Washington University in St. Louis

Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations

Arts & Sciences

Summer 8-15-2020

Delineating the Role of MiR-124 for the Activation of Neuronal Program

Ya-Lin Lu Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Developmental Biology Commons, Molecular Biology Commons, and the Neuroscience and Neurobiology Commons

Recommended Citation

Lu, Ya-Lin, "Delineating the Role of MiR-124 for the Activation of Neuronal Program" (2020). *Arts & Sciences Electronic Theses and Dissertations*. 2329. https://openscholarship.wustl.edu/art_sci_etds/2329

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

WASHINGTON UNIVERSITY IN ST. LOUIS

Division of Biology and Biomedical Sciences Developmental, Regenerative and Stem Cell Biology

> Dissertation Examination Committee: Andrew S. Yoo, Chair Shiming Chen Harrison Gabel Shin-ichro Imai Kristen Kroll

Delineating the Role of MiR-124 for the Activation of Neuronal Program

by Ya-Lin Lu

A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

> August 2020 St. Louis, Missouri

© 2020, Ya-Lin Lu

Table of Contents

List of Figuresiv
List of Tables
Acknowledgmentsvii
Abstract of the dissertationviii
Chapter 1: Introduction
Chapter 2: Current understanding of miR-9/9*-124-based neuronal reprogramming of human fibroblasts
Abstract
MiRNAs as potent cell fate regulators
MiR-9/9* and miR-124 are neurogenic molecules7
MiRNAs orchestrate the composition of BAF chromatin remodeling complexes
Switching of chromatin modifiers are crucial for cell fate conversion
MiR-124-mediated PTB switching regulates neuronal splicing profile12
The use of miRNA-induced neuronal ground state for subtype-specific neuronal reprogramming
Summary
Summary
Summary
Summary
Summary 18 Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation 19 in human neurons 19 Abstract 20 AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct 20 MiR-124 target genes are upregulated during neuronal conversion 23
Summary 18 Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation 19 in human neurons 19 Abstract 20 AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct 20 MiR-124 target genes are upregulated during neuronal conversion 23 PTBP1 and PTBP2 3'UTR as targets of miR-124 26
Summary 18 Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation 19 Abstract 20 AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct 20 MiR-124 target genes are upregulated during neuronal conversion 23 PTBP1 and PTBP2 3'UTR as targets of miR-124 26 MiR-124 accentuates PTBP2 expression beyond the induction mediated by the downregulation of PTBP1 27
Summary 18 Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation 19 Abstract 20 AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct 20 MiR-124 target genes are upregulated during neuronal conversion 23 PTBP1 and PTBP2 3'UTR as targets of miR-124 26 MiR-124 accentuates PTBP2 expression beyond the induction mediated by the downregulation of PTBP1 27 Functional significance of PTBP2 expression for neuronal conversion 29
Summary 18 Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation 19 Abstract 20 AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct 20 MiR-124 target genes are upregulated during neuronal conversion 23 PTBP1 and PTBP2 3'UTR as targets of miR-124 26 MiR-124 accentuates PTBP2 expression beyond the induction mediated by the downregulation of PTBP1 27 Functional significance of PTBP2 expression for neuronal conversion 29 Differential sequence composition between PTBP1 and PTBP2 3'UTRs 30
Summary 18 Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation 19 Abstract 20 AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct 20 MiR-124 target genes are upregulated during neuronal conversion 23 PTBP1 and PTBP2 3'UTR as targets of miR-124 26 MiR-124 accentuates PTBP2 expression beyond the induction mediated by the downregulation of PTBP1 27 Functional significance of PTBP2 expression for neuronal conversion 29 Differential sequence composition between PTBP1 and PTBP2 3'UTRs 30 MiRNA-mediated PTBP2 induction requires ELAVL3 binding at PTBP2 3'UTR 33
Summary18Chapter 3: Synergism between microRNA-124 and ELAVL3 drives neuronal gene upregulation19Abstract20AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct20neuronal reprogramming of human fibroblasts20MiR-124 target genes are upregulated during neuronal conversion23PTBP1 and PTBP2 3'UTR as targets of miR-12426MiR-124 accentuates PTBP2 expression beyond the induction mediated by the downregulation27Functional significance of PTBP2 expression for neuronal conversion29Differential sequence composition between PTBP1 and PTBP2 3'UTRs30MiRNA-mediated PTBP2 induction requires ELAVL3 binding at PTBP2 3'UTR33Selective activity of ELAVL3 on PTBP2 3'UTR is dependent on the hinge region34

. 35
. 37
. 39
. 40
. 42
. 68
. 69
. 71
. 73
. 77

List of Figures

Chapter 2
Figure 1: MiR-9/9*-124-mediated neuronal reprogramming of human adult fibroblasts11
Figure 2: Synergism between microRNAs and transcription factors for subtype-specific neuronal reprogramming of human adult fibroblasts
Chapter 3
Figure 1: Enrichment of AGO binding on transcripts of neuronal genes upregulated during miR- 9/9*-124-mediated neuronal conversion
Figure 2: Identification of miR-124 target genes that fail to be upregulated upon the inhibition of miR-124 during miRNA-mediated neuronal conversion
Figure 3: MiR-124 targets both PTBs, but differentially regulated PTB expression during neuronal conversion
Figure 4: MiRNA-mediated PTBP2 upregulation requires nELAVL binding at
PTBP2 3'UTR
Figure 5: PTBP2 upregulation requires the synergism of nELAVL and miR-124
Figure 6: MiRNA-mediated upregulation of neuronal genes in primary human neurons
Figure 7: Long gene expression results in altered neuronal properties
Supplementary Figure S1: MiR-124 target genes during neuronal reprogramming54
Supplementary Figure S2: Examples of RNAhybrid prediction of miR-124-3p hybridization to enriched 3'UTR HITS-CLIP peak sequences of day 20 upregulated DEGs in miNs55
Supplementary Figure S3: MiR-124 target site validation and assessment of miR-124 promoting PTBP2 expression via targeting PTBP2 3'UTR with the prolonged neurogenic input
Supplementary Figure S4: PTBP2 plays an essential role during miRNA-mediated neuronal conversion
Supplementary Figure S5: nELAVLs bind preferentially to PTBP2 and not PTBP1 3'UTR in the human brain

Supplementary Figure S6: Neuronal long genes are targets of miR-124 and nELAVLs
Supplementary Figure S7: Identified neuronal transcripts that are bound by AGO and nELAVLs in HN
Chapter 4
Figure 1: Spliced DPF1 isoforms in HNs differed in PHD domain length70
Figure 2: PTBP2 is crucial for neuronal conversion72

List of Tables

Chapter 3	
Table S1: MiR-124-responsive genes that harbor AGO-enriched peaks in miNs6	1
Table S2: Neuronal genes with PTBP2-mediated splicing events	3
Table S3: MiR-124-responsive genes that harbor AGO-enriched peaks in HNs	5
Table S4: MiR-124-responsive genes predicted to be bound by nELAVLs	7

Acknowledgments

My thesis work would not have been possible without the mentorship of my advisor, Dr. Andrew Yoo. His unwavering support and confidence in my scientific work has allowed me to come this far. To past and current Yoo lab members, I appreciate all your help and I am forever grateful for your friendships. I would also like to thank the faculties and staff in DBBS and the Department of Developmental Biology for this amazing learning experience. I am indebted to my two previous mentors, Dr. Jun-An Chen and Dr. Matthew Jones-Rhoades. Both have taught me so much early in my scientific career. To my classmates and peers, thank you for making this journey memorable. And of course, nothing would have been possible without the unconditional support from my family.

Ya-Lin Lu

Washington University in St. Louis August 2020

Abstract of the Dissertation

Delineating the Role of MiR-124 for the Activation of Neuronal Program

by

Ya-Lin Lu

Doctor of Philosophy in Biology and Biomedical Sciences Developmental, Regenerative and Stem Cell Biology Washington University in St. Louis, 2020

Andrew S. Yoo, Chair

The ectopic expression of two brain-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), can robustly and efficiently reprogram human skin fibroblasts into neurons. The miRNAs act as repressors of non-neuronal genes in fibroblasts for the induction of the neuronal program. This process is analogous to neurogenesis in vivo when the expression of miR-9/9* and miR-124 represses anti-neurogenic genes such as REST or NRSF (neuron-restrictive silencer factor/repressor element-1 silencing transcription factor). Although we have some mechanistic insights into how miR-9/9*-124 drives fate conversion by acting as negative regulators of gene expression, little remained understood of the role of miRNAs as positive regulators of gene expression for the activation of neuronal fate. In this thesis, we present our current understanding of how miR-9/9*-124 drives neuronal reprogramming as well as the mechanistic insights into

how miR-9/9*-124 can promote expression of neuronal genes. Based on Argonuate (AGO) HITS-CLIP, we uncovered that AGO is bound to neuronal transcripts that are progressively upregulated during reprogramming. Such observation suggests that contrary to the canonical repressive roles of miRNAs, miR-9/9*-124 may be playing a positive role in the expression of bound neuronal transcripts. Using PTB family of RNA-binding proteins as an example, we delineate a mechanism by which miR-124 can simultaneously repress PTBP1, the non-neuronal PTB homolog, while promoting the upregulation of PTBP2, the neuronal PTB homolog, in neurons. This process requires the synergism of miRNA targeting as well as a family of neuronal ELAVL proteins (nELAVLs). We further showed that this miRNA- and nELAVL-mediated upregulation of PTBP2 is neither unique to the conversion process nor PTBP2 transcript alone, but also in primary human neurons and is likely a mechanism used to regulate other neuronal transcripts. With PTBP2 expression induced in neurons, PTBP2 is involved in the alternative splicing of numerous neuronal transcripts. Such transcript includes a subunit of the chromatin remodeling complex, DPF1. Although detailed function of DPF1 remains unclear in neurons, different PTBP2-mediated DPF1 spliced isoforms are likely involved in the interaction of different modified histones for the establishment of a neuronal chromatin landscape.

Chapter 1: Introduction

In part from:

Mechanistic insights into microRNA-induced neuronal reprogramming of human adult fibroblasts.

Ya-Lin Lu & Andrew S. Yoo

Front. Neurosci. 02 August 2018

Overcoming epigenetic barriers through direct cellular reprogramming has allowed scientists to rapidly acquire cell types of interest for regenerative therapies and disease modeling. Direct conversion of mouse fibroblasts into functional neurons have been demonstrated through the use of transcription factors (Blanchard et al., 2015; Chanda et al., 2014; Son et al., 2011; Vierbuchen et al., 2010). Empirically, however, obtaining mature human neurons from adult human fibroblasts with transcription factors have been challenging (Caiazzo et al., 2011). To enhance reprogramming efficiency and to promote neuronal maturation, small chemical molecules (Ladewig et al., 2012; Liu et al., 2013; Pfisterer et al., 2016; Smith et al., 2016) and RNA molecules, miRNAs (Abernathy et al., 2017a; Ambasudhan et al., 2011; Victor et al., 2014; Yoo et al., 2011), have been used in conjunction with transcription factors to robustly generate functional neurons from human fibroblasts. The mechanism(s) by which miR-9/9* and miR-124 collectively drive robust neuronal fate conversion remains an ongoing investigation, but by examining specific microRNA targets, my thesis work aims to elucidate how miRNAs promote the neuronal program during the direct conversion of human fibroblasts to neurons.

MiR-9/9* and miR-124 (miR-9/9*-124) are efficient reprogramming effectors that, when ectopically expressed in human adult fibroblasts (HAFs), induce an extensive reconfiguration of the chromatin accessibility landscape leading to the erasure of fibroblast fate and activation of the neuronal program (Abernathy et al. 2017). The conversion process by miR-9/9*-124 shares similarities to molecular cascades underlying neurogenesis during neural development such as the downregulation of REST, a well-established transcription repressor of neuronal genes (Ballas et al., 2005; Lee et al., 2018; Schoenherr and Anderson, 1995) and switching of homologous chromatin modifiers from non-neuronal to neuronal counterparts including DNMT3B to DNMT3A, subunits of BAF/BRM-associated factor (BAF) complexes, and TOP2A to TOP2B (Abernathy et al. 2017; Lee et al. 2018; Lessard et al. 2007; Staahl et al. 2013; Watanabe et al. 1994; Yoo et al. 2009; Tsutsui et al. 2001). Although the direct repression by brain-enriched miRNAs on non-neuronal targets, for instance, *REST* (Packer et al., 2008; Visvanathan et al., 2007), *ACTL6A* (Yoo et al., 2009), and *PTBP1* (Makeyev et al., 2007) for the induction of neuronal counterparts offer a classic representation of miRNAs acting as negative regulators of downstream target genes, how these miRNAs function in the midst of neuronal milieu remains unknown.

The robustness of miRNA-based neuronal reprogramming allows for the investigation of the pathways downstream of miR-9/9*-124 that promote neuronal identity (Abernathy et al. 2017). In my thesis work, we employed high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) of Argonaute (AGO) during miR-9/9*-124mediated neuronal reprogramming of human fibroblasts to map miR-9/9*-124-target interactions at the onset of neuronal fate acquisition. Unexpectedly, we identified a suite of neuronal genes enriched with AGO binding, in particular, corresponding to the binding sites of miR-124. The upregulation of these neuronal genes required miR-124, suggesting that miR-124 not only function as a repressor, but also as an effector to promote neuronal gene expression. Although the ability of miRNAs as a positive effector of downstream target genes has been implicated before (Truesdell et al., 2012; Vasudevan et al., 2007; Vasudevan and Steitz, 2007), little is known about the molecular mechanism that governs a miRNA's activity as an activator in neurons.

Among the genes identified to be targeted and upregulated by miR-124 was *PTBP2*, a neuron-enriched RNA-binding protein (RBP). We elected to further focus on *PTBP2* to understand the mechanism underlying miR-124 as an activator because the miR-124-PTBP2 axis

presented intriguing questions. A non-neuronal homolog *PTBP1* (Boutz et al., 2007) and *PTBP2* both contain miR-124 target sites at their 3'UTRs (Makeyev et al., 2007; Y. Xue et al., 2016). Why is there selective repression on *PTBP1* while *PTBP2* escapes the repression by miR-124 in neurons? The current view on the initial activation of *PTBP2* points to the activity of PTBP1 as a repressor of *PTBP2* that is relieved upon miR-124 expression at the onset of neuronal differentiation (Makeyev et al., 2007). However, the mechanism by which *PTBP2* expression persists while being targeted by miR-124 remains unknown. In this study, we describe a series of experiments to provide evidence for an RNA-binding protein, ELAVL3, induced in neurons, directly acting on *PTBP2* 3'UTR to mediate the mode of miR-124 as an activator. This synergism between miR-124 and ELAVL3 drives the neuronal program in human neurons and thus the successful conversion of human fibroblasts.

The miR-124-mediated induction of PTBP2 is essential for neuronal reprogramming as knockdown of PTBP2 results in dysregulated spliced isoforms of neuronal transcripts, including *DPF1*. DPF1 is a subunit of the neuron-specific chromatin remodeling BAF complex. Like the switching of PTB proteins, non-neuronal PHF10 switches for neuronal DPF1 and/or DPF3 subunit in neurons (Lessard et al. 2007). We uncovered that PTBP2 mediates the alternative splicing of *DPF1* in neurons to generate an isoform with shortened PHD. This splicing event is likely required to enhance the binding of DPF1 to histone modifications in neurons. In my thesis, we propose a model in which the bifunctional activity of miR-124 is determined by the concurrent availability of RBPs for the proper splicing of *DPF1* and reconfiguration of the BAF complex assembly in human neurons.

4

<u>Chapter 2: Current understanding of</u> <u>miR-9/9*-124-based neuronal</u> <u>reprogramming of human fibroblasts</u>

From:

Mechanistic insights into microRNA-induced neuronal reprogramming of human adult fibroblasts.

Ya-Lin Lu & Andrew S. Yoo

Front. Neurosci. 02 August 2018

Abstract

The use of transcriptional factors as cell fate regulators are often the primary focus in the direct reprogramming of somatic cells into neurons. However, in human adult fibroblasts, deriving functionally mature neurons with high efficiency requires additional neurogenic factors such as microRNAs (miRNAs) to evoke a neuronal state permissive to transcription factors to exert their reprogramming activities. As such, increasing evidence suggests brain-enriched miRNAs, miR-9/9* and miR-124, as potent neurogenic molecules through simultaneously targeting of anti-neurogenic effectors while allowing additional transcription factors to generate specific subtypes of human neurons. In this review, we will focus on methods that utilize neuronal miRNAs and provide mechanistic insights by which neuronal miRNAs, in synergism with brain-region specific transcription factors, drive the conversion of human fibroblasts into clinically relevant subtypes of neurons. Furthermore, we will provide insights into the age signature of directly converted neurons and how the converted human neurons can be utilized to model late-onset neurodegenerative disorders.

MiRNAs as potent cell fate regulators

Traditionally, transcription factors, in particular, pioneer transcription factors, have been viewed as regulators and determinants of cell fate. With domains that can interact directly with chromatin and/or other modifier proteins, transcription factors have been widely used for cellular reprogramming (Iwafuchi-Doi and Zaret, 2016, 2014), including the generation of induced pluripotent stem cells (iPSC) from somatic cells (Takahashi and Yamanaka, 2006). Increasing studies across different cellular contexts have revealed that miRNAs are also potent cell fate regulators as miRNAs not only target large repertoire of genes in genetic networks but also

epigenetic regulators necessary for the remodeling of the chromatin (Gruber and Zavolan, 2013; Ivey and Srivastava, 2010; Rajman and Schratt, 2017; Yoo et al., 2009). Subsequently, miRNAs have been used to generate iPSCs (Anokye-Danso et al., 2011), cardiomyocytes (Jayawardena et al., 2012), and neurons (Yoo et al., 2011) from fibroblasts.

MiR-9/9* and miR-124 are neurogenic molecules

The acquisition of neuronal fate requires the downregulation of the neuron-restrictive silencer factor (NRSF) or repressor element-1 silencing transcription factor (REST) that represses neuronal genes in non-neuronal cells, including the neuron-specific miRNAs, miR-9/9* and miR-124 (miR-9/9*-124) (Conaco et al., 2006; Deo et al., 2006; Lagos-Quintana et al., 2002; Lim et al., 2005). Both miR-9/9* and miR-124 are highly abundant in neuronal tissues (He et al., 2012; Lagos-Quintana et al., 2002; Lim et al., 2005), and are essential for neuronal differentiation (Cheng et al., 2009; Dajas-Bailador et al., 2012; Q. Xue et al., 2016) and the maintenance of neuronal identity through the repression of anti-neural genes including cofactors of the REST complex, RCOR1 and SCP1 (Packer et al., 2008; Visvanathan et al., 2007). As overexpression of miR-9/9* (Leucht et al., 2008; Zhao et al., 2009) and/or miR-124 (Akerblom et al., 2012; Cheng et al., 2009; Krichevsky et al., 2006) in stem cells or neural progenitors resulted in the precocious acquisition of neuronal fate, demonstrating the function of miRNAs in the activation of neuronal program (Lim et al., 2005). Subsequently, knockdown of REST can directly convert adult somatic cells into neurons in part due to the induction of neuron-specific miRNAs, miR-9/9* and miR-124 (Drouin-Ouellet et al., 2017). Therefore ectopic expression of miR-9/9*-124 was also shown to drive the direct conversion of primary human dermal fibroblasts into functional neurons (Yoo et al., 2011). Interestingly, miR-124 alone has been used

to in neuronal reprogramming with the help of transcriptional factors (Ambasudhan et al., 2011; Jiang et al., 2015). Here, we review current understanding of the properties of miR-9/9* and miR-124 in both developmental and cellular reprogramming contexts highlighting their synergistic roles in coordinating the molecular switching of several critical non-neuronal to neuronal components during mammalian neurogenesis. We will mainly focus on the molecular switches critical in epigenetic regulation such as chromatin remodeling and DNA methylation, and transcriptome dynamics such as alternative splicing underlying the adoption of the neuronal identity. Our discussion will also include molecular pathways that occur during *in vivo* neurogenesis and are also recapitulated in the miRNA-directed reprogramming of human fibroblasts into neurons for the successful overcoming of cell fate barriers.

MiRNAs orchestrate the composition of BAF chromatin remodeling complexes

Spatial and temporal reciprocity of homologous gene or isoform expression during neurogenesis is a recurring theme. Previous studies have indicated that the neurogenic and reprogramming activity of miR-9/9* and miR-124 may be in part through the direct targeting of subunits of the ATP-dependent BRG/BRM associated factor (BAF) chromatin remodeling complexes (Staahl et al., 2013; Staahl and Crabtree, 2013; Yoo et al., 2009). Mammalian BAF complexes are large multi-subunit complexes combinatorically assembled in a cell typedependent manner. The combinatorial assembly of different homologs and splice variants of BAF subunit families confers functional specificity as each subunit contains functional domains that recognized DNA and/or modified histones (Wu et al., 2009; Zheng et al., 2012). For example, embryonic stem cell (ESC) BAF (esBAF) is characterized by BAF53a and a homodimer of BAF155, as opposed to a heterodimer of BAF155 and BAF170 in differentiated cells (Ho et al., 2009b; Weidong Wang et al., 1996; W Wang et al., 1996). The esBAF complex is involved in maintaining pluripotency by establishing an ESC-specific chromatin state permissive for transcription factors and signaling molecules to access ESC-associated genes (Ho et al., 2009a; Kidder et al., 2009). Although BAF complexes are traditionally known to antagonize the function of polycomb repressive complexes (PRC) to promote chromatin accessibility for gene activation (Ho et al., 2011; Kennison, 1995), studies have also suggested that BAF complexes can synergize with PRC for gene regulation (Ho et al., 2011).

The BAF complex is crucial for mammalian nervous system as mutations to BAF subunits have been implicated in neurological disorders such as Coffin-Sirius syndrome due to mutation in BRG1 (Ronan et al., 2013; Tsurusaki et al., 2012) and SS18L1/CREST in amyotrophic lateral sclerosis (Chesi et al., 2013). During neural development, several BAF complex subunit switches to form the neuron-specific BAF (nBAF) complex (Staahl and Crabtree, 2013). The assembly of the nBAF complex requires the switching of progenitor subunits (BAF53a, BAF45a and SS18) to neuronal subunits (BAF53b, BAF45b or BAF45c and SS18L1/CREST) between the proliferating ventricular zone and the post-mitotic zone (Lessard et al., 2007; Olave, 2002; Staahl et al., 2013; Wu et al., 2007; Yoo et al., 2009). These molecular switches also occur during miRNA-mediated direct conversion of human fibroblasts into neurons (Staahl et al., 2013), in which the reciprocal switching of BAF53a to BAF53b is directly orchestrated by miR-9/9* and miR-124 (Staahl et al., 2013; Yoo et al., 2009) (Figure 1). The assembly of the nBAF complex is essential for proper neuronal function in learning and memory as loss of function of either BAF53b or SS18L1/CREST dramatically reduced dendritic outgrowth and morphology (Aizawa et al., 2004; Staahl et al., 2013; Vogel-Ciernia et al., 2013; Wu et al., 2007). The function of

chromatin remodeling by BAF complex was also found to be critical for neuronal reprogramming as loss of BRG1 during miRNA-mediated reprogramming abolished the chromatin landscape permissive to the activation of the neuronal program (Abernathy et al., 2017a).

Switching of chromatin modifiers are crucial for cell fate conversion

The switching of other homologous epigenetic regulators also occur during neurogenesis and neuronal reprogramming, though may not be direct targets of miR-9/9*-124. These include the switching of DNA topoisomerase II (TOP2) that functions to decatenate and catenate chromatin, from non-neuronal TOP2A to neuronal TOP2B (Thakurela et al., 2013; Tiwari et al., 2012; Tsutsui et al., 2001a; Watanabe et al., 1994). TOP2A is expressed in mitotic cells and interacts with BAF complexes to modulate chromatin accessibility (Dykhuizen et al., 2013; Miller et al., 2017; Ken Tsutsui et al., 2001; Wijdeven et al., 2015). On the other hand, TOP2B is required for neuronal differentiation *in vitro* and *in vivo* (Tiwari et al., 2012; Ken Tsutsui et al., 2001; Yang, 2000). Consistent with neuronal differentiation, miR-9/9*-124 instruct the similar switch of TOP2 homologs during neuronal reprogramming of human adult fibroblasts by inducing a rapid reduction of TOP2A in fibroblasts for the selective expression TOP2B in converted neurons (Abernathy et al., 2017a) (Figure 1).

Similarly, the reconfiguration of the epigenetic landscape during neuronal reprogramming also involves changes in DNA methylation patterns (Abernathy et al., 2017a). Regarding the reprogramming activities of the miRNAs, it has been shown that ectopic expression of miR-9/9*-

Figure 1. MiR-9/9*-124-mediated neuronal reprogramming of human adult fibroblasts. Ectopic expression of miR-9/9*-124 in human adult fibroblasts leads to the switching of several non-neuronal to neuronal components for neural fate acquisition. MiRNAs orchestrate the genetic switching of epigenetic regulators including the BAF complex subunits (BAF53a, BAF45a and SS18 to BAF53b, BAF45b/c and SS18L1), TOP2A to TOP2B, and DNMT3B to DNMT3A. These coordinated molecular switches underlie the establishment of a neuronal epigenetic landscape during neuronal reprogramming. Additionally, the switching of PTB proteins, from PTBP1 to PTBP2, mediated by miR-124 activates neuron-specific alternative splicing program.

124 in fibroblasts recapitulated the molecular switching of de novo methyltransferases,

DNMT3B to DNMT3A, similarly to neural differentiation *in vivo* (Abernathy et al., 2017a; Feng et al., 2005; Watanabe et al., 2006) (Figure 1). DNMT3A has been implicated in various aspects of neuronal development, including synaptic plasticity (Colquitt et al., 2014; Feng et al., 2010), but it remains unclear how DNMT3A modulates gene expression in the nervous system. Although DNA methylation is viewed as a repressive mark, methylation marks deposited by DNMT3A have also been associated with enhanced gene expression through antagonizing PRC2 activity (Wu et al., 2010). The dramatic change in DNA methylation profile in miRNA-induced neurons also involves the induction of a family of demethylase, ten-eleven translocation (TET) family proteins (TET1/2/3) (Abernathy et al., 2017a), implicated in neuronal development (Hahn et al., 2013; Zhang et al., 2013). It should be noted, however, what additional molecules interact with DNMT3A and TET proteins during neuronal reprogramming to influence DNA methylation at specific loci remains largely unknown.

Although the mechanisms underlying the switching of epigenetic effectors remain to be precisely defined, it is clear that miR-9/9*-124 promote neuronal identity during the direct reprogramming of human fibroblasts through establishing an epigenetic state permissive for the downstream acquisition of neuronal fate. The reciprocal temporal and spatial switching of chromatin modifiers observed both during neurogenesis and neuronal reprogramming highlight the complex and dynamic epigenetic regulations required to overcome cell fate barriers.

MiR-124-mediated PTB switching regulates neuronal splicing profile

In addition to epigenetic regulators, post-transcriptional regulation of gene expression appears to be integral for neuronal reprogramming. The expression of PTB (polypyrimidine tract-binding) proteins, PTBP1 and PTBP2, are mutually exclusive and exhibit reciprocal switching during neural fate acquisition (Boutz et al., 2007). PTB proteins are RNA-binding proteins that bind to U-rich tracts primarily in introns for the post-transcriptional regulation of mRNAs, including alternative splicing (Keppetipola et al., 2012; Wagner and Garcia-Blanco, 2001). PTBP1 is expressed in non-neuronal cells and neural progenitors whereas the expression of its neuronal homolog, PTBP2 (nPTB), a splicing target of PTBP1, is primarily restricted to post-mitotic neurons in the nervous system (Boutz et al., 2007; Makeyev et al., 2007). PTBP1 represses PTBP2 expression by introducing a premature stop through the skipping of PTBP2 exon (Boutz et al., 2007). During development, the expression of miR-124 at the onset of neurogenesis mediates the switching of PTB proteins by targeting the 3'UTR of PTBP1, thereby alleviating PTBP1-mediated repression of PTBP2 in neurons (Makeyev et al., 2007). Although PTB proteins exhibit functional redundancy (Spellman et al., 2007), PTBP2 in neurons are essential for the proper splicing of various transcripts involved in neuronal function (Boutz et al., 2007; Li et al., 2014; Licatalosi et al., 2012; Zheng et al., 2012). Interestingly, ablating PTBP1 function in several cell types, including mouse embryonic fibroblasts, though insufficient in human fibroblasts, led to the direct conversion into neurons (Xue et al., 2013; Y. Xue et al., 2016), suggesting the significance of PTBP2 for the induction of neuronal fate. In addition to the activation of PTBP2 upon neural fate acquisition, PTBP2 level attenuates later in development for neuronal maturation (Li et al., 2014; Y. Xue et al., 2016). The attenuation of PTBP2 can be recapitulated with sequential knockdown of both PTB proteins resulting in the reprogramming of human adult fibroblasts into neurons (Y. Xue et al., 2016). The proposed mechanism is that

PTBP2 reduction initiates a regulatory loop that activates downstream BRN2 for miR-9 expression, which dampens PTBP2 activity through 3'UTR targeting (Y. Xue et al., 2016). Together, PTBP2 level is dynamically regulated throughout neuronal differentiation and is essential as PTBP2 knockout results in neuronal death (Li et al., 2014; Y. Xue et al., 2016).

The use of miRNA-induced neuronal ground state for subtypespecific neuronal reprogramming

As neurological disorders affect distinct neuronal subtypes, the generation of neuronal subtypes has been of interest not only for dissecting the underlying mechanisms behind subtypespecific neuronal conversion, but also for the implication of the reprogrammed neurons in disease modeling. MiR-9/9*-124 have been shown to induce a "default" neuronal state characterized by enhanced accessibility of chromatin regions encompassing neuronal genes (Figure 2). These regions include genes specifically expressed in distinct neuronal subtypes, yet remain inactivated, thereby providing the chromatin environment that is open and permissive for subtype-defining inputs of transcription factors (Abernathy et al., 2017a). Furthermore, unlike iPSC-based reprogramming methods, direct neuronal conversion bypasses an embryonic intermediate (Lapasset et al., 2011; Miller et al., 2013), thereby retaining the age signatures of starting fibroblasts including the epigenetic clock (Horvath, 2013), age-associated changes in transcriptome and microRNAs, reactive oxygen species (ROS) levels, DNA damage and telomere lengths (Huh et al., 2016; Mertens et al., 2015; Tang et al., 2017). As direct neuronal conversion can faithfully recapitulate age-associated phenotypes, directly reprogrammed neurons hold promise in the modeling of adult-onset neurodegenerative diseases and necessitates the control of subtype-specificity during neuronal reprogramming.

The use of synergism between miRNAs and subtype-defining transcription factors to obtain subtype-specific neurons has been successful in generating cortical neurons (Yoo et al., 2011), striatal medium spiny neurons (Victor et al., 2014), and spinal cord motor neurons (Abernathy et al., 2017a) (Figure 2). For instance, heterogeneous population of excitatory and inhibitory neurons belonging to the cortex can be obtained with the use of miR-9/9*-124 in combination with NEUROD2, ASCL1, and MYT1L (DAM) cocktail from adult fibroblasts (Yoo et al., 2011). However, it remains to be tested whether layer-enriched transcription factors would be able to further guide the cortical lineage to neurons with layer-specific identities. Since previous studies demonstrated the plasticity of cortical neurons being able to transition between cortical layer fates (De la Rossa et al., 2013; Rouaux and Arlotta, 2013, 2010), it raises the potential that a similar approach may be taken in a cellular reprogramming context.

An enriched population of striatal medium spiny neurons (MSN), the neuronal subtype primarily degenerated in Huntington's disease (HD), can be derived using miR-9/9*-124 in conjunction with CTIP2, DLX1/2, and MYT1L (CDM) factors (Victor et al., 2014). More than 70% of cells express DARPP32, a marker of MSNs, and when injected into the stratum of mouse pups, the converted MSNs incorporate and project to the substantia nigra and globus pallidus *in vivo* with electrophysiological properties similar to neighboring endogenous mouse MSNs (Victor et al., 2014). Interestingly, applying the MSN-specific neuronal conversion approach in fibroblast samples from symptomatic patients has proven to be successful in generating patient-specific MSNs manifesting hallmark HD pathology, including HTT aggregation, spontaneous neuronal death, and increased DNA damage (Victor et al., 2018). Importantly, the manifestation of HD-associated phenotypes was dependent on the specificity of the type of neurons generated

and the age status in converted neurons, further highlighting the importance of age and subtypespecificity in modeling adult-onset diseases (Victor et al., 2018).

Spinal cord motor neurons are most susceptible to degeneration in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) diseases, and devising a conversion protocol could be instrumental to the study and modeling of motor neuron (MN) diseases. Using a combination of NEUROG1, SOX11, ISL1, and LHX3 (NSIL), MNs can be generated from fibroblasts of ALS patients in which the patient-derived MNs manifest various ALS pathologies, including FUS protein mislocalization and neuronal degeneration (Liu et al., 2016). Alternatively, miRNAs in conjunction with two transcription factors, ISL1 and LHX3, have been shown to generate functional mature MNs that display transcriptional signatures similar to *in vivo* mouse spinal MNs (Abernathy et al., 2017a). Despite the robustness in generating a highly enriched population of spinal cord MNs, it remains to be demonstrated whether the MNs derived through the miRNA-induced neuronal state can be used to model ALS or SMA.

The use of transcription factors only, ASCL1, NURR1, and LMX1A, to directly convert fibroblasts of healthy and Parkinson's disease (PD) patients into dopaminergic cells is possible but with limited efficiency in human cells (Caiazzo et al., 2011). Interestingly, reprogramming efficiency improved with the addition of neuronal miRNA, miR-124, and shRNA against p53, to the transcription factor cocktail using adult fibroblasts (Jiang et al., 2015). One of the proposed mechanisms behind this enhancement is due to the activation of TET proteins, in particular TET1, during reprogramming, as knockdown of TET1 results in increased cell death while overexpression enhances the overall number of TUBB3 and TH positive cells (Jiang et al., 2015). The induction of TET family members has also been observed in miR-9/9*-124-mediated reprogramming (Abernathy et al., 2017a).

Figure 2. Synergism between microRNAs and transcription factors for subtype-specific neuronal reprogramming of human adult fibroblasts. MiR-9/9*-124 mediate the erasure of fibroblast fate through remodeling of a fibroblast-specific chromatin landscape and transcriptome profile and promote a neuronal chromatin landscape and transcriptome. MiRNA alone generates a default neuronal state characterized by the reconfiguration of the chromatin state permissive to the subtype-defining inputs of transcription factors. With distinct combinations of transcription factors, the miRNA-based conversion have been successfully employed to generate cortical neurons (Yoo et al., 2011), striatal medium spiny neurons (Victor et al., 2014) and spinal cord motor neurons (Abernathy et al., 2017).

The generation of additional neuronal subtypes, including serotonergic neurons for the study of neuropsychiatric disorders such as schizophrenia (Vadodaria et al., 2016; Xu et al., 2016) and sensory neurons for the study of pain sensation (Blanchard et al., 2015; Wainger et al., 2015) have been demonstrated using the transcription factor approach. It remains to be tested whether miR-9/9*-124 could be combined with similar transcription factors to enhance overall conversion efficiency in human cells.

Summary

MiR-9/9*-124-mediated direct conversion of human adult fibroblasts into functional neurons reconfigures and establishes a pan-neuronal epigenetic landscape permissive on which brain region-enriched transcription factors can act and generate specific neuronal subtype. MiR-9/9*-124 are potent neurogenic molecules as they mediate numerous genetic switches that occur during neurogenesis, in which many include epigenetic players and pro-neurogenic effectors that are important to overcome cell fate barriers and activate neuronal fate programs. As miRNAs regulate expression of multiple genes, the pro-neural environment established by the miRNAs allow for the use of this paradigm for the study of neural fate acquisition. To better understand and address the role of brain-enriched miRNAs, examining miRNA-mRNA network would provide invaluable insights to the acquisition of neuronal fate. Though much remains to be uncovered, with the maintenance of age of starting fibroblasts preserved after cellular conversion, modeling age-dependent neurodegenerative diseases through direct reprogramming allows for the faithful recapitulation of age-associated pathogenesis for mechanistic studies of the disease.

18

<u>Chapter 3: Synergism between</u> <u>microRNA-124 and ELAVL3 drives</u> <u>neuronal gene upregulation in</u> <u>human neurons</u>

In part from:

MiR-124 synergism with ELAVL3 enhances target gene expression to promote neuronal maturity.

Ya-Lin Lu, Yangjian Liu, Matthew J. McCoy & Andrew S. Yoo

In submission

Abstract

Neuron-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), direct cell fate switching of human fibroblasts to neurons when ectopically expressed by repressing anti-neurogenic genes. How these miRNAs function after the onset of the transcriptome switch to a neuronal fate remains unclear. Here, we identified direct targets of miRNAs by Argonaute (AGO) HITS-CLIP as reprogramming cells activate the neuronal program and reveal the role of miR-124 that directly promotes the expression of its target genes associated with neuronal development and function. The mode of miR-124 as a positive regulator is determined by a neuron-enriched RNA-binding protein, ELAVL3, that interacts with AGO and binds target transcripts, whereas the non-neuronal ELAVL1 counterpart fails to elevate the miRNA-target gene expression. Although existing literature indicate that miRNA-ELAVL1 interaction can result in either target gene upregulation or downregulation in a context-dependent manner, we specifically identified neuronal ELAVL3 as the driver for miRNA target gene upregulation in neurons. In primary human neurons, repressing miR-124 and ELAVL3 led to the downregulation of genes involved in neuronal function and process outgrowth, and cellular phenotypes of reduced inward currents and neurite outgrowth. Results from our study support the role of miR-124 promoting neuronal function through positive regulation of its target genes.

AGO binds both downregulated and upregulated genes during miR-9/9*-124-mediated direct neuronal reprogramming of human fibroblasts

Previous studies showed that the ectopic expression of miR-9/9*-124 in human adult fibroblasts (HAFs) induces a neuronal state characterized by the appearance of neuronal markers

(such as MAP2, TUBB3, NCAM, and SNAP25) (Figure 1A) and electrical excitability (Abernathy et al. 2017). To identify target genes of miR-9/9*-124 as reprogramming cells transition to neuronal identity, we carried out AGO HITS-CLIP after two weeks into reprogramming, a time point when neuronal genes are activated (Abernathy et al. 2017), to identify transcripts bound with AGO loaded with miR-9/9* or miR-124 over the non-specific miRNA (miR-NS) control (Log₂FC \geq 1; adj.P-value < 0.05). We compared these hits to the list of differentially expressed genes (DEGs) (by RNA-seq analysis; $-1 \le Log_2FC \ge 1$; adj.P-value < 0.05) at day 20 of miRNA-induced neurons (miNs) (Abernathy et al. 2017). As expected, we found target transcripts that were downregulated consistent with the repressive mode of miRNAs (Figure 1B, 113 genes labeled as green dots) including some known targets, SHROOM3 and PHF19 (Lu et al., 2018; Neo et al., 2014; Zhou et al., 2014). Interestingly, we also discovered 453 unique gene transcripts with enriched AGO binding, which were upregulated in day 20 miNs (Figure 1B, red dots). By gene ontology (GO) analysis, these upregulated genes with enriched AGO loading in response to miR-9/9*-124 were associated with various neuronal processes such as synaptic transmission and regulation of membrane potential (red), in contrast to non-neuronal, downregulated target genes (green) (Figure 1C). Moreover, when examined against the timecourse transcriptome analysis during neuronal reprogramming (Abernathy et al. 2017), the expression of the identified neuronal target genes showed continuous upregulation during later time point of neuronal conversion (Figure 1D). For example, neuronal transcripts such as MAP2, PTBP2, and SLC4A8 that were highly expressed in day 20 miNs harbored AGO binding sites at the 3'UTR (Figure 1E). To determine the fraction of upregulated neuronal genes that are likely actual targets of miR-9/9* and/or miR-124, we extracted the AGO-enriched sequences and

Figure 1. Enrichment of AGO binding on transcripts of neuronal genes upregulated during miR-9/9*-124-mediated neuronal conversion

(A) Examples of miR-9/9*-124-mediated direct reprogramming of human adult dermal fibroblasts (HAFs) into neurons (miNs). Photographs show immunostaining of the fibroblast marker (S100A4) and neuronal markers (MAP2, TUBB3, NCAM, and SNAP25). Scale bar = 20 µm.

(B) A volcano plot of differentially expressed genes at day 20 miNs and enrichment of AGO binding in response to miR-9/9*-124 expression identified by AGO HITS-CLIP analysis. Red dots, day 20 mRNA expression Log2FC ≥ 1; adj.P-value < 0.05, AGO binding Log2FC ≥ 1, adj.P-value < 0.05. Green dots, day 20 mRNA expression Log2FC ≤ -1; adj.P-value < 0.05, AGO binding Log2FC ≥ 1, adj.P-value < 0.05. Green dots, day 20 mRNA expression Log2FC ≥ 1; adj.P-value < 0.05.

(C) Top biological GO terms of upregulated (red) and downregulated (green) DEGs in day 20 miNs differentially bound by AGO.

(D) Time course heatmap of select upregulated DEGs enriched for AGO binding with miR-9/9*-124 expression.

(E) Track views of AGO CLIP-seq tracks (top) and RNA-seq tracks (bottom) for gene examples showing the enrichment of AGO binding miR-9/9*-124 expression (over control miR-NS) and increased transcript levels at 3'UTRs.

(F) Of the 301 unique upregulated DEGs identified in (A), 207 are predicted to harbor miR-9/9* and/or miR-124 sites at the AGO-enriched regions through RNAhybrid prediction. The graph indicates top biological GO terms associated with the 328 upregulated DEGs containing miR-9/9* and/or miR-124 target sites. (G) Breakdown of the 328 upregulated DEGs in (F) based on common or specific targets of miR-9/9* and/or miR-124.

predicted the duplex formation by either miR-9/9* and/or miR-124 through RNAhybrid (a maximum free energy threshold of -20 kcal/mol) (Rehmsmeier, 2004). Of the 453 upregulated DEGs in miNs bound by AGO (Figure 1B), 328 (~72%) gene transcripts are predicted to contain miR-9/9* and/or miR-124 binding sites (Figure 1F). These transcripts harboring miR-9/9*-124 sites are also associated with the similar set of neuronal GO terms in Figure 1C as they include a selection of genes important for neuronal function (Figures 1F). Of these upregulated miR-9/9*-124 target genes, more than 94% of the total genes (308 of 328 genes) contain miR-124 target sequence alone (45%) or with miR-9/9* sites, while less than 6% of the genes (20 genes) contain miR-9/9* target sites only (Figure 1G). These results collectively demonstrate that the AGO-loaded transcripts differentially (up or down) respond to miR-9/9*-124 during neuronal conversion.

MiR-124 target genes are upregulated during neuronal conversion

As a large fraction of the upregulated genes contained miR-124 target sequences (Figure 1G), we further tested if the upregulated genes were *bona fide* targets of miR-124 by knocking down miR-124 expression through the use of a tough decoy (TuD) to inhibit miRNA activity (Bak et al., 2013; Haraguchi et al., 2009). The effect of the lentivirus-based TuD for miR-124 (TuD-miR-124) was monitored after transduction by following the concurrent expression of TurboRFP reporter built in the lentiviral vector and measuring the mature miR-124 level. TuD-miR-124 yielded more than 60% reduction of miR-124 expression in comparison to the control, non-specific miRNA tough decoy (TuD-miR-NS) (Figure S1A-S1B). We then performed RNA-seq analysis on day 20 miNs treated with either TuD-miR-NS or TuD-miR-124 to see whether any of the miR-124 target would fail to be upregulated with TuD-miR-124 treatment (Figure 2A, S1C). When compared with upregulated DEGs in day 20 miNs that were also enriched for AGO

binding (Figure 1), we identified 192 genes (Log₂FC \leq 0.5; adj.P-value < 0.01) that failed to be upregulated upon miR-124 reduction (Figure 2A, Table S1). With GO analysis, these identified genes were associated with neuronal terms involved in various synaptic processes (Figure 2B).

To further analyze miR-124-target interactions, we looked into the potential duplex formations between miR-124 and the identified AGO HITS-CLIP peak regions using RNAhybrid (a maximum free energy threshold of -20 kcal/mol) (Rehmsmeier, 2004). Of the upregulated transcripts that harbor AGO-enriched peaks, we identified a spectrum of miR-124 and target mRNA duplex configurations ranging from the canonical 2-8 seed base pairing to noncanonical base pairing starting at position 3 and 4 (Figures 2C, S1D, and S2). These examples include *MAP2* 3'UTR, in which miR-124 base pairing is predicted to start at position 3, while miR-124 target sequences on *PTBP2* 3'UTR at the two peaks are predicted to start at position 1 and position 2, respectively (Figure 2C). Interestingly, across the predicted miR-124:target duplex configurations, we observed consistent auxiliary 2-3 base pairing at the 3' end of miR-124 (Figure S1D).

Our results so far indicate that miR-124 can target and promote the expression of select neuronal genes when cells acquire the neuronal fate during neuronal conversion. We wondered if the active mode of miR-124 would be specific to neuronal cell types. We cloned the 3'UTRs of several identified, upregulated targets (*MAP2*, *PTBP2*, *BCL7A*, *KALRN*, *SEMA6A*, *RCAN2*) into a luciferase reporter construct and transfected into a non-neuronal cell type, HEK293T (a human embryonic kidney cell line), with a miR-9/9*-124 expression construct. After 48 hours post-transfection, we found that unlike reprogrammed neurons, miR-9/9*-124 instead, repressed the luciferase signal in HEK293T cells in comparison to the control miR-NS, while the non-target control, *PGK1* 3'UTR was unaffected (Figure 2D). This result suggests that additional

Figure 2. Identification of miR-124 target genes that fail to be upregulated upon the inhibition of miR-124 during miRNA-mediated neuronal conversion

(A) Left, miR-124 activity is reduced through the use of tough decoy (TuD). By overlapping with upregulated DEGs bound by AGO (Figure 1), 192 genes were identified as genes that fail to be increased upon the reduction of miR-124. Right, a heatmap of z-scores of the 192 genes from RNA-seq comparing miNs between TuD-miR-NS and TuD-miR-124 treatments.

(C) Predicted binding of miR-124 to the 3'UTR sequences of neuronal target genes, for example, MAP2 and PTBP2, according to RNA/bird prediction at the highlighted AGO HITS-CLIP

peaks. (D) Luciferase assays in HEK293T cells of upregulated neuronal target genes of miR-124 selected from A). In the non-neuronal context of HEK293T cells, 3'UTRs from the neuronal genes

are targeted and repressed, instead, by miR-9/9*-124. Luminescence measured after 48 hrs of transfection and normalized to miR-NS control of each condition. Data are represented by mean \pm SEM from three independent experiments (from left, ** P = 0.0094, P = 0.0011; *** P = 0.048, P = 0.0101; *** P < 0.001).

(E) A diagram of the observed phenomenon in which miR-9/9*-124 can promote neuronal identity by simultaneously targeting both non-neuronal genes for repression while promoting the expression of neuronal genes during neuronal conversion.
determinants available in neuronal cells may be in play to govern the activity of miR-124 as a positive regulator while simultaneously functioning to repress non-neuronal targets (Figure 2E).

PTBP1 and PTBP2 3'UTR as targets of miR-124

To further dissect the mechanism underlying the dual modes of miR-124 on its targets, we elected to focus on *PTBP2* from the list of our identified neuronal targets because i) *PTBP2* and its non-neuronal homolog, *PTBP1*, both contain miR-124 sites in their 3'UTRs (Figure 3A), and ii) both *PTBP1* and *PTBP2* 3'UTRs are targeted and repressed by miR-124 in HEK293T cells (Figure 3A), and iii) contrastingly, as observed in the human brain, qPCR analysis showed that the neuronal conversion established the mutually exclusive expression between *PTBP1* and *PTBP2* (Figure 3B). Therefore, the PTB homologs represent an ideal example to investigate how two closely related targets respond differently to miR-124.

The 3'UTRs of human *PTBP1* and *PTBP2* contain two predicted target sites for miR-124 (yellow bar) and one site for miR-9 (blue bar) (Figure 3A). Luciferase reporter assays in the nonneuronal HEK293T cells showed that miR-9/9*-124 or miR-124 alone (but not miR-9/9* alone) repressed both *PTBP1* and *PTBP2* through their 3'UTRs indicating that miR-124 is the primary miRNA targeting both PTB 3'UTRs (Figure 3A). Mutating the two miR-124 sites in *PTBP2* 3'UTR (s1 and s2) rendered the 3'UTR insensitive to miR-124 (Figure S3A). While our results pointing to the ability of miR-124 to target and repress 3'UTRs of both *PTBP1* and *PTBP2* in cell lines were consistent with previous findings (Makeyev et al., 2007; Xue et al., 2016), it remains unknown how miRNA-mediated neuronal conversion of HAFs establishes the mutually exclusive expression of PTBP1 and PTBP2 as seen in the human brain (Figure 3B) and in *in vivo* neurons (Boutz et al., 2007). Because *PTBP1* and *PTBP2* are regulated differentially in miNs, we asked whether the repressive activity of miR-124 on *PTBP2* 3'UTR could be reversed with a prolonged neurogenic input by miR-9/9*-124 in HEK293T cells. We expressed a destabilized EGFP reporter containing *PTBP1* 3'UTR, *PTBP2* 3'UTR, or control 3'UTR (CTL) that lacks a 3'UTR in HEK293T cells with the miR-9/9*-124 expression construct (Figure S3B). Analogous to PTBP2 upregulation during neuronal reprogramming of HAFs, we observed the selective repression of EGFP with *PTBP1* 3'UTR but not *PTBP2* 3'UTR (Figures S3B-C). These results suggest that with the prolonged neurogenic input, *PTBP2* 3'UTR responds to miR-124 differentially from when measured after 48 hours with miRNA expression in HEK293T cells (Figures 2A and 3A).

MiR-124 accentuates PTBP2 expression beyond the induction mediated by the downregulation of PTBP1

Previous studies have shown that during development, PTBP1 destabilizes *PTBP2* transcript in non-neuronal cells by alternative splicing, and at the onset of neurogenesis, miR-124 directly represses *PTBP1* resulting in PTBP2 induction (Boutz et al., 2007; Makeyev et al., 2007). Upon miR-9/9*-124 expression in HAFs, we observed the concomitant downregulation and upregulation of endogenous PTBP1 and PTBP2, respectively (Figure 3B). As expected, the initial PTBP2 upregulation was abrogated when *PTBP1* cDNA was overexpressed (Figure 3C), supporting the role of PTBP1 reduction as the initiation step of PTBP2 expression. We then sought to stratify the contribution of PTBP1 repression alone versus the input of miRNAs to the overall PTBP2 level. When PTBP2 protein levels were compared between PTBP1 knockdown with a short hairpin RNA (shRNA) and miR-9/9*-124 expression, we found that miR-9/9*-124 enhanced the PTBP2 level by approximately a two-fold increase over the PTBP1 knockdown

Figure 3. MiR-124 targets both PTBs, but differentially regulate PTB expression during neuronal conversion.

(A) Top, a schematic diagram of PTB 3'UTRs with miR-124 (yellow) and miR-9 (blue) target sites. S1 and s2 refer to the two conserved miR-124 target sites on PTBP2 3'UTR. Bottom, luciferase assays with luminescence measured after 48 hrs of transfection and normalized to miR-NS control in each condition. Data are represented by mean ± SEM from four independent experiments. Two-way ANOVA followed by Dunnett's test (from left, PTBP1 3'UTR ** P = 0.0043, 0.0034; PTBP2 3'UTR ** P = 0.0016)

(B) Top, A heatmap of gene expression assessed by qPCR in starting HAFs, day 30 miRNA-induced neurons (miNs), and human brain RNA. Bottom, PTB switching is recapitulated during the miRNA-mediated direct conversion of HAFs into neurons. HAFs and day 30 miNs immunostained for PTBP1 and PTBP2, along with a fibroblast marker, S100A4, and a pan-neuronal marker, TUBB3. Scale bar = 50 µm.

(C) Initial induction of PTBP2 by the reduction of PTBP1 by either shRNA or miRNAs during miRNA-mediated neuronal reprogramming. PTBP1 overexpression in the miR-9/9*-124 expression background suppresses the PTBP2 induction.

(D) Left, an immunoblot showing that PTBP1 knockdown in HAFs resulted in induction of PTBP2, but PTBP2 expression becomes more pronounced in the presence of miR-9/9*-124 compared to PTBP1 knockdown only. Right, quantification of PTBP2 band intensity as relative fold changes compared to PTBP1 knockdown alone. Data were normalized to HSP90 from four independent experiments. The plots were represented in mean ± SEM. One-way ANOVA followed by Tukey's test (from top *** P = 0.0002, 0.0004; ns P = 0.8925).

(E) Top left, a schematic diagram of the experimental procedure. Right, photographs of day 30 miNs treated with CTL shRNA, PTBP2 shRNA, or PTBP2 shRNA with PTBP2 cDNA. Cells were immunostained for PTBP2 and MAP2. Bottom left, quantification of the percentage of MAP2-positive cells with two or more neurite processes over the total number of DAPI-positive cells. Scale bar = 50 μ m. Data are represented as mean \pm SEM. One-way ANOVA followed by Tukey's test (*** P < 0.0001; ** P 0.0016). shCTL n = MAP2 356/482; shPTBP2 n = MAP2 31/239; shPTBP2+PTBP2 n = MAP2 225/454.

(F) A model of differential miR-124 activity on PTB 3'UTRs during neuronal conversion.

alone condition (Figure 3D). In fact, PTBP2 was more upregulated with miR-9/9*-124 despite the more pronounced reduction of PTBP1 with shRNA (Figure 3D), demonstrating that miR-9/9*-124 accentuate PTBP2 expression beyond the level induced by PTBP1 downregulation.

Functional significance of PTBP2 expression for neuronal

conversion

To probe the functional importance of *PTBP2* expression, we knocked down *PTBP2* with an shRNA during neuronal conversion. *PTBP2* shRNA completely impaired the induction of neurons marked by the loss of MAP2 expression, a neuronal marker (Figure 3E). The effect of shRNA was specific to *PTBP2* knockdown as supplementing *PTBP2* cDNA rescued the reprogramming defect (Figure 3E). These findings were somewhat surprising as the results from a previous study indicated that sequential reduction of PTBP2 by shRNA was found to promote maturation of reprogrammed neurons (Xue et al. 2016); however, our results indicate that at least at the initiation of reprogramming, PTBP2 is critical. While it is not clear why shRNA- versus miRNA-based reprogramming approaches lead to these different results, our results demonstrate the essential role of PTBP2, at least, at the onset of neuronal conversion. Furthermore, knocking down PTBP2 in primary cultured human neurons resulted in increased cell death as measured with SYTOX assay (Figure S4A-B), consistent with previous studies that showed the essential function of PTBP2 in primary neurons (Li et al., 2014).

We also performed Human Clariom D Assay in HAFs expressing the non-specific control miR-NS, miR-9/9*-124, or miR-9/9*-124 with *PTBP2* shRNA to identify genes whose expression and alternative splicing patterns were affected by the reduction of PTBP2. By two weeks, miR-9/9*-124-expressing cells showed significant downregulation of *PTBP1* and other

fibroblast-enriched genes such as FBN1 and S100A4, and upregulation of PTBP2 and neuronal genes (for example, *NEFM*, and *SNAP25*) in comparison to the control miR-NS (FC \geq 1.5, ANOVA p-value < 0.05) (Figure S4C) (Abernathy et al., 2017). Alternative splicing events mediated by PTBP2 were examined by comparing spliced events between PTBP2 shRNA and control shRNA (shCTL) conditions. We found that reducing PTBP2 led to changes in splicing events ($-2 \le$ splicing index ≥ 2 , ANOVA p-value < 0.05) indicated by red (positive splicing) index) and green dots (negative splicing index) (Figure S4D). This analysis identified known splicing targets of PTBP2, such as the exon skipping or exclusion in UNC13B, DLG4, and CADM3, and inclusion in DNM1 and SMARCC2 transcripts (Figure S4D) (Li et al., 2014; Licatalosi et al., 2012; Vuong et al., 2016; Zheng et al., 2012). Comparing genes upregulated in response to miR-9/9*-124 to genes associated with PTBP2-mediated alternative splicing (differential splicing events between miR-9/9*-124-shCTL and shPTBP2 conditions), identified 1183 differentially spliced transcripts of genes involved in processes such as neuronal differentiation and signaling (Figure S4E) (Table S2). Altogether, our results support the role of PTBP2 as a crucial regulator of the neuronal program.

Differential sequence composition between PTBP1 and PTBP2 3'UTRs

Using PTBP1 downregulation and PTBP2 upregulation as a model, we sought to identify effectors that determine miR-124 function as a positive regulator. RNA-binding proteins (RBPs) have been shown to interact with miRNA-loaded RISC complexes to modulate target gene expression (Iadevaia and Gerber, 2015; Jiang and Coller, 2012; Plass et al., 2017). We ran the sequence of *PTBP2* 3'UTR through three RBP motif prediction databases, including RBPDB (Cook et al., 2011), RBPmap (Paz et al., 2014), and beRBP (Yu et al., 2018) (Figure S5A). Across the three databases, two RBPs, ELAVL1 and PUM2, were consistently predicted to bind to *PTBP2* 3'UTR (Figure S5A). As PTBP2 upregulation occurs in neurons, we focused on the family of RBPs whose expression is neuronally enriched. Whereas ELAVL1 and Pumilio family RBPs, *PUM2* or its homolog, *PUM1*, are ubiquitously expressed (Lin et al., 2018; Okano and Darnell, 1997; Spassov and Jurecic, 2002), other ELAVL family members, ELAVL2, ELAVL3, and *ELAVL4* (collectively referred to as neuronal *ELAVLs*, *nELAVLs*), have been shown to be neuronally enriched (Okano and Darnell, 1997). We also examined the HITS-CLIP data of nELAVLs in the human brain (Scheckel et al., 2016) and found nELAVLs to be highly enriched at PTBP2 3'UTR, in contrast to PTBP1 3'UTR (Figure S5B-C). Interestingly, PTBP2 3'UTR contains AU-rich elements (AREs) that ELAVLs have been shown to bind to (Ince-Dunn et al., 2012; Scheckel et al., 2016), in contrast to *PTBP1* 3'UTR that lacks the ARE (Figure S5B). Moreover, nELAVL binding mapped to the ARE around the first miR-124 site (s1; seed, highlighted in red) *PTBP2* 3'UTR (Figure S5C). We thus examined by qPCR if nELAVLs are induced during neuronal conversion as well as other brain-enriched RBP markers including NOVA-, RBFOX-family proteins, and SSRM4. We found selective upregulation of nELAVLs with other neuronal RBPs in miNs similarly to the human brain, in contrast to the ubiquitous expression of *ELAVL1* (Figure 4A) (Okano and Darnell, 1997). To determine if nELAVL induction occurs concurrently with PTBP2 upregulation, we assessed ELAVL expression at multiple time points of neuronal conversion. We found that the transcriptional activation of nELAVLs, with *ELAVL3* being the most robust one (blue), aligned with the upregulation of *PTBP2* (black) by nine days into reprogramming (Figure 4B).

Figure 4. MiRNA-mediated PTBP2 upregulation requires nELAVL binding at PTBP2 3'UTR

(A) An expression heatmap of neuronal-enriched RBPs determined by qPCR in starting HAFs, day 20 miNs, and human brain RNA.

(D) Luciferase assays with the addition of individual ELAVLs in the luciferase constructs containing the control PGK1, PTBP1, PTBP2 or PTBP2∆ARE 3'UTR. Luminescence was measured 48 hrs after the transfection and normalized miR-9/9*-124 to miR-NS control of each condition. Data are represented by mean ± SEM from at least three independent experiments. Two-way ANOVA followed by Dunnet's test (* P = 0.0312, *** P = 0.0001).
(E) Left, a schematic diagrm of ELAVL3 hinge mutants. Right, luciferase assays with the addition of wild-type ELAVL3 or ELAVL3 hinge mutants (ELAVL3∆

(E) Left, a schematic diagrm of ELAVL3 hinge mutants. Right, luciferase assays with the addition of wild-type ELAVL3 or ELAVL3 hinge mutants (ELAVL3∆ H: ELAVL3 hinge deletion; ELAVL3-E1H: ELAVL3 with ELAVL1 hinge). Luminescence was measured 48 hrs after transfection and normalized miR-9/9*-124 to miR-NS control of each condition. Data are represented by mean ± SEM from at least four independent experiments. Two-way ANOVA

In EV/85 mig-9/9*-124 to miR-NS control of each condition. Data are represented by mean \pm SEM from at least four independent experiments. Two-way ANOVA followed by Tukey's test (from left ** P = 0.0020, * P = 0.0435, * P = 0.0286). (F) Left, a schematic diagram of ELAVL1 hinge mutants. Right, luciferase assays with the addition of wild-type ELAVL1 or ELAVL1 hinge mutants (ELAVL1 Δ H: ELAVL1 hinge deletion; ELAVL1-E3H: ELAVL1 with ELAVL3 hinge). Luminescence was measured 48 hrs after transfection and normalized miR-9/9*-124 to miR-NS control of each condition. Data represented in mean \pm SEM from at least four independent experiments. Two-way ANOVA followed by Tukey's test (** P = 0.0059, * P = 0.0260).

MiRNA-mediated PTBP2 induction requires ELAVL3 binding at PTBP2 3'UTR

We then tested whether ARE within *PTBP2* 3'UTR would serve as a sequence that binds ELAVL proteins by expressing 3'UTRs of *PTBP1*, *PTBP2*, or *PTBP2* without ARE (*PTBP2AARE* 3'UTR) with individual FLAG-tagged ELAVLs (ELAVL1-4) in HEK293T cells (Figure 4C). RNA-immunoprecipitation (RIP) of FLAG-ELAVLs with FLAG antibody, followed by qPCR for detecting the loaded 3'UTRs using primers specific for either *PTBP1* or *PTBP2* displayed significant enrichment for *PTBP2* 3'UTR with nELAVL (ELAVL2, 3, and 4) pull-downs, while the binding of ELAVL1 to *PTBP2* 3'UTR was minimal. We could not detect significant enrichment for *PTBP1* 3'UTR for any of the ELAVLs (Figure 4C). Importantly, deleting ARE in *PTBP2* 3'UTR (*PTBP2AARE* 3'UTR) abolished the binding of nELAVL proteins to *PTBP2* 3'UTR (Figure 4C) indicating that ARE within *PTBP2* 3'UTR serves to recruit nELAVLs.

We then asked whether adding nELAVLs to the non-neuronal context of HEK293T cells, thereby reconstituting nELAVLs that become available during neuronal conversion, would alleviate miR-124-mediated repression of PTBP2 and enhance PTBP2 expression. Adding individual ELAVLs to control *PGK1* 3'UTR had no effect on luminescence (relative luminescence of ~ 1; *PGK1* 3'UTR histograms) (Figure 4D). Luciferase activities with *PTBP1* 3'UTR remained repressed upon miR-9/9*-124 expression compared to the control miR-NS irrespective of the ELAVL addition (relative luminescence of < 1; *PTBP1* 3'UTR histograms) (Figure 4D). MiR-9/9*-124 led to the repression *PTBP2* 3'UTR in the absence of ELAVLs (black, relative luminescence ratio < 1; *PTBP2* 3'UTR histograms) (Figure 4D). However, adding ELAVL2 (green) and ELAVL3 (blue) significantly alleviated miR-9/9*-124-mediated repression on *PTBP2* 3'UTR, with especially ELAVL3 (blue) having the most significant effect on elevating the luciferase activity in comparison to the control construct (Figure 4D). To examine the requirement of ARE, we repeated the ELAVL addition experiments using the luciferase cassette with *PTBP2* 3'UTR lacking the ARE sequence (*PTBP2* Δ *ARE*). Deleting ARE abolished the effect of ELAVL3 (blue) on *PTBP2* (*PTBP2* Δ *ARE* 3'UTR histograms), which stayed repressed (Figure 4D), demonstrating the requirement of ELAVL3 and ARE for *PTBP2* upregulation by miR-124.

Selective activity of ELAVL3 on PTBP2 3'UTR is dependent on the hinge region

ELAVL1-4 members exhibit high sequence homology across all three functional RNA recognition motifs (RRMs) except for the non-conserved spacer region (also referred to as hinge region) flanked by RRM2 and RRM3 (Hinman et al., 2013; Okano and Darnell, 1997). To better understand the specificity of ELAVL3 on *PTBP2* 3'UTR regulation, we mutagenized the hinge region of *ELAVL1* and *ELAVL3* by deleting or swapping the hinge region (H) between *ELAVL1* and *ELAVL3*. Deleting the H in *ELAVL3* (*ELAVL3AH*) (light blue) abrogated the alleviating effect on *PTBP2* 3'UTR repression, whereas no effect was observed with *PGK1* 3'UTR (Figure 4E, *PGK1* 3'UTR histograms). Moreover, replacing the *ELAVL3* H with *ELAVL1* H (*ELAVL3-E1H*) (dark blue) led to the failure of alleviating the *PTBP2* 3'UTR repression (Figure 4E), and none of the *ELAVL3* variants (wild-type and mutants) had any effect on *PTBP2* ΔARE 3'UTR (Figure 4E, *PTBP2* ΔARE 3'UTR histograms). These results indicate that the specificity of ELAVL3 to *PTBP2* 3'UTR is mediated by the *ELAVL3* H region. This notion is further

supported by the increase in the luminescence readout of *PTBP2* 3'UTR in HEK293T cells when *ELAVL1* H is replaced by *ELAVL3* H (*ELAVL1-E3H*) (dark red) compared to wild-type *ELAVL1* (red) (Figure 4F, *PTBP2* 3'UTR histograms).

ELAVL3 promotes PTBP2 expression during neuronal

reprogramming

To further examine if ELAVL3 would be critical for PTBP2 upregulation during the neuronal conversion of HAFs, we knocked down *ELAVL3* by shRNA (shELAVL3) to assess PTBP2 expression and neuronal reprogramming. Knocking down ELAVL3 resulted in the significant downregulation of PTBP2 expression as determined by immunostaining, qPCR, and immunoblotting analyses, and impairment of the conversion process (Figures 5A-C). This knockdown effect was specific for ELAVL3 downregulation as PTBP2 expression and neuronal fate acquisition could be rescued by overexpressing *ELAVL3* cDNA in the presence of shELAV3 (Figure 5A). It is noteworthy that reducing the function of other nELAVLs (ELAVL2 and 4) had a milder effect on PTBP2 expression (Figures 5B-C), highlighting the role of ELAVL3 as a primary driver for PTBP2 upregulation with miR-124.

Synergism between nELAVL and AGO requires miR-124 site in PTBP2 3'UTR

We further tested whether the miR-124 sites within *PTBP2* 3'UTR would also be critical for mediating the PTBP2 upregulation with ELAVL3. By mutating the miR-124 seed-match sequences within *PTBP2* 3'UTR (*PTBP2As1s2* 3'UTR), adding ELAVLs failed to enhance the luciferase activity over the control (CTL, black; relative luminescence ratio unchanged;

Figure 5. PTBP2 upregulation requires the synergism of nELAVL and miR-124

(A) Left, day 30 miNs with shRNA knockdown against CTL, ELAVL3, and ELAVL3 with ELAVL3 cDNA rescue. Cells were immunostained for MAP2 and PTBP2. Scale bar 50 = μ m. Right, quantification of the percentage of MAP2-positive cells over the total number of DAPI-positive cells with two or more neurites (left). Data represented as mean ± SEM. One-way ANOVA followed by Tukey's test (from left, *** P < 0.0001, *** P < 0.0001). shCTL n = MAP2 803/1060; shELAVL3 n = MAP2 67/1052; shELAVL3 + ELAVL3 n = MAP2 431/617.

(B) Left, immunoblot analysis of PTBP2 in day14 miNs with knockdown against CTL, ELAVL2, ELAVL3, and ELAVL4. Right, quantification of the PTBP2 band intensity as a relative fold change compared to shCTL normalized to HSP90 in four independent experiments. Data are represented by mean ± SEM. One-way ANOVA followed by Dunnett's test (* P = 0.0422).

(C) The relative quantity of PTBP2 transcript upon individual nELAVL knockdown compared to CTL at day14 miNs determined by qPCR. Data are represented by mean \pm SEM from 3 independent experiments. One-way ANOVA followed by Dunnett's test (*** P = 0.0001). (D) Top, a diagram of luciferase constructs containing PTBP2 3'UTR with or without miR-124 sites (PTBP2 Δ s1s2). Bottom, luciferase assays with the addition of individual ELAVLs in PGK1 control, PTBP2, or PTBP2 Δ s1s2 3'UTR. Luminescence was measured 48 hrs after transfection and normalized miR-9/9*-124 to miR-NS control of each condition. Data are represented by mean \pm SEM from at least three independent experiments. Two-way ANOVA followed by Dunnett's test (* P = 0.0312, *** P = 0.0001).

(E) RIP of individual FLAG-tagged ELAVLs in PTBP2 Δ s1s2 3'UTR 48 hrs after transfection. Enrichment normalized to input determined through qPCR against PTBP2 3'UTR. Data are represented by mean ± SEM from three independent experiments. Two-way ANOVA followed by Dunnett's test (from left, PTBP2 Δ s1s2 3'UTR ** P = 0.0018, *** P = 0.0001, *** P = 0.0001).

PTBP2 $\Delta s1s2$ 3'UTR histograms) (Figure 5D). This result is in contrast to wild-type *PTBP2* 3'UTR where ELAVL3 can enhance luciferase activity in the presence of miR-124 target sites (Figures 4D, 5D). Interestingly, the lack of the increased luminescence with ELAVL3 addition was not due to the failure of ELAVL binding to *PTBP2* $\Delta s1s2$ 3'UTR because qPCR analysis with nELAVL-RIP showed persistent binding of ELAVLs to *PTBP2* $\Delta s1s2$ 3'UTR (Figure 5E). These results altogether suggest the requirement of both ARE and miR-124 sites in *PTBP2* 3'UTR for PTBP2 upregulation (Figure 5F).

Neuronal genes are downregulated upon loss of miR-124 and ELAVL3 in human neurons

To test whether the synergism of miR-124 and ELAVL3 for miRNA-mediated upregulation is unique to PTBP2 or a broader mechanism applicable to other genes beyond reprogrammed neurons, we performed loss-of-function studies on primary human neurons (HNs). With the same TuD-miR-124 and shELAVL3 constructs used in reprogrammed neurons, miR-124 and ELAVL3 were knockdown in HNs and processed for RNA-seq (Figures 6A-B and S6A). To identify potential targets upregulated by miR-124 and ELAVL3 in HNs, we focused on genes suppressed upon expression of TuD-miR-124 and shELAVL3 (KD, Log₂FC \leq -1; adj.Pvalue < 0.05) compared to CTL (Figure 6B). Many of these downregulated genes are neuronalrelated, including *MAP2*, *PTBP2*, *SCN1A*, and *SEMA6A* (Figure 6B). Despite the downregulation of several neuronal transcripts, overall neuronal identity remains intact as expression of neuronal markers such as *RBFOX2*, *FMR1*, and *NEFL* remain similar between CTL and KD HNs (Figure S6B). Furthermore, we also do not observe an emergence of progenitor marker expression upon knockdown of both miR-124 and ELAVL3 (Figure S6B).

Figure 6. MiRNA-mediated upregulation of neuronal genes in primary human neurons

(A) Top, a schematic diagram of the experimental procedure using primary human neurons (HNs). Bottom, images of HNs marked by TurboRFP reporter in the non-specific miRNA or miR-124 tough decoy.

(B) A volcano plot of differentially expressed genes between CTL and KD conditions with TuD-miR-124 and shELAVL3 treatment. A selection of downregulated genes are highlighted (ELAVL3, MAP2, and PTBP2). Red dots, HN mRNA expression Log2FC ≥ 1; adj.P-value < 0.05. Green dots, HN mRNA expression Log2FC ≤ -1; Adj.P-value < 0.05.

(C) Top, by overlapping downregulated DEGs in (A) to previously identified upregulated AGO-enriched targets (Figure 1), 132 genes were identified to habor AGO peaks in miNs and are downregulated with miR-124 an ELAVL3 knockdown in HNs. Bottom, top biological GO terms associated with the 102 genes. (D) A heatmap of z-scores of the 132 genes identified in (B) from RNA-seq comparing KD and CTL in HNs.

(E) RT-qPCR validation of a selection of the identified downregulated genes in HNs (C) that are found to be commonly targeted by both miNs and HNs (B). Data are represented in ± SEM from three independent experiments. Two-tailed unpaired t-test (all, *** P < 0.001).

(F) Track views of HN RNA-seq tracks (top) and miN AGO HITS-CLIP tracks (bottom) for gene examples showing reduced expression upon knockdown of miR-124 and ELAVL3 in HNs (over CTL), and AGO-enriched peaks at the 3'UTR.

(G) A venn diagram of AGO-miR-124 targets in HNs overlapped with nELAVL-bound targets in the human brain.

To ensure that these downregulated genes are miR-124 targets, we compared the downregulated DEGs from HNs to upregulated DEGs in day 20 miNs that also harbor AGOenriched peaks (Figure 1). This comparison resulted in a set of 132 target genes associated with biological GO terms related to neuronal development and projection (Figure 6C, Table S3), further validating miR-124 as a positive regulator of the neuronal program. Examples of some these identified targets in HNs also validated in qPCR include *PTBP2*, *MAP2*, *SEMA6A*, *SCN1A*, and *KALRN* (Figures 6D-F). Together our data support the notion that miR-124-mediated upregulation of neuronal genes is not unique to PTBP2 in reprogramming context, but applicable to other neuronal genes in actual human neurons.

MiR-124 and nELAVL interaction for other neuronal transcripts

Using existing nELAVL HITS-CLIP of the human brain (Scheckel et al., 2016), we performed a comparative analysis with our HNs dataset to examine if these upregulated neuronal transcripts are likely targets of nELAVLs. First, by overlapping i) upregulated neuronal DEGs bound by AGO HITS-CLIPs (Figure 1), ii) DEGs responsive to miR-124 tough decoy and *ELAVL3* shRNA in HNs (Figure 6), and iii) genes bound by nELAVLs in the human brain (Scheckel et al., 2016), we identified 77 genes, including *PTBP2*, *MAP2*, *SLCA48*, *KALRN*, *BCL7A*, and *SCN1A* enriched for neuronal biological terms generally involved in synaptic processes (Figures 6G and S7, Table S4). Based on these comparisons, similar to what we observed in miNs, miR-124 and ELAVL3 appear to collectively upregulate a set of neuronal genes that are likely critical for neuronal function in primary HNs.

Neuronal properties affected by miR-124 and nELAVLs

As our AGO-HITS-CLIP and miR-124 knockdown data in miNs indicate that neuronal genes are preferentially targeted as cells acquire the neuronal fate (Figures 1 and 2), we examined the global transcriptome changes of our knockdown (KD) and control (CTL) conditions in HNs with LONGO analysis to assess changes in long gene expression (LGE), a measure of neuronal identity and maturation (Gabel et al., 2015; King et al., 2013; McCoy et al., 2018; McCoy and Fire, 2020; Sugino et al., 2014). Overall, knockdown of miR-124 and ELAVL3 (KD, green) in HNs resulted in reduced LGE compared to control (CTL, red), suggesting that both players are likely essential for the expression of long genes (Figure 7A).

As a number of identified neuronal genes targeted by AGO-miR-124 and ELAVL3 in HNs are implicated in neuronal function and morphology such as *SCN1A*, *SLC4A8*, *ANK3*, and *MAP2*, reflective of reduced overall LGE (Figures 7A and S7A, Table S4), we examined a few neuronal properties in CTL and KD HNs. We first performed electrophysiology and found KD HNs exhibited reduced inward sodium current as compared to CTL HNs (Figures 7B and S6C-D) which we reasoned to be attributed to a number of downregulated channel genes in KD HNs. However, other electrical properties such as resting membrane potential and action potential firing appear similar between CTL and KD HNs (Figures S6D-E). In addition, as we observed reduced neurite complexity in our KD cells compared to CTL HNs, we sought to measure features such as average neurite length and average number of neurite branches between the two conditions. Overall, we found that KD HNs not only have shorter average neurite length per cell, but also have fewer branches per cell compared to CTL (Figures 7C-E).

Reduced LGE in primary HNs with both miR-124 and ELAVL3 knockdown suggests that LGE is a transcriptomic phenotype reflective of altered neuronal features observed and

Figure 7. Long gene dysregulation results in altered neuronal properties

(A) LONGO plot showing reduced long gene expression upon knockdown of miR-124 and ELAVL3 (KD; green) compared to CTL (red). Lines show mean gene expression and ribbons show standard error of the mean (SEM).

(B) Left, voltage-clamp traces of CTL and KD (TuD-miR-124 and shELAVL3) HNs. Right, average I-V curve of for all recorded CTL and KD HNs. Data are represented in ± SEM from seven recorded cells from each condition. Two-tailed unpaired t-test (from left, ** P = 0.00434 ; ** P < 0.00681 ; * P = 0.01233).

(C) Representative images of CTL and KD HNs marked by TurboRFP reporter. Processed images by CellProfiler to identify neurites and associated cell soma. Scale bar = 100 µm.

(D) Left, mean neurite length measurement of CTL and KD HNs. Data are represented in \pm SEM from seven separate fields of view; CTL n = 768, KD n = 677. Two-tailed unpaired t-test (** P = 0.0092). Right, mean number of neurite branches in CTL and KD HNs. Data are represented in \pm SEM from seven separate fields of view; CTL n = 768, KD n = 677. Two-tailed unpaired t-test (** P = 0.0038).

(E) Representative images of primary rat neurons stained for MAP2 after treatment with DMSO control or Topotecan (TOPO).

(F) LONGO plot showing reduced long gene expression upon treatment with TOPO (blue) compared to DMSO (red) in primary rat neurons. Lines show mean gene expression and ribbons show standard error of the mean (SEM).

(G) Expression of a select unaffected neuronal markers between DMSO and TOPO treatments.

(H) MEA readout for mean firing rate, burst frequency, and spikes per bursts of primary rat neurons treatment with DMSO or TOPO.

(I) P-value of the various measured electrophysiological properties from MEA including those shown in (H).

measured in HNs. To independently validate the correlation between LGE and neuronal maturity, we also treated primary rat neurons with Topotecan (TOPO), an inhibitor of Topoisomerase I known to reduce LGE in neurons (King et al., 2013; Mabb et al., 2016, 2014). Primary rat neurons treated with TOPO (blue) were found to display a reduction in LGE when compared to the control condition (DMSO, red) (Figures 7E-F) while the TOPO-treated cells still maintained the expression of other neuronal markers such as Map2, Actl6b, Rbfox3 and Dcx (Figure 7G). To further assess the consequences of LGE reduction in neurons, we measured electrophysiological properties using a microelectrode array (MEA). TOPO-treated neurons exhibited altered electrophysiological properties compared to DMSO control, including reduced mean firing rate, mean burst frequency, and number of spikes per burst (Figures 7H-I), demonstrating that LGE is a transcriptomic feature related to the functional maturity of neurons. Therefore, our results support the notion that miR-124, in synergy with ELAVL3, promote neuronal maturity by positively regulating their target genes, as evidenced by their effect on LGE in human neurons. Based on PTBP2, we delineated a mechanism on how miR-124 and ELAVL3 can promote the expression of their targets and we anticipate that some of the additional identified long genes important for neuronal differentiation and function are likely upregulated in a similar manner.

Materials and Methods

Cell culture

Primary human fibroblasts used in this study was from a 22-year-old female (GM02171, NIGMS Coriell Institute for Medical Research) while human neonatal fibroblasts (ScienCell, 2310) was used exclusively for the HITS-CLIP experiment. Fibroblasts were maintained in high

glucose Dulbecco's Modified Eagle Medium (Gibco, 11960044) containing 10% FBS (Gibco, 10437028), MEM non-essential amino acids (Gibco, 11140050), sodium pyruvate (Gibco, 11360070), GlutaMAX (Gibco, 35050061), HEPES (Gibco, 15630080), penicillin-streptomycin (Gibco, 15130122), and 2-mercaptoethanol (Gibco, 21985023) at 37°C. Primary human neurons were obtained commercially (ScienCell, 1520) with gender and age of the source undisclosed Human neurons were maintained in neuronal media (NM; ScienCell, 1521) at 37°C. E18 rat cortex (BrainBits®, FSDECX1M) were grown in STEMdiffTM Neural Induction Medium (STEMCELL Technologies, 05835).

Lenti-X 293T (Clontech, 632180) cells were maintained in high glucose Dulbecco's Modified Eagle Medium (Gibco, 11960044) containing 10% FBS (Gibco, 10437028), MEM non-essential amino acids (Gibco, 11140050), sodium pyruvate (Gibco, 11360070), GlutaMAX (Gibco, 35050061), HEPES (Gibco, 15630080), penicillin-streptomycin (Gibco, 15130122), and 2-mercaptoethanol (Gibco, 21985023) at 37°C.

-streptomycin (Gibco, 15130122), and 2-mercaptoethanol (Gibco, 21985023) at 37°C.

MiR-9/9*-124-mediated neuronal conversion

To initiate reprogramming, doxycycline-inducible pT-BclXL-miR-9/9*-124 (Addgene, 60857) and reverse tetracycline-controlled transactivator rtTA (Addgene, 66810) lentivirus with 8 ug/mL polybrene (Sigma, H9268) was added to a plate of confluent fibroblasts and spinfected at 37°C for 30 min at 1,000xG. Full media change with 1 µg/mL doxycycline (DOX; Sigma-Aldrich, D9891) occurred the following day. Two days following transduction, cells underwent another media change supplemented with DOX and respective antibiotics (Puromycin, Life Technologies, A11138-03; Blasticidin S HCl, Life Technologies, A11139-03). Five days after

transduction, cells were plated onto poly-l-ornithine (Sigma-Aldrich, P4957), fibronectin (Sigma-Aldrich, F4759), and laminin (Sigma-Aldrich, L2020) coated coverslips or onto 10cm² Primaria plates (Corning, 353803) followed by full media switch to neuronal media (NM; ScienCell, 1521) the next day supplemented with 200 μM dibutyl-cyclic AMP (cAMP; Sigma-Aldrich, D0627), 1 mM valproic acid (VPA; Sigma Aldrich, P4543), 10 ng/mL human BDNF (PeproTech, 450-02), 10 ng/mL human NT-3 (Peprotech, 450-03), 1 μM retinoic acid (RA; Sigma-Aldrich, R2625), RevitaCell supplement (Gibco, A2644501), and antibiotics. DOX was supplemented every 2 days while half media changes occurred every 4 days until day 30.

Plasmids and cloning

For luciferase assay, full length 3'UTR of target transcripts were cloned and ligated into pmirGLO vector. For mutagenizing miR-124 target sites, QuikChange XL site-directed mutagenesis kit (Agilent, 200516) was used according to the manufacturer's protocol. Using the same UTR sequences, 3'UTR was attached immediately downstream of a destablized EGFP reporter and subcloned into lentiviral vector. Sequences for shRNAs were synthesized through Integrated DNA Technologies, annealed, and ligated into the pLKO.1 vector (Addgene, 8453 or 26655). Overexpression vectors of either lentiviral (N106 or N174) or mammalian expression (pcDNA3.1+, Invtrogen, V79020) was cut using NotI cut site (NEB, R0189) for insert ligation. Tough decoy for miR-124 was synthesized (GeneScript) and subcloned into pLemir vector using MluI (NEB, R0198) and NotI sites.

Lentivirus production

Lentivirus was produced as previously described (Richner et al., 2015). Briefly, 1.5 μg pMD2.G, 4.5 μg psPAX2, 6 μg of plasmid in lentiviral backbone, 600 μl Opti-MEM (Life

Technologies, 31985) and 48 μ l of 2 mg/mL polyethyleneimine (PEI; Polysciences, 24765) were mixed and transfected into Lenti-X 293T (Clontech, 632180) plated at 6x10⁶ cells per 10 cm² dish. Media was changed the following day, and viral supernatant was collected, filtered and spun at 70,000xG for 2 hr at 4°C two days later. The viral pellet collected per 10 cm² dish was resuspended in 1 mL PBS.

Immunostaining analysis

Cells were fixed with 4% paraformaldehyde (PFA; Electron Microscopy Sciences, 15710) for 20 mins at room temperature (RT) followed by three washes with PBS. Cells were permeabilized and blocked in 0.3% TritonX-100, 2% normal goat serum (NGS; Jackson ImmunoResearch Laboratories, 005-000-121) and 5% bovine serum albumin (BSA; Sigma-Aldrich, A7906) in PBS for 1 hr at RT prior to incubation with primary antibodies overnight at 4°C. After three washes with PBS, cells were incubated with respective secondary antibodies for 1 hr at RT. Coverslips were mounted onto coverslides with ProLong Gold antifade reagent (Invitrogen, P36934) for imaging using Leica SP5X white light laser confocal system with Leica Application Suite (LAS) Advanced Fluorescence. See Supplemental Table S4 for a list of antibodies used.

SYTOX assay

SYTOX assay was performed as previously described (Victor et al., 2018). Briefly, 0.1 μ M SYTOX gene nucleic acid stain (Invitrogen, S7020) and 1 μ l/mL of Hoeschst 33342 (Thermo Scientific, 66249) were added into cell medium. Samples were incubated for at least 15 mins in 37°C prior to imaging. Images were taken using Leica DMI 4000B inverted microscope with Leica Application Suite (LAS) Advanced Fluorescence.

Luciferase assay

HEK 293 cells plated in 96-well plate were transfected with 100 ng of pSilencer-miRNA, 100 ng of pmirGLO containing 3'UTR of interest, and PEI (Polysciences, 24765) with Opti-MEM (Life Technologies, 31985). Forty-eight hours after transfection, luciferase activity was assayed using Dual-Glo luciferase assay system (Promega, E2920) according to the manufacturer's protocol using Synergy H1 Hybrid plate reader (BioTek). Luciferase activity was obtained by normalizing firefly luminescence to renilla luminescence (luciferase activity = firefly/renilla) followed by normalizing to respective pSilencer-miR-NS control.

Flow cytometry

Destabilized EGFP reporter with or without 3'UTR of interest was transduced into HEK 293 cells to establish a stable reporter containing cell line with Blasticidin S HCl (Life Technologies, A11139-03) selection. The day following transduction with miR-9/9*-124 lentivirus, media was changed with the addition of DOX (Sigma-Aldrich, D9891). At day 3, media change was supplemented with DOX and puromycin (Life Technologies, A11138-03). DOX was supplemented every 2 days following transduction. At day 10, cells were imaged, and collected for flow cytometry. Briefly, cells were collected in PBS and incubated with propidium iodide (PI; Sigma-Aldrich, P4861) on ice until ready. Using FACSCalibur (BD Biosciences), all PI-negative cell population was obtained for the gating of GFP-negative and -positive cell population.

Quantitative reverse transcription PCR

Total RNA of cells was extracted using TRIzol Reagent (Invitrogen, 15596026). Reverse transcription was performed using SuperScript III first strand synthesis system for RT-PCR (Invitrogen, 18080-051) according to the manufacturer's protocol from fibroblasts, reprogrammed neurons, and human brain total RNA (Invitrogen, AM7962). Quantitative PCR was performed using SYBR Green PCR master mix (Applied Biosystems, 4309155) and StepOnePlus Real-Time PCR system (Applied Biosystems, 4376600) according to the manufacturer's protocol against target genes.

HITS-CLIP

AGO HITS-CLIP was performed on cells after 2 weeks into reprogramming of miR-NS or miR-9/9*-124-expressing neonatal fibroblasts (ScienCell, 2310) at day 14 and day 21. Cells were harvested, UV-crosslinked, lysed, and processed according to Moore et al. 2014. Briefly, cross-linked cells were lysed and treated with RQ1 DNase (Promega, M6101) and RNaseA (Thermo). Complex containing AGO-miRNA-mRNA were immunoprecipitated overnight at 4°C with pan-AGO antibody. The immunoprecipitated complex was radio-labelled and extracted after running on NuPAGE gel (Thermo). RNA from the 130kDa band was extracted for sequencing using TruSeq Small RNA Library Preparation Kits (San Diego, CA). Samples were sequences using Illumina HiSeq 2500 platform at the Genome Technology Access Center (GTAC) at Washington University School of Medicine, St. Louis.

MiRNA Tough Decoy RNA-seq

Total RNA was extracted from day 20 cells expressing miR-9/9*-124 + TuD-miR-NS, and miR-9/9*-124 + TuD-miR-124 using TRIzol Reagent (Invitrogen, 15596026) in combination with RNeasy micro kit (Qiagen, 74004). RNA quality (RIN \geq 9.6) was determined with 2100 Bioanalyzer (Agilent) and samples underwent low input Takara-Clontech SMARTer kit (Takara, 639490) library preparation. Samples were sequenced using NovaSeq S4 and processed at the Genome Technology Access Center (GTAC) at Washington University School of Medicine, St. Louis. For human neurons, total RNA was extracted from HNs after 8 days of tough decoy and shRNA treatment using TRIzol Reagent (Invitrogen, 15596026) in combination with RNeasy micro kit (Qiagen, 74004). RNA quality (RIN \geq 8.4) was determined with 2100 Bioanalyzer (Agilent) and samples underwent TruSeq Stranded total RNA sequencing kit library preparation. Samples were sequenced using NovaSeq6000 through DNA Link (San Diego, CA).

Human Clariom D Microarray

For Human Clariom D Array (Affymetrix), total RNA was extracted from day 14 cells expressing miR-NS, miR-9/9*-124 + shCTL, and miR-9/9*-124 + shPTBP2 using TRIzol Reagent in combination with RNeasy mini kit (Qiagen, 74104). RNA quality (RIN > 9.6) was determined with 2100 Bioanalyzer and samples (biological duplicates each) underwent amplification and hybridization according to manufacturer's protocol by GTAC at Washington University School of Medicine, St. Louis.

Immunoblot analysis

Cells were lysed with sonication (Diagenode, UCD-200) in RIPA buffer (Thermo Scientific, 89900) supplemented with protease inhibitor cocktail tablet (Roche, 04693132001). Protein concentration of cleared lysate was measured using Pierce BCA protein assay kit (Thermo Scientific, 23227) and read with Synergy H1 Hybrid plate reader (BioTek). Lysate and sample buffer (Life Technologies, NP0008) were boiled, separated with Bis-Tris gels, and transferred to nitrocellulose membrane (GE Healthcare Life Sciences, 10600006). Membrane was blocked with 5% milk for 1 hr at RT and incubated with primary antibody overnight at 4°C. After three washes of TBST (1X TBS and 0.1% Tween-20), the membrane was incubated with respective horseradish peroxidase-conjugated antibody for 1 hr at RT followed by three washes with TBST. Blots were developed with ECL system (Thermo Scientific, 34580) and imaged or developed onto film. See Supplemental Table S3 for a list of antibodies used.

Immunoprecipitation analysis

Cells were lysed with sonication (Diagenode, UCD-200) in IP buffer (20 mM HEPES, 150 mM NaCl, 10% glycerol, 5 mM EDTA, 1% Triton X-100) supplemented with protease inhibitor cocktail tablet (Roche, 04693132001). Cleared lysate was incubated with anti-FLAG M2 magnetic beads (Sigma-Aldrich, M8823) overnight with rotation at 4°C. The beads were washed three times with IP buffer and bound proteins were boiled and eluted with sample buffer (Life Technologies, NP0008), separated with Bis-Tris gels, and immunoblotted.

RNA-IP

Cells were lysed with sonication (Diagenode, UCD-200) in IP buffer (20 mM HEPES, 150 mM NaCl, 10% glycerol, 5 mM EDTA, 1% Triton X-100) supplemented with protease inhibitor cocktail tablet (Roche, 04693132001). Cleared lysate was incubated with anti-FLAG magnetic beads (Sigma-Aldrich, M8823) overnight with rotation at 4°C beads. The beads were washed three times with IP buffer and resuspended in 90 ul of IP buffer with proteinase K (NEB, P8107S) for 30 mins at 37°C. To extract RNA, 1 mL of TRIzol Reagent (Invitrogen, 15596026) was added to the bead slurry. Final RNA was DNase I (Invitrogen, 18068015) treated prior to RT-qPCR.

Electrophysiology

Whole-cell patch-clamp recordings were performed as previously described (Victor et al., 2018). Briefly, HNs (ScienCell, 1521) were recording within 8 to 10 days after tough decoy and shRNA transduction. Recordings were acquired using pCLAMP 10 software, multipliclamp 700B amplifier, and Digidata 1550 digitizer (Molecular Devices, CA). Glass electrode pipettes were pulled from borosilicate glass (1B120F-4, World Precision) to obtain pipette resistance ranging from $5 - 8 M\Omega$ using next generation micropipette puller (P-1000, Sutter Instrument). External solution is consist of 140 mM NaCl, 3 mM KCl, 10 mM Glucose, 10 mM HEPES, 2 mM CaCl₂ and 1 mM MgCl₂, and internal solution is consist of 130 mM K-Gluconate, 4 mM NaCl, 2 mM MgCl₂, 1 mM EGTA, and 10 mM HEPES (adjusted to pH 7.25 with KOH) were used for recording. For all recordings, the membrane potentials were held at -65 mV.

Microelectrode array

E18 rat cortical neurons (BrainBits, FSDECX1M) were plated onto a 24-well cell culture microelectrode array plate (Axion Biosystems, M384-tMEA-24W). Prior to plating, 1 ml of sterile water and 10 µl of PEI (Sigma-Aldrich, 03880) at 0.5% diluted in 0.1 M HEPES pH 8.0 (Caymen Chemical Company, 700014) was added to the center of each well. After incubating overnight at 37 °C, each well was washed 4x with sterile water, and allowed to dry for 15 minutes. 10 µl of Laminin (Sigma-Aldrich, L2020) at 10 µg/mL diluted in cold DMEM/F-12 (ThermoFisher, 11320082) was added to each well and incubated at 37 °C for 2 hours. Laminin was aspirated prior to plating neurons. 24 hours after plating, neurons were cultured in BrainPhys Neuronal Medium and SM1 supplement (STEMCELL Technologies, 05792) with either Topotecan (Sigma-Aldrich, T2705) at a final concentration of 300 nM in DMSO (0.05% DMSO

final concentration) or DMSO control for one week before recording electrophysiological activity using a Maestro MEA plate reader (Axion Biosystems).

GO enrichment analysis

Gene ontology analyses were performed using Metascape (Tripathi et al., 2015) with minimum overlap of 3, P-value cutoff of 0.01, and minimum enrichment of 1.5. Entire gene list was used for each GO analysis.

RNAhybrid miRNA-target duplex analysis

To predict the presence of miR-124-3p binding sites at HITS-CLIP peaks, peak sequences were extracted by on the genomic coordinates and processed through RNAhybrid (Rehmsmeier, 2004) against miR-124-3p miRNA sequence with at least a free energy threshold of -20 kcal/mol.

RBP binding analysis

RNA-binding protein prediction database/software, RBPDB (Cook et al., 2011), RBPmap (Paz et al., 2014), and beRBP (Yu et al., 2018) for *PTBP2* 3'UTR sequence were used. Default criteria were selected for all three software for non-bias prediction of any human RBP motifs.

Neurite length measurement

Images of HNs marked by TurboRFP were processed through CellProfiler 3.1.9 (McQuin et al., 2018). Briefly, neurite feature was enhanced prior to the identification of primary object or soma between 25 - 100 pixel unit in diameter, followed by the identification of secondary object based on neurite feature. A morphological skeleton was made based on overlaying the identified

objects and mean neurite lengths and branches were then measured using measure object skeleton module.

LONGO analysis

LGE for human and rat neurons were determined by through the LONGO platform (McCoy et al., 2018) . LONGO analysis output of gene expression (CPM) over gene length was used to generate the LONGO plot.

Data Analyses

AGO HITS-CLIP reads for miR-NS and miR-9/9*-124-expressing cells at least two weeks into reprogramming were trimmed and aligned to human genome hg38 using STAR with default parameters. Differential peaks between miR-9/9*-124 and miR-NS conditions were detected using MACS (Feng et al., 2012; Zhang et al., 2008) with the following criteria: mfold bound of 5 – 50, fragment size of 100, and FDR > 0.05. HITS-CLIP datasets will be publicly available.

RNA-seq for day 20 miNs expressing either CTL TuD-miR-NS or TuD-miR-124 was analyzed by GTAC's RNA-seq pipeline. Briefly, reads were aligned to hg38 with STAR and processed through EdgeR (Robinson et al., 2010) to obtain differentially expressed genes with adj. p-value of < 0.05. RNA-seq dataset consisting of TuD-miR-NS and TuD-miR-124 at day 20 will be publicly available.

RNA-seq for HNs treated with either CTL or tough decoy against miR-124 and shRNA against ELAVL3 (KD) was aligned through Partek[®] Flow[®] software (Partek Inc., 2020) to generate gene counts. Briefly, reads were aligned to hg38 with STAR and processed through

EdgeR (Robinson et al., 2010) to obtain differentially expressed genes with adj. p-value of < 0.05 and Log₂FC of ≤ -1 and ≥ 1 . RNA-seq dataset consisting of CTL and KD treatments from HNs will be publicly available.

RNA-seq for primary rat neurons treated with either DMSO or Topotecan (TOPO) were aligned to the Ensembl release 76 top-level assembly with STAR. Transcript counts were produced by Sailfish version 0.6.3. All gene-level and transcript counts were then imported into the R/Bioconductor package EdgeR and TMM normalization size factors were calculated to adjust samples for differences in library size. RNA-seq dataset consisting of DMSO and TOPO treatments from rat neurons will be publicly available.

Human Clariom D Array data was analyzed using manufacturer's software, Expression Console followed by Transcriptome Analysis Console (TAC). For gene level analysis, genes comparing miR-9/9*-124 vs miR-NS linear fold change of \geq 1.5 and ANOVA P < 0.05 were considered to upregulated in neuronal conditions. For splicing analysis, splicing events with linear splicing index \leq -2 and \geq 2, ANOVA P < 0.05 were considered significant splicing events. Human Clariom D array dataset consisting of miR-NS, miR-9/9*-124 with shCTL, and miR-9/9*-124 with shPTBP2 at day 14 will be publicly available.

Author Contributions

Y.L.L. conducted experiments shown in Figures 2-7 and associated supplementary Figures 1, 3-8. Y.J.L. conducted experiments shown in Figure 1 and supplementary Figure 2. M.J.M. conducted experiments shown in Figure 7. A.S.Y. supervised the study. Y.L.L. and A.S.Y. wrote the manuscript.

Figure S1. MiR-124 target genes during neuronal reprogramming

(A) A schematic diagram of the construct expressing the turbo-RFP reporter attached to the tough decoy (TuD) delivered into miNs.

(B) Left, day 20 miNs showing RFP expression of cells with TuD-miR-NS or TuD-miR-124. Right, Taqman qPCR for mature miR-124-3p showing reduced miR-124 expression upon TuD-miR-124 treatment compared to TuD-miR-NS control. Scale bar = 75 μm.

(C) A volcano plot of DEGs (TuD-miR-124 over the TuD-miR-NS control) in day 20 miNs.

(D) RNAhybrid predictions of base-pairing between miR-123-3p and extracted CLIP sequences of targets from Figure 2 with an energy threshold of -20 kcal/mol or less. The heatmap shows the base-pairing position between miR-124-3p and extracted sequences from AGO HITS-CLIP peaks: base-pairing = black, and gaps or no base-pairing = white.

Figure S2. Examples of RNAhybrid prediction of miR-124-3p hybridization to enriched 3'UTR HITS-CLIP peak sequences of day 20 upregulated DEGs in miNs

(A) KALRN contains one enriched AGO HITS-CLIP peak for miR-124-3p at 3'UTR highlighted in yellow.
 (B) BCL7A 3'UTR contains two predicted miR-124-3p sites within the AGO HITS-CLIP peaks highlighted in yellow.

(C) RCAN2 and SEMA6A 3'UTRs contain multiple miR-124-3p target sites within the AGO HITS-CLIP peaks highlighted in yellow.

Figure S3. MiR-124 target site validation, and assessment of miR-124 promoting PTBP2 expression via targetting PTBP2 3'UTR with the prolonged neurogenic input.

(A) Luciferase assays in HEK293T cells of PTBP2 3'UTR with miR-124 site(s) mutagenized. Luminescence was measured 48 hrs after transfection and normalized to miR-NS control of each condition. Data are represented by mean ± SEM from four independent experiments. Two-way ANOVA followed by Dunnett's test (from left, miR-124 ** P = 0.001; miR-9/9*-124 * P = 0.0104, *** P = 0.0001).

(B) Left, a schematic diagram of the reporter construct and experiments. HEK293T cells were transduced with destabilized EGFP reporter to monitor the 3'UTR activity. Right, representative images of GFP fluorescence of HEK293T cells measured 10 days after miR-9/9*-124 transduction. Scale bar = 100 µm.

(C) Left, schematic of a histogram of flow cytometry analysis with gating of EGFP intensity to separate GFP-negative and GFP-positive cell populations at day 10. Middle, representative images of histograms following flow cytometry. Right, quantification flow cytometry to determine percent GFP-positive, PI-negative cells over the total PI-negative cells. Data represented in mean \pm SEM from five independent experiments. One-way ANOVA followed by Tukey's test (from left, * P = 0.0222; ** P = 0.0031).

Figure S4. PTBP2 plays an essential role during miRNA-mediated neuronal conversion

(A) A schematic diagram of SYTOX assay. Knockdown of PTBP2 with shRNA in primary human neurons resulted in increased cell death measured by SYTOX after 10 days.

(B) Left, representative images of phase contrast and SYTOX staining 10 days after knockdown with CTL or PTBP2 shRNA. Right, quantification of SYTOX-positive cells over total Hoechst-positive cells. Scale bar = 75 µm. Data are represented by mean ± SEM. shGFP

n = SYTOX 1237/2073; shPTBP2 n = 1589/1759 scored from independent fields of view. Unpaired t-test (*** P = < 0.0001).

(C) A volcano plot comparing gene expression between miR-9/9*-124 and miR-NS expression on day 14. Red dots within the enclosed box indicate differentially expressed genes (fold change ≥ 1.5, ANOVA p < 0.05) that are upregulated in miR-9/9*-124 condition. Examples of non-neuronal and neuronal genes are highlighted in green and red dots, respectively.

(D) A volcano plot of differentially spliced events (splicing index ≥ 2, ANOVA P < 0.05) at day 14 comparing shPTBP2 to shCTL in the miR-9/9*-124 expression background. Examples of spliced targets are highlighted with gene names corresponding to the differential splicing events. (E) Top, target genes of interest were obtained by overlapping upregulated neuronal-associated events in (C) to all differentially spliced events by

PTBP2 in (D). Bottom, top biological GO terms associated with the 1183 unique events of genes upregulated during neuronal reprogramming and targetted by PTBP2.

A

В

GSM1299114

ACCCTCGGGGCCATGCCTTGGTGGGGCCTGTGTCGGGCCTGGGGCCT GCAGGTGGGCGCCCCGACCACGACTTGGCTTCCTTGTGCCTTAAAAAA CCCAACCCCAGCCCTCTA

00 bp		763,000 bp I
		3'UTR
299112	1.1	-
299114	-	
	00 bp 1 299112 299114	00 bp 1 299112 299114 -

٦.

Ē

Figure S5. nELAVLs bind preferentially to PTBP2 and not PTBP1 3'UTR in the human brain

(A) Left, a Venn diagram overlapping all RNA-binding proteins predicted to bind to PTBP2 3'UTR using three different RNA-binding protein prediction databases. Right, binding motifs on PTBP2 3'UTR of the two predicted candidate RNA-binding proteins (left) based on all predicted motifs on PTBP2 3'UTR from RBPmap.

(C) Top, first 500 bp of PTBP1 3'UTR with the first conserved miR-124 target site in red. Bottom, track views of nELAVL HITS-CLIP of the human brain at PTBP1 3'UTR (GSM129912, GSM129914). (C) Top, first 500 bp of PTBP2 3'UTR with the first conserved miR-124 target site in red. Bottom, track views of nELAVL HITS-CLIP of the human brain at

PTBP2 3'UTR (GSM129912, GSM129914). The enclosed red box denotes the miR-124 target site.

Figure S6. Neuronal long genes are targets of miR-124 and nELAVLs

(A) RT-qPCR for mature miR-124 expression and ELAVL3, showing reduced miR-124 and ELAVL3 expression upon KD treatment compared to CTL.

(B) Expression of genes associated with neuronal and neuronal progenitor identity in CTL and KD HNs.

(C) Peak inward sodium current amplitude of CTL and KD HNs. Data are represented in ± SEM from seven recorded cells from each condition. Two-tailed unpaired t-test (** P = 0.005). (D) Resting membrane potential of CTL and KD HNs. Data are represented in ± SEM from seven recorded cells from each condition.

Two-tailed unpaired t-test (ns P = 0.1191).

(E) Representative current-clamp traces of CTL and KD HNs.

Figure S7. Identified neuronal transcripts that are bound by AGO and nELAVLs in HNs (A) Top biological GO terms associated with the 77 genes that are predicted to be targeted by both AGO-miR-124 and ELAVL3, based on AGO HITS-CLIP in miNs, nELAVL HITS-CLIP in human brain, and HN RNA-seq with miR-124 and ELAVL3 knockdown.

(B) Track views of AGO HITS-CLIP in miNs and nELAVL HITS-CLIP in the human brain (GSM1299112, GSM1885137, GSM129911) of a select neuronal transcript 3'UTRs identified to be targets of AGO-miR-124 in miNs and HNs with nELAVL binding.

Gene name	logFC	adj.P.Val	Gene na	ame logFC
ACAD10	2.69E-01	1.25E-03	MDM1	-2.89E-01
ACER2	-6.41E-01	2.75E-06	MFHAS	-3.46E-01
ALAS1	4 42F-01	6.48E-08	MGAT40	-9 34E-01
	2.62E-01	1 11E-04	MITE	-3 52E-01
	1.022-01	1.112-04	MDDI 25	2.00E.01
	-1.002+00	4.01E-12		2.00E-01
	-3.36E-01	5.20E-03		-4.04E-01
APOE	3.11E-01	2.59E-04	NEFM	-7.36E-01
ARHGAP20	-2.58E-01	1.14E-03	NINJ1	3.22E-01
ARHGEF7	-2.45E-01	3.73E-04	NLGN2	2.99E-01
ATP6V0A1	-3.55E-01	4.02E-06	OGFRL1	-3.40E-01
ATP6V1G2	-7.71E-01	1.91E-11	OSBPL1	A 4.04E-01
BCL7A	-5.14E-01	2.80E-04	OXR1	-2.10E-01
BDH2	2.56E-01	1.23E-04	PASK	-7.59E-01
BMF	-9.39E-01	6.06E-10	PBX3	-9.96E-01
C14orf132	2 55E-01	8 72E-05	PCDH7	4 33E-01
	_9 30E_01	6.86E-10	PCLO	-1 42E+00
	-9.30E-01	1.665.04	DEL D1	4.45E.01
	-4.72E-01	1.00E-04	PELFI	-4.43E-01
	-8.77E-01	3.34E-08	PER3	-5.22E-01
CDS1	-1.53E+00	4.75E-08	PEKM	4.86E-01
CDS2	-1.55E-01	6.90E-03	PGM2L1	3.27E-01
CEP85L	-5.40E-01	4.77E-09	PHKA1	-4.32E-01
CERS6	-3.93E-01	1.22E-04	PHLPP1	-3.60E-01
CFI	1.73E-01	5.31E-03	PHYHIP	L -7.93E-01
CHRDL1	-3.77E-01	4.16E-03	PLD6	-6.71E-01
CI CN4	-2.56E-01	1.76E-03	PNISR	-2.62E-01
	-6 20E-01	5 98E-10	PPA2	2 47E-01
	4 50E-01	1.06E-07		_3.89E_01
	4.550-01			-5.032-01
	-1.53E+00	4.41E-10		-9.24E-01
	-8.45E-01	1.74E-05	PPP1R9	A -1.14E+00
CNIN1	-1.15E+00	2.06E-05	PTBP2	2.45E-01
COX6C	4.76E-01	1.44E-08	PTN	-8.37E-01
CPE	2.48E-01	1.51E-03	RALGAF	A1 -2.61E-01
CRY1	-8.57E-01	1.47E-09	RALGPS	-5.08E-01
CRY2	-6.05E-01	1.25E-07	RANBP3	3L -9.82E-01
CXADR	-1.06E+00	1.24E-10	RAPGER	-4 -1.70E+00
DCLK1	-8.70E-01	4.73E-13	RASL10	B -6.35E-01
DHX30	-3.00E-01	8.47E-05	RCAN2	-7.31E-01
	-5 74E-01	1.69E-06	RIC3	-1 50E+00
	-6.00E-01	2 77E-09	RIMBP2	_1.00E+00
	-0.00E-01	2.095.04		-1.13L+00
DUCKS	-4.00E-01	2.00E-04	RIIVIJZ	-3.20E-01
DINA	-3.15E-01	4.16E-05	RNF157	-4.66E-01
DUSP26	-1.36E+00	3.71E-05	RNF12	-8.03E-01
DUSP8	-1.98E+00	3.49E-07	RRAGD	-1.64E+00
EEF1A2	-1.95E+00	4.25E-08	SAMD12	-1.21E+00
EFR3B	-8.75E-01	6.22E-11	SCARB1	4.19E-01
ENOX1	-7.19E-01	1.34E-03	SCN1A	-7.43E-01
EPB41	-3.94E-01	2.63E-03	SCN2A	-2.24E-01
EPHA4	2.73E-01	9.07E-04	SCN9A	-4.44E-01
FADS2	2 97F-01	2 50E-04	SDHA	4 27F-01
	2.87E-01	8 55E-04	SEMAGA	_1 15E+00
	2.00E-01	1 495 02	SEND7	
FAM12C	-2.19E-01	1.402-03		-2.45E-01
FAM13C	-3.07E-01	4.61E-06	SESN3	-3.27E-01
FAM184A	-8.65E-01	3.96E-06	SFMB12	-9.75E-01
FILIP1	-7.07E-01	3.53E-09	SFRP4	4.41E-01
FKBP5	-3.28E-01	2.16E-03	SH3BP2	3.52E-01
FRMD4A	-4.16E-01	3.84E-05	SLC12A	7 -6.84E-01
FSD1L	-2.44E-01	9.50E-03	SLC25A	11 2.73E-01
GABRE	-2.10E-01	1.21E-03	SLC25A	13 4.31E-01
GAD1	-9.23E-01	4.01E-07	SLC2A8	-8.54E-01
GDF11	-1.93F-01	9.47E-03	SI C4A8	3.30F-01
GDE5	-1.90E+00	1 49F-10	SI C741	4 _3 73E_01
GPM64	-8.05E-01	9.82E-03		. <u>0.75</u> _01
	1 55E 04	7 2/ = 02	SLITTRA SMADO	R1 / //E-01
		1.240-03	SIVIARU	
	-9.12E-01	1.00E-03	SNAP25	-5.52E-01
GRIA4	-1.44E+00	1.39E-04	SPARCL	.1 -7.89E-01

Gene name	logFC	adj.P.Val				
MDM1	-2.89E-01	1.26E-04				
MEHAS1	-346E-01	4 90E-03				
MGAT4C	-3.40E-01	4.30E-03				
MGA14C	-9.34E-01	1.13E-03				
	-3.52E-01	0.03E-03				
MRPL35	2.00E-01	2.01E-03				
MTHFR	-4.84E-01	2.25E-07				
NEFM	-7.36E-01	3.27E-06				
NINJ1	3.22E-01	1.49E-05				
NI GN2	2.99F-01	8.63E-03				
OGERI 1	-3.40E-01	7 90E-04				
	-3.40L-01	2.555.06				
OSBELIA	4.04E-01	2.55E-00				
UXR1	-2.10E-01	5.70E-04				
PASK	-7.59E-01	2.82E-03				
PBX3	-9.96E-01	1.24E-09				
PCDH7	4.33E-01	8.56E-06				
PCLO	-1.42E+00	1.78E-04				
PELP1	-4 45E-01	2 19E-03				
PER3	-5.22E-01	8.66E-06				
	-0.22E-01	0.000-00				
	4.00E-UI	9.30E-10				
PGM2L1	3.2/E-01	2.03E-05				
PHKA1	-4.32E-01	4.44E-04				
PHLPP1	-3.60E-01	1.38E-03				
PHYHIPL	-7.93E-01	1.30E-03				
PLD6	-6.71E-01	1.74E-03				
PNISR	-2 62E-01	1.39E-05				
	2.02E 01	1.00E 00				
	2.47 E-01	1.13E-04				
PPMID	-3.89E-01	1.96E-04				
PPM1H	-9.24E-01	3.05E-11				
PPP1R9A	-1.14E+00	2.39E-11				
PTBP2	2.45E-01	2.20E-04				
PTN	-8.37E-01	8.82E-11				
RAI GAPA1	-2.61E-01	4.19E-03				
RALGPS1	-5.08E-01	1.06E-03				
	-0.000-01	0.000-00				
RANBPSL	-9.62E-01	0.23E-12				
RAPGEF4	-1.70E+00	6.51E-09				
RASL10B	-6.35E-01	8.25E-04				
RCAN2	-7.31E-01	1.90E-12				
RIC3	-1.50E+00	6.66E-08				
RIMBP2	-1.19E+00	9.69E-05				
RIMS2	-3.26E-01	2.58E-03				
RNE157	-4.66E-01	6.72E-06				
DNET2	-4.00E-01	2 20E 11				
	-0.03E-01	3.39E-11				
RRAGD	-1.64E+00	7.49E-15				
SAMD12	-1.21E+00	3.44E-09				
SCARB1	4.19E-01	6.87E-03				
SCN1A	-7.43E-01	8.57E-08				
SCN2A	-2.24E-01	4.95E-03				
SCN9A	-4.44E-01	4.53E-04				
SDHA	4.27F-01	1.05E-08				
SEMAGA	_1 15E±00	1 185-00				
	-1.13ETUU	1.10E-09				
SENP/	-2.45E-01	3.82E-U3				
SESN3	-3.27E-01	4.58E-04				
SFMBT2	-9.75E-01	2.02E-03				
SFRP4	4.41E-01	4.72E-06				
SH3BP2	3.52E-01	2.16E-04				
SI C12A7	-6 84F-01	7 60E-04				
SI C25A11	2 73E-01	4.66E-05				
SL C25A12	1 31 = 01	1.6/E 07				
3L023A13	4.31E-01	1.04E-07				
SLC2A8	-8.54E-01	2.39E-03				
SLC4A8	3.30E-01	2.34E-04				
SLC7A14	-3.73E-01	3.33E-05				
SLITRK4	-6.47E-01	2.55E-03				
SMARCB1	-4.41E-01	1.38E-04				
SNAP25	-5.52F-01	5.29E-10				
	-7 80E 01	1 325-04				
	-1.032-01	1.022-04				
HMGCS1	-5.84E-01	3.64E-11		SPP1	-8.26E-01	3.11E-07
----------	-----------	----------	---	----------	-----------	----------
HTR2B	-6.42E-01	6.61E-03		STAC2	4.69E-01	2.91E-03
IGF1	2.00E-01	1.21E-03		STMN2	2.14E-01	3.39E-03
IGSF10	-4.78E-01	1.99E-04		STRBP	-6.99E-01	4.99E-07
INPP1	3.61E-01	7.75E-06		STX1B	-2.83E-01	6.24E-03
IRF6	-2.34E+00	3.13E-14		SULT1C4	-5.37E-01	1.42E-05
ITM2A	-5.17E-01	2.47E-03		SV2A	1.74E-01	4.14E-03
KALRN	-2.41E-01	3.41E-03		SYBU	-7.80E-01	3.87E-09
KAT2B	-3.56E-01	3.43E-03		TBC1D9	-3.30E-01	5.43E-03
KCNK1	-6.44E-01	9.90E-03		THSD7A	-6.27E-01	2.14E-03
KIAA1109	-3.48E-01	3.91E-05		TKT	2.56E-01	4.20E-05
KIAA1217	-4.34E-01	3.00E-06		TLE1	-4.92E-01	1.57E-05
KIF5A	-4.88E-01	3.85E-09		TM7SF3	2.20E-01	5.34E-03
KIF5C	-9.14E-01	1.40E-11		TMEM63B	4.40E-01	9.37E-04
KLLN	-4.85E-01	7.94E-04		TMEM8B	-3.26E-01	5.29E-03
KPNA5	-4.18E-01	8.78E-06		TMOD2	-4.14E-01	2.88E-06
LCOR	-3.31E-01	3.87E-05		TNFRSF14	-4.38E-01	4.31E-04
LDB2	-2.28E-01	5.54E-03		TNFRSF21	4.14E-01	3.92E-06
LDHB	4.57E-01	4.91E-09		TRAPPC9	-3.39E-01	6.05E-03
LMBR1	3.07E-01	1.54E-03		TRPC3	-1.97E+00	1.84E-08
LRRN3	-1.62E+00	1.43E-15		TSHZ1	-7.13E-01	5.06E-09
MAGI2	-7.78E-01	1.74E-09		TSPAN14	2.02E-01	3.98E-03
MAMDC2	3.69E-01	5.44E-04		TSPAN7	-1.55E+00	4.65E-04
MAN1C1	-3.73E-01	2.77E-06		TXLNB	-1.35E+00	3.82E-13
MANSC1	-3.27E-01	2.30E-03		UPF3B	2.19E-01	8.66E-03
MAP2	-2.94E-01	6.73E-05		UQCRC1	3.26E-01	1.40E-06
MAP3K14	-3.27E-01	4.81E-03		WDR7	-3.75E-01	1.51E-05
MAPRE3	-5.43E-01	3.36E-04]	ZNF518A	-3.87E-01	2.06E-04
MBP	-1.18E+00	5.45E-11]	ZNF577	-3.15E-01	8.04E-04
MCM3	-1.75E-01	9.94E-03]	ZNF738	-2.97E-01	2.23E-03
MCOLN1	-3.55E-01	1.23E-03]	ZSWIM7	-3.30E-01	1.35E-04

Table S1. MiR-124-responsive genes that harbor AGO-enriched peaks in miNs List of upregulated genes during conversion harboring AGO-enriched peaks and are not upregulated upon miR-124 knockdown in miNs(TuD-miR-124 /TuD-miR-NS; Log₂FC \geq -0.5; adj. P.value > 0.01).

SEPT4	ANK1	ATP9A	CALR	CNTN1	DIP2B	FAIM2
AAK1	ANK2	ATPAF1	CAMK2D	COA5	DIS3L2	FAM102A
	ANKRD20A11					
AASDHPPT	Р	ATXN1	CAMK2N1	COL1A2	DJA2	FAM122C
AASS	ANKRD36C	ATXN10	CAMKK1	COL21A1	DJB6	FAM126B
ABCA1	ANKRD44	AVL9	CAMSAP1	COL24A1	DJC5	FAM135A
ABCA12	ANKRD46	AXIN2	CAMTA1	COL3A1	DJC6	FAM13B
ABCA7		B3GAT3	CAPZB			FAM13C
ABCB4		B3GLCT	CBX5		DKK3	FAM169A
		BIGALT3	CCBE1			EAM106B
		BAALC				FAM108B
ABCD2		BAGE	CCDC130	COLGAL12	DLC4	EAM20C
ABCD2		BAG0 BAZ2B	CCDC149	CONINDZ	DLG4	
ABCD3		BRED		COPGZ	DLGJ	
	AP152	DD39				
	APZSI	BCAST	CCDC74A			
ABLINIS	AP5M1	BCL/A	CD109	CPEB4	DNM	FAMOOD
ABR	APBB1	BCL9	CD14	CPQ	DNM3	FAM69B
ABTB1	APC	BDH2	CD36	CPSF6	DNPH1	FAM96A
AC083843.4	APCDD1	BEND5	CD74	CREB1	DOCK10	FAP
ACAD11	APLP2	BEND6	CDH18	CREM	DOCK4	FAR2
ACAD8	APOL4	BLID	CDH6	CRLS1	DOK5	FAR2P2
ACADM	APOO	BMP1	CDK14	CRMP1	DOT1L	FASTKD1
ACAN	APP	bP-21264C1.1	CDK15	CROT	DPF1	FAT4
ACAP3	AQP9	BRD3	CDK16	CS	DPP3	FBLN2
ACAT1	ARFGEF1	BRE	CDK18	CSRNP3	DPT	FBXL17
ACBD5	ARG2	BRI3BP	CDKL1	CTB-52I2.4	DPYSL2	FBXO9
ACER2	ARHGAP12	BRMS1L	CDS1	CTPS2	DPYSL4	FCMR
ACER3	ARHGAP20	BRWD3	CEACAM1	CTSO	DROSHA	FER
ACSF2	ARHGAP26	BTRC	CEMIP	CTSS	DST	FGD4
ACSL4	ARHGAP32	C10orf10	CENPW	CUL3	DT	FGD6
A OTD 40		C11orf10			DUODOO	F0F40
ACTR10	ARHGAP42	01101149	CEP85L	CXADR	DUSP23	FGF13
ACTR10 ACTR3B	ARHGEF10L	C12orf75	CEP85L	CXADR CXCL12	DUSP23 DUSP6	FH
ACTR10 ACTR3B	ARHGEF10L	C12orf75	CEP85L CFI CH17-	CXADR CXCL12	DUSP23 DUSP6	FH
ACTR10 ACTR3B ACVR1B	ARHGEF10L ARL5A	C12orf75 C14orf37	CEP85L CFI CH17- 472G23.4	CXADR CXCL12 CYB5R4	DUSP6 dydorbo	FHOD3
ACTR10 ACTR3B ACVR1B ACVR2A	ARHGAP42 ARHGEF10L ARL5A ARMC9	C12orf75 C14orf37 C15orf39	CEP85L CFI CH17- 472G23.4 CHD4	CXADR CXCL12 CYB5R4 CYFIP2	dydorbo DVNC112	FHOD3 FIBIN
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B	ARHGEF10L ARL5A ARMC9 ARRDC4	C12orf75 C14orf37 C15orf39 C15orf57	CEP85L CFI CH17- 472G23.4 CHD4 CHFR	CXADR CXCL12 CYB5R4 CYFIP2 CYGB	DUSP23 DUSP6 dydorbo DYNC112 DYRK2	FHOD3 FIBIN FILIP1
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17	ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF	C12orf75 C14orf37 C15orf39 C15orf57 C16orf45	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHFR CHI3L2	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3	FHOD3 FIBIN FILIP1 FKBP2
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA	FHOD3 FIBIN FILIP1 FKBP2 flawfybo
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1	C1101149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K	FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEF2K EEPD1	FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAMTS12	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAH1 ASAP1 ASB9	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C10TF1 C1QTNF1 C1QTNF6	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHR3 CHRM2 CHST10 CHST11	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A5 CYP3A7 CYP46A1 CYTH2	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B	FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAH1 ASAP1 ASB9 ATAD2B	C12orf75 C12orf75 C15orf37 C15orf39 C15orf57 C16orf45 C18orf54 C1orf220 C1QTNF1 C1QTNF6 C2orf27A	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHRM2 CHST10 CHST11 CIITA	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1	FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAH1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHRM2 CHST10 CHST11 CIITA CISH	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2	FIGF 13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAH1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF1 C1QTNF6 C20rf27A C4A C4B	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 EI N	FIGF 13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC4 FNDC5 FOXN3 FRAS1
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CH3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN	FIGF 13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRK
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRA3 ADGRL1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAH1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN FMI 6	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRK FRMD4A
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAMTS12 ADARB1 ADCY1 ADCY1 ADCY1 ADC2 ADGRA3 ADGRL1 ADGRL2	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CI CN4	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCI K1	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EML6 EMP2	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRK FRMD4A FRMD4A FRMD5
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADK	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CITA CISH CIT CKB CLASP2 CLCN4 CI CA64	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EML6 EMP2 EN1	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRK FRMD4A FRMD5 FAIM2
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADK AES	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATF13A2 ATP1A3 ATP1B1	C1101149 C120rf75 C120rf75 C150rf37 C150rf37 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CLCN4 CLEC16A CI NS10	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCBLD1 DCLK1 DCLK2 DCTPP1	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EML6 EMP2 EN1 ENIDP5	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAM1020
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADK AES AE131217 1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C10TNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABLES2	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CLCN4 CLEC16A CLNS1A CLSTN3	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2 DCLK2 DCLPP1 DCLN1D4	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EML6 EMP2 EN1 ENPP5 ENISA	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAM102A FAM102A FAM102A
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADGR43 ADGR43 ADGRL1 ADGRL2 ADGRL2 ADK AES AF131217.1 AE496402 5	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATD5A1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABLES2 CABP2	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CLCN4 CLEC16A CLNS1A CLSTN3 CLTN3	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2 DCTPP1 DCLK2 DCTPP1 DCUN1D4 DDAH1	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EMCN EMCN EML6 EMP2 EN1 ENPP5 ENSA EDB441 4	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAIM2 FAM122C FAM126B
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADGRL2 ADK AES AF131217.1 AF186192.5 ACAP1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATD5P	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1 CABLES2 CABP2 CAC1A C4C1C	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CLCN4 CLEC16A CLNS1A CLSTN3 CLTA CLTA CLTA	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A5 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2 DCTPP1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDAH1	DUSP23 DUSP6 dydorbo DYNC112 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EMCN EML6 EMP2 EN1 ENP5 ENSA EPB41L1 2	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRMD4A FAMD5 FAIM2 FAM102A FAM126B EAM126A
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 ACAP2	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATP5B ATD5C1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2P2	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CLASP2 CLCN4 CLEC16A CLNS1A CLSTN3 CLTA CLTC CLU	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DCUN1D4 DDAH1 DDIT4L DDIT4L DDB1	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EMCN EML6 EMP2 EN1 ENP5 ENSA EPB41L1 EPB41L3 EPB41L3 EFB44	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRAS1 FRMD4A FRMD5 FAIM2 FAM102A FAM102A FAM12C FAM12B FAM135A EAM132B
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AJEM1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATP5C1 ATP5C2	C110/149 C120rf75 C120rf75 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CAC4D1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CH3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CISH CLASP2 CLCN4 CLEC16A CLNS1A CLSTN3 CLTA CLTC CLU CLU	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDR1 DDR1 DDR1	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EML6 EMP2 EN1 ENPP5 ENSA EPB41L1 EPB41L3 EPHA4 EPHA2 EDHP2	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAM102A FAM12C FAM126B FAM135A FAM13B FAM12C
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AIFM1 ALC1	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATP5B ATP5C1 ATP5C2 ATD5L	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CACHD1 CACHD1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CH3L2 CHR3 CHRM2 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CLCN4 CLEC16A CLSTN3 CLTA CLSTN3 CLTA CLTC CLU CLUH CLUH	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDIT4L DDR1 DDT DDT	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMCN EMCN EML6 EMP2 EN1 ENP5 ENSA EPB41L1 EPB41L3 EPHA4 EPHB2 EPHB2 EDHY2	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRAS1 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAM102A FAM12C FAM136 FAM136 FAM13C FAM13C
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAMTS12 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AIFM1 AIG1 AUC	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATP5B ATP5C1 ATP5C2 ATP5L	C110/149 C120rf75 C120rf75 C150rf37 C150rf37 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CACHD1 CACNB2	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CH3L2 CHR3 CHRM2 CHST10 CHST11 CISH CIT CKB CLASP2 CLCN4 CLEC16A CLSTN3 CLTA CLTC CLU CLUH CLUH CLUL1	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDIT4L DDR1 DDT DDT DDX39B	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EML6 ENP2 ENSA EPB41L1 EPB41L3 EPHA4 EPHB2 EPHX2	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRMD4A FRMD5 FAM102A FAM102A FAM12CC FAM135A FAM136 FAM136 FAM13C FAM169A
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAMTS12 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 ADGRL2 AGAP1 AGAP2 AIFM1 AIG1 AGC2	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP13A2 ATP1A3 ATP1B1 ATP5B ATP5C1 ATP5C2 ATP5L ATP6AP1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1 CABLES2 CACB2 CAC1A CAC1G CAC2D3 CACHD1 CACNB4 CACNB4 CACNB4	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHR4 CHST10 CHST11 CISH CIT CKB CLCN4 CLSTN3 CLTA CLTC CLU CLUH CLUH CLUH CLYBL	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseeb0 DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDIT4L DDR1 DDT DDT DDX39B DGCR8	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EML6 ENP2 EN1 ENP55 ENSA EPB41L1 EPB41L3 EPHA4 EPHB2 EPHX2 EPS15 ETC4	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRMD4A FRMD5 FAM102A FAM12CC FAM136A FAM196B FAM196B <
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AIFM1 AIG1 AK5 ALAD2 ALAD2	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1A3 ATP1B1 ATP2B4 ATP5B ATP5C1 ATP5B ATP5C1 ATP5G2 ATP5L ATP6AP1 ATP6V0A1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C10TNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CACHD1 CACNB2 CACNB4 CACNB7 CACNB4 CACNB7	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHR3 CHR4 CHST10 CHST11 CITA CICN4 CLSTN3 CLTA CLTC CLU CLUH CLUH CLUH CLUH CLUH CLU12 CNH2 CNH2	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDIT4L DDR1 DDT DDX39B DGCR8 DHODH	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN ENP5 ENSA EPB41L1 EPB41L3 EPHA4 EPHB2 EPHX2 EPS15 ETS1	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRK FAM102A FAM102A FAM12CC FAM135A FAM136B FAM138 FAM196B FAM198B FAM198B
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADGR43 ADGR41 ADGR42 ADGR43 ADGRL1 ADGR42 ADGR43 ADGRL2 ADGR43 ADGRL1 AGGR25 AGAP1 AGAP2 AIFM1 AIG1 AK5 ALAD2 ALAD2 ALAD2 ALAD2 ALAD2 ALG9 AMD7C	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAD2B ATAD2B ATF7IP ATG4D ATF7IP ATG4D ATP13A2 ATP1A3 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATP5B ATP5C1 ATP5C2 ATP5L ATP6AP1 ATP6V0E2	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1 CABLES2 CABP2 CAC1A CAC1G CACNB2 CACNB4 CACNG7 CADM1 CACNG7 CADM1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHRM2 CHST10 CHST11 CITA CLSH CLASP2 CLCN4 CLSTN3 CLTA CLTC CLU CLUH CLUH CLUH CLUH CLUH CNIH2 CNIH3 CNIH3 CNIH3	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDT4L DDR1 DDT4L DDT DDX39B DGCR8 DHODH DHX15 DHX20	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EML6 EMP2 EN1 EPB41L3 EPH41L3 EPHA4 EPHB2 EPHX2 EPS15 ETS1 EVL	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRMD4A FRMD5 FAM122C FAM126B FAM135A FAM136B FAM13C FAM196B FAM196B FAM20
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADD2 ADGRA3 ADGRL1 ADGRL2 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AIFM1 AIG1 AK5 ALAD2 ALG9 AMPD3 AMPD3	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP5A1 ATP5B ATP5C1 ATP5C1 ATP5C2 ATP5L ATP6V0A1 ATP6V0B2 ATP6V1B2 ATP6V1B2	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CACHD1 CACNB2 CACNB4 CACNG7 CADM1 CADM3 OAU44	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHRM2 CHST10 CHST11 CIITA CLSH CLSH CLSNA CLSTN3 CLTA CLTA CLUU CLUH CLUH CLUH CNIH2 CNIH3 CNIKSR2	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2 DCTPP1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDIT4L DDR1 DDT DDX39B DGCR8 DHODH DHX15 DHX30 DHX30	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EML6 EMP2 EN1 EPB41L1 EPB41L3 EPHA4 EPHX2 EPS15 ETS1 EVL EXOC1	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRMD4A FAM102A FAM12C FAM12B FAM13B FAM13B FAM13C FAM196B FAM234B FAM234B
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAMTS12 ADARB1 ADCY1 ADGRA3 ADGRL1 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AIFM1 AIG1 AK5 ALAD2 AMPD3 AMPH	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP5A1 ATP5A1 ATP5C1 ATP5C2 ATP5L ATP6V0A1 ATP6V0E2 ATP6V1E2 ATP6V1C1	C110/149 C120rf75 C140rf37 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CACHD1 CACNB2 CACNB4 CACNB4 CACNG7 CADM1 CADM3 CALM1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CHI3L2 CHRM2 CHST10 CHST11 CIITA CLSH CLCN4 CLEC16A CLNS1A CLTC CLU CLUH CLUH CLUH CLYBL CNIH2 CNIH3 CNKSR2 CNOT8	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A5 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDAH1 DDIT4L DDR1 DDT DDX39B DGCR8 DHODH DHX15 DHX30 DHX9	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EMP2 EN1 ENPP5 ENSA EPB41L1 EPB41L3 EPHA4 EPHB2 EPS15 ETS1 EVL EXOC1 EXOC4	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAM102A FAM12CC FAM126B FAM135A FAM136 FAM136 FAM18B FAM196B FAM234B FAM234B
ACTR10 ACTR3B ACVR1B ACVR2A ACVR2B ADAM17 ADAM19 ADAM22 ADAM23 ADAM23 ADAMTS12 ADARB1 ADCY1 ADCY1 ADD2 ADGRA3 ADGRL1 ADCY1 ADGRL2 ADGRL3 ADGRL1 ADGRL2 ADK AES AF131217.1 AF186192.5 AGAP1 AGAP2 AIFM1 AIG1 AK5 ALAD2 ALG9 AMPD3 AMPH	ARHGAP42 ARHGEF10L ARL5A ARMC9 ARRDC4 ARSF ARV1 ASAH1 ASAP1 ASAP1 ASB9 ATAD2B ATAD2B ATAD2B ATAT1 ATF6B ATF7IP ATG4D ATP13A2 ATP1A3 ATP1B1 ATP2B4 ATP5A1 ATP5B ATP5C1 ATP5C1 ATP5C2 ATP5L ATP6AP1 ATP6V0A1 ATP6V0E2 ATP6V1B2 ATP6V1G2-	C110/149 C120rf75 C120rf75 C150rf39 C150rf57 C160rf45 C180rf54 C10rf220 C1QTNF1 C1QTNF6 C20rf27A C4A C4B C40rf27 C80rf34 C90rf3 CABLES1 CABLES2 CABP2 CAC1A CAC1G CAC2D3 CACHD1 CACNB2 CACNB4 CACNB7 CADM1 CADM3 CALM1	CEP85L CFI CH17- 472G23.4 CHD4 CHFR CH3L2 CHR3 CHRM2 CHST10 CHST10 CHST11 CIITA CISH CIT CKB CLASP2 CLCN4 CLEC16A CLSTN3 CLTA CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CLSTN3 CNSSZ2 CNOT8 CNSSZ2 CNOT8 CNSSZ2 CNSSZ3 CNSSZ2 CNSSZ3 CNSSZ2 CNSSZ3 CNSSZ2 CNSSZ3 CNSSZ2 CNSSZ3 CNSSZ2 CNSSZ3 CNSSZ3 CNSSZ2 CNSSZ3 CNSSZ	CXADR CXCL12 CYB5R4 CYFIP2 CYGB CYP3A4 CYP3A5 CYP3A7 CYP46A1 CYTH2 DAAM2 DAB1 DAPK1 daseebo DCBLD1 DCLK1 DCLK2 DCTPP1 DCUN1D4 DDR1 DCLK2 DCTPP1 DCUN1D4 DDR1 DDT DDT DDX39B DGCR8 DHODH DHX15 DHX30 DHX9	DUSP23 DUSP6 dydorbo DYNC1I2 DYRK2 EDIL3 EDNRA EEF2K EEPD1 EFR3B EHBP1 EIF5A2 ELN EMCN EML6 ENP2 EN1 EPB41L1 EPB41L3 EPHA4 EPHB2 EPHX2 EPS15 ETS1 EVL EXOC1 EXOC4	FGF13 FH FHOD3 FIBIN FILIP1 FKBP2 flawfybo FN3K FNDC1 FNDC4 FNDC5 FOXN3 FRAS1 FRK FRMD4A FRMD5 FAIM2 FAM102A FAM12CC FAM12B FAM13B FAM13C FAM196B FAM20C FAM234B FAM49B

FRMD5	HLF	KIF26B	MAP2	MYLK	NEFM	PCBP3
FRMPD3	HMG20A	KIF3B	MAP2K6	MYO1B	NEGR1	PCBP4
FRY	HMGB1	KIF3C	MAP3K12	MYO5A	NEK10	PCCA
FYB	HNRNPA3P3	KIF5C	MAP3K13	MYOZ2	NELFCD	PCCB
GAB1	HOMER1	KLC1	MAP4K3	NBEA	NET1	PCDHA9
GABRA3	HOXA10	KI F3	MAPK10	NBFAP1	NETO2	PCDHB16
GABRE	HOXA13	KI HI 13	MAPRE2		NEURI 4	PCDHB18P
GABRR1	HR	KLRC4-KLRK1	MAPRE3	NCAM1	NEAT5	PCDHB8
GAD1	HRAT17	KMT5B	MAPT	NCOA1	NEYC	PCDHGC3
GALC	HSBP1	KP5	MATR3	NDN	NID2	PCMTD1
GALNT11	HSD17B4		mawgar	NDRG1	NIPSP3A	PCSK5
GALNT14	HSP90B1		MBOAT1	NDRG2		PCSK7
GALNT5		LAMB1	MBUATT MBTD1	NDRG4	NI GN/X	PCVOX1
GAS1RR	HSPB7		MCC		NIK	PDCI
GAS7	HTT	IBH	MCM4	NDUES1	NNT	
GBP2	HUNK			NDUES2		
GDF11	ΙΝΔ	LERR	MCTP1	NDUEV2	NOL4L NOMO3	
GOCT			MDH1B	NECAR3	NONO	
GIRC1			ME2	NEEL	NONO	PDGFD
GIFCT			MEG2			
GLIJ			MEGS			
GLUL			MEGFO	NEGRI		
GNB5			MEIS3	NEK10	NRG1	PD55B
GNG2	IGFL4	LINCUTU9T	MEMOT	NELFCD	NRP1	PDZRN3
GPIBB	IGK	LINC01535	MEST	NETT	NSF	PELIZ
GPAA1	IGSF10	LINC01621	MET	NETO2	NSFP1	PFKM
GPCPD1	IKZF2	LLGL1	METTL9	NEURL4	NSG1	PFN2
GPI	IL17RB	LMBR1	MFAP2	NFAT5	NSL1	PGD
GPM6B	IL1/RD	LMBR1L	MGA15	NFYC	NSMF	PGM2L1
GPR155	IL6R	LMO7	MGP	NID2	NT5C2	PHACTR1
GPR162	IL7	LOC100507002	MGST3	NIPSP3A	NT5C3A	PHACTR3
GPR173	IMMT	LOC101927686	MICAL2	NKIRAS1	NT5DC1	PHKA1
GPR75-ASB3	INPP4B	LOC101929710	MICU1	NLGN4X	NTN4	PHYHIPL
GPRC5B	INPP5A	LOC102723373	MICU3	NLK	NTNG1	PI4KA
GRAMD1B	INSRR	LOC102723769	MID1	NNT	NTRK1	PI4KAP1
GRAMD4	IQCJ	LOC105378663	MINOS1P1	NOL4L	NTRK3	PI4KAP2
GREM1	ITGA11	LOC220729	MIR22HG	NOMO3	NUAK1	PIAS4
GS	ITGA2	LOC645513	MIR29A	NONO	NUDCD3	PIK3CB
GSR	ITGA5	LOC728730	MIR4500HG	NPNT	NUDT22	PIK3R1
GSTM2	ITGAV	LPAR6	MIR573	NRCAM	NUDT3	PIK3R2
GTF2I	ITM2A	LPCAT1	MIR99AHG	NREP	OBSCN	PIK3R3
GTF2IP1	ITSN1	LPP-AS2	MLIP	MYLK	OGDH	PIN1
GTF3C1	JARID2	LRP4	MLLT11	MYO1B	OGFRL1	PIP4K2A
GTF3C2	JPH2	LRP5	MMD	MYO5A	OIP5-AS1	PIP5K1C
GUCY1B3	KALRN	LRRC32	MMP16	MYOZ2	ORMDL3	PITPNM1
GULP1	KCB2	LRRC40	MOB4	NBEA	OSBP2	PKIA
GXYLT2	KCNC4	LRRC49	moymoyby	NBEAP1	OSBPL1A	PKIG
H2AFY	KCNH5	LRRK2	MPC1	NCALD	OSCP1	PKM
H2AFY2	KCNK2	LSAMP	MREG	NCAM1	OSR1	PLA2G15
H3F3B	KCNMA1	LUCAT1	MROH7	NCOA1	OXTR	PLA2G4A
HABP4	KDM4C	LYNX1	MRPL35	NDN	P1L5	PLAGL1
HAGH	KDM5B	LYST	MRPS7	NDRG1	P4HTM	PLCB1
HDAC5	KHDRBS1	maby	MSI1	NDRG2	PAFAH1B2	PLCB4
HDAC9	KIAA0391	MAFB	MT1F	NDRG4	PAK1	PLCD4
HECW1	KIAA0895L	MAGI1	MTMR1	NDUFAF5	PANK1	PLCH1
HEPH	KIAA0922	MAGI3	MTMR9	NDUFS1	PARM1	PLD1
HIST4H4	KIAA1109	MAMDC2	MTSS1L	NDUFS2	PARP8	PLEKHA2
HK1	KIAA1644	MAN1C1	MTUS1	NDUFV2	PB	PLEKHA5
HK2	KIF1B	MAQA	MXRA5	NECAB3	PBX1	PLIN2
HLA-DRA	KIF21A	MAP1B	MYH10	NEFL	PBX3	PLK2
PLPPR4	RALGAPA1	SCP2	SLC9B2	SVILP1	TP53I11	WARS2-IT1
PLS3	RALGAPA2	SCRG1	SLIT2	SYNE1	TP53I3	WASF3
		1		0.4.0.00	TDOO	
pluspar	RALGDS	SDCCAG8	SMAD1	SYNGR3	1P63	WBP2

PLXDC1	RALGPS1	SDHA	SMARCA2	SYN 11	TPCN1	WDR37
PLXDC2	RANBP3I	SDHAP3	SMARCA4	SYN12	TPD52I 1	WDR41
		SDK2	SMARCC2	SVNDO2		WDR63
	DACA2		SWARCCZ	STINFUZ		
		SEC14L1	SIVIGO CMINATOL DA	OVT4		WDR7
PMAIPT	RASGRP3	SEC61A2	SMIMTULZA	SYIT		weewerby
POLR2E	RASL10B	SECTM1	SNN	114		WHSC1
POLR3A	RBM12B	SEMA3D	SNRPA	TADA2A	TRIB1	WWP2
POLR3F	RBM24	SEMA6B	SNRPA1	TANC1	TRIM16L	XPNPEP1
POMGNT1	RBMX	SEMA6D	SOCS2	TAPT1	TRIM2	YAF2
POMK	RERE	SENP7	SOCS2-AS1	TBC1D12	TRIM24	yara
POR	REREP3	SEPN1	SOGA3	TBC1D8	TRMT2B	YLPM1
POSTN	REV3L	SEPT7P2	SORBS1	TBCB	TRPC3	YPEL3
PPARD	RFTN1	SEPW1	SORL1	TBCK	TSPAN13	YWHAE
PPARGC1A	RGL1	SERPINF1	SOX4	TCIRG1	TSPAN15	ZC2HC1A
PPFIA4	RGS16	SERPINI1	SPAG17	TCN2	TSPAN18	ZC3H12B
				TCONS 12 000		
PPIA	RGS3	SETBP1	SPARC	02184	TSPAN3	ZCCHC2
		02.0.	0.7.10	TCONS 12 000		2001.02
PPIAL4C	RGS4	SERP4	SPARCI 1	26703	TSPAN5	ZDHHC13
	11004		OF / ITOE I	TCONS 12 000	1017110	ZBIIIIOIO
	PGS8	SCIP1	SDATA13	30054		
			SPATAIS	30334 TDO2	TSPAN	
			SPATAZU		13301	
PPP1R21	RIM52		SPATAO			
PPP2R1B	RIT	SH3GLB2	SPC3	TEAM	11019	ZEB1-AS1
PPP2R2B	RMDN2	SHOX2	SPIDR	TGFBI	11C33	ZFAND5
PPP2R2D	RNF150	SHTN1	SPOCK1	TGM2	TTLL6	ZFAND6
PPP2R3A	RNF38	SIAE	SPRY1	THRA	TTYH3	ZFHX4
PPP5C	RNFT2	SIPA1L3	SPRYD3	THRB	TUBA4A	ZFP14
PQLC2L	ROR1	SIRPA	SPSB1	THSD7A	TUBB3	ZFP30
PREP	RP11-353N14.1	SIRT2	SPTLC3	TIAF1	TUBG2	ZMIZ1
PREX1	RP11-359M6.1	SIX1	SRD5A1	TIMM8B	TXNRD2	ZMYND8
PREX2	RP11-368L12.1	SLAIN1	SRGAP2	TIPARP	UACA	ZNF124
PRH1	RP11-395N3.2	SLC16A3	SRSF1	ТКТ	UBA5	ZNF195
PRICKLE1	RP11-402L1.11	SLC16A4	SRSF3	TLE3	UBE2N	ZNF24
PRIM2	RP11-417.18.3	SLC16A7	SSBP3	TLN2	UBP1	ZNF254
PRKAA2	RP11-435B5 5	SLC1A2	ST3GAL3	TLR1	UBR7	ZNE33A
PRKCA	RP11_442 I21 2	SI C22A17	ST3GAL5	TLR4	UNC13B	ZNF347
	DD11 575E12 2	SI C22A17	STACALO			
	RETT-575F12.5	SLOZZAZS	STECALCE			
PRKGI	RP11-01011.1	SLUZZAS	STOGALCO			ZINF430
PRKG2	RP11-78208.2	SLC25A12	ST851A4			ZINF430
PRLR	RP11-88118.2	SLC25A13	STAC2	TMEM132A	UQCRH	ZNF444
PROS2P	KP4-665J23.1	SLC25A23	STAU2	IMEM136	URUS	ZNF454
PRSS12	KP5-1172A22.1	SLC25A27	STK32B	IMEM161B	USP11	ZNF493
PRTFDC1	RPS6KA3	SLC25A29	STK33	TMEM173	USP33	ZNF506
PRUNE2	RPS6KA6	SLC25A5	STMN1	TMEM178A	USP46	ZNF540
PSD3	RPUSD3	SLC2A5	STMN2	TMEM2	UTRN	ZNF608
PSMB8-AS1	RRAGD	SLC35B4	STON2	TMEM25	V1	ZNF609
PTBP2	RSRC1	SLC38A1	STX12	TMEM50B	V3	ZNF618
PTGDS	RUFY3	SLC38A2	STX1B	TMEM59L	VAMP4	ZNF676
PTGFR	RUNX1T1	SLC38A7	STX7	TMEM63B	VAV3	ZNF680
PTPN13	S1PR1	SLC39A10	STXBP1	TMEM8A	VCAM1	ZNF708
PURG	SACS	SI C4A2	STXBP5	TMOD2	VDAC1	ZNE709
PXYLP1	SAMD14	SI C4A4	SUB1	TMOD3	VEZT	ZNF718
DVCB	SARDH			TMTC2		
DAD20		SLUGAT/				
RAB26	5065	SLC6A8	SUMU2P18	INFRSF19	VPS13C	ZNRF2
KAB3A	SCML1	SLC/A6	SUN1		VPS36	ZYG11B
KAB3C	SCN1A	SLC8A1	SUSD4	INRC6B	VSNL1	
rahiyu	SCN1B	SLC9A9	SVIL	TNS3	vubler	

Table S2. Neuronal genes with PTBP2-mediated splicing events List of neuronal genes (upregulated in miNs / HAFs; FC \geq 1.5; ANOVA P < 0.05) exhibiting splicing events associated with PTBP2 during reprogramming (shPTBP2 / shCTL; splicing index \geq 2; ANOVA P < 0.05).

Gene name	logFC	Adj.P.Val		Gene name	logFC	Adj.P.Val
ABCD2	-1.83E+00	9.79E-03		KCTD12	-2.29E+00	1.44E-04
ADAM22	-1.65E+00	9.21E-04		KIAA0513	-1.34E+00	1.41E-03
ADAM23	-1.25E+00	1.76E-02		KIF5C	-1.34E+00	4.06E-03
ADCY1	-2.44E+00	5.06E-05		KLHL25	-1.32E+00	1.78E-03
AMOT	-1.20E+00	2.04E-02		LRRC4	-1.37E+00	4.46E-03
ANK3	-1.07E+00	7.83E-03		MAGI3	-1.48E+00	3.88E-04
ANKRD6	-2.24E+00	1.15E-05		MAP2	-1.79E+00	5.20E-04
APBA1	-1 71E+00	3.05E-04		MCM3	-1 40E+00	3 98E-04
	-1.35E+00	1.87E_03			-1.80E+00	5.74E-05
	-1.87E+00	3.09E-04		MGATAC	-2.81E+00	5.174E-03
	1.07E+00	3.09L-04			2.010+00	2 92E 05
ARTIGEFT	-1.03E+00	3.30E-03		NCALD	-2.21E+00	3.03E-03
ASTNI	-1.64E+00	3.52E-04		NCAMI	-1.66E+00	8.27E-04
ATP6V1G2	-1.33E+00	2.66E-02		NELL2	-2.45E+00	2.15E-05
BAALC	-2.20E+00	3.83E-05		NFIB	-1.33E+00	3.05E-03
BCL7A	-1.24E+00	1.66E-03		OGFRL1	-2.46E+00	2.85E-05
C14orf132	-2.08E+00	4.63E-05		P2RY1	-2.81E+00	1.78E-03
CALB2	-3.41E+00	7.54E-05		PASK	-1.53E+00	4.18E-02
CAMK4	-1.05E+00	2.17E-02		PEG10	-3.04E+00	2.97E-06
CAMSAP1	-1.28E+00	2.73E-03		PHYHIPL	-2.49E+00	9.40E-05
CDC7	-1.98E+00	1.97E-03		PLCXD2	-2.58E+00	1.68E-04
CERS6	-2.50E+00	6.64E-05		PODXL2	-1.18E+00	7.68E-03
CHRDL1	-2.53E+00	1.88E-05		PPM1L	-1.60E+00	2.84E-04
CKB	-1 40E+00	2 44E-03		PPP1R12B	-1 76E+00	5 18E-05
CL CN4	-1 32E+00	5 14E-03		PRRT2	-2 31E+00	7 95E-05
CNTER	-1.23E+00	2 /1E-02		DTRD2	_1 70E+00	3.41E-02
CNTN1	-1.23L+00	2.41L-02			-1.70E+00	1 25E 02
	-1.01E+00	9.97E-03			-1.34E+00	4.35E-02
	-1.29E+00	2.47E-03			-2.17E+00	1.07E-04
CRISPLDT	-2.00E+00	3.63E-04		RALGPST	-2.01E+00	2.87E-05
CRMP1	-2.33E+00	1.23E-04		RIMS3	-1.61E+00	3.27E-04
CRY1	-1.30E+00	1.28E-03		RIMS4	-1.85E+00	5.99E-04
CSRNP3	-1.57E+00	1.22E-02		RNF144A	-1.18E+00	3.01E-03
CXADR	-1.62E+00	2.73E-02		RNF157	-1.38E+00	1.33E-03
CYFIP2	-1.14E+00	6.06E-03		RNFT2	-1.37E+00	4.52E-04
DCLK1	-2.28E+00	4.58E-05		RRAGD	-1.05E+00	2.73E-02
DCLK2	-2.34E+00	7.21E-06		RUFY3	-1.98E+00	1.46E-03
DPF1	-2.38E+00	8.68E-05		SBK1	-1.75E+00	3.09E-03
EFR3B	-1.24E+00	5.25E-03		SCD5	-1.08E+00	3.36E-03
ENOX1	-1.85E+00	5.62E-03		SCN1A	-3.60E+00	1.65E-05
FADS2	-1.73E+00	4.46E-04		SEMA6A	-1.29E+00	1.66E-03
FAM110B	-1.36E+00	7.31E-04		SERTAD4	-2.34E+00	1.04E-02
FAM131B	-1.31E+00	1.75E-03		SESN3	-3.07E+00	1.32E-03
FAT3	-1.51E+00	9.85E-04		SFRP4	-3.54E+00	1.99E-02
FGD4	-1.51E+00	8 35E-03		SH3BP2	-1 28E+00	1.50E-03
FOXP2	-2 99E+00	3.85E-02		SHE	-2.00E+00	4 03E-04
FRY	-1.86E+00	5.51E-05		SIAH3	-2.00E+00	4.45E-04
EZD3	-1.00E+00	2.68E-02			-2.40E+00	4.30E-05
	-1.45E+00	2.00E-02		SLAINT	-2.33E+00	4.30E-03
GADT	-1.20E+00	7.70E-04		SLCTAZ	-2.34E+00	1.09E-04
GDAP1	-1.34E+00	7.20E-03		SLC4A8	-1.07E+00	3.90E-03
GPC2	-1.86E+00	1.37E-04		SMAP1	-1.01E+00	1.27E-02
GPD1L	-2.63E+00	4.06E-04		SNAP25	-1.29E+00	2.67E-03
GPM6A	-2.35E+00	3.96E-04		SNCAIP	-3.29E+00	9.75E-07
GPR173	-1.19E+00	1.81E-02		SPARCL1	-1.35E+00	1.21E-02
GRIA2	-1.74E+00	2.32E-03		SPTBN2	-1.14E+00	6.80E-03
GRIA4	-1.33E+00	6.84E-03		SRGAP3	-1.01E+00	1.13E-02
GRM5	-2.06E+00	3.30E-02	1	STMN2	-3.04E+00	1.01E-05
GUCY1A2	-1.54E+00	1.75E-02	1	STMN3	-2.03E+00	1.84E-04
HMGCS1	-2.22E+00	6.55E-03	1	STRBP	-1.40E+00	3.94E-03
IL17RD	-2.54E+00	9.18E-06	1	SYBU	-2.25E+00	5.04E-05
JPH4	-1.31E+00	6.71E-03	1	SYT1	-1.25E+00	8.81E-03
KALRN	-1 45E+00	4 23E-04		THRA	-1.09E+00	8.51E-03
	1.400.00	1.202-07			1.000	0.012-00

Gene name	logFC	Adj.P.Val
THSD7A	-1.32E+00	3.91E-03
TMEM108	-1.26E+00	6.35E-03
TMOD2	-1.76E+00	1.57E-03
TMTC2	-1.29E+00	1.11E-03
TNFRSF21	-1.07E+00	2.03E-02
TSPAN14	-1.11E+00	5.54E-03
TSPAN5	-1.34E+00	1.07E-03
TSPAN7	-2.67E+00	8.68E-06
TUB	-1.31E+00	8.61E-04
TUBB3	-2.41E+00	1.08E-04
ZNF300	-1.49E+00	6.27E-03
ZNF536	-1.16E+00	1.39E-02

Table S3. MiR-124-responsive genes that harbor AGO-enriched peaks in HNs List of downregulated DEGs (KD / CTL; Log₂FC \geq 1; adj. P.value > 0.05) in HNs with miR-124 and ELAVL3 knockdown that harbor AGO-enriched peaks determined by HITS-CLIP in miNs

	וחועעום
	RALGFST DIME2
	RINGS DNE144A
RALC	RINF 144A DI IEV2
BAALC	R0F13
	SCD3
	SEMAGA
	SLCIAZ
	SLC4A0
	SNAF25
	SPARULI SPCAR3
	STORFS STORP
FAIS	
FGD4	
GDAF1	
CDMGA	705
GPIA2	ZNESSO
GRIA	
GPM5	
GUCV1A2	
HMGCS1	
.IPH4	
KAI RN	
KCTD12	
KIAA0513	
KIE5C	
MAGI3	
MAP2	
METTI 7A	
MGAT4C	
NCALD	
NCAM1	
NFI12	
NEIB	
DEC10	

Table S4. MiR-124-responsive genes predicted to be bound by nELAVLs in HNs List of miR-124-responsive genes predicted to be bound by nELAVLs (Scheckel et al., 2016) in HNs.

Chapter 4: PTBP2-mediated alternative splicing of DPF1

PTBP2 targets chromatin modifiers to facilitate histone mark recognition

A significant subset of the identified PTBP2 targets during neuronal reprogramming was chromatin regulators (Chapter 3), suggesting the role of PTBP2 in regulating epigenetic effectors during neuronal fate acquisition. One of the identified targets in the array was *DPF1* (Chapter 3). DPF1 (also known as BAF45B) is a subunit of the BAF chromatin remodeling complex that is specifically expressed in neurons and define the neuron specific-assembly of BAF complexes along with BAF45C and BAF53B (Lee et al., 2018; Lessard et al., 2007; Wu et al., 2007) (Figure 1A). We found that PTBP2 mediates the exclusion of a 30 base pair sequence in DPF1 transcript, which is confirmed by RT-PCR using primers that flank the target spliced exon to generate amplicons corresponding to 216 bp (DPF1-Long/DPF1-L) and 186 bp (DPF1-Short/DPF1-S) in length (Figure 1B-C). In our reprogrammed neurons or miNs, the shorter isoform DPF1-S transcript is the primary isoform, which shifts to include more of the DPF1-L isoform after PTBP2 knockdown (Figure 1B). While both DPF1-L and DPF1-S isoforms are detected in the human brain (Figure 1D), spike-in sequencing of DPF1 transcripts from human primary neurons indicated that majority of the DPF1 population 79.4%, maps to DPF1-S while 20.6% maps to DPF1-L (Figure 7E). This miN-enriched DPF1-S appears to be a neuronalenriched isoform as in the human cerebral cortex (Figure 1D) (Uhlen et al., 2015).

The 30 bp difference between *DPF1-S* and *DPF1-L* falls within the second functional plant homeodomain (PHD) (Figure 1F). We examined the functional implications of having different PHD lengths. First, we found that both isoforms could still interact with BRG1, the core ATPase subunit of the BAF complex (Figures 1G). We then asked if either isoform would

Figure 1. Spliced DPF1 isoforms in human neurons differed in PHD domain length

(A) Schematic representing the switching of homologous subunits within the chromatin remodeling BAF (BRG1/BRM-associated factor) complex during neurogenesis. ACTL6A, SS18,

and PHF10 of the neural progenitor BAF complex switches to ACTL6B, SS18L1, and DPF1/DPF3, respectively, for the neuron-specific BAF complex.

(B) Left, schematic of primers used to confirm DPF1 splicing event from the array to generate amplicons of 216 bp and 186 bp

(c) Long output to the provide the second sec

sequence from human brain cDNA library.

(D) Track view of DPF1 from the human cerebral cortex (ERX288614) (adapted from Uhlen et al., 2015) showing two DPF1 isoforms with the shorter isoform (DPF1-S) being more dominant in the brain.

(E) Spike-in sequencing of primary human neuron cDNA to determine the percentage of DPF1-S (79.4%) and DPF1-L (20.6%) isoforms from total reads.

(F) Diagram of DPF1 splicing pattern with alternative 3' splice site for exon 11 generating two spliced DFP1 mRNAs, DPF1-S and DPF1-L, corresponding to differences in PHD2 domain length.

(G) Co-IP analysis revealed that both DPF1 isoforms could interact and incorporate into BRG1/BAF complex.

interact preferentially to different histone H3 marks as previous studies indicated the ability of proteins with PHD fingers to interact with histone H3 modifications (Huber et al., 2017; Lange et al., 2008; Sanchez and Zhou, 2011). Using histone H3 peptide array ELISA, we compared the ratio of binding intensity between DPF1-S and DPF1-L. We found that DPF1-S was able to bind nine H3 modifications much more robustly than DPF1-L (\geq 2 fold difference), including H3K9ac, H3K79me2, and H3K9me1 (Figure 1H). These results suggest that DPF1-S may likely be involved in the enhancement of BAF complex activity to recognize specific histone marks.

PTBP2 is crucial for neuronal conversion

Reducing PTBP2 expression led to the increased appearance of *DPF1-L* (Figure 1B) confirming that PTB switching in neurons is critical to confer the alternative splicing of *DPF1* to *DPF1-S* isoform. Our results thus demonstrate the significance of PTBP2 function in executing the proper processing of neuronal genes activated in response to miR-9/9*-124 while the loss of PTBP2 would block neuronal conversion (Chapter 3; Figure 2A). Contrastingly, sequential knockdown of PTBP1 and PTBP2 proteins have been shown to be able to reprogram human fibroblasts into neurons (Xue et al., 2016). However, comparing the conversion efficiency by miR-9/9*-124 and PTBP1/2 sequential knockdowns points to the limited efficacy with PTB knockdowns only (Figure 2B-C). This difference is likely due to the presence of neurogenic factors such as nELAVLs (Chapter 3) and/or other neuronal RBPs evoked by miR-9/9*-124 ensuring robust PTBP2 expression and activation of the neuronal program (Chapter 3), including the proper splicing of DPF3.

Figure 2. PTBP2 is crucial for neuronal conversion

(A) Top, schematic of miRNA-mediated reprogramming paradigm in which both miR-9/9*-124 and shRNA against PTBP2 were transduced together at PID 0. Bottom, PID 30 miNs with CTL or PTBP2 knockdown immunostained with PTBP2 and TUBB3. Scale bar = 50 μm.
(B) Top, schematic of sequential reprogramming. The first shRNA was transduced at PID 0 followed by a second shRNA transduced at PID 4 or 4 days after the first shRNA transduction. Bottom, PID 30 cells after sequential knockdown using shRNAs against CTL, PTBP1, and/or PTBP2 immunostained with PTBP2 and TUBB3. Scale bar = 50 μm.

Chapter 5: Conclusions

In this thesis, we uncovered the role of miR-124 in the upregulation of genes associated with neuronal differentiation and function during the neuronal conversion of human fibroblasts. This finding provides insights into the function of miRNAs in addition to their canonical role as a repressor of downstream target genes. Of the bound AGO transcripts are bona fida miR-124 target genes in which the 3'UTRs can be repressed in a non-neuronal context, but reverses upon neuronal induction. By examining the mutually exclusive regulation of *PTBP1* and *PTBP2*, we reveal how miR-124 plays a bifunctional role depending on the sequence composition at the 3'UTR, the availability of neuronal ELAVLs, and the interaction with AGOs to mediate the switching of PTB homolog expression during the neuronal conversion of HAFs. Although we focus specifically on the interplay between miR-124 and ELAVL3 for PTBP2 upregulation, future studies should also examine if similar mechanism is used to promote other identified neuronal transcripts or if other RBPs can also synergize with AGOs for such target gene regulation. For example, FXR1, an RBP, has been shown in previous studies to interact with AGOs to facilitate gene expression in non-neuronal cells (Truesdell et al., 2012; Vasudevan et al., 2007; Vasudevan and Steitz, 2007).

The selective role of ELAVL3, and not ubiquitous ELAVL1 or neuronal-specific ELAVL2 and ELAVL4, in mediating PTBP2 induction in neurons highlights the functional specificity of ELAVL family members in neurons. Like ELAVL3, ELAVL1 binds AREs and has been shown to interact with RISC components (Kim et al., 2009; Vasudevan and Steitz, 2007). Although different studies reveal opposing consequence of RISC and ELAVL family interaction on target genes, downstream functional output of AGO-ELAVL is likely context dependent. This context depends on not only the concurrent availability of RBP and target transcript, but also the 3'UTR sequence. Our results clearly define the functional specificity inherent in ELAVL3 that cannot be replaced by ELAVL1, especially for regulating PTBP2 expression with miR-124 in neurons. We found that the specificity is, at least in part, driven by the hinge region inferred by the region-swapping experiments between ELAVL1 and ELAVL3. As there is no known ARE recognition unique to each ELAVL family member, it is likely that interactors associating with the hinge region may be regulating ELAVL specificity and targeting (Fujiwara et al., 2012; Hinman et al., 2013).

To investigate if the synergism of miR-124 and nELAVLs for transcript stabilization and activation can be generalized to other neuronal transcripts beyond *PTBP2* outside the conversion system, we also knockdown miR-124 and ELAVL3 in primary human neurons. Our results indicate that several neuronal transcripts are induced by miR-124 and ELAVL3 that are critical for neuronal program. Furthermore, by examining existing nELAVL HITS-CLIP datasets in the human brain (Scheckel et al., 2016), we uncovered that miR-124- and nELAVL-mediated upregulation of target transcripts may not be a unique occurrence to PTBP2, but likely an overlooked mechanism that maintains gene expression in neurons. Interestingly, as we identified numerous neuronal genes to be targets of miR-124, such as MAP2, CAMK1D, and SEMA6A, we argue that miR-124 may be critical for enhancing the overall neuronal program as measured by the reduced sodium current, and neurite length and branches through its regulation on long genes. By chemically inhibiting LGE in rat neurons, mimicking the transcriptomic phenotype observed in HNs with reduce miR-124 and ELAVL3 activity, we observed a variety of altered electrical properties. This finding also indicates that miR-9/9*-124 is highly neurogenic as these miRNAs not only allow for the conversion of HAFs into neurons (Abernathy et al. 2017; Yoo et al. 2011), but also enhanced the expression of neuronal markers, such as MAP2, when overexpressed during neuronal differentiation of human pluripotent stem cell-derived neurons

(Ishikawa et al., 2020; Sun et al., 2016). Although further tests are required to see if all the identified transcripts targeted by both miR-124 and nELAVLs share the same mechanism as *PTBP2*, our loss-of-function results from in both reprogramming and primary human neuron systems, and its effect on other neuronal genes lend support to the general role of miR-124 as a positive regulator of select target genes in neurons. Future experiments taking a closer look at RNA structure, motif proximity with RBPs, and additional interacting proteins will provide further mechanistic insights to how a single miRNA can simultaneously repress and activate different transcripts in a cell context-dependent manner.

Our study offers insights into the bifunctional mode of miR-124 conferring miRNAs as a reprogramming effector that can contribute to the neuronal program by upregulating specific neuronal genes. As miRNAs have been typically checked for their targets in non-neuronal cell lines, it is plausible that the dual-mode of miRNAs may not be unique to miR-124 in neurons, but instead utilized and altered in other cellular contexts with the help of cell type-specific RBPs. The governance of miRNA activity by the sequences within 3'UTR highlights the role of cell type-specific RBPs as core regulators of gene expression.

References

- Abernathy DG, Kim WK, McCoy MJ, Lake AM, Ouwenga R, Lee SW, Xing X, Li D, Lee HJ, Heuckeroth RO, Dougherty JD, Wang T, Yoo AS. 2017a. MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts. *Cell Stem Cell* **21**:332-348.e9. doi:10.1016/j.stem.2017.08.002
- Bak RO, Hollensen AK, Primo MN, Sorensen CD, Mikkelsen JG. 2013. Potent microRNA suppression by RNA Pol II-transcribed "Tough Decoy" inhibitors. *RNA* **19**:280–293. doi:10.1261/rna.034850.112
- Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. 2005. REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis. *Cell* 121:645–657. doi:10.1016/j.cell.2005.03.013
- Boutz PL, Stoilov P, Li Q, Lin C-H, Chawla G, Ostrow K, Shiue L, Ares M, Black DL. 2007. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. *Genes & Development* 21:1636– 1652. doi:10.1101/gad.1558107
- Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. 2011. RBPDB: a database of RNAbinding specificities. *Nucleic Acids Research* **39**:D301–D308. doi:10.1093/nar/gkq1069
- Feng J, Liu T, Qin B, Zhang Y, Liu XS. 2012. Identifying ChIP-seq enrichment using MACS. *Nat Protoc* **7**:1728–1740. doi:10.1038/nprot.2012.101
- Fujiwara T, Fukao A, Sasano Y, Matsuzaki H, Kikkawa U, Imataka H, Inoue K, Endo S, Sonenberg N, Thoma C, Sakamoto H. 2012. Functional and direct interaction between the RNA binding protein HuD and active Akt1. *Nucleic Acids Research* 40:1944–1953. doi:10.1093/nar/gkr979
- Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, Hemberg M, Ebert DH, Greenberg ME. 2015. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. *Nature* 522:89–93. doi:10.1038/nature14319
- Haraguchi T, Ozaki Y, Iba H. 2009. Vectors expressing efficient RNA decoys achieve the longterm suppression of specific microRNA activity in mammalian cells. *Nucleic Acids Research* 37:e43–e43. doi:10.1093/nar/gkp040
- Hinman MN, Zhou H-L, Sharma A, Lou H. 2013. All three RNA recognition motifs and the hinge region of HuC play distinct roles in the regulation of alternative splicing. *Nucleic Acids Research* **41**:5049–5061. doi:10.1093/nar/gkt166
- Iadevaia V, Gerber A. 2015. Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs. *Biomolecules* **5**:2207–2222. doi:10.3390/biom5042207
- Ince-Dunn G, Okano HJ, Jensen KB, Park W-Y, Zhong R, Ule J, Mele A, Fak JJ, Yang C, Zhang C, Yoo J, Herre M, Okano H, Noebels JL, Darnell RB. 2012. Neuronal Elav-like (Hu) Proteins Regulate RNA Splicing and Abundance to Control Glutamate Levels and Neuronal Excitability. *Neuron* 75:1067–1080. doi:10.1016/j.neuron.2012.07.009
- Ishikawa M, Aoyama T, Shibata S, Sone T, Miyoshi H, Watanabe H, Nakamura M, Morota S, Uchino H, Yoo AS, Okano H. 2020. miRNA-Based Rapid Differentiation of Purified Neurons from hPSCs Advancestowards Quick Screening for Neuronal Disease Phenotypes In Vitro. *Cells* 9:532. doi:10.3390/cells9030532

- Jiang P, Coller H. 2012. Functional Interactions Between microRNAs and RNA Binding Proteins. *MicroRNA e* 1:70–79. doi:10.2174/2211536611201010070
- Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. 2009. HuR recruits let-7/RISC to repress c-Myc expression. *Genes & Development* 23:1743–1748. doi:10.1101/gad.1812509
- King IF, Yandava CN, Mabb AM, Hsiao JS, Huang H-S, Pearson BL, Calabrese JM, Starmer J, Parker JS, Magnuson T, Chamberlain SJ, Philpot BD, Zylka MJ. 2013. Topoisomerases facilitate transcription of long genes linked to autism. *Nature* 501:58–62. doi:10.1038/nature12504
- Lee SW, Oh YM, Lu Y-L, Kim WK, Yoo AS. 2018. MicroRNAs Overcome Cell Fate Barrier by Reducing EZH2-Controlled REST Stability during Neuronal Conversion of Human Adult Fibroblasts. *Developmental Cell* **46**:73-84.e7. doi:10.1016/j.devcel.2018.06.007
- Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR. 2007. An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development. *Neuron* **55**:201–215. doi:10.1016/j.neuron.2007.06.019
- Li Q, Zheng S, Han A, Lin C-H, Stoilov P, Fu X-D, Black DL. 2014. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. *eLife* 3. doi:10.7554/eLife.01201
- Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE, Zhang C, Darnell RB. 2012. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. *Genes & Development* **26**:1626–1642. doi:10.1101/gad.191338.112
- Lin K, Zhang S, Shi Q, Zhu M, Gao L, Xia W, Geng B, Zheng Z, Xu EY. 2018. Essential requirement of mammalian *Pumilio* family in embryonic development. *MBoC* **29**:2922–2932. doi:10.1091/mbc.E18-06-0369
- Lu J, Ji H, Tang H, Xu Z. 2018. microRNA-124a suppresses PHF19 over-expression, EZH2 hyper-activation, and aberrant cell proliferation in human glioma. *Biochemical and Biophysical Research Communications* **503**:1610–1617. doi:10.1016/j.bbrc.2018.07.089
- Mabb AM, Kullmann PHM, Twomey MA, Miriyala J, Philpot BD, Zylka MJ. 2014. Topoisomerase 1 inhibition reversibly impairs synaptic function. *Proc Natl Acad Sci USA* 111:17290–17295. doi:10.1073/pnas.1413204111
- Mabb AM, Simon JM, King IF, Lee H-M, An L-K, Philpot BD, Zylka MJ. 2016. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. *PLoS ONE* **11**:e0156439. doi:10.1371/journal.pone.0156439
- Makeyev EV, Zhang J, Carrasco MA, Maniatis T. 2007. The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing. *Molecular Cell* **27**:435–448. doi:10.1016/j.molcel.2007.07.015
- McCoy MJ, Fire AZ. 2020. Intron and gene size expansion during nervous system evolution. BMC Genomics 21:360. doi:10.1186/s12864-020-6760-4
- McCoy MJ, Paul AJ, Victor MB, Richner M, Gabel HW, Gong H, Yoo AS, Ahn T-H. 2018. LONGO: an R package for interactive gene length dependent analysis for neuronal identity. *Bioinformatics* **34**:i422–i428. doi:10.1093/bioinformatics/bty243
- McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, Caicedo JC, Carpenter AE. 2018. CellProfiler 3.0: Next-generation image processing for biology. *PLoS Biol* 16:e2005970. doi:10.1371/journal.pbio.2005970

- Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB. 2014. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. *Nat Protoc* **9**:263–293. doi:10.1038/nprot.2014.012
- Neo WH, Yap K, Lee SH, Looi LS, Khandelia P, Neo SX, Makeyev EV, Su I. 2014. MicroRNA miR-124 Controls the Choice between Neuronal and Astrocyte Differentiation by Finetuning Ezh2 Expression. *Journal of Biological Chemistry* 289:20788–20801. doi:10.1074/jbc.M113.525493
- Okano HJ, Darnell RB. 1997. A Hierarchy of Hu RNA Binding Proteins in Developing and Adult Neurons. *The Journal of Neuroscience* **17**:3024–3037. doi:10.1523/JNEUROSCI.17-09-03024.1997
- Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. 2008. The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington's Disease. Journal of Neuroscience 28:14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008
 Partak Ing. 2020. Partak Elow. St. Louis
- Partek Inc. 2020. Partek Flow. St. Louis.
- Paz I, Kosti I, Ares M, Cline M, Mandel-Gutfreund Y. 2014. RBPmap: a web server for mapping binding sites of RNA-binding proteins. *Nucleic Acids Research* 42:W361–W367. doi:10.1093/nar/gku406
- Plass M, Rasmussen SH, Krogh A. 2017. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors. *PLOS Computational Biology* 13:e1005460. doi:10.1371/journal.pcbi.1005460
- Rehmsmeier M. 2004. Fast and effective prediction of microRNA/target duplexes. *RNA* **10**:1507–1517. doi:10.1261/rna.5248604
- Richner M, Victor MB, Liu Y, Abernathy D, Yoo AS. 2015. MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons. *Nature Protocols* 10:1543–1555. doi:10.1038/nprot.2015.102
- Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**:139–140. doi:10.1093/bioinformatics/btp616
- Scheckel C, Drapeau E, Frias MA, Park CY, Fak J, Zucker-Scharff I, Kou Y, Haroutunian V, Ma'ayan A, Buxbaum JD, Darnell RB. 2016. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. *eLife* 5. doi:10.7554/eLife.10421
- Schoenherr C, Anderson D. 1995. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. *Science* 267:1360–1363. doi:10.1126/science.7871435
- Spassov DS, Jurecic R. 2002. Cloning and comparative sequence analysis of PUM1 and PUM2 genes, human members of the Pumilio family of RNA-binding proteinsq 10.
- Staahl BT, Tang J, Wu W, Sun A, Gitler AD, Yoo AS, Crabtree GR. 2013. Kinetic Analysis of npBAF to nBAF Switching Reveals Exchange of SS18 with CREST and Integration with Neural Developmental Pathways. *Journal of Neuroscience* 33:10348–10361. doi:10.1523/JNEUROSCI.1258-13.2013
- Sugino K, Hempel CM, Okaty BW, Arnson HA, Kato S, Dani VS, Nelson SB. 2014. Cell-Type-Specific Repression by Methyl-CpG-Binding Protein 2 Is Biased toward Long Genes. *Journal of Neuroscience* **34**:12877–12883. doi:10.1523/JNEUROSCI.2674-14.2014

- Sun AX, Yuan Q, Tan S, Xiao Y, Wang D, Khoo ATT, Sani L, Tran H-D, Kim P, Chiew YS, Lee KJ, Yen Y-C, Ng HH, Lim B, Je HS. 2016. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells. *Cell Reports* 16:1942–1953. doi:10.1016/j.celrep.2016.07.035
- Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LCF, Yángüez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, König R, Stertz S, García-Sastre A, Chanda SK. 2015. Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding. *Cell Host & Microbe* 18:723–735. doi:10.1016/j.chom.2015.11.002
- Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, LeTonqueze O, Vasudevan S. 2012. MicroRNA-mediated mRNA Translation Activation in Quiescent Cells and Oocytes Involves Recruitment of a Nuclear microRNP. *Scientific Reports* 2. doi:10.1038/srep00842
- Tsutsui Ken, Tsutsui Kimiko, Sano K, Kikuchi A, Tokunaga A. 2001. Involvement of DNA Topoisomerase IIβ in Neuronal Differentiation. *Journal of Biological Chemistry* **276**:5769–5778. doi:10.1074/jbc.M008517200
- Vasudevan S, Steitz JA. 2007. AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2. *Cell* **128**:1105–1118. doi:10.1016/j.cell.2007.01.038
- Vasudevan S, Tong Y, Steitz JA. 2007. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. *Science* **318**:1931–1934. doi:10.1126/science.1149460
- Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng P-Y, Klyachko VA, Nerbonne JM, Yoo AS. 2014. Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts. *Neuron* 84:311–323. doi:10.1016/j.neuron.2014.10.016
- Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B, Davidson BL, Yang XW, Yoo AS. 2018. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. *Nature Neuroscience*. doi:10.1038/s41593-018-0075-7
- Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K. 2007. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. *Genes & Development* **21**:744–749. doi:10.1101/gad.1519107
- Vuong JK, Lin C-H, Zhang M, Chen L, Black DL, Zheng S. 2016. PTBP1 and PTBP2 Serve Both Specific and Redundant Functions in Neuronal Pre-mRNA Splicing. *Cell Reports* 17:2766–2775. doi:10.1016/j.celrep.2016.11.034
- Watanabe M, Tsutsui Ken, Tsutsui Kimiko, Inoue Y. 1994. Differential expressions of the topoisomerase IIa and IIb mRNAs in developing rat brain. *Neuroscience Research* **19**:51–57.
- Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, Karakhanyan A, Pang Z, Fu X-D. 2016. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. *Nature Neuroscience* **19**:807–815. doi:10.1038/nn.4297
- Yoo AS, Staahl BT, Chen L, Crabtree GR. 2009. MicroRNA-mediated switching of chromatinremodelling complexes in neural development. *Nature* **460**:642–646. doi:10.1038/nature08139

- Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR. 2011. MicroRNA-mediated conversion of human fibroblasts to neurons. *Nature* 476:228–231. doi:10.1038/nature10323
- Yu H, Wang J, Sheng Q, Liu Q, Shyr Y. 2018. beRBP: binding estimation for human RNAbinding proteins. *Nucleic Acids Research*. doi:10.1093/nar/gky1294
- Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS. 2008. Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9:R137. doi:10.1186/gb-2008-9-9-r137
- Zheng S, Gray EE, Chawla G, Porse BT, O'Dell TJ, Black DL. 2012. PSD-95 is posttranscriptionally repressed during early neural development by PTBP1 and PTBP2. *Nature Neuroscience* 15:381–388. doi:10.1038/nn.3026
- Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, Ding F, Yu B, Gu X. 2014. miR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. *Journal of Cell Science* 127:967–976. doi:10.1242/jcs.131672