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ABSTRACT OF THE DISSERTATION

Experimental Constraints on Igneous Iron Isotopic Fractionation and Diffusion

by

Kelsey Brianne Prissel

Doctor of Philosophy in Earth and Planetary Sciences

Washington University in St. Louis, 2020

Assistant Professor Michael J. Krawczynski, Chair

The chapters of this dissertation detail experimental studies that have been conducted in order

to determine the diffusivity of iron in the mineral ilmenite (FeTiO3) and the high-temperature

behavior of iron isotopes during magma crystallization. The experimental study in Chapter 2

is the first to quantify the rates of cation diffusion in ilmenite. Integrating experimentally

determined Fe-Mg and Fe-Mn interdiffusivities with disequilibrium preserved in ilmenite

grains from natural volcanic samples, this work has established a new geospeedometry

tool with which to estimate the time between magmatic perturbation and eruption on the

timescale of hours to months. Chapter 3 investigates the effects of olivine crystallization

on high-temperature iron isotopic fractionation over a range of oxygen fugacities and melt

titanium compositions. The results demonstrate that there is no resolvable equilibrium

fractionation of iron isotopes between olivine and melt at the experimental oxygen fugacities

(where iron is mainly Fe2+), nor is there a measurable effect of melt titanium composition

on iron isotopic fractionation in the investigated compositional range. These experiments

also led to the discovery that iron loss in reducing one-atmosphere gas-mixing experiments

occurs not only as loss to the metal wire sample container, but also as evaporative loss, and

each mechanism of experimental iron loss has an associated iron isotopic fractionation. In

Chapter 4, the equilibrium partitioning of iron and titanium isotopes between ilmenite and

xv



melt was experimentally determined in order to evaluate the role of ilmenite in generating

the compositional variability among the lunar mare basalts. The results of the experiments

in Chapters 3 and 4 were then incorporated into models of lunar magma ocean crystallization

and used to estimate the iron and titanium isotopic compositions of components in mare

basalt parent magmas. The iron, titanium, and magnesium isotopic compositions of the

lunar mare basalts indicate Fe-Mg interdiffusion has occurred in the Ti-rich component of

the mare basalt source regions via subsolidus reaction between ilmenite cumulates and the

olivine- and pyroxene-rich lunar mantle. Though additional experimental constraints will be

required to fully assess the effects of diffusive isotopic fractionation in ilmenite-bearing rocks,

combining the experimental results for Fe-Mg interdiffusion in ilmenite from Chapter 2 with

the ilmenite-melt iron isotopic fractionations in Chapter 4 establishes the foundation upon

which to build future studies.
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Chapter 1

Introduction

The high-temperature chemical behavior of iron is critical to our understanding of the

processes involved in planetary formation, differentiation, and volcanism. Iron comprises a

substantial portion of planetary reservoirs, existing predominantly as metallic iron (Fe0) in

planetary cores and as Fe2+ and Fe3+ in the iron-bearing silicates of planetary mantles and

crusts. Experimental studies are essential in characterizing the influence of variables, such as

temperature, oxygen fugacity, and melt composition, on the geochemical behavior of iron in

magmatic systems. The equilibrium partitioning of iron between minerals and melt defines

how the major element chemistry of a magma evolves during crystallization and melting.

Additionally, diffusion of iron in minerals provides insight into the rates and timescales of

dynamic processes occurring in volcanic systems such as melting, heating, mixing, ascent,

and eruption. The chapters of this dissertation detail experimental studies that have been

conducted in order to determine the diffusivity of iron in the mineral ilmenite (FeTiO3) and

the high-temperature behavior of iron isotopes during crystallization.
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Though rarely an abundant mineral in its host rocks, the near ubiquitous presence of ilmenite

in igneous rocks and the sensitivity of ilmenite composition to temperature and oxygen

fugacity make it an important mineral for interpreting the thermal and physical conditions of

magmas. The experimental study in Chapter 2 is the first to quantify the rates of cation

diffusion in ilmenite. The results of this work indicate that at magmatic temperatures iron

diffusion in ilmenite is faster than that in hematite and slower than that in titanomagnetite.

Iron diffusion will in part dictate the timescales of equilibration between titanomagnetite and

hemo-ilmenite, and this relationship between diffusion rates will be important to consider

in geothermometry and oxybarometry using the two oxides, particularly at more oxidizing

magmatic conditions. The experimentally determined Fe-Mg and Fe-Mn interdiffusivities allow

for the first quantitative interpretation of disequilibrium preserved in ilmenite. Integrating our

experimental results with observed chemical zoning in ilmenite grains from natural volcanic

samples, we have established a new geospeedometry tool with which to estimate the time

between a magmatic perturbation, such as melt recharge, and eruption on the timescale of

hours to months.

Chapters 3 and 4 examine the high-temperature, mass-dependent fractionation of stable

iron isotopes. The analytical precision of iron isotope measurements has improved by an

order of magnitude in the past decade, revealing measurable iron isotopic fractionations

present in igneous rocks and minerals. Similar to the major element behavior for iron, the

degree of iron isotopic fractionation during magmatic differentiation will depend on factors

including temperature, oxidation state, and melt composition. Interpretations of the observed

variations in the iron isotopic compositions of igneous rocks have been hindered by the paucity

of experimentally determined isotopic fractionations for major rock-forming minerals.

Olivine is an abundant mantle mineral in rocky, differentiated planetary bodies, and is a

liquidus phase for a wide range of mafic and ultramafic magma compositions. Chapter 3

2



investigates the effects of olivine crystallization on high-temperature iron isotopic fractionation

over a range of oxygen fugacities and melt titanium compositions. We have combined

two independent experimental techniques for determining the equilibrium iron isotopic

fractionation between olivine and melt. Our results demonstrate that there is no resolvable

equilibrium fractionation of iron isotopes between olivine and melt at the experimental

oxygen fugacities (where iron is mainly Fe2+), nor is there a measurable effect of melt

titanium composition on iron isotopic fractionation in the investigated compositional range.

In providing experimental evidence against equilibrium olivine-melt iron isotopic fractionation

at high-temperatures, this work prompts re-interpretation of iron isotopic compositions in

olivine-bearing rocks. These experiments also led to the discovery that iron loss in reducing

one-atmosphere gas-mixing experiments occurs not only as loss to the metal wire sample

container, but also as evaporative loss, and each mechanism of experimental iron loss has an

associated iron isotopic fractionation.

In terrestrial igneous systems, the coexistence of Fe2+ and Fe3+ can promote equilibrium

iron isotopic fractionation between minerals and melt. In contrast, lunar mare basalts

are generated by melting and crystallization processes in an environment relatively free of

Fe3+. Resolvable differences in iron isotopic composition exist among lunar basalts, and this

isotopic variability appears coupled to a unique titanium enrichment in lunar magmas that is

unparalleled on Earth. Our experimental results from Chapter 3 indicate that neither melt

TiO2 composition nor equilibrium olivine crystallization can explain the observed differences

in the iron isotopic composition of the lunar mare basalts.

Ilmenite-bearing cumulates have been previously hypothesized as the main control for both the

titanium compositional variability in the lunar mantle and the isotopic distinction observed

between the low-Ti and high-Ti mare basalts. In Chapter 4, the equilibrium partitioning

of iron and titanium isotopes between ilmenite and melt was experimentally investigated
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in order to evaluate the role of ilmenite in generating the compositional variability among

the lunar mare basalts. The results of the experiments in Chapters 3 and 4 were then

incorporated into models of lunar magma ocean crystallization and used to estimate the

iron and titanium isotopic compositions of components in mare basalt parent magmas. The

titanium isotopic compositional difference between the low- and high-Ti mare basalts was

reproduced using the modeled isotopic compositions of lunar magma ocean ilmenite cumulates.

However, the difference in iron isotopic composition between the low- and high-Ti mare

basalts cannot be attributed solely to products of lunar magma ocean crystallization. Instead,

the measured iron and magnesium isotopic compositions of the lunar mare basalts indicate

Fe-Mg interdiffusion has occurred in the Ti-rich component of the mare basalt source regions

via subsolidus reaction between ilmenite cumulates and the olivine- and pyroxene-rich lunar

mantle.

The experimental investigations in Chapters 3 and 4 support models of diffusive fractionation

to explain the iron isotopic compositions measured in olivine- and ilmenite-bearing rocks from a

variety of igneous environments. At the high temperatures of magmatic processes, equilibrium

stable isotopic fractionations between minerals and melt will be small. However, elemental

diffusion rates increase with temperature, and thus mass-dependent diffusive fractionation

of isotopes may be more pertinent than equilibrium partitioning to the petrologic processes

controlling the iron, titanium, and magnesium isotopic compositional variability observed in

volcanic rocks. Though additional experimental constraints will be required to fully assess the

effects of diffusive isotopic fractionation in ilmenite-bearing rocks, combining the experimental

results for Fe-Mg interdiffusion in ilmenite from Chapter 2 with the ilmenite-melt iron isotopic

fractionations in Chapter 4 establishes the foundation upon which to build future studies.
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Chapter 2

Fe-Mg and Fe-Mn interdiffusion in

ilmenite with implications for

geospeedometry using oxides

An edited version of this chapter was published as:

Prissel, K. B., M. J. Krawczynski, J. A. Van Orman (2020). “Fe-Mg and Fe-Mn interdiffusion

in ilmenite with implications for geospeedometry using oxides.” Contributions to Mineralogy

and Petrology, 175, 62. doi: 10.1007/s00410-020-01695-z.

Abstract

The Fe-Mg and Fe-Mn interdiffusion coefficients for ilmenite have been determined as a

function of temperature and crystallographic orientation. Diffusion annealing experiments

were conducted at 15 kbar between 800◦C and 1100◦C. For Fe-Mg interdiffusion, each diffusion
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couple consisted of an ilmenite polycrystal and an oriented single crystal of geikielite. The

activation energy (Q) and pre-exponential factor (D0) for Fe-Mg diffusion in the ilmenite

polycrystal were found to be Q = 188± 15 kJ/mol and logD0 = −6.0± 0.6 m2/s. For the

geikielite single crystal, Fe-Mg interdiffusion has Q = 220±16 kJ/mol and logD0 = −4.6±0.7

m2/s. Our results indicate that crystallographic orientation did not significantly affect diffusion

rates. For Fe-Mn interdiffusion, each diffusion couple consisted of one ilmenite polycrystal

and one Mn-bearing ilmenite polycrystal. For Fe-Mn interdiffusion, Q = 264± 30 kJ/mol

and logD0 = −2.9± 1.3 m2/s in the ilmenite. We did not find a significant concentration

dependence for the Fe-Mg and Fe-Mn interdiffusion coefficients.

Cation diffusion rates were found to be faster in ilmenite than in hematite at temperatures

< 1100◦C. At oxygen fugacities near the wüstite-magnetite buffer, Fe and Mn diffusion rates

are similar for ilmenite and titanomagnetite. We apply these experimentally determined

cation diffusion rates to disequilibrium observed in ilmenites from natural volcanic samples

in order to estimate the time between perturbation and eruption for the Bishop Tuff, Fish

Canyon Tuff, Mt. Unzen, Mt. St. Helens, and kimberlites. When integrated with natural

observations of chemically zoned ilmenite and constraints on pre-eruptive temperature and

grain size, our experimentally determined diffusivities for ilmenite can be used to estimate a

minimum time between magmatic perturbation and eruption on the timescale of hours to

months.

2.1 Introduction

Ilmenite is an important and widespread accessory phase present in a variety of igneous

rocks ranging in composition from silica-undersaturated kimberlites to high-silica rhyolites.

Though rarely an abundant mineral in its host rocks, the near ubiquitous presence of ilmenite
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and the sensitivity of ilmenite composition to temperature and oxygen fugacity make it an

important mineral for interpreting the thermal and physical conditions of magmas. Ilmenite

is a rhombohedral oxide with the end-member composition Fe2+TiO3. Generally, “ilmenite”

refers to the layered octahedral atomic structure with formula A2+B4+O3 where A2+ and

B4+ represent charged cations (e.g. Fe2+, Mg2+, Mn2+, Ti4+). The terms “ilmenite" and

“hemo-ilmenite" have also been used to refer to compositions represented by the solid solution

between ilmenite, Fe2+TiO3, and the isostructural mineral hematite, (Fe3+
2 O3).

Coexisting ilmenite and titanomagnetite (solid solutions of magnetite and ulvöspinel) mineral

pairs have been used extensively to infer the pre-eruptive conditions, namely temperature and

oxygen fugacity, of magmas beneath volcanic complexes (e.g. Buddington and Lindsley 1964;

Pownceby et al. 1987; Bishop 1980; Bacon and Hirschmann 1988; Ghiorso and Evans 2008).

However, these methods are based on equilibrium between ilmenite and titanomagnetite, and

thus any disequilibrium between the two minerals precludes the use of the oxide compositions

in geothermometers or oxybarometers. In practice, the Mg/Mn ratios of coexisting ilmenites

and titanomagnetites are used to identify disequilibrium oxide pairs in rapidly cooled volcanic

rocks (e.g. Bacon and Hirschmann 1988). Evidence for non-equilibrium in ilmenite also

exists as chemical zoning, including but not limited to volcanic rocks from Mt. St. Helens

(Rutherford and Devine III 2008), Mt. Unzen (Venezky and Rutherford 1999), kimberlites

(Pasteris 1981; Mitchell 1986; Schulze et al. 1995), and the Moon (Taylor et al. 1975).

The preservation of disequilibrium oxide compositions and chemical zoning in ilmenite yield

insight into the dynamic processes occurring in ilmenite-bearing volcanic systems such as

melting, heating, mixing, ascent, and eruption. Quantifying the rates and timescales of

magmatic processes is important to understanding magma transport, differentiation, and

mixing prior to eruption. The rates of volcanic processes are often estimated by using

experimentally determined diffusion coefficients in diffusion models to match concentration
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gradients observed in minerals, particularly for the silicate minerals olivine, feldspar, pyroxene,

and quartz (e.g. Costa et al. 2008; Zhang and Cherniak 2010; Till et al. 2015; Shea et al.

2015). Diffusion studies have also been conducted on many oxide minerals, including periclase,

spinel, titanomagnetite, and rutile (Van Orman and Crispin 2010, and references therein).

In particular, Fe-Mg interdiffusion rates have been well-characterized experimentally for a

diversity of major rock-forming minerals including olivine (Chakraborty 1997), pyroxene

(Müller et al. 2013), and spinel (Vogt et al. 2015). Despite the common occurrence of ilmenite

and its well-studied equilibrium compositions, there has yet to be a quantitative study of the

diffusivity of cations (Fe2+, Fe3+, Mg2+, Mn2+, Ti4+) in the ilmenite mineral structure.

Here, we present the first experimentally determined Fe-Mg and Fe-Mn interdiffusivities

for ilmenite. With the use of the cation interdiffusion coefficients determined in this study,

the compositional profiles preserved in ilmenites can constrain the rates of rapid volcanic

processes. We apply these new data to Mg/Mn disequilibrium observed in natural coexisting

oxide pairs (ilmenite and titanomagnetite), and to Mg zoning in ilmenite megacrysts found

in kimberlites.

2.2 Experimental, analytical, and numerical methods

2.2.1 Experimental approach

Diffusion experiments were conducted in a piston cylinder apparatus at 15 kbar pressure to

investigate the diffusivity of Fe2+, Mg2+, and Mn2+ in ilmenite solid solutions between 800◦C

and 1100◦C. Synthetic polycrystalline ilmenite was juxtaposed against either an oriented,

synthetic geikielite (MgTiO3) crystal or a synthetic polycrystalline Mn-bearing ilmenite in a

“diffusion-couple” geometry.
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Starting material synthesis and purity. Polycrystalline ilmenites were synthesized by

mixing high purity reagent-grade oxides (FeO, MnO, and TiO2) in stoichiometric proportion

(ilmenite, FeTiO3, and Mn-bearing ilmenite, Fe0.95Mn0.05TiO3). Starting materials were

produced using two sources of iron: 1) all FeO or 2) a mixture of Fe-metal and Fe2O3 (1:1

molar ratio). The iron, manganese, and titanium oxides were mixed under isopropanol in

a silicon-nitride ball mill for 3 hours. For mixes with Fe-metal (#001, #007, and #019),

the Fe-metal was added after ball mill mixing, and the mixture was ground by hand in

an agate mortar until the isopropanol evaporated. The ground starting material was then

packed into a graphite capsule (approximately 7 mm depth) and sintered in a piston cylinder

apparatus at either 1140◦C and 15 kbar or 1165◦C and 17.5 kbar for approximately 3 days

(Appendix Table A.1). The graphite capsule limits the oxygen fugacity of the experiment to

below the graphite-COH buffer producing Fe2+TiO3 with minimal hematite solution (Ulmer

and Luth 1991; Médard et al. 2008). Using the empirical relationship determined in Ulmer

and Luth (1991) for high-pressure experiments conducted using graphite capsules, we have

calculated the upper limit of the oxygen fugacity for our synthesis and diffusion annealing

experiments. Relative to the quartz-fayalite-magnetite (QFM) buffer, the upper limit on

the oxygen fugacity of the synthesis experiments is QFM−1.2. The upper limit on the

oxygen fugacity of our diffusion annealing experiments ranges from QFM−0.4 at 800◦C to

QFM−1.3 at 1200◦C. However, the presence of Fe metal in the ilmenite polycrystals after

the synthesis and diffusion annealing experiments indicates the oxygen fugacity conditions

of the graphite capsules were more reducing than these estimated upper limits. Sintered

polycrystalline ilmenite cylinders were cut into thin, circular wafers, mounted in epoxy, and

polished. Geikielite (MgTiO3) single crystals were provided by Jeremy N. Mitchell of Los

Alamos National Laboratory, and are described in Mitchell et al. (1998).
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The synthetic ilmenite wafers and geikielite were examined for homogeneity by electron

microscopy. The synthetic polycrystalline ilmenite aggregates were composed of subhedral

crystals 20− 200 µm in diameter. Ilmenites synthesized from starting materials containing

Fe-metal (mixes #001, #007, and #019) had iron metal present as an accessory phase.

Synthetic Mn-bearing ilmenite wafers included minor amounts of ulvöspinel (FeTi2O4). Thin

needles (<2 µm thickness, average 20 µm length) of rutile (TiO2) were present in the synthetic

geikielite single crystals both before and after the experiments (Figure 2.3).

Diffusion annealing experiments. Diffusion-annealing experiments were conducted in a

0.5" piston cylinder apparatus (Boyd and England 1960) in the experimental geochemistry

laboratory at Washington University in St. Louis. The polished face of an oriented synthetic

geikielite cube was juxtaposed against the polished face of a synthetic polycrystalline ilmenite

wafer. The geikielite cubes were prepared by cutting a single crystal of synthetic geikielite

into 1 mm thickness wafers, then slicing each wafer into approximately 1 mm edge-length

cubes. The cubes were polished either perpendicular or parallel to the c-axis. Orientation of

each cube was confirmed using crossed-polarized reflected light. In each Fe-Mg interdiffusion

experiment, the geikielite cube was oriented to explore the effect of crystallographic orientation

on diffusion. Because the crystals have rhombohedral symmetry, two diffusion directions

were investigated: one in which diffusion occurred perpendicular to the c-axis (⊥c), and one

in which diffusion occurred parallel to the c-axis (‖c). To investigate Fe-Mn interdiffusion,

two synthetic polycrystalline ilmenite wafers, one containing Mn and one initially Mn-free,

were juxtaposed so that the polished faces of each wafer were in contact. For each diffusion

annealing experiment, the diffusion couple was contained within a graphite capsule and the

void spaces of the capsule were filled with graphite powder (Figure 2.1).

Piston cylinder experiments were performed between 800◦C and 1100◦C at 15 kbar (Table 2.1).

Temperature was increased to the desired sample temperature at a rate of 100◦C per minute.
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Table 2.1: Experimental run details.

Experiment Ilmenitea Type Directionb T (◦C) P (kbar) Time (s)

Fe-Mg ⊥c
F032 D007 Fe-Mg ⊥c 1200 15 3520

MK24 MK22 Fe-Mg ⊥c 1100 15 20820

F111 F055 Fe-Mg ⊥c 1100 15 78300

F045 F043 Fe-Mg ⊥c 1000 15 80440

F110 F055 Fe-Mg ⊥c 1000 15 260340

F119 F116 Fe-Mg ⊥c 1000 15 524940

F030 D009 Fe-Mg ⊥c 900 15 258320

F053 F049 Fe-Mg ⊥c 800 15 522100

Fe-Mg ‖c
F018 F012 Fe-Mg ‖c 1100 15 17940

F019 F007 Fe-Mg ‖c 1000 15 28680

F117 F112 Fe-Mg ‖c 1000 15 87060

F033 D007 Fe-Mg ‖c 900 15 252300

F051 F044 Fe-Mg ‖c 900 15 261930

F118 F116 Fe-Mg ‖c 900 15 258840

F086 F055 Fe-Mg ‖c 800 15 517850

Fe-Mn

F024 F022, F023 Fe-Mn 1100 15 15760

F029 F026, F027 Fe-Mn 1000 15 70390

F031 D008, D009 Fe-Mn 900 15 252730

F028 F026, F027 Fe-Mn 800 15 509590

a Ilmenite column indicates the synthesis experiment(s) for the starting polycrystalline
ilmenite(s) in each diffusion couple. Run details for synthesis experiments have been
provided in Appendix Table A.1.

b Direction describes whether the geikielite single crystal was oriented such that the
interdiffusion occurred perpendicular to (⊥c) or parallel to (‖c) the c-axis.
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Table 2.2: Average profile fitting results from n analytical traverses for each experiment.
Reported uncertainty (1σ) was calculated using the two-sided 70% confidence interval student’s
t multiplier for n− 1.

polycrystal single crystal

Experiment T (◦C) ln D (m2/s) 1σ n ln D (m2/s) 1σ n

Fe-Mg ⊥c
F032 1200 −29.1 0.4 3 −30.0 0.7 3

MK24 1100 −30.3 0.6 3 −29.1 0.5 3

F111 1100 −30.5 1.0 2 −29.6 0.7 2

F045 1000 −31.7 1.0 2 −31.1 0.7 2

F110 1000 −31.5 0.4 3 −31.1 0.4 3

F119 1000 −31.8 0.5 3 −32.1 0.5 3

F030 900 −33.6 - 1 −33.1 0.8 2

F053 800 −34.7 - 1 −35.5 0.4 3

Fe-Mg ‖c
F018 1100 −28.7 0.7 2 −29.5 1.0 2

F019 1000 −30.3 0.8 2 −31.3 0.7 2

F117 1000 −31.4 0.6 3 n.d. n.d. n.d.

F033 900 −34.4 0.4 4 −33.0 0.3 4

F051 900 −34.9 0.5 4 −32.8 0.3 4

F118 900 −32.2 0.3 3 −32.8 0.4 3

F086 800 −34.1 0.3 3 −35.4 0.5 3

Fe-Mn

F024 1100 −29.4 1.5 2

F029 1000 −31.5 0.4 6

F031 900 −34.4 0.6 4

F028 800 −35.5 1.3 5

F158 800 −34.7 0.7 4

F102 800 −36.8 0.5 4

n = number of profiles used to determined reported average lnD value and
uncertainty. For experiments with only one traverse (n = 1), we assigned
a 10% error as the standard deviation to be used in the weighted linear
regression.
“n.d.” indicates a diffusion coefficient was not determined for this sample.
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Figure 2.1: Schematic diagram of the experimental diffusion couple geometry. Each ilmenite
polycrystal was polished then loaded into a graphite capsule such that the polished face
would come into contact with the other half of the diffusion couple (Mn-bearing ilmenite
polycrystal or geikielite single crystal). Geikielite single crystals were oriented such that
the c-axis was either perpendicular or parallel to the diffusion interface. Graphite powder
was used to fill the void space of each capsule and prevent the diffusion couple halves from
separating during sample assembly.

Sample temperature was controlled to within 1− 2◦C of the reported temperature throughout

the experiment, as monitored by a Eurotherm PID temperature controller. The difference

between the Type-C (W-5%Re/W-26%Re) thermocouple reading and sample temperature

for the experimental assembly was calibrated using the spinel reaction-progress thermometer

(Watson et al. 2002). Experimental pressure was maintained during the experiment by an

automatic pressure control system using the hot piston-in technique (Johannes et al. 1971).

Experiments were quenched rapidly (approximately 70◦C per second) by turning off the

power to the apparatus. Experimental run duration was defined as the time between reaching

the experimental target temperature and quench. Each experimental capsule was mounted in

epoxy and cut perpendicular to the diffusion interface. Then, half of the capsule was mounted

in epoxy and the cut face was polished in preparation for electron microprobe analysis.
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2.2.2 Analytical methods

Experimental run products were analyzed using a JEOL 8200 electron microprobe at Wash-

ington University in St. Louis. Electron microprobe analyses were obtained perpendicularly

across the diffusion interface for each experiment. Each quantitative analysis used a 15 kV

accelerating potential, 25 nA beam current, and 45 second on-peak counting time. Stan-

dardization was performed with a beam diameter of 20 µm on natural and synthetic glass

and mineral samples (synthetic Taylor MgO, synthetic Taylor spinel, synthetic Shankland

forsterite, synthetic Mn-olivine, synthetic TiO2, natural Elba Hematite, natural Ilmen Moun-

tains ilmenite NMNH 96189, and natural Kakanui hornblende NMNH 143965). Minimum

detection limits were 100− 300 ppm (3σ) for all elements. Each linear analytical traverse

was positioned to avoid any accessory phases or large cracks in the diffusion couple. Mul-

tiple traverses were measured on each experiment in order to assess the consistency of the

calculated diffusivities in a single sample. Beam diameter (1 − 4 µm) was set equal to

half of the point spacing on each traverse to avoid point overlap (i.e., 2 µm beam diame-

ter for 4 µm spacing). Compositional data were reduced using Probe for EPMA software

(https://www.probesoftware.com) and then filtered to exclude analyses where the analytical

totals were less than 98.5 wt.% or greater than 101.5 wt.%, as well as analyses where the

cation total for 3 oxygen atoms were less than 1.98 or greater than 2.02 (ideal ilmenite

stoichiometry contains 2 cations per 3 oxygen atoms). Two experiments, F045 and F051,

have low analytical totals (93− 97 wt.%), and these are discussed in Section 2.4.3. A detailed

discussion of analytical totals is presented in Appendix A.
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2.2.3 Numerical analysis of diffusion profiles

Elemental concentration profiles (Fe and Mg or Mn) were used to determine the Fe-Mg

or Fe-Mn interdiffusion coefficient for each experiment. Diffusion was modeled as one-

dimensional, concentration-independent diffusion in a semi-infinite medium with constant

interface concentration (Crank 1975):

C(x, t)− Cinitial

Cinterface − Cinitial
= erf

x

2
√
Dt

(2.1)

where D is the interdiffusion coefficient (m2 s−1), C(x, t) is the concentration (mol m−3)

at position x (m) after the experimental run time t (s), Cinitial is the initial concentration

on one side of the diffusion couple (e.g., Cinitial = 1 for mol MgTiO3 in geikielite), and

Cinterface is the concentration at the diffusion couple interface. This treatment is valid as

long as the experimental diffusion profile levels out to the initial concentration in the crystal.

In our experiments, the length of the observed concentration profiles on each side of the

diffusion interface (<300 µm) is less than the length of the single geikielite crystal or ilmenite

polycrystal (>500 µm).

To determine the interdiffusion coefficient for each compositional profile, the diffusion profile

was linearized by plotting the inverse of the error function,

erf−1Cinterface − C(x, t)

Cinterface − Cinitial
(2.2)

against position (x) for each half of the diffusion couple. The values for Cinterface and Cinitial

were determined from the electron microprobe compositional analyses on each experiment.

Then, fitting a straight line to the linearized compositional profile gave the slope, (4Dt)−1/2,

from which D was calculated for each half of the diffusion couple.
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Figure 2.2: a) Analytical traverse taken in the geikielite single crystal from experiment F030
(analysis line 2). The analyses are plotted as Fe mol fraction (mol Fe / (mol Fe + mol Mg +
mol Ti). Analytical uncertainty is smaller than the size of the data symbols. b) Inverse error
function plot of the profile in (a). The line through the points represents the linear fit from
which DFe-Mg was determined (as described in Section 2.2.3).
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The compositions used for the diffusion profile fitting were the measured Fe and Mn atomic

percents (Fe for Fe-Mg interdiffusion, Mn for Fe-Mn interdiffusion), which, unlike using

molecular compositions of FeTiO3, avoids any assumption regarding the oxidation state of Fe

in each sample. Fits using the molecular compositions, FeTiO3 and MnTiO3, yield similar D

values for experiments for which there was no hematite component. Often the two halves of

the diffusion couple separated during decompression after the experimental run, resulting

in a gap (<35 µm width) along the diffusion interface (Figure 2.3b). Prior to fitting, the x

values for the measured diffusion profiles were adjusted by subtracting the gap distance (as

measured from back-scattered electron image) so that the compositional profiles measured

on each side of the diffusion couple met near the defined diffusion interface, x = 0. The

position and compositional data for each diffusion profile have been provided in an electronic

file available in the data repository at espm.wustl.edu/data (discussed in Appendix A).
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a) F019 b) F030

150 µm 150 µm

c) F028

Figure 2.3: Back-scattered electron images for two Fe-Mg interdiffusion experiments (F019,
a and F030, b), and one Fe-Mn interdiffusion experiment (F028, c). Each experiment is
marked with red lines to indicate the location of the electron microprobe traverses positioned
on each sample. For the two Fe-Mg interdiffusion experiments, the dark side of the couple
is the geikielite single crystal (MgTiO3) and the bright side of the couple is the ilmenite
polycrystal (FeTiO3). a) Cracks form parallel to the diffusion interface during decompression
of the experiment. For profiles that go across decompression cracks, we have adjusted the
distance from the interface used in the profile fitting by subtracting the width of the crack
for analyses taken on the side of the crack away from the interface. b) Often, the two sides of
the diffusion couple separate during decompression. Before fitting the profiles, we adjust the
profile distances by subtracting the width of the gap. The thin bright phases in the geikielite
single crystal are rutile (TiO2). c) The Mn-bearing ilmenite polycrystal is positioned on the
top in this image. The bright gray phase present in both polycrystals, though of greater
abundance in the Mn-bearing ilmenite, is ulvöspinel (Fe2TiO4).
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2.3 Results

The interdiffusion coefficients determined in each experiment are reported in Table 2.2. For

each experiment, the reported DFe-Mg or DFe-Mn is the average value obtained from multiple

profiles across the interface in the diffusion couple and the “uncertainty” is defined by the

standard deviation of the results from n traverses multiplied by a student’s t-value that

corresponds to a two-sided 70% confidence interval for n− 1 traverses. For experiments with

only one traverse (n = 1), we assigned a 10% error as the standard deviation to be used in

the weighted linear regression. Some profiles exhibit slight asymmetry with respect to the

diffusion interface, suggesting there may be a compositional dependence for the interdiffusion

coefficients. However, we were not able to quantify this compositional dependence, and if any

compositional dependence exists, it is minor.

Ulvöspinel (Fe2TiO4) was present as an accessory phase in the polycrystalline sides of

the experimental run products, most notably in the Mn-bearing diffusion couples (Figure

2.3c). Additionally, the geikielite in experiment F032 contained minor amounts of qandilite

(Mg2TiO4). Qandilite has been noted to occur as an accessory phase in the geikielite starting

material (Mitchell et al. 1998). We only observed qandilite in this experiment (F032), and

we suspect the presence of qandilite has slightly affected the diffusion in the geikielite single

crystal. In order to obtain interdiffusion coefficients that best represent diffusion in the

ilmenite phase, electron microprobe traverses were positioned in regions of the experimental

run product that were free of any accessory phases (Figure 2.3). Thus, the presence or

exsolution of accessory phases during the experiment has little effect on the calculated cation

diffusion rates.
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2.3.1 Time series

An isothermal time series of experiments was conducted at 1000◦C to evaluate the repro-

ducibility of the calculated interdiffusion coefficients (Figure 2.4). The time series investigated

Fe-Mg diffusion with the geikielite crystal oriented such that diffusion was perpendicular to

the c-axis. Run durations ranged from 1 to 6 days (Table 2.2). The interdiffusion coefficients

calculated for the ilmenite side of the 1-, 3-, and 6-day experiments are the same within the

estimated uncertainty. Further, the interdiffusion coefficient calculated from the geikielite

side of the 6-day experiment is within the estimated uncertainty of those calculated from

the ilmenite side. The interdiffusion coefficient calculated for the geikielite side of the 1-day

experiment is similar to that calculated from the 3-day experiment. Two additional Fe-Mg

interdiffusion experiments (MK24 and F111) are included in Figure 2.4. These experiments

were both conducted at 1100◦C with varied run durations (approximately 6 hours and 1

day, respectively). Again, the results from the ilmenite and geikielite sides are within the

estimated uncertainty for the two time points.

2.3.2 Temperature dependence

The experimentally determined interdiffusion coefficients, DFe-Mg or DFe-Mn, for each diffusion

couple type have been fit separately to the Arrhenius equation:

lnD = lnD0 −
Q

RT
(2.3)

where D0 is the pre-exponential factor (m2 s−1), Q is the activation energy (J mol−1), R is

the universal gas constant (J mol−1 K−1) and T is temperature (K). The activation energy

and pre-exponential factor for each set of experiments was determined by linear regression
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Figure 2.4: Diffusion coefficients determined from time series experiments at 1000◦C (black)
and 1100◦C (red). The results are plotted against the run duration normalized to the duration
of the shortest experiment in the time series. Open squares indicate the results from the
geikielite single crystal. Closed triangles represent the results obtained from the ilmenite
polycrystal. The plotted uncertainty is the 70% confidence interval reported in Table 2.2.

21



Table 2.3: Experimentally-determined Arrhenius fit parameters and uncertainties. Reported
uncertainty (1σ) was calculated from a weighted linear regression of the values reported in
Table 2.2. For Fe-Mg interdiffusion, the bold values represent the parameters calculated from
a weighted linear regression through the data from both orientations. For Fe-Mn interdiffusion,
the bold values represent the parameters determined from the weighted linear regression
through data from both sides of the experiment. The bold values have been used to plot the
solid lines in Figures 2.5-2.7.

Type Q (kJ/mol) log D0 (m2/s)

Fe-Mg

geikielite ⊥c 224 ± 20 −4.5 ± 0.8

geikielite ‖c 239 ± 39 −3.6 ± 1.7

220 ± 16 −4.6 ± 0.7

ilmenite 188 ± 15 −6.0 ± 0.6

Fe-Mn

ilmenite 262 ± 30 −3.0 ± 1.2

Mn-ilmenite 241 ± 34 −3.6 ± 1.4

264 ± 30 −2.9 ± 1.3

(Table 2.3). The method of weighted least squares and the uncertainty on the average D

from each experiment (reported in Table 2.2) were used to estimate the uncertainty on the

calculated activation energy and D0 for each diffusion couple type (Table 2.3).

Fe-Mg interdiffusion

The difference in the experimental design for the two sets of Fe-Mg interdiffusion experiments

was the orientation of the geikielite crystal (with diffusion either perpendicular or parallel to

the c-axis). For Fe-Mg interdiffusion experiments, the results from the ilmenite polycrystal

side of the diffusion couple are often the same as those from the geikielite single crystal

within the estimated uncertainty (Table 2.2). The molar concentration of Ti in the geikielite

(approximately 1.00−1.02 Ti cations per 3 oxygens) is slightly higher than that in the ilmenite
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Figure 2.5: Arrhenius plot of results for Fe-Mg interdiffusion in the geikielite single crystal.
Each square represents the average interdiffusion coefficient calculated for a given experiment,
and the plotted uncertainty is the 70% confidence interval reported in Table 2.2. The black
squares are for experiments where the geikielite was oriented such that diffusion occurred
perpendicular to the c-axis (⊥c), and the red squares are for experiments where the geikielite
was oriented such that diffusion occurred parallel to the c-axis (‖c). The solid line depicts the
weighted linear regression through all points (both red and black), and the dashed lines show
the uncertainty on this fit (70% confidence interval). The dotted lines depict the uncertainty
on the linear fit at the 95% confidence interval.
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Figure 2.6: Arrhenius plot of results for Fe-Mg interdiffusion in the ilmenite polycrystal. Each
triangle represents the average interdiffusion coefficient calculated for a given experiment,
and the plotted uncertainty is the 70% confidence interval reported in Table 2.2. The black
triangles are for experiments where the geikielite was oriented such that diffusion occurred
perpendicular to the c-axis (⊥c), and the red triangles are for experiments where the geikielite
was oriented such that diffusion occurred parallel to the c-axis (‖c). The solid line depicts the
weighted linear regression through all points (both red and black), and the dashed lines show
the uncertainty on this fit (70% confidence interval). The dotted lines depict the uncertainty
on the linear fit at the 95% confidence interval.
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(approximately 0.98− 1.00 Ti cations per 3 oxygens). The Ti excess in the geikielite single

crystal results from the method used to synthesize the crystal (Mitchell et al. 1998). Because

the geikielite crystal has a higher Ti concentration than the ilmenite polycrystal and the

diffusion coefficients might depend on Ti concentration, the two sides of the diffusion couple

have been treated separately for the Arrhenius fits. Potential effects of Ti concentration on

Fe-Mg interdiffusion are discussed in Section 2.4.3.

The results for Fe-Mg interdiffusion in the geikielite single crystal are similar for the two

geikielite orientations, with Q = 224± 20 kJ/mol and logD0 = −4.5± 0.8 m2/s for diffusion

perpendicular to the c-axis, and Q = 239 ± 39 kJ/mol and logD0 = −3.6 ± 1.7 m2/s for

diffusion parallel to the c-axis. Thus, any crystallographic orientation effect on Fe-Mg

interdiffusion in the geikielite single crystal was not evident in our results.

For Fe-Mg interdiffusion in the ilmenite polycrystal, we determined that Q = 188±15 kJ/mol

and logD0 = −6.0 ± 0.6 m2/s. The reported averages and uncertainties were calculated

using the diffusion profile fitting results from the ilmenite polycrystals in both sets of Fe-Mg

interdiffusion experiments (⊥c and ‖c). Though slight differences exist for the two orientations

(Figure 2.6), the calculated temperature dependence for each orientation was the same within

uncertainty (Q = 191± 23 kJ/mol and logD0 = −5.9± 0.9 m2/s for experiments where the

geikielite was oriented with diffusion perpendicular to the c-axis; Q = 196± 25 kJ/mol and

logD0 = −5.6 ± 1.1 m2/s for experiments where the geikielite was oriented with diffusion

parallel to the c-axis). Comparing the results for the temperature dependence of Fe-Mg

interdiffusion calculated for ilmenite and geikielite, we find that there is a small yet resolvable

difference, with the activation energy for diffusion in the ilmenite polycrystal being lower

than that for the geikielite single crystals.
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Figure 2.7: Arrhenius plot of results for Fe-Mn interdiffusion in the ilmenite and Mn-ilmenite
polycrystals. Each triangle represents the average interdiffusion coefficient calculated from
the ilmenite and Mn-bearing ilmenite polycrystals in a given experiment, and the plotted
uncertainty is the 70% confidence interval reported in Table 2.2. The solid line depicts the
weighted linear regressions through all points, and the dashed lines show the uncertainty on
this fit (70% confidence interval). The dotted lines depict the uncertainty on the linear fit at
the 95% confidence interval.
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Fe-Mn interdiffusion

For Fe-Mn interdiffusion, our experimental results yield Q = 264 ± 30 kJ/mol and logD0

= −2.9 ± 1.3 m2/s. The reported averages and uncertainties were calculated using the

diffusion profile fitting results from both sides of the diffusion couple (ilmenite polycrystal

and Mn-bearing ilmenite polycrystal). When treated separately, the results from each side

are the same within uncertainty. Manganese is present at low concentrations in the Fe-Mn

interdiffusion experiments, and thus behaves as a trace (not major) component. We did not

find a Mn concentration dependence for Fe-Mn diffusion.

2.4 Discussion

2.4.1 Comparison to diffusion in hematite

One important distinction between ilmenite and hematite is the oxidation state of Fe, with

all Fe2+ in pure ilmenite and all Fe3+ in pure hematite. Experimental studies of diffusion

in hematite indicate that the diffusivity of Fe in hematite decreases with increasing oxygen

fugacity (fO2) (Atkinson and Taylor 1985; Amami et al. 1999; Sabioni et al. 2005). This

relationship between diffusion and fO2 suggests that Fe diffusion occurs by a diffusion

mechanism involving interstitial sites, rather than a vacancy mechanism. Similar to the

equation for cation vacancy formation in magnetite (Aggarwal and Dieckmann 2002), the

formation of cation vacancies in ilmenite-hematite solid solution by oxidation of Fe2+ to Fe3+

can be written as:

3 Fe2+ + 3
4 O2 2Fe3+ + VM + 1

2 Fe2O3
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where VM represents a vacant cation site. This reaction indicates that diffusion through

cation vacancies would be faster at higher fO2 because oxygen promotes cation vacancy

formation. However, previous studies have determined Fe diffusion in hematite to be slower

at higher oxygen fugacities, which indicates that the diffusion of Fe in hematite occurs by

cation interstitials rather than cation vacancies (see Section 2.4.3 for additional discussion of

diffusion mechanisms).

The activation energies reported from experimental studies of Fe self-diffusion parallel to the

c-axis in hematite single crystals range from 510 to 579 kJ/mol for temperatures between

900◦C and 1300◦C (Sabioni et al. 2005; Amami et al. 1999; Atkinson and Taylor 1985).

Atkinson and Taylor (1985) found that the activation energy for Fe diffusion in hematite was

lower (174 kJ/mol) at temperatures below 900◦C and attributed this change to impurities or

point defects, concluding that the high-temperature behavior was more characteristic of pure

hematite. Sabioni et al. (2005) found that Fe diffusion in hematite varies as a function of

crystallographic orientation, with diffusion perpendicular to the c-axis having an activation

energy of 430 kJ/mol. Further, Sabioni et al. (2005) found that between 900◦C and 1100◦C

diffusion perpendicular to the c-axis is slower than diffusion parallel to the c-axis in hematite.

These activation energies are approximately double that of Fe-Mg interdiffusion in ilmenite

(Section 2.3.2). Because of the difference in activation energies and D0 for Fe diffusion in

hematite and ilmenite, Fe diffusion will be faster in hematite above 1100◦C and faster in

ilmenite below 1100◦C (Figure 2.8).

2.4.2 Comparison to diffusion in magnetite and titanomagnetite

Cation diffusivities in magnetite have been experimentally determined and characterized as a

function of temperature, fO2 and composition (Van Orman and Crispin 2010, and references

therein). At fO2 near the wüstite-magnetite (WM) buffer, Fe and Mn diffusion in magnetite
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Figure 2.8: Comparison of results for diffusion in ilmenite, hematite, magnetite, and titano-
magnetite. For ilmenite, one line represents the average of our reported results for Fe-Mg
interdiffusion in ilmenite, and one line represents our reported results for Fe-Mn interdiffusion
(bolded values in Table 2.3). For hematite, the Fe diffusivity parallel to the c-axis is plotted
using values from Atkinson and Taylor (1985) and Sabioni et al. (2005). For magnetite, the
lines represent the literature values for Fe and Mn diffusivity at the wüstite-magnetite (WM)
and magnetite-hematite (MH) buffers from Dieckmann and Schmalzried (1977) and Aggarwal
and Dieckmann (2002). For titanomagnetite (XTi = 0.2), the lines represent the literature
values for Fe and Mn diffusivity at the wüstite-magnetite (WM) and magnetite-hematite
(MH) buffers from Aggarwal and Dieckmann (2002).
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occurs by a diffusion mechanism involving interstitial sites, similar to diffusion in hematite.

In contrast, Fe and Mn diffusion in magnetite dominantly occurs via vacancies at fO2 near

the magnetite-hematite buffer. Further, at reducing conditions, cation diffusion rates in

magnetite are similar to that in titanomagnetite; however, at more oxidizing conditions

diffusion in titanomagnetite is faster than in magnetite because the presence of Ti4+ promotes

the formation of vacancies.

The activation energies for Fe diffusion in magnetite range from 148 to 230 kJ/mol (Himmel

et al. 1953; Izbekov 1958; Ogawa et al. 1968; Dieckmann and Schmalzried 1977; Aggarwal

and Dieckmann 2002). Aggarwal and Dieckmann (2002) determined the activation energies

for Mn and Ti diffusion in magnetite (Mn, 140 − 188 kJ/mol; Ti, 208 − 267 kJ/mol), as

well as for Fe and Mn diffusion in titanomagnetite (XTi = 0.2; Fe, 147− 165 kJ/mol; Mn,

163 − 185 kJ/mol). Our experimentally determined activation energy for Fe-Mg in the

ilmenite polycrystal (188 ± 15 kJ/mol) is within range of those reported for Fe and Mn

diffusion in magnetite and titanomagnetite. The activation energy for Fe-Mg interdiffusion

in ilmenite is also similar to that reported for Fe-Mg interdiffusion in synthetic spinel

(219± 18 kJ/mol Vogt et al. 2015). Our reported activation energy for Fe-Mn interdiffusion

in ilmenite (264± 30 kJ/mol) is greater than the activation energies reported for Fe and Mn

diffusion in magnetite and titanomagnetite, but similar to those reported for Ti diffusion in

titanomagnetite. Additionally, the activation energies calculated for Fe-Mg interdiffusion in

the geikielite single crystals (224± 20 kJ/moland 239± 39 kJ/mol) are within range of those

reported for Ti diffusion in titanomagnetite.

Coexisting iron-titanium oxides are widely used to estimate pre-eruptive temperatures

and oxygen fugacities in volcanic systems (Fish Canyon Tuff, Bishop Tuff, Soufrière Hills,

Pinatubo, Mt. Unzen, Mt. St. Helens, Mt. Pelée, and many more). This geothermometer and

oxybarometer is based on the exchange of Fe and Ti between coexisting rhombohedral oxide
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(ilmenite-hematite solid solution) and spinel (magnetite-ulvöspinel solid solution) phases.

Our Fe-Mg and Fe-Mn interdiffusion coefficients were determined between 800◦C and 1100◦C,

which overlaps the range of natural magmatic temperatures relevant to two-oxide equilibration

(geothermometer initially calibrated between 600◦C to 1000◦C, Buddington and Lindsley

1964). Ghiorso and Evans (2008) found that for a database of 730 natural oxide pairs,

the estimated oxygen fugacities relative to the nickel-nickel oxide buffer (NNO) fell within

NNO±2. For temperatures 600 − 1000◦C this range of oxygen fugacities corresponds to

WM+0.5 to WM+7.5. At oxygen fugacities above the wüstite-magnetite buffer, diffusion

of Fe and Mn in titanomagnetite is faster than Fe and Mn diffusion in ilmenite and this

difference increases with fO2 (Figure 2.8). At temperatures below 1000◦C, cation diffusion

in ilmenite is faster than diffusion in hematite (Figure 2.8). As fO2 increases, the ilmenite

solid solution will become more enriched in the hematite component, and the diffusion rates

will decrease. In this way, the cation diffusivities in hemo-ilmenite and titanomagnetite will

“diverge" at lower temperature and higher fO2 , and equilibration between the two oxides will

be rate limited by diffusion in the rhombohedral oxide.

2.4.3 Potential diffusion mechanisms for Fe, Mg, and Mn in il-

menite

Diffusive exchange of Fe2+ and Mg2+ or Mn2+ cations in ilmenite occurs by a mechanism

involving either cation interstitials or cation vacancies. Our experiments were not designed

to elucidate the diffusion mechanism, and additional investigation over a range of oxygen

fugacities and ilmenite compositions is needed in order to draw strong conclusions. However,

here we briefly discuss potential reactions for the formation of cation interstitials and vacancies

in ilmenite to provide insight into potential diffusion mechanisms and how diffusivity would

vary with composition for each.
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Similar to the equation for the formation of cation interstitial defects in hematite (Atkinson

and Taylor 1985), the formation of cation interstitials in ilmenite may occur through the

reaction:

Fe×Fe + 3O×O Fei + 2 e′ + 3
2 O2

where Fe×Fe denotes Fe residing in a cation site, and Fei represents an interstitial Fe with

+2 charge balanced by two electrons (e′). Here, the interstitial is on the same side of the

equation as O2. Thus, as oxygen fugacity increases, the reaction goes to the left side and the

concentration of cation interstitials decreases. Minor oxidation during two of our diffusion

annealing experiments may have increased the amount of Fe3+ in the ilmenite of those

experiments and affected our diffusion results. For experiments F045 and F051, ilmenite

analyses with low analytical totals, Ti cation totals <1, and Fe cation totals >1 result from

a minor hematite component in the ilmenite (<4 and <2 mol% Fe2O3, respectively). At a

given temperature, the calculated Fe-Mg interdiffusion coefficients are lower for experimental

ilmenites that contained a minor hematite component (though still within our estimated

uncertainty).

Titanium-induced cation vacancies in the geikielite single crystal may explain why diffusion

in the geikielite single crystals was faster than in the ilmenite polycrystal and why the results

for both geikielite orientations were consistent. Excess Ti in ilmenite would promote the

formation of cation vacancies by the reaction:

2M×A + TiO2 TiA + V′′A + 2MO

where M in the equation denotes Fe2+, Mg2+, or Mn2+ cations. Here, the excess Ti4+

resides in A2+ sites (TiA ), promoting A-site cation vacancies (V′′A) to maintain charge
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from the diffusion interface. a) Three Fe concentration profiles for the diffusion couple. b)
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balance. In our diffusion annealing experiments the molar concentration of Ti in the geikielite

(approximately 1.00 − 1.02 Ti cations per 3 oxygens) is higher than that in the ilmenite

(approximately 0.98− 1.00 Ti cations per 3 oxygens). In many of the Fe-Mg experiments,

there is slight zoning in Ti concentrations decreasing from the geikielite across the interface

into the ilmenite, suggesting Ti may have diffused from the geikielite single crystal into the

ilmenite polycrystal (Figure 2.9). Diffusion involving Ti-induced cation vacancies may explain

why the diffusion in the ilmenite polycrystal is slower than that in the geikielite crystal for

these experiments. Titanium concentration profiles are not observed for any of the Fe-Mn

interdiffusion experiments.

There is potential for grain boundary diffusion to enhance diffusion rates in the ilmenite

polycrystal relative to the geikielite single crystal, but we did not observe evidence for this

mechanism having a significant effect on our results. Although the ilmenite polycrystals

from two experiments conducted at the same temperature (1000◦C, F019 and F045) exhibit

different grain sizes (Appendix Figure A.1), the calculated Fe-Mg interdiffusion coefficients are

the same within uncertainty (Table 2.2). Additionally, there were no changes in concentration

corresponding to the location of grain boundaries in the electron microprobe traverses on

the ilmenite polycrystals from our experiments. Previous comparisons of single crystal and

polycrystalline studies for Fe diffusion in hematite have similarly concluded that there is no

contribution from rapid grain boundary diffusion (Atkinson and Taylor 1985).

Our experimental results cannot conclusively determine which mechanism is controlling the

diffusion of cations in ilmenite, however there are two important observations to consider: (1)

the presence of Fe3+ in two of the ilmenite polycrystals resulted in decreased diffusivity in the

ilmenite compared to the geikielite, and (2) titanium excess in the geikielite single crystals

can promote cation vacancy formation and may explain why diffusion in the geikielite is

faster than that in the ilmenite.
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2.5 Applications

Moving forward we will apply our experimentally determined diffusion rates to natural

ilmenite-bearing systems. Coupling our experimentally determined diffusion coefficients

with preserved chemical disequilibria in natural ilmenites provides a mechanism by which to

constrain the timing of perturbations in magmatic systems. For Fe-Mg interdiffusion we will

use an activation energy of 188 kJ/mol and logD0 of −6.0 m2/s, which is the value obtained

from the weighted linear regression through the diffusion results from the polycrystalline

ilmenite side of our diffusion couple experiments (Table 2.3). We are using the Arrhenius

curve from the ilmenite side of the diffusion couple because the composition of natural

ilmenite crystals is more similar to the composition of the ilmenite polycrystal than the

geikielite single crystal. For Fe-Mn interdiffusion we will use the parameters determined by

the weighted linear regression through data from both sides of the diffusion couple (Q = 264

kJ/mol and logD0 = −2.9 m2/s).

2.5.1 Application to natural disequilibrium oxide pairs

Disequilibrium within an oxide crystal or between pairs is often interpreted to be a result

of disturbances in the magmatic plumbing system such as injection of new magma, de-

volatilization, and decompression (Gardner et al. 1995; Nakamura 1995; Pallister et al. 1996;

Venezky and Rutherford 1999; Devine et al. 2003; Blundy et al. 2006; Pallister et al. 2008).

These perturbations are potential precursors to eruptions or changes in eruption style, and

thus are important to recognize and understand (Wark et al. 2007; Bachmann and Bergantz

2008; Cashman and Sparks 2013).
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A test for oxide pair equilibria was developed by Bacon and Hirschmann (1988) from

the magnesium and manganese compositions of natural oxide pairs (hemo-ilmenite and

titanomagnetite). Natural oxide pair compositions that fall off of this equilibrium line are

often not reported. However, they have been found in many eruptive centers, including but

not limited to Mt. St. Helens, Mt. Unzen, the Bishop Tuff, and the Fish Canyon Tuff

(Ghiorso and Evans 2008). Titanium zoning in natural hemo-ilmenites and titanomagnetites

provides additional evidence for oxide disequilibrium in volcanic samples from Mt. Unzen,

Mt. St. Helens, Mt. Pinatubo, and Soufrière Hills (Gardner et al. 1995; Nakamura 1995;

Pallister et al. 1996; Venezky and Rutherford 1999; Devine et al. 2003; Pallister et al. 2008;

Rutherford and Devine III 2008). In practice, oxide pair compositions that do not fall on the

empirical line defined by Bacon and Hirschmann (1988) are not used for geothermometry

and oxybarometry. However, this oxide pair disequilibrium can instead place constraints on

the conditions and timescales of volcanic processes, provided the diffusivities of Mg and Mn

are known for both magnetite and ilmenite.

In order to preserve disequilibria in oxides, the time between perturbation and volcanic

eruption must be shorter than the rate of mineral equilibration via diffusion. Silicate minerals

preserve compositional evidence for temperature perturbations in a magmatic system on

time scales that range from months to millions of years (Costa et al. 2008, and references

therein). Cation diffusion in Fe-Ti oxides is faster than in silicate minerals, and compositional

zoning will be diffusively equilibrated on short time scales (hours to months). Thus, oxide

disequilibria record instances where the time between a thermal pulse and eruption is short.

Determining the timescales of oxide equilibration can constrain the time between these two

events.

Using our experimentally determined Fe-Mn interdiffusivities for ilmenite, we can model the

time- and temperature-dependent equilibration of an ilmenite grain as a function of grain
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size. Approximating that the ilmenite grains are spherical, the time it would take an ilmenite

grain of a given diameter to equilibrate after a heating or mixing event can be estimated

using the following equation from McDougall et al. (1999):

f ≈ 1− 6/π2exp((−π2Dt)/r2) (2.4)

where f is the fractional approach to equilibrium, D = diffusion coefficient taken at a given

temperature (m2 s−1), r = grain radius (m), and t = the time (s) since the perturbation.

This equation is an approximation that applies when f >∼ 0.85. In our modeling, we use f

= 0.95 as the approximation for complete equilibration because this is within the uncertainty

of the Mg/Mn filter.

Disequilibrium between oxide pairs has been observed for each of the volcanic centers discussed

below (Johnson and Rutherford 1989; Venezky and Rutherford 1999; Rutherford and Devine

III 2008; Bacon and Hirschmann 1988; Hildreth 1979; Whitney and Stormer Jr. 1985; Ghiorso

and Evans 2008; Blundy et al. 2006; Pallister et al. 2008). Our experimental data characterizes

the interdiffusion of Fe2+ and Mn2+, however Fe3+ is present in natural volcanic systems.

Given a significant Fe2O3 component, the ilmenite equilibration rates would likely be slower

than those estimated in our calculations.

The reported ilmenite grain sizes for both the Bishop Tuff and the Fish Canyon Tuff range

from 100− 500 µm (Hildreth 1979; Whitney and Stormer Jr. 1985). The temperature range

used for the Bishop Tuff calculation (700− 790◦C, Hildreth and Wilson 2007) was estimated

using equilibrated Fe-Ti oxide thermometry. The temperature range used for the Fish Canyon

Tuff (730 − 790◦C, Johnson and Rutherford 1989) is the pre-eruptive temperature range

deduced from experimental phase equilibrium data. For the Bishop Tuff and Fish Canyon

Tuff the reported ilmenite grain sizes and estimated pre-eruptive temperatures suggest the
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time between thermal perturbation and eruption is on the order of months to decades (Figure

2.10).

For Mt. Unzen, a pre-eruptive temperature range of 850 − 930◦C and ilmenite grain size

range of 50 − 350 µm was used for the calculation (Venezky and Rutherford 1999). This

temperature range was estimated from a combination of Fe-Ti oxide thermometry and the

results of phase equilibrium experiments. For Mt. St. Helens, a temperature range of

750− 950◦C and grain size range of 25− 300 µm was used in the calculation. These values

encompass the temperature ranges estimated from Fe-Ti oxide thermometry for the 1980-1986

and 2004-2006 eruptions and the observed oxide grain sizes (Blundy et al. 2008; Pallister

et al. 2008; Rutherford and Devine III 2008).

For ilmenite grains in volcanic samples from Mt. Unzen and Mt. St. Helens, the results

of this calculation indicate that ilmenite equilibration times are on the order of hours to

months (Figure 2.10). Previously, compositional zoning of Ti in titanomagnetite has been

used to estimate the time between thermal perturbation and eruption at Mt. Unzen (e.g.,

Nakamura 1995; Venezky and Rutherford 1999). These studies indicate that the 1991-1993

Mount Unzen eruption involved continuous replenishment of a dacitic magma source weeks

(Venezky and Rutherford 1999) or months (Nakamura 1995) before eruption. At Mt. St.

Helens, the pre-eruptive magma-mixing time for the 2004-2006 eruption is estimated to be

less than 5− 8 weeks from Ti compositional profiles perserved in titanomagnetite (Rutherford

and Devine III 2008). Additionally for Mt. St. Helens, an ascent time of 2.6 weeks to 2.5

months has been estimated from the 2004-2006 magma eruption rates (Pallister et al. 2008),

whereas an ascent time of 4 − 8 days has been estimated from the extent of groundmass

crystallization in the 1980-1986 eruption products (Geschwind and Rutherford 1995). Our

results are consistent with the previous estimates for the timing of magmatic activity at
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both volcanoes, and indicate that ilmenite zoning can record processes that occur in hours to

months.

Constraints on the pre-eruptive temperature and grain size of zoned ilmenites lowers the

uncertainty in the range of estimated equilibration times (Figure 2.10). Given the wide range

of temperatures estimated from Fe-Ti oxide thermometry for Mt. St. Helens, it is helpful to

focus on specific observations of zoning in ilmenite in order to provide narrow time constraints

on a given sample. For example, we have calculated the time it would take to equilibrate two

zoned ilmenites reported in Pallister et al. (2008) (results plotted as stars in Figure 2.10).

For a zoned ilmenite from the 1980-1986 eruptive products (sample MSH05JV_1_19 in

Pallister et al. 2008) with a reported grain size of 120 µm, the grain would equilibrate within

2 days at the reported temperature of 938◦C. This result indicates that the cause of chemical

zoning occurred less than 2 days prior to eruption. Similarly, the 50 µm zoned ilmenite

observed in a sample from the April 1, 2005 eruption (sample SH315-2 in Pallister et al.

2008) would equilibrate within 8.5 days at the reported temperature of 807◦C, indicating

the zoning formed less than 8.5 days before eruption. While the characteristic equilibration

times in Figure 2.10 provide useful time constraints for the volcanic activity at each volcano,

these two examples illustrate the utility of our diffusion data when integrated with discrete

observations of zoned ilmenites in natural samples.

2.5.2 Application to magnesium zoning in kimberlite megacrysts

Kimberlites are volatile-rich, ultramafic, igneous rocks that contain diamonds and mantle

xenoliths. Preservation of diamond through deep magma transport to the surface and ascent

of dense mantle xenoliths both require rapid ascent rates. Magma ascent rates for kimberlites

have been estimated to reach 30 m/s, which overwhelmingly exceeds the 5 m/s estimate for

other xenolith-bearing magmas (Rutherford 2008). Though kimberlites have been extensively
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studied, uncertainties still exist regarding kimberlite properties such as source composition,

depth, temperature, and oxidation state (e.g., Mitchell 1995; Sparks 2013, and references

therein).

Kimberlites contain large (up to 20 cm) megacrysts of garnet, diopside, and ilmenite, referred

to as the “megacryst suite”. The origin of the megacryst suite has been widely debated;

leading theories propose that the megacrysts crystallized at depths of 150− 200 km from a

magma that is either proto-kimberlitic or basaltic (Mitchell 1995). There have been many

studies on the occurrence, mineralogy, and chemistry of the megacryst suite, particularly

with aim to establish the megacryst minerals as an indicator for diamond-bearing kimberlites.

However, the timing of megacryst incorporation into the kimberlite magma (i.e., prior to or

during ascent) remains unconstrained.

Rapid kimberlite eruption preserves disequilibria between megacrysts and their kimberlitic

host matrix in the form of compositional zoning and reaction rims. This disequilibrium is

evidence of a perturbation to the megacryst source prior to eruption. Applying diffusion

data to the observed disequilibria can help to constrain the timing of this perturbation and

address whether the megacrysts are incorporated near the source of the kimberlite magma or

during ascent.

The megacryst ilmenites found in kimberlites have characteristically high MgO contents (5−23

wt.%) and low ferric iron abundances (0.2− 20 wt.% Fe2O3), making these samples ideal for

demonstrating the utility of our Fe2+-Mg2+ interdiffusion rates for ilmenite. Additionally,

there is widespread evidence for chemical diffusion in the ilmenites of the megacryst suite.

One example of this is the preservation of Mg enrichment at the rims of ilmenite grains,

yielding diffusion profiles that are on average 100 to 500 µm in length (Mitchell 1986). This
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Mg enrichment at the ilmenite rims results from incomplete equilibration between the ilmenite

megacrysts and the Mg-rich kimberlitic host magma (Pasteris 1981).

Considering the megacryst suite as an isolated unit that is then sampled by kimberlite magma

and brought to the surface, we can use our experimentally determined Fe-Mg interdiffusion

rates for ilmenite to determine the timing of megacryst suite incorporation as it relates

to kimberlite magma ascent. Specifically, this calculation estimates the duration of Fe-Mg

exchange between the ilmenite and kimberlite using the equation

t =
x2

DFe-Mg
(2.5)

where t is time (s), DFe-Mg is the rate of Fe-Mg interdiffusion calculated as a function of

temperature using our experimental results (m2 s−1), and x is the characteristic length of

Mg diffusion into the ilmenite (m). For a given ilmenite megacryst, this x corresponds to

the distance from the rim at which the Mg concentration in the ilmenite equals the average

of the core and rim Mg concentrations. The calculated durations, t, are compared to the

estimated kimberlite ascent rates to establish whether the ilmenites were entrained by the

kimberlite magma during ascent or whether the diffusive exchange between the kimberlite

magma and megacryst ilmenites began prior to eruption.

Using our experimentally determined Fe-Mg interdiffusion rates for ilmenite, we have cal-

culated the time it would take to develop a Mg diffusion profile of a given length in an

ilmenite rim (Figure 2.11). Our results from this calculation indicate that the Mg enrichment

of ilmenite megacrysts would require ilmenite and kimberlitic magma to be in contact a

minimum of hours to weeks depending on the exact temperature. The plotted range of

temperatures in Figure 2.11 encompasses both the estimated kimberlite source temperatures

(1350 − 1450◦C, Priestley and McKenzie 2006; Sparks 2013), crystallization temperatures
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Figure 2.11: Calculated times for Mg-enrichment rims to form by Fe-Mg interdiffusion. Each
solid line represents a given length of Mg enrichment at the rim of an ilmenite grain, and
indicates the time it would take that enrichment profile to form at a given temperature.
The temperature range of the x-axis encompasses the range of estimates for the source
temperatures of the host kimberlite magma (Section 2.5.2). The dashed line represents the
results calculated from a core-to-rim profile of Mg enrichment measured in a natural ilmenite
megacryst by Boctor and Boyd (1980) (Figure 2.12).
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Figure 2.12: Magnesium enrichment profile observed in a natural kimberlitic ilmenite
megacryst. The open circles represent the electron microprobe analyses reported in Boctor
and Boyd (1980). The solid line depicts our modeled error function fit for the measured
profile. The modeled profile was used to calculate the time needed to form the observed
Mg-enrichment rim at a given temperature (Figure 2.11).

calculated from olivine-spinel geothermometry (1030− 1170◦C, Fedortchouk and Canil 2004),

and temperature estimates from models for the ascending magma which consider cooling upon

ascent, volatile content, xenolith assimilation, and olivine crystallization (1050− 1450◦Cfrom

source to eruption, Kavanagh and Sparks 2009).

In order to provide context for the
√
Dt distances from the rim in Figure 2.11, we have

applied our Fe-Mg interdiffusion results to a core-to-rim profile of Mg enrichment measured

in a natural kimberlitic ilmenite megacryst by Boctor and Boyd (1980) (Figure 2.12). Using

equation 2.2, we linearized the observed profile, then determined the slope, (4Dt)−1/2, from

a linear regression through the analytical points. With this slope and our experimentally
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determined temperature dependence for DFe-Mg, we calculated the time for the observed

Mg-enrichment profile to form by diffusion as a function of temperature (Figure 2.11). The

modeled Mg-enrichment profile has been plotted as an error function in Figure 2.12 using

equation 2.1.

Consider that the ilmenite megacrysts are sampled from a source depth of 150 km. For

magma temperatures greater than 1300◦C, 100 µm rims of Mg enrichment form within hours,

suggesting the interaction could take place solely during the rapid ascent stage of kimberlite

eruption (10− 30 m/s). However at these temperatures, the 500 µm rims of Mg enrichment

would still require at least a day of interaction with the kimberlite magma. If this interaction

occurred only during the ascent stage, this time would roughly translate to kimberlite ascent

rates < 2 m/s, which is an order of magnitude slower than previous estimates. This result

indicates that either the initial stage of kimberlite magmatic ascent is slow enough to allow

for days to weeks of interaction between the kimberlite and megacrysts, or alternatively, that

the kimberlite magma and megacrysts are interacting prior to the onset of eruptive ascent.

The initial stage of ascent for xenolith carrying magmas constitutes a majority of the ascent

time, and the ascent rates for this stage have been estimated to be between 2.9− 16.8 m/s

(Rutherford 2008). If the initial ascent of the kimberlite magma occurs at a rate of 3 m/s,

then the ascent time from 150 km would be approximately 14 hours. From our diffusion

results, we have determined that an interaction time of 14 hours could produce 100− 500 µm

rims of Mg enrichment in an ilmenite grain given a temperature range of 1200−1600◦C. If the

2.9 m/s ascent rate is relevant to the initial stages of kimberlite ascent, then the temperature

of the kimberlite host magma can be approximated using the width of the Mg-enrichment

rims on the ilmenite megacrysts.
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The growth of spinel rims on garnets has previously been used in a similar way to decipher

the timing of garnet incorporation into kimberlite magma (Canil and Fedortchouk 1999).

However, the reported timescales required to form approximately 25 µm spinel rims on garnet

at temperatures between 1000 − 1200◦C are on the order of hours, and at 1400◦C would

form within minutes. These timescales indicate that the kelyphitic rims form at either at

lower temperatures or shorter timescales than those for the diffusion of Mg into ilmenite

megacrysts.

Our experimentally determined cation interdiffusion rates for ilmenite provide a new geospeedom-

etry tool that, when applied to the disequilibrium preserved in kimberlite ilmenite megacrysts,

elucidates the processes related to kimberlite magma storage and incorporation of the

megacryst suite. It is important to note that in calculating the times to form the observed

Mg enrichment at the rims of ilmenite megacrysts we have made consistent assumptions

that would result in minimum estimates. All calculations were performed assuming all Fe

was present as Fe2+, though in reality Fe3+ is present and thus the Fe-Mg interdiffusion

rates would be slower. Additionally, grain boundary erosion occurs during ascent and would

decrease the profile length (and thus time estimate). Lastly, the formation of perovskite

reaction rims on ilmenite megacrysts might also hinder the diffusion of Mg into the ilmenite

megacryst. Given these assumptions, it is most likely that the megacryst suite is chemically

interacting with the kimberlitic magma prior to the onset of eruptive ascent. This argues for

the megacryst suite being present in or near the source region of kimberlitic magmas, rather

than being incorporated during ascent like peridotite xenoliths.
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2.6 Conclusions

From our experimentally determined Fe-Mg and Fe-Mn interdiffusivities, we find that diffusion

in ilmenite is faster than in hematite. Our results indicate that crystallographic orientation

did not affect diffusion rates in ilmenite. To apply this data to natural systems, for Fe-Mg

interdiffusion we use an activation energy (Q) of 188 kJ/mol and logD0 of −6.0 m2/s, and

for Fe-Mn interdiffusion we use Q = 264 kJ/mol and logD0 = −2.9 m2/s. Because diffusion

in ilmenite is slower than in magnetite, the diffusive exchange between rhombohedral oxide

and spinel pairs used in geothermometers and oxybarometers will likely be rate-limited

by diffusion in ilmenite-hematite solid solutions. In applying our data to disequilibrium

observed in ilmenites from natural volcanic samples, we have estimated the time between

perturbation and eruption for the Bishop Tuff, Fish Canyon Tuff, Mt. Unzen, Mt. St. Helens,

and kimberlites. In this way, our experimentally determined diffusivities for ilmenite have

provided a new tool with which to estimate the timing of volcanic activity.
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Abstract

Olivine is the most abundant mantle mineral at depths relevant to oceanic crust production

through melting. It is also a liquidus phase for a wide range of mafic and ultramafic magma

compositions. We have experimentally investigated the effects of olivine crystallization and

melt composition on the fractionation of Fe isotopes in igneous systems. To test whether

there is a melt compositional control on Fe isotopic fractionation, we have conducted nuclear

resonant inelastic X-ray scattering (NRIXS) measurements on a suite of synthetic glasses

ranging from 0.4 to 16.3 wt.% TiO2. The resulting force constants are similar to those of

the reduced (fO2 = IW) terrestrial basalt, andesite, and dacite glasses reported by Dauphas

et al. (2014), indicating that there is no measurable effect of titanium composition on Fe

isotopic fractionation in the investigated compositional range. We have also conducted olivine

crystallization experiments and analyzed the Fe isotopic composition of the experimental

olivines and glasses using solution MC-ICPMS. Olivine and glass separates from a given

experimental charge have the same iron isotopic composition within error. This result

is robust in both the high-Ti glass (Apollo 14 black) and low-Ti glass (Apollo 14 VLT)

compositions, and at the two oxygen fugacities investigated (IW−1, IW+2). Additionally, we

have determined that Fe loss in reducing one-atmosphere gas-mixing experiments occurs not

only as loss to the Re wire container, but also as evaporative loss, and each mechanism of

experimental Fe loss has an associated Fe isotopic fractionation.

We apply our results to interpreting Fe isotopic variations in the lunar mare basalts and

lunar dunite 72415-8. Our experimental results indicate that neither melt TiO2 composition

nor equilibrium olivine crystallization can explain the observed difference in the iron isotopic

composition of the lunar mare basalts. Additionally, equilibrium iron isotopic fractionation

between olivine and melt cannot account for the “light” iron isotopic composition of lunar
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dunite 72415-8, unless the melt from which it is crystallizing was already enriched in light

iron isotopes. Our results support models of diffusive fractionation to explain the light iron

isotopic compositions measured in olivine from a variety of rock types and reduced (fO2 =

IW−1 to IW+2) igneous environments (e.g., lunar dunite and basalts, terrestrial peridotites

and basalts, martian shergottites).

3.1 Introduction

Analytical developments over the past decade have revealed that igneous rocks and minerals

display variations in the isotopic composition of non-traditional stable isotope systems (i.e.,

not C, H, N, O, S; Teng et al. 2017, and references therein). The degree of mass-dependent

fractionation between stable isotopes has been attributed to factors such as oxidation state,

bonding environment, and volatility. While early studies focused on low-temperature sta-

ble isotopic fractionation, a growing number of studies have revealed measurable isotopic

fractionations present in high temperature igneous systems (e.g., Beard and Johnson 2004;

Poitrasson et al. 2004; Weyer et al. 2005; Williams et al. 2005; Teng et al. 2008, and subsequent

studies). Interpretations of these variations are often hampered by the paucity of equilibrium

fractionation factors between coexisting phases, which limits quantitative modeling of the

relevant igneous processes.

High-temperature stable isotopic fractionations have been used to elucidate planetary-scale

processes, such as the formation of the Moon, as well as smaller scale processes, such as the

differentiation of magma. In particular, high-precision studies of stable isotopes have resolved

isotopic differences between terrestrial and lunar samples for certain elements (e.g., Wang

and Jacobsen 2016). However, for many isotopic systems, it is difficult to tell whether the

Earth and Moon have different isotopic compositions because the processes of magmatic
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differentiation, including lunar magma ocean crystallization and later magma generation

and crystallization, have imparted stable isotopic variations to lunar rocks that need to be

understood and disentangled before a claim can be made regarding the bulk composition

of the Earth or Moon. The increased precision of modern isotope analyses has resolved a

“dichotomy” present between the bulk stable isotopic compositions of the low-Ti and high-Ti

mare basalts on the Moon (Figure 3.1). Specifically, this dichotomy has been observed for

Fe (Wiesli et al. 2003; Poitrasson et al. 2004; Weyer et al. 2005; Craddock et al. 2010; Liu

et al. 2010; Sossi and Moynier 2017), with high-Ti mare basalts being isotopically “heavy”

compared to low-Ti basalts (δ56Fehigh-Ti > δ56Felow-Ti). The dichotomy was also observed for

Mg (δ26Mghigh-Ti < δ26Mglow-Ti; Sedaghatpour et al. 2013), Li (δ7Lihigh-Ti > δ7Lilow-Ti; Day

et al. 2016), and Ti (δ49Tihigh-Ti > δ49Tilow-Ti; Millet et al. 2016). Though the difference

in stable isotopic compositions between the high- and low-Ti basalts is well documented

analytically, the petrologic processes responsible for the lunar isotopic dichotomy remain

elusive.

Despite increasing evidence for high-temperature isotopic fractionation in igneous rocks (e.g.,

Dauphas and Rouxel 2006; Dauphas et al. 2017), there is a paucity of experimental studies of

isotopic fractionation during magmatic differentiation of mafic compositions. The iron isotopic

compositions of igneous rocks have been extensively studied, and the documented isotopic

variations in igneous rocks are caused by a combination of partial melting (e.g., Williams et al.

2005; Weyer and Ionov 2007; Dauphas et al. 2009a; Dauphas et al. 2014; Williams and Bizimis

2014), equilibrium and fractional crystallization (e.g., Teng et al. 2008; Dauphas et al. 2014;

Roskosz et al. 2015), and diffusive fractionation (e.g., Dauphas and Rouxel 2006; Sio et al.

2013; Oeser et al. 2015; Sio and Dauphas 2016; Collinet et al. 2017). Experimental studies

of equilibrium Fe isotope partitioning at high temperature have investigated metal-silicate

systems, fayalite-magnetite fractionation, as well as Fe isotopic fractionation between evolved

56



0 5 10 15

TiO2 (wt.%)

-0.10

0.00

0.10

0.20

0.30
δ5
6F

e 
(‰

)

lunar
terrestrial

Figure 3.1: Iron isotopic compositions plotted as a function of TiO2. Red points represent
terrestrial basalts and andesites, and blue points represent lunar basalts. The terrestrial
suite is similar in Fe isotopic composition to the low-Ti basalts, however high-Ti basalts
have greater δ56Fe values. The observed fractionation between low- and high-Ti lunar mare
basalts appears to be bi-modal, although it is uncertain if this modality is due to sampling
bias, as basalts with intermediate Ti concentrations have not been frequently measured.
Compositions and isotope measurement errors (95% confidence interval) are from Wiesli
et al. 2003; Poitrasson et al. 2004; Weyer et al. 2005; Teng et al. 2008; Dauphas et al. 2009b;
Schuessler et al. 2009; Craddock et al. 2010; Liu et al. 2010; Wang et al. 2015; Sossi and
Moynier 2017.
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rhyolitic compositions and sulfides (e.g., Schuessler et al. 2007; Shahar et al. 2008; Poitrasson

et al. 2009). Additionally, Dauphas et al. (2014) investigated the Fe bonding structure in a

suite of terrestrial volcanic glass compositions ranging from basalt to rhyolite, concluding

that Fe isotopic composition is influenced by the redox state of iron and the silica content of

the melt.

Evidence for mineralogical, compositional, and redox controls on Fe isotope partitioning in

igneous rocks highlights the importance of experimentally quantifying mineral-melt fractiona-

tions for major rock-forming minerals. Olivine is a ubiquitous mineral on rocky, differentiated

planetary bodies. Even a small (< 0.1‰) olivine-melt Fe isotopic fractionation could sig-

nificantly fractionate the Fe isotopes in mantle reservoirs during planetary differentiation;

for example, an olivine-melt fractionation δ56Feolivine - δ56Femelt = −0.05‰ would increase

the δ56Fe of a magma ocean by 0.1‰ after 50% fractional crystallization of olivine. The

measured iron isotopic compositions of olivine separates are often used to interpret olivine-

melt fractionations (e.g., Williams et al. 2005; Wang et al. 2015). Yet, naturally occurring

minerals have complex crystallization-cooling histories, and inferring an equilibrium frac-

tionation factor from such measurements is fraught with difficulties. The use of natural

samples to determine olivine-melt equilibrium iron isotopic fractionations is complicated by

diffusion-driven, kinetic iron isotopic fractionations (e.g., Teng et al. 2008; Teng et al. 2011;

Sio et al. 2013). In terrestrial igneous rocks, both Fe2+ and Fe3+ coexist, which can cause

equilibrium isotopic fractionation between melt and olivine (i.e., Teng et al. 2008; Dauphas

et al. 2009a). Redox-driven fractionation on Earth may obscure the existence of equilibrium

iron isotopic fractionation between olivine and Fe2+ in silicate melt. On the other hand,

large Fe isotopic fractionations exist among lunar basalts in an environment relatively free of

Fe3+. The absence of Fe3+ on the Moon supports mechanisms of mineral fractionation, melt

composition, and/or diffusive re-equilibration as cause for the observed iron isotopic variation
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between the low- and high-Ti mare basalts. The iron isotopic fractionations associated with

these equilibrium and kinetic processes need to be well-characterized in order to distinguish

the effects of each process on the resulting iron isotopic compositions of igneous rocks.

To investigate the effects of melt composition and olivine crystallization on Fe isotopic

fractionation, we have experimentally determined the olivine-melt equilibrium partitioning of

Fe isotopes for a compositional suite of synthetic lunar volcanic glasses. We have implemented

a dual approach, combining independent techniques (MC-ICPMS and NRIXS) for determining

equilibrium Fe isotopic fractionations between high temperature phases. In focusing our

experimental study on compositions and oxygen fugacities relevant for lunar differentiation,

we investigated Fe isotopic fractionation in the case where Fe3+ is of negligible abundance.

Furthermore, in experimentally examining the Fe isotope dichotomy between high-Ti and

low-Ti lunar mare basalts, we have examined whether the bulk titanium content of a melt

exhibits a compositional control on the resulting Fe isotope signature of the basalt.

3.2 Methods

We have investigated the equilibrium fractionation of Fe isotopes between olivine and melt

using two independent techniques. To determine the melt compositional control on Fe isotopic

fractionation between lunar melts and olivine, we have conducted nuclear resonant inelastic

X-ray scattering (NRIXS) measurements on a suite of synthetic glasses ranging from 0.4 to

16.3 wt.% TiO2. To evaluate the magnitude of iron isotopic fractionation at equilibrium

between olivine and melt, we have conducted olivine crystallization experiments and analyzed

the Fe isotopic composition of the experimental olivines and glasses using solution MC-ICPMS.

Direct olivine crystallization experiments were conducted using two bulk compositions: a

synthetic glass similar to Apollo 14 VLT (very low Ti), and a synthetic Apollo 14 black glass
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Table 3.1: Reference lunar volcanic glass compositions from Delano (1986).

Composition SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O

Apollo 14 VLT 46.00 0.55 9.30 0.58 18.20 0.21 15.90 9.24 0.11 0.07

Apollo 16 Green 43.90 0.39 7.83 0.39 21.90 0.24 16.90 8.44 - -

Apollo 14 Yellow 40.80 4.58 6.16 0.41 24.70 0.30 14.80 7.74 0.42 0.10

Apollo 17 Orange 39.40 8.63 6.21 0.67 22.20 0.28 14.70 7.53 0.41 0.04

Apollo 14 Black 34.00 16.40 4.60 0.92 24.50 0.31 13.30 6.90 0.23 0.16

(Table 3.1). Both of these compositions have olivine as a liquidus phase at one atmosphere

pressure.

In comparing the results of both the NRIXS and direct crystallization experimental methods,

we have determined the effect of equilibrium olivine crystallization and melt titanium content

on Fe isotopic fractionation during high-temperature igneous processes. Additionally, the

reducing experimental run conditions minimize Fe3+ content in the olivine and glass, making

our results directly applicable to lunar oxygen fugacity conditions (IW−2 to IW+1; Sato

1973).

3.2.1 Starting materials

For the NRIXS measurements, synthetic lunar ultramafic volcanic glass compositions were

prepared from oxide powders to match the Apollo 16 green (0.39 wt.% TiO2), Apollo 14

yellow (4.58 wt.% TiO2), Apollo 17 orange (8.63 wt.% TiO2), and Apollo 14 black (16.4 wt.%

TiO2) glass compositions given in Delano (1986) (Table 3.1). These glasses were chosen to

span the range of TiO2 content in the picritic lunar glass suite. Sodium and potassium were

added to the mixtures as carbonates (Na2CO3, K2CO3), calcium was added as CaSiO3, and

all other components were added as single element oxides. In order to perform the NRIXS

measurements, which are only sensitive to the Mössbauer isotope 57Fe, 57Fe-enriched Fe2O3
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powder (96.64% 57Fe, Cambridge Isotopes) was used. Oxides were mixed by hand under

isopropanol in an agate mortar and pestle for 20 minutes.

For the olivine crystallization experiments, the starting materials were prepared to be similar

in composition to the synthetic Apollo 14 VLT (green) and Apollo 14 black glasses in Delano

(1986) (Table 3.1). Calcium was added as CaCO3 for the green glass, and CaTiO3 for the

black glass. Compositions used for the olivine crystallization experiments contained natural

Fe isotope abundances and were mixed without the addition of Cr, Na, or K. Oxides, silicates,

carbonates, and titanates were mixed under isopropanol in a silicon-nitride ball mill for 3

hours. Polyvinyl alcohol was added as a binding agent to the starting material mixtures

for both the NRIXS and olivine crystallization techniques. Once dry, 75 mg aliquots of

each mixture were pressed into cylindrical pellets of 4 mm diameter and 2 mm height in

preparation to be melted in the gas-mixing furnace. Great care was exercised to ensure that

no cross-contamination took place between the experiments involving enrichment in 57Fe

and those with natural Fe isotopic abundances. However, select experiments did exhibit

slight enrichments in 57Fe (detailed in Appendix B). By focusing on δ56Fe, we minimize any

potential effects of 57Fe contamination.

3.2.2 Experimental methods

Lunar volcanic glass syntheses and olivine crystallization experiments were conducted in

vertical gas-mixing furnaces at Washington University in St. Louis. Sample pellets were

fused to rhenium loops and hung by a Pt wire thread in the furnace hot spot for the run

duration. Experimental samples were then quenched rapidly by melting the Pt hanging wire

and dropping the sample from within the furnace into a beaker of deionized water. The

57Fe-doped glass syntheses were conducted for approximately 3 hours at 1400◦C and an

oxygen fugacity corresponding to the iron-wüstite buffer (Table 3.2). Olivine crystallization
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Figure 3.2: Back-scattered electron image of two olivine crystallization experiments. Both
experiments were conducted at fO2 = IW+2. Experiment durations were 1 day (left) and 4
days (right). Experimental olivine crystals (dark gray) in the 4-day experiment (∼50 µm
diameter) are larger than those grown in the 1-day experiment (∼20 µm). Additionally, the
olivine grains are compositionally homogenous, i.e., there is no visible Fe zoning within the
grains at the ±0.5 wt.% FeO level.

experiments were conducted at fO2 values of IW−1 and IW+2 for durations of 6 hours, 1

day, and 4 days (Table 3.2). The temperatures for the olivine crystallization experiments

ranged from 1262 to 1269◦C, with ±1◦C variation during a given experimental run (Table

3.2). These temperatures were optimal for producing low modal abundances (10− 20 wt.%)

of large olivine crystals.

All experimental run products were synthesized at oxygen fugacities that bracket the oxygen

conditions inferred for the Moon. These reducing conditions minimize the presence of Fe3+,

which has been demonstrated to affect Fe isotope partitioning (e.g., Dauphas et al. 2014). A

controlled flow of H2 and CO2 gases buffered the oxygen fugacity throughout each experiment.

The fugacity was monitored with a Ca-doped zirconia oxygen probe using air as the reference

gas. The fO2 was found to vary between 0.01 to 0.15 log units (1σ standard deviation) during

a given experiment (Table 3.2).
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a b

Figure 3.3: a) Back-scattered electron image of two Re wires. The wires were mounted in
epoxy post-experiment and polished to create a measureable cross section. Both wires were
used in experiments conducted at fO2 = IW−1. Experiment durations were 6 hours (left)
and 4 days (right). Experimental Fe loss to the Re wire increases with time, producing a
thicker Fe-enriched layer (dark gray) while the core of the Re wire remains Fe-free (light gray).
b) Electron microprobe core-to-rim Fe (wt.%) profile in a Re wire from a 4-day experiment
conducted at fO2 = IW−1.

Long experimental run durations aided in crystal growth, allowing for clean mechanical

separation of olivine grains for MC-ICPMS work. Olivine grains from our four-day experiments

exhibited a range in grain diameter from 20 to 100 µm, compared to the 5 to 50 µm

grain diameter range for the one-day experiments (Figure 3.2). However, Fe loss from an

experimental charge increases with increased run duration (Table 3.2, Figure 3.3a). Thus, a

four-day run duration was deemed optimal for the olivine crystallization experiments needed

to minimize Fe loss from the experiment, while providing experimental olivines large enough

to hand-separate for MC-ICPMS measurements. To ensure that clean olivine and glass

could be retrieved for MC-ICPMS work, olivine and glass were separated from the four-day

experiments. Quantitative analysis of the Fe loss in these experiments is presented in Section

3.4.1.
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3.2.3 Approach to equilibrium

The experimentally produced olivines are compositionally homogenous and do not exhibit

compositional zoning within the grains (Figure 3.2), and electron microprobe compositional

analyses show low standard deviations amongst all analyzed grains in a given sample (Table

3.3). Mineral-liquid Fe-Mg exchange coefficients (KFe-Mg
D , Table 3.2) for our olivine-bearing

experiments are a function of melt Ti content (0.32−0.34 for 0.06 wt.% TiO2; 0.23−0.26 for 18

wt.% TiO2) and are consistent with the results of Krawczynski and Grove (2012). In addition,

a time series of experiments was conducted for each experimental starting composition (Apollo

14 VLT green glass, Apollo 14 black glass) at each experimental oxygen fugacity (IW−1,

IW+2) in order to evaluate the effect of experimental Fe loss on the olivine-melt equilibrium.

Experimental iron loss increases with increased run duration and decreased oxygen fugacity

(Table 3.2). Thus, the lowest oxygen fugacity (fO2 = IW−1) experiments experienced

significant (up to 18%) Fe loss during the four-day experiments (see discussion in Section

3.4.1). Despite the increased Fe loss, the mineral-liquid Fe-Mg exchange coefficients for the

four-day experiments are the same as those calculated for the shorter duration experiments

(Table 3.2), indicating that olivine-melt equilibrium was maintained.

3.2.4 Analytical methods

Electron microprobe analysis

Experimental run products were analyzed for major element abundances using the JEOL

JXA-8200 electron microprobe at Washington University in St. Louis. Standardization was

performed with a beam diameter of 20 µm on natural and synthetic glass and mineral samples.

We used the mean atomic number (MAN) method (Donovan et al. 2016) for wavelength
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dispersive spectrometer background correction and measured the following elements: Si,

Al, Ti, Cr, Fe, Mn, Mg, Ca, Na, K. Each quantitative analysis used a 15 kV accelerating

potential and 25 nA beam current. Glass compositions were analyzed with a 20 µm beam

diameter, and olivine compositions were analyzed with a focused beam (∼1 µm diameter).

Each compositional data point was reduced using Probe for EPMA software. Averages of the

analyzed glass and olivine compositions are reported in Table 3.3. Only analyses with totals

98.5− 101.5 weight percent (wt.%) are included in the reported averages (with the exception

of experiment J021, for which the analytical totals were on average 96.75 wt.% likely due

to incomplete degassing of the carbonates in the starting material). Olivine analyses were

filtered to include only those with olivine stoichiometry (cation total between 2.98 − 3.02

for 4 oxygen atoms). The same calibration was used for the compositional analysis of the

experimental wires, with pure Re, Fe, and Pt metal samples added as analytical standards.

The Re experiment wires were analyzed from core to rim with a 2 µm beam diameter.

Nuclear Resonant Inelastic X-ray Scattering Spectroscopy (NRIXS) methods

Nuclear resonant inelastic X-ray scattering spectroscopy (NRIXS) was used to probe the

excitation modes of iron atoms and derive quantities needed to calculate equilibrium fraction-

ation factors. From the phonon excitation probability function, S(E), or the partial phonon

density of states, g(E), (itself derived from S), the force constant for the iron sublattice

can be extracted (e.g., Dauphas et al. 2012; Dauphas et al. 2014; Liu et al. 2017) (also see

Polyakov et al. 2007, for a different approach based on the kinetic energy). Assuming that

the bonds are harmonic and given the high temperatures involved in magmatic processes,

the reduced partition function ratio, or β-factor is calculated as a function of temperature

from the mean force constant of the iron bonds, 〈F 〉 in N/m (the higher order terms needed

to calculate iron β-factors at low temperature are given in Table 3.4):
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1000 ln β = 2904
〈F 〉
T 2

(3.1)

At a given temperature, the equilibrium stable isotopic fractionation factor (e.g., αmineral-melt)

between two phases is related to the β-factor and Fe isotopic composition (δ56Fe) for each

phase through:

1000 lnαmineral-melt = δ56Femineral − δ56Femelt = 1000 ln βmineral − 1000 ln βmelt (3.2)

Using the measured force constants for synthetic lunar glasses and olivine (Dauphas et al.

2014), the equilibrium fractionation factor between olivine and melt can be theoretically

determined using equation 3.2, assuming that the iron force constant in the glass is not

significantly different from that of a melt of the same composition.

Multicollector-Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS)

methods

The quenched experimental samples were crushed, and then individual phases were hand

separated for Fe isotopic analysis with a Thermo Scientific Neptune MC-ICPMS in the Origins

Lab at the University of Chicago. The instrument was upgraded in the course of its life

by addition of an OnToolBooster Jet pump, bringing it to specifications on par with the

Neptune Plus model. Olivine grains were hand-picked from the experimental samples under

an optical microscope using cross-polarized light to distinguish the birefringent olivines from

the isotropic glass. Separated olivine grains ranged between 30 and 100 µm in diameter and
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contained minor amounts of glass, present as thin layers on the edge of the grains. Glass

separates were approximately 50-150 µm in diameter, and the transparency of the glass

allowed for separation of glass pieces that were free of olivine grains.

Olivine and glass separates were then dissolved for MC-ICPMS analysis. The starting material

powders, used experiment wires, and “total samples” (experimental sample left after minor

glass and olivine separate removal) were also dissolved and measured to aid in interpretation

of the measured isotopic compositions (see Section 3.4.1). Following the routine sample

dissolution protocol of the Origins Lab (e.g., Dauphas et al. 2009b; Craddock and Dauphas

2011), we digested 10-40 mg of each sample through hot-plate acid dissolution with mixtures

of concentrated HF-HNO3-HClO4 and HCl-HNO3-HClO4. An additional dissolution step

using aqua regia (3:1 ratio of HCl-HNO3) was used for the starting material powders, Re

wires, and “total samples”. This step was repeated three times to ensure all of the Fe had been

dissolved from the samples. However, a white residue (rich in TiO2 and Al2O3), remained

after two weeks of dissolution for the starting material powders and “total samples”. Analysis

of the white residues by electron dispersive spectroscopy confirmed that there was no Fe

present, indicating that the dissolution effectively removed all Fe from the samples despite

the remaining white residue. After the heated dissolution steps, each sample was dried out

(the samples with visible residues were centrifugated and the supernatants were used), then

dissolved in 6M HCl in preparation for Fe column chemistry.

The sample solutions were purified for Fe through column chemistry following the routine

methods of the Origins Lab at the University of Chicago (e.g., Dauphas et al. 2004; Dauphas

and Rouxel 2006; Dauphas et al. 2009b). The iron isotopic compositions of the sample

solutions were measured using the standard-bracketing method of Dauphas et al. (2009b),

and are reported as δ56Fe relative to IRMM-524, whose isotopic composition is identical to

IRMM-014 (Craddock and Dauphas 2011).
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Table 3.4: Mean force constants for synthetic lunar volcanic glass suite.

1000lnβ = A/T 2 +B/T 4 + C/T 6 (T in K)

Sample 〈F 〉 (N/m) A (×105) B (×109) C (×1013)

Apollo 16 Green (J020) 189 ± 9 5.36 ± 0.26 −4.29 ± 0.68 12.34 ± 3.60

Apollo 14 Yellow (J021) 195 ± 12 5.55 ± 0.34 −4.87 ± 0.99 16.20 ± 5.57

Apollo 17 Orange (J023) 203 ± 11 5.79 ± 0.32 −4.90 ± 0.79 13.24 ± 3.81

Apollo 14 Black (J022) 191 ± 11 5.45 ± 0.31 −4.35 ± 0.74 11.48 ± 3.45

Fo82 Olivinea 197 ± 10 5.61 ± 0.28 −2.59 ± 0.44 3.04 ± 1.14

a Olivine force constant data from Dauphas et al. (2014).

3.3 Results

Here we report experimentally determined mean force constants of iron bonds in synthetic glass

samples and iron isotopic compositions of synthetic olivine and glass separates. Iron isotopic

fractionation factors determined from the force constants and iron isotopic compositions

demonstrate an absence of resolvable iron isotopic fractionation during olivine crystallization

in reducing (fO2 = IW−1 to IW+2) conditions.

3.3.1 NRIXS results

The force constants calculated from NRIXS spectra on our synthetic lunar glasses show that

within error, the lunar glasses have the same force constant, averaging to a value of 195 ±

22 N/m (Table 3.4). This similarity in force constants over the 0.4 – 16.3 wt.% TiO2 range

of our synthetic glasses suggests that Fe isotopic fractionation is not a function of melt Ti

content (Figure 3.4). Further, the mean force constants of our synthetic suite of lunar glasses

are similar to the force constants generated for reduced (fO2 = IW) terrestrial basalts (197 ±

8 N/m) in Dauphas et al. (2014). The force constants from the synthetic lunar glasses are
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Figure 3.4: Force constants from a suite of melt compositions plotted as a function of TiO2

content. Red points represent the reduced (fO2 = IW) terrestrial basalt, andesite, and dacite
glasses from Dauphas et al. (2014), and blue points represent the synthetic lunar volcanic
glass compositions measured in this work. There is no correlation between force constants
and TiO2 content within the investigated 0.4− 16.3 wt.% TiO2 compositional range.

also similar to the previously determined iron force constant for olivine (Fo86 , Fe3+ absent)

of 197 ± 10 N/m (Dauphas et al. 2014).

3.3.2 Olivine crystallization experiments

The measured Fe isotopic compositions of the experimental glass and olivine separates indicate

that there is no measurable fractionation between olivine and glass (Table 3.5). The isotopic

difference between the starting material, experiment wire, and olivine and glass separates

can be explained by the fractionation of Fe isotopes during experimental Fe loss to the Re
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wire and through evaporation (Section 3.4.1). The iron isotopic composition of the starting

material powders (Table 3.5) is controlled by both the iron isotopic composition of Fe2O3

(used in all starting compositions) and Fe metal sponge (used only in starting compositions

#010 and #011) (Appendix Table B.1). To further illustrate the isotopic relationship among

all experimental parts, the measured Fe isotopic compositions have been plotted in Figure

3.5. For each experiment, the olivine Fe isotopic composition is indistinguishable from that

of the glass. The measured compositions thus indicate that olivine does not significantly

fractionate iron isotopes when crystallizing from lunar melt compositions at lunar-like fO2 .
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Figure 3.5: Iron isotopic compositions for each experiment part from Table 3.5 reported
as ∆56Fepart – total sample (δ56Fepart – δ56Fetotal sample). Error bars represent 95% confidence
interval. Green symbols indicate a synthetic green glass starting composition, and black
symbols indicate a synthetic black glass starting composition. Olivine and glass pairs from a
given experiment are highlighted.
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3.4 Discussion

3.4.1 Quantitative analysis of experiment iron loss

The four-day olivine crystallization experiments experienced up to 18% total Fe loss (Table

3.2). We estimated the amount of total Fe loss using a mass balance of the measured phase

compositions and the bulk starting composition of the experiment (Krawczynski and Olive

2011). A rhenium wire was used in all of the experiments to minimize the diffusive Fe loss to

the metal loop at reduced oxygen fugacities (Borisov and Jones 1999). The experimental

runs at fO2 = IW+2 experienced less Fe loss than those at fO2 = IW−1 (9% vs. 18% Fe loss,

Table 3.2). The total amount of iron lost from our experiments under reducing conditions

is consistent with the estimated loss in experiments ran at similar conditions by Borisov

and Jones (1999). Electron microprobe analyses of the Re wires after completion of the

experiments (Figure 3.3b, Appendix Table B.2) yield Fe concentrations within the range of

those measured in Re wires from Borisov and Jones (1999). The Re wire is always enriched

in the light isotopes of iron, which is consistent with the fact that transport through the wire

is diffusive, and light isotopes of iron diffuse faster than heavier ones (Mullen 1961; Roskosz

et al. 2006; Dauphas 2007; Richter et al. 2009; Van Orman and Krawczynski 2015). However,

the Fe mass balance between the wire and sample cannot account for all of the sample Fe

loss.

To account for the effect of Fe loss on the measured Fe isotopic compositions of the samples,

we measured the Fe isotopic compositions of the bulk starting material, experiment wire,

and the sample material remaining after olivine and glass separates were removed (Table

3.5). Owing to their similar Fe isotopic compositions, removal of minor olivine and glass

fractions from the sample did not change the bulk isotopic composition of the remaining
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sample material (un-separated glass and olivine, hereafter referred to as “total sample”). For

each of the olivine crystallization experiments, the isotopic compositions (δ56Fe) of the total

sample were higher than that for the bulk starting material. Open system behavior of Fe

and isotopic fractionation between the bulk starting material and the total sample can be

explained by Fe loss to the Re wire and evaporative Fe loss in the gas-mixing furnace. Using

the measured iron isotopic compositions of the bulk starting material, experiment wire, and

the total sample, we were able to quantify the mass of Fe lost and the associated Fe isotopic

fractionation for both mechanisms of Fe loss occurring during an experimental run.

The incorporation of Fe into Re wire during the experiment induced some Fe isotopic

fractionation, with the wire having a lighter iron isotopic composition than the total sample

(Table 3.5, Figure 3.5). Roskosz et al. (2006) demonstrated that experimental iron loss

to Pt wires fractionates iron isotopes. In that study, kinetic fractionation of Fe isotopes

produced an isotopically light Pt wire (relative to the experimental sample) in short duration

experiments. In longer duration experiments, Fe isotopes equilibrated between the Pt wire and

experimental charge producing an isotopically heavier Pt wire, which presumably represented

the equilibrium partitioning of stable Fe isotopes between Pt and melt. Similar to the Pt wire

results of Roskosz et al. (2006), the Re wires from our experiments are isotopically lighter

than the experimental samples. This is most likely associated with diffusive transport of

iron, as it is well-documented in a variety of systems that light isotopes diffuse faster than

heavier ones (e.g., Richter et al. 2009; Van Orman and Krawczynski 2015), resulting in light

isotope enrichment in the reservoir that experiences net Fe gain (i.e., the Re wire) relative

to the source (i.e., the silicate melt). Owing to this kinetic fractionation, iron isotopes are

more fractionated between the Re wire and total sample in the experiments that experienced

less iron loss (fO2 = IW+2). That is, as more Fe diffuses into the Re wire, the fractionation

between the wire and the sample decreases. Only one sample (H055) has a Re wire iron

76



isotopic composition that is heavier than the iron isotopic composition of the bulk starting

material, but the wire is still isotopically lighter than the glass. Owing to the presence of a

thin glass coating on the H055 wire, it is possible that a minor amount of experimental glass

was dissolved along with the wire during preparation for iron isotope measurement. This

would result in a measured iron isotopic composition for the wire that is heavier than the

iron isotopic composition of the wire without glass.

Although loss of Fe to the Re wire fractionates Fe isotopes and produces a heavier Fe isotopic

composition for the total sample relative to the bulk starting material, the total amount of

Fe incorporated into the wire cannot account for the magnitude of Fe isotopic fractionation

between the two, nor the bulk Fe loss. Similar to Fe loss to the Re wire, evaporative Fe loss

would preferentially deplete the experiments in lighter Fe isotopes, resulting in greater δ56Fe

for the olivine, glass, and total sample compared to the bulk starting material.

To assess the extent of both evaporative Fe loss and Fe loss to the Re wire, we calculated an

isotopic mass balance of the measured experiment parts (starting material, wire, and total

sample) and, by difference, the Fe that evaporated during the experiment. For example, using

the isotopic measurements (Table 3.5) for each part of experiment H056 we can estimate a

δ56Fe for the Fe lost by evaporation:

δ56Festarting material =
∑
i

X i
Fe × δ56Fei (3.3)

where i denotes a reservoir of the experiment (wire, total sample, gas), where XFe represents

the mass fraction of the initial Fe present in each reservoir, δ56Festarting material, δ56Fetotal sample,

δ56Fewire are measured values, and δ56Fegas, Xwire
Fe , Xtotal sample

Fe , Xgas
Fe can then be calculated
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from mass balance constraints (results presented in Figure 3.6 and Figure 3.7). Xtotal sample
Fe

is equivalent to one minus the percent total Fe loss estimated from mass balance of the

measured phases and the experimental starting composition (Krawczynski and Olive, 2011).

For H056, which experienced 18% total Fe loss, Xtotal sample
Fe = 0.82 (Figure 3.7). Xwire

Fe is

calculated using the ICP-MS Fe concentration measurement of the dissolved wire (µg, Table

3.5) and the estimated mass of Fe in the starting material (75 mg pellet, wt.% FeO for starting

composition, Table 3.1). For H056, Xwire
Fe = 0.04. Following this, Xgas

Fe can be calculated

assuming Xtotal sample
Fe +Xwire

Fe +Xgas
Fe = 1. Thus, for H056, Xgas

Fe = 0.14. From this calculation,

we conclude that 14% of the initial Fe in the starting material was lost by evaporation during

the experiment.

The last unknown of equation 3.3 is the “iron isotopic composition” of the Fe lost through evap-

oration (δ56Fegas), or rather the net isotopic fractionation that resulted from the evaporation.

To estimate the evaporative fractionation, we solve equation 3.3 for δ56Fegas using the XFe

values calculated above (Figure 3.7) and the measured δ56Fe values for the experiment parts

(Table 3.5). For H056, the resulting isotopic composition associated with the evaporated gas

is δ56Fegas = −2.01‰, and the bulk isotopic fractionation factor is αexperiment-vapor = 1.0028.

Our estimates of the evaporative isotopic fractionation based on the mass balance of our

measured experimental run products (bulk αexperiment-vapor) range from 1.0002 to 1.0028, with

the smallest fractionation between experiment and vapor (1.0002) existing for experiment

J012, the high-Ti (black glass) composition conducted at IW+2. The experiment-vapor

fractionation in our gas-mixing furnace experiments is smaller than that in a vacuum furnace

because the Fe vapor pressure is higher, which dampens the isotopic fractionation (Richter

et al. 2002; Richter 2004; Dauphas and Rouxel 2006; Richter et al. 2007; Richter et al. 2009;

Dauphas et al. 2015). Most likely, the evaporative Fe loss proceeded through a Rayleigh distil-

lation. Using the αexperiment-vapor calculated for each experiment, we have modeled the change
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Olivine

αexperiment - vapor = 1.0028

δ56Feolivine = +0.60 ± 0.04‰

82%   
initial Fe

18%  
initial Fe

Total Sample
δ56Fetotal sample = +0.65 ± 0.04‰

Glass
δ56Feglass = +0.60 ± 0.04‰

Fe loss
δ56Feloss = -1.53‰

Experiment Wire
δ56Fewire = +0.13 ± 0.04‰

4%

14%
Evaporation

δ56Fegas = -2.01‰

Starting Material
δ56Festarting material = +0.26 ± 0.04‰

68%

14%

Figure 3.6: A schematic diagram illustrating the Fe mass and isotope distributions detailed in
Section 3.4.1 for experiment H056. The labeled percent values at each branch represent the
percent of the initial Fe attributed to a given experiment reservoir. Measured iron isotopic
compositions of each experiment reservoir are mass balanced to explain the effect of Fe
loss on the iron isotopic composition of the total sample. Iron isotopic compositions and
fractionations in italics indicate calculated (not measured) values. Percent initial Fe for
olivine and glass separates is calculated using the olivine and glass proportions given in Table
3.2 (83% glass, 17% olivine for H056) and the calculated percent initial Fe for the total sample
(Xtotal sample

Fe = 1 – X loss
Fe ). A similar calculation was performed for each experiment using

the measured iron isotopic compositions for all the experiment reservoirs (starting material,
olivine, glass, total sample, experiment wire).
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experiment. The bracketed labels below the experiment names indicate the oxygen fugacity
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constitute Fe loss (wire, gas) and “total sample" Fe (olivine, glass).
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in the iron isotopic composition of the experimental sample as iron is lost by evaporation

(Figure 3.8).

For experiments conducted at fO2 = IW−1, on average 5% of the Fe starting material was

lost to the Re wire (average Xwire
Fe = 0.05), while this value is negligible at IW+2 (Figure 3.7).

Additionally, 13% of the Fe starting material was lost via evaporation at IW−1 (average

Xgas
Fe = 0.13), whereas 8% of the starting material Fe was lost by evaporation at IW+2

(average Xgas
Fe = 0.08). In one-atmosphere gas-mixing furnace experiments, Fe loss has

generally been considered as loss to the container (e.g., Re or Pt wire), while volatile element

loss (e.g., Na, K) has been attributed to vaporization (Corrigan and Gibb 1979; Donaldson

and Gibb 1979; Grove 1981; Borisov and Jones 1999). Our results indicate that at IW−1,

∼75% of the estimated Fe loss occurred via evaporation, and only 25% of the Fe loss can

be attributed through loss to the Re wire. At IW+2, the estimated Fe loss is due to ∼95%

evaporative loss and ∼5% loss to the Re wire.

To further assess the potential for evaporative isotopic fractionation at our experimental run

conditions, we have calculated the evaporative flux of Fe (JFe) from the sample using the

Hertz-Knudsen equation:

JFe =
αFe(P

v
Fe − P a

Fe)√
2πMFeRT

(3.4)

in which J is the evaporative flux in moles cm−2 s−1, α is the evaporation coefficient, M

is molecular weight, P v is equilibrium vapor pressure for the element considered, P a is

the ambient pressure for the element considered, R is the universal gas constant (J mol−1

K−1), and T is temperature (K). Following the methods outlined in Fedkin et al. (2006), we

calculated the equilibrium vapor pressure of Fe assuming both Fe and FeO species exist in the

gas, and the only contribution of Fe to the furnace gas atmosphere is from the experimental
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Figure 3.8: The iron isotopic evolution of an experimental sample as evaporative Fe loss
proceeds through Rayleigh distillation, as calculated using αexperiment-vapor for each experi-
ment. The iron isotopic composition is reported as ∆56Fesample*-starting material (δ56Fesample* –
δ56Festarting material) using δ56Festarting material from Table 3.5. δ56Fesample* represents the iron
isotopic composition of the “total sample” after accounting for the iron isotopic fractionation
associated with Fe loss to the Re wire (Section 3.4.1, Figures 3.6, 3.7). This correction
was performed to isolate the effect of evaporation on the heavy iron isotopic enrichment
that occurs during the experiment, however both losses (to wire, to vapor) would occur
simultaneously throughout the experiment. Green symbols indicate a synthetic green glass
starting composition, and black symbols indicate a synthetic black glass starting composition.
The shape of the symbols reflects the fO2 of each experiment as indicated in the legend. Each
modeled line is labeled with the corresponding αexperiment-vapor used in the Rayleigh distillation
equation.
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sample:

P v
Fe = P sample

Fe = PFeO + PFe (3.5)

The partial pressures of the gases evaporated from the molten experimental sample are then

calculated from the volatilization reactions:

FeO(l) → FeO(g) (3.6)

FeO(l) → Fe(g) +
1

2
O2(g) (3.7)

The equilibrium constants, k, for reactions 3.6 and 3.7 are constructed from the thermodynamic

data in the JANAF tables (Chase 1996) and used to calculate the equilibrium vapor pressure

of Fe:

P sample
Fe = k6aFeO +

k7aFeO√
fO2

(3.8)

where aFeO is the activity of FeO in the molten experimental sample, and fO2 is the oxygen

fugacity of the experiment. We used the rhyolite-MELTS code (Ghiorso and Sack 1995;

Asimow and Ghiorso 1998; Gualda et al. 2012) to calculate the activity of FeO in the silicate

liquid for each experimental starting composition at the experimental temperature and

oxygen fugacity. Using equation 3.8, we calculate P sample
Fe , which is then used to calculate

the evaporative flux, JFe, from equation 3.4. Assuming the gas flow in our furnace is

efficient in removing any Fe gas that is released into the furnace from the sample, we set the

ambient vapor pressure of Fe (Pa) equal to 0. Then, the only unknown needed to solve for
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the evaporative flux (JFe) using equation 3.4 is the Fe evaporation coefficient (αFe). The

evaporation coefficients we used in equation 3.4 to calculate evaporative Fe loss that matches

the estimated evaporative Fe loss from our samples are αFe = 2.5 × 10−3 at IW−1, and

αFe = 6.3× 10−2 at IW+2 (see Appendix B for additional detail).

Through isotopic measurement and mass balance calculations of our experiments, we have

demonstrated that isotopic fractionation during evaporation and loss to the experimental

container are essential considerations for experimental studies of isotope partitioning. Despite

this open system behavior, the olivine and glass phases were always in equilibrium, as diffusion

in the melt is fast (at 1265◦C, anhydrous basaltic melt DFe ∼ 10−11 m2/s; Zhang et al. 2010),

and 10− 50 µm diameter olivine grains would diffusively equilibrate at the experimental run

temperature and duration. For example, at experimental conditions of 1265◦C and IW+2,

a 50 µm olivine grain would equilibrate with respect to Fe and Mg in approximately 50

hours (McDougall and Harrison 1999; Dohmen and Chakraborty 2007). The olivine and glass

separates showed deviation from the starting material, but had identical isotopic composition

to that of the “total sample” which diffusively maintained equilibrium. Thus, the measured

Fe isotopic compositions of the olivine and glass can accurately be compared to interpret the

olivine-melt Fe isotopic fractionation during olivine crystallization.

3.4.2 Factors controlling iron isotopic fractionation on the Moon

We have applied our results to test whether the lunar iron isotope “dichotomy” observed

between the high- and low-Ti basalts can be explained by olivine crystallization or melt

titanium content.

From our complementary NRIXS and olivine crystallization experiments, we have concluded

that any equilibrium fractionation of iron isotopes between olivine and melt at lunar-like
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oxygen fugacities is not resolvable within analytical uncertainties. Olivine-melt Fe isotopic

fractionation factors for the lunar volcanic glasses were determined from our measured force

constants on the glass suite and the olivine NRIXS results from Dauphas et al. (2014)

(Figure 3.9). Our result from the MC-ICPMS olivine crystallization study is consistent

with the Fe isotopic fractionation factors predicted by the NRIXS measurements on olivine

(Dauphas et al. 2014) and the suite of lunar volcanic glasses (this study), in that there is not

a resolvable iron isotopic fractionation. Some major element variations in lunar mare basalts

can be attributed to differences in source compositions having experienced varying degrees

of olivine fractionation (Shearer et al. 2006, and references therein). Additionally, extensive

crystallization of the lunar magma ocean involving significant fractionation of olivine has been

previously hypothesized as a mechanism for generating the isotopically heavy source regions

for the high-Ti basalts (Wang et al. 2015). However, because olivine does not fractionate iron

isotopes to a measureable extent, varying degrees of equilibrium olivine crystallization can be

eliminated as a potential mechanism for generating the mare basalt iron isotope dichotomy.

The fractionation of phases other than olivine, such as clinopyroxene and ilmenite, are likely

more important in interpreting both the major element and isotopic compositions of the

lunar mare basalt suites.

Both of our experimental approaches indicate that the difference in melt titanium content

between low-Ti and high-Ti mare basalts cannot explain the observed iron isotope dichotomy.

Partitioning of Fe into olivine has been shown to be a function of Ti content (Longhi et

al. 1978; Xirouchakis et al. 2001; Krawczynski and Grove 2012). Titanium influences the

coordination environment of Fe2+ in silicate melt by forming Fe-Ti complexes, and as a result,

Fe is preferentially incorporated into the melt relative to olivine (Krawczynski and Grove

2012). However Fe isotope partitioning does not appear to correlate with melt titanium

content, as demonstrated by our NRIXS force constant measurements (Table 3.4, Figure
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Figure 3.9: Equilibrium mineral-melt fractionation of iron isotopes for olivine plotted as a
function of temperature. The blue line represents the difference between the average beta
factor calculated from the NRIXS mean force constants for our synthetic lunar glasses and
the beta factor for olivine (Fo82) from Dauphas et al. (2014). The blue shading represents the
error associated with the calculated beta factors. The difference between the iron isotopic
compositions of olivine and glass separates in each crystallization experiment (Table 3.5) are
plotted with the associated measurement errors (95% confidence interval). Green symbols
indicate a synthetic green glass starting composition, and black symbols indicate a synthetic
black glass starting composition. The inset in the bottom right is the same data plotted in
the main figure, with the x-axis expanded on the experiment run temperatures. There is no
resolvable difference between olivine and the synthetic lunar glass suite under equilibrium
conditions, as evidenced by our experimental results from both the NRIXS and ICPMS
approaches.
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3.4) and our olivine crystallization experiments from both the low-Ti and high-Ti glass

compositions. Within the investigated range of titanium content, the average coordination

number of Fe2+ does not vary enough to influence the NRIXS force constants. Though the

major element partitioning of Fe into olivine is affected by Fe2+-Ti complexes in silicate melt,

we conclude that the isotopic partitioning of Fe is not affected by melt titanium content.

In contrast, Dauphas et al. (2014) demonstrated that melt compositional parameters such

as silica content and the redox state of iron (i.e., Fe3+ content) influence the Fe bonding

structure, and consequently, the iron isotopic composition, in a suite of terrestrial volcanic

glass compositions ranging from basalt to rhyolite.

3.4.3 Iron isotopic composition of lunar dunite 72415

Olivines from lunar dunite 72415 are considerably lighter than the mare basalts (δ56Fedunite =

−0.35± 0.20‰, Wang et al. 2015; Sossi and Moynier 2017). These values, if representative

of equilibrium fractionation from a parent melt isotopically similar to the mare basalts (δ56Fe

= 0‰ to +0.2‰), differ from the predicted Fe isotopic fractionation of this study. The

absence of resolvable equilibrium iron isotopic fractionation between olivine and lunar melts

in our experiments supports a non-equilibrium model for generating the light iron isotopic

composition of the lunar dunite.

As Fe begins to diffuse into olivine, the isotopes of Fe with lighter mass will be preferentially

enriched, creating a “light” iron isotopic composition (Teng et al. 2008; Dauphas et al. 2010;

Teng et al. 2011; Sio et al. 2013; Sio and Dauphas 2017). The lunar dunite is highly magnesian

(Fo84 – Fo89, Dymek et al. 1975), and any Fe that diffuses into the olivine will greatly affect

the mass balance of Fe isotopes in the dunite. Diffusive iron isotopic fractionation modeling

that reproduces the observed Fe-Mg zoning profiles in lunar dunite olivine grains, can produce

iron isotope signatures as low as δ56Fe= −0.21‰ and −0.3‰ (Wang et al. 2015). Further,
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kinetic isotopic fractionation models of Fe-Mg interdiffusion and olivine crystallization (Teng

et al. 2008; Teng et al. 2011; Sio et al. 2013; Oeser et al. 2015; Collinet et al. 2017; Sio and

Dauphas 2017) reproduce isotopic fractionations as large as 1‰ observed in olivine grains.

Models of lunar dunite (72415-72418) petrogenesis detail the potential petrologic processes

involved in generating a kinetic origin for the isotopically light dunite signature. Early

petrologic investigations of the lunar dunite identified it as an early lunar magma ocean

cumulate (e.g., Dymek et al. 1975). In contrast, Ryder (1992) concluded that the lunar

dunite crystallized at shallow depths less than 1 km. The early lunar magma ocean cumulate

hypothesis was invoked by Wang et al. (2015) to explain the isotopically light iron isotopic

compositions of the dunite. If the lunar dunite is an early lunar magma ocean cumulate,

then, assuming equilibrium conditions, the composition from which the dunite is crystallizing

must already be isotopically light; δ56Fe= −0.35± 0.20‰.

One way an isotopically light dunite source composition could potentially be generated is by

an early core formation and metal-silicate partitioning. Experimental and analytical studies

of metal-silicate iron isotope partitioning have suggested that metal is isotopically heavier

(∆56Femetal-silicate ≈ +0.1‰) than coexisting silicate (Poitrasson et al. 2005; Shahar et al. 2015;

Elardo and Shahar 2017). However, a number of investigations (e.g., Schuessler et al. 2007;

Poitrasson et al. 2009; Hin et al. 2012; Shahar et al. 2016; Liu et al. 2017) have concluded

that no significant iron isotopic fractionation occurs between metal and silicate in equilibrium.

The disagreement results from the significant differences in starting compositions, phases,

capsule materials, and experimental conditions between studies. Assuming an equilibrium

iron isotopic fractionation did exist between metal and silicate, if the dunite source were

once deep enough to be in isotopic equilibrium with the lunar core, it would have a relatively

light iron isotopic composition. However, the estimates for the bulk mantle iron isotopic

composition of the Moon after core formation (e.g., minimum δ56Fe= −0.15‰; Elardo and
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Shahar 2017), still cannot explain the magnitude of light iron isotopic compositions measured

in the lunar dunite by equilibrium metal-silicate fractionation alone.

Another alternative method of generating isotopically light olivine in the lunar dunite is

partial melting. Iron isotope studies of terrestrial peridotites, which are the residues of partial

melting and depletion, show a correlation between iron isotopic compositions and depletion,

becoming lighter at higher extents of partial melting (Williams et al. 2005; Weyer and Ionov

2007; Williams et al. 2009; Williams and Bizimis 2014). It is possible that the iron isotopic

composition of the lunar dunite is a result of partial melting, however the existing models of

lunar dunite petrogenesis (i.e., Dymek et al. 1975; Ryder 1992; Shearer et al. 2015) identify

the dunite as being of cumulate origin, not an ultra-depleted residue of partial melting.

Considering the potential models for lunar dunite petrogenesis, kinetic fractionation via

Fe-Mg interdiffusion seems likely to have occurred, and this mechanism could easily explain

the light Fe isotopic compositions measured in the lunar dunite olivines. Regardless of

whether the lunar dunite is a deep magma ocean cumulate (Dymek et al. 1975) or shallow

cumulate (Ryder 1992; Shearer et al. 2015), the Mg-rich nature of the dunite ensures it

would have interacted with a higher Fe/Mg melt before and/or during its ascent to the lunar

surface/sub-surface. In this way, iron diffusion into the dunite is a plausible occurrence during

every proposed model of dunite formation. Iron diffusion into the Fe-poor olivine of the lunar

dunite would decrease the δ56Fe composition, producing the negative δ56Fe values measured

by both Wang et al. (2015) and Sossi and Moynier (2017).
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3.4.4 Considerations for high-temperature iron isotopic fractiona-

tion on Earth and Mars

The results of our olivine crystallization experiments indicate that the absence of a measureable

equilibrium iron isotopic fractionation between olivine and melt is robust over fO2 = IW−1

to IW+2 in both the low-Ti (green glass) and high-Ti (black glass) compositions. Thus, we

can apply our results for the synthetic lunar glass compositions to olivine-bearing systems on

Earth and Mars with a similar range in oxygen fugacity, keeping in mind that there could be

melt compositional controls in addition to that of TiO2 determined in this work.

Estimations for the oxygen fugacity of Earth’s upper mantle from spinel peridotites lie within

QFM±2 (IW+1.5 to IW+5.5 at magmatic temperatures), with select abyssal peridotites

and peridotite massifs extending to QFM−3 (∼IW+0.5) (Frost and McCammon 2008, and

references therein). Garnet peridotites are more reducing than spinel peridotites, with the

majority of fO2 estimations falling between IW−1 and IW+2 (Frost and McCammon 2008).

Additionally, the oxygen fugacity of martian basalts is estimated to be QFM−3 to QFM−1

(∼IW to IW+3) (Herd et al. 2002). Considering these estimates of magmatic oxygen fugacity,

the IW−1 to IW+2 range of our experiments is relevant to garnet peridotites, as well as the

most reduced spinel peridotites and martian basalts.

Iron isotopic compositions of terrestrial peridotites are δ56Fe= −0.1‰ to +0.15‰ (Dauphas

et al. 2017). The range of peridotite iron isotopic compositions are considered to be a

result of melt extraction based on the correlation between iron isotopic composition and

depletion, with iron isotopic compositions of residues becoming lighter at higher extents of

partial melting (Williams et al. 2005; Weyer and Ionov 2007; Williams et al. 2009; Williams

and Bizimis 2014). Alternatively, the heavy isotopic enrichment in the melt relative to the

residue may be a result of Fe3+ in the melt (Dauphas et al. 2009a; Dauphas et al. 2014).
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For instance, the difference between the iron isotopic compositions of spinel and garnet

peridotites has been attributed to the contrasting behavior of Fe3+ during melting (Williams

et al. 2005). Experimental determinations of mineral-melt iron isotopic fractionations for

additional minerals (i.e., pyroxene, spinel) are needed in order to fully model the evolution

of iron isotopic compositions during partial melting, as there exists experimental evidence

for equilibrium iron isotopic fractionation between spinel and olivine (Shahar et al. 2008;

Roskosz et al. 2015).

3.5 Conclusion

Olivine separates are often enriched in lighter iron isotopes relative to coexisting minerals and

the bulk rock (e.g., terrestrial peridotites, Beard and Johnson 2004; Poitrasson et al. 2004;

Williams et al. 2005; terrestrial basalts, Teng et al. 2008; Teng et al. 2011; Sio et al. 2013;

lunar basalts, Poitrasson et al. 2004; Wang et al. 2012; Wang et al. 2015; martian basalts,

Collinet et al. 2017). Considering the olivine-melt fractionation results presented in this work,

the only known mechanism capable of fractionating iron isotopes to a measureable degree is

diffusive fractionation (Dauphas et al. 2010; Teng et al. 2011; Sio et al. 2013; Oeser et al. 2015;

Sio and Dauphas 2016; Collinet et al. 2017). Thus, the olivine grains enriched in light Fe

isotopes in mafic rocks are not a result of primary igneous crystallization, but rather a diffusive

fractionation, potentially related to re-equilibration (Teng et al. 2011; Sio et al. 2013; Oeser

et al. 2015) or simultaneous Fe diffusion and crystal growth (Sio and Dauphas 2016; Collinet

et al. 2017). A diffusive fractionation mechanism is further supported by existing isotopic

disequilibrium between coexisting mineral pairs in peridotite samples (Beard and Johnson

2004; Roskosz et al. 2015). This disequilibrium in peridotites has been hypothesized as a result

of multiple phases of melt extraction, melt percolation, melt-rock reaction, or metasomatism

(Beard and Johnson 2004; Williams et al. 2005; Macris et al. 2015; Roskosz et al. 2015; Zhao

91



et al. 2017). If the light iron isotopic compositions of terrestrial peridotites can conclusively

be attributed to metasomatism, then the light iron isotopic composition of the lunar dunite

(discussed in Section 3.4.3) may also be a result of metasomatism, as metasomatism has been

invoked to explain chemical trends and petrographic textures observed in the lunar dunite

(Shearer et al. 2015).
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Chapter 4

Importance of ilmenite crystallization

and subsolidus reaction for iron,

titanium, and magnesium isotopic

variability in lunar mare basalts

Abstract

The equilibrium partitioning of Fe and Ti isotopes between ilmenite and melt was exper-

imentally investigated in order to evaluate the role of ilmenite in generating the isotopic

compositional variability among the lunar mare basalts. Ilmenite crystallization experiments

were conducted using two bulk compositions: an ilmenite-saturated basaltic andesite, and

an ilmenite-saturated Apollo 14 black glass, and the Fe and Ti isotopic compositions of the

experimental ilmenites and glass (quenched melt) were analyzed using solution MC-ICPMS.
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Additionally, nuclear resonant inelastic X-ray scattering (NRIXS) measurements on synthetic

ilmenite were conducted and compared to previous NRIXS measurements on synthetic lunar

glasses in order to derive temperature-dependent ilmenite-melt Fe isotopic fractionations. The

experimentally determined ilmenite-melt fractionations (∆56Feilmenite-melt = −0.05± 0.02‰

and ∆49Tiilmenite-melt = −0.09 ± 0.03‰ at 1100◦C) have been incorporated into a lunar

magma ocean crystallization model that was developed to track the major element and

isotopic compositional evolution of lunar magma ocean cumulates and residual liquid. In a

three-component mixing model for mare basalt parent magmas, the Ti isotopic compositional

difference between the low- and high-Ti mare basalts was reproduced using the modeled Ti

isotopic compositions of lunar magma ocean ilmenite cumulates. However, the difference

in Fe isotopic composition between the low- and high-Ti mare basalts cannot be attributed

solely to products of lunar magma ocean crystallization. Instead, the Fe and Mg isotopic

compositions of the lunar mare basalts indicate Fe-Mg interdiffusion has occurred in the

Ti-rich component of the mare basalt source regions via subsolidus reaction between ilmenite

cumulates and the olivine- and pyroxene-rich lunar mantle.

4.1 Introduction

As demonstrated by the compositional variability observed among lunar volcanic samples, the

lunar mantle is heterogeneous, particularly with respect to titanium. Lunar mare basalts and

ultramafic volcanic glasses, which represent melts of the lunar interior, are characterized by

low- and high-Ti suites. High-titanium mare basalts and volcanic glasses have compositions

with 10−15 wt.% TiO2 and greater, whereas a majority of terrestrial basalts contain less than

2 wt.% TiO2 (Figure 4.1, Basaltic Volcanism Study Project 1981). The distinctive titanium

enrichment in lunar magmas indicates that the nature of the mantle and melt generation

processes on the Moon differs from that on Earth.
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Figure 4.1: Compositional variations between terrestrial mid-ocean ridge basalts (red dots)
and lunar mare basalts and volcanic glasses (black x’s). Terrestrial data (14,100 samples)
were downloaded from the PetDB Database (www.earthchem.org/petdb) on June 24, 2019
using the following parameters: tectonic setting = spreading center and rock classification =
basalt. Lunar data (4,371 samples) were downloaded from the database compiled by Clive
Neal (www3.nd.edu/∼cneal/Lunar-L/Mare-Basalt-Database.xls).
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The mantle source regions for the mare basalts are thought to be comprised of products and

chemical gradients related to the crystallization of a lunar magma ocean (e.g., Walker et al.

1975; Snyder et al. 1992). In general, there are three important compositional components

in the mare basalt sources related to the products of a lunar magma ocean: ultramafic

cumulates, high-titanium ilmenite-bearing cumulates, and a potassium-, rare earth element-,

and phosphorus-rich component (KREEP). Models of lunar magma ocean crystallization begin

with estimates for a bulk Moon composition magma and precipitate olivine and orthopyroxene

as the sole phases for more than 50% of crystallization (e.g., Snyder et al. 1992; Elkins-Tanton

et al. 2011; Elardo et al. 2011). Though the relative mineral proportions are model dependent,

these “ultramafic cumulates” are characterized by a mixture of olivine and orthopyroxene

and likely make up the majority of the lunar mantle. In the late stages of lunar magma

ocean crystallization after approximately 90% of the original magma has solidified, ilmenite,

an Fe-Ti oxide, begins to crystallize, producing ilmenite-bearing cumulates. The KREEP

component in the mare basalt sources is considered to be related to the residual liquid that

remains toward the end of magma ocean solidification, as this component is enriched in

incompatible elements that would not have partitioned strongly into the earlier crystallizing

minerals olivine, orthopyroxene, clinopyroxene, ilmenite, and plagioclase. Of the three main

compositional components in the mare basalt sources, the ilmenite-bearing cumulates are

most important in understanding the titanium variation between the source regions for the

low- and high-Ti basalts.

Though ilmenite-bearing lunar magma ocean cumulates have often been invoked as the source

of titanium enrichment in the lunar mantle, questions remain regarding the abundance and

location of ilmenite in the lunar interior, as well as the processes responsible for incorporating

ilmenite into the mantle sources for mare basalt magmas. The onset of ilmenite crystallization

in the lunar magma ocean will dictate at which point ilmenite-bearing cumulates are formed
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and will in part determine the modal abundance of ilmenite in the lunar mantle. Recent

experimental studies of lunar magma ocean crystallization have provided improved constraints

on when ilmenite precipitates and in what proportion relative to co-crystallizing minerals (Lin

et al. 2017a; Lin et al. 2017b; Charlier et al. 2018; Rapp and Draper 2018; Lin et al. 2019).

Minerals less dense than the residual lunar magma ocean liquid from which they crystallize,

such as plagioclase, are expected to float toward the lunar surface and aggregate to form

a crust. In contrast, an ilmenite-rich cumulate layer is hypothesized to sink through the

lunar mantle due to the relatively high density of ilmenite (Hess and Parmentier 1995). The

feasibility and extent of ilmenite-bearing cumulate downwelling involves numerous geodynamic

considerations (e.g., timing relative to magma ocean solidification, rheology of the lunar

mantle, thickness of the ilmenite-bearing layer, proportion of ilmenite in the cumulate layer)

(Zhao et al. 2019; Li et al. 2019). In addition to lunar magma ocean processes, the mechanisms

involved in the re-melting of ilmenite-bearing cumulates and ascent of dense high-Ti magmas

to the lunar surface are important in establishing the location and distribution of ilmenite-

rich regions within the lunar mantle (Wagner and Grove 1997; Van Orman and Grove 2000;

Vander Kaaden et al. 2015; Mallik et al. 2019).

High-precision, non-traditional stable isotope analyses of lunar samples have recently provided

new compositional constraints to consider when modeling the heterogeneity of the lunar mare

basalt sources. Resolvable differences in iron, titanium, and magnesium isotopic compositions

exist between the low-Ti and high-Ti mare basalts (Figure 4.2). For iron and titanium,

the high-Ti mare basalts are isotopically “heavy” compared to low-Ti basalts (δ56Fehigh-Ti

> δ56Felow-Ti and δ49Tihigh-Ti > δ49Tilow-Ti; Wiesli et al. 2003; Poitrasson et al. 2004; Weyer

et al. 2005; Craddock et al. 2010; Liu et al. 2010; Millet et al. 2016; Sossi and Moynier 2017;

Poitrasson et al. 2019). In contrast for magnesium, high-Ti mare basalts are isotopically “light”
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relative to low-Ti basalts (δ26Mghigh-Ti < δ26Mglow-Ti; Sedaghatpour et al. 2013; Sedaghatpour

and Jacobsen 2019).

Ilmenite has been hypothesized as the main control for the isotopic distinction observed

between the low- and high-Ti mare basalts. Previous studies have concluded that the heavy

Fe, heavy Ti, and light Mg isotopic compositions of the high-Ti mare basalts were inherited

from ilmenite-bearing lunar magma ocean cumulates (Weyer et al. 2005; Liu et al. 2010;

Craddock et al. 2010; Sedaghatpour et al. 2013; Wang et al. 2015; Sedaghatpour and Jacobsen

2019).

In order to evaluate the role of ilmenite in generating the isotopic compositional variability

among the mare basalts, the isotopic composition of the ilmenite-bearing lunar magma ocean

cumulates as well as any isotopic fractionation that occurs during ilmenite crystallization or

melting must be identified. To this aim, we have experimentally investigated the equilibrium

partitioning of Fe and Ti isotopes between ilmenite and melt. We have developed a lunar

magma ocean crystallization model that for the first time incorporates isotopic, minor element,

and major element compositions in a coherent, fully mass-balanced way. Combining our

ilmenite-melt isotopic fractionations with models of lunar magma ocean crystallization and

mare basalt petrogenesis, we have quantified to what extent ilmenite-bearing cumulates can

account for the Fe, Ti, and Mg isotopic compositions of the lunar mare basalts.
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Figure 4.2: Average iron, magnesium, and titanium isotopic compositions of low- and high-Ti
lunar mare basalts. Isotopic fractionation is observed between the low- and high-Ti lunar
mare basalts for all three elements. There appears to be a negative correlation between Fe and
Mg isotopic compositions and a positive correlation between Fe and Ti isotopic compositions.
For Fe, the plotted values and error bars represent previously reported averages and 2 SE
(two standard error) uncertainties, respectively, for the low-Ti (n = 27) and high-Ti (n = 25)
mare basalts (Poitrasson et al. 2019). For Mg, the averages and 2 SE uncertainties (low-Ti n
= 14, high-Ti n = 15) have been calculated from the data reported in Sedaghatpour et al.
(2013) and Sedaghatpour and Jacobsen (2019). For Ti, the average and 2 SE uncertainty
has been calculated for the high-Ti basalts (n = 5) from the data reported in Millet et al.
(2016). Because the Ti isotopic compositions of the low-Ti basalts (n = 3) were identical, the
error bars on the low-Ti average instead represent the largest analytical uncertainty (95%
confidence interval) reported for the three measurements.
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4.2 Experimental calibration

4.2.1 Starting materials

Ilmenite crystallization experiments were conducted using two bulk compositions: an ilmenite-

saturated basaltic andesite, and an ilmenite-saturated Apollo 14 black glass (Table 4.1).

The two starting compositions were chosen such that ilmenite would be the only Fe-bearing

phase crystallized during the experiment. Both starting materials were synthesized from a

combination of oxide, carbonate, and titanate powders that were mixed under isopropanol in

a silicon-nitride ball mill for 3 hours. Calcium was added as CaCO3 for the basaltic andesite,

and CaTiO3 for the Apollo 14 black glass. Polyvinyl alcohol was added as a binding agent

to the basaltic andesite starting material, and once dry, 75 mg aliquots were pressed into

cylindrical pellets of 4 mm diameter and 2 mm height. The sample pellets were fused to

rhenium wire loops in preparation for the gas-mixing furnace.

4.2.2 Ilmenite-saturated basaltic andesite

One starting composition, “ilmenite-saturated basaltic andesite”, was determined by adding

additional TiO2 to an evolved lunar basalt composition in order to stabilize ilmenite as a

liquidus phase. Ilmenite crystallization experiments on the basaltic andesite composition were

Table 4.1: Starting material compositions for ilmenite crystallization experiments reported in
oxide weight percent.

Composition Mix SiO2 TiO2 Al2O3 FeO MnO MgO CaO

ilm-saturated basaltic andesite #38 53.7 7.2 10.9 18.9 0.2 1.1 8.0

ilm-saturated Apollo 14 black glass #48 23.7 28.8 5.4 33.1 0.4 5.3 3.2
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conducted in one-atmosphere vertical gas-mixing furnaces at Washington University in St.

Louis. The experiments were conducted for durations of 3-8 days (Table 4.2). A controlled

flow of H2 and CO2 gases buffered the oxygen fugacity at approximately one log unit above

iron-wüstite (fO2 = IW+1) throughout each experiment. The fugacity was monitored with a

Ca-doped zirconia oxygen probe using air as the reference gas. Starting material pellets were

fused to rhenium loops and hung by a Pt wire thread in the furnace hot spot for the run

duration. The reported run duration in Table 4.2 reflects the time between sample insertion

and sample quench. Experimental samples were quenched rapidly by melting the Pt hanging

wire and dropping the sample from within the furnace into a beaker of deionized water.

We conducted a series of experiments in order to determine a cooling sequence that would

crystallize ilmenite grains suitable for hand-picking for isotopic analysis. Each sample was

inserted into the furnace at the starting temperature (Tstart) and remained at that temperature

for either 3 hours (experiments J045, H062, H063, J046) or 24 hours (experiments J047 and

J109). The temperature of the furnace was then decreased to the final sample temperature

(Tfinal) at a programmed cooling rate (see Table 4.2). Experiments H062 and J046 had an

additional 24-hour dwell at 1123◦C in between Tstart and Tfinal. The programmed cooling

sequence promotes the nucleation of crystals, and slower cooling rates allow for more euhedral

crystal growth (Hammer 2006). We determined that a final temperature of approximately

1098◦ was necessary in order to crystallize a proportion of ilmenite sufficient for hand-picking

and isotopic isotopic analysis. Additionally, the ilmenite grains from the experiments cooled

at 1◦C/hr were thinner and more elongate than those in the experiments cooled at 0.5◦C/hr.

Therefore, experiments J047 and J109, which cooled at a rate of 0.5◦C/hr and equilibrated

at the final sample temperature for 2-3 days, were selected for isotopic analysis.

The experimental run products for the basaltic andesite composition contain glass, ilmenite,

quartz, and plagioclase (Figure 4.3). Ilmenite is present as euhedral grains that range from
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 b a

20 µm 100 µm

ilm

ilmplag

qtz
glass

glass

Figure 4.3: Back-scattered electron image of two ilmenite crystallization experiments. a)
Ilmenite-saturated basaltic andesite experiment J047 contains ilmenite (white, blocky crystals),
quartz (dark gray, rounded crystals), plagioclase (medium gray, small crystals), and glass
(bright gray matrix). b) Ilmenite-saturated Apollo 14 black glass experiment F131 contains
ilmenite (bright gray crystals) and glass (gray matrix). Additionally, regions of quench
crystals (dark gray) are observed toward the bottom of the capsule (bottom of image).

10 to 40 µm in diameter. Quartz is present as subhedral, occasionally elongate grains that

range from 10 to 60 µm in diameter. Plagioclase is present throughout the sample as patches

of < 10 µm grains.

4.2.3 Ilmenite-saturated Apollo 14 black glass

The second starting composition, “ilmenite-saturated Apollo 14 black glass”, was chosen in

order to conduct experiments in which ilmenite was the only crystallizing phase. Ilmenite

and glass separation for isotopic analysis was made easier by having ilmenite as the sole

crystalline phase (without co-existing plagioclase or quartz).

We determined the starting composition for the ilmenite-only experiments by experimentally

saturating an Apollo 14 black glass composition with synthetic ilmenite. To do this, we

began with a mixture of oxide and titanate powders that was prepared to be similar in

composition to Apollo 14 black glass (Delano 1986). We synthesized an ilmenite powder by
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mixing Fe sponge, Fe2O3, and TiO2 in stochiometric proportions (FeTiO3). Then, we loaded

the synthetic black glass and ilmenite starting materials into a graphite capsule in a 2:1 mass

ratio. The sample was heated to 1420◦C in a piston cylinder assembly at 10 kbar pressure for

24.1 hours. The experimental run products were analyzed for major element composition

using the electron microprobe. The average composition of the quenched melt near the

ilmenite-black glass interface was chosen as the target composition for our ilmenite-saturated

Apollo 14 black glass starting material (Table 4.1, Section 4.2.1).

Experiments on the ilmenite-saturated Apollo 14 black glass composition were conducted in

a piston cylinder at Washington University in St. Louis. For each experiment, the starting

material was packed into a graphite capsule with 4− 4.5 mm height and approximately 0.75

mm wall thickness. The use of a graphite sample capsule promotes experimental oxygen

fugacities at which minimal Fe3+ exists in the mineral and glass phases (Médard et al. 2008).

Piston cylinder experiments were performed at 10 kbar pressure (Table 4.3). Experimental

pressure was maintained during the experiment by an automatic pressure control system

using the hot piston-in technique (Johannes et al. 1971). Sample temperature was 1350◦C

and controlled to within 1− 3◦C of the reported temperature throughout the experiment, as

monitored by a Eurotherm PID temperature controller. The offset between the thermocouple

reading and sample temperature for the experimental assembly was calibrated using the spinel

reaction-progress thermometer (Watson et al. 2002). Experiments were rapidly quenched by

turning off the power to the apparatus. The reported experimental run durations (Table 4.2)

reflect the time between reaching the experimental target temperature and quench. After the

experiment, the sample capsule was cut in half and mounted in epoxy, then the cut face was

polished in preparation for electron microprobe analysis.

The phase assemblage for the ilmenite-saturated Apollo 14 black glass experiments consists

of ilmenite and glass (Figure 4.3). Ilmenite is present as subhedral grains that range from 20
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Table 4.3: Run conditions and products for piston cylinder experiments conducted on the
ilmenite-saturated Apollo 14 black glass composition (Mix #48, Table 4.1).

Experiment P (kbar) T (◦C) Time (hr) Phases (mode) % Fe lossa

F127 10 1400 3.0 glass
F126 10 1300 4.3 glass + ilm
F128 10 1350 20.7 glass + ilm
F131 10 1350 13.7 glass (74) + ilm (26) −0.1
F143 10 1350 15.2 glass (82) + ilm (18) 0.0

a Percent Fe loss was estimated using the FeO content of the starting composition and
the FeO content of the sample (calculated from the phase compositions and modal
abundances). A negative value indicates Fe gain.
The major element compositions of the phases in experiments F126, F127, and F128
were not analyzed, and thus there are no quantitative results for phase abundance or
Fe loss to report.

to 200 µm in diameter, with elongate ilmenite grains extending up to 500 µm in length. In

addition to ilmenite and glass, patches of thin silicate crystals are present toward the top of

the experiment capsule (closest to the thermocouple). The dendritic texture of the silicate

crystals suggests they precipitated during quench. Additional experiments were conducted

at 1400◦C and 1300◦C. The experiment at 1400◦C (F127) did not crystallize ilmenite, and

the experiment at 1300◦C (F126) had a higher proportion of ilmenite crystals than those

conducted at 1350◦C. Though experiments F131 and F143 were conducted at the same

temperature and pressure, the estimated phase abundances for ilmenite and glass differ by

approximately 10% (Table 4.3). We observed a slight decrease (0.3%) in the average output

power supplied to the apparatus during the last 4 hours of experiment F131; this change may

explain the higher proportion of ilmenite in F131, as a decrease in output power would lower

the sample temperature.

4.2.4 Electron microprobe analysis

Synthetic minerals and glasses from both sets of ilmenite crystallization experiments were

analyzed for major element abundances using the JEOL JXA-8200 at Washington University
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in St. Louis. Standardization was performed with a beam diameter of 20 µm on natural and

synthetic glass and mineral samples (synthetic Shankland forsterite, synthetic Mn-olivine,

synthetic TiO2, natural Ilmen Mountains ilmenite NMNH 96189, natural anorthite NMNH

137041, natural wollastonite, and natural Kakanui hornblende NMNH 143965). We used

the mean atomic number (MAN) method (Donovan et al. 2016) for wavelength dispersive

spectrometer background correction and measured the following elements: Si, Al, Ti, Fe, Mn,

Mg, Ca. Each quantitative analysis used a 15 kV accelerating potential and 25 nA beam

current.

Glass compositions were analyzed with a 30 µm beam diameter for experiment F131, 10 µm

beam diameter for experiments J047 and F143, and 5 µm beam diameter for experiment

J109. Ilmenite compositions were analyzed with a 10 µm beam diameter for experiment F131,

2 µm beam diameter for experiment J109, and ∼1 µm beam diameter for experiments J047

and F143. Quartz was analyzed with a 2 µm beam diameter. Plagioclase was analyzed with

∼1 µm beam diameter. Compositional data were reduced using Probe for EPMA software

(https://www.probesoftware.com) and then filtered to exclude analyses where the analytical

totals were less than 98.5 wt.% or greater than 101.5 wt.%. This threshold was expanded to

include totals greater than 97 wt.% for J047 glass analyses, and totals less than 103 wt.%

for quartz and plagioclase analyses on experiment J109. Ilmenite analyses for experiments

J047 and J109 were filtered to include only those where the cation total for 3 oxygen atoms

was greater than 1.98 and less than 2.02 (ideal ilmenite stoichiometry contains 2 cations per

3 oxygen atoms). For experiments F131 and F143, ilmenite analyses contained 1.96-1.98

cations per 3 oxygen atoms. Averages of the analyzed glass and mineral compositions are

reported in Table 4.4.
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4.2.5 Sample dissolution and Multicollector-Inductively Coupled

Plasma Mass Spectrometry (MC-ICPMS) methods

In order to determine the Fe isotopic fractionation factor between ilmenite and melt, we

hand-separated ilmenite and glass (quenched melt) from the experimental run products and

measured the Fe isotopic composition of each phase using solution MC-ICPMS. For each

basaltic andesite experiment, the quenched experimental sample was crushed, select sample

chips were mounted for electron microprobe analysis, and the rest of the material remained

for isotopic analysis. For each Apollo 14 black glass experiment, half of the experiment

capsule was mounted for electron microprobe analysis, and then after analysis was recovered

from the mount and combined with the other half of the sample for isotopic analysis. Each

of the experiments was ground using a mortar and pestle, and the material was sieved to

< 63 µm. Opaque ilmenite grains were hand-picked from the experimental samples under an

optical microscope. The transparency of the glass allowed for separation of glass pieces that

were free of crystals.

Ilmenite and glass separates were then dissolved in acid, purified for Fe through column

chemistry, and analyzed for Fe and Ti isotopic composition using the Thermo Scientific

Neptune MC-ICPMS in the Origins Lab at the University of Chicago. The starting material

powders, experiment wires, and “total samples” (experimental sample left after glass and

ilmenite separate removal) were also dissolved and measured to aid in interpretation of

the measured isotopic compositions. We began each sample digestion with a heated acid

dissolution using a 2:1 mixture of concentrated HF-HNO3 on a hot-plate set to 120◦C. The

second dissolution step was performed using aqua regia (3:1 ratio of HCl-HNO3). High-

pressure Parr Bombs were used for the next digestion step following a protocol similar to

Craddock and Dauphas (2011). Each sample was loaded into a 6 ml Savillex PFA vial with
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2.5 mL HF and 0.5 mL HNO3. The sample vial was heated inside a 45 mL Parr Bomb

at 170◦C for 3 days. After the bomb digestion step, each sample was dried out and then

dissolved in 500 µL of 6M HCl (with the exception of the digested starting material powders,

which instead used 1 mL 6M HCl). Sample solutions were split in half, with 250 µL of each

solution being used for Fe isotopic measurement and the remaining 250 µL of each sample

solution being reserved for Ti isotopic measurement.

The sample solutions were purified for Fe through column chemistry following the routine

methods of the Origins Lab at the University of Chicago (e.g., Dauphas et al. 2004; Dauphas

and Rouxel 2006; Dauphas et al. 2009b). The iron isotopic compositions of the sample

solutions were measured using the standard-bracketing method of Dauphas et al. (2009b),

and are reported in Table 4.5 as δ56Fe relative to IRMM-524, whose isotopic composition is

identical to IRMM-014 (Craddock and Dauphas 2011).

We have also measured the Ti isotopic compositions of the experimental run products for one

of the ilmenite crystallization experiments (J047). For Ti isotopic measurement, a titanium

double spike (47Ti−49Ti) was added to each dissolved sample in a 48:52 spike-to-sample ratio

based on the mass of titanium in the sample (Millet and Dauphas 2014). The samples were

then prepared for Ti isotopic measurement through ion-exchange chromatography following

the Origins Lab protocols previously described in Millet et al. (2016), Greber et al. (2017),

and Johnson et al. (2019). Titanium isotopes were measured on a MC-ICPMS bracketed

with standards that were doped with the same double spike mixture as the sample. The

48Ti concentrations were matched within ±10% of the sample Ti concentration. Following a

block of 5 samples, a clean blank solution was measured for on-peak baseline correction. The

titanium isotopic compositions are reported as δ49Ti relative to the Origins Laboratory Ti

reference material (OL-Ti, Millet and Dauphas 2014) (Table 4.6). Reported uncertainties

(95% confidence interval) on the Ti isotopic compositions were determined using the methods
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Table 4.6: Titanium isotopic compositions for experiment J047. Reported uncertainties are
95% confidence interval.

Sample δ49Ti (‰) na

Starting Material −0.144± 0.018 9

Glass −0.140± 0.024 6

Ilmenite −0.228± 0.021 9

Total Sample −0.168± 0.013 9

a Number of repeated sample measure-
ments.

described in Dauphas et al. (2009b) and incorporate both the measurement uncertainty

and the long-term external reproducibility of the instrument. Basalt geostandard BHVO-2

was processed simultaneously with the experimental samples, and the measured Ti isotopic

composition (δ49Ti= +0.019 ± 0.009‰) is in agreement with previously reported values

(δ49Ti= +0.020 ± 0.006‰, Millet et al. 2016, and δ49Ti= +0.021 ± 0.020‰ Millet and

Dauphas 2014).

4.2.6 Nuclear resonant inelastic X-ray scattering spectroscopy (NRIXS)

approach for iron isotopes

In addition to the ilmenite crystallization experiments, we synthesized ilmenite for nuclear

resonant inelastic X-ray scattering spectroscopy (NRIXS) measurement in order to derive

quantities needed for calculating equilibrium iron isotopic fractionation factors involving

ilmenite. The starting material for the ilmenite synthesis was created using a stoichiometric

mixture (1:2) of 57Fe2O3 and TiO2 powders. In order to perform the NRIXS measurements,

which are only sensitive to the Mössbauer isotope 57Fe, 57Fe-enriched Fe2O3 powder (96.64%

57Fe, Cambridge Isotopes) was used. The oxide powders were mixed by hand with isopropanol

in an agate mortar and pestle for 2 hours. Two 57Fe-doped ilmenite syntheses were conducted.
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One synthesis was conducted at Case Western Reserve University in a one atmosphere box

furnace at 1201◦C for 122.1 hours. For this synthesis, the starting material was placed in a

small SiO2 glass tube, then vacuum sealed in a larger SiO2 glass tube. The second 57Fe-doped

ilmenite synthesis was conducted at Washington University in St. Louis in a piston cylinder at

15 kbar and 1140◦C for 65.7 hours. The sample starting material was loaded into a 7.89 mm

tall graphite capsule with 0.75 mm wall thickness. The NRIXS results for the one-atmosphere

synthesis are reported here. Forthcoming NRIXS measurements on the ilmenite synthesized

using the piston cylinder will determine whether these reported results are robust.

From the phonon excitation probability function, S(E), or the partial phonon density of states,

g(E), itself derived from S, the force constant for the iron sublattice can be extracted (e.g.,

Dauphas et al. 2012; Dauphas et al. 2014; Liu et al. 2017). The force constant calculated from

the NRIXS spectra on our synthetic ilmenite is 156± 10 N/m. Given the high temperatures

involved in magmatic processes, and assuming that the bonds are harmonic, the reduced

partition function ratio, or β-factor, is calculated as a function of temperature from the mean

force constant of the iron bonds, 〈F 〉 in N/m.

1000 ln β = 2904
〈F 〉
T 2

(4.1)

At a given temperature, the equilibrium stable isotopic fractionation factor (αmineral-melt)

between two phases is related to the β-factor and Fe isotopic composition (δ56Fe) for each

phase through:

1000 lnαmineral-melt = δ56Femineral − δ56Femelt = 1000 ln βmineral − 1000 ln βmelt (4.2)

The equilibrium iron isotopic fractionation between ilmenite and lunar melts can be calculated

as a function of temperature using equations 4.1 and 4.2, the force constant for ilmenite
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reported in this work (156± 10 N/m), and the force constants previously reported for a suite

of synthetic lunar volcanic glasses (Prissel et al. 2018). The fractionation between ilmenite

and synthetic Apollo 16 green glass (〈F 〉 = 189± 9 N/m, Prissel et al. 2018) is reported for

1100◦C and 1350◦C in Table 4.7.

4.2.7 Ilmenite-melt isotopic fractionation

The measured Fe isotopic compositions of the experimental glass and ilmenite separates define

an ilmenite-melt iron isotopic fractionation for each experiment (Table 4.7). The results

from our ilmenite crystallization experiments are contradictory, with one set indicating that

ilmenite is isotopically heavier than the co-existing glass (δ56Feilmenite > δ56Feglass), and the

other indicating that ilmenite is lighter (δ56Feilmenite < δ56Feglass). This difference may be

attributed to factors such as the composition of the melt and ilmenite or the experimental

oxygen fugacity. We have conducted replicate experiments (J109 and F143) in order to

test whether the two starting compositions yield different ilmenite-melt fractionation factors.

Forthcoming isotopic measurements of experiments J109 and F143 will conclude whether the

results for experiments J047 and F131 reported here are robust. (Additionally, experiment

J047 contains excess 57Fe, likely from contamination of the initial starting material pellet

prior to the experiment. While this does not explain the difference in δ56Fe between the

two ilmenite crystallization experiments, the contamination is another reason to repeat this

experiment.) The ilmenite-melt iron isotopic fractionation derived from the Apollo 14 black

glass ilmenite crystallization experiment agrees with the fractionation calculated from the

NRIXS approach, and thus, for our modeling purposes we will use these fractionations,

with ilmenite being isotopically lighter than the melt (Table 4.7). Further, our results are

consistent with previously reported ilmenite-melt Fe isotopic fractionations deduced from

experimental studies (δ56Feilmenite − δ56Femelt = −0.013‰, Sossi and O’Neill 2017), but differ
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Table 4.7: Comparison of the ilmenite-melt Fe isotopic fractionations experimentally de-
termined in this work. For each method, the reported uncertainty on the ilmenite-melt
fractionation was calculated from the reported measurement uncertainties on ilmenite and
glass.

Method T (◦C) ∆56Feilmenite-melt (‰) ∆57Feilmenite-melt (‰)

Ilmenite crystallization (J047) 1098 +0.06± 0.04 −
Ilmenite crystallization (F131) 1350 −0.04± 0.03 −0.08± 0.05

NRIXSa 1350 −0.04± 0.01

1100 −0.05± 0.02

a NRIXS fractionations have been calculated at the given temperatures using the force constant
for ilmenite reported in this work and the force constant for a synthetic Apollo 16 green glass
reported in Prissel et al. (2018).
∆57Feilmenite-melt is not reported for experiment J047 because this experiment contained excess
57Fe due to sample contamination.

from those inferred from measured Fe isotopic compositions of natural mineral separates (i.e.,

δ56Feilmenite − δ56Femelt = +0.20‰, Craddock and Dauphas 2011; Wang et al. 2015).

In comparing the Ti isotopic compositions of our synthetic glass and ilmenite (Table 4.6),

we have determined an ilmenite-melt Ti isotopic fractionation of ∆49Tiilmenite-melt = −0.09±

0.03. Previously, Millet et al. (2016) defined a temperature-dependent oxide-melt isotopic

fractionation ∆49Tioxide-melt = −0.23× 106

T 2 . Calculating the ∆49Tioxide-melt fractionation for

the experimental temperature of 1098◦C yields ∆49Tioxide-melt = −0.12‰, and this is within

the estimated uncertainty of our experimentally determined fractionation. Our experimentally

determined ilmenite-melt Ti isotopic fraction is also within range of that predicted from the

temperature and melt SiO2 composition of our experiment (Deng et al. 2019; Johnson et al.

2019).

All of our experiments have been conducted at oxygen fugacities relevant to the oxygen

conditions inferred for the Moon. These reducing conditions minimize the presence of Fe3+,

which has been demonstrated to affect Fe isotope partitioning (Teng et al. 2008; Dauphas
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et al. 2009a; Dauphas et al. 2014). Moving forward, we have incorporated our experimentally

determined Fe and Ti isotopic fractionations between ilmenite and melt into models of lunar

magma ocean crystallization.

4.3 Lunar magma ocean crystallization

We have developed a lunar magma ocean (LMO) crystallization model that tracks both the

major element chemistry and the isotopic composition of the minerals precipitating from

the LMO and the residual LMO liquid. The onset of ilmenite crystallization and ilmenite-

melt isotopic fractionation are the most important considerations for modeling the isotopic

composition of the ilmenite-bearing lunar magma ocean cumulates. Experimental studies of

lunar magma ocean crystallization have determined that ilmenite begins crystallizing near

88-98% LMO solidification (Lin et al. 2017a; Lin et al. 2017b; Charlier et al. 2018; Rapp

and Draper 2018; Lin et al. 2019). These results are consistent with previous theoretical

estimates for ilmenite saturation in the LMO (87-95% LMO solidification, Snyder et al. 1992;

Elkins-Tanton et al. 2011), and the experimental mineral assemblages provide improved

constraints on the major element evolution of the LMO with which to calibrate our model.

Our model begins with a given bulk composition for the lunar magma ocean (Table 4.8)

and crystallizes according to the mineral phases and proportions determined by recent

experimental studies (Figure 4.4). For each crystallization sequence, the published synthetic

Table 4.8: Major element composition of bulk silicate Moon as defined in each lunar magma
ocean model.

SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5

Lin et al. (2017a, 2017b, 2019) 45.49 0.52 4.50 10.50 35.74 3.23

Charlier et al. (2018) 46.10 0.17 3.93 0.50 7.62 0.13 38.30 3.18 0.05 0.01 0.02

Rapp and Draper (2018) 45.90 0.15 4.15 0.50 8.15 0.12 38.40 2.95 0.10 0.01 0.01
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Figure 4.4: Solidified lunar magma ocean phase assemblages determined by previous exper-
imental studies (Lin et al. 2017a; Lin et al. 2017b; Charlier et al. 2018; Rapp and Draper
2018; Lin et al. 2019). For the Lin et al. models (top two bar charts): “Dry” summarizes
the experimental results on a nominally anhydrous starting composition, while “High H”
reflects an initial 3150 ppm H2O in the starting lunar magma ocean composition. Charlier et
al. (2018) results are those from experiments on the lunar primitive upper mantle (LPUM)
composition (Table 4.8).

mineral and glass compositions define the mineral-melt partitioning, Dmineral-melt, for SiO2,

TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, CaO, Na2O, K2O, and P2O5 in each mineral phase.

Each experimental model has been treated in a separate iteration such that the major element

behavior is internally consistent for each model and the major element composition of the

liquid evolves similarly to that observed for the melt compositions of the experiments (Figure

4.5). As we are most interested in the compositional effects of ilmenite crystallization, only

the experimental crystallization sequences that reach ilmenite saturation have been included

here.
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At each calculation step, our model uses the published LMO models to determine what

minerals will be crystallizing, and what the proportion of each mineral will be in the solid

crystallized at that step. The concentration of element i in a given mineral is defined as

Ci
mineral = Di

mineral-melt × Ci
melt

The bulk composition of the instantaneous solid at a given crystallization step, Ci
s, is calculated

from the mass proportion of each mineral phase crystallized, Xn, and the concentration of

element i in each phase n, Ci
n.

Ci
s =

n∑
n=1

(Xn × Ci
n)

The new liquid, Ci
l,1 is calculated from the initial composition of the liquid at a given step,

Ci
l,0, the mass fraction of solid crystallized in that step, X i

s, and the composition of the bulk

solid.

Ci
l,1 = Ci

l,0 −X i
s × Ci

s

4.3.1 Isotopic constraints

Our model is capable of tracking the isotopic compositional evolution for any of the eleven

elements included in the starting composition provided there are constraints on the initial

isotopic composition of the lunar magma ocean and isotopic mineral-melt fractionations

for that element. Previous attempts to characterize the isotopic compositional evolution of

the lunar magma ocean liquid and cumulates have been hampered by a lack of experimen-

tally determined mineral-melt fractionations, particularly for ilmenite. Experimental and

125



Figure 4.5: Modeled evolution of the lunar magma ocean FeO and TiO2 liquid compositions
(black lines). Red circles represent the reported glass compositions for the lunar magma
ocean experiments used to calibrate the major element evolution of our models (Lin et al.
2017a; Lin et al. 2017b; Charlier et al. 2018; Rapp and Draper 2018; Lin et al. 2019).

theoretical studies have indicated that the Fe isotopic composition of ilmenite would either

be lighter than the melt (this work) or indistinguishable from that of the melt (Poitrasson

et al. 2004; Poitrasson 2007; Sossi and O’Neill 2017). Alternatively, previous estimates for

ilmenite-melt isotopic fractionations based on the measured isotopic compositions of lunar

ilmenite separates have suggested that, relative to co-existing minerals and melt, ilmenite

would be heavier in Fe isotopes and lighter in Mg isotopes (Craddock et al. 2010; Wang et al.

2015; Sedaghatpour et al. 2013). For Ti isotopes, natural sample studies and first-principles

calculations have concluded that ilmenite is isotopically lighter than the melt (Millet et al.

2016; Greber et al. 2017; Deng et al. 2019; Johnson et al. 2019; Wang et al. 2020), and this is

consistent with our experimental results. Here we have focused on modeling the evolution

of the Fe and Ti isotopic compositions using our experimentally-calibrated ilmenite-melt

isotopic fractionations.
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Estimates for the bulk silicate Moon isotopic composition define the initial isotopic com-

positions of the LMO liquid (δ56Fe = +0.063 ± 0.023‰, Poitrasson et al. 2019; δ49Ti

= −0.003±0.014‰, Millet et al. 2016). The subsequent crystallization calculation is outlined

for Fe isotopes below. We calculate the isotopic composition of the liquid, δ56Fel, and

each cumulate mineral, δ56Femineral, during LMO crystallization using mineral-melt isotopic

fractionations, αmineral-melt, and the following equation:

δ56Femineral = αmineral-melt × (δ56Fel + 1000)− 1000

The bulk iron isotopic composition of the instantaneous solid at a given crystallization step,

δ56Fes, is calculated by mass balance using the concentration of Fe and the Fe isotopic

composition of each mineral phase, n, crystallized.

δ56Fes =
n∑
n=1

(
CFe
n

CFe
s

× δ56Fen)

The Fe isotopic composition of the solid crystallized at each step, and the moles of Fe in the

solid and liquid, [Fe]s and [Fe]l, are used to determine the Fe isotopic composition of the

remaining liquid

δ56Fel,1 =
[Fe]l × δ56Fel,0 − [Fe]s × δ56Fes

[Fe]l − [Fe]s

For the Fe and Ti isotope modeling presented in this work, we have only imposed a mineral-

melt isotopic fractionation for ilmenite. Previous investigations have concluded that olivine

and pyroxene crystallization at lunar oxygen fugacities would not significantly fractionate iron

isotopes (δ56Femelt − δ56Femineral < 0.02‰, Sossi and O’Neill 2017; Prissel et al. 2018). The

ilmenite-melt isotopic fractionations used in our model (Table 4.9) have been selected based
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Table 4.9: Initial Fe and Ti isotopic compositions of the lunar magma ocean and ilmenite-melt
isotopic fractionations used in crystallization models.

Element Initial composition (‰) αilmenite-melt

Fe δ56Fe= 0.063a 0.99994

Ti δ49Ti= −0.003b 0.99991

a Poitrasson et al. (2019)
b Millet et al. (2016)

on our experimental results (Section 4.2.7). For Ti isotopes, the ilmenite-melt fractionation

has been set equal to that determined from our ilmenite crystallization experiment. For Fe

isotopes, the ilmenite-melt fractionation has been calculated at 1000◦C using the force constant

for ilmenite reported in this work and the force constant for a synthetic Apollo 16 green glass

reported in Prissel et al. (2018). A temperature of 1000◦C was chosen in order to extend

to the coldest temperatures of the previously published lunar magma ocean crystallization

experiments. Mass-dependent isotopic fractionations are larger at lower temperatures, and

thus the calculated fractionation, ∆56Feilmenite-melt = −0.06± 0.02‰, represents a maximum

fractionation between ilmenite and melt during ilmenite crystallization from the lunar magma

ocean.

4.3.2 Model results

In the case that ilmenite is isotopically lighter than the melt, ilmenite fractionation during

the lunar magma ocean drives the melt and subsequently crystallizing ilmenite toward heavier

isotopic compositions (Figure 4.6). Our modeling results indicate that the first ilmenites to

crystallize from the lunar magma ocean would have Fe isotopic composition δ56Fe = 0.00‰

and Ti isotopic composition δ49Ti = −0.093‰. Toward the end of lunar magma ocean

crystallization, the fractionation of Fe and Ti isotopes by ilmenite leads to progressively

heavier Fe and Ti isotopic compositions for both the ilmenite cumulates and the residual
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liquid. This isotopic enrichment can result in ilmenite with δ56Fe = +0.093‰ and δ49Ti

= +0.96‰, and a residual liquid with δ56Fe = +0.152‰ and δ49Ti = +1.07‰. It is important

to note that most of the ilmenite crystallized from the lunar magma ocean will have isotopic

compositions toward the lower end of this modeled compositional range, as the heaviest

ilmenites will only constitute a small fraction of the total ilmenite crystallized.
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Figure 4.6: Model results for the iron and titanium isotopic compositional evolution of the
lunar magma ocean liquid and ilmenite cumulates. The isotopic compositions of the LMO
liquid (black) and ilmenite (red) are plotted as a function of percent LMO solidified for each
experimental crystallization sequence (see Figure 4.4). In these models, ilmenite is the only
mineral that has been assigned a mineral-melt isotopic fractionation. Because of this, the
isotopic composition of the lunar magma ocean liquid does not begin to deviate from the
initial starting composition until the onset of ilmenite crystallization in each model. The
bottom row of figures highlights the isotopic evolution in the last 15% of lunar magma ocean
crystallization. The two dashed lines in each figure pane represent an extrapolation of the
Lin et al. (2019) "High H" crystallization sequence, which ends at 94.7 percent solidified.
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4.4 Mare basalt isotopic mixing model

In conjunction with our LMO crystallization model, we have developed a multi-component

mixing model for the isotopic compositions of the mare basalts. For each mare basalt type,

the major element composition of the parent magma is defined using a previously reported

parental melt composition (Table 4.10).

We have modeled the mare basalt parent magmas as a mixture of ilmenite, a potassium-, rare

earth element-, and phosphorus-rich (KREEP) component, and a third additional component

(here referred to as “component X”), the composition of which varies with each mare basalt

type. The major element composition of the ilmenite is defined as the average composition of

our synthetic ilmenites in experiment F131 (Table 4.4). We have assigned the composition

of the KREEP component to be that of KREEP basalt 15386 (Vaniman and Papike 1980).

This KREEP basalt has been used to approximate the KREEP component in previous mare

basalt mixing models (e.g., Dickinson et al. 1985; Shervais et al. 1985; Neal et al. 1988).

Component X encompasses the compositional components of the mare basalt parental melts

that would not be represented by ilmenite or KREEP, and this would consist predominantly

of olivine, pyroxene, and plagioclase. Though we are using KREEP basalt 15386 to define

an endmember composition in our mixing models, it is important to note that the KREEP

basalt itself is a mixture of components that may not be equally distributed throughout the

lunar mantle.

The proportion of KREEP component in each mare basalt type has been calculated from

the K2O composition of the parental melts (Table 4.10). We assume all of the K2O in the

mare basalt parent magma is sourced from the KREEP component, and thus the calculated

proportion represents a maximum proportion of KREEP, as any K2O in the other two

components would decrease this estimate. After accounting for the proportion of KREEP
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Table 4.10: Major element compositions of mare basalt parental magmas.

Mare Basalt Type SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5

Apollo 11 low-Ka 39.6 11.1 9.5 0.47 19.1 0.28 8.1 11.1 0.36 0.05

Apollo 11 high-Kb 42.8 10.2 8.0 0.29 20.0 0.25 8.0 10.0 0.50 0.26

Apollo 17 Ac 37.9 13.0 8.9 0.41 19.6 0.24 9.5 10.0 0.42 0.07

Apollo 17 Bc 36.9 14.2 8.9 0.43 20.5 0.26 9.0 9.4 0.41 0.04

Apollo 17 Cd 38.5 12.3 8.7 0.61 18.5 0.26 9.7 10.1 0.07

Apollo 12e 45.0 2.9 8.6 0.38 21.0 0.28 11.6 9.4 0.23 0.06 0.07

Apollo 15f 44.3 2.3 8.5 0.68 22.7 0.31 11.5 9.4 0.28 0.05 0.08

a Apollo 11 high-Ti, low-K basalt (Type B3) parent magma composition as estimated from sample 10045 (Snyder
et al. 1992).

b Apollo 11 high-Ti, high-K basalt composition from sample 10085, experimentally proven to be a candidate for
the single magma that recreates the variability observed in this sample suite (Beaty et al. 1979; Grove and Beaty
1980; Meyer 2005).

c Apollo 17 high-Ti basalt parent magma compositions as defined by the most MgO- and TiO2-rich, fine grained
samples: Type A= 71555, Type B= 71066 (Murali et al. 1977; Warner et al. 1979; Neal et al. 1990).

d Apollo 17 high-Ti basalt (Type C) parent magma composition as estimated from the average composition of
samples 74245, 74275, and 74247 (Snyder et al. 1992).

e Apollo 12 low-Ti basalt parent magma composition as defined by sample 12009 (Green et al. 1971; Meyer 2005).
f Apollo 15 low-Ti basalt parent magma as defined by the most olivine- and Mg-rich sample, 15622 (Chappell and
Green 1973; Meyer 2005).

in the parent melt composition, we assume any remaining TiO2 in the parent melt can be

attributed to the ilmenite component of our mixing model. Similarly, this calculation method

results in a maximum proportion of ilmenite, as any TiO2 in component X would decrease the

estimated ilmenite proportion. Then, the estimated proportions of the KREEP and ilmenite

components (Table 4.11) determine the proportion and composition of component X for each

parent melt composition (Table 4.12).

4.4.1 Isotopic composition of ilmenite component in mare basalt

parent magmas

We have determined the isotopic composition of the ilmenite component in the mare basalt

parent magmas using the estimated mixing proportions for each component and previously
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Table 4.11: Estimated proportions of the three mixing components for each parent melt
composition.

Mare Basalt Type KREEP Ilmenite Component X

Apollo 11 low-K 0.07 0.17 0.76

Apollo 11 high-K 0.39 0.14 0.47

Apollo 17 A 0.10 0.20 0.71

Apollo 17 B 0.06 0.22 0.72

Apollo 17 C 0.10 0.19 0.71

Apollo 12 0.10 0.04 0.86

Apollo 15 0.07 0.03 0.89

Table 4.12: Calculated major element compositions of mixing component X for each mare
basalt parent magma. Given that all K2O and TiO2 in the parent magma has been attributed
to the KREEP and ilmenite component, respectively, neither of these elements is present in
component X. The major element composition of the KREEP component used in the mixing
calculation has also been included for reference.

Mare Basalt Type SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O P2O5

Apollo 11 low-K 49.1 0 11.5 0.61 14.9 0.37 8.9 14.2 0.42 0

Apollo 11 high-K 51.1 0 4.9 0.34 21.2 0.42 8.9 13.9 0.48 0

Apollo 17 A 48.6 0 11.0 0.56 14.5 0.34 11.2 13.4 0.51 0

Apollo 17 B 48.9 0 11.6 0.59 14.8 0.36 10.5 12.8 0.52 0

Apollo 17 C 49.5 0 10.7 0.86 13.6 0.36 11.6 13.6 0

Apollo 12 47.1 0 8.4 0.41 21.4 0.31 12.4 10.0 0.19 0 0.00

Apollo 15 45.5 0 8.3 0.74 23.1 0.34 12.0 9.7 0.25 0 0.03

KREEP basalta 50.8 2.2 14.8 0.35 10.6 0.16 8.2 9.7 0.73 0.67 0.70

a Major element composition of KREEP basalt 15386 used to define KREEP component in mixing model (Vaniman
and Papike 1980).
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High-Ti basalt component X
Low-Ti basalt component X
Apollo 15 C green glass
Apollo 17 orange glass

ClinopyroxeneOlivine

Plagioclase

Figure 4.7: Mixing component X compositions plotted in a clinopyroxene-olivine-plagioclase
pseudo-ternary diagram using the projection scheme of Tormey et al. (1987). Estimated
compositions for component X in the low-Ti mare basalts (red circles) have more olivine
normative compositions than those estimated for the high-Ti mare basalts (black triangles).
In this projection, the lunar volcanic glasses (Apollo 15 C green and Apollo 17 orange, Delano
1986) are similar to the component X compositions estimated for the low-Ti mare basalts.
Dashed lines denote 10 mol% intervals for the ternary components.
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published mare basalt isotopic compositions (Table 4.13). For each mare basalt sample, we

use the component proportions calculated for the parent magma of its corresponding basalt

type (Table 4.11). For the mixing calculation described here, we have assumed that the mare

basalt isotopic compositions are representative of the parent magma isotopic compositions.

However, shallow petrogenetic processes such as fractional crystallization or partial melting

may also influence the mare basalt isotopic compositions, resulting in elemental and isotopic

fractionation from the parent magma compositions.

In order to determine the isotopic composition of the ilmenite component, we have calculated

an isotopic mass balance for each mare basalt sample using the following equation:

δisample = X i
KPδ

i
KP +X i

ilmδ
i
ilm +X i

comp xδ
i
comp x (4.3)

where δi represents the isotopic composition of element i and X represents the mass fraction

of element i for a given component (KP = KREEP, ilm = ilmenite, comp x = component X)

calculated from the composition and estimated proportion of each component.

Isotopic compositions have been assigned to the KREEP component and component X (Table

4.13). The Fe and Mg isotopic compositions of the KREEP component are those of KREEP

basalt sample 15386 (Poitrasson et al. 2019; Sedaghatpour and Jacobsen 2019). Because the

Ti isotopic composition has not been measured for sample 15386, we have instead used the Ti

isotopic composition of a KREEP-rich impact melt breccia for our calculation (Greber et al.

2017). Component X primarily consists of Fe- and Mg-rich silicates (olivine, pyroxene) and

relatively Fe- and Mg-poor plagioclase (Figure 4.7). The Fe and Mg isotopic composition of

component X will be dictated by the isotopic composition of the ultramafic phases. Olivine

and pyroxene cumulates from lunar magma ocean crystallization are expected to comprise

a majority of the lunar mantle, and these cumulates are likely the main contributors of Fe
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Table 4.13: Measured iron, titanium, and magnesium isotopic compositions and the calculated
isotopic composition of the ilmenite mixing component for each mare basalt sample.

Sample Compositiona (‰) Ilmenite Component (‰)

Sample Sample Type δ56Fe δ49Ti δ26Mg δ56Fe δ49Ti δ26Mg

70017 High-Ti, B 0.21 0.015 −0.25 0.36 0.012 −0.15
70215 High-Ti, B2 0.17 0.033 −0.37 0.29 0.030 −1.05
75075 High-Ti, B1 0.22 0.018 −0.69 0.39 0.015 −3.36
72155 High-Ti, A 0.21 0.023 0.38 0.018

70035 High-Ti, A 0.14 −0.55 0.23 −2.60
74275 High-Ti, C 0.18 −0.42 0.31 −1.66
71539 High-Ti, A 0.21 −0.23 0.39 0.06

75015 High-Ti, A 0.21 −0.25 0.39 −0.11
74255 High-Ti, C 0.18 −0.25 0.32 −0.10
10044 High-Ti, Low-K 0.24 −0.42 0.50 −1.51
10049 High-Ti, High-K 0.11 −0.18 0.19 0.86

15016 Low-Ti, olivine 0.07 −0.008 −0.09 0.10 −0.036 10.5

12002 Low-Ti, olivine 0.09 −0.39 0.35 −6.47
12005 Low Ti, ilmenite 0.10 −0.12 0.46 6.85

12051 Low Ti, ilmenite 0.10 −0.16 0.51 4.91

12021 Low-Ti, pigeonite 0.07 −0.18 0.12 3.93

12052 Low-Ti, pigeonite 0.07 −0.09 0.12 8.31

15058 Low-Ti, pigeonite 0.10 −0.16 0.62 6.22

15075 Low-Ti, pigeonite 0.05 −0.15 −0.18 6.84

15475 Low-Ti, pigeonite 0.04 −0.12 −0.36 8.69

15499 Low-Ti, pigeonite 0.08 −0.12 0.31 8.69

12063 Low-Ti, ilmenite 0.09 −0.22 0.35 1.99

15555 Low-Ti, olivine 0.06 −0.67 0.01 −25.2
12009 Low-Ti, olivine 0.05 −0.008 −0.17 −0.036
12011 Low-Ti, pigeonite 0.07 −0.11 0.07 7.34

12038 Low-Ti, feldspathic 0.08 −0.24 0.22 0.97

15386 KREEP basalt 0.11 0.330b −0.35
Component Xc 0.06 −0.003 −0.26

a Data sources for sample isotopic compositions: Fe, Weyer et al. 2005; Liu et al.
2010; Sossi and O’Neill 2017; Poitrasson et al. 2019; Ti, Millet et al. 2016; Greber
et al. 2017; Mg, Sedaghatpour et al. 2013; Sedaghatpour and Jacobsen 2019.

b The Ti isotopic composition used in the mixing model for KREEP basalt 15386 is
that of SaU 169 KREEPy impact melt breccia (Greber et al. 2017).

c Previous estimates for bulk silicate Moon isotopic composition assigned to compo-
nent X in the mixing model (Fe, Poitrasson et al. 2019; Ti, Millet et al. 2016; Mg,
Sedaghatpour et al. 2013).
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and Mg to component X. Because olivine and orthopyroxene will not fractionate Fe and Mg

isotopes to a measurable extent during equilibrium crystallization or melting (Teng et al. 2010;

Sossi and O’Neill 2017; Prissel et al. 2018), component X can be approximated as having

bulk silicate Moon Fe and Mg isotopic composition (Sedaghatpour et al. 2013; Poitrasson

et al. 2019).

The isotopic composition of the ilmenite component is then calculated using:

δiilm = (δisample −X i
KPδ

i
KP −X i

comp xδ
i
comp x)/X

i
ilm (4.4)

The isotopic mixing calculations for the mare basalts indicate that the ilmenite component

would have the isotopic composition δ56Fe= −0.36‰ to +0.62‰, δ49Ti= −0.036‰ to

+0.030‰, and δ26Mg= −25.2‰ to +10.5‰ (Table 4.13). The isotopic compositions of

the ilmenites crystallizing from our lunar magma ocean models (Figure 4.6) match the

estimated Ti isotopic composition of the ilmenite component, but not the estimated Fe

isotopic composition (Figure 4.8).

Previous models for the isotopic composition of the ilmenite-bearing lunar magma ocean

cumulates that incorporated a light fractionation for ilmenite did not replicate the enrichment

in heavy Fe and Ti isotopes observed in the high-Ti mare basalts, and instead invoked

additional processes, such as partial melting, in order to explain the magnitude of Fe and

Ti isotopic fractionation (Millet et al. 2016; Greber et al. 2017; Sossi and O’Neill 2017).

Though the KREEP component constitutes a small fraction of the mare basalt parent magma

(Table 4.11), combining the heavy Ti isotopic composition of the KREEP component with

the Ti isotopic composition of the lunar magma ocean ilmenites reproduces the Ti isotopic

compositions of the high-Ti mare basalts. Though the Ti isotopic composition assigned to

the KREEP component (δ49Ti= +0.33‰) is significantly heavier than that of the high-Ti
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Figure 4.8: Comparison of the estimated iron isotopic compositions of the ilmenite component
in mare basalt parent magmas and the lunar magma ocean model ilmenites. Iron isotopic
compositions of the ilmenite component in mare basalt samples (n = 26, Table 4.13) are plotted
as a histogram in black. The red shaded region highlights the iron isotopic compositional
range for the ilmenites crystallized from our lunar magma ocean models (Figure 4.6). Most of
the estimated isotopic compositions for the ilmenite component are heavier than the ilmenites
crystallized from our LMO models. The heaviest iron isotopic composition of our modeled
residual LMO liquid is plotted as a red line for reference.
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basalts, this value is reasonable considering our lunar magma ocean models in which the

residual LMO liquid thought to be related to KREEP gets enriched up to δ49Ti= +1.07‰.

Consistent with previous works, our model indicates that the Fe isotopic enrichment of the

high-Ti basalts cannot be explained solely by ilmenite crystallization in the lunar magma

ocean. Though the late-stage ilmenites and residual liquids get progressively heavier in

Fe isotopic composition as the LMO crystallizes, the magnitude of this enrichment is not

enough to match the high-Ti basalt iron isotopic compositions. In calculations that use the

heaviest residual liquid from our LMO models (δ56Fe= +0.152‰) instead of the Fe isotopic

composition of sample 15836 (δ56Fe= +0.11‰), the estimated iron isotopic compositions for

the ilmenite component are still heavier than those of the ilmenites crystallizing from the

lunar magma ocean. Importantly, our mixing calculations have been designed such that the

estimated iron isotopic compositions of the ilmenite component are minimum values. We have

assigned all the K2O to the KREEP component, but potassium may also be sourced from the

ilmenite or component X. An additional source for potassium would decrease the calculated

proportion of KREEP component in the mare basalt parent magma, resulting in a heavier

estimated Fe isotopic composition for the ilmenite component. Similarly, if component X is

Ti-bearing, the estimated proportion of the ilmenite in the mare basalt parent magma would

decrease, and thus the ilmenite Fe isotopic compositions would need to be heavier than those

reported (Table 4.13) in order to explain the Fe isotopic compositions of the high-Ti basalts.

4.5 Implications for mare basalt petrogenesis

Our modeling has shown that the difference in Ti isotopic composition between the low-

and high-Ti lunar mare basalts can be explained by the proportion of the ilmenite and

KREEP components in their parental melts (Section 4.4.1). However, these models are not
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able to account for the difference in Fe isotopic compositions between the two basalt suites.

Specifically, the estimated Fe isotopic composition for the ilmenite (or Ti-bearing) component

of the high-Ti mare basalts is heavier than the modeled Fe isotopic compositions of lunar

magma ocean ilmenite cumulates and residual liquids (Figure 4.8).

Partial melting of ilmenite is not a viable mechanism for generating the heavy Fe isotopic

compositions of the high-Ti mare basalt parent magmas because this process would also

fractionate Ti isotopes. The equilibrium ilmenite-melt isotopic fractionations determined in

this work indicate that ilmenite would be isotopically lighter than co-existing melt. Partial

melting of ilmenite in the mare basalt source regions would produce melts enriched in heavy

Fe and Ti isotopes relative to the residue, provided ilmenite was not exhausted from the

source (Millet et al. 2016; Greber et al. 2017; Sossi and O’Neill 2017). However, the melting

process would lead to fractionation for both Fe and Ti isotopes, and our experimentally

determined ilmenite-melt isotopic fractionations reveal that the magnitude of titanium isotopic

fractionation would be greater than that for iron.

Two observations are critical in determining the origin of the heavy iron isotopic compositions

of the mare basalts: 1) the Fe isotopic difference appears to be linked to the Ti major element

compositional variability, and 2) there is a negative correlation between the Fe and Mg

isotopic compositions of the mare basalts (Figure 4.2). This relationship between Fe and

Mg isotopic compositions suggests that diffusive exchange of Fe and Mg contributes to the

isotopic signature of the high-Ti component in the mare basalt parental melts. Diffusion of

Mg into this component would produce lighter Mg isotopic compositions, and conversely,

diffusion of Fe out of this component would lead to heavier Fe isotopic compositions (e.g.,

Dauphas et al. 2010; Teng et al. 2011; Van Orman and Krawczynski 2015). Additionally, the

magnitude of diffusive isotopic fractionation would depend on the concentrations of Fe and

Mg in the high-Ti component.
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A potential method for inducing Fe-Mg interdiffusion in the high-Ti component of the mare

basalt parent magmas is the chemical reaction between ilmenite-bearing lunar magma ocean

cumulates and a lunar mantle comprised predominantly of olivine and pyroxene. Toward

the end of lunar magma ocean crystallization, ilmenite-bearing cumulates are hypothesized

to sink into the lunar mantle because these late-stage cumulates are more dense than the

underlying cumulates consisting mainly of silicate minerals (e.g., Hess and Parmentier 1995).

Ilmenite in contact with an olivine and orthopyroxene cumulate can produce the Fe-Ti oxide

mineral armalcolite via the subsolidus reaction

2FeTiO3 + MgSiO3 (Mg,Fe)2SiO4 + (Mg,Fe)Ti2O5

at depths less than 280 km in the lunar mantle (Thacker et al. 2009). As this chemical

reaction progresses from left to right, Fe diffuses out of the oxide phase and into the silicate

phase, and conversely, Mg diffuses out of the silicate phase and into the oxide phase. This

Fe-Mg interdiffusion would produce heavier Fe isotopic compositions and lighter Mg isotopic

compositions in the Fe-Ti oxide phase. At the onset of the reaction, the magnitude of Mg

isotopic fractionation in the oxide would be greater than that of the Fe isotopic fractionation

because the ilmenite begins with a composition that is nearly pure ilmenite (FeTiO3).

Titanium is not being diffusively exchanged in this reaction; therefore there would not be an

associated Ti isotopic fractionation. Negative correlations have been previously observed for

the measured Fe and Mg isotopic compositions of natural ilmenites sampled from terrestrial

mafic intrusions (Chen et al. 2018; Tian et al. 2019). In these studies, the relationship

between Fe and Mg isotopic compositions was attributed to diffusive isotopic fractionation

involving subsolidus Fe-Mg exchange between ilmenite and silicate minerals. Experimental

investigations of the lunar mare basalts have concluded that the generation of high-Ti mare

basalt parent magmas involves chemical reaction between a high-Ti component and mafic

cumulates (e.g., Van Orman and Grove 2000; Mallik et al. 2019). If Fe-Mg interdiffusion
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between ilmenite and olivine-, pyroxene-rich lunar magma ocean cumulates produced the

heavy Fe isotopic composition of the high-Ti component in the mare basalt parental melts,

then a complementary ultramafic component with a relatively light Fe isotopic composition

may also exist in the lunar mantle. Interestingly, the measured iron isotopic compositions of

lunar dunite 72415, the sample thought to be most representative of the ultramafic lunar

magma ocean cumulates (e.g., Dymek et al. 1975), are consistently the lightest Fe isotopic

compositions measured for any lunar sample (δ56Fe= −0.4± 0.1‰, Wang et al. 2015; Sossi

and Moynier 2017; Poitrasson et al. 2019).

4.6 Conclusions

1. We have experimentally investigated the equilibrium partitioning of Fe and Ti isotopes

between ilmenite and melt in order to evaluate the role of ilmenite in generating the

isotopic compositional variability among the lunar mare basalts. Our experimentally

determined ilmenite-melt isotopic fractionations for Fe and Ti indicate that ilmenite

would be isotopically lighter than co-existing melt (∆56Feilmenite-melt = −0.05± 0.02‰

and ∆49Tiilmenite-melt = −0.09± 0.03‰ at 1100◦C).

2. We have incorporated our Fe and Ti ilmenite-melt isotopic fractionations into models

of lunar magma ocean crystallization, and in doing so have estimated the Fe and

Ti isotopic compositions of the LMO ilmenite cumulates and residual liquid. In a

three-component mixing model for the major element and isotopic compositions of

mare basalt parent magmas, the Ti isotopic compositions of ilmenites crystallizing from

the lunar magma ocean reproduce the Ti isotopic compositional differences between the

low- and high-Ti mare basalt suites. However, the difference between the Fe isotopic

compositions of the low- and high-Ti basalts cannot be explained by the Fe isotopic

composition of the modeled lunar magma ocean ilmenites and residual liquid.

142



3. The negative correlation between the Fe and Mg isotopic compositions of the low- and

high-Ti mare basalts indicates that Fe-Mg interdiffusion has occurred in the Ti-rich

component of the mare basalt parental melts. Diffusive exchange of Fe and Mg via

subsolidus reaction between ilmenite cumulates and the olivine- and pyroxene-rich lunar

mantle at depths less than 280 km can explain the observed correlations between the

measured Fe, Ti, and Mg isotopic compositions of the low- and high-Ti mare basalts.
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Appendix A

Appendix to Chapter 2

Compiled electron microprobe data for all diffusion couple experiments The

electron microprobe analyses for each experiment are available as an electronic file (“compiled-

probe-data.xlsx”) in the online repository at espm.wustl.edu/data. This file contains the

electron microprobe and position data for each traverse used to calculate the Fe-Mg (or

Fe-Mn) interdiffusivity reported for each experiment. There is a tab for each experiment,

labeled with the experiment name. Additionally, the Fe-Mn interdiffusion experiments include

“(Mn)” on the tab after the experiment name.

On the spreadsheet for each tab are the analytical results from different traverses labeled “line

1”, “line 2”, etc. The analyses are reported as element weight percent (wt.%) excluding oxygen,

and the analytical totals are reported in the “Total” column for each line. Entries labeled “b.d.”

indicate that the measured composition was below detection limit. These reported analyses

have already been filtered to exclude analyses where the analytical totals were less than 98.5

wt.% or greater than 101.5 wt.%, as well as analyses where the cation total for 3 oxygen

atoms were less than 1.98 or greater than 2.02 (ideal ilmenite stoichiometry contains 2 cations
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per 3 oxygen atoms). In cases where the aforementioned wt.% total threshold eliminated

a majority of the analyses for at least one side of the diffusion couple, this threshold was

slightly expanded. For experiment F053, analytical totals greater than 98.0 wt.% and less

than 102.0 wt.% were included. For experiment F086, analytical totals greater than 98.0

wt.% were included. For experiment F119, line 1 includes analytical totals < 104.0 wt.% and

line 2 includes analytical totals < 106.0 wt.% (unlike F119 line 3, these lines were positioned

close to the edges of the geikielite crystal and this likely affected the analytical totals). Two

experiments, F045 and F051, have significantly low analytical totals. For F051, totals greater

than 95.0 wt.% were included. For F045, totals greater than 94.0 wt.% were included. The

low analytical totals for these experiments reflect a minor Fe3+ component in the ilmenite

sides of the diffusion couples.

Accompanying the element wt.% data for each profile is the “relative distance from interface

(µm)” column. This reports the relative distance (one side negative, one side positive) from

the diffusion interface after corrections have been applied for any gap between the two sides

of the diffusion couple and decompression cracks.

For the diffusion profile fitting, each wt.% element was converted to moles of that element,

and then the mole fraction for each element was determined by dividing the moles of an

element by the sum of the moles of Fe, Mg, Mn (if included), and Ti. The mole fraction for

Fe (or Mn) and the values reported for the distance from the interface were then used for the

diffusion profile fits.

In a few cases, data for only one side of the couple has been reported because there was an

issue in fitting the profile taken on the unreported side. For traverses F053 line 2, F053 line 3,

and F030 line 2, the ilmenite polycrystal material near the diffusion interface plucked during

polishing, and thus the analytical profile did not fully capture the change in composition
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near the interface. The line 1 analyses of the Mn-bearing ilmenite side in experiment F028

were affected by the presence of ulvöspinel. For experiment F117, the geikielite side of the

diffusion couple was not fully recovered from the experiment capsule.
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100 µm

100 µm

a) F019

b) F045

Figure A.1: Cross-polarized reflected light images of two ilmenite polycrystals from diffusion
annealing experiments conducted at 1000◦C. The grain size of the ilmenite polycrystal in
experiment F019 (a) is an order of magnitude larger than that in experiment F045 (b).
Despite the difference in grain size, the calculated Fe-Mg interdiffusion coefficients for the
two experiments are the same within uncertainty, suggesting grain boundary diffusion did
not significantly contribute to the observed cation diffusion.
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Figure A.2: Electron microprobe analyses of experiment F018.
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Figure A.3: Electron microprobe analyses of experiment F019.
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Figure A.4: Electron microprobe analyses of experiment F024.
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Figure A.5: Electron microprobe analyses of experiment F028.
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Figure A.6: Electron microprobe analyses of experiment F029.
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Figure A.7: Electron microprobe analyses of experiment F030.
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Figure A.8: Electron microprobe analyses of experiment F031.
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Figure A.9: Electron microprobe analyses of experiment F032.
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Figure A.10: Electron microprobe analyses of experiment F033.
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Figure A.11: Electron microprobe analyses of experiment F045.
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Figure A.12: Electron microprobe analyses of experiment F051.
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Figure A.13: Electron microprobe analyses of experiment F053.
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Figure A.14: Electron microprobe analyses of experiment F086.
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Figure A.15: Electron microprobe analyses of experiment F110.
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Figure A.16: Electron microprobe analyses of experiment F111.
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Figure A.17: Electron microprobe analyses of experiment F117.
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Figure A.18: Electron microprobe analyses of experiment F118.
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Figure A.19: Electron microprobe analyses of experiment F119.

[173]



-200 -100 0 100 200
Relative distance from interface ( m)

0

0.005

0.01

0.015

0.02

0.025

0.03

M
n 

ca
tio

n 
fr

ac
tio

n,
 M

n/
(F

e+
M

n+
T

i)

F158

Line 1
Line 2

Figure A.20: Electron microprobe analyses of experiment F158.

[174]



-400 -200 0 200 400
Relative distance from interface ( m)

0

0.1

0.2

0.3

0.4

0.5

F
e 

ca
tio

n 
fr

ac
tio

n,
 F

e/
(F

e+
M

g+
T

i)

MK24

Line 1
Line 2
Line 3

Figure A.21: Electron microprobe analyses of experiment MK24.
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Appendix B

Appendix to Chapter 3

Purity of Starting Materials The brands and purities of the powders we used for our

experimental starting material mixtures are reported below. For powders where the purity

information was not readily available, the lot number has been included for reference.

• Al2O3, Alfa Aesar 99%

• CaCO3, Johnson Matthey Electronics, Lot #H14B04

• CaSiO3, Johnson Matthey Alfa Products, Lot #J24I

• CaTiO3, Alfa Aesar, 99+%

• Cr2O3, Alfa Aesar 99.6%

• Fe2O3, Sigma-Aldrich, ≥99%

• Fe sponge, Alfa Aesar 99.9%

• K2CO3, Fisher Scientific, 99.9755%
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• Mg(OH)2, Johnson Matthey Electronics, Lot #K01A03. Mg(OH)2 was dehydrated in

an alumina crucible for more than 4 hours at 1000◦C.

• MnO, Johnson Matthey catalog company, 99.5%

• Na2CO3, Johnson Matthey Alfa Products, Lot #K11G

• SiO2, Fisher Scientific, Lot #917073A

• TiO2, Sigma-Aldrich ≥99%

The Cambridge Isotopes 57Fe spike material has a purity of 96.64% 57Fe. To be conservative,

we calculate the effect of contamination on the 56Fe budget of our measured samples by

assuming that the remaining 3.36% of the material is 56Fe (though any impurity is likely

comprised of 54Fe and 58Fe as well). Two samples, H056 wire and H055 olivine, have excess

57Fe concentrations. We have calculated that the 57Fe excess corresponds to a maximum 5%

and 1.6% Fe contribution from the 57Fe spike for H056 wire and H055 olivine, respectively.

Considering the 57Fe spike is at most 3.36% 56Fe, the maximum 56Fe that could be sourced

from the 57Fe spike is 0.17% and 0.05% of the sample Fe, respectively.

Additional Details Regarding Experimental Methods To make the starting material

pellets, we added approximately 50-75 mg of PVA solution to an aliquot (approximately 500

mg) of each starting material powder. (The PVA solution was made by heating a mixture of

200 grams of PVA powder and 1000 mL of deionized water until the solid was fully dissolved.)

After allowing the starting material-PVA mixture to dry, the mixture was ground back to a

powder with a mortar and pestle. The mixture was then separated into 75 mg aliquots for the

individual pellets. For each aliquot, we loaded the 75 mg of powder into a stainless-steel die,

applied 1.5 metric tons of pressure to the die assembly, and held the assembly at pressure for

2 minutes. The presence of PVA in the sample pellet could have promoted evaporative Fe loss
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from our experimental samples, as the PVA degasses from the sample during the experiment.

However, using the same pellet-making method, we have conducted experiments in our lab

at fO2 = IW (not presented in this work) that did not experience Fe loss, suggesting the

addition of PVA is not controlling the observed evaporative Fe loss.

The Re wire for each sample was made from 1.5 cm length of Re wire where approximately

0.5 cm was bent into a loop with which to hold the pellet. To fuse the pellets to Re metal

loops we used an oxy-acetylene torch. The sample pellet was rested on the looped portion of

the Re wire, then lowered into the torch flame for approximately 2 seconds until the bottom

of the sample pellet had fused to the Re wire loop.

Determination of Evaporation Coefficients (αFe) for Hertz-Knudsen Equation

We used the Hertz-Knudsen Equation to calculate the evaporative flux of Fe from our Apollo

14 VLT and Apollo 14 Black samples, at both IW−1 and IW+2. The activity of FeO (aFeO)

for each liquid composition was calculated at the experimental temperature (1266◦C) and

oxygen fugacities using the rhyolite-MELTS code. The resulting activities are presented

in Table B.3. In the range of oxygen fugacities we explored, the activity of FeO in each

composition did not change.

As described in Section 3.4.1, P sample
Fe is calculated using the activity of FeO in the starting

composition and the oxygen fugacity of the experiment. For this calculation, we used the

measured fO2 of the 4-day experiments that had been analyzed on the electron microprobe

(Table 3.2, experiments J040, H057, J007, and H037). The Fe loss in 4-day experimental

samples analyzed on the microprobe is assumed to be identical for the 4-day experiment of

similar composition and oxygen fugacity that we measured for iron isotopic compositions using

the ICP-MS (experiments H056, H043, H055, H030, and J012). The calculated P sample
Fe for

each composition-oxygen fugacity condition is reported in Table B.3. For our calculation, we
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have assumed that the gas flow in our furnaces removes any Fe from the ambient atmosphere.

The combined gas flow of H2 and CO2 was 0.15 liters per minute for experiments J012, J017,

J019, J040, H037, H038, H039, H042, H055, H056, and H057 and 0.30 liters per minute for

experiments J007, J009, H030, and H031.

In solving for both the evaporative flux (JFe) and evaporation coefficient (αFe), we iterated

αFe and used the calculated JFe for each iteration to estimate the evaporative loss associated

with that particular αFe value. The calculated evaporative flux is multiplied by the surface

area of our experimental sample, assuming a spherical geometry for a known sample volume,

and the amount of Fe lost is compared to the initial abundance of Fe in the sample to derive

a percent Fe lost via evaporation. This method allowed us to determine a range of αFe

values that produced the best visual fit to our experimental data (Figure B.1). Because the

experiments at IW−1 experience Fe loss through diffusion into the Re wire (4.1-6.5% Fe

loss) as well as through evaporation (11.4-13.8% Fe loss), we focused on modeling only the

amount of evaporative Fe loss. For the experiments at IW+2, almost all of the Fe loss was

through evaporation (8-8.5% Fe loss) so we did not correct for the amount of Fe lost to the Re

wire. The evaporation coefficients we used to calculate evaporative Fe loss that matches the

estimated evaporative Fe loss from our samples are reported in Table B.3. The evaporation

coefficients are similar for both starting compositions at a given oxygen fugacity, but have

smaller values at lower oxygen fugacity (IW−1) than at higher oxygen fugacity (IW+2).

Estimated total Fe losses for shorter duration experiments (Table 3.2) are included in Figure

B.1. However, we do not have separate estimates of evaporative loss and loss to the wire,

because we did not measure the Fe isotopic compositions of these samples. A positive

deviation from the calculated evaporative Fe loss curve indicates that additional Fe loss

occurred, most likely by diffusion into the Re wire.
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Figure B.1: Percent Fe loss versus run time for each experimental starting composition at two
oxygen fugacities. In each plot, the lines represent the modeled evaporative Fe loss according
to the Hertz-Knudsen calculations with variable coefficients of evaporation, with the solid line
corresponding to the αFe reported in Table B.3 and the dashed lines bracketing the reported
range of αFe for a given experimental composition and oxygen fugacity. Estimated values for
total experimental Fe loss (Table 3.2) are plotted as circles for comparison to the calculated
curves. The unfilled circles in panes (a) and (c) represent the total experimental Fe loss
estimated for the 4-day experiments. This value was adjusted by subtracting the amount of
Fe loss that occurred by diffusion into the Re wire, and the resulting evaporative Fe loss is
plotted as a solid circle.
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Table B.1: Iron isotopic compositions of geostandards and two Fe compounds used to mix
the synthetic starting materials. Reported values are the weighted averages and weighted
errors (95% confidence interval) of multiple measurements.

Sample δ56Fe (‰) 2σ δ57Fe (‰) 2σ

AGV-2-2 0.08 0.02 0.12 0.03

BCR-2-2 0.09 0.02 0.12 0.03

BIR-1-2 0.03 0.02 0.06 0.03

Fe Sponge −0.46 0.04 −0.66 0.07

Fe2O3 0.26 0.04 0.38 0.07
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Table B.2: Electron microprobe analyses of experimental Re wires in element weight percent.
Blank entries for Fe indicate that the measured composition was below detection limit.

Experiment Composition ∆ IW Time (hr) Fe Re Total
Distance from
wire core (µm)

J017 Apollo 14 VLT -1.1 5.9 100.9 100.9 0 core

100.0 100.0 58

100.4 100.4 117

100.0 100.0 129 rim

100.5 100.5 0 core

100.0 100.0 64

100.2 100.2 118 rim

J019 Apollo 14 VLT -1.1 23.4 100.5 100.5 0 core

100.2 100.2 42

100.3 100.3 102

3.6 96.6 100.2 118

7.1 92.1 99.2 120

6.2 92.8 99.0 131 rim

100.9 100.9 0 core

4.1 96.2 100.3 68

3.7 95.9 99.6 127

6.4 92.4 98.8 130 rim

J040 Apollo 14 VLT -1.0 96.2 100.3 100.3 0 core

100.4 100.4 34

100.5 100.5 71

0.2 100.3 100.5 86

3.8 95.5 99.3 104

3.9 95.4 99.3 115 rim
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Experiment Composition ∆ IW Time (hr) Fe Re Total
Distance from
wire core (µm)

H042 Apollo 14 Black -1.0 6.0 101.6 101.6 0 core

100.2 100.2 37

100.6 100.6 97

1.5 98.2 99.7 126

22.7 73.9 96.6 139

22.8 75.3 98.1 141 rim

H057 Apollo 14 Black -1.0 92.9 100.1 100.1 0 core

100.4 100.4 39

100.4 100.4 82

4.8 95.9 100.7 108

22.6 77.5 100.1 123

23.9 75.7 99.6 131

23.1 77.3 100.4 131

24.3 74.9 99.2 141 rim

H025 Apollo 14 Black 0.1 22.4 100.1 100.1 0 core

99.6 99.6 52

100.4 100.4 103

100.8 100.8 103 rim

J009 Apollo 14 VLT 1.9 5.5 97.2 97.2 0 core

97.7 97.7 38

97.4 97.4 66

97.2 97.2 108 rim

H031 Apollo 14 VLT 2.0 24.1 97.9 97.9 0 core

98.1 98.1 50

98.0 98.0 81 rim

97.2 97.2 0 core

98.1 98.1 31

96.7 96.7 65

98.2 98.2 118 rim
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Table B.3: Thermodynamic parameters from the Hertz-Knudsen evaporative flux calculation
described in Section 3.4.1. Starting compositions are listed in Table 3.1, and experiment run
conditions are listed in Table 3.2.

Composition Apollo 14 VLT Apollo 14 Black

fO2 IW−1 IW+2 IW−1 IW+2

aFeO at 1266◦C 0.22 0.22 0.28 0.28

P sample
Fe (bar) 1.6× 10−2 5.7× 10−4 2.0× 10−2 6.5× 10−4

JFe (m−2s−1) (6.0± 2.4)× 10−7 (5.3± 1.1)× 10−7 (7.4± 3.0)× 10−7 (6.1± 1.2)× 10−7

αFe (2.5± 1.0)× 10−3 (6.3± 1.3)× 10−2 (2.5± 1.0)× 10−3 (6.3± 1.3)× 10−2
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