns. Efforts are now undergoing to replace the laser source with 

alternative sources, for example a discharge lamp.  

1.5.2 Carbenes 

Diazirines, common precursor of carbene diradicals, were synthesized in 1960153 and emerged as 

a versatile photoaffinity labeling (PAL) agents in the late 1970s.154 PAL reagents usually are 

comprised of a binding motif and a reactive motif. Practically, the binding motif of PAL reagent 

reversibly binds to the active site of the target protein. Upon photoactivation, reactive motif is 

activated thus react with adjacent site, after which the PAL reagent is covalently attached to the 

target protein, serving as a footprint.155-157 Investigators typically activate diazirines with a UV 

laser at approximately 350 nm to cause release of N2 molecules and give an equimolar amount of 

carbene diradicals. Highly reactive carbenes form irreversible covalent bonds with proteins, 

allowing stringent downstream affinity purification and target identification.  
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The use of diazirine-based PAL is an effective strategy to understand protein-drug or other small 

molecule interactions and identify new drug binding sites. To address specific questions, 

investigators have designed and synthesized several diazirine analogs to adapt the affinity agent 

to the protein sample environment. For example, adamantylidene, a lipophilic reagent and an 

analog of adamantane, was used to obtain topological information of Na/K ATPase158 and Ca-

ATPase159 in membranes as early as 1983. In addition, H-diaziflurane, an analog of halothane, 

allowed the examination of binding sites of inhaled anesthetics and their action mechanism.160  

More recently, reagents containing diazirines were adopted as a new class in photo-activatable 

cross-linkers, and several were described.76, 161 The ability to react with many bond types or 

amino acid residues makes carbenes powerful reagents to capture protein dynamics and 

intermolecular interactions. Obtaining multiple cross-links magnifies the information by 

providing more distance restraints on an interacting protein system, and thereby furnishing vital 

data for molecular simulation or docking to give a more complete description of the system.  

Residue Specificity and Proposed Reaction Pathways 

Scheme 1.5 Diazirine-based footprinting reagents 
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Richards et al.162 first described the carbene diradical as a footprinting reagent in 2000. 

Methylene was generated from diazirine gas (CH2N2) upon UV irradiation and allowed to 

footprint α-lactalbumin. The labeling yield, however, was low, owing to the limited solubility of 

gaseous CH2N2 in aqueous media. Furthermore, the explosive gas requires conscientious 

preparation, storage, and safe handling, limiting wide application.  

 

Figure 1.3 Photoleucine-derived carbene footprinting on hMyoglobin. (a) Deconvoluted mass 

spectra of myoglobin after footprinting with carbenes. (b) Deconvoluted mass spectra of labeled 

and unlabeled holo-CaM. (c) Ca2+-binding induces conformational change on calmodulin where 

apo-calmodulin (closed circles) and holo-calmodulin (open circles) were labeled with 100 mM 

photoleucine in phosphate buffer and monitored as function of time. (d) Free holo-calmodulin 

(filled circles) is referenced to M13-bound holo-calmodulin (open circles). Reprinted with 

permission from Ref. 163. Copyright 2011 American Chemical Society. 

Later in 2011, Schriemer and coworkers163 reported a new diazirine-based reagent, photoleucine 

(Reagent 1 in Scheme 1.5) that has higher water solubility and stability than CH2N2. The reaction 

platform incorporates a Nd:YAG pulsed laser (355 nm, 1000 Hz) for radical initiation and a 96-

well plate cover with lids containing slits, allowing the laser beam to enter the protein solution. 
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With this experimental setup, the investigators obtained a maximum conversion of the diazirine 

to the carbene diradical by using an irradiation time of 2 min in the absence of other competitive 

chromophores. Furthermore, they found that photoleucine does not react with targeted proteins 

without laser activation. Upon photolysis, irreversibly labeled products exhibit a characteristic 

+115.03 Da mass shift (Figure 1.3a and 1.5b).  

       (1.14) 

To examine the labeling sensitivity of carbene diradicals for different accessible surfaces of 

proteins, two calmodulin systems (i.e., with/without Ca+ and bound/unbound to the peptide M13) 

were investigated. The average number of labels on each protein molecule can be estimated by 

determining the difference in the centroid masses between the labeled and unlabeled proteins as 

seen in a deconvolved mass spectrum of the intact protein (eq. 1.14 and Figure 1.3c, d), where mi 

and Ii represent mass and signal intensity, respectively. A reduction in protein surface area 

resulting from Ca+ binding or M13 binding is reflected clearly as the measured labeling extent 

over 2-10 min of irradiation; namely holo-CaM is 45 ± 7% less labeled and M13-CaM is 39 ± 

5% less than apo-CaM.  
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Figure 1.4 Carbene footprinting derived from multiple diazirine reagents. (a) Fractional 

distributions of carbene label derived from reagent 1 as determined by ETD (z-ions, filled 

circles) and HCD (y-ions, open circles) for peptide LTDEEVDEMIR (117−127) in CaM. (b) 

Residue-level reagent incorporation for select residues, based on ETD fragmentation of 

MKDTDSEEEIR (77−87), VFDKDGNGYISAAELR (92−107) and LTDEEVDEMIR 

(117−127) with Reagent 1 (gray bars) and Reagent 2 (black bars). Error bars are ± 1 standard 

deviation. Reprinted with permission from Ref.164 Copyright 2012 American Chemical Society. 

(c) Average frequency of carbene insertion at each residue generated from the photolysis of 

reagent 2, 3, and 4 in the presence of protein digests (777 peptides). Site of the label insertion 

was located with MS/MS with a Fusion Lumos with EThcD fragmentation and analyzed with 

Mass Spec Studio software. Reprinted with permission from Ref.165.  Copyright 2017 Springer 

Nature.  

Residue-level quantification of carbene-induced modification needed attention, and that was 

discussed in a sequel study.164 Theoretically, carbene diradicals can insert into X-H bonds and 
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C=C bonds.166 Insertion into carboxylic acid functional groups will form labile esters that can be 

lost in CID fragmentation, thus complicating data interpretation and even losing information. 

The Shriemer group164 chose ETD fragmentation as an alternative to CID and compared the two 

fragmentation methods by reporting the fraction modified for each y/z ion. Although most 

fragments shared the same trend, the y10 ion gave poor precision because it undergoes a neutral 

loss of the modifying group (Figure 1.4a). Notably, reducing the collision energy reduces the 

loss, but the abundance of the peptide fragments (product ion in MS/MS) is also reduced. ETD is 

a superior fragmentation method for retaining labile modifications to afford more comprehensive 

information than CID. ETD, however, performs poorly when peptides are low in charge and 

small in size. The best approach might be to use a combination of the two modes of MS/MS.  

Another issue is the electrostatic interaction between the carbene precursor and various amino 

acid side chains; the interaction may concentrate the precursor molecule around the site, 

promoting more modification and a biased residue preference. Switching to another carbene 

precursor reagent, 4,4-azipentanoic acid (2 in Scheme 1.5), that contains no positively charged 

amine group, shows the effect. Although both reagents give similar results for Tyr, Lys, Glu, and 

Asp, positive-charged photoleucine shows higher reactivity with the negatively charged aspartic 

acid (Figure 1.4b). In addition, the ionic strength of the buffer and solution temperature also 

affect the electrostatic interaction, where increasing ionic strength decreases electrostatic 

interactions167 and higher temperatures will lower the dielectric constant168. 

A related approach was also reported by the Gross group169 in 2015, when they adapted carbene 

generation in solution on the FPOP flow system. Careful control over the exclusion volume 

guarantees that photoleucine and the protein CaM are mainly irradiated once, thus diminishing 

concerns of perturbing the solution equilibrium by the generated nitrogen gas and causing 
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conformational change with excess labeling. The outcome is less modification for holo-CaM, 

consistent with its more compact conformation and significant labeling on Try, Asp and Glu, 

possibly owing to interactions of the protein with photoleucine, concentrating the reagent on the 

protein surface. 

In 2017, Schriemer and coworkers165 refined the carbene platform to employ a single-shot laser 

with higher energy (i.e., 150 mJ) to avoid nitrogen perturbation and protein conformational 

change at the induced air-water interface. Prior to irradiation, the sample solution was snap-

frozen by liquid nitrogen before laser irradiation to restrict radical diffusion, to maintain protein 

HOS, and to minimize quenching of carbene radical and increase modification. To establish 

residue specificity with carbene chemistry, the investigators, in a Herculean study, footprinted 

777 peptides by using three different precursors, a negatively charged precursor 2 (Scheme 1.5), 

a neutral reagent 3 (3,3'-azibutan-1-ol, Scheme 1.5), and a positively charged reagent 4 (3,3'-

azibutyl-1-ammonium, Scheme 1.5). The labeling trends are similar for the three reagents, and 

the bond insertion propensities generally are a function of side-chain polarity and size. Reagents 

2 and 3 both favor Arg, Glu and Asp, whereas, the neutral reagent 4 shows higher reactivity with 

His (aromatic and neutral) in addition to the three residues, Arg, Glu, and Asp. Remarkably, 

many hydrophobic amino acids show noticeable modification (Figure 1.4c), supporting the high 

reactivity of carbenes, even with aliphatic groups. The nature of the carbene precursor also 

impacts the residue selectivity by participating in complex molecular interactions to increase the 

local concentration of the precursor ion at the protein surface.  
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Figure 1.5 Carbene footprinting on FPOP platform. (a) Extent of labelling of a range of proteins 

with reagent 1 (100 mM, 16 s irradiation), and reagent 5 (10 mM, 4 s irradiation (*1 s in the case 

of CaM)). (b) Fractional modification by reagent 5 of USP5 peptides in the presence (black bars) 

and absence (white bars) of di-ubiquitin. Error bars are ± standard deviations (n = 3) and 

significant differences (Student’s t-test, p < 0.05) are highlighted with a red dot. (c) Model of 

USP5 (based on PDB 3IHP) showing the locations of the five peptides (red) that are masked 

from labelling by di-ubiquitin binding and their relative locations to the ZnFUBP and catalytic 

domains. Reprinted with permission from Ref.170 Copyright 2016 Springer Nature. 

Manzi et al.170 tested a carbene from the precursor, 4-(3-(trifluoromethyl)-3H-diazirin-3-

yl)benzoate (reagent 5, Scheme 1.5) that is more reactive than those from reagents 1 – 4. The 

investigators’ design involved installing an adjoining trifluoromethyl group (Figure 1.5a), 

leading to the use of less reagent and less irradiation time (i.e., 10 mM for 4 s irradiation). 

Further, the labeling efficiency improved in comparison to that with photoleucine at 100 mM and 

16 s irradiation. The improved reactivity is due to increased stabilization of the carbene radical 

by the added trifluoromethyl group and the increased hydrophobicity but little change in 

zwitterionic character. They tested the new reagent on an unknown protein complex (i.e., the 

deubiquitinating enzyme ubiquitin specific protease 5 (USP5) upon binding with di-ubiquitin (di-

Ub)). USP5 is a multi-domain cysteine protease including two ubiquitin associated domains 
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(UBA) and a Zn-finger ubiquitin-binding domain (ZnF-UBP). Previous studies showed the 

binding stoichiometry between USP5 and di-Ub to be 1:1, suggesting additional binding sites 

than those in Znf-UBP. These sites were not identified. The investigators footprinted the C335A 

mutant of USP5 with carbenes in the presence and absence of one equivalent di-Ub and observed 

distinct binding regions (Figure 1.5b), which were mapped onto the X-ray structure of USP5 

(Figure 1.5c). The catalytic domain was shown to be the other binding site and, additionally, a 

remote conformational change for the region represented by peptide G606-K630 was found. The 

design of new, successful radical precursors indicates that there are more opportunities for 

improvement and application, emphasizing the potential of carbene footprinting as an effective 

and accurate structural probe for HOS of proteins.  

The pathways for carbene chemistry may involve several radical intermediates whose structures 

and reactivities can be tailored by using different precursors. For example, it is possible to 

generate by photolysis not only singlet171 and triplet carbenes172 but also diazo isomers that 

further decompose into carbocations.173,174 Although a singlet carbene preferentially inserts into 

O-H, N-H and S-H bonds,173 it is challenging to pinpoint the dominant pathway just from the 

nature of the modified products. Insertion into Thr can be done by singlet carbene through O-H 

bond insertion or by triplet insertion into the methylene group located on the amino acid side 

chain. In addition, the small energy difference (i.e., ~ 2 kcal/mol175) between the two states add 

complications because mixtures of products can form. Because heteroatom-containing residues 

are usually the favored sites of reaction (e.g., Glu, Asp, Tyr and Arg), the singlet state may be 

favored; however, blended pathways are more likely. A general route is shown in Scheme 1.6 

Scheme 1.6 Proposed carbene reaction pathway  
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Carbene footprinting has high potential in structural biology. The labeling time is shorter than 10 

ns,176 faster than most protein folding. Irradiation on a flow-system or excitation after snap 

freezing eliminates deceptive modifications originating from carbene insertions in a protein that 

has undergone a protein conformational change. Compared to the hydroxyl radical, the short 

survival time of carbenes owing to reaction with solvent water obviates the need for a scavenger. 

Carbene generation by diazirines is at a less damaging wavelength to proteins (i.e., ~ 350 nm). In 

addition, most carbene precursors do not react with proteins prior to laser irradiation (unlike 

H2O2 for HO●), and this lack of reactivity minimizes background interference. Once a carbene 

inserts, there are no reactive biproducts as there are when a radical reacts. Furthermore, the 

resultant mass shift for carbene modification can be adjusted to be bio-orthogonal by tailoring 

the precursor design. The physical properties of reagents, however, can favor preconcentration 

on the surface of the protein, possibly delivering biased residue preference or even information 

loss. Those properties can also be chosen advantageously to promote binding in lipid 

membranes, permitting footprinting of transmembrane proteins. As this field develops and more 

diverse carbene reagents are implemented, a better understanding of interactions will emerge to 

permit rational design of new carbenes. New footprinting reagents that can target specific 

residues or provide comprehensive coverage are expected in the future. 
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1.5.3 Other Radical Reagents 

1.5.3.1 Sulfate radical anion 

Sulfate radical anion, SO4¯
●, is a potent oxidant with a standard reduction potential of 2.43 V at 

neutral pH.177 Its strong oxidation capability can cause considerable damage to different cellular 

components including lipids, carbohydrates, proteins and DNA/RNA.178  

Bridgewater and Vachet 179-181 in 2005-2006 first used sulfate radical anion to determine binding 

and map the SASA of proteins. In 2010, the Gross group182 generated sulfate radical anion on the 

FPOP platform by photolysis of -OSO2-O-O-O2SO- at a quantum yield of 0.55. The reactivity 

and specificity of SO4¯
● is similar to those of HO● for residues Met, Trp Glu and Ser; the 

reactant radical favors His and Tyr . The overall reactivity ranking of SO4¯
● is:  

Met > Tyr = Trp > Phe = Glu = His > Ser > Pro > Asp = Thr > Lys = Gln > Leu = Val = Ile 

1.5.3.2 Trifluoromethyl Radical 

Fluorine-containing compounds are extremely rare in biology; only five entities containing F 

have ever been identified.183 The most common molecule is fluoroacetate, which is found in 

many tropical plants as a toxin. Footprinting reactions that insert either fluorine or fluorine-

containing substrates may be advantageous because fluorine is the most electronegative184 

(Pauling Electronegativity = 4.0) common substance and has a small radius (1.33 Å), not so 

dissimilar to that of H,185 allowing F to be a surrogate for H. 

Trifluoromethyl radical as a footprinting reagent, was implemented by Cheng et al.186 in 2017 to 

be used on the FPOP platform. The radical precursor is the water-soluble salt, NaSO2CF3 

(Langlois reagent). The ●CF3
 formation is initiated by the HO●, from photolysis of hydrogen 

peroxide. A likely mechanism is the HO● displaces ●CF3 by attack on the S=O bond to form 

HOSO2
-, the conjugate base of sulfurous acid. The ●CF3 can react with 18 out of 20 different 
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amino-acids residues, except Met and Cys, showing its complementary nature with HO●, which 

reacts rapidly with Met and Cys. Combination of ●CF3 and HO● in tandem allows more 

comprehensive characterization of the residues on a targeted protein than does either radical 

alone, providing a better opportunity to capture subtle structural changes.  

1.5.3.3 Iodine Radical 

In physiology, iodine plays essential roles in metabolic regulation of thyroid function, especially 

hormone production.187-188 The iodine radical has potential to be an effective fooprinting reagent 

given its specific reactivity towards tyrosine and histidine. This chemistry was initiated on an 

FPOP platform, as shown by Chen et al.144 using 4-iodobenzoic acid as the precursor. The I● is 

formed presumably in concert with a ●C6H4COOH by photolysis of I-C6H4-COOH at 248 nm. 

The carboxylphenyl radical likely abstracts an H● from the OH of Tyr or from the NH of the 

imidazole ring to give a stabilized radical that is subsequently “capped” by reaction with I● to 

give an iodinated protein, although there may be other mechanisms.  

Compared to HO● footprinting, the unique and larger mass shift of iodination increases the 

confidence of assigning the modification sites. Although the coverage afforded by the iodide 

radical is limited, footprinting two targeted residues can answer specific questions with easier 

data analysis. In addition, the precursor of the iodine radical doesn’t react with proteins, which 

minimizes the background modification and allows simplified post-label sample handling. 

Unlike specific amino acid labeling, the modifications on the FPOP platform are fast, alleviating 

concerns about labeling-induced conformational changes. 

1.5.4 Conclusion and Perspective 

Radical footprinting is an effective means to acquire HOS information for proteins. Radical 

reactions are much faster (nano to milliseconds) than reactions of a conventional chemical 
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reagent that modifies one or a few amino acid residues. Therefore, free radical footprinting will 

deliver fast, broad, and less biased information by largely avoiding questions of labeling-induced 

perturbation of protein structure. In addition, the short timescale can allow a sensitive report of 

subtle structural and even dynamical changes. An advantage of the labeling speed is the 

successful temperature jump, two-laser experiment on the FPOP platform where HO● 

footprinting can successfully track the folding of barstar at times as short as a few tenths of 

millisecond.189 An example of versatility is the tracking of multiple intermediate oligomeric 

states during amyloid beta aggregation.190  

Different radicals (e.g., ●CF3, I
●, SO4¯

●, HO●) allow irreversible covalent modifications to occur 

on the side chain of an amino acid with various residue specificity. To address a particular 

biological question, a radical reagent with preferred residue selectivity can be an appropriate 

choice over one with larger residue coverage. For example, using carbene footprinting in the 

protein systems that are rich in Glu and Asp (e.g., as for calcium-binding proteins) will enable 

quick and simple data analysis and high throughput. Thus, a footprinting “toolbox” with diverse 

radical-based reagents is of great interest to our group.  

1.6 Conclusion 

During the past two decades, we have seen extensive development of the targeted reagents, 

including chemical cross-linkers, and fast radical labeling reagents, enabled by improved-design. 

experimental set-ups, well-tailored chemistry, evolving MS instrumentation, and new data 

processing software.  

Chemical cross-linkers are bifunctional protein footprinters, which are governed by similar 

principles as protein footprinting by targeted reagents. The bi-functional nature of the reagent 

allows generating distance restraints between two cross-linked residues, and such restraints can 
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be further utilized to locate protein/protein binding interfaces, to assess protein topologies, to 

characterize a protein’s interactome in a large complex, and to facilitate protein docking 

(applications in binding interface determination are demonstrated in Chapter 4 and 5) and 

modeling (an application in structure prediction is shown in Chapter 6). 

Fast radical labeling, an approach that not only allows irreversible modification on side chains of 

amino acid but also permits rapid labeling chemistry, is another essential means to assess protein 

HOS. Establishing a footprinting “toolbox” with diverse reagents can provide ready availability 

to researchers to address various biological questions (development of a novel radial reagent is 

discussed in Chapter 2). In addition, the elaboration of the FPOP platform that integrates two 

radical footprinters is also an intriguing subject for future research. Taking advantages of the 

rapid generation and reactions of a radical species, one radical can trigger protein conformational 

changes, for example by inducing a pH change, and the other can footprint the protein. When 

changing the time gap between the generation of the two radicals, the folding/unfolding process, 

therefore, can be captured in time (some method development is discussed in Chapter 3), 

providing an opportunity to study protein dynamics with even residue-level spatial resolution.  
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2.1 Abstract 

Fast Photochemical Oxidation of Protein (FPOP), based on a pulsed KrF laser (248 nm) for free-

radical generation, is a protein footprinting method that utilizes hydroxyl radicals to footprint 

proteins in solution. FPOP has been recognized as a biophysical technique in structural 

proteomics interrogation, including epitope mapping, protein-aggregation characterization, 

protein-folding monitoring, and binding-affinity determination. The distinct merits of the 

platform are: i) the use of a scavenger to control radical lifetime and allow fast (“snapshot”) 

footprinting of solvent-accessible residues in protein; ii) the employment of a flow system to 

enable single-shot irradiation of small plugs of the targeted sample; iii) the incorporation of 

methionine and catalase after radical oxidation chemistry to prevent post-oxidation with residual 

oxidizing species; and v) the utilization of mature mass spectrometry-based proteomic methods 

to afford analysis. In addition to HO●, other reactive reagents (e.g., carbenes, iodide, sulfate 

radical anion, and trifluoromethyl radical) can be implemented on this platform to increase the 

versatility and scope. In this study, we further elaborate the use of FPOP platform to generate 

secondary radicals and establish a workflow to answer fundamental questions regarding the 

intrinsic selectivity and reactivity of radicals that are important in biology. Carbonate radical 

anion is the example we chose owing to its oxidative character and important putative pathogenic 

roles in inflammation. This systematic study with model proteins/peptides gives consistent 

results with a previous study that evaluated reactivity with free amino acids and shows that 

methionine and tryptophan are the most reactive residues with CO3
-●. Other aromatic amino 

acids (i.e., tyrosine, histidine, and phenylalanine) exhibit moderate reactivity, whereas aliphatic 

amino acids are inert, unlike with HO●. The outcome demonstrates this approach to be 

appropriate for studying the fast reactions of radicals with proteins.       
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2.2 Introduction  

Fast Photochemical Oxidation of Protein (FPOP), an alternative to radiolysis of water with 

synchrotron radiation to give HO● 1-2, was initially invented by Hambly and Gross3. Hydroxyl 

radicals, formed by a pulsed KrF laser irradiation of hydrogen peroxide, oxidize protein side 

chain in situ and footprint the exposed residues depending on their intrinsic reactivity and solvent 

accessibility. With employment of a scavenging reagent, radical lifetime can be tuned in the 

microsecond time frame to enable protein structural characterization faster than most 

conformational changes. In addition, the irreversible modification by HO● allows comprehensive 

downstream proteomics sample handling, digestion, and mass spectrometry analysis. The FPOP 

approach, as a valuable biophysical tool in protein structure elucidation, has been recognized for: 

1) mapping binding interface in protein-ligand interaction, including small molecules binding 

events4 and antigen-antibody interaction5-6; 2) revealing multistage protein aggregation7; 3) 

determining binding affinity; 4) identifying hidden conformational changes8, 5) characterizing 

overall protein dynamics9-10. In addition to HO●, other reactive reagents (e.g., sulfate radical 

anion11, carbene diradical12, iodide, and trifluoromethyl radical13, have been implemented on the 

FPOP platform to afford broader labeling opportunities, giving more comprehensive coverage of 

amino acid residues. Now, we wish to elaborate further the utility of the FPOP platform and to 

demonstrate its capacity to answer more fundamental questions in biological free-radical 

chemistry. To do this, we address the adaption of the FPOP platform to ascertain the selectivity 

and reactivity of the carbonate radical anion with model proteins.  

In biological fluids, the bicarbonate anion exists at of 24 mM in serum and 14 mM in 

intracellular media equilibrated with approximately 1.3 mM carbon dioxide14.  The radical anion 

can be formed from the abundant bicarbonate-carbon dioxide pair by superoxide dismutase 
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(SOD)15, xanthine oxidase (XO)16, and other enzymes that can play pathogenic roles in many 

physiological conditions. As a key mediator, carbonate radical anion may cause oxidative 

damage that eventually leads to vascular disease and neurodegeneration14. Its best-known 

metabolic function is to modulate peroxynitrite activity, a strong oxidant generated from nitric 

oxide and superoxide anion. The CO3¯
●/ NO2 couple, dissociated from nitrosuperoxycarbonate 

(ONOOCO2
-), promotes protein nitration17. In this process, CO3¯

● is believed to abstract H from 

amino acids, typically tyrosine, followed by NO2 addition to give a nitro-substituted residue.  

Carbonate radical anion, a potent one electron oxidant (E0 = 1.59 V, pH = 7.0), can favorably 

oxidize electron-rich donors by electron transfer18.  CO3¯
● is also a site-selective oxidant of 

guanine over other DNA bases as a damaging reagent19. The biological consequences of 

reactions of the carbonate radical anion on proteins are also of concern.  Many investigations 

show, for example, that CO3¯
● can oxidize tryptophan-rich lysozyme to afford a ditryptophan 

form20, CO3¯
● can affect redox signaling pathways by oxidizing tyrosine-containing protein21 

and CO3¯
● can also cause activity loss of horseradish peroxidase22. Most of the research on 

CO3¯
● relies on a previous radiolysis study23 carried out in 1973 with free amino acids; this work 

shows tryptophan and tyrosine to be the preferred amino acids. The reactivity of amino acid 

residues, however, in peptides and protein is likely different, depending on context and solvent 

accessibility.  

To provide more fundamental information and provide a method for determining the fast 

reactions of radicals with proteins, we describe a systematic study of the selectivity and 

specificity of CO3¯
● with proteins/peptides as targets. To accomplish this, we extended the FPOP 

platform for generating secondary radicals. Incorporating hydrogen peroxide into sample 

aliquots, we generated by pulsed laser irradiation hydroxyl radicals, which then react with other 
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reagents (here CO3
2-/ HCO3

-) to generate secondary radicals. The flow system we used 

overcomes the steric effect of static laser irradiation, ensuring the homogeneity of each labeling 

event. Specifically, for proteins and peptides dissolved in sodium bicarbonate/bicarbonate buffer, 

we can successfully generate the carbonate radical anion and monitor the oxidation of selected 

residues on proteins and peptides, taking advantage of mass-spectrometry-based analysis. For the 

first time, we successfully demonstrate the reactivity and selectivity of carbonate radical anion 

towards side chains of amino acid residues in proteins to significantly advance the previous 

studies of reactions with free amino acids. Moreover, the method and platform reported here can 

be generalized for other bio-relevant studies of free radicals, providing new possibilities for 

radical generation and subsequent fundamental investigations of protein/radical reactivity. 

2.3 Principles 

2.3.1 FPOP Platform 

 

Figure 2.1 FPOP platform. A sample syringe, driven by a syringe pump, is connected to silica 

tubing, where part of the polyimide coating is removed to afford a transparent window. The other 



59 

 

end of the capillary is inserted into a collection tube containing reagents to deactivate left-over 

oxidizing agents. A 248 nm KrF excimer laser is placed such that its beam is perpendicular to the 

flow system and has lenses to focus on the flow tube. Sample proteins will react with the radicals 

within the laser window. The flow rate is determined such that between every two solution plugs 

exists an unexposed portion, termed an “exclusion volume”, that minimizes “double hits” on the 

protein solution. 

An FPOP platform (Figure 2.1) implements a 248 nm KrF excimer to photolyze cleavable 

reagents (e.g., hydrogen peroxide). A silica capillary connects both a syringe pump and a 

collection tube that terminates the flow. The polyimide coating is removed along the tube to give 

a transparent window for the laser beam. The laser, typically generated at 7.4 Hz by an external 

pulse generator, is restricted by an iris and focused by two convex lenses to pass through the 

transparent window. Within the laser window, hydrogen peroxide is photolyzed into hydroxide 

radicals. These radicals under usual concentration conditions oxidize the protein sample, but 

under the conditions of this study react with carbonate/bicarbonate anion to generate secondary 

carbonate radical anions. This approach should be adaptable to formation of other radicals that 

are important in biology. 

To avoid over oxidation on the same solution plug, the flow rate on the syringe pump is carefully 

tuned. A small volume of solution portion is intentionally excluded to create a barrier between 

two exposed plugs, termed an exclusion volume. The flow-rate calculation is by equation 2.1, 

where the exclusion volume is typically ~ 20%. After the oxidation chemistry, the protein sample 

is collected in the tube containing methionine and catalase to prevent post-oxidation by excess 

hydrogen peroxide and any remaining oxidative species.  

                                                                      (2.1)    
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2.3.2 Numerical Simulation of CO3¯● Oxidation Chemistry 

Generation of the carbonate radical anion in the laboratory can be by pulse radiolysis of N2O-

saturated aqueous solution containing sodium bicarbonate at alkaline pH22, 24 or UV photolysis of 

suitable metal complexes (e.g., [Co(NH3)4CO3]ClO4 
20). It can also be formed from human 

superoxide dismutase (hSOD) 25 in phosphate buffer with EPR spin-trapping detection or 

oxidation of bicarbonate with a sulfate radical anion generated by photolysis of persulfate anion 

and detected with UV spectroscopy19, 26. In the current study, we considered generating the 

carbonate radical anion as the secondary radical through a cascade process starting with sulfate 

radical anion, formed by photolysis of sodium persulfate. The persulfate anion, however, reacts 

moderately with amino acid residues (e.g., tryptophan and methionine) even in the absence of 

laser irradiation. In addition, the rate constant for carbonate radical anion production from the 

sulfate radical anion is at least 1000 times smaller than that of protein oxidation by the sulfate 

radical anion. Furthermore, the carbonate radical anion is a considerably weaker oxidizing agent 

(E0 = 1.59 V) than the sulfate radical anion (E0 = 2.43 V), rendering it difficult to make CO3¯
● 

the predominate oxidative species in the reaction regime. We anticipated these difficulties and 

chose instead to employ a weaker oxidant, hydroxyl radical (E0 = 2.30 V), from hydrogen 

peroxide photodissociation. To select appropriate conditions, we conducted numerical simulation 

of the cascade chemistry (for rate constants, see Table 2.1).  
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Table 2.1 Reaction scheme and rate constants for generation of the carbonate radical anion by 

reactions of hydroxyl radicals from H2O2 with carbonate/bicarbonate in a buffer.  

 Reaction Rate Constant (M-1s-1) 

1 H2O2 + hv →2 HO● Φ248 = 0.4-0.5 

2 HO● + CO3
2- → OH- + CO3

●- 3.0 × 108 [27] 

3 CO3
2- + H2O → HCO3

- + OH- 3.06 × 105 [28] 

4 HO● + HCO3
- → H2O + CO3

●- 8.5 × 106 [27] 

5 HO● + HO● → H2O2 4.7 × 109 [3] 

6 
CO3

-● + CO3
-● → CO3

2- + CO2 
5× 107 [18] 

In a carbonate/bicarbonate aqueous buffer, hydroxyl radicals from photolysis of hydrogen 

peroxide upon pulsed laser irradiation (Table 2.1, Reaction 1) react with the carbonate (Table 

2.1, Reaction 2) or bicarbonate anions (Table 2.1, Reaction 4) to form the carbonate radical 

anion. Both reactive radicals will decay through recombination (Table 2.1, Reactions 5,6). Using 

these rate constants, we carried out a numerical simulation using Mathcad 14.0 to predict the 

outcome from second-order kinetics, as shown in Figure 2.2. We adopted the “Rkadapt” function 

in MathCad to solve the system of ordinary differential equations that arise from the network of 

second order reactions. The time interval from 0 to 10 ms was divided into 10 decades, each 

divided uniformly into 100 steps. The “RKadapt” solves to a “TOL” of 1 × 10 -12.   
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Figure 2.2 Numerical simulation of CO3¯
●. Numerical simulation of (a) CO3

2- concentration as a 

function of the ratio of [CO3¯
●] and [HO●] oxidized tryptophan concentration, where the amino 

acid tryptophan is taken as a model for reactions of amino acids on a target protein; (b) CO3¯
● 

and other related species as a function of time with 700 mM CO3
2-. Different curves, as denoted 

by different colors, are plotted on a log scale to represent time-dependent concentrations of each 

components. The products produced by oxidation of CO3¯
● and HO● are colored in orange and 

dark blue, respectively. The dashed line represents the time at which the chemistry is optimized 

(i.e., largely complete in 10 µs).  

In the simulation, the initial concentration of hydrogen peroxide is 15 mM and the starting 

concentration of HO● after laser irradiation is approximately 1 mM, which is the typical yield as 
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measured previously29. In addition, we used the reaction with tryptophan as a model for the 

reaction of CO3¯
● with a target protein. Under the cascade chemistry regime (Figure 2.2a), the 

ratios of CO3¯
● and HO● oxidized tryptophan concentrations show corresponding increases when 

[CO3 
2-] increases at pH = 10. With 1.2 M CO3 

2- as buffer, CO3¯
● gives almost 26-fold more 

oxidized product than that by HO●, showing the best result. Taking the practical solubility of 

CO3
2- and HCO3 

- into consideration, however, we chose 700 mM carbonate anion as the 

condition for the detailed simulation shown in Figure 2.2b. As denoted by the green curve, the 

hydroxyl radical reacts with carbonate and bicarbonate anion, yielding nearly complete 

conversion to CO3¯
● in less than 1 µs. The concentration of carbonate radical anion reaches a 

maximum at ~ 0.01 µs and then remains roughly constant until near 100 µs. Ultimately, CO3¯
● 

self quenches, showing a decrease as shown by the red curve. The vertical grey dash line 

represents approximately the timescale for oxidation chemistry (~ 10 µs). At and beyond this 

time, the CO3¯
● is already the predominant oxidative species as can be seen by comparing with 

its underlying area with that of HO●, which has largely disappeared. The concentrations for 

CO3¯
● and HO● oxidized tryptophan after 10 µs is 0.93 µM and 0.06 µM, respectively. Although 

there are remaining hydroxyl radicals, the CO3¯
● oxidation contributes almost 15-fold more than 

HO●, allowing us to determine the reactivity and selectivity of CO3¯
● towards different amino 

acids contained in a protein.     

2.4 Materials 

• Bombesin acetate salt hydrate, α-melanocyte stimulating hormone, angiotensin I bovine, 

leucine enkephalin, bradykinin, glycine, catalase, urea, L-histidine, L-methionine, 30% 

hydrogen peroxide, triethylammonium bicarbonate buffer (TEAB), HPLC-grade solvents, 
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apo-myoglobin from equine skeletal muscle, ubiquitin from bovine erythrocytes 

(Millipore Sigma Co., St. Louis, MO, USA)  

• Sequencing grade trypsin (Promega Co., Madison, WI, USA)  

• Silica capillary (150 µm i.d., Polymicro Technologies, Pheonix, AZ, USA) 

• C18 reversed-phase desalting column (nanoViper, 100 µm x 2 cm, 5 µm,100 Å; Thermo 

Fisher Scientific, Waltham, MA, USA) 

• Analytical column with C18 reversed-phase material (Magic, 100 µm, 180 mm, 5 µm, 

120 Å; Michrom Bioresources, Inc., Auburn, CA) 

• Solvent A (water with 0.1% formic acid by volume) and solvent B (80% acetonitrile with 

0.1% formic acid by volume). 

• C18 NuTip (Glygen Co.) 

2.5 Instrumentation 

• 248nm KrF excimer laser (GAM Laser Inc., Orlando, FL, USA) 

• Syringe pump (Harvard Apparatus, Holliston, MA, USA) 

• External pulse generator (B&K Precision, Yorbal Linda, CA, USA) 

• Ultimate 3000 Rapid Separation system (Dionex, Thermo Fisher Scientific, Waltham, 

MA, USA) 

• Bruker MaXis 4G quadrupole time-of-flight mass spectrometer (Bruker, Co., Billerica, 

MA) 

• Thermo Q Exactive Plus orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA, USA) 
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2.6 Protocol 

2.6.1 Preparation of Buffer Solution and Stock Solution 

(1) Dissolve 0.7819 g sodium carbonate and 0.5361 g sodium bicarbonate in 10 mL distilled 

water to constitute 700 mM carbonate/bicarbonate buffer to achieve a pH value of 10.0 ± 0.2.  

(2) Dissolve 0.376 g glycine, 0.12 g sodium hydroxide in 10 mL distilled water, then add 0.584 g 

sodium chloride and 0.745 g potassium chloride to constitute 700 mM glycine-NaOH buffer with 

the same ionic strength at pH = 10 ± 0.2.  

(3) Prepare histidine solution by dissolving 0.0233 g histidine in 1 mL glycine-NaOH buffer, 

then dilute into 50 mM histidine stock solution. 

(4) Make 70 mM methionine stock solution in both 1 mL carbonate/bicarbonate buffer and 

glycine-NaOH buffer with 0.0105 g methionine as scavenger.  

(5) Prepare 5 µM catalase solution in 1 mL distilled water by dissolving 0.0012 g catalase and 

diluting to 500 nM. 

(6) Dissolve 0.0050 g ubiquitin and 0.0085 g apo-myoglobin in two different buffers to afford 

500 µM protein solutions. Dilute further to 50 µM stock solution. In addition, prepare 0.0010 g 

bombesin acetate salt hydrate, 0.0010 g α-melanocyte stimulating hormone, 0.0010 g angiotensin 

I bovine, 0.0010 g leucine enkephalin and 0.0010 g bradykinin solution in two different buffers 

with concentrations in the range 600 – 780 µM depending on its molecular weight. Dilute all 

solutions to ~ 500 µM and mix those in the same buffer to give 50 µM a ‘Peptide Cocktail’ stock 

solution.  

(7) Prepare 300 mM hydrogen peroxide solution immediately before the FPOP laser irradiation 

by mixing 30 µL 30% (v/v) hydrogen peroxide solution with 970 µL of two different buffers 
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individually. Keep the hydrogen peroxide solution on ice throughout the experimental procedure 

to avoid decomposition. 

2.6.2 Protein Oxidation on FPOP  

Oxidation achieved by carbonate radical anion 

(1) Warm the 248nm KrF laser and measure the laser energy with a sensor meter. Adjust the 

laser energy to 24 mJ/pulse at a frequency of 7.4 Hz. The laser width is measured by placing 

colored tape right behind the transparent silica tubing (width = 2.73 mm) and observing a burn 

mark. Choose a 20% exclusion volume, giving a flow rate of 26.8 µL/min, which can be 

calculated based on the equation 1.  

(2) Inject 10 µL of 70 mM methionine stock solution in carbonate/bicarbonate buffer and 1 µL 

500 nM catalase solution to a low-bind Eppendorf tube to be used as the collection tube. Place 

the collection tube at the end of the silica tubing. 

(3) Mix 5 µL of 50 µM protein solution or ‘Peptide cocktail’ with 42 L carbonate/bicarbonate 

buffer; then add 3 µL of 300 mM hydrogen peroxide solution. Transfer the sample solution to a 

syringe and insert it in the syringe pump (Figure 1). Start the pump and trigger the laser 

irradiation. The time window between the addition of hydrogen peroxide and laser irradiation is 

controlled as 20 s.  

(4) After laser irradiation, digest the protein sample with trypsin according to manufacturer’s 

protocol. Desalt the digested peptides and ‘peptide cocktail’ by using C18 NuTip to eliminate 

excess salts and remaining reagents.  

Oxidation by hydroxyl radicals 
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Adopt the same experimental procedure as in the above description with the reagents in glycine-

NaOH buffer, except add 1 µL of 50 mM histidine stock solution into 46 µL protein  before the 

final addition of hydrogen peroxide solution.    

LC-MS/MS analysis 

Dilute 5 µL digested protein sample into 45 µL water with 0.1% formic acid and centrifuge for 3 

min. Then load the sample solution onto a C18 reversed-phase desalting column at 4 µL/min for 

10 min.  Use a custom-packed analytical column for sample separation on Ultimate 3000 Rapid 

Separation with C18 reversed-phase material in silica tubing. Use gradient solvents A (water 

with 0.1% formic acid by volume) and B (80% acetonitrile with 0.1% formic acid by volume). 

Control the flowrate at 400 nL/min with the following gradient: 2% B to 60% B in 60 min, 

increase to 90% in 2 min, maintain at 90% for 5 min, return to 2% B in 1 min and equilibrate at 

2% B for 7 min.  Use a Thermo Q Exactive Plus orbitrap mass spectrometer (or other suitable 

proteomics instrument) coupled with a Nanospray Flex source for downstream detection with 2.5 

kV spray voltage at 250 °C. Acquire the data in the data-dependent mode, where the 10 most 

abundant ions are selected for “higher energy” collisional dissociation (HCD). 

2.7 Results and Discussion  

2.7.1 Generation of Carbonate Radical Anion on FPOP Platform 

To demonstrate the oxidative modification by carbonate radical anion, we chose apo-

myoglobin(aMb) as the model protein. We conducted the experiments with 15 mM hydrogen 

peroxide, as the radical precursor, at pH = 10 in 700 mM CO3
2-/HCO3

- buffer to maximize 

CO3¯
● formation and in 700 mM glycine-NaOH buffer to give only HO● as a parallel control. In 

the negative control experiments, the solution composition, including ion strength of the buffer, 

is maintained as the same. With no laser irradiation (Figure 2.3a), the unmodified protein signal 
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(at charge state of +20) is the most intense one followed by a small signal for the oxidized 

species seen with a +15.9949 Da mass shift, showing a basal oxidation. Irradiation by the KrF 

laser under the same conditions generates CO3¯
● and oxidizes aMb to give a more intense signals 

for singly oxidized species (+15.9949 Da), doubly oxidized species (+31.9898 Da) and triply 

oxidized species (+47.9847 Da), etc. (Figure 2.3b). As compared to the hydroxyl-radical 

oxidation in the glycine-NaOH buffer (Figure 2.3c), the two oxidation profiles showed good 

similarity, demonstrating that CO3¯
● oxidation also results in the addition of ‘an oxygen’ to the 

target protein. This is consistent with an oxidation mechanism of CO3¯
● whereby the formation 

of protein radical occurs by hydrogen atom abstraction, followed by an addition of dioxygen 

from dissolved O2 in solution, reactions that are similar to those of hydroxyl radicals1.  
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Figure 2.3 Oxidation profiles of apo-myoglobin (aMb). The quadrupole time-of-flight (QTOF) 

mass spectra of the +20 charge state of aMb with labeling conditions of (a) in CO3
2-/HCO3

- 

buffer without laser irradiation (negative control); (b) in CO3
2-/HCO3

- buffer with laser 

irradiation; (c) in glycine-NaOH buffer with laser irradiation, oxidized by hydroxide radical at 

global level. 

2.7.2 Selectivity and Reactivity of CO3¯● with Model Peptides 

Utilizing the conditions that favor formation of CO3¯
● initiation, we employed model peptides 

with little or no higher order structure for a comprehensive study of its intrinsic residue-level 

specificity. Along with CO3¯
● chemistry, hydroxyl radical oxidation was also performed for 

batch control and for comparison purposes, as previously described. To examine peptides, we 
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prepared a “peptide cocktail” containing bombesin acetate salt hydrate, α-melanocyte stimulating 

hormone (α-Mel), angiotensin I bovine, leucine enkephalin (Leu-enkephalin) and bradykinin and 

mixed the solutions with hydrogen peroxide in two different buffers at pH = 10. Oxidation 

percentages of the modified amino acids (Figure 2.4) is shown in the decreasing order upon the 

reactivity of CO3¯
● and has been corrected by subtracting basal oxidation from negative control 

as shown in Figure 2.3a.  Methionine and tryptophan are the most reactive amino acids for both 

radicals, where nearly 90% becomes oxidized by CO3¯
● and 60% by HO●. A similar 

phenomenon occurred for tyrosine where modification by CO3¯
● is almost 8-times higher than 

that by HO●. One possible reason is the weaker oxidative character leads to considerably longer 

lifetime for CO3¯
●. The more specific reactivity towards selected amino acids for CO3¯

● will 

likely give more oxidation of those reactive residues. Phenylalanine and histidine can also react 

with CO3¯
● with similar reactivity as for HO●. Oxidation of other aliphatic amino acids (e.g., 

proline on bradykinin) occurs with HO● treatment. For the CO3¯
● condition, however, only 

phenylalanine oxidation occurred. From all of the evidence, we conclude that CO3¯
● is a more 

selective oxidant than HO●, and the order of inherent reactivity of CO3¯
● is: 

 M ≈ W > Y > H ≈ F.  
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Figure 2.4 Comparison of the residue-level fraction modified (in percentage) of a ‘Peptide 

Cocktail’ by CO3¯
● and HO●. Different color represents different peptides and the sequence are 

shown correspondingly. Solid bars denote the HO● oxidation extent and the patterned bars 

denote the CO3¯
● oxidation. Presented data has been corrected for negative control. Error bars 

are the standard deviations of three independent runs. The inset is an enlarged portion of the 

figure. For bradykinin, only F undergoes oxidation with CO3¯
●, whereas F and P oxidation are 

both oxidized but not distinguishable because the chromatograms of the two modified peptides 

overlap.   

The results are consistent with those of a previous investigation18 where the reactivity of free 

amino acids in solution was measured, and in which methionine, tryptophan and tyrosine were 

found to be the most reactive amino acids towards CO3¯
● with rate constants of 1.2×108 M-1s-1, 

4.4×108 M-1s-1 and 2.9×108 M-1s-1, respectively. Although the reported rate constant for histidine 

is almost 100-fold larger than that for phenylalanine (i.e., rate constants of 7.0×106 M-1s-1 and 

5.0×104 M-1s1), the reactivities of the two residues are similar when they are part of proteins and 

peptides. It is worth noting that the electrostatic interaction between negatively charged 

carbonate radical anion and the positive charged imidazole group at lower pH may contribute to 
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an increased reactivity. Therefore, in real biological systems, the reaction rate with histidine may 

vary depending on the local pH.  

2.7.3 Residue-Resolved Modification Measurement by LC-MS/MS  

We quantified the oxidation extent at the residue level from the peak areas of the 

chromatograms. Extracted ion chromatograms (EICs) for each modified and unmodified species 

were exported from raw files with Qual Browser (Thermo Xcalibur 2.2 software) (Figure 2.5). 

The (+16 Da) angiotensin I oxidized by the carbonate radical anion (Figure 2.5b) and by the 

hydroxyl radical (Figure 2.5c) are listed below the unmodified peptides. Different colors 

represent different residues that are modified. The modification fraction for a residue is 

calculated with equation 2.2, where Aox is the peak area for the oxidized-species signal and Aun is 

the peak area for the unmodified. Chromatographic peaks are fitted by Gaussian Function and 

the averaged R2 is 0.97. For complex with overlapping signals of oxidized residues (Figure 2.5c), 

the peak representing tyrosine oxidation (purple in Figure 2.5b) is scaled into the lower panel, 

and the oxidation extent of valine is represented by the grey gaussian peak. In addition, each 

product-ion (MS/MS) spectrum (e.g., for Figure 2.6) was manually validated to assure an 

accurate oxidizing residue assignment. Comparing the signals for the fragment ions, we see a 

clear +16 Da mass shift for b4 and subsequent b ions for the modified peptide as compared with 

the unmodified peptide, indicating that oxidation took place on the Y4 residue. 

                                                                                                (2.2) 
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Figure 2.5 Extracted ion chromatogram (EICs) of angiotensin I. Specifically, the wildtype (a), 

and the oxidized angiotensin I by CO3¯
● (b) and HO●. (c). Different colors (coded with the 

chromatogram colors) indicate different oxidized residues as determined by product-ion 

(MS/MS) spectra. Each peak is fitted by Gaussian Function and the overall fitting curve is 

presented as blue dotted line. The averaged R2 for the fitting is 0.97. 

From the shown chromatogram (Figure 2.5), it clearly shows that the number of oxidized 

isomeric peptides by the CO3¯
● is significantly less than that by the HO●. In the CO3¯

● oxidation 

condition, we resolved at least 4 isomeric peptides, two of which undergo oxidation on Tyr, and 

two other minor ones involve oxidation on His and Phe. For HO●. oxidation, however, a more 

complex pattern of oxidation occurs presenting at least 6 isomeric products, including oxidations 

on Val, Leu, Tyr, His and Phe with much more discernible amount. 
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Figure 2.6 Product-ion (MS/MS) spectra of oxidized and wildtype angiotensin I. 

2.7.4 Selectivity and Reactivity of CO3¯● with Model Proteins 

In addition to peptides mixture, we further investigate the selectivity and specificity of CO3¯
● 

with proteins, where apo-myoglobin and ubiquitin were chosen as the model systems. 

Experiments were carried out with CO3¯
● dominant condition and HO● governing condition 

individually followed by “bottom-up” proteomics. After integrating the signals obtained through 

LC-MS/MS, we can list the modified amino acids for each protein (Figure 2.7). From the 

ubiquitin data set (Figure 2.7a), CO3¯
● gives the most oxidation on methionine (M), as does 

HO●, underscoring their oxidation preference towards methionine. Other reactive residues 

include the aromatic amino acids phenylalanine (F) 4 and 45, tyrosine (Y) 59 and histidine (H) 



75 

 

68 undergo moderate oxidation by CO3¯
● as compared to HO●. Most other amino acids that are 

reactive with HO● (e.g., valine (V), leucine (L), glutamine (Q), lysine (K), proline (P)) are 

unreactive with CO3¯
●.  

 

Figure 2.7 Comparison of residue-level fraction modified (in percentage) of (a) ubiquitin and (b) 

apo-myoglobin modified by carbonate radical (CO3¯
●) and hydroxyl radical (HO●). Solid bars 

denote the hydroxyl radical oxidation and the patterned bars denote the carbonate radical anion 

oxidation. Presented data has been corrected for negative control. Error bars are standard 

deviations of three independent runs. 

For apo-myoglobin (Figure 2.7b), tryptophan W7 exhibits the highest oxidation extent on by 

CO3¯
● showing a doubled fraction modified value as compared to that for HO●. Histidine also 
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gives nearly doubled modification fraction by CO3¯
● oxidation, for example H36 and H81, 

indicating its considerable reactivity. The oxidation behavior towards methionine is consistent 

with the results for ubiquitin, where CO3¯
● oxidation slightly favors that of HO●, shown as 

M131. Other potentially reactive residues like H113, H116 and F106 undergo an oxidation 

extent of less than 0.5%, just as with HO●. The reason is likely to be the small solvent accessible 

area (SASA) for these sidechains on protein surface. In addition, the size difference in CO3¯
● 

and HO● may contribute to the reaction extent on a given amino acid. For example, the oxidation 

percentage of W14 is 3%, which is nearly 5-times lower than that of W7 (14.8 %). The SASA of 

W7 and W14 is 15.3 Å2 and 6.8 Å2, respectively by calculation11. Thus, for the smaller HO●, the 

oxidation extent is greater than that for the larger CO3¯
●, which has difficulty penetrating the 

surface to react with W14. Other residues like V13/67/68, L11/86, I21 and Q8/Q9 are relatively 

inert to CO3¯
● with no shown oxidation. 

Compared to the results for the model peptides, the CO3¯
● oxidative preference towards Met and 

Trp over HO● is consistent and so does the negligible reactivity towards aliphatic amino acids. 

However, for tyrosine, oxidation extent by CO3¯
● in ubiquitin (Y59 in Figure 2.7a) is much less 

than that with model peptides, shown as 1.6% vs 30-50%. The difference arises from the location 

of the Y59 in the 3D structure and its limited SASA, emphasizing the importance of 

incorporating peptides with minimal higher order structure to eliminate conformational effect in 

the discussion of residue-level specificity.  

2.8 Advantages and Caveats 

We optimized the production of carbonate radical anion on a FPOP platform by using a reaction 

cascade scheme starting with the hydroxyl radical. This approach enables the study of peptides 

and proteins to determine the relative reactivities of various amino acid sites in those species. 
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Although the results for the protein/peptides systems are largely consistent with those of an early 

study carried out with free amino acids, this new approach provides direct evidence for the 

radical reactions of proteins (and other biomolecules) with radicals, here the carbonate radical 

anion, demonstrating clearly those residues or regions of the biomolecule that are reactive.  

The approach suggests that a general approach can be achieved by implementing the FPOP 

platform to generate either primary or secondary biologically relevant radicals (by cascade 

reactions) and to determine their fundamental reactivities with biomolecules. Primary HO● and 

SO4¯
● radicals can be formed from peroxy-compounds. Generation of secondary radicals (e.g., 

CO3¯
●, NO2

●, halides) may be optimized by varying buffer contents, pH, and radical precursor 

and by involving a radical scavenger. In the current study, this was done by using kinetic 

simulations. For other radicals for which kinetic data do not exist, the conditions must be 

optimized by using mass spectrometry analysis. Other spectroscopy techniques (e.g., 

fluorescence microscopy) can also be incorporated in the post-modified identification. 

Although we used no scavenging reagents in the current study for the generation of carbonate 

radical anion, incorporating such reagents can be done in future studies. The use of histidine as a 

scavenger in the hydroxyl-radical generation not only controls radical lifetime but also intercepts 

radicals and minimizes protein modification, a point that may be important for physiologically 

relevant studies. For example, biological systems respond to different oxidative stress, and the 

oxidizing potential can be varied on the FPOP platform. In addition, the FPOP flow design 

effectively avoids over-modification of a target and improves labeling homogeneity by 

controlling flow rate, exclusion volume, and radical lifetime. We suggest that this repurposed 

FPOP platform coupled with mass spectrometry-based analysis is a new option for studies of 

radical generation and their reactions with biomolecules. 



78 

 

2.9 Acknowledgments 

This study contains combined efforts from all authors. M.M.Z. conducted the experiments and 

wrote the manuscript. D.L.R. run the simulation. M.L.G edited the manuscript. The study was 

supported by National Institute of General Medical Sciences grant 5P41GM103422 and by 

1S10OD016298 for instrumentation.  

2.10 References 

1. Xu, G. H.; Chance, M. R. Hydroxyl radical-mediated modification of proteins as probes 

for structural proteomics. Chem. Rev. 2007, 107, 3514-3543. 

 

2. Maleknia, S. D.; Brenowitz, M.; Chance, M. R. Millisecond radiolytic modification of 

peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem. 1999, 71, 3965-

3973. 

 

3. Hambly, D. M.; Gross, M. L. Laser flash photolysis of hydrogen peroxide to oxidize 

protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 

2005, 16, 2057-63. 

 

4. Li, K. S.; Chen, G. D.; Mo, J. J.; Huang, R. Y. C.; Deyanova, E. G.; Beno, B. R.; O'Neil, 

S. R.; Tymiak, A. A.; Gross, M. L. Orthogonal Mass Spectrometry-Based Footprinting for 

Epitope Mapping and Structural Characterization: The IL-6 Receptor upon Binding of Protein 

Therapeutics. Anal. Chem. 2017, 89, 7742-7749. 

 

5. Li, J.; Wei, H.; Krystek, S. R.; Bond, D.; Brender, T. M.; Cohen, D.; Feiner, J.; 

Hamacher, N.; Harshman, J.; Huang, R. Y. C.; Julien, S. H.; Lin, Z.; Moore, K.; Mueller, L.; 

Noriega, C.; Sejwal, P.; Sheppard, P.; Stevens, B.; Chen, G. D.; Tyrniak, A. A.; Gross, M. L.; 

Schneeweis, L. A. Mapping the Energetic Epitope of an Antibody/Interleukin-23 Interaction with 

Hydrogen/Deuterium Exchange, Fast Photochemical Oxidation of Proteins Mass Spectrometry, 

and Alanine Shave Mutagenesis. Anal. Chem. 2017, 89, 2250-2258. 

 

6. Yan, Y. T.; Chen, G. D.; Wei, H.; Huang, R. Y. C.; Mo, J. J.; Rempel, D. L.; Tymiak, A. 

A.; Gross, M. L. Fast Photochemical Oxidation of Proteins (FPOP) Maps the Epitope of EGFR 

Binding to Adnectin. J. Am. Soc. Mass Spectrom. 2014, 25, 2084-2092. 

 

7. Li, K. S.; Rempel, D. L.; Gross, M. L. Conformational-Sensitive Fast Photochemical 

Oxidation of Proteins and Mass Spectrometry Characterize Amyloid Beta 1-42 Aggregation. J. 

Am. Chem. Soc. 2016, 138, 12090-12098. 

 



79 

 

8. Hart, K. M.; Ho, C. M. W.; Dutta, S.; Gross, M. L.; Bowman, G. R. Modelling proteins' 

hidden conformations to predict antibiotic resistance. Nat. Commun. 2016, 7, 1-10. 

 

9. Poor, T. A.; Jones, L. M.; Sood, A.; Leser, G. P.; Plasencia, M. D.; Rempel, D. L.; 

Jardetzky, T. S.; Woods, R. J.; Gross, M. L.; Lamb, R. A. Probing the paramyxovirus fusion (F) 

protein-refolding event from pre- to postfusion by oxidative footprinting. Proc. Natl. Acad. Sci. 

U. S. A. 2014, 111, E2596-605. 

 

10. Chen, J. W.; Rempel, D. L.; Gau, B. C.; Gross, M. L. Fast Photochemical Oxidation of 

Proteins and Mass Spectrometry Follow Submillisecond Protein Folding at the Amino-Acid 

Level. J. Am. Chem. Soc. 2012, 134, 18724-18731. 

 

11. Gau, B. C.; Chen, H.; Zhang, Y.; Gross, M. L. Sulfate Radical Anion as a New Reagent 

for Fast Photochemical Oxidation of Proteins. Anal. Chem. 2010, 82, 7821-7827. 

 

12. Zhang, B.; Rempel, D. L.; Gross, M. L. Protein Footprinting by Carbenes on a Fast 

Photochemical Oxidation of Proteins (FPOP) Platform. J. Am. Soc. Mass Spectrom. 2016, 27, 

552-5. 

 

13. Cheng, M.; Zhang, B.; Cui, W.; Gross, M. L. Laser-Initiated Radical 

Trifluoromethylation of Peptides and Proteins: Application to Mass-Spectrometry-Based Protein 

Footprinting. Angew. Chem. Int. Ed. 2017, 56, 14007-14010. 

 

14. Medinas, D. B.; Cerchiaro, G.; Trindade, D. F.; Augusto, O. The carbonate radical and 

related oxidants derived from bicarbonate buffer. Iubmb Life 2007, 59, 255-262. 

 

15. Sankarapandi, S.; Zweier, J. L. Bicarbonate is required for the peroxidase function of 

Cu,Zn-superoxide dismutase at physiological pH. J. Biol. Chem. 1999, 274, 1226-1232. 

 

16. Hodgson, E. K.; Fridovich, I. The mechanism of the activity-dependent luminescence of 

xanthine oxidase. Arch. Biochem. Biophys. 1976, 172, 202-205. 

 

17. Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. U. S. 

A. 2004, 101, 4003-4008. 

 

18. Neta, P.; Huie, R. E.; Ross, A. B. Rate Constants for Reactions of Inorganic Radicals in 

Aqueous-Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027-1284. 

 

19. Shafirovich, V.; Dourandin, A.; Huang, W. D.; Geacintov, N. E. The carbonate radical is 

a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J. Biol. Chem. 

2001, 276, 24621-24626. 

 

20. Paviani, V.; Queiroz, R. F.; Marques, E. F.; Di Mascio, P.; Augusto, O. Production of 

lysozyme and lysozyme-superoxide dismutase dimers bound by a ditryptophan cross-link in 

carbonate radical-treated lysozyme. Free. Radical Bio. Med. 2015, 89, 72-82. 

 



80 

 

21. Surmeli, N. B.; Litterman, N. K.; Miller, A. F.; Groves, J. T. Peroxynitrite Mediates 

Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the 

Carbonate Radical Anion. J. Am. Chem. Soc. 2010, 132, 17174-17185. 

 

22. Gebicka, L.; Didik, J.; Gebicki, J. Reactions of heme proteins with carbonate radical 

anion. Res. Chem. Intermediat. 2009, 35, 401-409. 

 

23. Chen, S. N.; Hoffman, M. Z. Rate constants for the reaction of the carbonate radical with 

compounds of biochemical interest in neutral aqueous solution. Radiat. Res. 1973, 56, 40-7. 

 

24. Boccini, F.; Domazou, A. S.; Herold, S. Pulse radiolysis studies of the reactions of CO3 

center dot- and NO2 center dot with nitrosyl(II)myoglobin and nitrosyl(II)hemoglobin. J. Phys. 

Chem. A 2006, 110, 3927-3932. 

 

25. Zhang, H.; Joseph, J.; Crow, J.; Kalyanaraman, B. Mass spectral evidence for carbonate-

anion-radical-induced posttranslational modification of tryptophan to kynurenfne in human Cu, 

Zn superoxide dismutase. Free. Radical Bio. Med. 2004, 37, 2018-2026. 

 

26. Joffe, A.; Geacintov, N. E.; Shafirovich, V. DNA lesions derived from the site selective 

oxidation of Guanine by carbonate radical anions. Chem. Res. Toxicol 2003, 16, 1528-38. 

 

27. Buxton, G. V.; Elliot, A. J. Rate-Constant for Reaction of Hydroxyl Radicals with 

Bicarbonate Ions. Radiat. Phys. Chem. 1986, 27, 241-243. 

 

28. Schulz, K. G.; Riebesell, U.; Rost, B.; Thoms, S.; Zeebe, R. E. Determination of the rate 

constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater 

systems. Mar. Chem. 2006, 100, 53-65. 

 

29. Niu, B.; Zhang, H.; Giblin, D.; Rempel, D. L.; Gross, M. L., Dosimetry Determines the 

Initial OH Radical Concentration in Fast Photochemical Oxidation of Proteins (FPOP). J. Am. 

Soc. Mass Spectrom. 2015, 26, 843-846. 

 

 

 

 

 

 

 

 



81 

 

Chapter 3: Free Radical Footprinting to Probe 

Unfolding of Holo-Myoglobin Triggered by Laser-

induced pH jump 
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3.1 Abstract 

Understanding protein folding/unfolding is crucial to gain deeper insights of related biological 

processes. Commonly adopted characterization methods to follow protein conformational 

changes are circular dichroism, fluorescence, FT-IT and NMR. Among them, the spectroscopic 

approaches are the most extensively used, given the fast detection timescale at femtoseconds to 

microseconds. However, their spatial resolution is low. Mass spectrometry-based approaches 

enable residue-level resolution, and they may become an asset to probe protein conformational 

changes. Whereas the major limitation is the time resolution that typically is milliseconds, too 

long for protein folding/unfolding happening at microseconds. We designed and established a 

platform by integrating fast photochemical oxidation of protein (FPOP) and a laser-induced pH 

jump to allow the fast characterization at the microseconds to low milliseconds timescale. Using 

holo-myoglobin as a model system, we considered different footprinting methods (e.g., hydroxyl 

radical and carbene diradical footprinting), establishing a foundation for future research. 

3.2 Introduction  

Protein folding/unfolding is essential for understanding biological processes, reaction 

mechanisms, and basic interactions that are important in therapeutics 1-3. To study protein 

conformational changes in kinetics experiments, investigators commonly use spectroscopic 

methods such as fluorescence spectroscopy. The basic principle is to measure the fluorescence of 

some amino acid residues (e.g., tryptophan) that fluoresce differently when buried inside a 

protein or exposed on its surface. The approach provides usually global information to probe 

protein folding/unfolding. Infrared spectroscopy, another optical method, can provide some local 

structural information. 
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Mass spectrometry-based characterization of protein folding/unfolding started in the early 1990s 

with the development of pulsed H/D amide exchange and covalent labeling by chemical reagents 

of equilibrium states. 4-5 The most pronounced advantages of the MS-based approaches is the 

ability to pinpoint the amino acid residues involved in the protein conformational changes, 

thereby increasing the spatial resolution achievable by optical approaches. The limitation, 

however, is time resolution, typically milliseconds, a time scale that is longer than most folding 

events occurring at microsecond. 6 

One representative study was carried out by Konermann and coworkers7 who took advantages of 

the fast photochemical oxidation of protein (FPOP)8, a platform that can generate hydroxyl 

radical (HO●) through photolysis of hydrogen peroxide on a flow system and label the solvent 

accessible surface area (SASA) of different protein conformations at low microseconds. In 

combination with a continuous-flow rapid mixing apparatus, the protein can be denatured from 

50 ms to 5 min prior to HO● footprinting. Later, Gross and Chen9 published a breakthrough 

study at 2010. They integrated a laser-induced temperature jump and the FPOP platform to probe 

the folding process of barstar protein at microseconds to low milliseconds timescale. The two 

lasers, one to perturb protein conformations, and another to form HO● radicals are aligned 

carefully intersecting at the same transparent window, and the needed time delay between the 

two lasers is enabled by a signal generator with a delay circuit. By controlling the delay time 

from 0.2 to 1.0 ms, they traced the structural changes of barstar by analyzing oxidative 

modifications. The shift of mass centroid was further fitted as a function of delay time by using 

single-exponential function, providing the rate constant for the transition from the unfolded to 

the first intermediate state. After bottom-up proteolysis, the key residues associated with barstar 

folding during the first stage of folding were also resolved, demonstrating the capability of this 
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approach to achieve enhanced spatial resolution to study protein folding/unfolding at sub-

millisecond time scale.10   

Besides adding a denaturant or introducing a temperature jump, other perturbations can induce 

protein folding/unfolding. One of many is a laser-initiated pH jump, which was demonstrated 

frequently by using holo-myoglobin (hMyo) 11-13 with spectroscopic detection. It is known that 

conformational change of hMyo is determined by the solubility of the heme.14 The heme group is 

less soluble in acidic conditions, therefore having a tendency to remain inside the protein’s 

hydrophobic binding pocket. In addition, the heme-protein interaction is thermodynamically 

more favorable, promoting the persistence of a native-like conformation (closed state). Basic pH, 

on the other hand, facilitates heme release, pushing the equilibrium towards a relative unfolded 

conformation (open state). In a detailed study published at 2006, Corrie and coworkers11 

observed the two-state transition from pH 3.5 to 4.5. The pH jump is induced by the irradiation 

on a widely used photoacid, 2-nitrobenzaldehyde (NBA). The kinetics of hMyo unfolding could 

be described with a triple exponential function, giving the lifetimes of three dominant 

intermediates that are 18 ± 1 ms, 0.53 ± 0.01 s and 0.94 ±0.01 s.  

In chapter 2, we demonstrated one way to elaborate the FPOP platform, that is to develop new 

radical footprinting reagents. In this study, we aim to develop the FPOP platform from another 

aspect. We are interested in advancing the two-laser platform for broader applications, 

specifically for pH-sensitive proteins. hMyo is a good model system for this purpose. We 

designed an integrated platform wherein, by tuning the laser frequency, exclusion volume, and 

flow rate of the sample solution, the delay time between the two lasers can be controlled to 

capture different unfolded states. In addition to HO● footprinting, we also evaluated carbene 

labeling as a probe for protein folding/unfolding, establishing the foundation for further research.  
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3.3 Material and Method 

3.3.1 Material 

Sodium chloride, tris-buffer, citric acid, 2-nitrobenzaldehyde, methionine, catalase, holo-

myoglobin, and apo-myoglobin were purchased from Millipore Sigma (Saint Louis, MO).  1-(2-

Nitrophenyl)ethyl sulfate was purchased from ApexBio Technology (Houston, TX). 3-(3-

Methyl-3H-diazirin-3-yl) propan-1-ol was purchased from Ambeed (Arlington, IL).  

3.3.2 Hydroxyl Radical Footprinting 

For the equilibrium conditions, hMyo (4 µM) was dissolved in citrate-phosphate to achieve pHs 

less than 7, and in tris-buffer for pHs greater than 7. Incubation took about 30 mins prior to 

constitution of the sample solution which contains 5 mM H2O2 and 1 mM histidine. The 

collection tube includes 10 µL of 70 mM methionine and 1 µL of 500 nM catalase for post-

oxidation quenching.  

For the pH-jump experiments, deionized water was boiled overnight in a three-neck round 

bottom flask under nitrogen protection. A syringe of 50 mL with a long needle was used to 

transfer the degassed water into an Erlenmeyer flask under a continuous flow of nitrogen. A self-

built Schlenk line connects a nitrogen tank with the flask and with three others to protect the 

reagents such as saturated NBA/NaCl solution and protein solution, from absorbing CO2 

throughout the experiments. The NBA reagent and hMyo (or aMyo) powder were kept and 

dissolved under nitrogen protection to avoid further introduction of CO2. Specific H2O2 and 

histidine concentration are indicated correspondingly in the discussion. Measurements of pH 

were performed on a SevenEasy pH meter (Columbus, OH). The experimental for the laser 

parameters are: ~ 25.00 mJ, 16 kV for KrF laser; ~ 10 mJ for YAG laser with maximized 

amplification; ~ 1.95 mm focal size; frequency (repetition rate) of 5 Hz; ~ 12.5 µL/min flow rate. 
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Mass spectrometry characterization was conducted on Bruker MaXis 4G on the global level to 

measure modification extent at the intact protein level.  

3.3.3 Carbene Footprinting 

Carbene footprinting was performed similarly as the description above except no methionine and 

catalase were in the collection tube. The concentration of MDPO in stock solution was 200 mM 

in NaCl, and the final concentration was 10 mM.  

3.4 Experimental Design 

 

Figure 3.1 Two-laser platform that induces a pH jump at 355 nm followed by hydroxyl radical 

generation at 248 nm for protein footprinting.  

To probe protein conformational changes in-time, we coupled two lasers, namely the KrF 

excimer laser with a wavelength at 248 nm and the Nd:YAG laser at 355 nm, into an integrated 

platform (Figure 3.1). Upon irradiation at 355 nm, the photoacid contained in the sample solution 

is excited and dissociates protons to lower the pH and further induce the folding/unfolding 
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process of a pH-sensitive protein. The second laser at 248 nm then photolyzes the constituent 

H2O2, generating HO● to map the changing SASA of the protein. A delay counter is configured 

between the two lasers, allowing HO● footprinting to be executed at several delays 

(microseconds to milliseconds) after the initial conformational change. The upper limit of the 

monitoring time is determined by the exclusion volume, a design that avoids double labeling of 

the targeted protein, and the laser frequency. In this study, the two lasers were both operated at 

every 200 ms (f = 5 Hz) with an exclusion volume of 20 % at the flow rate of 12 µL/min. The 

upper limit of the time delay is therefore 40 ms (200×20%). Other settings, including the focus 

lenses for both lasers, the syringe pump, and the quenching solution in the collection tube, are 

the same with a typical FPOP experimental setup.  

3.5 Results and Discussion 

3.5.1. Conformational Changes of Holo-Myoglobin at Equilibrium  

Although investigators followed the unfolding of hMyo with spectroscopic methods, the 

unfolding process, which we seek to characterize by HO● footprinting, is unknown. To 

understand the conformational changes in the context of SASA changes, we incubated hMyo 

individually at different pHs from 3.2 to 8.0. All protein solutions, with 19 pH conditions, were 

equilibrated in buffers for 30 mins prior to the HO● labeling, initiated by 248 nm laser. Each 

experiment was performed in duplicate. Representative oxidation profiles are shown in Figure 

3.2. The first peak represents the unmodified protein (m/z = 848.6 at charge +20), followed by a 

series of higher-molecular species giving consecutive +16 oxidation. The number of the oxidized 

proteins are different at various pHs, indicating different extents of oxidation that reflect 

different protein conformations. For better comparison, we further calculated the modification 

percentage (eq 3.1) based on the intensity of all the peaks, e.g., +16, +32, +48, etc. We observed 
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higher oxidation percentages when the conditions are acidic. At pH = 3.6, the fractional 

oxidation is about 50 %, indicating a relatively open conformation comparing to that in 

conditions with larger pH values. 

 (eq 3.1) 

 

Figure 3.2 Oxidation profiles of hMyo by hydroxyl radical footprinting at several pHs under 

equilibrium conditions. The peak series represent the protein of charge +20.  

We further plotted the oxidation percentages as a function of pH and observed a two-state 

transition starting from a pH around 3.5 (Figure 3.3). When the pH increased to 5.5, the 
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oxidation extent dropped significantly by about 25% and then decreased gradually at pH values 

larger than 5.5. The observed pH range accountable for the conformational transition is similar to 

that in a previous study as monitored by UV spectroscopy 11.  

The successful HO● footprinting of hMyo for equilibrium states laid the foundation for the 

following investigation, where the laser at 355 nm is incorporated to induce pH changes in 

advance.  

 

Figure 3.3 Modification percentage of hMyo as a function of pH. The blue dash lines indicate 

the estimated pH range for the two-state transition. The patterned data points correspond to the 

representative MS spectrum in Figure 3.2. The fitting is based on a logistic function in Origin, 

and the correlation coefficient is R2 = 0.996. 

3.5.2 Control Experiments at 248 nm 

To enable a pH-jump upon irradiation on photoacids, the protein solution should contain no 

buffers (only NaCl solution). We further screened the concentration of H2O2 and histidine that 

determines the dosage of HO● to achieve comparable oxidation extents with the ones at 

equilibrium states. In addition, NaCl solution dissolves atmospheric CO2, giving an acidic pH 
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around 6.2 at room temperature. Over-night degassing of the stock NaCl solution is needed in the 

experimental preparation, and the fresh NaCl solution requires nitrogen protection throughout the 

footprinting experiments. These procedures help maintain the NaCl solution at around neutral pH 

even after addition of the protein solution and the photoacid. The conditions we adopted are: 1.5 

mM H2O2, 0.5 mM of His, and 4 uM of hMyo in NaCl, giving a pH of 6.8. In the presence of the 

saturated NBA solution (~ 8 mM), the pH further dropped to 6.3, but the hMyo is still retained in 

a native-like conformation (pH > 5.5).  

To start with, we examined the oxidation profiles for the open and closed states of hMyo without 

incorporation of NBA. We prepared two protein solutions, one at pH 6.3 and the other at 3.2. 

The pHs of the two samples were adjusted with HCl solution to mimic the pH of initial and final 

situation, respectively, if using NBA for pH jump. The framed oxidation percentages at the 

closed state of hMyo is 23% (Figure 3.4a) and 48% for the open state (Figure 3.4b), similarly to 

those values in the calibration curve acquired for equilibrium states.  
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Figure 3.4 Oxidation profiles of hMyo upon only 248 nm laser irradiation under different 

conditions: a) hMyo (4 µM) with His (0.5 mM) and H2O2 (1.5 mM) at pH 6.3 in NaCl; b) hMyo 

(4 µM) with His (0.5 mM) and H2O2 (1.5 mM) at pH 3.2 in NaCl; c) hMyo (4 µM) with His (0.5 

mM), H2O2 (1.5 mM) and NBA (~ 8 mM) at an initial pH of 6.3 in NaCl; d) hMyo (4 µM) with 

His (0.5 mM), H2O2 (1.5 mM) and NBA (~ 8 mM) at an initial pH of 3.2 in NaCl; e) hMyo (4 

µM) with His (0.5 mM), H2O2 (7.5 mM) and NBA (~ 8 mM) at the initial pH of 3.2 in NaCl.  

Then, we included saturated NBA (~ 8 mM) in the sample solution and evaluated the 

footprinting upon laser irradiation at 248 nm. Based on our design, the photoacid will be 

activated for proton release only at 355 nm and will desirably stay inert when HO● is generated 

under 248 nm, the wavelength used for footprinting. We observed, however, a decrease in pH 

from 6.8 to 3.2 upon 248 nm irradiation, consistent with the UV absorption profile of NBA that 

absorbs light from 200 to 400 nm. Although the NBA being activated at 248 nm is not preferred, 
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the use of NBA in our experimental design may still work. The reason is that in an actual pH-

jump experiment, if most of the NBA is exhausted by the first laser irradiation at 355 nm, the pH 

change caused by the remaining NBA at the second laser can be negligible. To test this, we 

measured the pH of the protein solution after 355 nm irradiation, obtaining a value of 3.2. The 

same solution was then recycled and submitted for the second laser at 248 nm. The final pH 

value is 3.0 ± 0.1, very similar to the value after the treatment at 355 nm, indicating a near-

complete consumption of NBA before irradiation by the KrF laser.  

We are now in position to test the labeling profiles by HO● footprinting initiated at 248 nm. The 

closed conformation of hMyo (initial pH at 6.3, Figure 3.4c) gives an oxidation percentage of 

30% whereas that of the open conformation (pH 3.2, Figure 3.4d) is only 38%, which is a much 

smaller modification level than the condition without NBA (Figure 3.4b). NBA appears to be a 

HO● quencher, and its incorporation requires higher dosage of HO● to produce a convincing 

difference in the oxidation extents to distinguish the conformational transitions. We further 

screened the H2O2 concentration and determined that we could increase it to 7.5 mM for the 

following experiments (Figure 3.4e).  

3.5.3 Control Experiments at 355 nm 

Besides evaluating the system with only 248 nm, we decided to conduct control experiments 

with only 355 nm. Ideally, only the photoacid NBA will be photolyzed under YAG laser (355 

nm) for pH change while the H2O2 will stay unreactive only with a burst from the KrF laser. We 

incorporated either H2O2 (without NBA but with hMyo and histidine, Figure 3.5a) or NBA 

(without H2O2 but with hMyo and histidine, Figure 3.5b) in protein solutions and observed only 

the peaks corresponding to unmodified species, showing the results as per the design. When 

H2O2 and NBA were included together, however, hMyo became oxidized (Figure 3.5c), 
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indicating that there are reactions occurring between NBA and H2O2 and the generated reactive 

species are likely accountable for the oxidation.  

To rule out that this is a protein-dependent chemistry, we performed similar experiments on two 

other proteins, calmodulin (Figure 3.5d-f) and β-lactoglobulin (Figure 3.5 h-g). Although the 

relative oxidation extents vary for different proteins, which may be accountable by the number of 

reactive residues exposed on the surface, all three proteins are clearly oxidized. On the other 

hand, we did notice that the oxidation percentage on hMyo is only 36% (Figure 3.5c), less than 

50% that was observed previously (Figure 3.4e) with same H2O2 concentration. The difference 

between the two values may still provide us the chance to probe conformational changes of 

hMyo. It is likely that the unknown reactive species label hMyo almost instantaneously upon the 

proton releases. The labeling process can further induce perturbations in the protein 

conformations and potentially bias the unfolding and subsequent footprinting readout. 

Nevertheless, if the oxidized hMyo can still undergo conformational changes, this study may 

serve as the foundation for setting up a characterization platform to follow protein 

conformational transitions.  
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Figure 3.5 Oxidation profiles of hMyo upon only 355 nm  laser irradiation under different 

conditions: a) hMyo (4 µM) with His (0.5 mM) and H2O2 (7.5 mM) at pH 6.3 in NaCl; b) hMyo 

(4 µM) with His (0.5 mM) and NBA (~ 8 mM) at pH 6.3 in NaCl; c) hMyo (4 µM) with His (0.5 

mM), H2O2 (7.5 mM) and NBA (~ 8 mM) at pH of 6.3 in NaCl. Oxidation profiles of calmodulin 

are under similar conditions listed from d) to f) and of β-lactoglobulin are listed corresponding 

from h) to g).  

3.5.4 pH Jump with Different Delay Times 

To establish whether the oxidized hMyo undergoes further conformational changes, we 

attempted to footprint the most unfolded protein conformation through a “recycled” experiment. 

After being labeled with the 355 nm laser, we collected the hMyo solution and let it sit for 3 

mins to allow the unfolding to maximize. The protein solution was then recycled for 248 nm 

irradiation for the upper-limiting oxidation extent (Figure 3.6e). Compared to the oxidation 

percentage with only 355 nm laser irradiation (Figure 3.6b), the increase in the extent of labeling 

confirms that a conformational change of hMyo occurs after the initial oxidation, promoting us 

to probe the conformational transitions during unfolding.  

We set the time delays between the two lasers as 0 ms, 1 ms, 5 ms, 20 ms and 40 ms in parallel 

runs to capture the dominant conformation at different time points. When labeling hMyo 

simultaneously with two lasers (355 nm - 0 ms - 248 nm), we observed that the second laser 

irradiation contributed approximately 8% more oxidation (Figure 3.6c) compared to the 

condition of 355 nm irradiation only (Figure 3.6b). The total oxidation percentage with no time 

delay is 46%, a value that characterizes the starting conformation during the transition. If we use 

40 ms as the time delay (355 nm - 40 ms - 248 ms), the overall oxidation percentage increased to 

51% (Figure 3.6d), similar to the value of a completely unfolded conformation (Figure 3.6e). 

Although the extent of oxidation increased with longer time delays, the absolute difference 

between the two delay times is only 5%, making it hard to distinguish different conformations 
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when using a series of smaller delay times. In addition, the reproducibility of this experiment 

throughout the process was not high. We suggest that the main reason is still the unknown 

chemistry between NBA and H2O2 to yield unspecified reactive radical species. The undefined 

system leads to uncontrollable oxidations. To overcome this problem, only one of the two 

chemicals can exist in the pH jump solution. 

 

Figure 3.6 Oxidation profiles of hMyo with different time delays between 355 nm and 248 nm 

laser. Specific conditions are: a) no laser control; b) control with only 355 nm irradiation; c) 0 ms 

time delay; d) 40 ms time delay; e) “recycled” experiments with 3 mins time delay. 

 



96 

 

3.5.5 pH Jump with Carbene Radicals 

To avoid the simultaneous presence of NBA and H2O2, we substituted H2O2 with diazirine for 

carbene footprinting, which is usually initiated with the YAG laser at 355 nm. Given that NBA 

can also be activated at 248 nm, we can trigger the proton release first with this laser and then 

fooprint the protein with 355 nm irradiation; therefore, the order of implementing the two lasers 

needs to be switched (Figure 3.7) compared to the previous design. In addition, we screened 

several diazirine reagents (Scheme 3.1) for carbene footprinting and succeeded with 3-(3-methyl-

3H-diazirin-3-yl) propan-1-ol (MDPO).  

 

Figure 3.7 Enlarged labeling window using carbene footprinting. 

 

Scheme 3.1 Diazirine reagents for carbene footprinting. 

The labeling profiles of hMyo upon 355 nm irradiation of MDPO are shown in Figure 3.8. We 

first incubated hMyo with MDPO in NaCl solution and observed consecutive + 86.07 Da peaks 

after the peak for the unmodified protein. The carbene labeling for the closed and open state of 

hMyo were conducted with initial pHs of 6.8 (Figure 3.8b) and 3.2 (Figure 3.8c), respectively. 
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More carbene additions were observed under the acidic conditions, consistent with larger SASA 

in the open conformation. Then, we evaluated the labeling performance of MDPO at 248 nm and 

observed no + 86 Da peaks (Figure 3.8d), consistent with the experimental design.  

 

Figure 3.8 Carbene labeling profiles of hMyo under different conditions that are listed in each 

panel. 

In the presence of MDPO and hMyo, the photoacid NBA was also included in the sample 

solution for YAG laser at 355 nm. The carbene labeling, however, didn’t occur, and only a low 

intensity peak corresponding to oxidation appeared (Figure 3.9a) instead, indicating chemistry 

between MDPO and NBA. To establish whether it is the NBA or the transformed NBA-acid can 
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react with MDPO, we performed a similar “recycled” experiment as before. Specifically, we 

mixed hMyo with only NBA and submitted the solution to 248 nm irradiation, trying to exhaust 

NBA into the acid form. Then, we added MDPO to the collected solution for carbene 

footprinting at 355 nm. We observed a similar pattern of showing predominantly oxidation 

species (Figure 3.9b). In addition to the +16 Da peaks, we noticed two small peaks that represent 

carbene addition. Therefore, we screened different conditions, trying to promote this carbene 

chemistry. Even when the concentration of MDPO was tripled, we only observed significant 

increase in peak intensity for oxidation (Figure 3.9c). Furthermore, by using apo myoglobin 

(aMyo) as a control, we also excluded the possibility of the heme group being the initiator of this 

unknown chemistry. The labeling profile still showed the oxidation instead of carbene addition 

(Figure 3.9d). 



99 

 

 

Figure 3.9 Carbene labeling profiles of hMyo and aMyo under different conditions that are listed 

in each panel. 

3.6 Conclusion 

The two-laser platform based on HO● footprinting shows preliminary results to probe 

conformational changes of hMyo. Unknown reactive species that result from chemical reactions 

between the photoacid NBA and H2O2 prohibit control of the system. Unfortunately, replacement 

of H2O2 and HO● footprinting with carbene footprinting was not successful. We also tried to 

substitute NBA with another widely used photoacid, 1-(2-nitrophenyl)ethyl sulfate (NPE) 13. 
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However, NPE itself can label protein upon 248 nm or 355 nm irradiation even in the absence of 

other footprinting reagents.  

One of the many reasons of why the chemistry is complex is due to the complication of the 

proton releasing mechanisms. Other investigators offer several mechanisms, some of which 

include easily oxidizable intermediates. For example, one proposed mechanism15 (Scheme 3.2) 

of NBA rearrangement upon laser activation involves two single nitrogen-oxidation bonds that 

are susceptible for a strong oxidant like H2O2. Therefore, a nitroso-group can be troublesome 

being part of the photoacid. For further investigations, other types of photoacids such as benzyl 

ester16-17 may be a good choice. 

 

Scheme 3.2 One proposed proton release mechanism of NBA. 

For carbene footprinting, it is known that it preferentially reacts with polar motifs such as 

carbonyl groups. The presence of a carbonyl in a photoacid is usually necessary, given that the 

pH jump involves transformations into an acidic form. Thus, carbene footprinting may not be a 

good candidate for this purpose. Other types of radical-based footprinting may be worth to try 

(e.g., iodine radical and trifluoromethyl radical footprinting). 
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Chapter 4: An Integrated Approach for Determining a 

Protein-Protein Binding Interface in Solution and an 

Evaluation of HDX Kinetics for Adjudicating 

Candidate Docking Models* 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* This chapter is based on the following publication: Zhang, M. M.; Beno, B. R.; Huang, R. Y-

C.; Adhikari, J.; Deyanova, E. G.; Li, J.; Chen, G.; Gross, M. L. An Integrated Approach for 

Determining a Protein-Protein Binding Interface in Solution and an Evaluation of HDX Kinetics 

for Adjudicating Candidate Docking Models Anal. Chem 2019, 91, 15709-15717. 
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4.1 Abstract 

We describe an integrated approach of using hydrogen−deuterium exchange mass spectrometry 

(HDXMS), chemical crosslinking mass spectrometry (XL-MS), and molecular docking to 

characterize the binding interface and to predict the three-dimensional quaternary structure of a 

protein−protein complex in solution. Interleukin 7 (IL-7) and its α-receptor, IL-7Rα, serving as 

essential mediators in the immune system, are the model system. HDX kinetics reports 

widespread protection on IL-7Rα but shows no differential evidence of binding-induced 

protection or remote conformational change. Crosslinking with reagents that differ in spacer 

lengths and targeting residues increases the spatial resolution. Using five cross-links as distance 

restraints for protein−protein docking, we generated a high-confidence model of the IL-7/IL-7Rα 

complex. Both the predicted binding interface and regions with direct contacts agree well with 

those in the solid-state structure, as confirmed by previous X-ray crystallography. An additional 

binding region was revealed to be the C-terminus of helix B of IL-7, highlighting the value of 

solution-based characterization. To generalize the integrated approach, protein−protein docking 

was executed with a different number of cross-links. Combining cluster analysis and HDX 

kinetics adjudication, we found that two intermolecular cross-link-derived restraints are 

sufficient to generate a high-confidence model with root-mean-square distance (rmsd) value of 

all alpha carbons below 2.0 Å relative to the crystal structure. The remarkable results of binding-

interface determination and quaternary structure prediction highlight the effectiveness and 

capability of the integrated approach, which will allow more efficient and comprehensive 

analysis of interprotein interactions with broad applications in the multiple stages of design, 

implementation, and evaluation for protein therapeutics      
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4.2 Introduction  

Precisely regulated but complex protein-protein interactions are paramount to safeguard 

homeostasis in the immune system1. Protein-binding events initiate vast arrays of signal 

transduction, communicating critical information to orchestrate multiple health-related immune 

responses2. Comprehensive characterization and impartial understanding of the binding 

interfaces at high spatial resolution are imperative for both academic and pharmaceutical 

research. A traditional approach to obtain binding information is X-ray crystallography3. The 

need for fastidious crystallization and long growth times can limit its application. In addition, the 

delivered solid-state information can raise questions about its relevance to the physiological 

environment.  Nuclear magnetic resonance (NMR), on the other hand, provides a liquid-phase 

characterization but at the expense of large amounts of isotopically-labelled sample, demanding 

signal averaging, and complicated data interpretation4. Mass spectrometry (MS)-based methods 

are exceptionally appealing in this context given their low detection limit, fast throughput, and 

compelling use of native proteins. 

Hydrogen deuterium exchange mass spectrometry (HDX-MS)5,6 is a robust analytical technique 

for characterizing protein-protein interactions,7 protein-ligand binding, higher-order structure8, 

and conformational dynamics.9-11 Conformational changes induced by protein-protein binding 

lead to changes in deuterium uptake kinetics, enabling comparisons between different states 

(e.g., bound and unbound), thus permitting the determination of binding interfaces and changes 

in dynamics. Spatial resolution exceeding the peptide-level can be achieved by multi-protease 

digestion for overlapping peptides, by electron transfer dissociation (ETD)/electron capture 

dissociation (ECD) fragmentation12-14, or by combining HDX results with other characterization 

approaches (e.g., chemical crosslinking and docking, as in this study).  
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Chemical crosslinking with subsequent MS analysis (XL-MS) has considerable value in the 

structural biology toolbox.15-16 It can deliver topological information of protein complexes by 

bridging the neighboring domains in close proximity, defined by characteristic spacer lengths on 

cross-linkers. Advanced analysis software17-19, new crosslinking reagents and protocols20 have 

greatly escalated its applications. The obtained information is even more propitious to uncover 

higher-order quaternary structure when coupled with other methods (e.g., macromolecular 

docking).  

Complementing X-ray crystallography and NMR, protein-protein docking is a computational 

methodology that also yields complete three-dimensional structural information for protein 

complexes. Despite rapid and regular increases in computer speed, parallel processing, 

acceleration of computation through the use of GPUs and the development of improved 

algorithms and scoring functions, accurate modeling of protein complexes remains challenging, 

even starting with high-quality structural models (e.g., X-ray crystal structures) of the binding 

partners21. This is due in part to the large number of potential complex structures that must be 

evaluated in the absence of additional information (sampling problem)22 and to limitations in the 

ability to score accurately the models generated (scoring problem)23-24. An integrated platform25-

28 that utilizes experiment-derived information (i.e., HDX-MS and XL-MS data) to define 

restraints that guide the sampling stage of protein-protein docking has the potential to provide 

models with high accuracy and resolution.  

In this study, we chose interleukin 7 (IL-7) as a test case to demonstrate the integrated 

characterization platform. IL-7 is a representative member of the cytokine family, modulating 

immune cell physiology through receptor recognition2, 29. IL-7 sequentially binds to IL-7R, its 

-receptor, and c through its extracellular domain to form a ternary-complex that activates the 
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Janus kinase (JAK) and enables phosphorylation of the signal transducer and activator of 

transcription (STAT).30 Downstream signal transduction switches on transcription of the anti-

apoptotic genes, promotes cell survival, and causes proliferation of both naïve and memory T 

cells.31 Many investigators consider recombinant human IL-7 an ideal treatment agent in cancer 

immunotherapy. 32 It can promote immune reconstitution33-34 through peripheral T cell 

expansion, increase the efficacy of tumor regression,35 and antagonize the immunosuppressive 

network.36 Understanding the critical role of regulating immune functions requires 

characterization of the involved binding interface, further motivating the investigation of IL-

7/IL-7R as a model system. The approach, once established, will doubtlessly benefit other 

protein systems (e.g., other cytokine complexes, antigen/antibody complexes). Deeper 

understanding will aid biomedical design37 of protein interface engineering2 and epitope-based 

preventive vaccines38 that are crucial to maintain homeostasis and physiological well-being.  

Our goal is to implement and test an analytical approach that is comprised of HDX, chemical 

crosslinking and protein-protein docking to characterize the binding interface of IL-7/IL-7R. 

With the integrated methods, we generated an accurate three-dimensional model that allows 

detailed description on the direct inter-protein contacts in the binding region. Furthermore, we 

investigated how HDX kinetics can adjudicate candidate docking models en route to an ultimate 

high-confidence complex structure. A previous X-ray crystallographic study39 of IL-7/IL-7R is 

available for final comparison purposes.  

The binding regions assigned by using the approach are in good accord with the published 

crystal structure and, moreover, indicate another involvement (i.e., C-terminus of helix B in IL-

7). Docking results generated with different numbers of cross-links further demonstrate that, with 

HDX kinetics adjudication, a high-confidence model can be delivered by using only two 
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intermolecular cross-links. Although HDX-MS has been employed for complementary 

information in some biological studies40-44 along with XL-MS, the two methods are usually 

treated individually. Other studies27-28 that incorporated XL-based docking have shown that 

HDX kinetics can be utilized to examine the constructed 3D model; however, none has assessed 

the process in a systematic way. The integration and evaluation of the three approaches 

convincingly shows the combination can yield higher-order structural information and provide 

basic and practical insights for further applications. 

4.3 Experimental 

4.3.1 Material 

BS3-h12/d12 (bis(sulfosuccinimidyl) suberate) was purchased from Creative Molecules. BS2G-

d4 (bis(sulfosuccinimidyl) 2,2,4,4-glutarate-d4), BS2G (bis(sulfosuccinimidyl) 2,2,4,4-glutarate), 

EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride), Zeba column and 

colloidal blue staining kit were purchased from Thermo Fisher Scientific (Waltham, MA). Sulfo-

NHS (N-hydroxysulfosuccinimide sodium salt), MES buffer, dithiothreitol and iodoacetamide 

were purchased from Millipore Sigma (Saint Louis, MO). Recombinant human IL-7Rα protein 

was purchased from Sino Biological (Wayne, PA). Recombinant human IL-7 protein was 

purchased from R&D System (Minneapolis, MN). RapiGest SF Surfactant was from Waters 

(Milford, MA). Sequencing grade modified trypsin and chymotrypsin were from Promega Co. 

(Madison, WI). C18 NuTip was purchased from Glygen (Columbia, MD). PNGase(glycerol-

free) F was purchased from BioLabs (Hitchin, UK). 4-20% bis-tris precast gels (ExpressPlusTM 

PAGE) were purchased from GenScript®. 

4.3.2 Hydrogen-Deuterium Exchange 
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The HDX experiments were performed with three states: IL-7 unbound state, IL-7Rα unbound 

state, and IL-7/IL-7Rα bound state. For the bound state, two proteins were incubated at a 1:1 

ratio in the equilibrium buffer (10 mM PBS buffer, pH = 7.4) for at least 45 min at 25 °C. HDX 

was initiated by diluting 5 µL of the protein solution (20 µM) 5-fold with labeling buffer (10 

mM PBS in 90% D2O, pD = 7), which was substituted into the H2O buffer for control 

experiments. Quenching buffer (25 µL, 4 M GdnHCl, 700 mM TCEP, pH = 2.5) was added at 

different exchange times (i.e., 10, 30, 60, 900, 7200 s and incubated for 3 min). The experiments 

were in triplicate. The protein mixture was injected immediately into a custom-built HDX 

platform for digestion by passing through an immobilized pepsin column (2 mm × 20 mm) with 

200 µL/min flow rate. A ZORBAX Eclipse XDB C8 column (2.1 mm × 15 mm, Agilent 

Technologies, Santa Clara, CA) was used for desalting with 0.1% trifluoracetic acid for 3 min. 

After switching the platform into the analysis mode, the peptide mixture was separated on a 

Xselect CSH C18 column (2.1 mm × 50 mm, Waters Corporation, Milford, MA) with a 9.5-min-

linear gradient (4–40% acetonitrile with 0.1% formic acid) at 200 µL/min flow rate. Peptides 

were then submitted to a LTQ-FT mass spectrometer (Thermo Fisher, Waltham, MA) for data 

acquisition at a mass resolving power of 100,000 at m/z 400. An electrospray ionization source 

was operated with the following parameters: spray voltage: 5kV; capillary temperature: 250 C; 

capillary voltage: 38 V; tube lens: 185 V. The HDX platform, including columns and valves, 

were submerged in an ice slush bath to minimize back exchange.  

After data acquisition, HDX kinetics was analyzed by HDExaminer® (Sierra Analytics, Inc). Per 

residue deuterium uptake difference for each time point was calculated and exported from the 

software based on available overlapping peptides using “heavy” smoothing fuction. The 
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cumulative uptake differences and the associated propagation error was calculated manually. 

Three times propagation error was chosen to give 99.7% certainty. 

4.3.3 BS3 and BS2G Crosslinking 

Prior to any experiments, IL-7 and IL-7Rα were incubated as 1:1 ratio for 1 h in 10 mM PBS 

buffer (2.7 mM KCl, 137 mM NaCl, pH = 7.4). The BS3-h12/d12 crosslinker (1 mg) was 

dissolved in PBS buffer to make a 25 mM stock solution. The IL-7/ IL-7Rα complex was then 

mixed with the fresh BS3-h12/d12 solution at 1:25, 1:50 and 1:100 ratio, where the concentration 

of IL-7/ IL-7Rα was 10 µM. The reaction mixture was kept at 25 °C for 45 min. Tris-HCl 

solution (1 M, pH = 7.4) was added at a final concentration of 50 mM and incubated for 15 mins 

to stop the crosslinking chemistry. For the BS2G crosslinking, the experimental procedure was 

identical except that BS2G-d4 and BS2G-h4 stock solutions were prepared separately at 25 mM 

and manually mixed later at 1:1 ratio prior to the XL reactions. Crosslinking experiments were in 

triplicates for each condition. 

4.3.4 EDC Crosslinking 

IL-7 and IL-7Rα were incubated in 35 mM MES buffer (15 mM KCl, pH = 6.5) with 1:1 ratio 

for 1 h. A freshly made EDC/sulfo-NHS stock solution (400 mM EDC/sulfo-NHS in MES 

buffer, pH = 6.5) was added to the IL-7/IL-7Rα solution for 1 h at 25 °C to allow the XL 

reactions; the protein concentration was 17 µM and EDC/sulfo-NHS was 5-20 mM in different 

trials. To quench the reaction, Tris-HCl (2M, pH = 7.4) was added to a final concentration of 200 

mM, followed by 15 mins incubation. Crosslinking experiments were in triplicates for each 

condition. 

4.3.5 Enzymatic in-solution Digestion 
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The protein mixture was desalted with a Zeba column and denatured by adding 0.75% (w/v) 

RapiGest stock solution in Tris-HCl (100 mM, pH = 7.4) at 80 °C for 30 min, with a final 

concentration of 0.25% (w/v) RapiGest. After cooling to room temperature, reduction and 

alkylation of disulfide bonds was achieved by incubating sequentially with 7.5 mM DTT at 55 

°C for 30 min and 14 mM IAM at dark for 30 min. The protein mixture was then digested and 

deglycosylated by adding trypsin and PNGase F. After 1 h incubation at 37 °C, chymotrypsin 

was added for overnight digestion to achieve better coverage. Digestion was stopped under 3% 

formic acid and incubated at 37 °C for 30 min. The peptide mixture was treated with C18 NuTip 

for desalting according to the manufacturer’s protocol. The eluents were vacuum dried and 

resuspended in 0.1% formic acid in distilled water, ready for LC-MS/MS analysis. 

4.3.6 LC-MS/MS Analysis 

A solution of 5 µM peptide digest was loaded onto a C18 reversed-phase desalting column 

(Acclaim PepMap C18, 100 µm x 2 cm, 5 µm, 100 Å; Thermo Fisher Scientific) at 4 µL/min for 

10 min. A custom-packed analytical column with C18 reversed-phase material (Magic, 100 µm x 

180 mm, 5 µm, 120 Å; Michrom Bioresources, Inc., Auburn, CA) in silica tubing was used for 

sample separation on Ultimate 3000 Rapid Separation system (Dionex, Co.). The eluent 

consisted of solvent A (water with 0.1% formic acid by volume) and solvent B (80% acetonitrile 

with 0.1% formic acid by volume). The flowrate was controlled as 400 nL/min with a 120 min 

gradient: 2.5% B to 12% B in 30 min, increased to 60% B for 65 min, ramped to 85% B in 5 

min, kept at 85% B for 5 min, returned to 2.5% B in 5 min, and equilibrated at 2.5% B for 10 

min.  A Nanospray Flex source was mounted on a Thermo Q Exactive Plus orbitrap mass 

spectrometer for downstream detection. The associated parameters were: spray voltage, 2.5 kV; 

capillary temperature, 250 °C; full MS maximum injection time, 200 ms; tandem MS maximum 
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injection time, 100 ms; and charge exclusion, 1, 6, 7, 8. In the BS3-h12/d12 and BS2G-h4/d4 

crosslinked samples, acquisition was performed with user-defined MS-Tag in the data-

independent mode. In the EDC crosslinked samples, acquisition was carried out under data-

dependent mode, selecting the 20 most-abundant ions for higher energy dissociation (HCD).  

4.3.7 Identification of Crosslinked Products 

The raw LC-MS/MS files were analyzed by pLink19, 45 (ver. 2.3.1, Institute of Computing 

Technology, Chinese Academy of Sciences, Beijing, China) and Protein Prospector (ver. 5.22.1, 

UCSF Mass Spectrometry Facility). IL-7 and IL-7Rα sequences were added manually to the 

search database. XL information, including monoisotopic linker mass of light and heavy form of 

BS3 (156.079 Da and 168.154 Da) and BS2G (118.057 Da and 114.032 Da), linked sites and 

composition were all required in pConfig. Trypsin/chymotrypsin digestion was manually defined 

and added to the library. Search parameters in pLink were: enzyme: trypsin/chymotrypsin; 

missed cleavage: 3; precursor tolerance: 10 ppm; fragment tolerance: 30 ppm; variable 

modification: oxidation of M, deamidation of N, Q and N-terminus; fixed modification: 

carbamidomethyl of C; minimal peptide length: 6 aa; maximal peptide length: 60 aa; minimal 

peptide mass: 600 Da; maximal peptide mass: 6000 Da. The crosslinked peptides were examined 

in pLabel to give corresponding summary reports. The identified XL peptides were equal or 

smaller than a 5% false discovery rate at spectral level with a 10 ppm MS1 filter tolerance. 

Isotopic doublets were manually confirmed in the raw file, and product-ion (MS/MS) spectra 

were further validated and compared with the calculated masses of product ions. 

4.3.8 Protein-Protein Docking 

IL-7/IL-7Rα protein-protein docking analyses were performed with the Rosetta (v. 3.846-48) 

docking_protocol (RosettaDock) code49-50 on a cluster of multi-processor Linux servers. For the 
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docking analyses, the A chain from the X-ray crystal structure of unbound IL-7R extracellular 

domain (PDB ID: 3UP1) was used as the protein model for IL-7R51. Unfortunately, no crystal 

structure of unbound IL-7 was available either in-house or in the public domain. Thus, the A 

chain from the IL-7/IL-7R complex crystal structure (PDB ID: 3DI2) provided the model for IL-

739. The protein models were prepared for docking in a two-stage process starting with the 

Rosetta score_jd2 program, which added residue atoms that were not present in the PDB files, 

added hydrogen atoms, and removed non-protein residues. The second preparation step utilized 

the Rosetta relax program to perform energy minimization of the structures output by score_jd2 

within the context of the Rosetta energy model.  With the relax application, 10 models were 

generated for each structure by using the “constrain_relax_to_start_coords” and 

“coord_constrain_sidechains” options to limit structural changes, and the model of each protein 

with the lowest Rosetta total energy score was selected.  

The IL-7 and IL-7R models were imported into Maestro (Schrödinger Release 2019-1: Maestro, 

Schrödinger, LLC, New York, NY, 2019.) and manually displaced relative to each other to 

arbitrary extents and then merged into a single two-chain model that was written to a PDB 

format file as input for the subsequent protein-protein docking analyses. Docking exercises 

utilizing all possible unique combinations of 1-5 distance constraints based on the IL-7/IL-7R 

cross-links identified for residue pairs (IL-7:IL-7R) were performed using the RosettaDock 

program. The set of five experimental-identified intermolecular cross-links from which the 

combinations of distance constraints were derived includes only those for which atomic 

coordinates for Cα atoms for both residues are present in the X-ray structures of IL7 and IL7R 

(3DI2 and 3UP1). All distance constraints utilized flat-bottomed harmonic potentials which 
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penalized models in which the Cα-Cα distance(s) for crosslinked residues fell outside of the 

ranges of 6 – 16 Å52 and 9 – 30 Å53 for the EDC and BS3 crosslinks, respectively.  

For each possible combination of 1 – 5 crosslink-derived constraints, 20 docking runs were 

performed, each yielding up to 2,500 models for a maximum of 50,000 models per constraint 

combination. For comparison purposes, 20 docking runs, each yielding 5,000 models (100,000 

total) were carried out without constraints. For each constraint combination as well as for the 

unconstrained docking exercise, the top-scoring single model based on total score were 

identified. In addition, the top-scoring set of 100 models ranked by total score metric was 

clustered with the Rosetta cluster program using a 2.0 Å cluster radius. Analysis of clusters was 

performed with in-house shell and Python scripts including a Python/OEChem script that 

determined the Cα atom-based r.m.s.d. for each clustered model relative to the X-ray crystal 

structure of the IL-7/IL-7R reference complex (PDB ID: 3DI2). Representative models were 

superimposed with the X-ray crystal structure of the IL-7/IL-7R complex for difference analysis, 

and high confidence models were defined as those for which the mean Cα atom r.m.s.d. was less 

than 2.0 Å.  

4.4 Results and Discussion 

4.4.1 Hydrogen-Deuterium Exchange 

We conducted HDX on the unbound IL-7 and the bound-state in presence of IL-7Rα and 

collected kinetic plots with 94% sequence coverage and 48 unique peptides (Figure 4.1A for 

representative HDX kinetic plots and Figure 4.2 for the rest). Regions 17-24 (a), 58-66 (c) and 

81-91 (e) of IL-7 show less deuterium uptake across the incubation time up to 2 h, indicating 

their involvement in the binding interaction. On the other hand, region 35-42 (b) takes up more 

deuterium, showing exposure when bound to IL-7Rα. Another region, represented by peptide 71-
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76 (d), is an example not affected by binding, serving as a negative control. Statistical analysis of 

the cumulative deuterium uptake differences further supports these observations sometimes up to 

near residue-level (Figure 4.1B). We consider the differences as significant when they are greater 

than three times the propagated error, giving 99.7% confidence. We mapped the cumulative 

HDX differences on the IL-7 structure (Figure 4.1C) to show that the most protected regions lie 

on helix A (Region a) and helix C (Region e). The C-terminus of helix B (Region c) also shows 

moderate protection, whereas the loop region (Region b) between helix A and B becomes more 

flexible upon binding.  

 

Figure 4.1 Analyzed HDX kinetics of IL-7. (A) Representative HDX kinetics of unbound IL-7 

(purple) and of bound with IL-7Rα (red). (B) Statistical analysis of cumulative HDX difference 

for each residue. Residues are considered being affected upon binding with IL-7Rα when the 

difference is greater than three times the propagated error (shaded in faint yellow) of all time 
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points. (C) The cumulative HDX difference of each residue mapped onto the crystal structure of 

IL-7 (PDB:3DI2). 
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Figure 4.2 HDX kinetic plots of other peptides in unbound IL-7 (purple) and in IL-7/IL-7Rα 

(red). 
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To map the binding interface of IL-7Rα, we compared HDX kinetics of its bound and unbound 

states (Figure 4.3A and Figure 4.4) and obtained 80% sequence coverage and 45 unique 

peptides. The N-terminal peptide (Region a) shows identical uptake kinetics between the two 

states. All other peptides, however, present various extents of protection in the HDX profiles, as 

is clearly demonstrated in the statistical analysis of cumulative deuterium uptake difference 

(Figure 4.3B). The most protected residues, colored black in the IL-7Rα structure (Figure 4.3C, 

region c), comprise the elbow region on domain 1 (D1), indicating high probability to be the 

binding interface. Other regions with pronounced protection are on the other elbow region 

(Region e) and on one beta-strand (Region d) of domain 2 (D2). The widespread protection 

indicates that IL-7Rα exhibits a more structured and compact conformation upon binding; 

however, there is no differential evidence for being the binding interface or undergoing remote 

conformational changes with the stand-alone HDX. To increase the resolution, we applied 

crosslinking coupled with MS to obtain complementary information.  
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Figure 4.3 Analyzed HDX kinetics of IL-7Rα. (A) Representative HDX kinetics for unbound 

IL-7Rα (green) and IL-7/IL-7Rα (red). (B) Statistical analysis of cumulative HDX difference 

upon each residue. Residues are considered affected upon binding with IL-7 when the difference 

is greater than three times of the propagated error (shaded in yellow) of all time points. (C) The 

cumulative HDX difference of each residue mapped onto the crystal structure of IL-7Rαs (PDB: 

3DI2).  
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Figure 4.4. HDX kinetic plots of other peptides in unbound IL-7Rα (green) and in IL-7/IL-7Rα 

(red). 
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4.4.2 Crosslinking of IL-7/IL-7Rα Complex 

To address the interacting regions in the IL-7/ IL-7Rα complex, we chose isotope-encoded BS3-

h12/d12 (11 Å), BS2G-h4/d4 (8 Å) and EDC/NHS (“zero-length crosslinker”) as the crosslinking 

reagents. Their spacer lengths cover a range of distance restraints, and their combined use allows 

interrogation of not only lysine (K) and the N-terminal -NH2 groups but also glutamic (D) and 

aspartic acids (E), affording broad coverage. We incubated IL-7Rα and IL-7 at a 1:1 molar ratio 

to allow complex formation and then mixed them with the cross-linkers at various excess 

concentrations in separate experiments. We monitored the yields with gel electrophoresis (Figure 

4.5). The cross-linked complexes present clearly at approximately 64 kDa, and the yields are 

estimated according to the intensities of the bands. We found that 100-fold excess BS3 and BS2G 

(1 mM) gives more abundant cross-linked IL-7/ IL-7Rα than does an excess of 25 (0.25 mM) 

and 50-fold (0.5 mM). For EDC/NHS, use of 10 mM and 20 mM of reagent results in product 

bands of nearly equal intensity. We submitted the crosslinked IL-7/ IL-7Rα from individual trials 

to in-solution digestion followed by LC-MS/MS analysis, in which the “light” and “heavy” 

isotope encoding aids the identification of cross-links. We manually validated the isotope-

encoded doublets and the product ions formed in MS/MS from raw files, establishing that the 

experimental masses agree with their theoretical values. 
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Figure 4.5 Gel electrophoresis of IL-7/IL-7Rα. (A) BS3 and BS2G crosslinking of IL-7 (17 kDa) 

and IL-7Rα (45-50 kDa) are performed at 0.25 mM, 0.5 mM and 1 mM. The crosslinked IL-7/ 

IL-7Rα band (64 kDa) indicates concentration-dependent production. The first two 

electrophoresis lanes are shown as control runs. (B) EDC crosslinking is performed at 5 mM, 10 

mM and 20 mM. Different species are identified on the right. 

In total, we identified 16 intermolecular cross-links. Six of them contain one cross-linked site on 

a long and flexible loop between helix C and D of IL-7, suggesting the flexibility of the loop 

region but providing no evidence of the binding interface. This loop can be ruled out as a binding 

interface, even in the absence of an X-ray structure, because it does not show protection in HDX 

upon binding.  Of the remaining 10 inter cross-links (Table 4.1, corresponding cross-links are 

shown in Figure 4.6-4.15), those on IL-7 are K11 on helix A (cross-link 1 and 2), D75 on helix C 

(cross-link 3), K69 on the C-terminus of helix B (cross-link 4), further supporting the previously 

assigned protected regions in the HDX kinetics study. In addition, we observed several cross-

links on a series of residues on the N-terminus (crosslink 6 to 10) and one on helix D (cross-link 

5), all of which deliver topological information about the binding complexes.  
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Table 4.1 Identified inter cross-links with BS3, BS2G and EDC crosslinking.  
 

Il-7 Il-7Rα Cross-Linker 
Reported Cross-Linkable 

Cα- Cα Distance, Å 

Measured Cα- Cα 

Distance in the 

Generated Model, Å 

1 K11 K84 BS3 9-3053 14.3 

2 K11 K141 BS3 9-3053 13.9 

3 D75 K77 EDC 6-1652 9.8 

4 K69 K78 BS3 9-3053 17.2 

5 K152 K141 BS3 9-3053 24.2 

6 K8 K84 BS2G / BS3 6-26/9-3053 12.3a 

7 N-term K84 BS2G / BS3 6-26/9-3053 - 

8 D2 K84 EDC 6-1652 - 

9 D4 K84 EDC 6-1652 - 

10 E6 K84 EDC 6-1652 - 
a Cross-linked distance is measured at the Cα of D9 instead of K8 in crystal structure (PDB: 

3DI2) because the N-terminal region from M1-K8 is missing in the X-ray structure.  

 

Figure 4.6 Mass spectra of cross-link 1. Extracted precursor mass spectra of cross-link 1 in the 

inlet, showing the isotopic peaks with equal intensity and shifted by 4 m/z unit when the charge 

state is +3. The product-ion spectrum of the heavy form of crosslinked peptide generated by 

“higher energy collisional dissociation” (HCD). The assigned fragment ions are in purple for IL-

7 and green for IL-7Rα.  
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Figure 4.7 Mass spectra of cross-link 2. Extracted precursor mass spectra of cross-link 2 in the 

inlet, showing the isotopic peaks with equal intensity and shifted by 6 m/z unit when the charge 

state is +2. The product-ion spectrum of the light form of crosslinked peptide generated by 

“higher energy collisional dissociation” (HCD). The assigned fragment ions are in purple for IL-

7 and green for IL-7Rα.  
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Figure 4.8 Mass spectra of cross-link 3. The product-ion spectrum of the crosslinked peptide 

(cross-link 3) generated by “higher energy collisional dissociation” (HCD). The assigned 

fragment ions are in purple for IL-7 and green for IL-7Rα.  
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Figure 4.9. Mass spectra of cross-link 4. Extracted precursor mass spectra of cross-link 4 in the 

inlet, showing the isotopic peaks with equal intensity and shifted by 4 m/z unit when the charge 

state is +3. The product-ion spectrum of the light form of crosslinked peptide generated by 

“higher energy collisional dissociation” (HCD). The assigned fragment ions are in purple for IL-

7 and green for IL-7Rα.  
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Figure 4.10 Mass spectra of cross-link 5. Extracted precursor mass spectra of cross-link 5 in the 

inlet, showing the isotopic peaks with equal intensity and shifted by 4 m/z unit when the charge 

state is +3. The product-ion spectrum of the light form of crosslinked peptide generated by 

“higher energy collisional dissociation” (HCD). The assigned fragment ions are in purple for IL-

7 and green for IL-7Rα.  
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Figure 4.11 Mass spectra of cross-link 6. Extracted precursor mass spectra of cross-link 6 in the 

inlet, showing the isotopic peaks with equal intensity and shifted by 3 m/z unit when the charge 

state is +4. The product-ion spectrum of the light form of crosslinked peptide generated by 

“higher energy collisional dissociation” (HCD). The assigned fragment ions are in purple for IL-

7 and green for IL-7Rα.  
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Figure 4.12 Mass spectra of cross-link 7. Extracted precursor mass spectra of cross-link 7 in the 

inlet, showing the isotopic peaks with equal intensity and shifted by 4 m/z unit when the charge 

state is +3. The product-ion spectrum of the light form of crosslinked peptide generated by 

“higher energy collisional dissociation” (HCD). The assigned fragment ions are in purple for IL-

7 and green for IL-7Rα. 
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Figure 4.13 Mass spectra of cross-link 8. The product-ion spectrum of the crosslinked peptide 

(cross-link 8) generated by “higher energy collisional dissociation” (HCD). The assigned 

fragment ions are in purple for IL-7 and green for IL-7Rα.  
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Figure 4.14 Mass spectra of cross-link 9. The product-ion spectrum of the crosslinked peptide 

(cross-link 9) generated by “higher energy collisional dissociation” (HCD). The assigned 

fragment ions are in purple for IL-7 and green for IL-7Rα.  
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Figure 4.15 Mass spectra of cross-link 10. The product-ion spectrum of the crosslinked peptide 

(cross-link 10) generated by “higher energy collisional dissociation” (HCD). The assigned 

fragment ions are in purple for IL-7 and green for IL-7Rα.  

For the IL-7Rα, there are four cross-linked residues; three of them, K77, K78 (cross-link 3 and 4) 

and K84 (cross-link 1 and cross-link 6 to 10) are on the elbow region of D1, and the fourth, 

K141 (cross-link 2 and 5) is located on the elbow loop of D2, showing discriminating evidence 

that these two elbow regions constitute the binding interface of IL-7Rα rather than undergoing 

remote conformational changes. To delineate the interacting regions of the binding complex, we 

turned to protein-protein docking based on crosslinking distance restraints to elucidate the 

quaternary structure.   

4.4.3 Restraint-based Protein-Protein Docking 

Protein-protein docking calculations were performed with the RosettaDock program to discern 

the likely structure of the IL-7/IL-7Rα complex in aqueous solution. Five representative 
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intermolecular cross-links (i.e., crosslinks 1-5 in Table 4.1) were selected to define distance 

restraints. The other five cross-links involve N-terminal residues of IL-7 that are not resolved in 

the input X-ray crystal structure and, thus, are not included as docking restraints. Initial protein-

protein docking experiments with RosettaDock utilized all five crosslink-derived restraints 

simultaneously. Clustering of the top-scoring 100 IL-7/IL-7Rα complex models (RosettaDock 

total score) was performed with the Rosetta cluster program employing a 2.0 Å cluster radius. 

The largest cluster contained 53 similar models. We chose one representative model (Figure 

4.16, IL-7 in purple and IL-7Rα in green) and overlaid it on to the X-ray crystal structure (Figure 

4.16, black). The r.m.s.d. difference across all alpha carbons is 1.7 Å which is less than 2.0 Å 

cutoff used to define a high-confidence model.  

 

Figure 4.16 X-ray crystal structure of the IL-7/IL-7Rα (black, PDB: 3DI2) overlaid with 

generated docking models (green for IL-7Rα and purple for IL-7) using five intermolecular 

cross-links (1-5) as restraints. Cross-linked residues are in red, and dashed lines depict the 
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corresponding crosslinked spans. The adjoining number corresponds to cross-links shown in 

Table 4.1. 

We further mapped cross-links 1-6 onto the generated model (Figure 4.16). Although the N-

terminal region from M1 to K8 in IL-7 is not resolved, cross-link 6 is located more closely than 

cross-links 7-10 to the resolved residue D9, allowing its Cα-Cα distance to be estimated and 

taken for mapping. Cross-links 7-10, therefore, are not mapped in the complex model. All of the 

measured Euclidean Cα- Cα distances are within the reported range52-53 for each specific cross-

linker (Table 4.1). The excellent accord between the model and the X-ray crystal structure 

demonstrates the validity of solution-based data and the feasibility of using an integrative 

approach to obtain an accurate structure. In contrast, clustering of the top-scoring 100 models 

from an unrestrained docking exercise where more extensive sampling was performed (100K 

models) resulted in identification of only four two-membered clusters, none of which contained 

models that recapitulated the X-ray structure of the complex.  

4.4.4 Binding Interface for IL-7 and IL-7Rα 

On D1 of IL-7Rα, the elbow region (Figure 4.3-c) is heavily protected upon binding and 

considered to interact primarily with helix C of the IL7.  Not only the adjacent positions of these 

two domains, from directly viewing the docking model, but also a short EDC cross-link 3 

support their proximity. The observation is consistent with the contacting residues resolved from 

the crystal structure39, where K77 on the D1 elbow region of IL-7Rα forms H-bonds with D75 

and K82 on helix C of IL-7. Furthermore, HDX kinetics reveals another participating region on 

the C-terminus of helix B, evidenced by the low deuterium uptake (Figure 4.1A-c) and cross-link 

4. In addition, cross-link 6-10 suggest another contact region with the D1 elbow, the N-terminal 

region of helix A; this region, however, shows no protection in the HDX kinetics (Figure 4.1B), 
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decreasing the likelihood of being the binding interface. Besides the direct binding domains, 

adjacent and proximal regions can also allow crosslinking formation, which delivers topological 

information of the IL-7/IL7Rα complex. This observation shows the limitation of using stand-

alone XL-MS and underscores the necessity of incorporating other complementary approaches to 

achieve an impartial determination of a protein-protein interface. The other elbow region (Figure 

4.3-e) on D2 of IL-7Rα is bridged to helix A of IL-7 by cross-link 2, indicating close location of 

those regions in the generated model. The cross-linked residue, K11, is the nearest linkable 

residue to Q23, which contributes to H-bond formation with the paired residue K138 in D239. 

The C-terminus of helix D adjoins the D2 elbow loop, as represented by cross-link 5. The less 

than 10% cumulative deuterium uptake difference in region 138-152 (Figure 4.1B) and distant 

location in the docking model, however, suggest involvement but not prominent interaction. The 

integrated platform of using multiple cross-linkers and of incorporating protein-protein docking 

significantly increases the certainty and defines better the directly contacting regions.  

4.4.5 The Number of Intermolecular Cross-links Needed for a High-

Confidence Model 

Excellent results were obtained in the protein-protein docking exercise that utilized five 

crosslink-derived restraints. However, in the context of the integrated approach, it is possible that 

accurate models might be obtained with fewer restraints. To examine this possibility, we 

conducted docking runs with all possible combinations of using 1 to 5 cross-links as distance 

restraints. For each restraint combination, we identified the top-scoring 100 IL-7/IL-7Rα docking 

models with RosettaDock total score and clustered them with the Rosetta cluster program by 

using the aforementioned criteria (Cα atom r.m.s.d. ≤ 2.0). For an unknown system, the clusters 

with the largest size are likely to be the most promising ones to choose. Thus, we summarized 
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and evaluated all the largest clusters for each of the combinations (Figure 4.17). When using a 

restraint combination, multiple clusters of equal size are possible (e.g., for cross-link 1 and the 

combination of cross-links 4 and 5). Docking with larger number of restraints generally leads to 

larger cluster sizes; however, the size also depends on the cross-links chosen. We found that 

shorter cross-links are more demanding and lead to larger clusters. Supporting this contention is 

that the largest clusters in each category (e.g., one restraint, two restraints) all contain cross-link 

3, the EDC cross-link. This observation further emphasizes the importance of employing a 

multiple-cross-linker strategy to provide both tight requirements for crosslinking and, at the same 

time, relatively loose restraints that allow many cross-links to form, thus aiding the downstream 

analysis.  

 

Figure 4.17 Cluster sizes for largest clusters of IL-7/IL-7Rα models generated with each 

possible combination of 1-5 crosslink-derived restraints from protein-protein docking. Several 

clusters with nearly equal members are formed for restraint combinations of cross-link 1 and 

combinations of cross-links 4 and 5. 



138 

 

Table 4.2 Summary of representative models from the largest clusters by using any two cross-

links as docking restraints. The solvent accessible area (SASA) of two most protected regions in 

IL-7, as indicated by HDX kinetics, are calculated for each docking model and for the unbound-

state IL-7 in Pymol. 

Protein-protein docking with 10 different combinations of 5 crosslink-derived restraints taken 

two at a time yielded 11 largest clusters in total (Figure 4.17 and Table 4.2). Based on the 

structural similarity, we grouped and overlaid them into three different types (Figure 4.18). Our 

approach utilizes HDX results at this stage to evaluate the accuracy of the models. The 

omnipresent protection of IL-7Rα upon binding make IL-7Rα a poor choice to adjudicate the 

models. Instead, we chose only IL-7 HDX kinetics for the evaluation and mapped the residue-

level cumulative deuterium uptake difference onto its structure as shown before (Figure 4.1). To 

place the comparison on a quantitative basis, we calculated the solvent accessible area (SASA) 

of the two most protected regions, 19VSIDQL24 and 83VSEGTTIL90, as indicated by HDX, for 

each generated model (Table 4.2). For the type 1 models (Figure 4.18A), which are the most 

populated models given by seven different combinations (Table 4.2), the averaged SASA is 143 

± 12 Å and 212 ± 6 Å for 19VSIDQL24 and 83VSEGTTIL90, respectively. The values are 

significantly smaller than 230 Å and 319 Å in the unbound IL-7, suggesting there would be less 

deuterium uptake in the bound IL-7/IL-7Rα, as is seen in the HDX kinetics. 

Crosslink-

Based 

Restraints 

Size of 

Largest 

Cluster  

Model 

Category 

 SASA of Peptide in Il-7, Å 

Matching 

with HDX 

(Y/N) 

Compared to 

X-Ray 

Structure, 

R.M.S.D, Å 

19VSIDQL24 83VSEGTTIL90 

Bound 

IL-7 in 

Models 

Unbound 

IL-7 

Bound 

IL-7 in 

Models 

Unbound 

IL-7 

1_2 10 Type 3 230 

230 

268 

319 

N 12.3 
1_3 26 Type 1 133 220 Y 1.7 

1_4 22 Type 2 230 247 N 11.0 

1_5 11 Type 1 141 211 Y 1.4 
2_3 25 Type 1 158 213 Y 1.9 

2_4 10 Type 2  230 269 N 10.9 

2_5 12 Type 1 137 209 Y 1.5 
3_4 15 Type 1 142 214 Y 1.7 

3_5 62 Type 1 160 201 Y 1.7 

4_5 
4_5.1 13 Type 1 127 213 Y 1.3 
4_5.2 13 Type 2 230 253 N 10.9 



139 

 

 

Figure 4.18 Different IL-7/IL-7Rα model-types, including type 1 (A), type 2 (B) and type 3 (C), 

generated from protein-protein docking with different combinations of two crosslink-derived 

restraints. IL-7 is mapped with the cumulative HDX uptake difference whereas IL-7Rα is 

colored in green. Similar models in each type are overlaid. (D) Type 3 IL-7/IL-7Rα model 

generated using only cross-link 1. 

For the type 2 models (Figure 4.18B), however, the two regions are outside the contacting 

interface and highly exposed, evidenced explicitly by a SASA for the region 19VSIDQL24 of 230 

± 1 Å that is identical to the SASA of the unbound IL-7. This identity indicates no binding-

induced protection for this region, in contradistinction to the HDX results. This inconsistency is 

further shown in other regions, for example the loops that connect different helices. Although 

type 2 models suggest the loops are the binding interface, HDX reports they either become more 

exposed upon binding or show no differences between two states (Figure 4.1B). The conflicting 

conclusions from HDX and docking forcefully decrease the likelihood of type 2 models to be 

correct. From similar reasoning, the type 3 model (Figure 4.18C) is also inconsistent with the 

HDX kinetics. Although the SASA of 83VSEGTTIL90 is 268 Å, smaller than that of unbound IL-
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7, the SASA of the other most protected region, 19VSIDQL24, is the same as that of unbound, 

indicating no involvement in the IL-7/IL-7Rα interaction. Instead, the suggested binding 

interface is consisted of a mini-helix and a flexible loop, which shows more deuterium uptake 

(Figure 4.1A-b) in HDX upon binding. Guidance from the HDX data allows us to reasonably 

rule out dubious docking models.  

A subsequent evaluation of the remaining models, i.e. type 1 models, after HDX adjudication 

and comparison with the published crystal structure reveals only subtle structural differences 

(Table 4.2), all smaller than 2 Å r.m.s.d for all alpha carbons. These latter models meet the 

criteria promoted in this study to define a high-confidence model. Using this integrated platform, 

we can conclude that docking restraints based on two intermolecular cross-links are adequate to 

identify an accurate quaternary model for this binding complex.  

Using three or four inter cross-links as restraints leads to better populated clusters and well-

defined IL-7/IL-7Rα models. Only two types of models (Figure 4.19) are generated and the 

second type can be excluded by considering the HDX results in the decision, where not the 

SASA values of both two peptides show differences between the bound and unbound IL-7 (Table 

4.3). The remaining models are all considered as high-confidence models upon comparison to 

the X-ray structure. Although using more than two cross-links also gives an accurate model, with 

no surprise, the successful exercise provides confidence for utilizing integrated methods to 

obtain higher-order-structure information. 
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Figure 4.19 Different IL-7/IL-7Rα model-types, including type 1 (A) and type 2 (B), generated 

from three and four cross-links but with different combinations. IL-7 is mapped with the 

cumulative HDX uptake difference whereas IL-7Rα is colored in green. Similar models in each 

type are overlaid. 

Table 4.3 Summary of representative models from the largest clusters using three and four cross-

links as docking constraints. The solvent accessible area (SASA) of two most protected regions 

in IL-7 indicated by HDX kinetics are calculated for each docking model and apo-state IL-7 in 

Pymol. 

Crosslink-

Based 

Restraints 

Cluster 

Size 
Category 

 SASA of Peptides in Il-7, Å 

Matching 

with HDX 

(Y/N) 

Compared 

to X-Ray 

Structure, 

R.M.S.D, Å 

19VSIDQL24 83VSEGTTIL90 

Bound 

IL-7 in 

Models 

Unbound 

IL-7 

Bound IL-7 

in Models 

Unbound 

IL-7 

1_2_3 26 Type 1 151 

230 

205 

319 

Y 1.9 

1_2_4 26 Type 2 230 252 N 11.0 

1_2_5 9 Type 1 128 215 Y 1.7 

1_3_4 28 Type 1 148 199 Y 1.5 

1_3_5 62 Type 1 138 195 Y 1.5 

1_4_5 27 Type 2 230 248 N 11.0 

2_3_4 35 Type 1 127 225 Y 1.5 

2_3_5 56 Type 1 141 206 Y 1.7 

2_4_5 22 Type 1 141 204 Y 1.5 

3_4_5 45 Type 1 142 213 Y 1.7 

1_2_3_4 25 Type 1 138 208 Y 1.7 

1_2_3_5 59 Type 1 137 216 Y 1.7 

1_2_4_5 18 Type 2 230 248 N 11.0 

1_3_4_5 58 Type 1 130 213 Y 1.6 

2_3_4_5 39 Type 1 145 207 Y 1.7 

When using only one cross-link as the docking restraint, however, seven different model-types 

are generated (Figure 4.18 for type 3 and Figure 4.20 for other types). Although some of these 

can survive HDX adjudication, they still deliver erroneous structures. Type 3 model (Figure 
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4.18) is an example, showing the two most protected regions interacting with the IL-7Rα. The 

SASA value for 19VSIDQL24 and 83VSEGTTIL90 are 65 Å and 182.3 Å, respectively, all smaller 

than that of the unbound IL-7, suggesting consistent protection, as observed from HDX kinetics. 

However, due to the mis-orientation of IL-7Rα, the r.m.s.d. difference in comparison with the 

crystal structure is 14.8 Å (Table 4.4), far exceeding the 2 Å threshold for a good model. A 

similar situation also applies to type 5 and type 7 models (Figure 4.20 and Table 4.4). Serving as 

a comparison control, one cross-link is insufficient to assign an accurate quaternary structure; 

thus, the minimal number of cross-links to fulfill this goal is two.  

 

Figure 4.20 Different IL-7/IL-7Rα model-types, including type 1 (A), type 2 (B), type 4 (C), 

type 5 (D), type 6 (E), type 7 (F), generated using only one cross-link. IL-7 is mapped with the 

cumulative HDX uptake difference whereas IL-7Rα is colored in green. Similar models in each 

type are overlaid. 
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Table 4.4 Summary of representative models from the largest clusters using individual cross-link 

as docking constraint. The solvent accessible area (SASA) of two most protected regions in IL-7 

indicated by HDX kinetics are calculated for each docking model and apo-state IL-7 in Pymol. 

Crosslink-

Based 

Restraints 

Cluster 

Size 
Category 

SASA of Peptides in Il-7, Å 
Matching 

with 

HDX 

(Y/N) 

Compared 

to X-Ray 

Structure, 

R.M.S.D, 

Å 

19VSIDQL24 83VSEGTTIL90 

Bound 

IL-7 In 

Models 

Unbound 

IL-7 

Bound 

IL-7 In 

Models 

Unbound 

IL-7 

1 

1.1 4 Type 1 137 

230 

219 

319 

Y 1.6 

1.2 4 Type 2 230 335 N 15.1 

1.3 4 Type 3 65.0 182 Y 14.8 

1.4 4 Type 4 230 305 N 14.0 

2 5 Type 5 230 143 Y 15.1 

3 18 Type 1 138 207 Y 1.7 

4 4 Type 6 230 222 N 14.0 

5 7 Type 7 169 92 Y 11.4 

4.5 Conclusion 

This work highlights the effectiveness of the integrated approach to deliver quaternary structural 

information. Although the generality of the number “two cross-links” may vary from system to 

system, the prospect of generating a high-confidence model based on a few cross-links is clearly 

demonstrated. More crosslinks-derived restraints increase the likelihood of generating accurate 

models, but only modestly, and extensive efforts to identify large numbers of cross-links may not 

be justified for some protein-protein complexes. 

The study also demonstrates successful utilization of HDX results in combination with XL-

enabled docking studies to identify the IL-7/IL-7Rα binding interface and to predict the 

quaternary structure of the complex in solution. Use of multiple cross-linkers spanning diverse 

distances and targeting different amino acids increases the chances of identifying inter-protein 

contacting regions and the spatial-resolution; restraints derived from shorter crosslinking 

reagents more effectively focus the docking results towards native-like models. The excellent 

results achieved for the IL-7/IL-7R system may be due in part to the rich concentration of 
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lysine residues along the binding interface, but for interfaces that are not lysine-rich, employing 

non-selective crosslinkers, (e.g., sulfo-NHS-SDA), can overcome that limitation.  

Implementation of several complementary methods significantly enriches the structural 

information from tertiary to quaternary, compared to any stand-alone method. The delivery of a 

high-confidence model with only two experimental cross-links as restraints demonstrate the 

capability of an integrated platform. It can not only categorize changes arising from either 

binding-induced protection or remote structural changes but also define the binding interface 

more precisely with modeling. For many other protein complexes, which require considerable 

effort to crystalize or don’t crystallize at all, the approach is an intriguing alternative to obtain 

structural information. That information applies to the proteins in solution and can fill in regions 

that do not diffract well. The established approach will certainly aid the design of protein 

therapeutics. 
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5.1 Abstract 

Programmed cell death-1 (PD-1), an antigen co-receptor on cell surfaces, is one of the 

conspicuous immune checkpoints. Nivolumab, a monoclonal antibody therapeutic approved by 

FDA, binds to PD-1 and efficiently blocks its pathways. In this study, an integrated approach has 

been developed to map binding epitope/paratope of PD-1/Nivolumb, including hydrogen 

deuterium exchange mass spectrometry (HDX-MS) followed by electron-transfer dissociation 

(ETD), chemical crosslinking and molecular docking. HDX-ETD offers binding sites 

characterization with amino acid resolution. Chemical crosslinking reveals complementary 

information on one additional epitope (i.e., the BC-loop) and a potential paratope at the N-

terminus of the heavy chain. Furthermore, crosslinking identifies another loop region (i.e., the 

C’D-loop) that is subject to remote conformational change. The distance restraints derived from 

the cross-links enable building high-confidence models of PD-1/Nivolumab, evaluated with 

respect to a resolved crystal structure. This integrated strategy provides an opportunity for 

comprehensive characterization of other antigen/antibody interactions that would assist in 

understanding binding mechanisms and designing antibody therapeutics. 

5.2 Introduction  

Antibodies are key biosensors in the immune system that can neutralize antigens and evoke other 

biomolecules that fight pathogens.1 The binding between epitopes and paratopes is exquisitely 

specific and of high affinity, contributing to numerous applications in biological research, 

diagnostics, and therapy.2 Comprehensive description of the epitopes/paratopes, ideally to the 

residue level, is crucial to understand the binding mechanism and to design future therapeutic 

agents. Hydrogen deuterium exchange (HDX) coupled with mass spectrometry (MS), an 
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approach that reflects the local solvent accessible surface area (SASA) and H-bond network of 

the protein backbone, is a valuable tool for probing protein interfaces.3-9 Its advantages are the 

near-native conditions of the experiment, low sample amount and high throughput compared to 

X-ray crystallography. A major limitation, however, can be the coarse spatial resolution limited 

by  the length of proteolytic peptides generated in the HDX experiment.10 Besides proteolyzing 

the protein to smaller fragment peptides, another solution to increase the spatial resolution is 

electron transfer dissociation (ETD), a fragmentation technique that can locate deuterium on one 

or a few residues. It utilizes a transferred electron from a radical anion to fragment peptides or 

protein with minimal scrambling of the amide H and D, in contrast to collision-induced 

fragmentation that uses many low-energy collisions to induce fragmentation.11-14 Another 

potential disadvantage of HDX-MS is the inability to distinguish between the direct binding 

interaction and remote conformational or allosteric effects. A combination of other 

complementary methods may overcome this limitation.  

Mass spectrometry-based chemical crosslinking (XL-MS) has developed rapidly owing to the 

increased availability of  diverse cross-linkers, advanced analysis software, and improvements in 

sample handling.15-17 Observed cross-links deliver information about not only the connectivity of 

adjacent protein subunits but also the distance ranges between specific amino acid residues as 

defined by the spacing between functional groups in chosen crosslinking reagents. These features 

contribute to a wide range of successful applications, including structural elucidation of single 

proteins18, topological portrayal of large macromolecular assemblies 19-20, and interaction maps 

of an entire proteome 20-21. Mapping epitopes/paratopes by using XL-MS, however, is an 

underutilized opportunity.22 In this study, we incorporated XL-MS together with HDX and 
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HDX-ETD to illustrate an analytical approach for epitope/paratope mapping of an important 

antigen/antibody system.  

Programmed cell death-1 (PD-1)23, an immune checkpoint, is an antigen-independent co-

receptor, located on cell surfaces and expressed predominantly by T-cells.24 The critical role of 

PD-1 is to bind with specific ligands, PD-1 ligand 1 (PD-L1)25 and PD-1 ligand 2 (PD-L2)26, to 

maintain immune tolerance by suppressing self-reactive T-cells27 and preventing pathogenic 

autoimmunity. The signaling, however, can be utilized by tumor cells to escape immune 

surveillance.28-29 Therefore, blockage of the PD-1 pathway has been an appealing target in recent 

development of immuno-therapeutics.30-32 Nivolumab , one of two monoclonal antibodies 

(mAbs) on the market33, is designed to bind with PD-1, demonstrating  immune restoration in 

multiple tumor conditions34-36 with impressive clinical efficacy.  

Here, we applied HDX-MS to the PD-1/Nivolumab complex to obtain regional binding 

information, which was further refined by HDX-ETD to specify more closely the critical binding 

residues. The suggested epitope and paratope regions were subsequently evaluated by XL-MS, 

revealing complementary binding interfaces, and differentiating remote conformational changes. 

Utilizing the distance restraints derived from various cross-linkers, we conducted molecular 

docking to generate high-confidence 3D models and evaluated the strengths and limitations of 

this approach. A previously resolved X-ray crystal structure of PD-1/Nivolumab Fab 37-38 was 

employed for final comparison purposes. Besides the successful application in the binding 

interface determination with IL-7 and IL-7Rα (Chapter 5), the integration of several MS-based 

approaches also enables precise and detailed characterization of epitopes/paratopes of an 

antigen/antibody complex, encouraging even broader applications. 
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5.3 Experimental 

5.3.1 Hydrogen-Deuterium Exchange Mass Spectrometry 

PD1 (25 M) and Nivolumab (25 M), dissolved in non-deuterated PBS buffer (Phosphate 

Buffered Saline, pH 7.4), were digested individually with an immobilized Enzymate pepsin 

column, 300 Å, 5 µm, 2.1 mm X 30 mm (Waters Corp., Milford, MA, USA) under different 

conditions including PD1 alone, Nivo Fab alone, and bound PD1 and Nivo Fab at a molar ratio 

of 1:2, for selected peptic peptides. Prior to the HDX experiments, PD1 (25 M) and the Nivo 

Fab (50 M) were incubated for 1 h to allow complex formation. HDX was conducted on an 

HDX PAL robot (LEAP Technologies, Carrboro, NC), in which 5 L of protein was diluted into 

55 L D2O buffer (10 mM phosphate buffer, D2O, pD 7.0) to initiate HDX. Different aliquots 

were submitted to HDX for several times: 0.33, 1.0, 10, and 240 min. The reaction mixture was 

then quenched by adding quenching buffer (4 M GdnCl and 0.4 M TCEP, pH 2.5, 1:1, v/v), and 

50 µL of quenched sample was injected into a Waters nanoACQUITY UPLC HDX ManagerTM 

system. The deuterated mixture was then digested online by using the same pepsin column at 20 

C for 3 min, and the resultant peptides were desalted with an ACQUITY UPLC BEH C18 

VanGuard column (130 Å, 1.7 m, 2.1 mm  5 mm) with 0.1% formic acid in water at 100 

L/min for 3 min. The eluted peptides were further separated on a trap column (ACQUITY 

UPLC BEH C18, 130 Å, 1.7 m, 1.0 mm  50 mm), under a 7.5 min gradient: 8-85% 

acetonitrile in water with 0.1% formic acid at 65 L/min. Peptides were introduced to a Waters 

Synapt G2si Q-TOF (Waters, MA) mass spectrometer for mass analysis. The instrument settings 

were capillary 3.5 kV; sampling cone 35 V; source temperature 80 C; desolvation temperature 

180 C; and m/z range 260-2000.  
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In the HDX-ETD experiments, 1,3-dicyanobenzene was utilized as the electron carrier for gas-

phase fragmentation of selected peptic peptide by using an isolation window of 6 (± 3 Da). The 

corresponding instrument settings were sampling cone: 20 V; isolation window: ± 3 Da. 

Experiments were all performed as biological triplicates. 

5.3.2 HDX Data Analysis 

Peptic peptides were identified through a combination of exact mass analysis and MSE by using 

ProteinLynx Global Server 3.0.2 (Waters Corp., Milford, MA, USA). Both peptide-level and 

residue-level (ETD experiments) deuterium uptakes were calculated by using Waters DynamX 

3.0TM software. Deuterium uptake differences were calculated from the centroid of the isotopic 

pattern of the deuterated and non-deuterated peptides ions.  

5.3.3 Chemical Crosslinking 

PD1 (15 M, Bristol-Myers Squibb, NY, NY) and 30 M Nivolumab Fab (Bristol-Myers 

Squibb, NY, NY) were incubated at room temperature for 40 min prior to initiating the 

crosslinking reactions. For a buffer, 10 mM PBS (7 mM KCl, 137 mM NaCl, pH = 7.4) was used 

for NHS-ester cross-linkers, and 50 mM MES buffer (15 mM KCl, pH = 6.5) for EDC 

crosslinking. For the BS3-h12/d12 (bis(sulfosuccinimidyl) suberate) (Creative Molecules, Canada) 

and BS2G-d0/d4 (bis(sulfosuccinimidyl) 2,2,4,4-glutarate-d0/d4) (Thermo Fisher Scientific, 

Carlsbad, CA) crosslinking experiments, fresh BS3-h12/d12 or BS2G-d0/d4 solution were added to 

the protein mixture to a concentration of 0.75 mM, 1.5 mM and 3 mM, respectively. The solution 

was incubated at 25 °C with spinning at 500 rpm for 45 min. Tris-HCl (1 L of 1 M, pH = 7.4) 

was used to quench the crosslinking reaction after a 15-min incubation. For the EDC (Thermo 

Fisher Scientific, Carlsbad, CA) crosslinking, EDC and sulfo-NHS (N-hydroxysulfosuccinimide 

sodium salt, Millipore Sigma, St. Louis, MO) were dissolved at a 1:1 molar ratio in 200 mM 



156 

 

MES buffer just before mixing with the protein solution. The reaction was run at 25 °C for 45 

min. The EDC/sulfo-NHS concentrations were 5, 10, and 30 mM for different trials. Tris-HCl 

was added to a final concentration of 200 mM and incubated for 15 min to terminate the 

crosslinking chemistry.  

5.3.4 Gel Electrophoresis 

Bis-tris-Precast gels (4-12% SurePAGE) and MES running buffer were purchased from 

GenScript (Piscataway, NJ). Colloidal Blue Staining kit and the protein marker were from 

Thermo Fisher Scientific (Carlsbad, CA). For each gel band, approximately 100-200 pmol of 

each protein was obtained and loaded. The operating voltage was 200 V for 35 mins.     

5.3.5 Enzymatic in-solution Digestion 

A Zeba column (Thermo Fisher Scientific, Carlsbad, CA) was used to remove access 

crosslinking reagents. After desalting, a final concentration of 0.25% (w/v) RapiGest (Waters, 

Milford, MA) was constituted in the reaction mixture and incubated at 80 °C for 30 min for 

denaturation. The reduction and alkylation of disulfide bonds were conducted with 7.5 mM DTT 

at 55 °C for 30 min and 14 mM IAM (Millipore Sigma, St. Louis, MO) in the dark for 30 min. 

Trypsin (Promega, Madison, WI) digestion (10:1), together with PNGase F (glycerol-free) 

(BioLabs, Ipswich, MA), was performed at 37 °C for 2h, followed by additional chymotrypsin 

(Promega, Madison, WI) digestion for 4 h to get the best coverage. The peptide mixture so 

generated was treated with C18 NuTip, the solvent evaporated, and the protein reconstituted in 

0.1% formic acid after vacuum.  

5.3.6 LC-MS/MS Analysis 

The digested peptides were desalted with a C18 reversed-phase column (Acclaim PepMap C18, 

100 µm x 2 cm, 5 µm, 100 Å; Thermo Fisher Scientific, Carlsbad, CA) for 10 mins at 4 L/min. 
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The resulting peptides were separated on a custom-packed C18 column (Magic Beads, 100 µm x 

180 mm, 5 µm, 120 Å; Michrom Bioresources, Auburn, CA) mounted on the Ultimate 3000 

Rapid Separation system (Dionex). The HPLC solvent consists of phase A (0.1% formic acid in 

water) and phase B (0.1% formic acid in 80% acetonitrile). The flowrate was operated at 400 

nL/min with a 120-min gradient (2.5% B to 12% B in 30 min, increased to 60% B for 65 min, 

ramped to 85% B in 5 min, kept at 85% B for 5 min, returned to 2.5% B in 5 min, and 

equilibrated at 2.5% B for 10 min). A Thermo Q Exactive Plus orbitrap mass spectrometer was 

used for LC/MS/MS analysis of the digested, cross-linked sample. For isotopic-encoded 

crosslinking runs, the data-independent mode was set for per charge state with the associated 

mass tag.  

5.3.7 Identification of Cross-links 

LC-MS/MS files were submitted to pLink 39-40 (ver. 2.3.1, Institute of Computing Technology, 

Chinese Academy of Sciences, Beijing, China) for cross-link identification. Search parameters 

were: enzyme: trypsin/chymotrypsin; missed cleavage: 3; precursor tolerance: 10 ppm; fragment 

tolerance: 30 ppm; variable modification: oxidation of M, deamidation of N, Q and the N-

terminus; fixed modification: carbamidomethyl of C; minimal peptide length: 6 aa; maximal 

peptide length: 60 aa; minimal peptide MW: 600 Da; maximal peptide mass: 6000 Da. The false 

discovery rate was 5% with 10 ppm MS1 filter tolerance. Isotopic doublets in the mass spectrum 

was searched and confirmed in the raw file. MS/MS peak assignments were further validated 

manually on the basis of the product ion mass list.  

5.3.8 Molecular Docking with Cross-link Derived Restraints 

The Rosetta (v. 3.8) 41-43 docking_protocol (RosettaDock) program 44-45 running on multi-

processor Linux servers was used for the protein-protein docking. Protein models for PD1 and 
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Nivolumab Fab were obtained from the X-ray structure of the PD1/Nivolumab Fab complex 

(PDB ID: 5WT9) 37. Coordinates for the Nivolumab Fab chains H and L and PD1 were extracted 

from the PDB file of the complex, written out as two separate PDB formatted files (Nivolumab 

Fab and PD1) and then prepared for docking in a two-stage process.  First, residue atoms that 

were not present in the PDB files and hydrogen atoms were added, and non-protein residues 

were removed with the Rosetta score_jd2 program. Subsequently, energy minimization of the 

structures output by score_jd2 within the context of the Rosetta energy model was performed 

with the Rosetta relax program.  Sets of 10 models were generated for each structure by using the 

“constrain_relax_to_start_coords” and “coord_constrain_sidechains” options to limit structural 

changes, and the model of each protein with the lowest Rosetta total energy score was selected 

for protein-protein docking. 

The processed PD1 and Nivolumab Fab models were imported into Maestro, 46 and the PD1 

model was manually displaced and rotated arbitrarily relative to the Nivolumab Fab. Both 

protein models were merged into a single, three-chain model that was exported to a PDB format 

file for the protein-protein docking computations. 

Docking exercises were performed with the RosettaDock program using eight distance restraints 

derived from the PD1/Nivolumab Fab chemical cross-links listed in Table 1. The distance 

restraints were implemented as flat-bottomed harmonic potentials that penalized models where 

the Cα-Cα distance(s) for crosslinked residues fell outside of the ranges of 6 – 16 Å47 and 9 – 30 

Å48 for the EDC  and BS2G or BS3 crosslinks, respectively. For the restrained docking study, 250 

runs were performed, each yielding up to 400 models for a maximum of 100,000 models. For 

comparison purposes, 250 docking runs, each yielding 400 models (100,000 total) were also 

carried out without restraints. Following completion of the docking calculations, the 100 models 
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from the restrained docking exercise with the most favorable values of the RosettaDock 

total_score were identified and used to generate Figure 6. The best scoring 100 models from the 

non-restrained docking exercise were also identified and compared to the X-ray structure of the 

PD1/Nivolumab Fab complex. A Python/OEChem49 script was used to determine the Cα atom-

based r.m.s.d. for PD1 in each clustered model relative to the X-ray crystal structure of the 

PD1/Nivolumab Fab complex (PDB ID: 5WT9) and to analyze models of PD1 docked to 

Nivolumab Fab. 

5.4 Results and Discussion 

5.4.1 Epitope and Paratope Mapping by HDX  

To map the epitope on PD-1, we performed HDX experiments with unbound PD-1 and PD-1 

bound to the antigen-binding fragment of Nivolumab (Nivo Fab) at a molar ratio of 1:2. 

Deuterium uptake was monitored at 0.33, 1.0, 10, and 240 min on 19 unique peptides, covering 

85% of PD-1 sequence. Information on 15% of the sequence was lost likely because the antigen 

contains complex N-linked glycans at those sites that hamper peptide chromatography and 

identification. Accumulative deuterium uptake differences across the four time points were 

calculated (Figure 5.1A), revealing three regions that undergo protection: 

25LDSPDRPWNPPTFSPALL42, 80AAFPEDRSQPGQDCRF95 and 125AISLAPKAQIKESL138. 

Specifically, regions 125AISLAPKAQIKESL138, located on the FG-loop of the PD-1 structure 

(Figure 5.1B), and 25LDSPDRPWNPPTFSPALL42, part of the N-loop (Figure 5.1B), exhibit the 

most significant decrease in HDX upon binding to Nivo Fab with protection corresponding to 

decreases of 7 and 4 Da, respectively. Region 80AAFPEDRSQPGQDCRF95 containing the C’D-

loop (Figure 5.1B) showed less protection corresponding to a decrease of approximately 2 Da. 

The deuterium uptake differences were similar across all time periods for the three regions 
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(Figure 5.1C), suggesting stable solvent protection, strong bonding, and associated small off 

rates in the equilibrium.  

 

Figure 5.1 Epitope regions on PD-1 indicated by HDX. (A) Differential HDX kinetics plots of 

PD-1 and PD-1/Nivolumab Fab complex. (B) Epitope regions mapped onto the PD-1 crystal 

structure (PDB: 3RRQ). (C) HDX kinetics of three peptides corresponding to the epitope regions 

in PD-1. Unbound PD-1 is colored in black and bound PD-1/Nivolumab Fab is colored in 

burgundy. The green shaded region is the propagated error across all time points. HDX kinetics 

results for the remaining peptides are shown in Figure 5.2. 
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Figure 5.2 HDX kinetic plots of other peptides in PD-1. Unbound PD-1 is colored in blue and 

bound PD-1/Nivo Fab is colored in green. 

We also performed HDX experiments with PD-1 and full-length Nivolumab (Nivo mAb) for 

comparison (Figure 5.3). One of the peptides, 132KAQIKESLRA ELRVTE147, was not found in 

PD-1-Nivo mAb complexes, possibly due to the larger number of peptides when using the full 

Nivo mAb. The larger number of peptides from full-length mAb hampers the acquisition and 

identification of PD-1 peptides in the fast chromatography used in HDX. The other peptide 

regions, on the other hand, showed consistent and similar trends regarding the deuterium uptake 

differences for bound and unbound states, indicating comparable binding behaviors between the 

full Nivolumab and its Fab.  
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Figure 5.3 Differential HDX kinetics plots of PD-1 and PD-1/Nivo mAb complex. 

To map the paratope on Nivolumab, we conducted a series of similar HDX experiments. Non-

bound and bound Nivo Fab (PD-1: Nivo Fab at a molar ratio of 2:1) were exchanged with 

deuterated buffer from 0.33 min to 4 h. The accumulative deuterium uptake differences between 

the two states confirm the involvement of the CDR regions in PD-1 binding (Figure 5.4). Peptide 

regions covering CDR-H2 on the heavy chain (Figure 5.4A) and CDR-L3 on the light chain 

(Figure 5.4B) showed the greatest protection, corresponding to more than 8 Da and a constant 

difference of HDX as a function of time (Figure 5.4C). Peptides covering CDR-H1, CDR-H3 

and CDR-L2 showed smaller changes in HDX upon binding (~ 6 Da for the first and ~ 3 Da for 

the latter two). The HDX of peptides covering 33SSYLAWYQQKPGQA46 exhibited only 1 Da 

deuterium uptake difference across all HDX time points, and the difference mainly occurred at 

the longer HDX time (Figure 5.4C). Given that this region only partially overlaps with CDR-L1, 

27RASQSVSSYLA37, few amino acids in this region are involved in PD-1 binding, resulting in 

small differences in HDX. The HDX paratope of Nivolumab, in general, is in accord with what 

is commonly viewed as CDR regions. 
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Figure 5.4 Paratope regions on Nivo Fab as determined by HDX. Differential HDX kinetics 

plots of Nivo Fab vs. PD-1/Nivo Fab complex for (A) heavy chain and (B) light chain, 

respectively. (C) HDX kinetics of the peptides in the corresponding paratope regions in Nivo Fab 

(unbound PD-1 is colored in black and bound PD-1/Nivo Fab is in burgundy. The green shaded 

region is the propagated error across all time points. HDX kinetics plots of the other peptides are 

shown in Figure 5.5. 
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Figure 5.5A HDX kinetic plots of the peptides on the heavy chain of Nivo Fab. Unbound state is 

colored in blue and bound PD-1/Nivo Fab is colored in green. 
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Figure 5.5B HDX kinetic plots of the peptides on the light chain of Nivo Fab. Unbound state is 

colored in blue and bound PD-1/Nivo Fab is colored in green. 
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5.4.2 Epitope Refinement by HDX-ETD 

Epitope identification by HDX is limited by the size of peptic peptides and by overlapping 

peptides, providing only regional information. To increase the spatial resolution, we coupled 

ETD fragmentation with HDX-MS to refine further the protected regions. To set up the ETD 

measurements, we used a previously published procedure11 to measure the extent of H/D 

scrambling of a synthetic peptide, HHHHHHIIKIIK, under several conditions and selected those 

that show minimal scrambling. In addition, the bound-state PD-1 was achieved with Nivo Fab to 

produce fewer peptides, lower complexity in the separation step of HDX than that with full-

length Nivo mAb, and increased the signal-to-noise ratios for peptide peaks. The incubation time 

for deuterium labeling was controlled as 1 min, a time point that gives distinct differences in the 

peptide-level HDX.  

We submitted to ETD the three peptides (Figure 5.1C) that cover the epitope regions identified 

by the HDX kinetics. Not all the peptides could be successfully resolved owing to their nature 

(e.g., residue composition) and to incomplete fragmentation of the peptide at their available 

charge states. For example, the doubly charged peptide 25LDSPDRPWNPPTFSPALL42, part of 

the N-loop, suffers from multiple proline residues in the sequence, showing a limited number of 

product ions. The peptide 80AAFPEDRSQPGQDCRF95 containing the C’D loop has only a 

moderate difference in HDX between bound and unbound (~ 0.5 Da at 1 min), and that makes it 

difficult to measure differences in HDX given the large size of the peptide (16 residues) and the 

experimental error associated with HDX-ETD. On the other hand, a triply charged peptide 

125AISLAPKAQIKESL138, located on the FG-loop, successfully produced a series of C fragment 

ions upon ETD, allowing further epitope refinement for this region. 
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Figure 5.6 Cumulative deuterium uptake plot for C-type ions of 125AISLAPKAQIKESL138 in 

PD-1 and PD-1/Nivo Fab complex by HDX-ETD. Deuterium uptake differences are calculated 

and labeled for each C-ion. The potential binding residues are indicated with arrows and colored 

in red. 

We plotted the cumulative deuterium uptake for all C-ions and calculated the deuterium uptake 

difference for each ion between the bound and unbound states of PD-1 (Figure 5.6: note that the 

deuterium uptake of each Cn-ion represents that occurring on the n + 1 residue). The absence of 

C1 and C2 ions is likely an undesirable consequence of the ionization condition optimization in 

which we balanced the intensity of the fragment ions and the extent of deuterium scrambling. 

The deuterium uptake measured on the C3 ion was reduced (~ 0.8 Da) upon complex formation. 

Given that deuterons on the first two residues are almost always lost owing to back exchange50 

and the C2 ion was not resolved in the experiment, protection of residue 127S or 128L or both 

could account for the observed decrease in deuterium uptake on C3. Further increases in HDX 

protection were observed at C6, showing 1.6 Da reduction in the PD-1/Nivo Fab complex 

compared to the unbound PD-1; the considerable drop in deuterium uptake pinpoints the 

protected residue 131K, given the HDX-silent 130P and the similar deuterium uptake difference of 



169 

 

C4 comparing to that of C3. In addition, the C7 ion exhibits additional HDX protection, increasing 

from 1.6 at C6 to ~ 2.3 Da. The HDX for C9 shows an additional uptake in protection as at C7, 

suggesting protection on residues 134I and 132A, respectively, upon binding to the Nivo Fab. 

Other Cn fragments showed insignificant differences between the two states compared to the 

adjoining Cn-1 ions. In summary, HDX-ETD allows epitope refinement to 127S and/or 128L, 131K, 

132A and 134I in the region 125AISLAPKAQIKESL138. 

Although HDX-ETD successfully reveals several epitope binding residues, it can be challenging 

to differentiate HDX protection induced by direct binding or by a remote conformational change 

induced by binding. Additional information that shows the interacting domains is desirable, and 

that prompts our subsequent investigation with complementing chemical crosslinking.  

5.4.3 Chemical Crosslinking of PD-1 and Nivolumab Fab  

To achieve better coverage and more comprehensive information of the epitope and paratope 

regions provided by HDX, we utilized several cross-linkers, including BS3-H12/D12 and BS2G-

H4/D4, different in spacer lengths, and EDC/NHS targeting glutamic (D) and aspartic acids (E), 

complementary to the usual NHS-ester reactive residues (e.g., lysine (K), serine (S), tyrosine (Y) 

and the N-terminus). We tested several concentrations of cross-linkers with respect to those of 

the proteins and could monitor the success of crosslinking by the band of PD-1/Nivo Fab on an 

SDS PAGE gel (Figure 5.7). Individual cross-linked samples were digested in solution followed 

by LC-MS/MS analysis and crosslinking identification with pLink 39-40. In total, we identified 

eight distinct inter-molecular cross-links (Table 5.1; representative mass and product-ion 

(MS/MS) spectra are shown in Figure 5.8) located on different regions of PD-1 and the Nivo 

Fab, consistent with the HDX results that the binding interface is discontinuous.  
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Figure 5.7 Gel electrophoresis of PD-1/Nivo Fab. PD-1 and Nivo Fab cross-linked with (A) BS3 

at the concentration of 0.75 mM (50:1), 1.5 mM (100:1) and 3 mM (200:1), cross-linked with (B) 

BS2G at 1.5 mM (100:1) and 3 mM (200:1) and cross-linked with EDC at 5 mM, 10 mM and 30 

mM. The first two electrophoresis lanes are control runs. Different species are identified on the 

lane correspondingly. 

Table 5.1. Summary of observed inter cross-links 

    PD-1 Nivo Fab Cross-linker Epitope Paratope 

1 S27 – K57(H) BS2G /BS3 

N-Loop 
CDR-H2 

2 D26 – K57(H) EDC 

3 S27 – Y35(L) BS3 CDR-L1 

4 S62– N-term (H) BS3 
BC-Loop N-terminus (H) 

5 E61 – N-term (H) EDC 

6 K135 – K57(H) BS3 

FG-Loop 

CDR-H2 

7 K135 – Y35(L) BS3 CDR-L1 

8 K135 – N-term (H) BS3 N-terminal (H) 
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Figure 5.8 Representative mass spectra and product-ion spectra (XL-8) 

For PD-1, multiple cross-links were formed on the N-loop (cross-link 1-3) and the FG-loop 

(cross-link 6-8), two regions that also showed significant protection in the HDX kinetics, 

consistent with the assignment as epitope regions. XL-MS results not only complement those of 

HDX but also reveal an additional binding region on PD-1, the BC-loop, identified by cross-links 

4-5 by both BS3 and EDC chemistry. It is worth mentioning that, for EDC crosslinking, the 

Euclidean distance between the cross-linked atoms is only ~ 3 Å, the length of one amide bond. 

Thus, this XL reagent locates and defines the binding interfaces with higher spatial resolution 

than do other reagents.  Cross-link 5 emphasizes the vicinity of the BC-loop to the N-terminus of 

the heavy chain on Nivo Fab, indicating physical contacts between the epitope and paratope.   
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On the other hand, we observed no cross-links on the C’D-loop, and this could result from the 

lack of reactive residues or may indicate that it is not a binding interface. Although the sequence 

of C’D-loop contains several eligible residues for crosslinking (e.g., D and S), their side chains 

may orient in an unfavorable way for crosslinking. Because the C’D-loop region showed only 

low extent in the accumulative deuterium uptake in HDX upon binding with Nivo Fab, we 

suggest this is not a binding region that involves strong interactions. Binding-induced remote 

conformational changes more likely account for the reduced HDX upon binding.  

On the heavy chain of the Nivo Fab, we observed three cross-links involving 57K (i.e., cross-

links 1, 2 and 6) located in the CDR-H2 region identified from the HDX kinetics. This region, 

based on the supporting evidence from both HDX and XL-MS, is confidently assigned to be a 

paratope. A newly revealed paratope region is the N-terminus of the heavy chain, which affords 

multiple cross-links not only with the BC-loop of PD-1 but also with the FG-loop. On the light 

chain of Nivo Fab, we observed only one cross-linked residue, 35Y, on the CDR-L1 peptide. The 

identified cross-links (i.e., 3 and 7) support the CDR-L1 region as a binding interface with PD-1. 

For the four other CDR regions, we identified no cross-links, showing the limitations of using 

stand-alone XL-MS for mapping. Restricted numbers of reactive residues, considering both the 

intrinsic and low reactivity, side-chain orientation, and complexity of the cross-linked species 

diminish the possibility of using XL alone to characterize epitope/paratope interfaces. A more 

confident assignment than either approach alone is integrating HDX and XL-MS, which is 

validated by a comparison of our MS results and the resolved X-ray crystal structure in the next 

section. 

5.4.4 Epitopes/Paratopes and Comparison with X-ray Crystallography 
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We conducted HDX to map the epitope and paratope on the peptide-level of PD-1 with both 

Nivo Fab and full-length Nivolumab, showing consistent results and indicating comparable 

binding behavior. The residue-level analysis was therefore performed with PD-1/Nivo Fab using 

HDX-ETD and crosslinking MS.  

 

Figure 5.9 Summary of binding regions identified by HDX (blue) and XL-MS (red) for (A) the 

PD-1 and the Nivo Fab complex including (B) heavy chain and (C) light chain. Critical binding 

residues indicated by HDX-ETD are pinpointed with triangles. Epitope/paratopes assigned from 

the crystal structure (PDB: 5WT9) are underlined in grey. 

The results from HDX suggest three epitope regions on PD-1, namely the N-loop, the FG-loop 

and the C’D-loop, whereas XL-MS supported the former two and revealed an additional BC-loop 

(Figure 5.9). A lack of cross-links and a small HDX difference between bound and unbound 

make the C’D-loop less likely to be a binding interface but rather a region undergoing a remote 

conformational change induced by binding elsewhere. These conclusions agree well with the 

reported epitope regions in the crystal structure of PD-1/Nivo Fab (PDB: 5WT9)37-38, where the 

N-loop, BC-loop and FG-loop are identified as epitopes. The C’D loop, however, is not resolved 

and there are no observed physical contacts between the antigen and any paratope regions. The 

integrated information from HDX and XL-MS also provide insight on the epitopes/paratopes, in 

good accord with those indicated in the crystal structure. For example, a resolved H-bond 
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between 25L on the N-loop of PD-1 and 57K on the Fab heavy chain is consistent with two cross-

links (cross-link 1 and 2, Table 5.1) to nearby reactive residues, 26D and 27S. In addition, the 

stabilization between the N-loop and CDR-L1 is consistent with cross-link 3 and with H-bonding 

between 26D on PD-1 and 35Y on the Fab light chain. HDX coupled with ETD fragmentation 

further reveal the binding residues in the FG-Loop, three of which, 128L, 131K and 132A, contact 

with the Nivo Fab through H-bonding and van der Waals interactions. Assignment of this 

epitope region is also supported by cross-link 7, resembling the H-bond between 131K on PD-1 

and 37A on the Fab light chain. Additionally, we observed that the FG-loop can cross-link with 

other domains through 135K; those cross-links include the CDR-H2 (cross-link 6) and the N-

terminus of the heavy Fab (cross-link 8). The N-terminus also cross-linked with 61E and 62S on 

the BC-loop of PD-1 (cross-links 4 and 5), suggesting a paratope region that is not seen in the 

solid-state structure.  

In addition, the crosslinking network for the epitopes/paratopes delivers topological information 

of the PD-1/Nivo Fab complex by providing defined distance ranges. This allows a description 

of the interaction regions and even of the overall architecture when the information is coupled 

with other approaches (e.g., protein-protein docking). The 3D-information of the binding 

complex can provide a foundation for even more accurate determinations of the 

epitope/paratope. 

5.4.5 Protein-Protein Docking of PD-1 and Nivolumab Fab  

We conducted a protein-protein docking study with the RosettaDock program44-45 by starting 

with the structures of PD-1 and the Nivo Fab extracted from the X-ray structure of the complex 

(PDB: 5WT9)37. Docking of apo Nivolumab and PD-1 was not feasible because many critical 

residues in apo-PD-1 are not resolved. For each docking run, we separated the two proteins with 
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the same intial configuration, followed by rotation to arbitrary extents (details in Methods). In 

Chapter 451, we demonstrated that incorporation of multiple cross-link-derived restraints in the 

protein-protein docking computations can effectively yield high-quality models; thus, the 

restraints based on all eight of the identified cross-links (Table 5.1) were utilized here. We 

generated 250 RosettaDock docking runs, each of which gave up to 400 PD-1/Nivo Fab models. 

The 20 best-scoring models based on the RosettaDock “total_score” metric revealed a tight 

cluster of models, all of which closely recapitulated the X-ray structure of the PD-1/Nivo Fab 

complex (Figure 5.10A). For these 20 models, the root-mean-square deviation (r.m.s.d.) of all Cα 

atoms for PD-1 in the models relative to PD-1 in the X-ray structure ranged from 0.4 – 1.8 Å 

with a mean of 1.0 ± 0.4 Å, which is less than 2 Å, a threshold that often is used to define a high-

confidence model. The successful generation of the complex architecture showing the 

protein/protein interface enables an in-depth view of the potential epitopes/paratopes. 

 

Figure 5.10 Docking models of PD-1/Nivo Fab complex. (A) Twenty best-scoring protein-

protein docking models of PD-1/Nivo Fab complex (PD-1 in cyan, the heavy chain of the Nivo 

Fab in dark pink, the light chain of the Nivo Fab in light pink), superimposed on the X-ray 

structure (red). (B) A representative model of PD-1/Nivo Fab complex with an enlarged view of 

the epitopes/paratopes (BC-loop in magenta, C’D-loop in black, N-terminus of Nivo Fab heavy 

chain in marine, CDR-H1 in purple). 
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We chose a representative model and enlarged the binding interface between PD-1 and Nivo Fab 

(Figure 5.10B). The BC-loop of PD-1 locates at similar proximity with CDR-H1 and the N-

terminal region of heavy Fab, indicating that the two regions may contribute simultaneously to 

the binding interaction. The conformation is consistent with the N-terminal region being a 

paratope. The X-ray structure suggested the BC-loop is in physical contacts with CDR-H1, 

whereas we identified cross-links on the N-terminus of the heavy chain, complementing the 

scheme and emphasizing the necessity of examing binding events using solution-based 

approaches. In addition, another questionable region, the C’D-loop on PD-1, is far from the 

binding interfaces, minimizing the likelihood of being an epitope. Moreover, unlike it is resolved 

in the unbound PD-1, the C’D-loop is missing in the bound PD-1 complex, giving supporting 

evidence of undergoing considerable remote conformational changes companied with different 

structural dynamics. The quaternary structure of the PD-1/Nivo Fab complex enables more 

confident assignment of the epitope/paratope regions. 

There are limitations, however, in generalizing the integrated method that includes XL-MS and 

molecular docking to other protein-binding systems. One obstacle we encountered in the docking 

study of the PD-1/Nivo Fab complex is the dissimilar structures of PD-1 in its unbound state 

(PDB: 3RRQ) and bound state (PDB:5WT9). Epitopes on PD-1 are mainly loops, some of which 

cannot be resolved in the X-ray structure owing to their high flexibility in absence of bonding to 

the Nivo Fab (e.g., the N-loop). Consequently, distance constraints derived from the residues 

within this region are of little use for downstream docking. More importantly, for loops that are 

resolved, the orientation may be significantly different than those in the bound state. The 

conformations of dynamic loop regions are susceptible to the presence of mutations and/or 

truncations and to crystallization conditions including and ionic strength of the medium; these 
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can lead to incorrect conformations for the solid-state structure. Given that the docking protocol 

does not readily accommodate changes in protein tertiary structure, biased initial structures could 

lead to erroneous 3D models of the binding complex. Incorporation of other computational 

methods (e.g., discrete molecular simulation) can better accommodate the structural changes. In 

fact, binding interfaces that mainly contain helices and beta-sheets, which possess relatively 

fixed high order structures, are preferable inputs for docking studies.  

5.5 Conclusion  

This study provides convincing evidence that epitope and paratope mapping by HDX, 

crosslinking, and docking can be effective. Although HDX-MS, as a stand-alone method, has 

shown fruitful applications in mapping binding interfaces, it can be circumscribed by the limited 

resolution and ambiguous assignment as epitope or remote conformational change. Using PD-

1/Nivo Fab as an example, we demonstrated that integrating HDX-ETD, XL-MS, and molecular 

docking gives a comprehensive description of epitopes/paratopes. Critical binding residues can 

be successfully identified from HDX-ETD and chemical crosslinking results, further delineating 

H-bonds and van der waals interactions along a protein/protein interface. In addition, XL-MS 

confirms epitopes/paratopes characterized by HDX-ETD and allows assignment of sites showing 

protection as remote conformational changes. The restrained distances afforded by XL-MS allow 

building high-confidence 3D models with molecular docking. The integrated platform magnifies 

the ability of each biophysical method, offering an alternative for other antigen/antibody systems 

that are difficult to crystallize for X-ray diffraction. It is noteworthy that docking exercises 

require careful consideration even with the availability of high-quality protein structures, which 

could be obtained by high-resolution techniques or computational methods. Whereas, even 

without molecular docking, the combination of HDX-ETD and XL-MS, the latter which is not 
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often used in epitope/paratope mapping experiments, gives insightful information to deepen our 

understanding of antigen-antibody binding and to assist the design of antibody therapeutics.  
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6.1 Abstract 

In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer 

from the phycobilisome (PBS) antenna complex to the reaction centers (RCs) remains unclear. 

PBS has several peripheral rods and a central core that binds to the thylakoid membrane, 

allowing energy coupling with Photosystems II (PSII) and Photosystem I (PSI). Here, we 

integrated chemical cross-linking mass spectrometry with homology modeling analysis to 

propose a tri-cylindrical cyanobacterial PBS-core structure. Our model reveals a side view 

crossover configuration of the two basal cylinders, consolidating the essential roles of the 

anchoring domains comprised of the ApcE PB-loop and ApcD, which facilitate the energy 

transfer to PSII and PSI respectively. The uneven bottom surface of the PBS-core contrasts with 

the flat reducing side of PSII. The extra space between two basal cylinders of the PBS-core and 

PSII provides increased accessibility of regulatory elements, e.g., orange carotenoid protein, 

which are required for modulating photochemical activities.     

6.2 Introduction  

In natural photosynthesis, light-harvesting complexes capture and transmit solar energy to the 

reaction centers (RCs) where photochemistry takes place, leading to long-term energy storage 1-2. 

In cyanobacteria and red-algae,  phycobilisomes (PBSs) harvest the energy of a spectral range 

between 450 and 650 nm, which is different than that of Chl a (chlorophyll a) in the RCs: i.e., 

photosystem I (PSI) and photosystem II (PSII), and significantly increase the utilization of the 

solar energy spectrum 3. Phycobilisomes, with a molecular mass range of 5-20 MDa, are located 

on the cytoplasmic side (or the stromal side of the red algal chloroplasts) of RCs. PBSs are 

highly organized assemblies of brightly colored phycobiliproteins and colorless linker 
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polypeptides 4. Each phycobilisome consists of a central cylindrical core made of 

allophycocyanin, from which several outwardly oriented rods radiate. Light energy collected by 

phycobiliproteins in the peripheral rods is transferred to PSI and PSII, with the PBS-core 

allophycocyanin acting as a link between phycocyanin and the Chl a in RCs. The detailed 

structural orientation of the PBS and the RCs, however, remains to be determined, probably 

because of the structurally weak interactions of PBS and RCs, which could be advantageous for 

easy regulation of the excitation energy transfer under varying light conditions5-6. The PBS-core 

not only serves as a cornerstone for the rods to attach 7-8, but also acts as an anchoring module 

that dictates efficient energy flow from PBSs to RCs 9-13.  

The building blocks of the PBS-core are two homologous proteins, α- and β-phycocyanin 

subunits, which form a heterodimer, αβ, and further self-assemble into disc-like (αβ)3 trimers 4. 

Several discs of allophycocyanin (ApcA/B) stack into a cylinder, varying in numbers in different 

organisms. The best-known PBS structure is described as hemidiscoidal PBS 7, 14. In this group, 

there are bi-cylinder type of PBS in  Synechococcus sp. PCC 6301 15 and penta-cylinder type in 

Mastigocladus laminosus as well 16. The core structure of Synechocystis sp. PCC 6803, however, 

is tri-cylindrical as determined in 1986 by electron microscopy (EM) 17, Later, advanced EM 

methodology yielded a high resolution structure at 13 Å using a genetically modified strain in 

Synechocystis 6803 (CK strain) 7 which contains an intact core complex but no PC rods. The EM 

structure reveals that this PBS-core consists of three stacked core cylinders: two on the bottom 

and one on the top. The 2D EM map further highlights a two-fold rotational symmetry of the 

triangular core, indicating that the two basal cylinders are arranged in an anti-parallel fashion. 

Although the overall architecture is resolved, a detailed molecular model showing the location of 
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each terminal energy emitter, ApcE, ApcD, and the tomography of the bottom surface of the 

PBS-core that directly interacts with the thylakoid membranes are not known.  

Recently, Zhang et al. significantly advanced the understanding of the PBS structure, 

specifically, in a red alga Griffithsia pacifica 18 by charactering a 16.8 MDa PBS (thus GpPBS) 

using cryo-EM at a resolution of 3.5 Å. GpPBS contains numerous protein subunits, linker 

proteins, and chromophores, revealing in great detail of the GpPBS architecture. GpPBS is 

morphologically categorized as a block-shaped type 18, likely an evolutionary derivative of  the 

core of hemidiscoidal PBS 18. The GpPBS core is characterized by two unique features: the lack 

of one trimeric ApcA/B disc at the distal end of ApcD in each basal cylinder (Fig. 6.1A) and thus 

a decreased copy number (by comparing to a four-APC-trimer cylinder) of ApcC 

(allophycocyanin C, formerly LC), a small polypeptide linker protein that stabilizes and caps the 

core cylinders 19. The top cylinder in GpPBS-core is featured by two APC trimers, instead of 

four, which are stacked back-to-back (or tail-to-tail).  Interestingly, part of the 2nd and 3rd linker 

domains of ApcE 18,  which is usually buried in the core of each cylinder 3, are exposed and do 

not interact with the APC trimers. 

In this study, we build a 3D structure of cyanobacterial PBS-core (cPBS-core) starting with the 

available crystal structure of cyanobacterial allophycocyanin and the red algal PBS cryo-EM 

structure in combination with protein structure and function prediction software suites. The 

generated model represents a cyanobacterial tri-cylindrical core with two basal cylinders and one 

top cylinder, each of which contains four APC trimers. Other APC subunits, including ApcD, 

ApcE and ApcF, were all modelled to afford the core architecture. We also performed chemical 

cross-linking using three types of PBSs isolated from Synechocystis 6803, mapped the identified 

cross-links onto the proposed 3D model, a portrayal of the native cPBS-core, and calculated the 
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Euclidean Cα- Cα distances between each pair of the cross-linked residues. The proposed cPBS-

core was then justified and evaluated by the experimental distance restraints with respect to 

individual subunits. The described framework reveals a side view X-shape configuration of the 

two basal cylinders, which only allows the protrusion of the PB-loops on ApcE and ApcD 

interacting with the thylakoid membranes. The bottom surface of the PBS that touches the 

thylakoid membrane/RCs is not perfectly flat, in contrast to the flat surface of the reducing side 

of PSII. The increased accessibilities to the bottom surface of the PBS-core and the reducing side 

of PSII provide perspectives on the excitation energy regulation and reaction center 

photoprotection.  

6.3 Experimental 

6.3.1 Cyanobacteria Culture and PBS Purification  

The CK-PBS and CpcL-PBS mutant strains were generous gifts from Dr. Ghada Ajlani20-21. 

Cyanobacterial strains were grown in BG-11 medium at 30 C with 50 mol photo m-2. The 

growth media was supplemented with 20 mM TES (2-[(2-hydroxy-1,1-bis(hydroxymethyl) 

ethyl) amino] ethanesulfonic acid, N-[tris(hydroxymethyl)methyl]-2 aminoethanesulfonic acid)-

KOH (pH 7.5). The harvested cell cultures were resuspended in 0.8 M K-phosphate buffer and 

incubated with protease inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA) and DNase 

(Sigma, St. Louis, MO). Cell lysates were obtained through three rounds of a French press at 4 

°C and pH 7.5. 2% Triton X-100 (Sigma, St. Louis, MO) was then added following by 30 min 

incubation at room temperature. The blue supernatant was loaded onto a sucrose gradient for 

overnight ultracentrifugation (370,000 × g). The purified PBS was then ready for cross-linking. 

6.3.2 Chemical Cross-linking and Proteolytic Digestion 
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CK-PBS, dissolved in 0.4 M K-phosphate buffer at 0.1 M, and the isotopic-coded BS3 cross-

linker mixture (BS3-H12/D12, Creative Molecule, Inc) were incubated together for 10 mins in the 

dark at 25 C, where the cross-linker was in 10-, 50-, 100-fold excess with respect to the PBS-

CK. Tris (1M) was added to give a final concentration of 50 mM to stop the cross-linking 

chemistry. For quenching and desalting purposes, Zeba spin columns (Thermo Fisher Scientific, 

Waltham, MA) were employed following the manufacture’s protocol. The cross-linked CK-PBS 

were then desalted and purified by acetone precipitation to prepare them for enzymatic digestion. 

The protein pellets were dissolved in 20 l, 8M urea for 30 min at room temperature for 

denaturation, followed by 30-min incubation with 2.5 mM TCEP (tris(2-

carboxyethyl)phosphine) at 37 C. Iodoacetamide was then added to the reaction sample at a 

final concentration of 5 mM for 30 min at 25 C in dark. The first-step digestion was achieved by 

Lys-C (0.05 g/l) for 2-h incubation at 37 C. Dilution to 1M urea with Tris buffer (100 mM) 

was needed for the subsequent trypsin digestion, which required overnight incubation at 37 C 

with a trypsin:protein ratio of 1:25. The digested mixture was quenched by 0.1% formic acid the 

next day. 

6.3.3 LC-MS/MS 

The peptide mixture was loaded onto a C18 trapping column 180 μm × 2 cm, C18 Symmetry, 5 

μm, 100 Å, Waters, MA) for desalting with phase A (water with 0.1% formic acid) of Dionex 

Ultimate HPLC (Thermo Fisher Scientific, Waltham, MA). Peptide samples were then eluted 

and separated on a reverse-phase C18 column (100 μm × 15 cm, C18 Symmetry, 5 μm, 100 Å, 

Waters, MA) with a 105-min gradient: increasing phase B (80% acetonitrile, 20% water, 0.1% 

formic acid) from 2% to 40% for the first 90 mins, from 40% to 95% for next 10 mins and 

equilibrated at phase A for another 5 mins. The flow was controlled at 250 nL/min and sprayed 
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through a Nanospray Flex source coupled with a Q Exactive Plus mass spectrometer (Thermo 

Scientific, Waltham, MA). The mass spectrometer was operated at the following settings: 1.8 kV 

spray voltage; positive-ion mode; MS1 acquisition at 70,000 resolving power at m/z 200; AGC 

target 3106; MS/MS acquisition at 17,500 resolving power at m/z 200; AGC target: 1105; 

maximal injection time of 100 ms. Data dependent acquisition and with “mass tag” were utilized. 

In the latter method, for charge states of 2 to 7, the delta mass differences were set as ±6.03762, 

±4.02508, ±3.01881, ±2.41505, ±2.01254, and ±1.72503 m/z, respectively. Singly charged 

species were excluded and each charge state was acquired independently.  

6.3.4 Cross-linked Peptides Identification 

MS and MS/MS data were imported into pLink software for identification. Searching parameters 

were: enzyme was trypsin (up to three missed cleavages) with 20 ppm of precursor tolerance and 

60 ppm of fragment tolerance. Variable modifications were: oxidation of M, deamidation of N, 

Q, and N terminus. The minimum number of peptide length is 6 with peptide mass of 600 Da and 

maximum number is 60 with peptide mass of 6000 Da. The false discovery rate was equal to or 

smaller than 5% at spectral level with a 10-ppm filter tolerance. Isotopic pairs were examined 

manually in raw files to confirm cross-link identification. The theoretical product-ion mass list 

was calculated in Protein Prospector. Manually validation of the fragments was further 

performed as a comparison to the pLink assignment.  

The cross-linking dataset was also submitted into ICC-Class for cross-linking identification. In 

the DXMSMSMatch program, the settings were: cross-linker was DSS with DX of 12.07532. 

The DX mass tolerance was 0.013 Da, retention time tolerance was 60 s. The filtered DX mass 

tolerance was 5 ppm and the filter DX time window was 60 s. The digestion sites were K and R, 

including cross-link sites. Missed digest sites was up to 4. Assigned cross-link sites are K and N-
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terminal primary amines. Precursor tolerance was 5 ppm and fragment tolerance were 30 ppm. 

Manually validation of the fragments was carried out as the same way mentioned above. 

6.3.5 Homology Modeling and Structural Construction 

Homology simulation was performed on I-TASSER server. Detailed information and adopted 

template are described in homology modeling section.  

6.4 Results  

6.4.1 Homology Modeling and Construction of a Tri-Cylindrical 

Cyanobacterial PBS-Core  
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Figure 6.1 Model construction of a tri-cylindrical cyanobacterial PBS-core. (A) Symbolic 

illustration of disc extension based on GpPBS-core structure (PDBID: 5Y6P) and cyanobacterial 

structure. GpApcA (salmon), GpApcB (cyan), GpApcE (lime), cApcA (c for cyanobacteria, light 

pink), cApcB (dark blue). (B) Detailed cartoon representation of disc extension based on 

GpPBS-core structure (PDBID: 5Y6P) and cyanobacterial structure. (C) Extension of the B1 disc 

in GpPBS-core using cApcA-ApcB hexamer (PDBID: 4F0U). (D) Determination of the cApcE-

LD3 structure based on the evaluation of five predicted cApcE-LD3 models (dark green), given 

by I-TASSER, with respect to the GpApcE-LD3 (lime). Other APC domains, i.e. cApcE-LD1 

(dark green), cApcE-LD2 (dark green), αLCM (dark green), cApcC (red), cApcD (yellow) and 

cApcF (grey), are constructed similarly. (E) The final core model of cPBS. All structure figures 

were prepared using PyMOL.  

We adopted the high-resolution GpPBS-core structure from red algae Griffithsia pacifica 

(PDBID: 5Y6P) 18 as a building chassis. Although the overall appearance of GpPBS is a block 

type PBS, it essentially retains the classical two fold symmetry with its symmetrical axis oriented 

perpendicularly to the thylakoid membranes 18, and importantly, is also considered to be 

evolutionally derived from a core of hemidiscoidal PBS-core by eliminations of the exterior APC 

disc (APC trimer) of all three cylinders.  This hypothesis is consistent with a hemidiscoidal 

model proposed in earlier reports 7. We are interested in building a tri-cylindrical cyanobacterial 

hemidiscoidal PBS core with four stacked APC trimers per cylinder. 

The cryo-EM structure of the GpPBS-core revealed several features: each basal cylinder contains 

three  GpApcA/B trimers, namely disc A1-3 and Aʹ1-3, and the top cylinder contains only two 

trimers with tail-to-tail orientation (three ApcBs in one disc to three ApcBs in another disc), i.e., 

disc B1 and B2 (Fig. 6.1A and 6.1B, left, for simplified and detailed cartoon representation, 

respectively). Each disc contains 3 copies of ApcA and ApcB. This structure is in contrast to that 

of a model in Synechocystis 6803 7, 11, which indicates that each core cylinder contains four 

discs, arranged in a face-to-face (three ApcAs in one disc to three ApcAs in another disc), tail-to-
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tail, and face-to-face fashion. Using homology modeling, we swapped all the GpPBS-core APC 

discs by using cyanobacterial APC (cApc) discs. Each cylinder was also extended up to four 

discs. First of all, a hexameric cyanobacterial APC (PDBID: 4F0U) was generated and used as a 

building unit. This hexamer contains two discs arranged in face-to-face. To extend the top 

cylinder, a cyanobacterial APC hexamer was adopted to align with the disc B1. The alignment of 

the B1 disc results in the replacement of the red algal counterpart and in an extension of one 

cyanobacterial APC trimer, i.e., the B0 disc (Fig. 6.1A and 6.1B, middle, for simplified and 

detailed cartoon representation, respectively). Similarly, the top cylinder was extended with the 

alignment of B2 disc by another hexameric APC (two discs, face-to-face), leading to an addition 

of disc B3 to make a total of four-disc top cylinder. The replacement and extension for the two 

bottom cylinders were performed on A1 and Aʹ1 discs, giving additional APC trimers as disc A0 

and Aʹ0. The remaining red algae A2/A3 and Aʹ2/Aʹ3 hexamers were further swapped with 

cyanobacterial APC hexametric units, contributing to a cPBS-core architecture with four 

cyanobacterial discs on each of the three cylinders (Fig. 6.1A and 6.1B, right, for simplified and 

detailed cartoon representation, respectively). The selection of cyanobacterial crystal structure 

(PDBID: 4F0U) took into account of its high resolution structure and high protein sequence 

homology with those of Synechocystis 6803 22, which was used in our following chemical cross-

linking studies. Extension of A0/Aʹ0 not only fulfills the face-to-face geometry in adjacent discs 

(A1 and Aʹ1 respectively) but also enables the 2nd linker domain ApcE-LD2/ApcE-LD2ʹ being 

buried inside the cylinder, as the ApcE-LD1/ApcE-LD1ʹ is concealed within disc A3/A2 and 

Aʹ3/Aʹ2 in two basal cylinders respectively 18. We demonstrated in detail the swapping and 

elongation of the B1 disc (GpPBS-core) as an example (Fig. 6.1C). A value of less than 1 Å 

RMSD (root-mean-square deviation) was obtained (Table S6.1), indicative of high structural 
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similarities of red algal ApcA/B trimer and the cyanobacterial ApcA/B trimer assembly. The 

protein sequence identities between the cyanobacteria and red alga indeed strongly support this 

conclusion (Fig. S6.1). The remaining GpApcA/B trimers in each basal cylinder that contain 

ApcD and ApcE were also substituted by cApcA/B hexamer with consistent low RMSD, 

contributing to a complete framework of a cPBS core (Fig. 6.1E). For other PBS-core 

components, such as ApcC, ApcD, ApcE, and ApcF, we either used the available crystal 

structure (ApcE, PDBID: 4XXI; ApcD, PDBID: 4PO5) 23 or predicted their structures by using 

protein sequence from Synechocystis 6803 on the Zhang Server 24 and then defined their 

positions by using homology modeling. Their copy numbers were based on the characteristic 

features of a tri-cylindrical cyanobacterial PBS 7. 

ApcE, also termed as Core-Membrane Linker or LCM 
25, is a multifunctional protein containing 

both phycocyanin binding domain, known as PB domain (or αLCM), and several linker domains 

that are essential for connecting APC trimers and thus for assembly of APC discs into cylinders. 

The αLCM is located in disc A2 and Aʹ2 in the red algal structure 18. It was proposed that ApcE 

linker domain also serves to stitch all the discs and subsequently cylinders together to form the 

PBS-core 7. The large cApcE protein in tri-cylindrical PBS in Synechocystis 6803 contains four 

domains, namely, αLCM (PB domain/ α domain in LCM, M1-V240), cApcE-LD1 (D247-V427), 

cApcE-LD2 (I431-D684) and cApcE-LD3 (K685-G896) (Fig. S6.2), which were treated individually 

for structure prediction and modeling. For example, when the cApcE-LD3 peptide sequence was 

submitted to I-TASSER server 24, the homology-modeling algorithm screened through the 

database and adopted the GpApcE (PDBID: 5Y6P) and another two protein structures (PDBID: 

2KY4, DOI: 10.2210/pdb2ky4/pdb; 3OHW, DOI: 10.2210/pdb3OHW/pdb) among others as 

references, giving top five high-scoring models (Fig. 6.1D, M1-M5, Table S6.1). These models 

http://dx.doi.org/10.2210/pdb2ky4/pdb
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resemble the overall configuration and helical content which are consistent with protein sequence 

identity (Fig. S6.2). Each generated model was then aligned with both GpApcE-LD3 domains in 

the top cylinders, evaluated in terms of RMSD for all corresponding alpha carbons (Table S6.1). 

The model 1 (M1) and M4 of cApcE-LD3 give two smallest RMSD values, showing major 

differences at the region K685- E703. This region in cApcE-LD3-M1 sticks towards the basal 

cylinders, while that of cApcE-LD3-M1 curls back to the top cylinder. Given the fact that 

cApcE-LD3 bundles basal and top cylinders together as a linker domain, it is believed that the 

region K685- E703 is more towards the bottom cylinders; this hypothesis is also supported by a 

recently resolved PBS from prophyridium purpureum 26. Therefore, we chose cApcE-LD3-M1 

as the representative model. We use both an I-TASSER generated model and the X-ray crystal 

structure of αLCM (PDBID: 4XXI) 27 in our modeling, since the former model contains the PB-

loop that allows model building of the PBS-core-PSII 13.    

Other cApcE linker domains, i.e., cApcE-LD1 and cApcE-LD2,) which are composed similarly 

with a Pfam00427 (PDBID: 2KY4, 2L06, 3OHW, released by Northeast Structural Genomics 

Consortium of America), and the αLCM were performed for homology modeling in a comparable 

fashion. Five generated top-scoring models for each domain were evaluated individually by 

structural alignment in terms of calculated RMSD (Table S6.1). We chose the models with the 

smallest RMSD value to give the best likelihood of being the most reasonable configuration, 

namely model 4 for αLCM, model 4 for cApcE-LD1, and model 4 for cApcE-LD2. cApcE-LD1 

and cApcE-LD2 are in the cavity of the basal rod-like protrusions between the A2/A3 (or 

A2/A3) and A0/A1 (or Aʹ0/Aʹ1) cApcA/B discs, respectively, stabilizing two basal cylinders. 

Two copies of αLCM situate at the A2 and Aʹ2 of the basal cylinders with a large loop (PB-loop) 
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from T77 to G135, extending towards the thylakoid membrane and anchoring the whole cPBS 

assembly to reactive centers 2, 7, 28-29.  

GpApcD, an APC α-like subunit that is required for energy delivery from PBS to PSI30, was 

substituted by a resolved structure of ApcD at 1.75 Å from a previous study (PDBID: 4PO5) 23. 

The two GpApcD subunits are located at the A3 and Aʹ3 discs in the basal cylinders, 

respectively, both of which are well-aligned with the cApcD and affording RMSD differences 

that are smaller than 0.65 Å (Table S6.1).  

After swapping ApcE and ApcD in the structure, we next performed homology modeling of 

cApcC, which belongs to the CpcD superfamily and upholds a cylinder in shape 19. The structure 

was based on an X-ray crystallographic study of a trimeric ApcC from Fischerella sp. PCC 6703 

(PDBID: 1B33) 19. The SPICKER program, an algorithm to discern near-native models from a 

pool of decoyed protein structures 31, converged the simulation and identified only one large 

cluster, indicating the high quality of the generated models. The alignment of cApcC onto 

GpApcC shows little differences in the RMSD value (Table S6.1), indicative of a good model. 

The copy numbers of ApcC, however, in the characterized GpPBS structure are two per PBS, 

surprisingly low probably because there is one missing trimeric disc (APC trimer) on each basal 

cylinder and two discs (APC trimers) missing on the top cylinder where the ApcC subunit 

usually binds 19. It has been accepted that in cyanobacteria each core cylinder has two ApcC 

proteins located at both ends 19. We substituted the existing GpApcC with cApcC in the 

cApcA/B trimer (note that GpApcA/B trimer has been swapped by cApcA/B trimer). The 

complex of cApcC/cApcA/B was then regarded as an independent object and aligned onto the 

end of each core cylinder, resulting in A0, Aʹ0, B3 and B0 discs containing cApcC.  
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ApcF, an APC β-like unit, affects state transitions and energy transfer through interactions with 

αLCM 32. cApcF is modelled at the same trimeric disc where the αLCM is located (A2 and Aʹ2) with 

replacement of the GpApcF. Thus, cApcF interacts with αLCM, cApcE-LD1, and potentially with 

the nearby pigment, αLCM phycocyanobilin 18, 32, to allow energy transmission to PSII 33. Only 

one model was generated and its RMSD value is less than 1 Å, indicative of an excellent 

modeling (Table S6.1). By combining the protein sequence analysis of two ApcFs from GpPBS 

and Synechocystis 6803, we noticed some minor differences in detail (Fig. S6.3): an indel 

(insertion/deletion) around 139-142 between two structures. In cyanobacteria, this region is 

comprised of four amino acid residues less than GpApcF. This indel is in a fragment of an α-

helix (G-H) in cyanobacterial ApcF. For the red algal PBS (PDBID: 5Y6P), ApcF has an 

extension at the tip of the G-H helix hairpin 18.  ApcF is considered to be an important factor that 

fine tunes the spectroscopic properties of the PCB in αLCM. We hypothesize that the combination 

of an indel and a fragment of an α-helix extension, instead of affecting the spectroscopic 

properties of αLCM, could more likely help each basal cylinder build up its polarity so that only a 

trimer (A1/Aʹ1, α3β3) can bind with a back-to-back configuration. In terms of the assembly of 

trimer A2/Aʹ2, we propose that the linker domain (i.e., ApcE-LD1) plays an important role to 

recruit ApcF to build (A2/Aʹ2) trimers and to exclude the joining of a β unit. Further biochemical 

and spectroscopic research on this region by using genetically tractable cyanobacteria may shed 

light on its function.  

6.4.2 Chemical Cross-linking and Strategy 

Chemical cross-linking coupled with mass spectrometry (MS) provides information of proximal 

amino acid residues within proteins and protein complexes. It is particularly useful for protein 

complexes that are recalcitrant to conventional structural biology studies. Successful observation 



197 

 

of a red algal PBS structure at the atomic level using cryo-EM took advantage of a particularly 

stable PBS species that allows PBS sample preparation for cryo-EM analysis at low salt 

condition. The cyanobacterial PBS, however, is much less stable, and the structure at the atomic 

level remains unclear. Here, we used residue-level chemical cross-linking to provide structural 

restraints to justify and evaluate a protein complex model that we generated by using 

bioinformatics methods (Fig. 6.1E). 

 

Figure 6.2 Identified cross-links in different types of cPBS. The subunit interaction networks, 

prepared by Cytoscape 34, are shown for (A) wild type cPBS (WT-cPBS) and two mutants 

including (B) CK-cPBS and (C) CpcL-cPBS. Cartoon representation of each PBS type is shown 

in the inset of each panel (top left), where WT-cPBS consists of six rods and a tricylindrical core. 

CK-cPBS contains only a tricylindrical core and CpcL-cPBS contains only the rods. The 

numbers represent the location of the cross-linked residues in each subunit. ApcA (light pink), 

ApcB (dark blue), ApcC (red), ApcD (yellow), ApcE (dark green), and ApcF (grey).  

In this experiment, we used wild type PBS of cyanobacteria Synechocystis 6803 (WT-cPBS) and 

two mutant PBS for cross-linking analysis (Fig. 6.2 and Fig. S6.4). In WT-cPBS, we identified a 

total of 36 cross-links, in which 19 inter-subunit cross-links are within the PBS-core (Fig. 6.2A 
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and Table S6.2). We also found numerous loop-links and mono-links (data not shown) that 

provide limited structural information for subunit-subunit interactions. In contrast, when CK-

cPBS, a rod-less PBS 20, was cross-linked and submitted to MS interrogation, 38 unique cross-

links were identified (Fig. 6.2B, Table S6.3). Besides the 19 inter cross-links identified in the 

WT-cPBS sample, 19 more cross-links have been found in CK-cPBS. The differences in 

identified cross-links between WT-cPBS and CK-cPBS are probably due to the shielding effect 

in WT-cPBS by six outward radiating PC rods that have extensive contacting interfaces and large 

steric hindrance to limit the accessibility of cross-linkers to core components. A CpcL-cPBS 

mutant 21 containing only the rods was also used for a negative control. For the CpcL-cPBS 

mutant (Fig. 6.2C, Table S6.4), we identified 13 cross-links of rod-subunits and associated 

proteins, especially, ferredoxin-NADP+ oxidoreductase (FNRL) that has been successfully 

located in two types of PBSs in our recent research 28. The obtained cross-linking network allows 

distinct distance restraints for constructing and validating the cPBS-core model (Fig. 6.1E).  

6.4.3 Model Evaluation by Chemical Cross-links 

BS3-H12/D12 is one of the most widely used cross-linkers, possessing a spacer length of 11.4 Å. 

The use of an isotopically encoded cross-linker such as this increases the confidence and 

accuracy of cross-linked peptide identification, with advantages for studying large protein 

complexes compared to non-isotope encoded cross-linkers. Each end of the cross-linker can form 

a covalent bond with a primary amine (lysine side chain or protein N-terminus).  If two such 

functional groups are within reach of ~30 Å, the cross-linker tends to react with either/both and 

to yield a mono-link or a cross-link, which can be identified by LC-MS/MS, revealing structural 

information of those two functional groups 35.  
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Figure 6.3 The cPBS-core structure mapped with observed cross-links. (A) Side view (cylinder 

perpendicular to the observer) and (B) bottom view of the cPBS-core, which is further mapped 

with (C) cross-link cApcC-K52-cApcB-K113, and (D) cross-link cApcE-K331-cApcA-K6. 

cApcA (light pink), cApcB (dark blue), cApcC (red), cApcD (yellow), cApcE (dark green), 

cApcF (grey).  

In the cross-linked CK-cPBS sample, we successfully identified a total of 38 PBS-core subunit 

interactions (representative MS and product-ion (MS/MS) spectra of cross-linked peptides are 

shown in Fig. S6.5 and S6.6). We then mapped them individually to evaluate the PBS-core 

model. For better visualization, the core structure of cPBS is shown in the side view and bottom 

view, respectively (Fig. 6.3A and 6.3B). For example, the cross-link between cApcC-K52 and 

cApcB-K113 (Fig. 6.3C and Table 6.1) can be located at either end APC trimer of each cylinder 

( i.e., A0, A3, A0, A3, B0, B3). We note that cApcC-K52 is surrounded by three cApcB-K113 

in the APC trimer (with C3 rotational symmetry). This arrangement gives reasonable cross-linked 

distances on all three cApcB copies (i.e., 20.0 Å, 18.5 Å and 11.2 Å (Table 6.1)). 
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Table 6.1 Summary of two representative cross-links, including the information of possible 

cross-linking sites located on different copies of cApcA/B discs and the measured Euclidean Cα-

Cα distances (< 30 Å) 

Inter-molecular 

Cross-links 

Cross-linked Subunit on cApcA/B 

Discs 

Cross-linked 

Distance, Cα-Cα, Å 

cApcC52-cApcB113 

A3(or A0/A’3/A’0/B3/B0)-β1 20.0 

A3(or A0/A’3/A’0/B3/B0)-β2 18.5 

A3(or A0/A’3/A’0/B3/B0)-β3 11.2 

cApcE331-cApcA6 
A3(or A0/A’3/A’0/B3/B0)-α1 19.4 

A2 (or A’2)-α3 12.7 

Another example cross-link is between cApcE-LD1 and cApcA, which is formed towards the 

central cavity of the basal cylinder. There are two possible cross-linked sites with cApcE-K331: 

one is A3-α1-cApcA-K6 and the other is A2-α3-cApcA-K6 (Fig. 6.3D). (Note the nomenclature 

(disc (A3 or A2), first (1 or 3) α subunit, lysine (6)). The estimated cross-linked distances fit well 

within the 30 Å threshold 36 (Table 6.1). Overall, 34 out of the 38 cross-links bridge pairs of 

amino acids whose Cα-Cα distances are less than 30  1.5 Å , 20 of which exhibit more than one 

possible cross-linked site owing to the redundancy of ApcA/B in each disc; the multiple chances 

of forming structurally relevant cross-links in those cases testifies the reliability of the 

constructed cPBS-core model.  

Two of the other four cross-links are associated with ApcE-685, a residue that locates on the 

loop region connecting ApcE-LD2 and ApcE-LD3. The cross-linked distances are slightly larger 

than 30  1.5 Å, which could result from the dynamic nature of the loop (Table S6.5). The other 

two cross-links showing extra-long cross-linked distances are both related to ApcE-K87 in the 

middle of a flexible loop on cApcE, i.e. cApcE87-cApcA27 in CK-cPBS and cApcE87-cApcB17 

in both of WT-cPBS and CK-cPBS (Fig. 6.2A, 6.2B). The cross-linked distance is around 50 Å 

for the former one and 43 Å for the latter (Table S6.5). The PB-loop, consisting of 58 amino 

acids with primarily basic residues, has been proposed as an anchoring arm attached to the 
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thylakoid membrane, possibly through electrostatic interaction 2, 37. Consequently, the PB-loop 

can be highly flexible in the absence of the membrane, resulting in the cross-links that cannot 

form if the PB-loop is anchored on the membrane/reaction centers. In the cryo-EM structure, the 

PB-loop is not observed 18, possibly owing to the flexible nature of this domain. It should be 

noted that without the binding partners of the PB-loop, i.e., the membrane/reaction centers, the 

structural prediction using any program seems uncertain 13. The cross-linking chemistry and 

cryo-EM structure may capture and reflect different protein conformers in terms of the loop 

orientation. To understand its precise location and functionality, various mutants under different 

chemical environments are needed for adequate cross-linking restraints, which will facilitate the 

downstream computational simulation. Overall, selection of CK-PBS represented a successful 

strategy to pinpoint the subunit interaction network. The cross-linked distances supported very 

well the cPBS-core structure proposed by computational prediction.  

6.5 Discussion 

The PBS-core in Synechocystis 6803 represents a classical tri-cylinder core with C2-symmetry 7, 

two of which are basal cylinders that contain various APC units (with copy numbers), i.e. ApcA 

(32), ApcB (34), ApcD (2), ApcE (2), ApcF (2) and ApcC (6). ApcD, ApcE, ApcF, and ApcC 

are arranged in mirror positions in two basal cylinders. The symmetrical feature of cPBS 

correlates well with that of a dimeric PSII, the most active form in cyanobacteria, red algae and 

higher plants. Captured energy is funneled from the cPBS rod to the cPBS-core unidirectionally 

and then reaches the terminal energy emitters (TEE), ApcE and ApcD 38, where excitation 

energy is finally transmitted to Chla in PSII and PSI for photochemical reactions 12. The 

interface between the cPBS-core structure and RCs is of great interest in understanding the 

energy transmission mechanism and dynamic process under varying environmental conditions. 
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Traditionally, two basal cylinders have been described as antiparallel and evenly covering the 

thylakoid membrane surface/reaction centers. Previous research techniques indeed have never 

been able to elucidate the detailed tomography of two basal cylinders relative to the thylakoid 

membrane surface. Our proposed tri-cylindrical PBS-core model, however, reveals that the two 

basal cylinders do not adopt a perfect antiparallel configuration, rather, the two basal cylinders 

are arranged in an acute X-shape at an angle of ~ 24° relative to each other (Fig. 6.4A). We start 

with our previously proposed PBS-PSII model 13 constrained by the structural proteomic data 2  

and further propose that each basal cylinder is tilted 12° relative to the thylakoid membrane (Fig. 

6.4B and 6.4C).  Specifically, ApcD, from the discs A3/Aʹ3, and αLCM, from the discs A2/Aʹ2, 

comprise a protrusion that preferentially touches the surface of thylakoid membrane. The distal 

disc A0/Aʹ0 tilts away from the thylakoid membrane surface (Fig. 6.4A and 6.4C). This 

orientation leaves an open space between the thylakoid membranes and discs A1/Aʹ1 and A0/Aʹ0 

(Fig. 6.4B and 6.4C). The extra discs on both the top cylinder and two basal cylinders may 

reflect the functional connection difference between rods and PBS-core in the block-shaped PBS 

(Griffithsia pacifica) and the hemidiscoidal PBS (Synechocystis 6803). It seems that our 

cyanobacterial tricylindrical model has increased surface area for attachment of (six) rods, in 

contrast to that of Griffithsia, which has 14 rods attached to a smaller PBS-core, in a much more 

compact manner. It seems, though, that six rods on the PBS-core in cyanobacteria may have 

more flexibility relative to each other. This may partially explain why no high resolution cryo-

EM structure is yet available in cyanobacteria due to the lack of sample homogeneity. 
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Figure 6.4 The cPBS-core structure reveals an acute X-shape of the two basal cylinders. (A) 

Cross-over (side view) of the two basal cylinders, front relative to another (back). Dashed lines 

show the general trend of the two sets of linker domains, adopting an acute 24° angle relative to 

each other. (B) Front basal cylinder (Aʹ0-Aʹ3) and (C) back basal cylinder (A0-A3) relative to 

PSII dimer. Dashed lines show the general trend of the cylinder with an acute 12° angle. (D) Side 

view of cPBS-PSII complex, showing two cavities between uneven PBS basal cylinder and PSII 

that allows OCPs to interact at the putative geometry. ApcE domain including αLCM, ApcE-LD1 

and ApcE-LD2 (dark green), ApcD (yellow), OCP (orange), PSII dimer (split-pea). 
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A previous study particularly indicated that ApcE-K87 tends to interact with CP47-K227 from 

PSII 2, and could possibly be one of the critical structural basis dictating excitation energy 

migration from PBS to the reaction centers, specifically, PSII. With regard to PSI, a chemical 

cross-link between the N-terminal of PSI and PBS-core has also been reported 2, namely, PsaA-

30K - ApcB-17K. Pigment protein complexes involved in light energy capture and chemical 

conversion are not evenly distributed in the thylakoid membranes 5-6, 39. In some of thylakoid 

membrane regions, PSII is enriched, whereas in other regions, PSI is aggregated in patches that 

allows biochemical isolation and characterization 5. The reducing side of PSII and PSI have their 

own characteristics; unlike the flat surface at the PSII reducing side, PsaC, PsaD, PsaE of the PSI 

reducing side comprise a protrusion collectively protecting the iron sulfur center.  

The acute X-shape configuration at the bottom of the PBS-core provides structural 

accommodations for other regulatory factors on either the PBS-core or the reducing side of PSII. 

Orange carotenoid protein (OCP), for example, is a critical photoprotective protein that 

dissipates excess light energy under stress conditions and disarms harmful reactive oxidative 

species arising from photosynthetic machinery. It is commonly held that the active form of OCP 

(OCPR) binds to core subunits in cPBS as the primary energy quenching sites 40. ApcE has been 

proposed to be a promising target for OCPR 41, given the unique shift of its bilin-binding pocket 

compared to that of the surrounding ApcA/B subunits, which are all conserved Cys81 bilin sites. 

The tilted angle of each basal cylinder provides sufficient room for the 34-kDa OCP to move in 

and bind and, perhaps more importantly, to accommodate the fluorescence recovery protein 

(FRP) 40, a 14 kDa protein that can accelerate the detachment of OCP from its binding sites 

followed by subsequent deactivation, and other essential regulators in the photoprotection 

process. In our model, the extra space between two face-to-face trimers A1/A0 (or Aʹ1/Aʹ0) and 
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the PSII reducing side can accommodate the entrance of OCP without any spatial conflicts (Fig. 

6.4D). 

 

Figure 6.5 cPBS containing bilins and energy transfer pathways. (A) Overview of cPBS-core 

containing bilins in a side view (cylinder perpendicular to the observer). (B) Enlarged Aʹ 

cylinder with bilins twisting in a clockwise fashion, shown in a side view (cylinder parallel to the 

observer) and (C) in a side view (cylinder perpendicular to the observer). (D) Overview of 

excitation energy transfer pathway in cPBS-core-PSII complex in a side view (cylinder parallel 

to the observer). (E) Enlarged interface between B0 and Aʹ cylinder. (F) Enlarged interface 

between Aʹ cylinder and the PSII. (G) Overview of GpPBS-core containing bilins and 

representative energy transfer pathway 18. Bilins in cPBS-core: ApcA (light pink), ApcB (dark 

blue), ApcE domains (dark green), ApcD (yellow) and ApcF (grey). Bilins in GpPBS-core: 

ApcA (salmon), ApcB (cyan), ApcD (light orange), ApcE domains (limon), ApcF (purple). The 

PSII dimer is colored in split-pea. 
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In our model, plausible excitation energy transfer routes can be predicted in cPBS-core and 

cPBS-core-PSII supercomplex as well. In the red algal structure, there are 48 bilins in the core 

structure (Fig. 6.5G) 18. In our structure, four extra trimers were modelled onto the red algal 

PBS-core (i.e., B0, B4, A0, and Aʹ0 (Fig. 6.1A)), giving a total of 72 bilins in a trycylindrical 

PBS-core (Fig. 6.5A). The model shows that if the four extra trimers are removed, the excitation-

energy-transfer distances between each bilin are comparable to those of red algal. The staggered 

trimer orientation between two cylinders was retained, similar to that of the red algal structure 

(Fig. 6.4A).  In each basal cylinder, we noticed, interestingly, that each trimer adopts a specific 

angle twist (clockwise) relative to the previous trimer (Fig. 6.5B and 6.5C), a feature that has not 

been noticed previously 18. Each twist angle may seem small (8° of Aʹ2 vs Aʹ3, 13° of Aʹ1 vs 

Aʹ2, and 8° of Aʹ0 vs Aʹ1); however, the twists accumulate to afford a close orientation of the B0 

chromophore (B0-α) to that of Aʹ0 (Aʹ0-α), rather than to the α chromophore on another basal 

cylinder A3 (Fig. 6.5D and 6.5E). The smallest distance between B0-α and Aʹ0‒α is estimated to 

be 21.8 Å, in contrast to that of B0-α and A3-α, which is 34.7 Å (Fig. 6.5E). Both distances can 

allow energy transfer to occur; the former, however, may be more efficient. The distance 

between bilins Aʹ2-βApcF and Aʹ2-αLCM is 14.6 Å (Fig. 6.5F), the shortest distance between bilin 

pairs in the core, consistent with the value in red algal PBS 18. The distance between bilin Aʹ2-

αLCM and Aʹ3-ApcD is 28.5 Å. (Note that we measured the conjugation bond system rather than 

molecule center distance (Fig. 6.5)).  

For our previously reported PBS-core-PSII complex, the energy transfer routes can also be 

predicted from our new model of bilin in PBS to chlorophyll a (Chla) in PSII. The shortest 

distance between the bilin of αLCM and a Chl a in CP47 is 38 Å. (Note that the PB-loop in ApcE 

was not resolved in previous studies, the real distance remains a subject for future research). The 



207 

 

distance between bilin of αLCM and ApcD is 28.5 Å. Interestingly, the distance of bilin of ApcD 

and Chl a in CP47 is in a comparable range as that of the αLCM bilin. It appears that, on one side 

of the cPBS-core, energy transfers from bilins on B0 to A’0 (B3 to A0) and then horizontally 

transfers to ApcE where it feeds into the Chl a in CP47. Given that PBS-core and PSII share the 

same C2 symmetry axis, there is another energy transfer route along B3 to A0, then to A2-αLCM 

and ends in Chl a in CP47, the mirror component in another PSII monomer. 

In summary, we constructed the first detailed cPBS-core structure of Cyanobacteria 

Synechocystis PCC6803 to reveal an acute X-shape of the two basal cylinders. Our study 

provides a structural basis for energy migration and its related regulation associated with the 

transient association between PBS and RCs. The proximate location of the pigment proteins in 

the functional complex is essential to promote efficient energy transfer and regulation.  
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Table S6.1 Alignment between different cPBS domains and the corresponding components in 

GpPBS. All predicted homology models are included. Three cylinders are evaluated 

independently based on the location of various subunits. The RMSD value is calculated among 

all Cα in the two corresponded structures given by PyMOL software. 

 
Alignment with corresponding components in 

GpPBS, RMSD of all Cα (Å) 

Cylinder A Cylinder Aʹ Cylinder B 

cApcA/B 0.622/0.613 0.787/0.569 0.616/0.745 

cApcC 0.621/0.621 0.582/0.582 0.621/0.582 

cApcD 0.645 0.644 - 

cApcEʹ  

(or αLCM) 

M1 0.379 0.380 - 

M2 0.384 0.386 - 

M3 0.460 0.454 - 

M4 0.309 0.312 - 

M5 0.469 0.471 - 

cApcE_LD1 

M1 0.345 0.359 - 

M2 0.696 0.69 - 

M3 1.0341 1.03 - 

M4 0.277 0.277 - 

M5 1.001 1.018 - 

cApcE_LD2 

M1 0.264 0.283 - 

M2 0.714 0.735 - 

M3 0.249 0.285 - 

M4 0.243 0.277 - 

M5 0.253 0.293 - 

cApcE_LD3 

M1 - - 0.222/ 0.232 

M2 - - 1.136/ 1.175 

M3 - - 1.166/ 1.199 

M4 - - 0.178/ 0.195 

M5 - - 1.304/ 1.322 

cApcF M1 0.653 0.653 - 
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Table S6.2 MS-information of the inter cross-links in WT-PBS.   

Cross-linked Sequence 

Cross-

linked 

Protein 

Charge m/z Detected peptides in Raw File 

MLGQSSLVGYSNTQAANR(

1)-

MKTPLTEAVSTADSQGR(1) 

cpcD (1)-

cpcA (1)/ 

3 1280.6666

67 

072815_PBS_X02_01.22561.22561

.3.0.dta 

IKAFVTGGAAR(2)-

MFDVFTR(1) 

ApcA (27)-

cpcB (1)/ 

3 714 072815_PBS_X02_01.25378.25378

.3.0.dta 

SNKAVIVPFEQLNQTLQQIN

R(3)-MFDVFTR(1) 

cpcC1 

(259)-cpcB 

(1)/ 

3 1164 072815_PBS_X02_01.33652.33652

.3.0.dta 

SINPAANTIPKVSAQNINIEA

SVPR(11)-

MKEAALDIVNDPNGITR(2) 

cpcG1 

(234)-cpcB 

(135)/ 

4 1150.75 072815_PBS_X02_01.23144.23144

.4.0.dta 

SINPAANTIPKVSAQNINIEA

SVPR(11)-ETIVKQAGDR(5) 

cpcG1 

(234)-ApcA 

(52)/ 

4 965.75 072815_PBS_X02_01.19158.19158

.4.0.dta 

GPAVNNQVGNPSAVGEFP

GSLGAKVFR(24)-

SIVTKSIVNADAEAR(5) 

ApcE 

(511)-ApcA 

(6)/ 

4 1095.75 072815_PBS_X02_01.24502.24502

.4.1.dta 

AGNTPAKALGGTVPFGQAS

K(7)-MFDVFTR(1) 

cpcC1 

(224)-cpcB 

(1)/ 

3 974 073015_PBS_X02_02.14321.14321

.3.0.dta 

MKTPLTEAVSTADSQGR(1)

-IKAFVTGGAAR(2) 

cpcA (1)-

ApcA (27)/ 

4 758.25 073015_PBS_X02_03.9412.9412.4.

0.dta 

EKVLESQLR(2)-

IKAFVTGGAAR(2) 

cpcG1 (64)-

ApcA (27)/ 

4 583.25 072815_PBS_X02_02.8220.8220.4.

0.dta 

NAMDELKAYFESGSAR(7)-

IKAFVTGGAAR(2) 

ApcF (28)-

ApcA (27)/ 

4 754.879 073015_PBS_X02_01.14118.14118

.4.0.dta 

IKAFVTGGAAR(2)-

VDKEVTPR(3) 

ApcA (27)-

ApcE (685)/ 

4 543.5555 073015_PBS_X02_01.6911.6911.4.

1.dta 

SIVTKSIVNADAEAR(5)-

KQFFEPFINSR(1) 

ApcA (6)-

ApcE (331)/ 

3 1041.883 073015_PBS_X02_02.12424.12424

.3.0.dta 

MQDAITAVINSADVQGK(1)

-SIVTKSIVNADAEAR(5) 

ApcB (1)-

ApcA (6)/ 

3 1161.958 073015_PBS_X02_02.15131.15131

.3.0.dta 

MQDAITAVINSADVQGK(1)

-SIVTKSIVNADAEAR(1) 

ApcB (1)-

ApcA (2)/ 

3 1157.9353

33 

073015_PBS_X02_02.15156.15156

.3.0.dta 

DAVTTLIKNYDLTGR(8)-

SIVTKSIVNADAEAR(5) 

ApcF (10)-

ApcA (6)/ 

3 1130.9383

33 

073015_PBS_X02_02.13022.13022

.3.0.dta 

APLNQKEIQQYNQILASQG

LK(6)-

SIVTKSIVNADAEAR(5) 

ApcE 

(817)-ApcA 

(6)/ 

3 1366.069 072815_PBS_X02_02.11898.11898

.4.0.dta 

SIVTKSIVNADAEAR(5)-

IMKMGGK(3) 

ApcA (6)-

ApcC (45)/ 

3 836.43933

33 

073015_PBS_X02_02.6933.6933.3.

0.dta 

SINPAANTIPKVSAQNINIEA

SVPR(11)-MFDVFTR(1) 

cpcG1 

(234)-cpcB 

(1)/ 

3 1223.6613

33 

073015_PBS_X02_02.15086.15086

.3.0.dta 

MLGQSSLVGYSNTQAANR(

1)-

MKEAALDIVNDPNGITR(2) 

cpcD (1)-

cpcB (135)/ 

3 1297.9793

33 

073015_PBS_X02_02.12620.12620.

3.0.dta 
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SIVTKSIVNADAEAR(5)-

QQTKVFK(4) 

ApcA (6)-

ApcE (722)/ 

3 867.83266

67 

073015_PBS_X02_02.8367.8367.3.

1.dta 

MQDAITAVINSADVQGKYL

DGAAMDK(17)-

IFTGGSPLSYLEKPVER(13) 

ApcB (17)-

ApcE (87)/ 

4 1189.5975 073015_PBS_X02_03.15681.15681

.4.0.dta 

DITKAYSQSISYLESQVR(4)-

AASVISANAATIVKEAVAK(

14) 

ApcE 

(296)-ApcB 

(53)/ 

4 1010.5395 073015_PBS_X02_03.15334.15334

.4.0.dta 

YLDGAAMDKLK(9)-

VDKEVTPR(3) 

ApcB (26)-

ApcE (685)/ 

4 577.0525 073015_PBS_X02_03.7979.7979.4.

0.dta 

VLNGLKETYNSLGVPISSTV

QAIQAIK(6)-

IVKVELATGRPGTNAGLA(3

) 

ApcB 

(113)-ApcC 

(52)/ 

4 1190.929 073015_PBS_X02_03.15349.15349

.4.1.dta 

LKSYFASGELR(2)-

IKAFVTGGAAR(2) 

ApcB (28)-

ApcA (27)/ 

4 625.3435 072815_PBS_X02_02.9518.9518.4.

0.dta 

MKTPLTEAVSTADSQGR(2)

-MFDVFTR(1) 

cpcA (2)-

cpcB (1)/ 

3 948.79733

33 

073015_PBS_X02_02.14537.14537

.3.0.dta 

MLGQSSLVGYSNTQAANR(

1)-MFDVFTR(1) 

cpcD (1)-

cpcB (1)/ 

3 983.80766

67 

073015_PBS_X02_02.16771.16771

.3.0.dta 

NQKTVGFSR(3)-

MFDVFTR(1) 

cpcC2 

(161)-cpcB 

(1)/ 

3 701.043 073015_PBS_X02_02.12958.12958

.3.0.dta 

SIVTKSIVNADAEAR(5)-

LYNKLTK(4) 

ApcA (6)-

ApcE (875)/ 

4 648.36025 072815_PBS_X02_02.8778.8778.4.

1.dta 

VEGYEIGSEEKPVVFTTENI

LSSSDMDNLIEAAYR(11)-

VEITAISAPGYPKVR(13) 

cpcG1 (27)-

cpcC1 

(253)/ 

4 1411.7057

5 

073015_PBS_X02_03.16731.16731

.4.2.dta 

VLNGLKETYNSLGVPISSTV

QAIQAIK(6)-VDKEVTPR(3) 

ApcE 

(685)-ApcB 

(113) 

4 981.7918 072815_PBS_X02_02.16035.16035

.4.0.dta 

AASVISANAATIVKEAVAK(

14)-VDKEVTPR(3) 

ApcB (53)-

ApcE (685)/ 

4 724.406 072815_PBS_X02_02.11186.11186

.4.0.dta 

LGGKVASITPASLS(4)-

MFDVFTR(1) 

cpcC1 

(281)-cpcB 

(1)/ 

3 785.08233

33 

072815_PBS_X02_01.29273.29273

.3.0.dta 

MFDVFTR(1)-AITTAASR(1) cpcB (1)-

cpcC1 (2)/ 

3 619.00566

67 

072815_PBS_X02_01.27051.27051

.3.0.dta 

MGGKIVSIK(4)-

MFDVFTR(1) 

FNR (69)-

cpcB (1)/ 

3 662.35266

67 

072815_PBS_X02_01.25490.25490

.3.0.dta 

GPAVNNQVGNPSAVGEFP

GSLGAKVFR(24)-

SIVTKSIVNADAEAR(1) 

ApcE 

(511)-ApcA 

(2)/ 

4 1098.8412 072815_PBS_X02_02.13760.13760

.4.0.dta 
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Table S6.3 MS-information of the inter cross-links in CK-PBS. 

Cross-linked Sequence 
Cross-linked 

Protein 
Charge m/z Detected peptides in Raw Files 

DITKAYSQSISYLESQVR(4)-

AASVISANAATIVKEAVAK(14) 

ApcE (296)-

ApcB (53)/ 

3 1350.6667 072815_CK_X02_01.28469.28469.

3.0.dta 

ETIVKQAGDR(5)-VDKEVTPR(3) ApcA (52)-ApcE 

(685)/ 

3 734.0000 072815_CK_X02_01.8173.8173.3.0

.dta 

SIVTKSIVNADAEAR(5)-

KQFFEPFINSR(1) 

ApcA (6)-ApcE 

(331)/ 

3 1040.6667 072815_CK_X02_01.22159.22159.

3.0.dta 

MQDAITAVINSADVQGK(1)-

SIVTKSIVNADAEAR(5) 

ApcB (1)-ApcA 

(6)/ 

3 1160.6667 072815_CK_X02_01.26915.26915.

3.0.dta 

APLNQKEIQQYNQILASQGLK(6)-

MQDAITAVINSADVQGK(1) 

ApcE (817)-

ApcB (1)/ 

3 1430.6667 072815_CK_X02_01.27925.27925.

3.0.dta 

NAMDELKAYFESGSAR(7)-

IKAFVTGGAAR(2) 

ApcF (28)-ApcA 

(27)/ 

3 1010.6667 072815_CK_X02_01.25575.25575.

3.0.dta 

DAVTTLIKNYDLTGR(8)-

SIVTKSIVNADAEAR(5) 

ApcF (10)-ApcA 

(6)/ 

3 1134.0000 072815_CK_X02_01.23068.23068.

3.0.dta 

LKSYFASGELR(2)-

IKAFVTGGAAR(2) 

ApcB (28)-ApcA 

(27)/ 

4 628.2500 072815_CK_X02_01.16640.16640.

4.1.dta 

MQDAITAVINSADVQGK(1)-

IKAFVTGGAAR(2) 

ApcB (1)-ApcA 

(27)/ 

3 1000.6667 072815_CK_X02_01.26095.26095.

3.0.dta 

APLNQKEIQQYNQILASQGLK(6)-

SIVTKSIVNADAEAR(1) 

ApcE (817)-

ApcA (2)/ 

3 1370.6667 072815_CK_X02_01.20880.20880.

4.0.dta 

MQDAITAVINSADVQGKYLDGA

AMDK(17)-IAETLAENEKK(10) 

ApcB (17)-ApcD 

(48)/ 

4 1030.7500 072815_CK_X02_01.23209.23209.

4.2.dta 

MQDAITAVINSADVQGKYLDGA

AMDK(17)-IKAFVTGGAAR(2) 

ApcB (17)-ApcA 

(27)/ 

4 988.2500 072815_CK_X02_01.25173.25173.

4.0.dta 

MQDAITAVINSADVQGK(1)-

SIVTK(1) 

ApcB (1)-ApcA 

(2)/ 

3 820.6667 072815_CK_X02_01.28004.28004.

3.0.dta 

VLNGLKETYNSLGVPISSTVQAI

QAIK(6)-

IVKVELATGRPGTNAGLA(3) 

ApcB (113)-

ApcC (52)/ 

4 1190.7500 072815_CK_X02_01.28355.28355.

4.0.dta 

ELVVPSFTPVVKVGG(12)-

IKAFVTGGAAR(2) 

ApcE (893)-

ApcA (27)/ 

3 924.0000 072815_CK_X02_01.24136.24136.

3.1.dta 

YLDGAAMDKLK(9)-

VDKEVTPR(3) 

ApcB (26)-ApcE 

(685)/ 

3 774.0000 072815_CK_X02_01.14358.14358.

3.0.dta 

IKAFVTGGAAR(2)-

VDKEVTPR(3) 

ApcA (27)-ApcE 

(685)/ 

4 543.2500 072815_CK_X02_01.11395.11395.

4.0.dta 

SIVTKSIVNADAEAR(5)-

IMKMGGK(3) 

ApcA (6)-ApcC 

(45)/ 

3 834.0000 072815_CK_X02_01.12626.12626.

3.0.dta 

aMQDAITAVINSADVQGKYLDGA

AMDK(17)-

IFTGGSPLSYLEKPVER(13) 

a ApcB (17)-

ApcE (87)/ 

a 4 1193.2500 072815_CK_X02_01.29091.29091.

4.1.dta 
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SIVTKSIVNADAEAR(5)-

VDKEVTPR(3) 

ApcA (6)-ApcE 

(685)/ 

3 884.0000 072815_CK_X02_01.13878.13878.

3.0.dta 

APLNQKEIQQYNQILASQGLK(6)-

SIVTKSIVNADAEAR(5) 

ApcE (817)-

ApcA (6)/ 

4 1028.2500 072815_CK_X02_01.20848.20848.

4.1.dta 

MQDAITAVINSADVQGKYLDGA

AMDK(17)-ETIVKQAGDR(5) 

ApcB (17)-ApcA 

(52)/ 

4 998.2500 072815_CK_X02_01.23159.23159.

4.1.dta 

AASVISANAATIVKEAVAK(14)-

VDKEVTPR(3) 

ApcB (53)-ApcE 

(685)/ 

4 728.2500 072815_CK_X02_01.19943.19943.

4.0.dta 

SIVTKSIVNADAEAR(5)-

QQTKVFK(4) 

ApcA (6)-ApcE 

(722)/ 

3 867.3333 072815_CK_X02_01.14513.14513.

3.0.dta 

MQDAITAVINSADVQGK(1)-

VDKEVTPR(3) 

ApcB (1)-ApcE 

(685)/ 

3 947.3333 072815_CK_X02_01.24450.24450.

3.2.dta 

MQDAITAVINSADVQGK(1)-

QQTKVFK(4) 

ApcB (1)-ApcE 

(722)/ 

3 930.6667 072815_CK_X02_01.25144.25144.

3.0.dta 

SIVTKSIVNADAEAR(5)-

LYNKLTK(4) 

ApcA (6)-ApcE 

(875)/ 

3 867.3333 072815_CK_X02_01.15684.15684.

3.0.dta 

AASVISANAATIVKEAVAK(14)-

IKAFVTGGAAR(2) 

ApcB (53)-ApcA 

(27)/ 

4 760.7500 072815_CK_X02_01.22244.22244.

4.2.dta 

VLNGLKETYNSLGVPISSTVQAI

QAIK(6)-VDKEVTPR(3) 

ApcB (113)-

ApcE (685)/ 

4 985.7500 072815_CK_X02_01.26883.26883.

4.2.dta 

GPAVNNQVGNPSAVGEFPGSLG

AKVFR(24)-IKAFVTGGAAR(2) 

ApcE (511)-

ApcA (27)/ 

4 978.2500 072815_CK_X02_01.22540.22540.

4.3.dta 

GPAVNNQVGNPSAVGEFPGSLG

AKVFR(24)-

SIVTKSIVNADAEAR(5) 

ApcE (511)-

ApcA (6)/ 

4 1098.2500 072815_CK_X02_02.14524.14524.

4.2.dta 

IKAFVTGGAAR(2)-LAKSPLYR(3) ApcA (27)-ApcE 

(325)/ 

4 545.7500 072815_CK_X02_02.8677.8677.4.0

.dta 

a IFTGGSPLSYLEKPVER(13)-

IKAFVTGGAAR(2) 

a ApcE (87)-

ApcA (27)/ 

a 4 780.7500 072815_CK_X02_02.14261.14261.

4.0.dta 

IKAFVTGGAAR(2)-

VAVKNAIR(4) 

ApcA (27)-ApcE 

(736)/ 

4 528.2500 072815_CK_X02_02.7717.7717.4.1

.dta 

AASVISANAATIVKEAVAK(14)-

ETIVKQAGDR(5) 

ApcB (53)-ApcA 

(52)/ 

4 770.7500 072815_CK_X02_02.12149.12149.

4.0.dta 

GPAVNNQVGNPSAVGEFPGSLG

AKVFR(24)-

SIVTKSIVNADAEAR(1) 

ApcE (511)-

ApcA (2)/ 

4 1095.7500 072815_CK_X02_02.14566.14566.

4.4.dta 

MQDAITAVINSADVQGKYLDGA

AMDK(17)-VDKEVTPR(3) 

ApcB (17)-ApcE 

(685)/ 

4 3817.9740 072815_CK_X02_01.23156.23156.

4.2.dta 

MRDAVTTLIKNYDLTGR(10)-

SIVTK(1) 

ApcF (10)-ApcA 

(2)/ 

4 2651.4440 072815_CK_X02_02.12719.12719.

4.0.dta 

a cApcE87 related cross-links that exceed the 30 Å threshold of the BS3-H12/D12 cross-linker. 
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Table S6.4 Cross-links identified in CpcL-PBS.  

Cross-linked Sequence Cross-linked Protein Charge m/z Detected peptides in Raw File 

LGGKVASITPASLS(4)-

FDVFTR(1) 

cpcC1(281)-cpcB (1)/ 2 1177.1190 AB_X02_01.26941.26941.2.0.d

ta 

MGGKIVSIK(4)-MFDVFTR(1) FNR (69)-cpcB (1)/ 3 662.3527 AB_X02_01.23420.23420.3.0.d

ta 

MKEAALDIVNDPNGITR(2)-

NQKTVGFSR(3) 

cpcB (135)-

cpcC2(161)/ 

4 758.3920 AB_X02_02.9991.9991.4.0.dta 

MKEAALDIVNDPNGITR(2)-

VEITAISAPGYPKVR(13) 

cpcB (135)-

cpcC1(253)/ 

4 899.4800 AB_X02_01.19605.19605.4.0.d

ta 

MKTPLTEAVSTADSQGR(2)-

MFDVFTR(1) 

cpcA (2)-cpcB (1)/ 3 948.7977 AB_X02_01.24858.24858.3.0.d

ta 

MLGQSSLVGYSNTQAANR(1)-

MFDVFTR(1) 

cpcD (1)-cpcB (1)/ 3 983.8073 AB_X02_01.28394.28394.3.0.d

ta 

MLGQSSLVGYSNTQAANR(1)-

MKTPLTEAVSTADSQGR(2) 

cpcD (1)-cpcA (2)/ 3 1279.9830 AB_X02_01.20401.20401.3.0.d

ta 

NQKTVGFSR(3)-MFDVFTR(1) cpcC2(161)-cpcB (1)/ 3 697.0183 AB_X02_01.21905.21905.3.0.d

ta 

SNKAVIVPFEQLNQTLQQINR(

3)-MKTPLTEAVSTADSQGR(1) 

cpcC1(259)-cpcA (1)/ 4 1093.0700 AB_X02_02.15746.15746.4.1.d

ta 

MKTPLTEAVSTADSQGR(2)-

MYSPGYVATSSR(1) 

cpcA (1)-FNR (1)/ 3 1087.3330 AB_X02_01.16412.16412.3.1.d

ta 

MKTPLTEAVSTADSQGR(1)-

MFDVFTR(1) 

cpcA (1)-cpcB (1)/ 3 954.0000 AB_X02_01.24845.24845.3.0.d

ta 

EKLEAIGYFR(2)-

NQKTVGFSR(3) 

cpcG2(189)-

cpcC2(161)/ 

4 600.7500 AB_X02_02.10144.10144.4.3.d

ta 

TLPLIAYAPVSQNQR(1)-

MFDVFTR(1) 

cpcG2 (2)-cpcB (1)/ 3 912.5000 AB_X02_01.31189.31189.3.2.d

ta 
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Table S6.5 Summary of other intermolecular cross-links in CK-PBS, including the information 

of possible cross-linking sites located on different copies of cApcA/B discs and the measured 

Euclidean Cα-Cα distances. 

Intermolecular Cross-links 
Cross-linked Subunit on 

cApcA/B Discs 

Cross-linked Distance, Cα-Cα, 

Å 

cApcA(N-Term)-cApcB2  

 

 

 

Any ApcA/B 

Disc 

 

 

 

 

α1-β1  8.3 

cApcA6-cApcB (N-Term) α1-β1 9.3 

cApcA27-cApcB(N-Term) α1-β1 20 

cApcA27-cApcB17 α1-β1 28.7 

cApcA27-cApcB28 α1-β1 14.1 

cApcA27-cApcB53 α1-β1 29.8 

cApcA52-cApcB17 α1-β1 17.3 

cApcA52-cApcB53 α2-β3 21.6 

cApcC45-cApcA6 A3/A0/A0/A3/B0/B3-α3 19.3 

cApcD48-cApcB17 A3/A0/A4/A1/B0/B3-β3 15.3 

acApcE87-cApcA27 
aA3/A3-α3 a57.6 
aA3/A3-α3 a47 

acApcE87-cApcB17 aA3/A3-β3 a42.9 

cApcE296-cApcB53 
A3/Aʹ3-β1 25.6 

A2/Aʹ2-β1ʹ 16.6 

cApcE325-cApcA27 
A3/A0/Aʹ0/Aʹ3/B0/B3-α1 29.3 

A2/A1/Aʹ2/Aʹ1/B1/B2-α2 30 

cApcE511-cApcA6 
A1/Aʹ1-α1 10.7 

A0/Aʹ0-α2 14.9 

cApcE511-cApcA27 
A1/Aʹ1-α1 24.8 

A0/Aʹ0-α2 26.0 

cApcE511-cApcA2 
A1/Aʹ1-α1 15.7 

A0/Aʹ0-α2 20.3 

cApcE685-cApcA6 A1/Aʹ1-α1 30.5 

cApcE685-cApcA27 A0/Aʹ0-α2 b36.1 

cApcE685-cApcA52 
B2/B1- α3 25.8 

A1/Aʹ1-α1 13.2 

cApcE685-cApcB(N-term) A1/Aʹ1-β1 30.1 

cApcE685-cApcB17 

B2/B1-β3 26.7 

A2/Aʹ2-β3 32.6 

A1/Aʹ1-β1 6.8 

cApcE685-cApcB26 A1/Aʹ1-β1 24.7 

cApcE685-cApcB53 

B1/B2-β2 26.3 

A2/Aʹ2-β2 28.3 

A1/Aʹ1-β3 25.0 

cApcE685-cApcB113 A1/Aʹ1-β3 b32.8 

cApcE722-cApcA6 
B2/B1-α3 10.3 

B3/B0-α3 14.0 

cApcE722-cApcB(N-term) 
B3/B0-β3 18.9 

B2/B1-β3 12.3 
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cApcE736-cApcA27 
B2/B1-α3 27.8 

B3/B0-α3 29.8 

cApcE817-cApcA2 
B2/B1-α2 15.9 

B3/B0-α1 23.1 

cApcE817-cApcA6 
B3/B0-α1 28.6 

B2/B1-α2 18.9 

cApcE817-cApcB(N-term) 
B3/B0-β1 28.0 

B2/B1-β2 11.4 

cApcE875-cApcA6 B2/B1-α3 25.0 

cApcE893-cApcA27 
B2/B1-α2 25.0 

B3/B0-α1 30.2 

cApcF10-cApcA2 A2/Aʹ2-α3 10.1 

cApcF 10-cApcA6 
A3/Aʹ3-α1 25.3 

A2/Aʹ2-α3 13.7 

cApcF28-cApcA27 
A3/Aʹ3-α1 20.3 

A2/Aʹ2-α3 10.1 

a cApcE87 related cross-links that exceed the 30 Å threshold of the BS3-H12/D12 cross-linker.  

b cApcE685 related cross-links that exceed the 30 Å threshold of the BS3-H12/D12 cross-linker.  
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Figure S6.1 Sequence alignments (A) between cApcA (PDBID: 4F0U) and GpApcA (PDBID: 

5Y6P) and between (B) cApcB (PDBID: 4F0U) and GpApcB (PDBID: 5Y6P). 



222 

 

 

Figure S6.2 The sequence alignment of GpApcE (PDBID: 5Y6P) and cApcE. 
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Figure S6.3 Alignment of cApcF and GpApcF. (A) Alignment of the predicted cApcF-M1 (c for 

cyanobacteria, grey) onto the GpApcF (Gp or Griffithsia pacifica, black). Highlighted region 

(purple) is the indel of residue 139-142. The extension protrude is highlighted in orange. (B) The 

sequence alignment of GpApcF and cApcF. Main sequence difference is boxed.  
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Figure S6.4 Summarized workflow. 
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Figure S6.5 MS and MS/MS spectrum of a representative cross-link, ApcB (17)-ApcD (48). (a). 

The MS1 spectra of the light and heavy cross-linked peptide (BS3-H12/D12) which are sperated by 

m/z 3.019 (z=4). (b). MS/MS spectra of the cross-linked peptide (light). (c). MS/MS spectra of 

the cross-linked peptide (heavy).  
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Figure S6.6 MS and MS/MS spectrum of a representative cross-link, i.e. ApcE (817)-ApcA (6). 

(a). The MS1 spectra of the light and heavy cross-linked peptide (BS3-H12/D12) which are 

sperated by m/z 3.019 (z=4). (b). MS/MS spectra of the cross-linked peptide (light). (c). MS/MS 

spectra of the cross-linked peptide (heavy). 
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Chapter 7: Conclusions and Outlook 
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Mass spectrometry (MS)-based approaches have grown rapidly in the past 30 years, becoming an 

asset to characterize protein higher-order structures (HOS). Comparing to traditional biophysical 

methods, MS-based protein HOS analysis provides middle-to-high spatial resolution with high 

throughput and low amount of required sample. MS-based footprinting is one of these 

approaches, aiming to map solvent accessible surface area (SASA) of protein at different 

conditions. The focus of research described in this thesis is to develop and apply one or several 

MS-footprinting approaches to answer specific biological questions. In general, MS-based 

footprinting includes reversible footprinting (hydrogen-deuterium exchange (HDX)) and 

irreversible footprinting which can be conducted by radical reagents and other targeted labeling 

reagents. In this thesis, chapter 1 reviews MS-based footprinting in detail and discusses the 

difference between its subcategories. The following chapters focus on the development and 

application of these MS-footprinting approaches. 

7.1 Elaboration of FPOP Platform 

In 2005, the Gross lab developed fast photochemical oxidation of protein (FPOP) that can 

generate hydroxyl radicals on a flow system and label protein according to their SASA at the 

microsecond timescale. In the past decade, FPOP has been adopted in both academic and 

pharmaceutical labs to study protein conformational changes, protein-protein or protein-ligand 

interactions, protein aggregation and protein dynamics. For broader applications, elaboration of 

the FPOP platform is a primary interest in our lab. Chapter 2 describes one way of elaborating 

FPOP; that is, the development of a new radical labeling reagent, the carbonate radical anion. We 

generated the carbonate radical anion from hydrogen peroxide in the presence of bicarbonate 

buffer and investigated its reaction specificity. With selectivity towards methionine and aromatic 

residues, carbonate radical anion complements other radical reagents in the footprinting 
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“toolbox”. The targeted chemistry of the carbonate radical allows easier data process for protein 

systems that are rich in those reactive residues. The major limitation of this footprinting 

approach, however, is the basic pH condition during radical generation; the high pH can 

potentially limit its applications for pH-sensitive proteins. For future research, radical reagents 

that can be generated in biological-friendly conditions are to be developed. The ideal condition 

should constitute of neutral pH, require minimal number of chemicals, and contain inert 

precursors to avoid pre-labeling modification.  In addition, these radicals are preferred to yield 

bio-orthogonal mass adducts in proteins, in which way that the readout can be distinguished from 

the mass of PTMs or of degradation products during MS analysis. Furthermore, novel 

footprinting reagents that target relatively less reactive residues (e.g., alanine and glycine) are 

also desirable; perspective from organic chemistry regarding C-H bonds activation may provide 

useful guidance to address this issue. There are also technical concerns of developing a new 

reagent including the evaluation of its compatibility to different protein systems. In addition, the 

optimum dosage of the reagent needs a systematic discussion. To investigate residue preferences 

under different conditions, a series of small peptides that only differ in one amino acid are good 

model systems, allowing a better methodical comparison. 

In chapter 3, we discussed the expansion of FPOP platform from another aspect, which is the 

integration of two lasers to follow protein unfolding. We designed and established a two-laser 

platform to allow a pH jump induced by the first laser followed by the radical footprinting 

triggered by the second one. With a time-delay between the two lasers, we aimed to characterize 

the protein conformations occurring during unfolding. We evaluated different photoacids and 

radical reagents for this purpose, setting foundations for future research. In future studies, more 

photoacids and radical reagents need to be screened to avoid complicated chemistries upon laser 
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irradiation. Photoacids without nitroso-group (e.g., benzyl ester) can be a good start. Iodine 

radical footprinting and trifluoromethyl radical footprinting are both worth a try. With the 

development of more radical footprinters, there are better chances for more candidate reagents to 

be accommodated on the two-laser platform. The established platform would considerably 

benefit the study of the gating mechanisms of ion channel proteins, such as potassium ion 

channel proteins, transient receptor potential channel protein, and the M2 protein, which is a 

proton transport channel of influenza virus A that is sensitive to pH changes. Structural dynamics 

of the targeted protein with respect to different lipid environments and substrate binding can 

further be investigated.  

7.2 Integration of HDX-MS, XL-MS with Computational 

Methods 

HDX-MS and irreversible footprinting provide complementary information in terms of 

elucidating protein HOS. HDX-MS delineates SASA and dynamics of the backbone amides, 

whereas the irreversible footprinting (e.g., FPOP and chemical cross-linking (XL)) informs on 

reactive amino acid side chains. Integration of the two methods provides more precise and 

comprehensive description of protein HOS compared to employing either one.  

In Chapters 4 and 5, we showed two examples of adopting this combined approach, specifically 

with HDX-MS and XL-MS. The implementation of XL-MS successfully differentiates the 

regions undergoing remote conformational changes from those being protected in the binding 

events; two scenarios that cannot be distinguished by stand-alone HDX. We further incorporated 

molecular docking in the protein HOS interpretation, guided by the restraints derived from the 

cross-links, and acquired quaternary structural information of the binding complex.  
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Although the integrated platform shows great potential in protein HOS analysis, there are 

limitations that deserve future attention to overcome. Firstly, molecular docking heavily relies on 

accurate protein structures to start with. The involved proteins retain their structural rigidity 

throughout the docking process. This feature largely limits its applications to proteins that have 

significant numbers of flexible domains. In the future, other computational methods (e.g., 

discrete molecular simulation) that can better accommodate the structural changes are desirable. 

In addition, current HDX adjudication is conducted only qualitatively. We envision that the 

quantized HDX readout can advance the elucidation of protein HOS and ultimately contribute to 

protein structure prediction in the absence of differential experiments. Furthermore, the 

integrated MS-based approaches in combination with other biochemical techniques would better 

advance the characterization platform. For example, peptides representing the suggested binding 

regions from MS analysis can be synthesized and incorporated in binding assays (e.g., 

fluorescence polarization assay (FPA), competition FPA, isothermal titration calorimetry, and 

surface plasma resonance) to ascertain their binding interactions with the targeted protein and to 

obtain even their binding affinities. In addition, mutagenesis (e.g., alanine shaving) of the 

potential binding interfaces and the associated analysis of the binding kinetics with mutants are 

beneficial complements to locate further the critical binding residues that are favored 

energetically. Subsequent bio-functional assessments such as minigenome assays to study high 

pathogenic virus using protein or peptide mutants will also provide constructive evidence for a 

comprehensive analysis of the binding events.  

Besides the interleukin complexes and antibody/antigen complexes such as PD-1/Nivolumab, 

other antibody therapeutics can also be accommodated on this integrated platform. One example 

of many is the study of bispecific and trispecific antibody systems that contain numerous 
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designed paratopes and complex targeting antigens. The MS-based footprinting approaches on 

the integrated platform can not only identify their epitope/paratope regions but can also specify 

the interacting antigens for each paratope based on the cross-linking results, therefore promoting 

the mechanistic interpretation of the antibody function and potentially their discovery and 

development. 

Chapter 6 describes a collaboration wherein we used irreversible footprinting and computational 

methods, the combination of XL-MS and homology modeling. The latter helps to predict the 

structure of a phycobilisome complex, which is further modified and validated by the obtained 

cross-links. For future study, other proteins or protein complexes are good opportunities to 

expand its applications. From a technical point of view, method development in sample 

preparation is preferred, especially for large protein complexes. Chromatographic separation 

such as size exclusion chromatography and strong cation exchange chromatography are worth 

considering. These enrichment methods can distinguish the cross-linked peptides with higher 

charge states from the linear peptides, sustainably increasing the identification efficiency in the 

MS analysis. Other separation techniques such as asymmetrical flow field-flow fractionation 

(AF4) can also be a good candidate, which enables an on-line separation of macromolecules 

prior to cross-linking, minimizes the heterogeneity of the targeted protein complex when 

executing the cross-linking reaction, and facilitates subsequent MS analysis. In addition to 

photosynthetic complexes, other protein systems such as the Mediator complex, a transcriptional 

coactivator, and the anaphase-promoting complex (APC), which regulates chromosome 

segregation and anaphase progression, can also be analyzed in such fashion. All in all, marriage 

of footprinting and computational efforts provides a powerful approach to study large protein 
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complexes, whose structures are usually hard to obtain from conventional high-resolution 

structural biology methods including X-ray crystallography and NMR. 
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