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High-density diffuse optical tomography (HD-DOT) is a relatively new neuroimaging technique 

that detects the changes in hemoglobin concentrations following neuronal activity through the 

measurement of near-infrared light intensities. Thus, it has the potential to be a surrogate for 

functional MRI (fMRI) as a more naturalistic, portable, and cost-effective neuroimaging system. 

As in other neuroimaging modalities, head motion is the most common source of noise in HD-

DOT data that results in spurious effects in the functional brain images. Unlike other neuroimaging 

modalities, data quality assessment methods are still underdeveloped for HD-DOT. Therefore, 

developing robust motion detection and motion removal methods in its data processing pipeline is 

a crucial step for making HD-DOT a reliable neuroimaging modality.  

In particular, our lab is interested in using HD-DOT to study the brain function in clinical 

populations with metal implants that cannot be studied using fMRI due to their contraindications. 

Two of these populations are patients having movement disorders (Parkinson Disease or essential 

tremor) with deep brain stimulation (DBS) implants and individuals with cochlear implants (CI). 

These two groups both receive tremendous benefit from their implants at the statistical level; 

however, there is significant single subject variability. Our overarching goal is to use HD-DOT to 
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find the relationships between the neuronal function and the behavioral measures in these 

populations to optimize the contact location of these implant surgeries. However, one of the 

challenges in analyzing the data in these subjects, especially in patients with DBS, is their high 

levels of motion due to tremors when their DBS implant is turned off. This further motivates the 

importance of the methods presented herein for separating signal from noise in HD-DOT data. 

To this end, I will first assess the efficacy of state-of-the-art motion correction methods introduced 

in the fNIRS literature for HD-DOT. Then, I will present a novel global metric inspired by motion 

detection methods in fMRI called GVTD (global variance of the temporal derivatives). Our results 

show that GVTD-based motion detection not only outperforms other comparable motion detection 

methods in fNIRS, but also outperforms motion detection with accelerometers. 

I will then present my work on collecting and processing HD-DOT data for two clinical 

populations with metal implants in their brain and the preliminary results for these studies.  

Our results in PD patients show that HD-DOT can reliably map neuronal activity in this group and 

replicate previously published results using PET and fMRI. Our results in the CI users provide 

evidence for the recruitment of the prefrontal cortex in processing speech to compensate for the 

decreased activity in the temporal cortex. These findings support the theory of cognitive demand 

increase in effortful listening situations. 

In summary, the presented methods for separating signal from noise enable direct comparisons of 

HD-DOT images with those of fMRI in clinical populations with metal implants and equip this 

modality to be used as a surrogate for fMRI.
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Chapter 1: Introduction 

The physics behind imaging the neuronal function through hemodynamic contrasts was first 

discovered in magnetic resonance imaging (MRI) with the development of the blood oxygen level-

dependent (BOLD) signal in 1990 [1, 2]. BOLD signal measures the absolute amount of the 

deoxyhemoglobin (HbR) concentration in the brain driven by localized changes in the blood flow 

and oxygenation. These localized blood flow changes are coupled to underlying neuronal activity 

by a process called neurovascular coupling [3-5]. 

Functional MRI (fMRI) is the current gold standard neuroimaging technique mainly due to its 

good spatiotemporal resolution and is widely used in neuroscience and medicine for measuring the 

neuronal activity underlying different cognitive and behavioral states. However, as applications of 

functional neuroimaging expand to more clinical and naturalistic settings, fMRI's contraindication 

with metal implants and its non-portability become more limiting. 

Functional near-infrared spectroscopy (fNIRS) is another neuroimaging modality that measures 

similar hemoglobin contrast changes as fMRI by shining and detecting the safe near-infrared light 

to the scalp [6]. Although standard fNIRS has been developed around the same time as fMRI, it 

has been less popular mainly because of its lower spatial resolution and lower depth of sensitivity 

due to the absorption and scattering of the near-infrared light by the tissue [7]. However, since 

most cognitive functions in the brain happen on the cortical areas (~2-3 cm deep from the scalp), 

fNIRS has a lot of potential for neuroimaging in situations that fMRI is either contraindicated or 

is limiting [8-11]. 



 

2 

 

Standard fNIRS systems are critically hampered by sparse measurement distributions that lead to 

poor anatomical specificity and unreliable image quality due to the crosstalk with scalp signals 

[12-14]. They also have poor spatial resolution, limited field of view (FOV) [15], unstable point 

spread functions (PSF) [15], and uneven spatial coverage [6, 16].  

Our lab pioneered an fNIRS-based 3D tomographic brain imaging device called high-density 

diffuse optical tomography (HD-DOT) [7] that solves these problems by using high-density 

interlaced source and detector imaging arrays that support densely overlapping measurements and 

by creating anatomical head models [17-20]. These advances result in higher spatial resolution 

[15], stable PSFs, and significantly improved isolation of brain signals from scalp signals, 

compared to the standard fNIRS [15, 21]. 

This increased spatial resolution opened the door for the use of HD-DOT as a real surrogate in 

many clinical applications that were not feasible with fMRI, such as studying the brain function in 

people with deep brain stimulation (DBS) implants or cochlear implants (CI) [22-24]. 

Other clinical applications of HD-DOT include situations where a continuous bedside monitoring 

of patients is desirable, such as monitoring patients with acute stroke in intensive care units [25] 

or monitoring brain-injured infants in neonatal intensive care units (NICU).  

Besides these clinical applications, wearable HD-DOT could be the best candidate for 

understanding the cognitive function of a healthy brain in real-time, in BCI applications, and in 

studying concepts such as attention, emotion, and learning in more naturalistic and real-life settings 

than the fMRI magnet. 

With all these potentials, a limiting factor for HD-DOT is that its data processing methods are still 

underdeveloped, and this is one of the reasons that its use has been limited in all these areas. 
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Since the time our lab has developed the densest HD-DOT imaging system to its date in 2014 with 

96 sources of light and 92 detectors [20], a baseline data processing software (NeuroDOT) [7, 26] 

has been established for this system that includes preliminary preprocessing and image 

reconstruction steps. However, these methods were not optimized for different imaging scenarios, 

such as when motion artifacts are present or when a more precise localization of the brain activity 

is desired. 

The design and architecture of new generations of HD-DOT are constantly being optimized in our 

lab to provide better fMRI-like imaging outputs. However, in addition to device development, an 

in-depth understanding of the optical signal is crucial for developing suitable image processing 

methods and data quality control measures from these devices. 

The purpose of this thesis is to present a comprehensive assessment of data quality measures for 

HD-DOT data along with updates to the current data quality processing pipeline to equip this 

technology for its broader application in the clinic and real-time settings. 

I will start the thesis by presenting an overview of the HD-DOT imaging methods and its current 

data processing pipeline, in chapter 2. 

In chapter 3, I will present new methods for analyzing the effects of motion artifacts in HD-DOT 

data and assess all state-of-the-art motion correction methods introduced in the fNIRS literature 

for HD-DOT. One important difference between fNIRS and HD-DOT is that fNIRS devices have 

a limited number of measurements. Thus, motion detection and motion correction are usually done 

on the single-channel level [27, 28]. In HD-DOT with thousands of measurements, channel by 

channel signal cleaning is computationally inefficient and does not take into account the impacts 

of motion across the field of view. Therefore, we developed a novel global motion metric inspired 

by motion tracking methods in fMRI [29] called GVTD (global variance of the temporal 



 

4 

 

derivatives). We show that GVTD-based motion detection not only outperforms other common 

motion detection methods in fNIRS but also outperforms motion detection with accelerometers by 

using an instructed motion paradigm. We designed GVTD to be used as a motion index for rank-

ordering the quality of HD-DOT data in real-time and offline and for predicting the similarity of 

the resulting HD-DOT images to those of fMRI. We also show that censoring motion artifacts with 

GVTD outperforms other correction methods proposed in the fNIRS literature by removing the 

spurious effects of artifacts and increasing the statistical significance of the group results in 

multiple datasets and imaging paradigms [29]. 

Motion removal is a very important step in processing data from any imaging modality. For 

example, many recent fMRI papers have shown that the conclusions of some clinical studies 

needed to be corrected after newer motion censoring methods were developed, and the spurious 

effects caused by motion artifacts were removed [30]. Therefore, the presented methods in this 

thesis are crucial for making HD-DOT's processing pipeline more reliable for its use in broader 

applications. 

Equipped with these data quality assessment methods, I will then present my work on collecting 

and processing HD-DOT data for two clinical populations with metal implants in their brain and 

the preliminary results for these studies. In chapter 4, I will review the challenges of the current 

neuroimaging modalities for imaging people with Parkinson disease (PD) with DBS and the 

importance of neuroimaging tools like HD-DOT. This population was selected for this thesis 

because PD is a neurological movement disorder, and these patients have high levels of tremor, 

especially during their DBS off condition. Therefore, without data quality assessment methods 

presented in this thesis, processing their HD-DOT data would not have been possible. With a 

dataset of 15 PD patients with DBS and 15 controls and adopting the data quality assessment 



 

5 

 

methods proposed in chapter 3, we could replicate the results obtained for neuroimaging of PD 

patients without DBS using fMRI [31]. We could also present the very first high-quality fMRI-

like functional connectivity neuroimaging results in the same group of PD patients with their DBS 

on [24]. The results in this chapter were possible by the new advances in the HD-DOT software 

for motion removal in this high-motion population. 

In chapter 5, I will apply the denoising methods presented in chapter 3, for studying the cortical 

language networks in listeners with cochlear implants (CIs), another clinical population that cannot 

be studied with fMRI due to their contraindications. Cochlear implants compensate for the 

dysfunction in the cochlea by stimulating the auditory nerve and enabling their users to perceive 

sounds [32, 33]. However, due to the crosstalk between the CI electrodes, there is a lack of spatial 

selectivity in the internal representation of the sound frequency content [34, 35]. This distortion of 

the sound contributes to the tremendous variability in how well listeners with CIs understand the 

spoken speech [36, 37]. Our preliminary results in a group of 18 controls and 18 CI users provide 

evidence for the functional brain differences in this population and how these people recruit parts 

of their prefrontal cortex to compensate for their effortful listening with a lower sound quality. 

In conclusion, the chapters in this dissertation provide a comprehensive guideline for evaluating 

data quality in HD-DOT (including motion detection and motion censoring) and the software 

needed for applying these measures. These methods help to make HD-DOT a more reliable 

imaging technique for imaging populations with brain implants and with high-motion levels. 
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Chapter 2: Data Processing Methods for 

High-Density Diffuse Optical Tomography 

2.1 Basic ideas behind functional near-infrared imaging 
HD-DOT, similar to near-infrared spectroscopy (NIRS), takes advantage of two key ideas related 

to the interaction of the near-infrared light with the tissue. First, there is a window in the frequency 

spectrum of the near-infrared light (650 to 1350 nm) called optical window that the dominant light-

tissue interaction is scattering, and the light has its maximum depth of penetration [38]. This 

phenomenon occurs since most parts of the tissue are transparent to the near-infrared light in this 

optical window, and the main source of attenuation is absorption by blood at short wavelengths 

and by water at long wavelengths. Blood as the main absorber of the near-infrared light in shorter 

wavelengths consists of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) molecules that 

exhibit different absorption spectra commonly represented by molar extinction coefficients (Figure 

2.1) [39, 40]. The peaks of absorption of the near-infrared light for HbO2 and HbR are different 

(420 nm for HbO2 and 850 nm for HbR), and there is a point where the molar extinction coefficient 

spectra of these two molecules are equal (isosbestic point).  
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Figure 2.1 Hemoglobin absorption spectra. The divergent extinction coefficients of oxy- and 

deoxyhemoglobin in the optical window (650 to 1350 nm) and their peaks around the isosbestic point enable 

near-infrared spectroscopy. 

 

The second key idea for NIRS is that by using two different wavelengths of near-infrared light, 

one below and one above the isosbestic point (normally 750 nm and 850 nm), we will have two 

equations for calculating the concentration changes of HbO2 and HbR as shown in the following 

equations [7]: 

𝜇𝑎,   750 =  𝜖𝐻𝑏𝑂2,   750
[ 𝐻𝑏𝑂2] + 𝜖𝐻𝑏𝑅,   750[ 𝐻𝑏𝑅]   (2.1) 

𝜇𝑎,   850 =  𝜖𝐻𝑏𝑂2,   850
[ 𝐻𝑏𝑂2] + 𝜖𝐻𝑏𝑅,   850[ 𝐻𝑏𝑅]   (2.2) 

 

In this equation, µa is the absorption coefficient; ϵ is the extinction coefficient. 

 

Writing these two equations in the matrix form leads to a single equation that is the key idea behind 

all near-infrared-based imaging techniques: 

[
𝜇𝑎,   750

𝜇𝑎,   850
] = [

𝜖𝐻𝑏𝑂2,   750
𝜖𝐻𝑏𝑅,   750

𝜖𝐻𝑏𝑂2,   850
𝜖𝐻𝑏𝑅,   850

] [
𝐻𝑏𝑂2

𝐻𝑏𝑅
]     (2.3) 

Which can be simplified to: 
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𝑥𝜇𝑎
= 𝐸𝑥𝐻𝑏       (2.4) 

Therefore, we can calculate the changes in the HbO2 and HbR concentrations by inverting the 

extinction coefficient matrix, E, and have: 

𝑥𝐻𝑏 = 𝐸−1𝑥𝜇𝑎
      (2.5) 

This calculation shows that similar to the BOLD signal in fMRI, near-infrared spectroscopy can 

enable functional brain imaging using the changes in HbO2 and HbR based on the local changes in 

the absorption of near-infrared light at two selected wavelengths. It is also common in NIRS to 

combine these two images and define a new image, HbT = HbO2 + HbR, called total hemoglobin 

change. However, the important point is that following each neuronal activity, we always expect 

to see an increase in HbO2 and a decrease in HbR concentrations. Since the increase in HbO2 is 

normally greater than the decrease in HbR, there is also an overall increase in HbT signal. These 

changes in the oxy- and deoxyhemoglobin following the neuronal activity are commonly known 

as the hemodynamic response function (an example is shown in Figure 2.2 from [21]). 
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Figure 2.2 Oxy, deoxy, and total hemoglobin response functions. Time-traces of the hemodynamic response 

to six blocks of a visual stimulus with HbO2 in red, HbR in blue, and HbT in green mapped using DOT. 

Greg et al. 2010. 

 

In the next two sections (§2.2 and §2.3), I will review two common models for calculating the 

changes in the absorption of the HbO2 and HbR using near-infrared light intensity measurements. 

2.2 Modified Beer-Lambert law  
In most near-infrared-based imaging techniques, the near-infrared light is shined to the head using 

a group of sources, and the attenuated light is collected through a group of detectors. The shined 

light gets absorbed and scattered in the tissue. A simple empirical method to model the propagation 

of the near-infrared light in the tissue is proposed by Cope et al., and is called the modified Beer-

Lambert Law (MBLL) [41]. MBLL describes the relationship between the changes in the 

absorption coefficient (𝜇𝑎) of an absorbing and scatting medium and the changes in the optical 

density (OD). With optical density defined as the negative log-ratio of the intensity of the collected 

light (I) with respect to the intensity of the incident light (𝐼0) [39]. The key difference between 

MBLL and the traditional BLL is that the former takes into account the increased path-length of 
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light through a highly scattering sample like the tissue by adding a differential path-length factor 

(𝐷𝑃𝐹): 

Δ𝑂𝐷 =  − log
𝐼

𝐼0
=  𝐿 𝐷𝑃𝐹  Δ𝜇𝑎     (2.6) 

Where Δ𝑂𝐷 is the changes in the optical density, L is the distance traveled by light from the source 

to the detector, and Δ𝜇𝑎 is the changes in the absorption coefficient [39]. 

In NIRS, it is common to convert the collected light-level intensities (I) to the optical density 

changes using Eq. 2.6. However, since the MBLL assumes that the absorption changes are evenly 

distributed over the photon's path, there is no ability to distinguish between the changes that happen 

at different locations along the measurement path. Therefore, a more accurate model can describe 

the propagation of the light in the tissue using a differential model of the light flow [7]. 

2.3 Forward model for the diffusion of near-infrared light 

The path of the photons in the tissue is following a random walk from one scattering event to the 

next (Figure 2.3 [42]). This chain of scattering events in the tissue is called diffusion. Therefore, 

the flow of the near-infrared light can be modeled by the diffuse approximation to the radiative 

transfer equation (RTE) [43] as follows: 

𝐷 ∇2Φ (𝑟) −  𝜐 𝜇𝑎(𝑟)Φ (𝑟) =  − 𝜐 𝑆(𝑟)     (2.7) 

In this equation, Φ  is the photon fluence (light intensity), 𝜐 is the speed of light in the medium, S 

is a source distribution, and D is the diffusion coefficient defined as: 

𝐷 =  
𝜐

3(𝜇𝑠
′+ 𝜇𝑎)

       (2.8) 
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Where µa is the absorption coefficient, 𝜇𝑠
′  is the reduced scattering coefficient that is correlated to 

µs, the scattering coefficient, by the scattering anisotropy factor g: 

 

𝜇𝑠
′  = (1 – g) 𝜇𝑠      (2.9) 

This correction of the scattering coefficient results in a longer effective scattering mean free path 

due to the biased forward scattering of tissue (in biological tissue, g is approximately 0.9; so, a 

photon can be considered isotropically scattered after 10 scattering events) [7]. 

 

Figure 2.3 Near-infrared light diffusion. (A) Light propagation (random walk) from the source 

position, rs, to the detector position, rd, through an arbitrary position, r. Yamada et al., 2019. (B) 

The distribution of detected photon paths through an anatomical head model for one source and one 

detector location. Credit: Gowerlabs. 

 

This differential Eq. 2.7 can be solved using approximation models. Here, by defining the effective 

Green’s functions for modeling the source-detector geometries: 

𝐺̃𝑠 (𝒓𝑣) =  ∫ 𝐺(𝒓𝑠,   𝒓𝑣) 𝑆(𝒓𝑠)𝑑𝒓𝑠     (2.10) 

𝐺̃𝑑 (𝒓𝑣) =  ∫ 𝐺(𝒓𝑣,   𝒓𝑑) 𝑆(𝒓𝑑)𝑑𝒓𝑑     (2.11) 

𝐺̃𝑠𝑑 ≡ − ∫ ∫ 𝐺(𝒓𝑠,   𝒓𝑑) 𝑆(𝒓𝑠) 𝐷(𝒓𝑑) 𝑑𝒓𝑠  𝑑𝒓𝑑   (2.12) 
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and using Born and Rytov approximations, we can find an approximation solution for the 

original differential RTE as follows (the derivation steps can be found in [7]): 

− ln (
Φ

Φ0
) =  

𝜐 

𝐷
 ∫

𝐺̃𝑠 (𝒓𝑣) 𝐺̃𝑑 (𝒓𝑣)

𝐺̃𝑠𝑑 
  Δµ𝑎 (𝒓𝑣) 𝑑𝒓𝑣    (2.13) 

However, our goal is to discretize this integral equation and assign an absorption change value to 

each brain voxel from the light-level measurements. Therefore, we can convert the integral to a 

summation over voxels as follows: 

− ln (
Φ

Φ0
) =  

𝜐 𝑉𝑣𝑜𝑥

𝐷
 ∑

𝐺̃𝑠 (𝒓𝑗) 𝐺̃𝑑 (𝒓𝑗)

𝐺̃𝑠𝑑 
𝑗 𝜖 𝑣𝑜𝑥𝑒𝑙𝑠  Δµ𝑎 (𝒓𝑗)    (2.14) 

In this equation, Vvox is the volume of a voxel. This solution can be written in the following matrix 

format: 

     (2.15) 

M is the number of measurements and N is the number of voxels, and 𝐴𝑖,𝑗 is defined based on the 

Green’s functions defined in 2.9, 2.10, and 2.11 as follows: 

𝐴𝑖,𝑗 =  
𝐺̃𝑠𝑖 (𝒓𝑗) 𝐺̃𝑑𝑖 (𝒓𝑗)

𝐺̃𝑠𝑖𝑑𝑖 
      (2.16) 

The whole coefficient term in 2.15 is usually defined as the sensitivity matrix (or A-matrix) as 

follows, which characterizes the light propagation model: 
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   (2.17) 

Defining the A-matrix simplifies Eq. 2.15 to a simple linear formula for the forward model: 

𝑦 = 𝐴𝑥      (2.18) 

Where x is the vector of absorption changes. This equation indicates that for a given set of near-

infrared absorption changes, x [N ×1], and a light propagation model, A [M×N], we can calculate 

the expected changes in the light intensity measurements, y [M×1]. M is the number of 

measurements, and N is the number of voxels. 

2.4 Inverse problem 
The goal in DOT is to find the voxel-wise absorption changes from the light intensity 

measurements. Therefore, the forward problem in 2.18 reduces to an inverse problem that solves 

the values of absorption changes for each voxel from the changes in the light-level measurements: 

𝑥 = 𝐴−1𝑦     (2.19) 

However, since the number of measurements, M, and the number of voxels, N, are not equal, 

matrix A [M×N] is not a square matrix, and thus, it is not invertible. Therefore, we should construct 

a pseudo-inverse:  

𝑥 = 𝐴̂#𝑦     (2.20) 

where 

𝐴̂# = (𝐴𝑇 𝐴) −1𝐴𝑇      (2.21) 

since 𝐴𝑇  𝐴 is square, it can be inverted, and our inverse problem is solved [7]. 
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2.5 HD-DOT data processing pipeline 
HD-DOT’s data processing shares common steps with both fNIRS and fMRI. In a standard fNIRS 

data processing pipeline, the collected light-levels from the source-detectors are being 

preprocessed by conversion to optical density changes, and then signal denoising and filtering 

steps are done. Then the denoised optical density signal is converted to the changes in the 

absorptions of the two shined wavelengths following the MBLL (Eq. 2.6), and then to ΔHbO2 and 

ΔHbR through spectroscopy (Eq. 2.5). In DOT, the forward model of the light flow (Eq. 2.18) is 

used, which is equivalent to the MBLL in fNIRS, but DOT data processing also includes 

calculation of the sensitivity matrix that maps the measurements to the voxels. The goal in DOT 

is to solve for the voxelated images of ΔHbO2 and ΔHbR using Eq. 2.20. This step in DOT is called 

image reconstruction and is explained in §2.5.7. This voxelated image can then be resampled to 

the desired anatomical image (subject’s anatomical data or an anatomical atlas). These last two 

steps (image reconstruction and resampling) make DOT images similar to fMRI images. Figure 

2.4 [44] demonstrates all data processing steps that we use for our HD-DOT systems. Details of 

all processing steps are explained in the following sections. 
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Figure 2.4 HD-DOT data processing overview. (A) Data collection involves (i) locating the source and 

detector positions on the head and (ii) recording light levels from the head of a participant. In this example, 

a stimulus paradigm involves the participant generating novel verbs in response to nouns presented on a 

monitor. (B) A head model for a given participant is created by (i) generating a subject-specific or atlas-

based volumetric segmentation of the head tissue, (ii) building a high-density mesh, and (iii) placing the 

sources and detectors on the head mesh surface. (C) Using the head model, the sensitivity profile for (i) 

each source (Gs), and (ii) each detector (Gd) are calculated and (iii) combined into a sensitivity profile for 

each source-detector measurement pair ASD. (iv) The full system sensitivity ΣA can be visualized by 

summing the sensitivity of each measurement pair. (v) The modeled sensitivity can then be spatially 

registered to an atlas space for group-level analyses. (D) Separately, the collected light-level data are 

assessed for (i) noise and (ii) signal level quality, (iii) with high-quality optical data clearly showing a pulse 

waveform. (E) After preprocessing, the optical data are combined with a regularized inverse of the 

sensitivity model to generate (F) anatomically-registered maps of cerebral hemodynamics reflecting brain 

function. Adapted with permission from Eggebrecht et al., Nat. Photonics 8, 448–454 (2014). Copyright 

2014 Springer Nature Publishing. 

 

2.5.1 Log-mean of light-levels 

First, raw source-detector pair measurements are converted to the optical density changes (ΔOD) 

by calculating the log-mean ratio of light-levels following the modified Beer-Lambert law (Eq. 

2.6): 
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ΔOD = − log
𝐼

𝐼0
    (2.22) 

Where I is the intensity of the detected light and 𝐼0 is the intensity of the incident light. Note that 

in NIRS-based techniques, we can only calculate the changes in the optical densities (ΔOD) and, 

following that, the changes in HbO2 and HbR concentrations (ΔHbO2, ΔHbR). However, in fMRI, 

the absolute value of the HbR concentration is obtained. Therefore, direct cross-modality 

comparisons between HD-DOT and fMRI are only possible via comparisons of ΔHbR. 

2.5.2 Noisy channel detection 

Noisy source-detector channels are empirically defined as those with greater than 7.5% temporal 

standard deviation [45] and are excluded from further processing. This early pruning of the 

channels guarantees that noisy channels are not included in further processing. A common reason 

for these noisy measurements is a poor optode-scalp coupling for an area of the cap due to hair or 

a mismatch between the HD-DOT cap model (circumference or width) and the head size. Using 

the NeuroDOT toolbox, we can visualize these noisy channels by circles around the channels in 

the flat view of the HD-DOT cap for further inspection (Figure 2.5) [26, 29]. 

 

 

Figure 2.5 Noisy channel detection. (A) Adult HD-DOT cap structure illustrating a subset of optical fibers. 

(B) Flat view of the cap. Green lines indicate source-detector pairs that have a standard deviation of less 

than 7.5%. Source or detector locations with greater than 7.5% standard deviation are identified as noisy 

for roll (large red circles) and eyebrow (large blue circles) motion, respectively. 
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2.5.3 Bandpass filtering 

An important step in any NIRS data processing pipeline is filtering the ΔOD signal to a narrower 

frequency band. The reason behind this step is that the collected light-levels contain a range of 

frequencies that are not in the range of brain activity, such as low-frequency drifts (< 0.003 Hz) in 

long data runs, respiration (~0.25 Hz), heartbeat (~1 Hz), and other high-frequency contents (> 0.5 

Hz) due to noise (systemic or motion artifacts). On the other hand, based on many studies, we now 

know that the hemodynamic changes in the brain in response to different task stimuli are in the 

range of 0.02 Hz to 0.5 Hz, and resting state fluctuations are in the range of 0.009 Hz to 0.08 Hz. 

Therefore, at this step of the HD-DOT data processing, we perform a bandpass filtering depending 

on the type of data (0.02 – 1 Hz for tasks and 0.009 – 1 Hz for rest) to limit our signal to around 

the frequency of the physiological signal. The reason that we do not filter the data to lower than 1 

Hz at this step is to first estimate the superficial signal (containing respiratory and heartbeat 

frequencies). 

2.5.4 Superficial signal regression 

HD-DOT enables a unique denoising step called superficial signal regression (SSR) or global 

signal regression (GSR). The idea behind SSR is that the high-density grid of the HD-DOT system 

provides measurements with multiple source-detector separations; 1st- through 4th-nearest 

neighbors (abbreviated as nn1, nn2, nn3, nn4) with source-detector distances of 13 mm, 30 mm, 

39 mm, and 47 mm, respectively (Figure 2.6A). Most functional brain activities are obtained via 

nn2, nn3, and longer separations because these measurements go deep enough to contain 

physiological brain information. First-nearest neighbors, on the other hand, are sensitive mostly to 

the scalp and skull, and thus do not contain any physiological content. However, they contain all 

other frequencies that we do not care about (respiratory, heartbeat, noise). Therefore, we can 

leverage this fact and estimate this global signal by averaging over all nn1 measurements. This 
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global signal estimate can then be regressed from all measurements [21]. Figure 2.6B shows how 

SSR can lead to only the frequencies that are due to the changes in the physiological signal [7, 21]. 

 

Figure 2.6 Superficial signal regression. (A) Definitions of nearest neighbor measurements and slices 

through a semi-infinite simulation of photon flow for 1st- and 2nd-nearest neighbor separation. We see that 

1st-nearest neighbors are sensitive mostly to scalp and skull, while 2nd-nearest neighbors sample into the 

brain, Greg et al., 2010. (B) Power spectra of resting-state DOT signals (i) Spectral power of a single 2nd-

nearest-neighbor resting-state time trace, sampling both brain and superficial tissues, before the application 

of any filters. The low-frequency components follow a 1=f curve (red), and there are peaks at the respiratory 

(0.16 Hz) and cardiac rates (0.95 Hz). (ii) Spectral power of the superficial regressor derived from all 1st-

nearest-neighbor measurements in the visual pad. These systemic low-frequency fluctuations are removed 

from the data prior to performing functional connectivity mapping. (iii) Spectral power of a filtered imaged 

signal (5 min from a single voxel under the measurement in (i)). This remaining spectral power within the 

desired frequency range is used to perform fcDOT. All traces have been smoothed with a moving average 

filter, width five voxels. White 2010.  

 

2.5.5 Secondary low-pass filtering and resampling 

After data were bandpass filtered, and the superficial signal is estimated and regressed, at this step, 

we perform the final low-pass filtering and narrow the frequency of our signal to the expected 

physiological activity frequency. For task-based data, we use the 0.5 Hz cut-off to remove the 

cardiac oscillations [28, 46-48]. For resting state data, a low-pass filter of 0.08 Hz is performed to 

remove the cardiac oscillations and to narrow the signal to the spontaneous, low-frequency 

fluctuations following the previous recommendations for functional connectivity analysis [49-52]. 

Task data provides two advantages over the resting state. First, the task design can impart high 
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amplitude and high-frequency dynamics beyond what would normally be found in the resting state. 

Second, the block averaging of the tasks provides an approach to lower the noise and physiological 

clutter in the data. So while resting state uses the common infra-slow band (0.009-0.08 Hz) of the 

vast majority of the functional connectivity MRI literature [49-52], the task preprocessing uses a 

higher filter band (0.02 to 0.5 Hz) to avoid 1/f noise [28, 46-48]. Following this low-pass filtering, 

the time-courses were then down-sampled from 10 Hz to 1 Hz and then passed for image 

reconstruction [29]. 

Most fNIRS data processing pipelines end here by calculating an estimate of Δ𝜇𝑎 using the MBLL 

(Eq. 2.6) and following that estimating ΔHbO2, ΔHbR using the spectroscopy methods explained 

in Eq. 2.5. However, most DOT processing pipelines estimate the Δ𝜇𝑎 by solving the inverse 

problem explained in Eq. 2.20. This inverse problem step is not common in fNIRS, due to the 

sparsity of the measurements, lower spatial resolution, and low depth of profile [7]. 

2.5.6 Light modeling 

After performing the preprocessing steps, measurements are ready for image reconstruction by 

solving the inverse problem (𝑥 = 𝐴̂#𝑦, Eq. 2.20). However, an important step is to calculate the 

sensitivity matrix (A-matrix, Eq. 2.17). A-matrix is an M×N matrix (M is the number of 

measurements, and N is the number of voxels) that models the light-paths (from the measurement 

space) to the brain (voxel space).  This simulation is done either using an anatomical atlas head 

model (average structural MRI images across many people) or a subject-specific head model using 

an MRI T1, MRI T2*, or CT image. The steps of the anatomical light modeling are as follows: 1. 

Anatomical MRI data (either atlas T1 image, subject-specific T1 or T2*, or atlas T1 transformed 

to the subject CT space) are used to segment the head to five putative tissue regions (scalp, skull, 

gray matter, white matter, CSF). 2. This initial segmentation (that includes scalp and skull regions) 
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is then combined with another high-quality brain segmentation of the same anatomical data 

obtained with the Freesurfer software. 3. The optical properties of these five segments are then 

assigned based on the common values in the literature (Tabel 2.1, [45, 53]). 4. A high-quality 

tetrahedral mesh with an average internode distance of 1.5 mm is then generated from the 

segmented volume using the NIRVIEW software [54]. 5. The grid of the source-detector positions 

for the finite element model (FEM) is then placed on the head following the spring relaxation 

approach [19, 55]. 6. A finite-element solution to the diffusion approximation of the RTE within 

the anatomical space of the data was generated using the NIRFAST software [56]. This solution 

of the sensitivity matrix relates the light-level changes at the scalp surface to the hemoglobin 

absorption changes at nodes throughout the volume. The A-matrix is then resampled and 

interpolated to an isotropic voxel space [20]. 

 

Table 2.1 Optical properties of segmented head tissue. Eggebrecht et al., 2012. 

 

2.5.7 Image reconstruction 

At this step, we completed the signal processing in the measurement space (y) and also created the 

sensitivity matrix (A-matrix). We are now ready to solve the inverse problem 𝑥 = 𝐴̂#𝑦. For this 



 

21 

 

step, we can calculate the pseudo-inverse of the A-matrix (𝐴̂# as described in §2.20) by performing 

the Tikhonov regularization: 

𝐴# = [𝐴𝑇𝐴 +  𝜆1 max  {𝑑𝑖𝑎𝑔(𝑆)} 𝐼]−1 𝐴𝑇     (2.23) 

Where S is the singular value decomposition (SVD) of A, I is the identity matrix, 𝜆1is the 

regularization parameter, {𝑑𝑖𝑎𝑔(𝑆)} is a normalization term so that 𝜆1can be set independent of 

the absolute values in A [7].  

𝐴𝑇𝐴 is a square matrix (N × N = [N × M] × [M × N]), where N is the number of voxels, M number 

of measurements, where M is always much smaller than N). Therefore, this equation can be re-

written as follows for efficiency (𝐴𝐴𝑇 is an M × M square matrix) [7]: 

𝐴# = 𝐴𝑇 [𝐴𝐴𝑇 +  𝜆1 max  {𝑑𝑖𝑎𝑔(𝑆)} 𝐼]−1     (2.24) 

The second regularization term needed here is to correct for an artificially shallow image 

reconstruction due to the exponential attenuation of light. One way to correct for this artifact is to 

add a spatially variant regularization term to normalize the sensitivity within each voxel [7].  

𝑑𝑖𝑎𝑔 (𝐿) =  √𝑑𝑖𝑎𝑔 (𝐴𝑇𝐴) +  𝜆2 max  {𝑑𝑖𝑎𝑔(𝐴𝑇𝐴)}   (2.25) 

Which results in a new inversion problem using the spatially normalized A-matrix, 𝐴̃ =  𝐿−1A. 

Therefore, Eq. 24 can be re-written as: 

 𝐴̃# =  𝐴̃𝑇 [ 𝐴̃ 𝐴̃𝑇 + 𝜆1 max  {𝑑𝑖𝑎𝑔(𝑆′)} 𝐼]−1    (2.26) 

Where 𝑆′ is the SVD of 𝐴̃. After the pseudo-inverse matrix 𝐴̃# is calculated, the spatial 

regularization can be inverted 𝐴̂# =  𝐴̃#𝐿−1. Therefore, the final reconstruction equation will be: 



 

22 

 

𝑥 =  𝐴̂# y      (2.27) 

In the current data processing pipeline for HD-DOT, the empirical values of 𝜆1 = 0.01 and 𝜆2 =

0.1 are chosen. 

2.5.8 Spectroscopy 

The image reconstruction solution in Eq. 2.27 can be calculated for both 750 and 850 nm light-

level signals: 

𝑥𝜇𝑎,750
=  𝐴̂#𝑦750     (2.28) 

𝑥𝜇𝑎,850
=  𝐴̂#𝑦850      (2.29) 

Then, by plugging in the extinction coefficient values for 𝜖𝐻𝑏𝑂2,   750
, 𝜖𝐻𝑏𝑅,   750, 𝜖𝐻𝑏𝑂2,   850

, 

𝜖𝐻𝑏𝑅,   850 from the literature (Table 2.2 [57]) in Eq. 2.5 (𝑥𝐻𝑏 = 𝐸−1𝑥𝜇𝑎
), we can find the 

corresponding values for 𝑥𝐻𝑏 (𝐻𝑏𝑂2, 𝐻𝑏𝑅). 

 

Table 2.2 Extinction coefficients of HbO2 and HbR for 750 nm and 850 nm light. Wray et al. 1988. 

𝜖 (1/mM × 1/cm) 750 nm 850 nm 

HbO2 0.5 1.1 

HbR 1.6 0.8 

 

 

This step concludes the imaging problem and the standard data processing pipeline for HD-DOT. 

The following two steps, spatial resampling, and spatial smoothing are common steps in fMRI 

imaging and thus can easily be performed on HD-DOT images after the image reconstruction step. 
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2.5.9 Spatial resampling 

Spatial resampling or spatial normalization is transforming an image from one space into a target 

space using an affine (or other types of) transformation. It is common practice in neuroimaging to 

transform the voxelated images from the native subject space into a standard brain atlas space 

(MNI, Talairach, etc.). This step is helpful, especially when an average image over multiple 

subjects is desired. A key point regarding transforming the images is to keep track of their 

coordinate space. Most neuroimaging image formats (e.g., 4dfp, nifti) keep track of two pieces of 

information regarding the coordinate space of an image by defining parameters such as center and 

mmpix (mm per pixel (or mm per voxel)). Center determines the origin of the image, and mmpix 

reveals the resolution of the voxels (e.g., 1mm, 2mm, etc.). The coordinate space of a reconstructed 

image is determined by the type of anatomical data used for making the sensitivity matrix (A-

matrix). If the A-matrix was computed using the MNI T1 image, the reconstructed images will be 

in the MNI coordinate space. However, if the A-matrix was computed using either subject’s MRI 

or a transformation of MNI T1 to the subject’s CT image, the reconstructed images will be in the 

space of the subject anatomical MRI or CT data. Therefore, in the process of spatial resampling of 

an image, the values of the center and mmpix parameters will be updated to their values in the 

target image. 

2.5.10 Spatial smoothing  

Spatial smoothing is also a common step in fMRI image visualization. Smoothing blurs the sharp 

edges in an image and pronounces spatial correlations. The most important advantage of this 

process is that the neighboring patterns of activity will be averaged together, and the spatial 

patterns become more visible. However, the disadvantage of this process is losing spatial 

resolution.  
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Mathematically, smoothing is performed by convolving the image with a smoothing kernel. The 

most common type of kernel for smoothing neuroimages is Gaussian (Eq. 2.30): 

𝐺(𝑥) =  
1

√2 𝜋 𝜎2
 𝑒

−
𝑥2

2 𝜎2     (2.30) 

Where 𝑥 is the distance from the origin, and 𝜎 is the standard deviation of the Gaussian kernel. 

Since the Fourier transform of a Gaussian is another Gaussian, thus, applying a Gaussian blur is 

equivalent to reducing higher frequencies from the image (similar to low-pass filtering). When 

applying a Gaussian blur (with a certain standard deviation 𝜎) to an image, we can calculate the 

final resolution of the image based on the full width at half maximum (FWHM) of the Gaussian 

function as follows: 

1

2 √2 𝜋 𝜎2
 = 

1

√2 𝜋 𝜎2
 𝑒

−
𝑥2

2 𝜎2 

1

2
 =  𝑒

−
𝑥2

2 𝜎2 

−ln(2) = −
𝑥2

2 𝜎2 

2ln(2)  𝜎2 = 𝑥2 

𝐻𝑊𝐻𝑀 =  𝑥 =  √2ln(2)  𝜎 

𝐹𝑊𝐻𝑀 =  2𝑥 =  2√2ln(2)  𝜎 = 2.355 𝜎 

𝜎 = 
FWHM

2 √2 ln (2) 
        (2.31) 

Where HWHM is half-width half maximum, and FWHM is full width half maximum. 

It is also common to use the smoothing parameters of the Fourier transform of the Gaussian as 

follows: 
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𝐹(𝐺(𝑥)) =  𝜎 √2 𝜋  𝑒−2𝜎2 𝜋2 𝑘2 
    (2.32) 

Where k is the frequency. 

For finding the relationship between 𝑘 and 𝜎 at FWHM, we need to set the F(G(x)) as half of its 

maximum value: 

 
1

2
𝜎 √2 𝜋  =  𝜎 √2 𝜋  𝑒−2𝜎2 𝜋2 𝑘2 

    (2.33) 

Therefore, we will have: 

𝑘 =  
√ln (2) 

√2  𝜋 𝜎
      (2.34) 

On the other hand, using Eq. 2.31 we can find the relationship between the frequency and the 

FWHM: 

𝑘 =  
2 √ln (2) 

 𝜋 𝐹𝑊𝐻𝑀
   = 

0.4413

 𝐹𝑊𝐻𝑀
     (2.35) 

 

2.6 Conclusion 
In this chapter, I presented a review of the physics behind near-infrared spectroscopy (NIRS) and 

high-density diffuse optical tomography (HD-DOT), as well as the data processing stream of  HD-

DOT used in the NeuroDOT MATLAB toolbox [26]. All the data processing steps explained in 

§2.5 of this chapter are summarized in Figure 2.7 [20]. An important missing step in the current 

HD-DOT pipeline is data quality assessment steps, including motion artifact detection and 

removal, which is the topic of the next chapter. 
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Figure 2.7 HD-DOT data processing pipeline. Pre-processing steps are shown in pink, light modeling steps 

in orange, image reconstruction steps in blue, spatial transformation in red. Eggebrecht et al., 2014. 
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Chapter 3: Global Motion Detection and 

Censoring in High-Density Diffuse Optical 

Tomography1 
 

3.1 Introduction 

High-density diffuse optical tomography (HD-DOT) has tremendous potential to be a surrogate 

for functional magnetic resonance imaging (fMRI) [22, 23, 49, 50, 58, 59]. However, methods for 

dealing with detection and suppression of motion artifacts in HD-DOT data are relatively 

underdeveloped, which limits its application to many important clinical populations. While fMRI 

has become a gold standard for cognitive neuroimaging, it is contraindicated in subjects with metal 

implants and cannot be used in many clinical settings, and studies seeking more naturalistic 

imaging environments. In contrast, fNIRS-based methods are portable, suitable for naturalistic 

imaging, and are not contraindicated in subjects with electronic or metal implants [8, 11, 47, 60-

70]. Sparse fNIRS imaging arrays yield poor resolution and low image quality. HD-DOT provides 

improved image resolution and depth profiling, particularly when used with anatomical head 

models [45, 71, 72]. However, as in both fMRI and fNIRS, detection, classification, and removal 

of motion-induced artifacts remain a challenge for HD-DOT. 

Multiple fMRI studies have documented the spurious effects of motion artifacts in blood oxygen 

level-dependent (BOLD) fMRI despite the use of common motion suppression methods [30, 73-

 

1 A version of this chapter has been published the Human Brain Mapping journal: Sherafati A, Snyder AZ, Eggebrecht AT, 

Bergonzi KM, Burns-Yocum TM, Lugar HM, Ferradal SL, Robichaux-Viehoever A, Smyser CD, Palanca BJ, Hershey T, Culver 

JP. Global motion detection and censoring in High-density diffuse optical tomography. Human Brain Mapping, July 2020. 

https://doi.org/10.1002/hbm.25111 

https://www.biorxiv.org/content/10.1101/2020.02.22.961219v2.abstract
https://doi.org/10.1002/hbm.25111
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77]. Motion-induced changes in T2*-weighed fMRI signals are shared across brain voxels, hence 

generate spatially structured artifacts. Such artifacts alter functional connectivity by decreasing 

long-distance correlations and increasing short-distance correlations [30, 75-77]. However, two 

simple data quality indices, frame-wise displacement (FD) and root mean squared (RMS) signal 

change over sequential frames (DVARS), are commonly used in fMRI data processing pipelines 

to identify and exclude data segments (motion censoring or scrubbing) from behaviorally relevant 

fMRI measures [30, 78, 79]. 

In HD-DOT, similar to fMRI, the effects of head motion are global across the field of view (FOV) 

and impact a majority of measurements or voxels. In fMRI, head movements shift the position of 

the brain in space and modulate the BOLD signal [80, 81], in HD-DOT, head motion induces a 

torque on the fibers in the optical imaging array that, in turn, modulates the location (Figure 3.1B 

center), angle, or both location and angle of optode-scalp coupling (Figure 3.1B right). Thus, 

motion induces artifacts in the optical signals that can appear as brief transient spikes or baseline 

shifts. These artifacts propagate from measurement space to voxel space in the image 

reconstruction process and corrupt the neuroimaging results. 

Numerous strategies for managing motion-induced artifacts have been described in the fNIRS 

literature. However, a consensus on how best to correct for motion artifacts has not emerged [27, 

28, 82]. Extant motion correction methods in fNIRS largely involve two steps: first, motion 

detection, and second, signal correction [46, 48, 83-87]. The fNIRS literature has largely focused 

on correcting motion artifacts on individual source-detector pair measurements, and much less 

attention has been placed on multichannel or full-array assessments. Moreover, most fNIRS 

studies have not assessed the efficacy of the denoising methods through comparison against fMRI. 
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We address these limitations by conducting a comprehensive evaluation of motion artifact removal 

methods for HD-DOT data by including independent measures of motion (accelerometry) and 

comparisons against gold-standard matched fMRI datasets. We introduce a novel index of motion, 

the global variance of the temporal derivatives (GVTD) for multichannel optical devices, inspired 

by the DVARS in fMRI [88]. For each time point, GVTD, similar to DVARS, is computed as the 

RMS of the temporal derivatives across time-courses. In fMRI, DVARS is calculated based on the 

voxels time-courses, and in optical imaging, it can be calculated based on either measurements or 

voxels time-courses. In HD-DOT, the equivalent of the framewise displacement (FD) cannot be 

defined, since there is no access to the absolute x, y, z coordinates of the image, and thus, we use 

an external motion sensor as the direct measurement for translational and rotational movements. 

We first evaluate the efficacy of GVTD by calculating its correlation with directly transduced 

measures of motion using an accelerometer. We then optimize the parameters of GVTD and 

compare its application to voxel time-courses vs. measurement time-courses using an artifact-to-

background ratio as a metric of quality. Finally, we investigate the efficiency of the GVTD-based 

motion detection and censoring on the HD-DOT task and resting state images by comparisons with 

fMRI gold standards and to other fNIRS motion removal methods. 
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Figure 3.1 Effects of head motion on HD-DOT optode-scalp coupling. (A) Research participant wearing an 

HD-DOT imaging cap.  Head rotation may occur about three axes (roll, pitch, and yaw). (B) Schematic 

illustration of how head motion can affect optode couplings. The far-left figure shows the ideal 

perpendicular angle between the SD optodes and the head. The middle figure shows the angled optodes as 

a result of nodding up and back to the center. The far-right figure shows the angled and shifted optodes as 

a result of nodding up and body movement. 

 

3.2 Methods 

3.2.1 Novel motion detection methods 

3.2.1.1 The global variance of the temporal derivatives (GVTD) 

GVTD indexes global instantaneous change in the optical time-courses. For each time point, 

GVTD is computed as the RMS of the temporal derivatives across a set of measurements or voxels 

(Eq. 3.1). The simple analytic formula for GVTD is: 

 𝒈 = [

𝑔1

⋮
𝑔𝑀

], 𝑔𝑖 =  √  
1

𝑁
  ∑  (𝑦𝑗𝑖 −  𝑦𝑗𝑖−1 )

2𝑁
𝑗=1  ,      𝑔𝑖 ∈  ℝ>0,                               (3.1) 

where 𝒈 is the GVTD vector, 𝑦𝑗𝑖 𝜖 ℝ is either the optical density change or molar HbO2 or HbR 

change at spatial coordinate 𝑗. 𝑖 indexes the time points, 𝑁 is the number of coordinates, and 𝑀 is 

the number of time points. 

3.2.1.2 Independent measurement of head motion 

A motion sensor (3-spaceTM USB/RS232; Yost Labs, Portsmouth, Ohio) was attached to the top 

strap of the HD-DOT cap in a subset of the data acquired with instructed motion (more details in 
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§2.6). This sensor includes a triaxial inertial measurement unit (IMU), which uses a gyroscope, an 

accelerometer, and a compass sensor (Figure A.2). Onboard electronics compute and report in real-

time, the quaternion-based orientation relative to an absolute reference. We synchronized the 

outputs of the motion sensor with our HD-DOT data acquisition system using audio pulses at the 

start and end of data streams. The motion sensor data were down-sampled from 200 Hz to 1 Hz to 

match the final sampling rate of the HD-DOT data. Then, the motion sensor and HD-DOT signals 

were aligned by delaying the earlier signal based on the cross-correlation delay time with 

maximum correlation value. 

3.2.1.3 Angular rotation 

The angular rotation (𝚽) time-course was defined as the norm of the temporal derivatives of the 

head orientation in terms of Euler angles (𝛼 roll, 𝛽 pitch, and 𝛾 yaw), measured by the motion 

sensor. This index was defined in a manner similar to that of GVTD to facilitate comparisons 

between GVTD and motion sensor outputs (Eq. 3.2). 

 𝚽 = [
𝜙1

⋮
𝜙𝑀

], 𝜙𝑖 = √(𝛼𝑖 − 𝛼𝑖−1) 
2 + (𝛽𝑖 − 𝛽𝑖−1) 

2 + (𝛾𝑖 − 𝛾𝑖−1) 
2
,    𝜙𝑖 ∈  ℝ>0       (3.2) 

In this notation, 𝑖 indexes the time points, and 𝑀 is the number of time points. 

3.2.1.4 Artifact-to-background ratio (ABR) 

To quantify the magnitude of the motion artifacts, we defined the artifact-to-background ratio 

(ABR; 𝜌), where ABR is the mean GVTD of all time points above the noise threshold (defined in 

§3.3), divided by the mean GVTD of all the time points below the noise threshold (Eq. 3.3). 

     ρ = (𝑛 𝑚⁄ ) ∑ (𝑔𝑖|𝑖 𝑔𝑖 > 𝑔𝑡ℎ𝑟𝑒𝑠ℎ) ∑ (𝑔𝑖|𝑔𝑖 < 𝑔𝑡ℎ𝑟𝑒𝑠ℎ)𝑖 ⁄     (3.3) 

In this formula, 𝑔𝑖 is the GVTD value at time index 𝑖, 𝑔𝑡ℎ𝑟𝑒𝑠ℎ is the threshold value, n is the number 

of time points below the threshold, and m is the number of time points above the threshold. 
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3.2.2 Motion removal methods 

3.2.2.1 Motion censoring using GVTD 

Motion censoring (scrubbing) excludes the time points (blocks) exceeding the GVTD noise 

threshold from further analysis of resting state and task data [89, 90]. Details concerning the noise 

threshold criterion are explained in §3.3. This proposed HD-DOT censoring strategy follows a 

similar practice that resulted in statistical improvements in the resting state as well as task fMRI 

data [30, 88, 91, 92]. 

3.2.2.2 Correlation-based signal improvement (CBSI) 

CBSI motion correction is based on the assumption that oxygenated and deoxygenated hemoglobin 

signals are negatively correlated under all circumstances. In the presence of motion artifacts, the 

correlation between these two signals becomes more positive. CBSI corrects the oxyhemoglobin 

concentrations by subtracting the scaled deoxyhemoglobin to match the variance of the oxygenated 

signal. This process removes the positive correlation content between the two signals, taking into 

account their different amplitudes. Then, the corrected deoxy-hemoglobin is calculated by 

multiplying the corrected oxy-hemoglobin by the inverse of the same scaling factor between the 

original signals [46]. In this paper, we performed this motion correction method after spectroscopy 

on the down-sampled 1 Hz (Figure A.1). 

3.2.2.3 Targeted principal component analysis (tPCA) 

Principal component analysis (PCA) projects an arbitrary set of signals onto orthogonal principal 

components. Then, the principal components with the least variance are excluded, and the signal 

is reconstructed from the remaining components. Targeted PCA (tPCA) applies PCA to temporal 

epochs of the data that is identified to contain motion artifacts. tPCA reduces the risk of eliminating 

the physiological content in the motion-free epochs of the signal [93]. Hence, this method is 
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followed by a prior step of motion detection in the temporal domain. Conventionally, this motion 

detection is performed by setting a threshold on signal amplitudes or the windowed signal 

amplitude changes. In this paper, we used the Homer function "hmrMotionArtifactByChannel" to 

detect noisy timepoints and "hmrMotionCorrectPCA" to perform PCA, and set the parameters of 

this algorithm in the similar range as in the original study [93]; tMotion = 0.5, tMask = 2, 

STDEVthresh = 20, AMPthresh = 0.5, nSV = 0.97 (Tables A.1 and A.2, Figure A.1). 

3.2.2.4 Wavelet filtering 

Wavelet-based motion correction is based on a discrete wavelet transformation of single-channel 

measurements. This method assumes that the distribution of the wavelet coefficients of a motion-

free signal should follow a Gaussian distribution. Therefore, motion artifacts are detected based 

on the deviations from the Gaussian distribution. By setting an outlier detection threshold, the 

coefficients associated with motion artifacts are excluded, and the clean signal is reconstructed 

based on the remaining wavelet coefficients [85]. We used the "hmrMotionCorrectWavelet" 

function, setting the interquartile parameter as 1.5, as suggested in the original paper [85] (Tables 

A.1 and A.2, Figure A.1). 

3.2.2.5 Kurtosis-based wavelet filtering (kbWF) 

The kurtosis-based wavelet filtering (kbWF) method optimizes the use of the wavelet filtering 

motion correction by setting the threshold based on the kurtosis of the coefficient distributions 

[86]. The "hmrMotionCorrectKurtosisWavelet" function was used with the kurtosis threshold 

parameter set to 3.3, as recommended in the original paper [86] (Tables A.1 and A.2, Figure A.1). 

3.2.2.6 Hybrid (Spline + Savitzky Golay) 

The spline and Savitzky-Golay hybrid method is a three-step algorithm that aims to identify and 

correct different types of motion artifact [48]. First, single-channel measurements are passed 
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through a Sobel filter to identify time points exceeding a threshold of 1.5 times the interquartile 

interval of the signal gradient. Second, this method performs a spline interpolation on those epochs 

containing motion to remove the baseline shifts and slow spikes. Steps 1 and 2 were introduced in 

a previous fNIRS motion removal method, commonly known as the motion artifact removal 

algorithm (MARA) [83]. After this step, the hybrid method then applies a Savitsky-Golay 

smoothing filter to remove the remaining fast spikes. We used the 

"hmrMotionCorrectSplineSG" function defined in the original paper with its default parameters 

and setting p = .99 and FrameSize_sec = 1.5 [48] (Tables A.1 and A.2, Figure A.1). 

3.2.2.7 Temporal derivative distribution repair (TDDR) 

Temporal Derivative Distribution Repair (TDDR) also is a three-step algorithm that aims to 

automatically identify and correct motion artifacts at the single-channel level. First, by computing 

the temporal derivative of the signal, TDDR initializes the vector of observation weights. Second, 

it iteratively estimates the robust observation weights by applying the resulting robust weights to 

the centered temporal derivative to produce the corrected derivative. Finally, it integrates the 

corrected temporal derivative to yield the corrected signal [84]. 

3.2.3 Datasets and their objective 

Dataset 1: For validation, we collected an fMRI dataset in which adult subjects (n = 8) were 

scanned in both the resting state and during a hearing words (HW) task. This dataset served as 

ground truth. Dataset 2: As a positive control, in this HD-DOT dataset, healthy adults (n = 12) 

performed instructed motion while performing the same HW task performed during fMRI. Dataset 

3: In this HD-DOT dataset, adult subjects (n = 13) performed the same HW task without instructed 

motion. Dataset 4: In this HD-DOT dataset, healthy adults (n = 8) were scanned while awake in a 

task-free (resting) state. Dataset 5: In this HD-DOT dataset, healthy term infants (n = 11) were 



 

35 

 

imaged in the resting state (awake or asleep). This is a previously published dataset [50]. 

Demographic information and the objective of using each dataset are reported in Table 3.1. 

 

Table 3.1: Demographic information. HW: hearing words; y: year; d: day; ABR: artifact-to-background 

ratio. 

Dataset Number 

of 

subjects 

Sex 

(f/m) 

Age mean (std) Condition Modality Objective 

1: adults 8 6/2  62.37(6.3) Rest and 

HW 

fMRI  Gold standard  

2: adults 12 8/4 25.41(2.06) HW HD-DOT Instructed motion, motion 

sensor 

3: adults 13 10/3 42.92 (19.75) HW HD-DOT Natural motion method 

comparison 

4: adults 8 5/3 30.25 (11.18) Rest HD-DOT Natural motion method 

comparison, ABR test 

5: infants 11 6/5 1.1 d (0.4) Rest HD-DOT Validation for ABR test 

 

All aspects of these studies were approved by the Human Research Protection Office of the 

Washington University School of Medicine. All adult participants in the previous and new datasets 

were right-handed, native English speakers, and reported no history of neurological or psychiatric 

disorders. Adults were recruited from the Washington University campus and the surrounding 

community (IRB 201101896, IRB 201609028). All full-term infants were recruited from the 

Newborn Nursery at Barnes-Jewish Hospital in St Louis, Missouri, within the first 48 hours of life 

(IRB 201101813). All subjects (or their guardians) gave informed consent and were compensated 

for their participation in accordance with institutional and national guidelines. 

3.2.4 HD-DOT systems, image reconstruction, and spectroscopy 

All adult HD-DOT datasets (datasets 2, 3, and 4) were collected using a previously described 

continuous-wave HD-DOT system comprising 96 sources (LEDs, at both 750 and 850 nm) and 92 
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detectors (coupled to avalanche photodiodes, APDs) [49]. Acquisition in infants was performed at 

the bedside using a previously reported portable continuous-wave HD-DOT system with an optode 

array consisting of 32 sources (LEDs, at both 750 and 850 nm) and 34 detectors [50]. The setup 

time for both systems was approximately 5-15 minutes for combing the HD-DOT optode array 

embedded in a cap design through the hair to ensure the maximum optode scalp coupling using a 

real-time software for light level readouts. More detailed descriptions of the imaging systems and 

the setup process are given in the corresponding references. Light modeling was computed using 

the standard MNI atlas-based absorption model; details can be found in [71]. Volumetric movies 

of relative changes in absorption at 750 nm and 850 nm were reconstructed after inverting the 

sensitivity matrix using Tikhonov regularization and spatially variant regularization [49]. Relative 

changes in hemoglobin concentration were obtained via a spectral decomposition of the absorption 

data, as previously described [49, 50]. 

3.2.5 Functional MRI (fMRI) system and imaging 

All fMRI data were collected on a research-dedicated Siemens 3.0T Magnetom Prisma system 

(Siemens Medical Solutions, Erlangen, Germany) with an iPAT compatible 20-channel head coil. 

Blood Oxygenation Level Dependent (BOLD) sensitized fMRI data with TR = 1230 ms, TE = 33 

ms, voxel resolution = 2.4 mm3, FA = 63 degrees, with a multi-band factor of 4 for both resting 

state functional connectivity MRI (3 runs each 10 min) and HW task BOLD (1 run, 3.5 min) were 

acquired for all subjects in dataset 1. 

3.2.6 Paradigms 

Hearing words: Subjects were seated for HD-DOT or supine for fMRI and instructed to fixate on 

a white crosshair against a gray background while listening to words. The HW task was 

administered as block design. Each trial consisted of 15 seconds of hearing words followed by 15 



 

37 

 

seconds of silence. Each run included multiple trials, n = 10 for dataset 2, and n = 6 for datasets 1 

and 3. The total number of acquired runs per session was 7 (dataset 2) or 1 (datasets 1 and 3). 

Instructed motion: The instructed motion was performed by subjects during the HW task (dataset 

2), with 15% of the trials, including instructed motion. Participants viewed a screen with a 

crosshair and were instructed to perform a specific motion type when the crosshair color changed. 

Movements were performed for about 2 seconds every 3-5 seconds over a 15-second word 

presentation section. Subjects were monitored in real-time using a digital camera to ensure that 

they were engaged in the assigned tasks. Specific motions included (i) head turn to the left and 

back to center (roll, Figure 3.1A left), (ii) head nod up and back to center (pitch, Figure 3.1A 

center), (iii) shifting body position, (iv) taking deep breaths, and (v) raising eyebrows. Head twist 

(yaw, Figure 3.1A right) motion was avoided to prevent cap displacement. 

Resting state: Resting state data in adults (datasets 1 and 4) were collected over 10 min runs while 

subjects were seated for HD-DOT or supine for fMRI and visually fixating on a white crosshair 

against a gray background. Subjects were asked to stay awake and still during data acquisition. 

The number of runs per session was 3 (dataset 1) or 1 (datasets 4). Resting state HD-DOT in infants 

was acquired at the bedside (dataset 5) within the first 24-48 hours of life during natural (un-

medicated) sleep or quiet rest [50]. 

3.2.7 HD-DOT pre-processing 

All HD-DOT data were processed using the NeuroDOT toolbox following the flowchart in Figure 

A.1 [49, 94, 95]. HD-DOT light measurement data were converted to log-ratio (using the temporal 

mean of a given SD-pair measurement as the relative baseline for that measurement). Noisy 

measurements were empirically defined as those with greater than 7.5% temporal standard 

deviation in the least noisy (lowest mean GVTD) 60 seconds of each run [45] and were excluded 
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from further processing. Then the data were high-pass filtered (0.02 Hz cut-off for task-based 

datasets, 0.009 Hz for resting state datasets) to remove low-frequency drift. To serve as an estimate 

of the global superficial signal, we computed the average of all remaining first nearest neighbor 

measurements (13 mm SD-pair separation in the adult system and 10 mm SD-pair separation in 

the infant system). This global signal estimate was regressed from all measurements [21]. After 

that, all adult task-based data were low-pass filtered to 0.5 Hz cut-off for to remove the cardiac 

oscillations [28, 46-48]. All resting state data were low-pass filtered to 0.08 Hz to remove the 

cardiac oscillations and to narrow the signal to the spontaneous, low-frequency fluctuations of the 

signal following the previous recommendations for functional connectivity analysis in both adults 

and infants [49-52]. Task data provide two advantages over the resting state. First, the task design 

can impart high amplitude and high-frequency dynamics beyond what would normally be found 

in the resting state. Second, the block averaging of the tasks provides an approach to lower the 

noise and physiological clutter in the data. So while resting state uses the common infra-slow band 

(0.009-0.08 Hz) of the vast majority of the functional connectivity MRI literature  [49-52], the task 

preprocessing uses a higher filter band (0.5 to 0.1 Hz) to avoid 1/f noise [28, 46-48]. Following 

this bandpass filtering, the time-courses were then down-sampled from 10 Hz to 1 Hz and then 

used for image reconstruction. The efficacy of GVTD was evaluated at four stages of the HD-DOT 

processing pipeline, as indicated in Figure A.1 (green boxes) on 10 Hz sampled data. All other 

motion correction methods except CBSI were also performed on the 10 Hz sampled optical density 

signals (immediately after the log-ratio step) (Figure A.1). 

3.2.8 fMRI pre-processing 

fMRI pre-processing was performed using in-house 4dfp tools [96]: 1. correction for systematic 

slice-dependent time shifts; 2. elimination of odd-even slice intensity differences due to interleaved 
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acquisition; 3. rigid-body realignment for head motion within and across runs; 4. normalization of 

signal intensity to a mode value of 1000. Signal intensity normalization enables identification of 

artifact by evaluation of the signal temporal derivative. Atlas transformation was computed by the 

composition of affine transforms derived by a sequence of coregistration of the fMRI volumes via 

the T2-weighted and MP-RAGE structural scans. Head motion correction and atlas transformation 

was applied in a single resampling step that generated volumetric time series in (3mm)3 atlas space. 

Data underwent spatial smoothing (6 mm full width at half maximum in each cardinal direction) 

and temporal band-pass filtering (0.02-0.5 Hz for the HW task and 0.009-0.08 for resting state). 

Nuisance regressors included six rigid body values derived from head motion correction, white 

matter, and CSF signals and the mean whole-brain signal. Motion artifacts were reduced in resting 

state data through DVARS-based motion scrubbing using session-specific thresholding 

expressible as 𝑔𝑡ℎ𝑟𝑒𝑠ℎ = 𝜅̃ + 2.5𝜎𝐿 (see Eq. 3.5 below) [97]. The fraction of censored frames was 

21% ± 12%. 

3.2.9 Statistical analysis 

3.2.9.1 HW task response mapping in datasets 1, 2, and 3 

Another objective of acquiring HW task data was to evaluate GVTD as an index of HD-DOT data 

quality (dataset 2). To this end, 70 trials of HW (15 sec of HW (On), 15 sec of silence (Off)) were 

acquired in each session; 10 trials included instructed motion; the remaining 60 trials (ordinary 

trials) did not. The reconstructed voxel-wise data represent the changes in the hemoglobin 

concentration (𝛥Hb𝑂2) in units of 𝜇mol/L [53]. The quantitative response magnitude was then 

calculated with a standard general linear model (GLM). The design matrix was constructed by 

convolving the experimental design with a canonical HRF using a two-gamma function fitted to 

the in-vivo HD-DOT data, as described in [98]. Extracted hemodynamic response estimations for 
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each subject were then combined in a simple group-level fixed effects analysis [99]. Fixed effect 

analysis was adopted as we expect the variance in our dataset to be most strongly driven by scan-

to-scan variability rather than from subject-to-subject differences. 

3.2.9.2 Seed-based correlation analysis of functional connectivity in datasets 1 and 4 

Seed regions were 5 mm radius spheres centered on coordinates used in our previous study [49]. 

Five seeds representing the auditory (AUD), visual (VIS), somatomotor (MOT), dorsal attention 

network (DAN), and frontoparietal network (FPN) networks were selected within the HD-DOT 

field of view. Correlation maps were generated by calculating the Pearson correlation between the 

time-series of each seed region with all other voxels in the field of view. Correlation maps in 

individuals were Fisher's z-transformed and averaged across subjects. 

3.2.9.3 Similarity metric 

To summarize the quality of each HD-DOT image into a quantitative reduced metric that doesn't 

lose the spatial structure information, we computed a Similarity score for each HD-DOT image 

with the corresponding image in the fMRI dataset. The Similarity metric is calculated as the voxel-

wise Pearson correlation between the non-thresholded HD-DOT and the corresponding fMRI 

images by only including voxels in the HD-DOT field of view. HD-DOT field of view is defined 

as the voxels greater than 1% of the maximum sensitivity after inverting and smoothing (details 

explained in the supplementary materials of [49]). 

3.2.9.4 Receiver operator characteristic curve 

To evaluate the sensitivity and specificity of different motion detection indices, we evaluated the 

experimental receiver operator characteristic (ROC) curves for binary classification of clean and 

noisy time points by sweeping the detection threshold. We defined ground truth for motion as the 

time points during which the subjects performed instructed movements. The ROC curves were 
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then created by plotting the true positive rate (sensitivity) against the false positive rate (1 

− specificity) at various threshold settings for each motion index. 

3.3 Results 

3.3.1 Effect of motion artifacts on HD-DOT data 
We investigated the effects of various types of movements on HD-DOT data using the instructed 

motion. During the HW task, subjects performed five different types of instructed motion, 

including large movements (head rotation) and small movements (raising eyebrows) (§2.8).  One 

way to track the effect of motion is to spatially display the measurement pair channels (Figure 

3.2B). For example, for all the second nearest neighbor (nn2) pairs, we can mark sources and 

detectors with very high standard deviations over time during instances of instructed roll rotation 

(pink circles) and eyebrow motion (blue circles) (Figure 3.2B). Alternatively, one can analyze an 

SD-pair measurement (pair highlighted by large circles in Figure 3.2B) by comparing its time-

course during runs without instructed motion ("ordinary"), or with different levels of instructed 

motion, i.e., low eyebrow motion or gross roll rotation (Figure 3.2C). The difference in signal 

quality between the clean and corrupted responses are evident after block averaging (Figure 3.2D). 

We assessed the effects of different motion artifacts on the measurements by calculating the 

number of measurements with excessive noise for each type of motion artifact across all subjects. 

The HD-DOT array contains n = 1500 total measurements per wavelength within nn1 ~ 13 mm, 

nn2 ~ 30 mm, nn3 ~ 39 mm, and nn4 ~ 47 mm separations, respectively.  All five motion types 

affected multiple SD channels distributed across the field of view; specifically, 51 ± 8% of the 

channels for gross body movement and 39 ± 4 % for small eyebrow movement. Based on these 

observations, we concluded that each type of motion generates global effects. Therefore, we 

https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Specificity_(tests)
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adopted the GVTD as a global index of motion, taking into account optical signals over the full 

field of view. 

 

Table 3.2: Percent of the noisy measurements across five different instructed movements. Noisy 

measurements (nn1 through nn4) in dataset 2 were empirically defined as ones having a temporal standard 

deviation of 7.5% or greater. 

Type of motion Roll Pitch Deep breaths Body motion Eyebrow motion 

% Noisy measurements 49 ± 9% 47 ± 4% 41 ± 5% 51 ± 8% 39 ± 4 % 

 

 

Figure 3.2: Effects of head motion on single-channel HD-DOT measurements. (A) Adult HD-DOT cap 

structure illustrating a subset of optical fibers. (B) Green lines indicate source-detector (SD) pairs that have 

a standard deviation of less than 7.5%. Source or detector locations identified as noisy for roll (large red 

circles) and eyebrow (large blue circles) motion, respectively. (C) Changes in the light levels of a 

representative SD-pair during HW runs that were ordinary (black), instructed roll motion (pink), and 

instructed eyebrow motion (blue). Arrows indicate motion. Gray shading indicates auditory stimulus 

presentation. (D) Block averages of ordinary (black), instructed roll motion (pink), or instructed eyebrow 

motion run (blue). Error bars represent the standard error of the mean across trials. 
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3.3.2 GVTD and its correlation with the head angular rotation 

The global effect of motion artifacts in HD-DOT can be visualized as a matrix where each row is 

a measurement signal, and the columns index time (Figure 3.3A). This type of visualization is 

similar to fMRI "gray plots" [30, 100, 101]. The inspection of Figure 3.3A reinforces the notion 

that the effects of head motion in HD-DOT are global. GVTD time-course is computed in four 

steps. First, starting from the matrix of 850 nm nn1 optical density changes (Figure 3.3A), the 

matrix of the backward differentiation of the selected time-courses is calculated (Figure 3.3B). 

Then, from the matrix of the squares of backward differences (Figure 3.3C), GVTD is defined as 

the square root of the mean across the selected measurement array (Figure 3.3D). This sequence 

of steps progressively increases the sensitivity and specificity of the measure to motion (Figure 

3.3A-D). 

To evaluate the sensitivity of GVTD to motion, we concurrently recorded accelerometry as an 

independent measure in a subset of our instructed motion dataset (Figure 3.3E-H). The graded 

quantitative motion capture of the accelerometer provided insight into the sensitivity and 

specificity of GVTD to motion. To facilitate comparisons between the accelerometer and GVTD, 

the angular rotation was calculated based on the final head orientation time-course (§2.5, Figure 

3I). 



 

44 

 

 

Figure 3.3: Data-driven vs. direct measures of head motion. (A) All 850 nm nn1 measurements (n = 322) 

for a run containing instructed roll motion, represented as a matrix of measurements by time. (B) Temporal 

derivative of the data shown in (A); note intensified contrast between instructed motion vs. neighboring 

time points. (C) Squared values (by element) of the matrix shown in (B). (D) GVTD time-course calculated 

as the RMS of the square values shown in (C). (E-H) Standardized (Z-scored) time-courses captured during 

instructed head motion in one subject. Colored traces correspond to x-, y-, and z-axes of the (E) 

accelerometer, (F) gyroscope, (G) compass, and (H) head orientation. (I) Angular rotation is calculated as 

the norm of the temporally differentiated x, y, and z time-courses shown in (H). 

 

We evaluated the efficacy of GVTD and angular rotation for motion detection through different 

scenarios. First, we compared these two motion indices for a gross and a small artifact and found 

that GVTD shows a higher amplitude spike than the angular rotation in the case of small artifacts 

such as eyebrow motion (Figure 3.4A, B). To quantify these comparisons, we first calculated the 

Pearson correlation between GVTD and angular rotation (𝚽) for all runs containing instructed 

motion. The correlations were averaged over the six subjects that had concurrent HD-DOT and 

motion sensor data for all runs in the session (Figure 3.4C). These correlations were greatest in 

cases of head rotations (r = 0.86 ± 0.06 for roll and pitch) and lowest for eyebrow motion (r = 0.46 

± 0.2). This difference most likely reflects the transducer characteristics of the motion sensor and 
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the fact that it is not sensitive to the small muscle movements when attached to the top of the HD-

DOT cap. 

To evaluate the sensitivity of the GVTD to motion, we leveraged the ground truth built into our 

instructed motion paradigm. Experimental receiver operator characteristic (ROC) curves for 

GVTD and angular rotation were created for binary classification of clean and noisy time points 

by sweeping the detection threshold (Figure 3.4D). We defined ground truth for motion as the time 

points during which the subjects performed instructed movements. We also plotted these ROC 

curves for two common temporal motion detection methods in fNIRS, i.e., absolute single-channel 

signal amplitudes and windowed amplitude changes for all motion types and all 850 nm nn1 

measurements (Figure A.3) and compared the mean of these ROC curves against GVTD and 

angular rotation (Figure 3.4D). In all motion types, GVTD showed better or similar performance 

(AUC) compared to the angular rotation, absolute signal amplitude, and windowed amplitude 

change (Table 3.3). 

 

Table 3.3: The AUC of the ROC curves across different motion detection methods. The AUC of the ROC 

curves of GVTD and angular rotation (based on the motion sensor outputs), the mean of the ROC of the 

absolute signal amplitude and windowed amplitude changes based on the instructed motion as ground truth 

in dataset 2. 

Motion index GVTD Angular rotation Signal amplitude Windowed amplitude change 

AUC 0.88 ± 0.07 0.77 ± 0.08 0.6 ± 0.04 0.76 ± 0.04 

 

We used the instructed motion protocol to examine the relation between GVTD and angular 

rotation for all runs with instructed motion (Figure 3.4E).  Low vs. high-motion time points (black 

vs. red in Figure 3.4E) were determined based on the ground truth of the instructed motion protocol 
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(high-motion as defined as time points when the subject performed instructed motion). When the 

motion was low (black dots), GVTD and angular rotation were not correlated (r = 0.05 ± 0.05), 

but when the motion was high (red dots), GVTD and angular rotation were highly correlated (r = 

0.8 ± 0.1). The same log-log scatter plots for absolute signal amplitudes (Figure 3.4F) and the 

windowed amplitude (Figure 3.4G), show much lower correlations with the angular rotation (0.2 

and 0.1, respectively) compared to GVTD (0.7). 

In summary, these results show that GVTD can be used as an alternative or in conjunction with 

motion sensors in detecting noisy time points of data. 
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Figure 3.4: Efficacy of GVTD in motion detection. GVTD and angular rotation for an example HW run 

containing instructed (A) roll and (B) eyebrow motion artifacts. Gray shaded regions indicate auditory 

stimulation. (C) Pearson correlation between GVTD and angular rotation averaged over the six subjects 

with instructed motion runs. Note a high Pearson correlation of GVTD with roll, pitch, and body motion. 

(D) Experimental ROC plots for GVTD based on nn1 and nn2 measurements and angular rotation and the 

mean of the ROCs for signal amplitudes (Amp.) and windowed amplitude changes (Amp. change) for five 

types of instructed motion. Log-log scatter plots of (E) nn1 GVTD, (F) nn2 GVTD, (G) 850 nm nn1 signal 

amplitudes, (H) all 850 nm nn1 windowed amplitude changes vs. angular rotation for all runs with 

instructed motion. The correlation between the GVTD (either nn1 or nn2) and the motion sensor is higher 

than both amplitudes and the windowed amplitude changes. The cutoff between black and red dots is based 

on the instructed motion time points. 

 

3.3.3 Motion detection strategy using GVTD 

To censor data using the GVTD time-course, we developed an outlier detection strategy that 

separates good data from motion artifacts. 
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We assume that the detected signal, 𝑦(𝑡), is a linear combination of the true physiological signal, 

𝑆(𝑡), and noise, 𝜖(𝑡): 

     𝑦(𝑡) =  𝑆(𝑡) + 𝜖(𝑡)         (3.4) 

We followed the fMRI approaches for DVARS and FD and developed a data distribution driven 

strategy for finding motion criterion. In fMRI, 𝑆(𝑡) is approximately normally distributed [102]. 

Accordingly, the DVARS distribution is right-skewed [103]. Therefore, we investigated the skew 

of the GVTD distribution as a potential index of head motion artifact in HD-DOT. We evaluated 

the GVTD distribution for HD-DOT data from a still Styrofoam phantom, a low-motion trial, and 

a high-motion trial. The phantom GVTD histogram peaked at a relatively small value (mode = 

4 × 10−5) and exhibited a small rightward skew (Figure 3.5A). In the low-motion human data, 

GVTD values had a higher mode and proportionately smaller skew (Figure 3.5B). In data with 

instructed motion (high motion), the GVTD distribution is strongly skewed to the right (Figure 

3.5C). These results suggest that the skew provides a basis for censoring HD-DOT data. 

Thus, we defined a noise threshold (𝑔𝑡ℎ𝑟𝑒𝑠ℎ) based on the GVTD distribution mode (𝜅̃) plus a 

constant (𝑐) times the standard deviation computed on the left (low) side of the mode (𝜎𝐿). The 

right tail of the GVTD distribution corresponds to motion artifacts (Eq. 3.5). Thus, 

𝑔𝑡ℎ𝑟𝑒𝑠ℎ  = 𝜅̃ + 𝑐𝜎𝐿         (3.5)  

where 𝜅̃ is the histogram mode and 𝜎𝐿 is computed as 𝜎𝐿 = √(1/𝑛𝐿) ∑ (𝑔𝑖 − 𝜅 ̃)2
𝑔𝑖< 𝜅̃ , where 𝑛𝐿 

is the number of GVTD time points less than 𝜅̃. The value of 𝑐 controls the trade-off between the 

exclusion of artifact vs. data loss. In this study, GVTD mode is simply calculated as the value of 

the bin with the maximum height. Two alternative approaches for calculating the mode of a 

histogram are explained in Appendix A (§A.1 and §A.2) using parabolic interpolation and kernel 

density estimation methods. 
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Figure 3.5: Motion threshold determination using GVTD. Histograms of the GVTD values for (A) a 

Styrofoam phantom, (B) a low-motion run, and (C) a high-motion run in one subject. Note the constant x-

axis limits; values above that limit fall into the last bin. Note mode (red arrow), left standard deviation, and 

noise threshold computed according to Eq. 3.5. Pink and green shading indicates GVTD values that do or 

do not exceed the noise threshold. 

 

3.3.4 Determining the best stage for performing GVTD-based motion 

detection and censoring 

GVTD is a generic measure that can be applied to any data in the form of channels (or voxels) by 

time. Therefore, we needed to determine where in the processing pipeline, GVTD should be 

performed. We evaluated four potential locations (green boxes in Figure A.1). To evaluate GVTD's 

ability to separate noise from the signal, we defined an artifact-to-background ratio (ABR) as the 

mean of the GVTD values above a noise threshold over the mean of the GVTD values below the 

threshold. Specifically, GVTD was calculated for; a) SD-pair log-mean optical densities ("after 

log-mean"; unit = optical density change per second (∆𝑂𝐷/𝑠)), b) after temporal filtering before 

superficial signal regression (SSR) ("after filtering no SSR"; unit = ∆𝑂𝐷/𝑠), c) after both temporal 

filtering and SSR ("after filtering with SSR"; unit = ∆𝑂𝐷/𝑠), and d) on reconstructed image voxels 

("after reconstruction"; unit = molar HbO2/s). These results were compared based on their ABR 

means on two different datasets with the natural motion to determine the most effective GVTD 
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strategy. GVTD time-courses, GVTD histograms, and their associated gray plots calculated at 

these four stages for resting state data collected with two HD-DOT systems (example of a run from 

the adult HD-DOT data in Figure 3.6A-C). The ABR index (Eq. 3.3) was calculated using the 

motion threshold defined as 𝑔𝑡ℎ𝑟𝑒𝑠ℎ = 𝜅̃ + 4𝜎𝐿 (Eq. 3.5). Results showed that ABR was 

consistently highest after both filtering and superficial signal regression but before image 

reconstruction in both datasets 4 and 5 (Figure 3.6D). 
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Figure 3.6: Implementing GVTD in HD-DOT data processing pipeline. (A) GVTD computed after log-

mean, after filtering and without SSR, after filtering and with SSR, and after reconstruction. (B) Histograms 

of the GVTD values for the four time-courses; black lines indicate the noise threshold. (C) Four gray plots 

associated with the four GVTD time-courses shown in (A). Black arrows indicate a small motion artifact. 

Note the greatest contrast between the motion artifact and the baseline after filtering (third time-course). 

(D) ABR values calculated for all four processing stages for all subjects in datasets 4 and 5. GVTD after 

filtering (light and dark blue) was maximal in all cases and the highest after filtering with SSR (dark blue). 

 

3.3.5 Indexing data quality with GVTD in task HD-DOT data by comparison 

against fMRI 

Dataset 2 was used to evaluate the ability of GVTD to index the HD-DOT data quality. HD-DOT 

responses to hearing words were compared to the group-mean fMRI response to the same task, 
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which was independently acquired in a separate experiment and treated as a "gold standard". We 

rank-ordered ordinary HD-DOT trials for each subject according to their mean GVTD value; for 

each subject, the ten lowest and ten highest GVTD ordinary trials were defined as "low-motion" 

and "medium motion". The instructed motion trials were defined as "high motion". Responses 

were extracted from a fixed ROI defined as P < 0.05 in the fMRI dataset (Figure 3.8A, 3rd column 

map), expressed as percent signal change. The Pearson correlation between the HD-DOT and 

fMRI time-courses were computed for each of the three HD-DOT conditions (Figure 3.7B-D). 

This correlation progressively decreased from 0.97 for low-motion to 0.86 for medium motion, to 

0.78 for instructed motion (Figure 3.7E). Medium motion responses (Figure 3.7C) were 

comparable to fMRI, but with a smaller peak value and higher mean squared error (0.08). Trials 

that GVTD identified as low-motion (Figure 3.7B) generated the cleanest maps with the lowest 

mean squared error (0.06). Accordingly, the GLM-derived beta-values were greater in the low as 

compared to high-motion trials in most subjects (Figure 3.7G). 

A cautionary point regarding GLM-derived beta values is raised by the instructed motion trials, 

which generated the highest mean squared error (0.12) as well as the greatest BOLD response 

modulations; hence, the greatest GLM-derived beta values (Figure 3.7H). These response time-

courses were the least similar to those obtained by fMRI (Figure 3.7F) and were accompanied by 

voxel-wise activations outside of the auditory cortex. Thus, the apparently strong HD-DOT 

responses in the instructed motion condition are attributable to motion artifact, as detected by 

GVTD (Figure 3.7E). We conclude that the results shown in Figure 3.7 demonstrate that GVTD 

effectively indexes HD-DOT data quality. Additional results derived from the HW response 

analysis show a progressively lower similarity of the HW responses for fMRI results in association 

with greater GVTD values (Figure 3.7E, F). The relationship between low-motion and medium 
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motion data within each session shows that responses are systematically greater in low-motion as 

opposed to medium motion (true in 15 out of 17 sessions). The responses are comparably 

compromised by spontaneous motion in medium motion trials (as indexed by greater GVTD) and 

spuriously higher in instructed motion trials with the highest GVTD scores (Figure 3.7G, H). 
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Figure 3.7: Indexing motion using GVTD in HD-DOT hearing words HbO2 maps. Voxel-wise maps are 

shown in the first and second rows; the percent signal changes are averaged over a region of interest (ROI) 

and shown in the 3rd row. Error bars on the time-courses indicate standard error of the mean across sessions. 

(A) Reference dataset. (B) Low-motion data. (C) Medium motion data. (D) Instructed motion data. Black 

arrows indicate false-positive responses, designated since they occur outside auditory ROI defined based 

on the reference fMRI dataset. (E) Mean GVTD values across all trials in low-motion, medium motion, and 

instructed motion data. (F) Mean similarity of the maps in each condition with the reference dataset, 

similarity defined as the voxel-voxel Pearson correlation. (G) Scatter plot of responses in low vs. medium 

motion ordinary trials; GVTD indexed stronger responses in low-motion trials in 15 of 17 sessions. (H) 

Scatter plot of medium motion vs. instructed motion trials; note the higher spurious response magnitudes 

for the instructed motion. 

 

3.3.6 Comparison between motion removal methods applied to HW task HD-

DOT data 

To compare the performance of different motion removal methods on HD-DOT data, we used 

dataset 3, acquired in older subjects (n = 13; 42 ± 19.75 years old) performing the hearing words 
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task (no instructed motion). Dataset 3 included a wide range of motion contamination levels. The 

details of the various motion removal methods used in this analysis are explained in §2.3.  

Responses were evaluated in terms of statistical significance at the voxel and ROI levels as well 

as time-course similarity with fMRI. 

Without motion removal, the group-level t-statistic map contained several spurious activations that 

are not present in the fMRI results (Figure 3.8A, B). Moreover, the expected superior temporal 

cortex response did not achieve statistical significance at P < 0.05. In this analysis, the GVTD 

threshold was computed as 𝑔𝑡ℎ𝑟𝑒𝑠ℎ = 𝜅̃ + 3𝜎𝐿 (Eq. 3.5). Exemplary low and motion and high-

motion blocks are illustrated in Supplementary Figure A.4. This threshold excluded all blocks in 

6 subjects, leaving 7 subjects contributing to the final result illustrated in Figure 3.8C. Results 

obtained with TDDR, tPCA, CBSI, kbWF, hybrid (Spline + Savitzky Golay), and wavelet filtering 

are illustrated in Figure 3.8D-I. GVTD censoring, TDDR, and CBSI methods recovered bilateral 

superior temporal cortex activations in thresholded t-statistic maps (P < 0.05). tPCA and hybrid 

methods also recovered a unilateral right hemisphere activation. However, no statistically 

significant (P < 0.05) responses were obtained with the other methods (wavelet and kbWF). 

We quantified the performance of the results shown in Figure 3.8B-I using two metrics: 1. 

Similarity score, defined as the voxel-wise Pearson correlation between the non-thresholded maps 

and the fMRI gold standard map, and 2. Mean t-value in the auditory ROI defined P < 0.05 in the 

fMRI t-map (Figure 3.8A, 3rd column). The spatial similarity to fMRI was greatest for the GVTD-

censored map, followed by TDDR, tPCA, hybrid, not-corrected, CBSI, wavelet, and kbWF maps 

(Figure 3.8J). The mean ROI t-value was greatest for the GVTD-censored maps, followed by 

TDDR, CBSI, hybrid, not corrected, tPCA, kbWF, and wavelet corrections (Figure 3.8K). As 

noted above in §3.5, artifacts can spuriously increase apparent response magnitudes; hence, GLM-
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derived t-values. This observation underscores the value of comparing HD-DOT results to those 

of fMRI. 
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Figure 3.8: Efficacy of motion removal methods in task HD-DOT data. Three columns represent the same 

t-statistic map for each row with 1. No threshold, 2. thresholded at 40% of the maximum t-value of each 

method (mapped as an alternative visualization), and 3. Thresholded based on the P < 0.05 statistical 

significance. (A) fMRI maps based on reference dataset 1. HW map for dataset 3 with (B) no motion 

correction. (C) GVTD-based motion censoring, (D) TDDR (E) tPCA (F) CBSI (G) kbWF (H) hybrid, and 

(I) wavelet motion correction methods. (J) The similarity between the non-thresholded t-statistic maps is 

calculated based on the voxel-voxel Pearson correlation with fMRI t-statistic map. (K) The mean t-value is 

calculated in the auditory ROI based on the fMRI HW map thresholded at P < 0.05 shown in panel A 

column 3. 

 

3.3.7 Comparison between motion removal methods applied to resting state 

HD-DOT data 

We compared the performance of different HD-DOT motion removal methods in application to 

resting state HD-DOT data using dataset 4 (n = 8 adults, 30.25 ± 11.18 years old). Seed-based 

functional connectivity (FC) was computed using the 5 seed ROIs (§2.9.4, Figure 3.9 top row). In 

parallel with §3.6, we quantified the performance of each correction method using two metrics: 1. 

similarity score, defined as the spatial similarity between the HD-DOT and fMRI FC maps; and 2. 

Mean FC (Fisher z-transformed correlation) in functionally connected ROIs identified in the fMRI 

data. The spatial similarity was computed as the Fisher z-transformed Pearson spatial correlation 

between non-thresholded maps, evaluated over the HD-DOT field of view (white area illustrated 

in the top row of Figure 3.9). Mean FC was evaluated in the colored ROIs illustrated in Figure 

3.9A. Thus, this measure reflected simple homotopic FC in primary cortical areas as well as 

ipsilateral FC in the higher-order networks (DAN and FPC). The GVTD threshold was computed 

as 𝑔𝑡ℎ𝑟𝑒𝑠ℎ = 𝜅̃ + 10𝜎𝐿 (Eq. 3.5). This lenient threshold minimized data loss. On the basis of 

preliminary testing, GVTD censoring was extended to retain only epochs of duration at least 30 

seconds. 

The results obtained by the various correction methods are shown in Figure 3.9B-I. The most 

extensive HD-DOT FC maps were obtained in uncorrected data (Figure 3.9B). However, these 
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maps were not spatially most similar to the fMRI gold standard dataset. Rather, GVTD censoring 

(Figure 3.9C) yielded HD-DOT FC maps most similar to fMRI (Figure 3.9J). Of all censoring 

methods, GVTD yielded the greatest FC in the evaluation ROIs, followed by wavelet, CBSI, 

TDDR, tPCA, kbWF, and hybrid corrections (Figure 3.9K). As in the HW task responses, strong 

FC in the evaluation of network ROIs does not necessarily indicate good data quality, especially 

when accompanied by spurious effects outside of the network identified on the basis of fMRI (e.g., 

as seen in the no correction, wavelet, and CBSI maps). On the other hand, some methods may 

overcorrect, leading to falsely weak correlations (TDDR, tPCA, kbWF, and hybrid methods). 
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Figure 3.9: Efficacy of motion removal methods in resting state HD-DOT data. Five columns represent the 

seed maps for visual (VIS.), auditory (AUD.), somatomotor (MOT.), dorsal attention (DAN), and 

frontoparietal (FPC) networks. (A) fMRI maps based on reference dataset 1. HD-DOT maps for dataset 4 

with (B) no motion correction, (C) GVTD-based motion censoring, (D) TDDR, (E) tPCA, (F) CBSI, (G) 

kbWF, (H) hybrid, and (I) wavelet motion correction methods. Spatial similarity (J) was computed as the 

Fisher z-transformed spatial correlation between the HD-DOT and fMRI FC maps, evaluated over the HD-

DOT FOV (white area illustrated in the top row). (K) ROI-based FC was evaluated as the mean Fisher z-

transformed correlation with the seed in the colored regions shown in panel A. These regions were 

determined by thresholding the group-level fMRI FC maps at 10% for lower-level networks (VIS., AUD., 

and MOT.) and 5% for higher-level networks (DAN and FPC) of maximum z(r) value. 

 

3.4 Discussion 

3.4.1 A general summary of the novel strategies and findings 

We developed a novel motion detection method suitable for high-density optical imaging arrays, 

inspired by the DVARS in fMRI [88]. Specifically, we defined the global measure of variance in 

the temporal derivative across measurement channels (GVTD) and developed a method for 

denoising structured artifacts in HD-DOT. We found that GVTD successfully indexes motion 

artifacts in HD-DOT and has higher sensitivity and specificity (evaluated using AUC of the ROC 

curve against the ground truth of instructed motion) for motion detection compared to an 

accelerometer motion sensor and to single-channel motion detection methods commonly used in 

fNIRS (absolute signal amplitudes and windowed amplitude changes). 

While there are a number of papers evaluating motion removal methods for standard fNIRS [46, 

48, 83-86, 93, 104-107], the literature on motion removal strategies for HD-DOT is limited. 

Previous studies lack some combination of HD-DOT datasets and comparisons to gold standard 

data (fMRI) for image quality validations, and most are restricted to single-channel motion 

detection. In this paper, we introduce a novel approach for evaluating the efficacy of motion 

removal methods in HD-DOT by comparison against matched fMRI datasets. 
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We show that the mean GVTD score is correlated with the similarity of the HD-DOT task images 

to those of fMRI. Thus, the mean GVTD score can be used to classify datasets as either clean or 

noisy (Figure 3.7). We also show that applying GVTD censoring to both task and resting state HD-

DOT datasets outperforms other fNIRS-based motion correction methods and makes HD-DOT 

maps more similar to those of fMRI. Together, HD-DOT imaging arrays and anatomical atlasing 

combined with GVTD motion censoring, all aid in making HD-DOT data more comparable to 

fMRI and furthers the use of HD-DOT as a surrogate to fMRI. 

3.4.2 Optimizing the implementation of GVTD in the HD-DOT processing 

pipeline 

We optimized the use of GVTD motion detection in HD-DOT by testing it at different steps of the 

processing pipeline using the artifact-to-background ratio (ABR). In fMRI, DVARS  has only been 

evaluated before and after filtering [101]. In contrast, in HD-DOT, we can consider GVTD in 

either measurement space or image space (after image reconstruction). Our results show that the 

ABR was highest in measurement space prior to image reconstruction and after filtering the high-

frequency content of the data. It was also statistically better when performed after SSR, a common 

fNIRS, and DOT processing step (in datasets 4 and 5). Therefore, based on our ABR analysis, we 

recommend performing GVTD after filtering the measurements, but prior to image reconstruction. 

An important decision with GVTD is to determine the censoring threshold. Since the baseline 

GVTD value was different across people, similar to findings with DVARS in fMRI [97], we 

evaluated a noise detection strategy based on the GVTD distribution (histogram) specific to each 

subject. The differences in the baseline GVTD distribution is possibly due to variable 

physiological signal levels as well as respiratory patterns, heart rate, facial muscle activity, 

restlessness, tremor, etc. [30, 101]. Therefore, we developed an outlier detection strategy 
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individualized for each subject's data that semi-automates the noise threshold determination and 

takes into account subject differences. Specifically, we set the threshold using the GVTD 

distribution mode (𝜿̃) plus a constant (𝒄) determined based on the left side (lower side) of the mode 

of the GVTD distribution. For practical implementation, we recommend that the threshold be 

greater than the standard deviation of the baseline signal. 

3.4.3 Evaluation and validation of denoising through comparisons to fMRI 

Most fNIRS studies measure the efficiency of motion removal techniques based on the recovery 

of a synthetic HRF [27, 28, 48, 82], or, in the case of real data, based on the variance across subjects 

or datasets [82]. However, since HD-DOT is focused on creating images comparable to fMRI, 

throughout this paper, we have used an fMRI dataset with the same task and resting state paradigm 

used in our HD-DOT datasets as a gold standard for evaluating the efficacy of different motion 

removal methods. The comparisons were based on the voxel-voxel Pearson correlation of the 

spatial HD-DOT maps and the fMRI maps. We find that, for both task and resting state functional 

connectivity, comparisons to fMRI enables identifying false negatives, false positives, and 

localization errors (Figures 3.8, 3.9), all of which would be difficult to determine without a target 

image. In vivo imaging enables a much stronger evaluation than in silico simulations; fMRI data 

contains real image features, including the spatial extent, signal magnitude, distribution of spatial 

frequencies, and time-courses. 

Using the fMRI comparisons, we ranked ordered several motion removal methods in both task and 

resting state data. The general pattern observed was that motion censoring using GVTD worked 

best, with near contenders being CBSI, TDDR, and following those, targeted PCA in both task and 

rest data. TDDR and tPCA both suppressed the mean t-value in the auditory ROI and FC in the 

evaluation ROIs, which may indicate overcorrection, i.e., removal of the true signal. Wavelet 
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filtering ranked second after GVTD censoring in resting state data both in terms of similarity with 

fMRI and mean FC in the resting state networks. This is in distinction to its lower performance in 

the task data. 

3.4.4 On the different performance of motion correction methods in fNIRS 

literature 

A striking aspect of the fNIRS literature is the variable performance of motion correction methods 

across different studies [27, 28, 48, 82, 84, 86]. One possible reason for the variability between the 

studies could be the different levels of motion present in each study. This variability has also been 

evaluated in a recent fNIRS study [82]. To address this topic, we performed a supplementary 

analysis of the low-motion, medium motion, and high-motion HW task data in dataset 2 (Figure 

3.7). We evaluated the performance of different motion correction methods on different levels of 

motion artifacts in these three categories (Figures A.6, A.7). 

This analysis shows that, in the low-motion group, all methods can preserve bilateral auditory 

cortex HW responses. In the medium and instructed motion groups, GVTD, TDDR, CBSI, and 

tPCA again outperformed other methods by recovering either a unilateral or bilateral HW 

activation with no obvious false positives in the P < 0.05 thresholded maps (Figure A.6). Note that, 

in the high-motion data (instructed motion group), none of the motion correction techniques fully 

recovered bilateral auditory responses (present in fMRI). However, GVTD was able to distinguish 

between clean vs. motion-corrupted data (Figure 3.7). We hypothesize that GVTD can provide a 

means of rank-ordering data based on quantitative motion estimation (as suggested in Figure 3.7), 

something that is normally done subjectively prior to applying motion correction methods. Thus, 

GVTD may be useful also in denoising sparse fNIRS data. This notion could be tested by 

evaluating the efficacy of GVTD in sparse fNIRS arrays or by subsampling the HD-DOT imaging 

array. 
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GVTD focuses on motion detection, followed by simple censoring. GVTD could be used as an 

alternative to either absolute signal amplitudes or windowed amplitude changes included in the 

Homer2 code package [108]. Further, GVTD could be used in conjunction with motion correction 

methods such as spline interpolation (MARA) [83], Kalman filtering [104, 109], PCA [104], tPCA 

[93], Hybrid methods [48], or any method that depends on motion detection in the temporal 

domain. However, we note that, in the results presented here, GVTD-based censoring alone 

provided better image quality than any of the alternative motion correction procedures. 

3.4.5 Strengths and limitations of the GVTD-based motion censoring 

When tested in HD-DOT, the most promising results were obtained using GVTD-based motion 

censoring. A likely reason for GVTD efficacy is that it leverages the effect of small artifacts across 

many measurements. The simplicity of GVTD censoring guarantees that the signal is neither over-

smoothed nor overcorrected. 

As described here, GVTD is used as a binary classifier to censor the time points marked as noisy. 

However, it also could work with a non-binary weight associated with the time points based on 

their GVTD value to soften the impact of threshold choice. For example, time points with GVTD 

values closer to the GVTD distribution mode could be assigned higher weights than ones further 

from the mode [110]. 

Another important challenge in scrubbing data is the tradeoff between losing signal vs. removing 

noise [111]. For motion criterion, one can ensure that sufficient data remains after censoring by 

tuning 𝑐 (Eq. 3.5). Another approach would be to use GVTD to determine the useable data yielded 

from a run and then adjust the data collection to either collect more data within the session or add 

sessions to the study. These active data quality approaches are currently being pioneered in fMRI 

with runtime assessment of motion [112-114]. 
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3.4.6 Summarizing the consensus regarding the top-performing denoising 

strategies in the fNIRS literature 

Among the fNIRS-based methods that worked best for HD-DOT, besides GVTD, CBSI performed 

well in both task and resting state data. CBSI does not require tuning of parameters but has been 

less recommended in the literature [48, 84] as it relies on the assumption of a negative correlation 

between HbO2 and HbR. Therefore, it is limited to populations in which a normal correlation 

between HbO2 and HbR can be assumed [46]. 

The TDDR method performed well in the task HD-DOT data and fairly well in the resting state 

analysis. TDDR, like CBSI, does not require tuning of parameters. However, one disadvantage of 

TDDR is that it relies on the derivative of single measurements and, thus, is less sensitive to small 

motion artifacts such as eyebrow motion. Moreover, TDDR only performs an efficient motion 

correction on the low-frequency content of the data, because the higher frequencies inflate the 

variance of the temporal derivative distribution and create bias in the distribution of estimates [84]. 

However, we showed that the noise content is still present in the data after band-pass filtering (see 

post-filtering gray plots in Figure 3.6C showing residual artifact during motion). 

Targeted PCA also yielded HD-DOT maps similar to those in fMRI but with decreased response 

magnitudes in both task and resting state data. tPCA removes a fixed proportion of variance 

through the removal of the largest principal component; hence, as observed here, is prone to 

overcorrection [84, 93]. 

Wavelet filtering, despite a poor performance in task data, showed good performance in resting 

state HD-DOT data. However, this method is computationally expensive. On average, for both 

HW and rest HD-DOT runs, wavelet filtering ran ten times slower than other motion correction or 
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censoring methods. The kbWF method, while faster than the full wavelet approach, did not 

perform well in either task or rest HD-DOT data. 

3.5 Conclusion 
We developed GVTD, a novel motion detection metric, and optimized its use in the HD-DOT pre-

processing pipeline. GVTD can be used alone or in combination with other motion correction 

methods to increase the quality of data obtained with multi-channel optical imaging systems. We 

evaluated GVTD using several independent HD-DOT datasets, including an instructed motion 

protocol, accelerometer motion measures, and a matched fMRI dataset serving as ground truth. 

Although GVTD-based censoring removes data, the obtained HD-DOT maps were most similar 

to those of fMRI, and it outperformed alternative motion correction methods previously described 

in the fNIRS literature. 
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Chapter 4: Mapping Deep Brain 

Stimulation’s Impact on Cortical Networks 

Using HD-DOT2 

4.1 Introduction 
Deep brain stimulation of the subthalamic nucleus (DBS STN) in Parkinson disease (PD) can 

provide substantial motor benefit [115, 116], yet can also produce unwanted cognitive side effects 

[117-127]. Although the neural mechanisms underlying benefits and side effects of these implants 

are not well understood, current hypotheses center on the potentially measurable yet currently 

undefined effects within downstream cortical networks [116, 128-131]. The current literature 

hypothesizes that downstream network-level effects are a critical mechanism of the DBS’s 

influence on motor and non-motor behavior [128, 130, 132]. However, our ability to test this 

hypothesis has been limited because common imaging modalities either do not have the temporal 

resolution necessary to discern resting state functional connectivity (FC) of cortical networks (e.g., 

PET) or are not suitable or safe for patients with implanted DBS (e.g., fMRI) [133, 134]. 

HD-DOT uses a collection of functional near-infrared spectroscopy (fNIRS) measurements, free 

of radiation exposure concerns, and without electrical/metal artifacts or contraindications or safety 

concerns for DBS. However, common fNIRS systems are critically hampered by typically sparse 

measurement distributions that lead to poor anatomical specificity, unreliable image quality due to 

crosstalk with scalp signals [12-14], poor spatial resolution, limited field of view [15], unstable 

point spread functions (PSF) [15], and uneven spatial coverage [6, 16]. HD-DOT solves these 

problems by using high-density interlaced source and detector imaging arrays that support densely 

 
2 This chapter is summarizing the results of a two year study that was submitted and approved for an R01 NIH grant 

by our team lead by Drs. T. Hershey and J. P. Culver. 
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overlapping measurements and anatomical head models [17-20] that together result in higher 

spatial resolution [15], stable PSFs, and greatly improved isolation of brain signals from scalp 

signals [15, 21]. We have demonstrated that HD-DOT accurately maps functional connectivity 

(FC) within and between cortical resting state networks (RSNs) in the outer ~1cm of the cortex 

[20, 22, 55, 135-140] with a comparable temporal and spatial resolution to fMRI in control 

populations. HD-DOT has greater comfort than fMRI or PET (patients sit upright in a comfortable 

chair), no radiation exposure (as in PET), no electrical artifacts (as in EEG/MEG), no metal 

artifacts (as in fMRI), and no contraindications or safety concerns for DBS patients (as in fMRI). 

 

Table 4.1: A comparison of imaging modalities for studying PD with DBS. 

 

 

 

Compared to fNIRS, HD-DOT has a significantly better spatial resolution, and tomographic 

imaging is free of scalp artifacts (see Table 4.1 and Figure 4.1 [141]) and uses a standardized 

stationary and relatively broad field of view imaging array. Both approaches use the same basic 

measurement type, involving a source that deposits safe near-infrared light into the head and a 

detector that measures light emanating from the head at some distance away (e.g., 30 mm). 
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Figure 4.1: Data quality of HD-DOT vs. sparse NIRS. Subject-matched comparisons of functional 

activations in response to auditory and visual presentations of words clearly highlight multiple artifacts - 

including shifted, false positive, and false negative activations - when using any of three common sparse 

NIRS grid layouts. By contrast, HD-DOT yields excellent agreement with fMRI with dramatic 

improvements in image quality over NIRS. Fishell et al., 2019. 

 

These source-detector pairs (SD-pairs) provide a crescent shape sampling pattern that, while 

peaked in the scalp, extends deep enough to record hemodynamic changes in the brain. However, 

the key difference is that sparse fNIRS systems use only a few SD-pairs (typically about 16-40) 

sparsely distributed, non-overlapping, and only at one SD-pair separation distance. In contrast, 

HD-DOT uses a dense overlapping pattern of SD-pair measurements (Figure 4.1), with upwards 

of 1800 measurements, two orders of magnitude greater than most fNIRS systems. The HD-DOT 

SD-pair measurements have a mixture of short (13 mm), medium (30 mm), and long (40 mm) 

distances, which enable tomographic reconstructions to isolate the brain from scalp tissue, which 

can reduce scalp artifacts by ~10x [21]. In addition to sectioning, the dense imaging arrays provide 

improved resolution (volumetric PSF is 10x better [15]). Perhaps most importantly, HD-DOT 

provides a consistent PSF that is translationally invariant, whereas the sparse fNIRS systems have 

PSF’s that change with location under the imaging array. Notably, the newest HD-DOT field of 

view covers most of the cortical surface and does not need to be moved around the scalp to capture 

important regions (as some fNIRS systems do). Together these attributes enable HD-DOT to 



 

71 

 

perform functional neuroimaging tasks that fNIRS cannot accomplish including 1) retinotopic 

mapping of visual angle and eccentricity [15, 17, 20], 2) mapping hierarchical distributed language 

responses [20], and 3) mapping distributed functional networks such as the default mode network, 

and the dorsal attention networks [20]. Further, with co-registration to anatomy, HD-DOT can be 

tested and validated at the voxel level against fMRI, either at the single subject or group level.  

Functional imaging methods without such limitations would allow us to better understand the 

impact of DBS on the functional connectivity of organized networks within the brain [130]. In this 

chapter, we overcome these significant limitations and apply HD-DOT methods to investigate how 

DBS modulates cortical functional networks and behavior in PD patients. 

4.2 Methods 

4.2.1 Subjects 

DBS STN: 15 subjects with PD with already implanted and optimized DBS bilaterally in the STN 

were recruited from the DBS program within the Movement Disorders Clinic at WUSM. DBS 

STN patients were males or females between 50 and 70 years of age who met the criteria for 

clinically definite PD [142]. Participants were recruited at least 2 months after DBS has been 

implanted, and parameters have been clinically optimized. Patients have already passed clinical 

screening for neurological and psychiatric comorbidities, including dementia at our site. From this 

group, we also excluded those with clinically determined dementia manifesting after surgery, 

significant complications of surgery (e.g., stroke), inability to tolerate off medication or off DBS 

states, or any other condition which could interfere with testing (e.g., severe visual loss, non-

English speaking, illiteracy).  
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Controls: 15 controls matched the age and sex distributions of the DBS groups. Exclusions 

included any significant past or current neurologic or psychiatric diagnosis or any other condition 

which could interfere with testing (e.g., severe visual loss, non-English speaking, and illiteracy) 

and contraindications for MRI. 

4.2.2 Study design 

To determine the ability of HD-DOT to measure the impact of DBS STN on within and between 

network FC, we scanned the normal controls and PD patients with DBS STN, respectively. 

Controls and PD patients were scanned with HD-DOT and assessed with cognitive, mood, and 

motor tests all on the same day. 

We collected data from PD patients with HD-DOT with DBS on and off, order counterbalanced 

across subjects, after 12 hours of withdrawal of PD medications. After setting stimulators to the 

determined condition, a 45 min wait was enforced before testing or scanning begins. The purpose 

of this wait time was to reach a relatively steady state of clinical and behavioral symptoms [115]. 

This wait time is also consistent with previously collected behavioral and PET blood flow response 

data [144, 145]. For each condition, scanning consisted of visual, auditory, and resting state runs. 

Quantitative motor, cognitive, and mood testing were performed after the scan is completed and 

before changing the DBS conditions. Patients and testers were blind to DBS conditions. However, 

due to the visible nature of some symptoms, those present at the testing session were not 

completely unaware. The data were analyzed blind to group and DBS conditions. 

Controls also underwent MRI/fMRI scanning. For the DBS groups, we used pre-surgical research 

quality MRIs, which are collected on most DBS patients. For controls, we obtained research MRI 

scans. The resing state fMRI data from controls were used to compare to the control HD-DOT 
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data. We did not do the same with the patient fMRI data since they were acquired many months to 

years prior to their HD-DOT data collection. 

For each block, HD-DOT data were acquired during visual stimulation (block design with 

flickering left and right checkerboard, 5 min), auditory stimulation (block design with listening to 

words, 3.5 min), and 30 min of resting state (3x10 min blocks of fixating on a crosshair). The 

entire block took 45 min to perform (Figure 4.2). During scanning, movement was monitored with 

digital-video, eye tracking, and accelerometers. After scanning, kinematic, and Unified Parkinson 

Disease Rating Scale (UPDRS) assessments were also acquired. 

 

 

Figure 4.2 DOT-DBS study design. Each scan block takes 45 min, with a 45 min wait in between blocks. 

Resting and task runs will be interspersed within each block. Controls performed 3 blocks with the same 

measures (except for clinical motor ratings) and timing. 

 

4.2.3 HD-DOT system 

We have used a continuous-wave HD-DOT system with a wide field of view compared to other 

common fNIRS systems that enables mapping visual, auditory, default mode network, dorsal 

attention, and motor cortices [55]. Although our imaging cap does not cover all parts of the motor 

and frontal cortex, it has a large spatial resolution for the areas it covers compared to other fNIRS 

systems, and it enables 3D tomography and depth profiling in the brain. This HD-DOT system has 
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96 sources (LEDs, at both 750 and 850 nm) and 92 detectors (coupled to avalanche photodiodes, 

APDs) that are shining light to the head at multiple separations from the detectors (1.3, 3.0, 3.9, 

4.7, and 5.1 cm for the first five nearest neighbor separations), which enable depth profiling (Figure 

4.3C, D). The large number of overlapping measurements from each area of the brain increases 

the spatial resolution. 

The first step of the scans is locating the imaging cap on the participant’s head by combing the 

optodes through their hair to increase the optode-scalp coupling. Real-time in-house software was 

used to adjust or fix the poorly connected optodes. 

 

 

Figure 4.3 HD-DOT measurement array and field of view. (A) Adult HD-DOT cap structure illustrating 

the optical fibers, CT image of an implanted DBS STN in one PD subject, an overview of the sources and 

detectors on the head anatomy. (B) The flat distribution of the sources and detectors in the HD-DOT field 

of view. Black lines indicate source-detector (SD) pairs that have a standard deviation of less than 7.5%. 

(C) HD-DOT sensitivity profile. (D) HD-DOT field of view spatially registered on the cortical view of the 

MNI atlas. 
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4.2.4 Functional MRI (fMRI) system 

fMRI data were collected on controls using a research-dedicated Siemens 3.0T Magnetom Prisma 

system (Siemens Medical Solutions, Erlangen, Germany) with an iPAT compatible 20-channel 

head coil. Blood Oxygenation Level Dependent (BOLD) sensitized fMRI data with TR = 1230 

ms, TE = 33 ms, voxel resolution = 2.4 mm3, FA = 63 degrees, with a multi-band factor of 4 for 

both resting state functional connectivity MRI (3 runs each 10 min) and hearing words (1 run, 3.5 

min) and visual (1 run, 5 min) tasks were acquired for all subjects. (i) a 3D MPRAGE (T1) 

sequence (TR=2500 ms, TI=1070 ms, TE=2.9 ms, FA=8°, 1.0 mm3 voxels, *6:09-8:42 min); (ii) 

a T2-weighted sequence (TR=3200 ms, TE=564 ms, 1.0 mm3 voxels, *4:42-6:51 min); (iii) a 

BOLD sensitized fMRI (TR=1230 ms, TE=33 ms, 2.4 mm3 voxels, 11:10 min) for both task and 

resting state fMRI, and (iv) an asymmetric spin echo (ASE) field map (TR=6470 ms, TE=60 ms, 

2.4 mm3 voxels, 0:26 min). For T1 and T2 scans, short 3D echo-planar imaging volumetric 

navigators are embedded in a long 3D sequence, and the resulting image volumes are registered to 

provide an estimate of the subject’s location in the scanner at the cost of less than 500 ms, ∼ 1% 

change in contrast, and ∼3% change in intensity. Minimum and maximum acquisition times are 

provided; actual times depend on the amount of motion correction required.  

4.2.5 Paradigms (fMRI and HD-DOT) 

Hearing words (HW): Subjects were seated for HD-DOT or supine for fMRI and instructed to 

fixate on a white crosshair against a gray background while listening to words. The HW task was 

administered as a block design. Each trial consisted of 15 seconds of hearing words followed by 

15 seconds of silence. Each run included 6 trials. 

Visual left and right checkerboards: Subjects were seated for HD-DOT or supine for fMRI and 

instructed to fixate on a white crosshair against a gray background while left and right visual 

stimuli were appearing in the lower left and lower right of their field of view [17]. The visual task 
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was also administered as a block design. Each trial consisted of 10 seconds of left or right visual 

checkerboard stimulation followed by 24 seconds of rest. Each run included 5 left and 5 right 

visual trials. 

Resting state: Resting state data were collected over 10 min runs while subjects were seated for 

HD-DOT or supine for fMRI and visually fixating on a white crosshair against a gray background. 

Subjects were asked to stay awake and still during data acquisition. 

4.2.6 Data processing 

 fMRI and HD-DOT data processing streams are harmonized as much as possible to facilitate 

direct comparisons. 

4.2.6.1 HD-DOT pre-processing 

All HD-DOT data were processed using the NeuroDOT toolbox following the flowchart in Figure 

A.1 [49, 94, 95]. HD-DOT light intensity measurement data were converted to log-ratio (using the 

temporal mean of a given SD-pair measurement as the relative baseline for that measurement). 

Noisy measurements were empirically defined as those with greater than 7.5% temporal standard 

deviation in the least noisy (lowest mean GVTD) 60 seconds of each run [45] and were excluded 

from further processing. Then the data were band-pass filtered (0.02-1 Hz cut-off for task-based 

datasets, 0.009-1 Hz for resting state datasets) to remove low-frequency drifts and high-frequency 

noise. To serve as an estimate of the global superficial signal, we computed the average of all 

remaining first nearest neighbor measurements (13 mm SD-pair separation). This global signal 

estimate was regressed from all measurements [21]. After that, all adult task-based data were low-

pass filtered to 0.5 Hz cut-off to remove the cardiac oscillations [28, 46-48]. All resting state data 

were low-pass filtered to 0.08 Hz to remove the cardiac oscillations and to narrow the signal to the 

spontaneous, low-frequency fluctuations of the signal following the previous recommendations 
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for functional connectivity analysis in both adults and infants [49-52]. After bandpass filtering, 

following our motion detection optimization strategy using the global variance of the temporal 

derivative (GVTD) technique (explained in chapter 3), we excluded the time points (for resting 

state) and blocks (for hearing words and visual tasks) that passed a lenient motion threshold [29].  

Following that, the time-courses were then down-sampled from 10 Hz to 1 Hz and then used for 

image reconstruction. Light modeling was computed using the subject-specific absorption models, 

details described in §2.5.6 and §4.2.8 [71]. Volumetric movies of relative changes in absorption at 

750 nm and 850 nm were reconstructed after inverting the sensitivity matrix using Tikhonov 

regularization and spatially variant regularization [49]. Relative changes in hemoglobin 

concentration were obtained via a spectral decomposition of the absorption data, as previously 

described [49, 50]. 

4.2.6.2 fMRI pre-processing 

fMRI pre-processing was performed using in-house 4dfp tools [96]: 1) correction for systematic 

slice-dependent time shifts; 2 elimination of odd-even slice intensity differences due to interleaved 

acquisition; 3) rigid-body realignment for head motion within and across runs; 4) normalization of 

signal intensity to a mode value of 1000. Signal intensity normalization enables identification of 

artifact by evaluation of the temporal signal derivative. Atlas transformation was computed by the 

composition of affine transforms derived by a sequence of coregistration of the fMRI volumes via 

the T2-weighted and MP-RAGE structural scans. Head motion correction and atlas transformation 

was applied in a single resampling step that generated volumetric time series in (3mm)3 atlas space. 

Data underwent spatial smoothing (6 mm full width at half maximum in each cardinal direction) 

and temporal band-pass filtering (0.02-0.5 Hz for the HW task and 0.009-0.08 for resting state). 

Nuisance regressors included six rigid body values derived from head motion correction, white 
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matter, and CSF signals and the mean whole-brain signal. Motion artifacts were reduced in resting 

state data through DVARS-based motion scrubbing using session-specific thresholding 

expressible as 𝑔𝑡ℎ𝑟𝑒𝑠ℎ = 𝜅̃ + 2.5𝜎𝐿 similar to the methods we developed for HD-DOT [97]. The 

fraction of censored frames was 21% ± 12%. 

4.2.7 Motion and tremor censoring 

We used GVTD for motion censoring by creating a temporal mask that excluded the time points 

above a motion threshold to provide a more reliable image series (Figure 4.5B). GVTD censoring 

increases the similarity of the HD-DOT with fMRI results by decreasing the false positives (Figure 

3.9). In addition, wireless accelerometers (Yost labs 3-space sensor) on the cap were used to 

provide an independent measure of head motion (Figure 4.5A). We validated the GVTD-based 

motion censoring technique by comparing it with the accelerometer-based motion censoring and 

evaluating the quality of the resulting  FC HD-DOT maps. While both are strongly correlated, 

GVTD is superior to the accelerometer in quantifying motion artifacts in the HD-DOT data since 

it directly measures the effects of motion on the data (Figure 3.4). 

4.2.8 Subject-specific light modeling 

To locate the cap on the head, we measured the distance between fiducials on the optode array and 

the head using an automated photometric approach. Anatomical landmarks based on the 10/20 

international system (including nasion, inion, pre-auricular points, and Cz) were used for fiducials. 

To ensure adequate optode coupling across the cap, a display presented real-time readouts of the 

average light level in each optode and noise level of each source and detector pair. If either metric 

were poor (an optode with light level <1% of average values, or noise levels >7.5% cutoff), 

targeted individual fitting of the fibers is used to improve data fidelity. Measurements were 

acquired to a depth of 2 cm from the scalp (>1 cm into cortex) with a smooth sensitivity profile. 
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To generate an accurate model of light propagation in a subject's head, the shape and internal 

structure of the head and the placement of sources and detectors were estimated. The HD-DOT 

sensitivity for a given subject was modeled using head anatomy obtained from the subject's MRI 

or CT scan, according to §2.5.6 (Figure 4.4). 

 

Figure 4.4: HD-DOT head modeling steps in DBS patients. (A) During the HD-DOT imaging session, a 

multi-camera system captures the location of fiducials on the head and the imaging array to generate a 

subject-specific light model. (B) Post-surgical CT images provide DBS location in the co-aligned MRI 

volume (cyan: DBS leads; red: skull). (C) Subject-specific head models of optical properties using MRI-

based anatomy obtained before the DBS implantation. 

 

4.2.9 Statistical analysis 

4.2.9.1 Hearing words and visual task response mapping 

The quantitative response magnitude was calculated with a standard general linear model (GLM). 

The design matrix was constructed by convolving the experimental design with a canonical HRF 

using a two-gamma function fitted to the in-vivo HD-DOT data, as described in [98]. Extracted 
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hemodynamic response estimations for each subject were then combined in a simple group-level 

fixed effects analysis [99]. Fixed effect analysis was adopted as we expect the variance in our 

dataset to be most strongly driven by scan-to-scan variability rather than from subject-to-subject 

differences. 

4.2.9.2 Seed-based correlation analysis of functional connectivity in resting state data 

Seed regions were 5 mm radius spheres centered on coordinates used in our previous study [49]. 

Six seeds representing the auditory (AUD.), visual (VIS.), somatomotor (MOT.), dorsal attention 

network (DAN), and frontoparietal network (FPC), and default mode network (DMN) were 

selected within the HD-DOT field of view. Correlation maps were generated by calculating the 

Pearson correlation between the time-series of each seed region with all other voxels in the field 

of view. Correlation maps in individuals were Fisher’s z-transformed and averaged across subjects. 

4.2.9.3 Functional connectivity analysis 

Resting state data from fMRI and HD-DOT were used to calculate correlational strength within 

and between resting state networks (RSNs). While there are several ways of calculating functional 

connectivity [146], here we used seed correlation approaches, commonly used in fMRI [147, 148] 

and fcDOT [58]. We calculated seed-based maps of FC by computing the zero-lag correlation 

between the time-courses of seed regions (5 mm radius spheres, placed in key regions for each 

network (explained in §4.2.9.3). Maps of Pearson-r correlations were generated separately for each 

subject and then transformed to Fisher’s z maps before averaging across subjects. Similarly, seed-

seed correlation matrices were generated by correlating the time-course of each seed to every other 

seed of interest. Group correlation matrices are generated by averaging across subjects. Resting-

state FC was then compared between groups and conditions [137, 149]. 
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4.2.10 Behavioral measurements 

4.2.10.1 Motor measurements 

 The Unified Parkinson Disease Rating Scale III (UPDRS motor subscale) [150] was performed 

by a trained, validated, blinded rater and will be videotaped for quality control review. Kinematics 

measures were obtained using a wireless triaxial accelerometer/gyroscope (Wireless Motion 

Sensor, Great Lakes Neurotechnologies). Specific motor symptoms were measured before 

scanning (e.g., postural and action tremor, bradykinesia) and monitored during scanning. We 

assessed the movement speed during the UPDRS3 finger tapping, and hand rotation tasks using 

the gyroscope. The amplitude and frequency of any tremor was assessed using accelerometry 

measures [151-156].  

4.2.10.2 Cognitive measurements 

 For characterization and screening purposes, PD patients were tested with the Montreal 

Cognitive Assessment (MoCA; a brief screening instrument for mild cognitive dysfunction, those 

with scores < 22 were excluded, 10 min [157, 158]) and the Wechsler Test of Adult Reading 

(WTAR, a measure of premorbid intellectual functioning, 5 min [159]). 

4.3 Results 

4.3.1 The effects of motion censoring on resting state FC mapping 

Non-head motion. The subject motion may not always be captured by head movement parameters. 

To avoid the confound that symptoms (e.g., foot tremor) or other movements may have on brain 

activation analyses, we monitored movements in the rest of the body through direct observation, 

videotaping with subsequent review and time-synched to imaging. Through these methods, we 

identified the subjects that were having movements in different conditions and time points and 
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censored the imaging data as needed to avoid contaminated imaging findings. Eye movements 

were also monitored for wakefulness, which also lead to censoring data. 

Head motion. Head motion induces artifact in most neuroimaging techniques, leading to lower 

signal-to-noise ratio and higher false-positive rates and has been rigorously addressed following 

motion detection and motion censoring methods presented in chapter 3 [30, 31, 100, 170]. fMRI: 

Data were subjected to frame censoring (“scrubbing”) based on the frame-to-frame DVARS 

measures [30]. fMRI runs with fewer than 30 uncensored frames were discarded.  HD-DOT: In 

optical imaging, head motion changes the coupling of the optodes to the scalp and increases the 

variance across measurements and voxels time-traces. We used this property to identify the 

artifacts by setting a threshold on the global variance of the temporal derivative (GVTD) of the 

signals across the whole field of view. The large number of source-detector (SD) measurements in 

HD-DOT makes GVTD a fast and unique technique for motion detection. We used GVTD for 

motion censoring by creating a temporal mask that excluded the time points above a motion 

threshold to provide more reliable images (Figure 4.5C). GVTD-based censoring increases the 

similarity of the HD-DOT maps with fMRI by decreasing the false positives (Figure 3.8 and 3.9, 

4.5E). In addition, wireless accelerometers (Yost labs 3-space sensor) on the cap were used to 

provide an independent measure of head motion. We validated the GVTD-based motion censoring 

technique by comparing it with the accelerometer-based motion censoring and evaluating the 

quality of the resulting functional HD-DOT maps. While both are strongly correlated, GVTD is 

shown to be superior to the accelerometer at quantifying motion artifacts in the HD-DOT data 

(Figure 3.4) since it directly measures the effect of motion on the data, and hence, we used GVTD 

for censoring the motion artifacts in this study.  
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HD-DOT correlation matrices for a group of 4 adults show significant improvements in the 

bilateral pattern in the functional connectivity matrix in the expected areas (black ovals) after 

GVTD censoring (Figure 4.5D). Example seed maps for default mode network (DMN), motor 

(Mot), and Visual (Vis) also show more localized connectivity with smaller false positives after 

censoring (Figure 4.5.E). 

Overall, we had sufficient data that survived motion scrubbing for resting state analyses (DBS off 

= 338 of 460 min, 73%; DBS on = 350 of 690 min, 51%; Controls = 866 of 1130 min, 77%). These 

data suggested that we could acquire enough high-quality data in groups and conditions to perform 

reliable analyses. Task data yield lower percentage of high-quality data because data are excluded 

block-wise rather than frame-wise (DBS off = 29.2 of 135 min, 22%; DBS on = 27 of 173.5 min, 

16%; Controls = 115.5 of 338 min, 34%). 
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Figure 4.5: Effects of motion censoring on resting state FC HD-DOT data. Here we demonstrate the 

improvements when using a temporal mask based on the global variance of the temporal derivatives 

(GVTD). (A) Participant wears an HD-DOT cap with an accelerometer. (B) The head angular rotation 

(blue) time-trace is highly correlated with the (C) GVTD (black) time-trace. GVTD censoring excludes the 

time points that pass the noise threshold (red line). (D) HD-DOT correlation matrices for the seed locations 

show significant improvements in the bilateral pattern in the functional connectivity matrix in the expected 

areas (black ovals) after GVTD censoring. (E) Seed maps for default mode network (DMN), motor (Mot), 

and Visual (Vis) are shown before and after censoring. 

 

Another example of the effect of motion censoring in HD-DOT data is an increase in the similarity 

of the HD-DOT FC maps to those of fMRI (Figure 3.9). Here, we show the FC seed maps from 

Figure 3.9 before and after GVTD-based motion censoring (Figure 4.6), to emphasize the 

importance of performing motion censoring for the PD DBS resting state FC analysis using HD-

DOT [29]. 
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Figure 4.6: Motion censoring increases the similarity of HD-DOT FC maps to fMRI. Five columns 

represent the seed maps for visual (VIS), auditory (AUD), somatomotor (MOT), dorsal attention (DAN), 

and frontoparietal (FPC) networks. (A) fMRI maps based on 8 subjects. HD-DOT maps (B) before motion 

censoring. (C) after motion censoring, (D) Spatial similarity was computed as the Fisher’s z-transformed 

spatial correlation between the HD-DOT and fMRI FC maps, evaluated over the HD-DOT field of view. 

The similarity of HD-DOT results with fMRI increases after motion censoring. 

 

4.3.2 Cross-modality comparison in mapping single subject task activations 

Using subject-specific light modeling and motion censoring, we were able to perform more reliable 

single subject mapping using HD-DOT. Here is an example of mapping a single subject hearing 

words and visual activations for a control and a PD subject with DBS STN. The maps for the 

control subject match the ones for the same subject using fMRI. 
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Figure 4.7: More reliable HD-DOT single subject maps using subject-specific light models. (A) Hearing 

words and (B) left and right visual checkerboard activation maps for a control using fMRI (first row) and 

HD-DOT (second row). The same sagittal, coronal, and transverse slices were chosen for fMRI vs. HD-

DOT. The same maps are shown for a PD subject with DBS STN. 

 

4.3.3 Mapping auditory and visual task activations 

We validated the feasibility of imaging people with DBS STN and older controls with both hearing 

words and visual tasks (Figure 4.8). We show the fMRI gold standard maps collected only for the 

control group, and the HD-DOT maps collected for both control and PD groups evoked 

anatomically appropriate patterns in all groups (Figure 4.8), consistent with our previous studies. 

These results successfully show HD-DOT’s image acquisition, data quality assessment 

methodology, and data processing ability in mapping cortical activations to well-known tasks. 
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Figure 4.8: Task responses in controls with HD-DOT and fMRI and in PD with HD-DOT. (A) Hearing 

words vs. rest, (B) right and left side checkerboards vs. rest. 

 

4.3.4 Mapping resting state FC 

We also validated the presented data quality measures in chapter 3 in resting state results from 

older controls and PD subjects. Figure 4.9 shows resting state seed maps (explained in §4.2.9.2) 

and FC matrices (explained in §4.2.9.3) for matched fMRI/HD-DOT data for controls and only 

HD-DOT for PD subjects. In the next sections, we assess the between-group differences for 

controls and PD with DBS. 
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Figure 4.9: Resting state FC in controls with HD-DOT and fMRI and in PD with HD-DOT. (VIS-visual; 

AUD-auditory; MOT-motor; DAN-Dorsal Attention; FPC-Frontal Parietal; DMN-Default Mode. Black 

disks: anatomical location of each seed. 

 

 

4.3.5 DBS STN within and between network FC 

We assessed the between-group differences by defining a larger seed set in each of the visual, 

auditory, somatomotor, DMN, and FPC networks. Our results show that PD subjects with DBS 

off had reduced within network FC in somatomotor, visual, and auditory RSNs and between 

network FC with somatomotor and auditory RSNs, as found by Gratton et al., [31] (Figure 4.10, 

top row). We also observed that somatomotor to FPC network connectivity was greater in PD than 

controls. Finally, turning DBS on, appears to alter FC within and between network connectivity 

for somatomotor, auditory, DMN, and other RSNs (Figure 4.10, bottom row). Interestingly, the 

region identified as having decreased blood flow in our activation study (explained in §4.3.6 and 

Figure 4.11) was included in the somatomotor (SM) seed set (Figure 4.10; red arrow); DBS 

decreased FC in this region. Importantly, we have not applied any statistical tests to these 

comparisons, due to our limited sample size and so cannot definitively interpret these patterns. 
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With the data that will be collected in the next phase of this study, however, we will be able to 

confirm or rule out these initial observations and test our explicit hypotheses.  

 

Figure 4.10: Within and between network FC differences in PD DBS using HD-DOT. FC Matrices for 

groups, conditions, and differences. Diagonal boxes indicate within network FC, off-diagonals are between 

network FCs. Brighter colors indicate higher correlations between seeds in networks. (A) Controls; (B) PD 

(DBS off). (C) Difference between PD and Controls. Blue indicates seeds that have lower FC in PD than 

in controls; Red/yellow indicates seeds that have higher FC in PD than controls. (D) PD DBS on; (E) PD 

DBS off (repeated to aid visual comparison); (F) Difference between DBS on and off. Blue indicates seeds 

that have lower FC in DBS on than in off; Red/yellow indicates seeds that have higher FC in DBS on than 

in off. The red arrow indicates the region in the SM network identified as having decreased blood 

flow in our activation study (explained in §4.3.6). 

 

4.3.6 DBS STN activation 

In order to demonstrate HD-DOT’s ability to detect cortical activations induced by DBS STN, we 

scanned 14 DBS STN patients with HD-DOT while their DBS was turned on and off in a classic 

block design, similar to the Min et al. paper [171]. To make the testing maximally tolerable for 
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these patients, they watched a 10 min movie during the study, medications were not withdrawn, 

and the left DBS was in the on condition throughout. The right DBS was turned on and off 

repeatedly (n = 22) in the following pattern: 8-sec ramp up, 18 sec on, 16-24 sec off (off period 

randomly jittered between 16 and 24 sec (Figure 4.11A). Clinically optimized settings were used 

for the on conditions. Data were compared to a set of 5 healthy adult controls who were also 

scanned watching the same movie clip for the same amount of time. Data were censored for 

movement detected with the overlap of the temporal masks made by 1) accelerometers on the HD-

DOT cap, 2) observations of the full-body video, and 3) GVTD-based motion censoring. On/off 

blocks were compared within 5 DBS STN patients with no overt symptoms in the on or off states, 

and identical time-frames were compared in Controls. Results (Figure 4.11) show that DBS 

decreased oxygenated hemoglobin in the right primary motor cortex in patients. 
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Figure 4.11: DBS activation study. HD-DOT-measured cortical response to block design right DBS (A) in 

5 patients (B) compared to 5 control subjects analyzed similarly (C; no DBS). A direct comparison of 

groups isolated the region (D). (E) Time-courses from the region show decreased oxygenated hemoglobin 

in on vs. off DBS, whereas controls remain stable. 

 

The low survival rate of this group is mainly due to the tremor during the DBS off periods and 

short adjustment times for the patients (< 30 s). We performed a variance analysis on the on minus 

off maps for the patients with no tremor (Figure 4.12A) and the same on minus off maps for the 

subjects with tremor (Figure 4.12B) and found that although the tremor group data passed the 

common motion censoring using GVTD, the tremor caused a very high spatial variance across the 

field of view and therefore, we excluded those subjects from the final group analysis. Further 

investigation of the effect of tremors is needed when a larger sample size is available. 
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Figure 4.12: Increased spatial variance in HD-DOT maps in PD DBS with tremor. HD-DOT-measured 

cortical response to block design right DBS for on blocks minus off blocks (A) in 5 patients with no tremor 

compared to (B) 4 patients with tremor, shows the importance of both tremor and motion tracking in data 

processing of PD patients. 

 

4.4 Discussion 

4.4.1 Regional cortical effects of DBS STN 

DBS STN affects cortical function in a clinically significant and anatomically plausible manner in 

PD and ET. DBS STN-induced changes in regional cerebral blood flow (rCBF) have been 

measured with PET by our collaborators and others [119, 145, 172-176]. This approach assumes 

that changes in rCBF reflect changes in neuronal activity [177-181] in target synaptic fields, 

including local interneurons [177-179, 182, 183]. A previous PET study found that DBS STN 

decreases blood flow in cortical regions downstream from the site of stimulation [130, 145]. In 

addition, the degree of DBS STN-induced cortical blood flow changes correlated with the degree 

of motor benefit or cognitive impairment induced by DBS [119, 172]. However, the behavior is 

known to be mediated by dynamic brain networks, not single, static regions, so these analyses 

likely provide an incomplete view of the brain’s dynamic and integrated response to DBS. Recent 

reviews have emphasized the idea that DBS profoundly alters dynamics between distributed 
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interconnected cortical brain networks [116, 130-132]. Based on evidence from EEG, limited 

fMRI, and animal studies [131, 184-187], it has been suggested that a primary mechanism of DBS 

STN’s effects may be to modulate or interfere with functional relationships in downstream cortical 

regions, driving behavioral responses [130].  

4.4.2 Mapping cortical networks in PD  

Previous studies have described resting glucose metabolism patterns measured with PET, that 

distinguish groups, change with DBS, or that correlate with cognitive or motor impairment [174-

176, 188]. This approach has been useful but is limited in terms of its temporal resolution (each 

scan lasts several hours), the ability to assess FC, and the ability to easily investigate multiple 

conditions (e.g., DBS settings) in an individual due to radiation exposure and time constraints. 

Resting state functional connectivity using fMRI, a more flexible methodology free of these 

limitations, is sensitive to the intrinsic spontaneous neural activity correlated on a time scale of 

tens of seconds (frequencies below 0.1 Hz) within constellations of regions distributed over widely 

separated parts of the brain. The corresponding topographic patterns are known as resting state 

networks (RSNs) and can be measured in the cortex equally well via fMRI BOLD or by HD-DOT 

[20, 55, 58, 135].  

The measurement of RSNs within disease states and in response to treatments has led to profound 

insights into the neuropathophysiology underlying behavioral symptoms [189-193]. In PD, results 

from past studies have been varied, likely due to between-subject clinical heterogeneity, small 

samples, and limited motion control [194]. However, a recent comprehensive examination of RSN 

abnormalities in PD applied cutting-edge and converging analysis techniques and rigorous quality 

control measures to a large sample of non-demented PD patients, scanned while off medications, 

and controls. Analyses revealed reduced between-network FC involving predominantly cortical 
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RSNs (somatomotor, visual, auditory, salience, and frontoparietal) and reduced within-network 

FC in predominantly somatomotor, visual, auditory, thalamic, and cerebellar networks [31]. Some 

of these effects correlated with cognitive and motor dysfunction in PD. Notably, although there 

were some differences in subcortical-cortical FC, most of the largest differences were found in the 

cortex; striatal RSNs were not abnormal [31]. Others have suggested that the abnormality of 

functional networks measured before DBS electrodes are implanted can predict the clinical 

response patients experience to DBS [128, 131]. These studies suggest the importance of 

functional networks in PD and DBS responses but do not explore DBS-induced change within and 

between FC networks. 

4.4.3 Cortical networks in DBS STN 

Several groups have attempted to measure DBS-induced changes in FC using fMRI in small 

samples of DBS subjects on a low strength magnet (1.5T) [187, 195-197]. The largest of these 

1.5T studies had 13 patients and found that DBS STN increased FC between the left and right 

motor cortex and between the motor cortex and thalamus and cerebellum [187]. However, data 

were collected only 1-3 days post-surgery and so could be confounded by microlesion or other 

surgical effects. In addition, significant signal artifact around the wires and electrodes limited 

analyses. Another study reported preliminary safety data from 3T fMRI [129]. Although no 

adverse events occurred and there was no evidence of heating at the tip of the electrode, the authors 

concluded that there was “significant artifact” from the electrode leads that impacted functional 

data quality and that more extensive testing for safety would be needed before this method could 

be recommended [129, 198, 199]. Finally, one study on sedated pigs implanted with DBS STN 

electrodes used fMRI to measure the impact of short bursts of unilateral DBS STN in a quasi-

event-related design (repeating trials of 6s DBS on, 120s DBS off). For the hemodynamic response 
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to DBS on, they found increased BOLD response in many ipsilateral cortical regions 

(somatomotor, prefrontal) and contralateral temporal cortex, but they did not perform functional 

network analyses [171]. Thus, despite strong interest in applying fMRI to these questions, we are 

currently unable to use it safely and effectively to measure DBS-influenced network properties in 

humans. 

 

Therefore, as we discussed in this chapter, HD-DOT could be used as a surrogate to fMRI in the 

PD DBS population for answering all these questions in a safe and artifact-free environment. 

Our results (Figure 4.10) in this chapter show that DBS decreased oxygenated hemoglobin in the 

right primary motor cortex in patients, similar to the previous PET study and in the same region 

(although opposite direction) of the sedated pig study [171] (Notably, anesthesia is known to 

reverse regional blood flow effects of pharmacological challenges [200]). The corresponding area 

in controls did not change. These new results suggest that HD-DOT can detect the expected 

regional decrease in blood oxygenation predicted by PET blood flow imaging, which is consistent 

with the known neurophysiology of STN-thalamocortical pathways. 

We showed that DBS STN affects cortical blood flow/hemodynamics using HD-DOT and 

cognitive function [119, 145, 201], provided extensive and varied data on the validity and 

feasibility of HD-DOT for measuring resting state FC and task-induced responses in controls and 

PD patients with implanted DBS STN in different DBS conditions [20, 55, 136, 202]. Our 

preliminary data suggest that HD-DOT can capture the reduced within and between network 

cortical FC in PD, and their response to DBS STN, and the fact that the utility of our movement 

monitoring and correction procedures for HD-DOT analyses are valid. 
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4.4.4 Limitations and future directions 

HD-DOT cannot measure subcortical or cerebellar activity. However, recent fMRI work in PD 

suggests that cortical RSNs downstream from subcortical pathology are the most prominently 

affected compared to controls [31]. Future studies could consider combining HD-DOT with PET 

for complementary subcortical blood flow or pre-surgical recording from the STN and cortical 

functional connectivity responses to DBS. Furthermore, whole-brain fMRI data on PD subjects 

(pre-surgically) could allow inferring the subcortical nodes that are most related to RSNs affected 

by DBS conditions.  

Our overarching goal in this project is to define the cortical functional network signature of DBS 

STN and its relationship to behavior. Results could help shape new optimization procedures for 

DBS STN parameters, possibly identify cortical targets for less invasive neuromodulation (e.g., 

transcranial magnetic stimulation, TMS) [128, 131] and reveal fundamental properties of cortical 

network plasticity in response to up-stream perturbations [203]. Future investigations could 

leverage this groundwork, identifying unique vs. overlapping DBS-induced network using varying 

DBS STN parameters (e.g., contact, voltage, frequency, pulse width) or DBS locations (e.g., 

globus pallidus internus), or in other movement disorders (e.g., essential tremor, dystonia), or over 

longer-term plasticity (e.g., slow clinical response to DBS for dystonia). In addition, HD-DOT 

could be combined with methods that reflect different aspects of neurophysiology (e.g., PET, 

microelectrode recording) to explore neurobiological properties driving cortical hemodynamics 

(e.g., firing patterns of STN neurons, subcortical changes in blood flow, or glucose metabolism) 

or with other forms of stimulation (e.g., TMS; tDCS). Finally, with continuing advances in 

wearability, portability, and automation, HD-DOT could be integrated into clinical programming 

procedures as an objective biomarker of outcomes, allowing for faster and more objective 

optimization of DBS settings. 
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4.5 Conclusion 
In summary, in this chapter, I applied the data quality assessment measures presented in chapter 3 

on a high-motion clinical population with DBS implants. We not only mapped the evoked 

responses in these subjects’ brains during the well-known auditory and visual tasks but also 

validated the efficacy of our newly developed data quality and motion censoring methods by 

finding agreements between the results obtained using HD-DOT with the ones reported in previous 

fMRI and PET studies with similar experimental designs [31]. We conclude that HD-DOT’s data 

processing pipeline is now more equipped to produce clinically important and physiologically 

meaningful results in patients with DBS implants with high-motion levels. 
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Chapter 5: Mapping Neural Mechanisms 

Underlying Speech Perception in Listeners 

with Cochlear Implants Using HD-DOT3 
 

5.1 Introduction 
The neural correlates underlying the perception of the spoken language has been investigated in 

normal-hearing adults mainly using positron emission tomography (PET) [204], functional 

magnetic resonance imaging (fMRI), and electrocorticography (ECoG). However, the 

organization of cortical language networks in listeners with cochlear implants (CIs) with 

tremendous variability in speech understanding is unknown because the current gold standard 

neuroimaging tools are limiting for this population [37, 205].  

Cochlear implants compensate for the dysfunction in the cochlea by stimulating the auditory nerve 

and enabling their users to perceive sounds [32, 33]. However, due to the crosstalk between the CI 

electrodes, there is a lack of spatial selectivity in the internal representation of the sound frequency 

content [34, 35]. This distortion of the sound contributes to the tremendous variability in how well 

listeners with CIs understand the spoken speech [36, 37].  

Multiple studies have shown that acoustically degraded speech in normal-hearing adults increases 

cognitive demand [206-208], which contributes to increased listening effort [206]. Thus, in the CI 

users with a degraded sound quality similar phenomenon might occur. However, studying the 

neural organization of the CI listeners have been limited by contraindications of these metal 

implants with the MRI magnet and the artifacts due to their electrical stimulation in EEG and 

MEG.  

 
3 A version of this chapter is being prepared for submission in a peer-reviewed journal. 
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Functional near-infrared spectroscopy (fNIRS) provides a quiet, non-invasive, and compatible tool 

with metal implants for measuring the cortical neuronal activity during various naturalistic settings 

and listening scenarios [9, 10, 209-218]. However, one of the main limitations of the standard 

fNIRS imaging is its low spatial resolution and small field of view. Recent progress in the HD-

DOT instrumentation with hundreds of sources and detectors overcomes these two limitations and 

enables a tremendous increase in the spatial resolution and field of view for simultaneously 

mapping the neuronal activity in multiple cortical areas [49, 219, 220]. In this study, we have used 

an HD-DOT system that covers parts of the auditory, occipital, motor, and frontal areas. This 

device has been validated in multiple studies by our lab in successfully mapping the cortical 

activity during hierarchical language paradigms and naturalistic stimuli in control adults [22, 49, 

98, 220-222].  

The goal of this chapter is to assess the degree of auditory activation in listeners with CIs compared 

to normal hearing individuals and to determine the extent to which regions beyond auditory regions 

are recruited for speech perception in the CI user group. 

To this goal, we mapped the neural mechanisms underlying speech perception in a group of 18 CI 

listeners and 18 age and gender equivalent controls using our HD-DOT device with 96 sources 

and 92 detectors [20]. We used a variety of speech paradigms, including single words, noise-

vocoded speech, sentences, and audiovisual movie stimulus, and performed region of interest 

(ROI)-based statistical analysis across the control and CI group for quantifying the between-cohort 

differences. Based on our preliminary observations, we selected the left and right auditory and the 

left dorsolateral prefrontal cortex (DLPFC) as our ROIs. We localized the DLPFC ROI using an 

independent non-auditory spatial working memory task in a subset of the subjects. We also used a 
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separate resting state fMRI dataset to define the left and right auditory ROIs by performing a seed-

based analysis on that dataset.  

Our results showed that right-ear CI users had decreased activation in their left and right auditory 

cortex, and they also recruited their left DLPFC during speech perception. Our study provides 

supporting evidence following the hypothesis that compensatory mechanisms in the frontal cortex 

are needed to understand the degraded acoustic signal in the CI users [206, 208, 223]. 

5.2 Methods 

5.2.1 Dataset 

We compared brain activity in 18 CI patients (age 58.42 ± 12.41 y, 11f) with a group of 18 age 

and sex equivalent controls (age 54.77 ± 13.06 y, 11f). Patients all had unilateral right-side CI, and 

controls had normal hearing. The right-side CI users were selected to avoid blocking the optodes 

by the CI’s external transducer on the left side; based on the previous studies, the left hemisphere 

is more dominantly active during language processing. These CI listeners either had normal 

hearing in their left ear or were using their hearing aid during the scan. All aspects of these studies 

were approved by the Human Research Protection Office of the Washington University School of 

Medicine. All adult participants were right-handed or ambidexter native English speakers and 

reported no history of neurological or psychiatric disorders. Adults were recruited from the 

Washington University campus and the surrounding community (IRB 201101896, IRB 

201709126). All subjects gave informed consent and were compensated for their participation in 

accordance with institutional and national guidelines. 

5.2.2 HD-DOT system 

Data were collected using a previously described continuous-wave HD-DOT system comprising 

96 sources (LEDs, at both 750 and 850 nm) and 92 detectors (coupled to avalanche photodiodes, 



 

101 

 

APDs, Hamamatsu C5460-01) to enable oxy- and deoxyhemoglobin spectroscopy [49]. The design 

of this HD-DOT cap provides more than 1200 usable source-detector pair measurements at a 10 

Hz full-field frame rate that covers parts of the auditory, occipital, motor, and frontal areas (Figure 

5.1). This HD-DOT system has been validated for successfully mapping the brain’s response to 

hierarchical language paradigms and naturalistic stimuli with comparable sensitivity and 

specificity to fMRI [22, 49, 220]. 

 

 

Figure 5.1: Schematic of the HD-DOT measurement array and field of view. (A) A participant is wearing 

the HD-DOT cap. (B) Regional distribution of SD-pair measurements (~1200 pairs) are illustrated as solid 

black lines between sources and detectors in a flat view of the HD-DOT cap. (C) HD-DOT sensitivity 

profile. (D) HD-DOT field of view spatially registered on the cortical view of the MNI atlas. 

 

5.2.3 Experimental design 

Subjects were seated on a comfortable chair in an acoustically isolated room facing a 20-inch LCD 

screen located 76 cm from them, approximately at their eye level. The HD-DOT cap was located 

on the subject's head in a process that maximized the coupling of the optodes to their scalp via 

real-time coupling coefficient readouts using in-house software (Figure 5.1A). The stimuli were 
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presented using the Psychophysics Toolbox 3 package for MATLAB (2010b) [224]. The auditory 

stimuli were presented through two speakers located around 150 cm from the subjects’ ear level 

(sound level fixed at 60dB). Subjects were instructed to fixate on a white crosshair against a gray 

background while listening to the auditory stimuli, holding a keyboard on their lap for the stimuli 

that required their response. Our experimental design (Figure 5.2A) included a hierarchy of speech 

paradigms including single words (Figure 5.2B), noise-vocoded speech and short sentences 

(Figure 5.2C), and a movie watching task (Figure 5.2D), to examine the reliability of the findings 

through different experimental designs. We also performed a spatial working memory task in a 

subset of the subjects to localize the DLPFC ROI (Figure 5.2E). Following each neuroimaging 

session, the participants underwent an audiometric, speech, and cognitive measurements off the 

HD-DOT scanner. 
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Figure 5.2: CI-DOT study design. A schematic illustration of (A) the study design and the four tasks used in 

this study. (B) Block design hearing words task, (C) event-related sentence and noise task (inter-stimulus 

interval: between 5-11 sec), (D) a 10 min movie clip from “The good, The bad, and The ugly”, and (E) a 

spatial working memory task adopted from reference, Federenko et al., 2013. 

 

 

5.2.4 Paradigms  

5.2.4.1 Hearing words 

The hearing words paradigm consisted of data acquisition runs that included six hearing words 

blocks. Each block consisted of 15 seconds of hearing words (with a frequency of one word per 
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second), followed by 15 seconds of silence. Two hearing words runs were performed in each study 

session (a total of 180 words in about 6 minutes, Figure 5.2B). 

5.2.4.2 Sentences and noise 

The speech and noise run included 40 AzBio sentences (set of sentences designed for speech 

perception evaluation in hearing-impaired listeners) [225]. Eight of the sentences were followed 

by a visual probe word. Listeners were instructed to press a key if the probe word was semantically 

related to the last sentence presented.  

This paradigm also included 20 unintelligible speech (noise) trials. The noise stimuli consisted of 

one channel noise-vocoded speech created by modulating white noise (low pass filtered at 8 kHz) 

with the amplitude envelope of a subset of AzBio sentence (low pass filtered at 30 Hz). Noise 

vocoding removes the spectral detail from the sentence while retaining its temporal amplitude 

envelope [226]. The mean length of auditory stimuli (sentence or noise) was 2.03± 0.51 s (range: 

1.03 -3.44s). Each sentence and noise run took around 7 min, and each participant performed 4 

runs (a total of 280 short sentences, 80 noise, and 32 probe words, 30 min total, Figure 5.2C). Prior 

to the data collection session, we presented a short practice session containing 12 trials (4 noise 

and 8 sentences, 2 followed by a probe word) to train the individuals for performing this task [227]. 

5.2.4.3 Movie watching 

Naturalistic movie viewing engages multiple cortical processing systems such as lower-order 

auditory and visual processes and higher-order narrative content that recapitulates real-life sensory 

processing. Especially for the CI recipients, passive movie viewing is a scenario of a more realistic 

cognitive effort, including an audiovisual stimulus. The combination of mapping the synchronous 

brain activity during movie stimuli and HD-DOT has been studied in a recent paper using the same 

HD-DOT device [220]. We adopted the same movie paradigm for both CI recipients and age-
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equivalent controls. For this task, we asked the participants to sit still and watch a 10 min clip from 

the “The good, The bad, and the ugly” movie while their brain hemodynamic activity was being 

recorded with the HD-DOT system (Figure 5.2D). 

5.2.4.4 Spatial working memory 

Spatial working memory stimulus was used in one CI user in four different scanning sessions after 

patterns of the engagement of the frontal cortex has emerged in our preliminary results. For this 

mean, we adopted the spatial working memory task introduced in a previous study [228, 229] in the 

one CI user across four different sessions. In this spatial working memory task, the subject was 

asked to remember four or eight flashing locations in a 3×4 grid in easy and hard conditions, 

respectively. Following each trial, participants had to choose the pattern they saw among 2-choice 

grids, one with correct and one with incorrect locations (Figure 5.2E). This task requires keeping 

sequences of elements in memory for a brief period, and it was shown that it activates parts of the 

dorsolateral prefrontal cortex (DLPFC) as part of the multiple demand (MD) network. 

5.2.5 Data processing 

HD-DOT data were pre-processed using the NeuroDOT toolbox [26, 49]. Source-detector (SD) 

pair light level measurements were converted to log-ratio by calculating the temporal mean of a 

given SD-pair measurement as the baseline for that measurement. Then, channels with greater than 

33% noisy first or second nearest neighbor measurements (nn1 and nn2) were excluded. Noisy 

measurements were empirically defined as those that have greater than 7.5% temporal standard 

deviation in the least noisy (lowest mean GVTD) 60 seconds of each run [49, 230]. Then the data 

were high-pass filtered to 0.02 Hz frequency. The global superficial signal was estimated as the 

average of the nn1 measurements (13 mm SD-pair separation) and removed from the data [21]. 

The optical density time-courses were then low-pass filtered to 0.5 Hz to the physiological brain 
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signal band. Noisy time-points were identified at this stage by setting a threshold (mode + 10 times 

the standard deviation of the values below the mode) on the global variance of the temporal 

derivatives (GVTD) index described in chapter 3 and later included as separate events (columns) 

in the GLM design matrix. Then the data were down-sampled from 10 Hz to 1 Hz. Wavelength 

dependent forward model of light propagation was computed using the standard non-linear 

Montreal Neurological Institute (ICBM152) anatomical atlas using the non-uniform tissue 

structures: scalp, skull, CSF, gray matter, and white matter [71]. Relative changes in the 

concentrations of oxy, deoxy, and total hemoglobin (ΔHbO2, HbR, ΔHbT) were obtained from the 

absorption coefficient changes by the spectral decomposition of the extinction coefficients of oxy 

and deoxyhemoglobin at the two wavelengths. Relative changes in absorption at 750 nm and 850 

nm were then reconstructed using Tikhonov regularization and spatially variant regularization after 

inverting the sensitivity matrix [49]. For group analysis, we resampled all data to the 3 × 3 × 3 

mm3 MNI atlas using a linear affine transformation. 

In addition to the standard HD-DOT data processing steps, a comprehensive data quality 

assessment pipeline (Appendix B) has been used to exclude the data runs with low heartbeat SNR, 

non-linear light falloff, and high motion levels. Details in Appendix B. 

5.2.6 Hearing words task response mapping 

The hearing words response was estimated using a standard general linear model (GLM). The 

design matrix was constructed representing the durations of the word presentation in the column 

and by convolving the experimental design with a canonical hemodynamic response function 

(HRF) using a two-gamma function (2 s delay time, 7 s time to peak, and 17 s undershoot) fitted 

to the HD-DOT data described in [98]. Motion regression was performed by adding a column in 

the design matrix for every time-point that passed the GVTD threshold. Extracted hemodynamic 
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response estimations (β maps) for each subject were then passed to the group-level summary 

statistics [231, 232]. 

5.2.7 Sentence and noise response mapping 

For the sentence and noise task, we used a standard GLM with a design matrix with five columns 

representing: sentences, noise, visual probe word, left button press, and right button press. 

Auditory stimuli (sentences and noise) were modeled as 3 s events and button presses as 0 s events. 

Events were convolved with the same canonical HRF described in the hearing words task to model 

hemodynamic neural responses [98]. Similar to the hearing words task, motion regression was 

performed by adding a column in the design matrix for every time-point that passed the GVTD 

threshold. We included all data for each subject (4 runs) in one design matrix, using inhouse 

MATLAB code. In the main text, we only present the ∆HbO2 results as we have found that the 

∆HbO2 signal exhibits a higher contrast-to-noise ratio compared to ΔHbR or ΔHbT [49, 98]. 

Extracted hemodynamic response estimations (β maps) for each subject were then passed to the 

group-level statistical analysis. 

5.2.8 Audiovisual feature extraction from the movie viewing task 

Similar to our previous study, the movie stimulus was decomposed into three features: auditory 

envelope, speech, and faces for extracting the related hemoglobin responses. Here, we are mainly 

interested in comparing the two auditory features, including the envelope of the auditory intensity, 

as well as the human-generated speech between the control and the CI group. The details regarding 

the generation of these feature indices can be found in the original paper [220]. For modeling the 

response to each feature, we convolved the raw feature time-traces with the same HRF used in the 

hearing words and sentence and noise analysis [98] and then performed a bandpass filtering 

(0.02 Hz < f < 0.5 Hz) on the regressor time-series to match the frequency band to the optical 
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density measurements [98]. We then calculated the temporal correlation between each feature 

time-series and the ∆HbO2 time-course for all the voxels in the field of view, which resulted in a 

spatial map for each feature and each subject [220]. 

5.3 Results 

5.3.1 Mapping the brain response to the hearing words task 

We first investigated the degree of auditory activation in both control and CI groups by looking at 

the activity in a control block-design single word presentation condition (Figure 5.2B) and mapped 

robust responses to acoustic stimulation. These auditory responses helped to validate our approach 

and set the stage for more complex analyses looking at language-specific activity. 

Our results showed strong bilateral superior temporal gyrus (STG) activations in controls similar 

to our previous studies for the same paradigm [22], as well as a strong left STG and a smaller right 

STG activation for the CI users. In addition to that, we found strong left-lateralized activations in 

regions beyond the auditory cortex, including parts of the prefrontal cortex in the CI user group 

(Figure 5.3). 

 
Figure 5.3: Hearing words task response mapping in controls and CI users. Response to the hearing words 

task for (A) 18 controls, and (B) 18 right-ear CI users. 

 

5.3.2 Mapping the brain response to the sentences and noise-vocoded speech 

The sentence and noise paradigm was designed to evaluate the differences between the cortical 

responses to intelligible speech and unintelligible noise between the control and CI groups. Our 
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preliminary analysis showed that the quantity and extent of the auditory and non-auditory 

activations are different between these two cohorts. In response to sentences, controls showed a 

strong bilateral STG activation as well as a strong left and right occipital cortex deactivation. 

However, CI listeners showed a strong left STG and a weaker right STG activation as well as some 

activity in the left prefrontal cortex in response to the intelligible sentences. When the response to 

noise was subtracted from the response from the sentences, the results looked very similar to the 

hearing words response (Figure 5.4) (bilateral STG for controls and left-lateralized STG and 

prefrontal cortex activation for the CI users, similar to Figure 5.3). Further statistical analysis and 

larger sample size are needed for this paradigm based on the estimated effect size for any 

interpretations of the results for this task. 

 

Figure 5.4: Sentence and noise task response mapping in controls and CI users. Responses to the noise-

vocoded sentences, sentences, and sentences minus noise for (A) 18 controls, and (B) 18 right-ear cochlear 

implant users. 

 

5.3.3 Mapping the brain response to movie features 

The feature extraction procedure was applied following a prior study in our lab by Fishell et al., 

2019, using multiple movie features across visual and auditory modalities. Here, I selected three 
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movie features, auditory envelope, speech, and visual face scenes. These audiovisual features were 

selected since previous studies in the CI users suggest possible differences in the auditory and 

visual cortex involvements in this cohort.   

Our results show that voxels in the bilateral STG had the highest correlation coefficients to the 

audio envelope feature time-series in controls, while this strong correlation is missing in the CI 

group (Figure 5.5 first row). This could underscore the lack of sensitivity of this cohort to the 

amplitude and frequency features of the auditory signal due to the low spectral resolution of the 

CI. 

The correlations between voxel-wise ΔHbO2 and the speech feature revealed a bilateral response 

in the STG and left prefrontal cortex in the age-matched controls similar to the young control 

cohort reported in Fishell et al. However, the magnitude of the response to the speech was mostly 

dominated to the left STG and left prefrontal cortex for the CI group (Figure 5.5 second row). 

Voxel-wise correlations between the time-courses of ΔHbO2 and the face feature in controls 

revealed patterns of activation not only in extrastriate visual regions but also in auditory and speech 

processing regions similar to Fishell et al. and Wilson et al., 2008 [141, 233]. Surprisingly, in the 

CI cohort, the brain response to the faces was dominated in the left temporal cortex. 

These results provide preliminary evidence for the expectation of the CI users to hear auditory 

stimuli when a face stimulus is present. 
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Figure 5.5: Movie feature mapping in controls and CI users. Examples of regression maps are shown for 

the audio power envelope, speech, faces, and hands in (A) 18 controls and (B) 18 right-ear CI users. 

 

5.3.4 Mapping the brain response to all speech-related paradigms 

Preliminary observations from all speech-related aspects of these tasks revealed a consistent 

involvement of bilateral STG in controls as previously presented for words [20], for sentences 

[22], for the speech from the movie [141], as well as a left prefrontal cortex activation for the 

speech features from the movie task. However, in the CI cohort, we observed more left-lateralized 

STG and prefrontal activation in response to both words and sentence > noise (Figure 5.6). These 

preliminary observations provide supporting evidence for the hypothesis of increased recruitment 

of the frontal cortex in the CI users as characterized in an effortful listening context due to their 

degraded sound quality where there is a lack of other visual assistance in the stimuli. 
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Figure 5.6: Summarizing the response to all speech paradigms in controls and CI users. Speech perception 

activation mapped in 18 controls and 18 CI recipients from the (A) hearing words paradigm, (B) sentence 

greater than noise, and (C) speech regressor analysis from a clip from “The Good, The Bad and The Ugly” 

movie. 

 

5.3.5 Mapping the brain response to the spatial working memory task 

In order to accurately localize the elevated prefrontal cortex activation in the CI user group, we 

adopted the spatial working memory task from [228] one CI user averaged over four different 

sessions. This task activates the multiple demand network (which includes the DLPFC region) as 

well as the occipital cortex due to its visual component. We chose this task to better localize the 

DLPFC ROI for performing an ROI-based statistical analysis between controls and CI users. Our 

results show a strong visual and DLPFC activation in response to this task (Figure 5.7A). We then 

defined the left DLPFC ROI by selecting a seed location based on the peak of the activation in the 

DLPFC region and found the strongest contiguous region that showed 50% or higher activation 

with respect to that seed location (Figure 5.7B). 
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Figure 5.7: Defining the left DLPFC ROI using the spatial working memory task (A) Spatial working 

memory activation for one CI user averaged over four sessions. (B) The DLPFC ROI was defined based on 

the strongest contiguous region to a seed in that region with at least 50% of the activation magnitude to the 

seed location. 

 

5.3.6 Statistical analysis and group differences for the hearing words task 

The hearing words task showed the greatest effect size in the defined DLPFC ROI (Figure 5.6A). 

Therefore, we further investigated the differences between the control and CI group in response to 

the HW activation by first performing a voxel-wise subtraction of the control group map from the 

CI group map. This voxel-wise subtraction map (Figure 5.8A) showed a clear decrease in response 

in the left and right auditory cortex in the CI group as well as an increase in parts of the prefrontal 

cortex and left and right visual cortices. Based on these observations, we performed a paired t-test 

analysis between the sample of mean beta values of single subjects in controls and a sample of 

mean beta values of single subjects in the CI group in three ROIs: left DLPFC and left and right 

auditory cortices. The DLPFC was defined based on the spatial working memory task, as explained 

in §5.2.4.4. The left (right) auditory ROI was determined based on the seed map analysis of resting 

state data from a separate dataset (dataset 2 in chapter 3 §3.3) by locating a seed at the right (left) 

auditory ROI and finding the correlation of the seed time-trace in that region to all other voxels of 

the brain (more details in chapter 3 §3.2.9.2). This approach was used to objectively determine the 

left and right auditory ROIs for performing statistical analysis for between-group comparisons. 
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Our statistical analysis showed a significant decrease in left and right auditory ROIs and a 

significant increase in the left DLPFC ROI in the CI user group (P < 0.05) (Figure 5.8).  

 

Figure 5.8: ROI-based analysis for the hearing words task in controls vs. CI users. (A) Differential 

activation in response to the hearing words task by CI > Control highlights the group differences in certain 

brain areas. (B) Temporal profile of the hemodynamic response to the hearing words task in three selected 

ROIs with P < 0.05 statistical significance difference; left DLPFC, left auditory, and right auditory ROI. 

 

5.3.7 Behavioral measurements 

An important consideration in studying the CI users is the variability in their speech understanding 

and the relationship between their cortical activity and their behavioral measures. This is a long-

term goal for this project to make these CI surgeries more efficient for individuals by learning 

more about each individual’s brain activity before surgery. For this study, we have collected a 
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comprehensive set of behavioral data including handedness, age of deafness, length of implant 

use, age at the scan, etiology, speech intelligibility, audibility threshold, Shipley, MoCA, and 

Stroop test scores. Our future goal is to perform a more comprehensive statistical analysis between 

these behavioral measures and the HD-DOT results. 

5.3.7.1 Speech intelligibility 

Among all the behavioral measures presented in §5.3.7, speech intelligibility is one of the most 

important scores. More importantly, our hypothesis was whether there is any correlation between 

the recruitment of the DLPFC and the individual’s speech intelligibility score. Figure 5.9 shows 

the speech intelligibility scores for all controls and all CI users. As evident, the speech 

intelligibility score is very consistent across controls (~100% for all subjects) and is more variable 

across the CI users (~60-100%). Future work is needed for finding the correlation values between 

the speech intelligibility scores and the magnitude of the activations in each of these ROIs. 

 

Figure 5.9: Speech intelligibility score across controls and CI users. 1 is 100% accuracy. 

 

5.4 Discussion 
In this chapter, we presented a preliminary analysis of the HD-DOT neuroimaging results for the 

data collected from 18 right-ear CI users and 18 age- and sex-equivalent controls performing 

various speech-related tasks. Our results from three speech paradigms (words, sentences and noise, 
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and movies) show a consistent decrease in the left and right auditory cortex activation in the CI 

user group across all paradigms compared to the controls. Further, we have found an increase in 

the left prefrontal cortex in the CI users across two auditory-only tasks (words and sentence greater 

than noise) (Figure5.6A, B) which is supporting the evidence for the hypothesis of increased 

recruitment of the frontal lobe in the CI users in an effortful listening situation. This was as opposed 

to seeing a significant increase in this area in the movie paradigm, which has the visual element 

besides the auditory feature. 

In the previous studies regarding the effortful listening and CI-aided listening, there is supporting 

evidence for the involvement of both left inferior frontal gyrus (IFG) and left dorsolateral 

prefrontal cortex (DLPFC) (two spatially close regions of the frontal lobe) in supporting cognitive 

demand [266]. Given the possibility of the variable optode placements in the optical imaging 

techniques and for eliminating concerns regarding our localization accuracy, we have added a 

previously described spatial working memory paradigm that is shown to activate the DLPFC 

region in a subset of our participants [267]. Defining the DLPFC ROI using the working memory 

task provides a quantitative functionally defined ROI that enabled performing an ROI-based 

statistical significance analysis for finding differences across controls and the CI group without 

concerns about the multiple comparisons problem. DLPFC is a region that is known to play an 

important role in executive functions such as working memory and abstract reasoning. DLPFC is 

also one of the nodes of the frontoparietal attention network and plays a key role when people pay 

more attention to the meaning of a sound [7, 8]. This frontal activation is consistent with a need to 

rely on executive resources to compensate for a degraded acoustic signal. These findings support 

the theory of cognitive demand increase in the effortful listening situation in hearing [245] with a 
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CI and provide the very first high-quality fMRI-like measurement of the cortical language network 

organization in the CI user population. 

Prior to this study, in multiple other studies, we have made comprehensive comparisons between 

the HD-DOT results and fMRI results by calculating the voxel-wise similarity of both hearing 

words task and other resting state networks (visual, auditory, somatomotor, dorsal attention, etc.) 

using the same HD-DOT cap (Chapter 3, Figures 3.6, 3.7, and 3.8). However, this is the first time 

the DLPFC ROI has been localized with this HD-DOT imaging device. 

Another important issue in studying the CI users is the variability in their speech understanding 

and the relationship between their cortical activity and their behavioral measures. For this study, 

we have collected a comprehensive set of behavioral data including handedness, age of deafness, 

length of implant use, age at the scan, etiology, speech intelligibility, audibility threshold, Shipley, 

MoCA, and Stroop test scores. Our future goal is to perform a more comprehensive statistical 

analysis between these behavioral measures and the HD-DOT results. 

In order to use HD-DOT to study patients with cochlear implants, we need to reliably map 

language networks at the level of individual listeners. Doing so has proven extremely challenging 

in fMRI, and several additional HD-DOT-specific technical hurdles need to be addressed relating 

to the signal-to-noise ratio (SNR) and source localization accuracy of single subject data. Solutions 

require developing algorithms that can reduce noise and motion artifacts, as presented in chapter 

3 and implemented in this chapter, for data denoising and data processing to gain more reliable 

single subject mapping with HD-DOT in the future.   

5.5 Conclusion 
In this chapter, we mapped the neural systems supporting speech perception in listeners with CIs 
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using HD-DOT. Across each of the three different speech paradigms, the HD-DOT mappings 

demonstrate robust responses in subjects with CIs and age-equivalent controls. Further, the CI 

responses were shown to be statistically different compared to the control group. More specifically, 

we provided evidence that the DLPFC supports speech processing in CI listeners and compensates 

for the decrease in the left and right auditory cortex activations. 
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Chapter 6: Conclusion 
 

High-density diffuse optical tomography (HD-DOT) has tremendous potential to be a surrogate 

for fMRI in naturalistic settings and when fMRI is contraindicated. However, methods for dealing 

with detection and suppression of motion artifacts are relatively underdeveloped for HD-DOT, 

which limits its application to many important clinical populations.  

In this thesis, I have provided a comprehensive assessment of the data quality measures for HD-

DOT data and validated the efficacy of these measures in multiple datasets. In chapter 3, I 

implemented all the current motion correction methods in the fNIRS literature for HD-DOT, as 

well as presenting a novel global motion detection technique called GVTD, inspired by the 

methods used in fMRI. The results presented in chapter 3 show that similar to fMRI, none of the 

current motion correction methods can fully reverse the effect of severe motion artifacts. We 

conclude that for the current versions of the HD-DOT system, a process called motion censoring 

or motion scrubbing outperforms other motion correction methods and makes HD-DOT maps 

more similar to those of fMRI. 

In chapter 4, I adopted the proposed motion detection and motion censoring methods to a clinical 

HD-DOT dataset in Parkinson disease (PD) patients with high-motion and high tremor levels with 

DBS STN implants. Our results showed that with a sample size of n = 15 PD patients with their 

DBS off, HD-DOT replicates the results obtained with fMRI for n = 107 PD patients without DBS 

[31]. We could also replicate the results of another similar PET study but with a faster DBS on/off 

paradigm using HD-DOT using our DBS activation study (8 sec ramp up, 18 sec on, 16-24 sec 

off) and showed that these results would not have been achieved if the data has not been denoised 

properly. The results presented in chapter 4 are a steppingstone for a broader application of HD-
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DOT as a reliable surrogate to fMRI in people with severe tremors and high levels of motion 

artifacts. 

Finally, in chapter 5, I applied the analysis methods explained in chapters 2 and 3 to another 

clinical HD-DOT dataset for people with auditory impairments using cochlear implants (CI). The 

speech intelligibility is highly variable and very poorly understood in these people after their CI 

surgery due to their contraindications with the current gold standard neuroimaging techniques. 

Therefore, the ability to reliably map the cortical brain function in these people and finding 

meaningful relationships between their brain activity and their behavioral measures can shed light 

on better optimizing these cochlear implant surgeries. The importance of selecting this population 

for this thesis was the incomplete spatial sampling of the cap-based HD-DOT imaging system due 

to the external CI transducer attached to these people’s heads. To overcome this problem, in the 

supplementary material for chapter 5 (Appendix B), I presented a step by step data quality 

assessment pipeline for analyzing this cohort’s data and showed that HD-DOT could reliably map 

the neural correlates of speech processing in the CI users by obtaining plausible results that were 

in agreement with the previous literature. This chapter enabled the tools needed for finding the 

correlations between the behavioral scores and HD-DOT brain images when a larger sample size 

is in hand. 

In summary, this thesis presents an in-depth analysis of the effects of motion artifacts in HD-DOT 

data at both single-channel level and across channels. I also developed software for implementing 

all these measures compatible with the current HD-DOT data processing toolbox, NeuroDOT [95]. 

These implementations at the software level provide a substantial advancement in neuroimaging 

capabilities of HD-DOT in various clinical and non-clinical situations. In particular, this thesis 

enables the critical milestones of scanning real clinical populations such as PD patients with DBS 



 

121 

 

STN implants, essential tremor (ET) patients with DBS VIM implants, and people with CIs using 

HD-DOT and paves the way for reliably using this modality as a surrogate to fMRI. 
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Appendix A: Supplementary Materials for 

Chapter 3 
 

 

Figure A.1: Motion removal methods in HD-DOT data processing pipeline. Dashed pink and blue boxes 

show the pre- and post-processing steps, respectively. GVTD was evaluated (§3.4) at three stages in the 

pipeline indicated by green boxes. The best separation between baseline signal and motion artifact was 

obtained “after filtering” (thicker outlined green box). 

 

javascript:void(0)
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Figure A.2. The placement of the motion sensor on HD-DOT cap. 3-spaceTM USB/RS232, Yost Labs, was 

attached to the top strap of the HD-DOT device for concurrent recording of the head motion and optical 

data in dataset 2. 

 

 

 

Figure A.3: The ROC curves for signal amplitudes and windowed signal amplitudes. The experimental 

ROC curves are drawn for (A) the absolute signal amplitude of 850 nm nn1 measurements, the yellow curve 

shows the mean of all ROC curves and (B) the windowed amplitude changes of the signals in (A), the dark 

magenta curve shows the mean of all ROC curves. The goal of this figure is to show that regardless of the 

type of motion, both maximum and mean of the area under the curve (AUC) of the ROC curves in each 

figure is still lower than or equal to the AUC of GVTD in Figure 3.4. 
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Figure A.4: Motion censoring process for the hearing words task. The four-step process for calculating the 

GVTD time-courses (A) for a low motion subject and (B) a high motion subject in dataset 3. Dashed lines 

indicate the onsets of the blocks of hearing words run (6 runs each 30 sec). The red line shows the GVTD 

threshold of 𝑔𝑡ℎ𝑟𝑒𝑠ℎ  = 𝜅̃ + 3𝜎𝐿. Blocks with time points exceeding the GVTD threshold are excluded from 

the analysis (4, 5, 6 for the low motion subject, and all blocks for the high motion subject). Dark blue arrows 

indicate some examples of the high contrast in both the gray plots and the spikes of the GVTD time-courses 

for instances of motion artifacts. 
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Figure A.5: Indexing motion using GVTD in HD-DOT hearing words HbR maps. Same HW task t-statistic 

evoked responses, as Figure 3.6 are replicated with HbR contrasts. (A) Reference dataset. (B) Low-motion 

data. (C) Medium motion data. (D) Instructed motion data. Black arrows indicate false-positive responses, 

designated since they occur outside auditory ROI defined based on the reference fMRI dataset. The 

maximum t-value of each group is shown below the maps. (E) Mean GVTD values across all trials in low-

motion, medium motion, and instructed motion data. (F) Mean similarity of the maps in each condition with 

the reference dataset, similarity defined as the voxel-voxel Pearson correlation. (G) Scatter plot of responses 

in low vs. medium motion ordinary trials; GVTD indexed stronger responses in low-motion trials in 15 of 

17 sessions. (D) Scatter plot of medium motion vs. instructed motion trials; note the higher spurious 

response magnitudes for the instructed motion. 
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Figure A.6: Efficiency of motion removal methods in task HD-DOT data with different motion levels; 

thresholded. Voxel-wise maps are shown for (A) Reference fMRI dataset. (B) Low-motion data. (C) 

Medium motion data. (D) Instructed motion data for the three motion level categories determined with 

mean GVTD scores. Rows represent maps corrected with TDDR, tPCA, CBSI, Kurtosis wavelet, Hybrid, 

and wavelet filtering methods. All maps are thresholded at P<0.05. 
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Figure A.7: Efficiency of motion removal methods in task HD-DOT data with different motion 

levels; no threshold. The same maps described in Figure A.6 visualized with no thresholding. Voxel-wise 

maps are shown for (A) Reference fMRI dataset. (B) Low-motion data. (C) Medium motion data. (D) 

Instructed motion data for the three motion level categories determined with mean GVTD scores. Rows 

represent maps corrected with TDDR, tPCA, CBSI, Kurtosis wavelet, Hybrid, and wavelet filtering 

methods. 
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Table A.1: List of the parameters for motion correction in task data. 

 StatType numStd tMotion  tMask

  

STDEV 

thresh 

AMP 

thresh 

nSV iqr kurt p FrameSize_

sec 

tune filter_cutoff 

GVTD Histogram

_Mode 

3            

CBSI              

TPCA   0.5 2 20 0.5 0.97       

Wavelet        1.5      

KbWF         3.3     

Hybrid 

(S+SG) 

         0.99 15   

TDDR            4.695 0.5 

 

Table A.2: List of the parameters for motion correction in resting state data. 

 StatType numStd tMotion  tMask

  

STDEV 

thresh 

AMP 

thresh 

nSV iqr kurt p FrameSize_

sec 

tune filter_cutoff 

GVTD Histogram

_Mode 

10            

CBSI              

TPCA   0.5 2 20 0.5 0.97       

Wavelet        1.5      

KbWF         3.3     

Hybrid 

(S+SG) 

         0.99 15   

TDDR            4.695 0.5 

 

A.1 Finding the histogram mode based on the parabolic 

interpolation 
For estimating the mode of a given GVTD time-course, we calculated a histogram for each run by 

defining the width of the bins, 𝑤 =  max 𝒈/𝑛𝑖𝑛𝑡(𝑀 ℓ⁄ ), based on the maximum value of the 

GVTD time-course (𝒈) and the nearest integer (𝑛𝑖𝑛𝑡) to the quotient of the length of the GVTD 

time-course (𝑀) and a fixed parameter for the minimum count per bin (ℓ) (in our case we chose 

5 minimum counts per bin). Finding the mode based on the histogram is sensitive to the binning 

process. Therefore, an alternative method for better estimating the mode (bin with the maximum 

value) of the histogram is to use the parabolic interpolation approximation. Parabolic interpolation 

estimates the local extremum value of a function by fitting a quadratic parabola on three successive 
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points in the function. In our case, we can estimate the mode based on the parabolic interpolation 

of the bin with the maximum value (𝑥2, 𝑦2) and its preceding (𝑥1, 𝑦1) and succeeding bins (𝑥3, 𝑦3) 

(Eq. (A.1), Figure A.8).  

mode = 
1

2
 
(𝑥2

2−𝑥1
2)(𝑦2−𝑦3) − (𝑥2

2−𝑥3
2)(𝑦2−𝑦1)

(𝑥2−𝑥1)(𝑦2−𝑦3)−(𝑥2−𝑥3)(𝑦2−𝑦1) 
,       (A.1) 

 

Figure A.8. Parabolic interpolation. Demonstration of mode identification using parabolic interpolation of 

binned data. The histogram peak occurs at (𝑥2, 𝑦2). 

 

 

A.2 Finding the mode of GVTD values based on the kernel 

density estimation 
As discussed in §3.3, because of the sum over the square of the temporal derivative, the GVTD 

distribution is not normal and is skewed to the right. Therefore, for overcoming the binning 

problem, one can perform a kernel density estimation. However, we need to perform a curve-fitting 

approach to find the best match for the type of kernel. 

Mathematically, the GVTD definition is very similar to the Chi distribution (assuming that the 

input optical density signals are normal). However, in order to have an exact Chi distribution, we 

need to have a standard normal distribution before finding the RMS of the square of the derivatives 
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of measurements or voxels 𝑗 at time-point 𝑖 (𝑦𝑗𝑖). Therefore, an alternative metric to GVTD could 

be defined as the global variance in the standardized temporal derivative, 𝛸𝑖 =

 √∑ ( (𝛿𝑗𝑖 − 𝜇) 𝜎⁄ )
2𝑁

𝑗=1 , where 𝛿𝑗𝑖 = 𝑦𝑗𝑖 −  𝑦𝑗𝑖−1 , 𝜇 is the mean of the 𝛿𝑗𝑖 values, 𝜎 is the standard 

deviation of the 𝛿𝑗𝑖 values and 𝑁 is the number of SD- pair measurements. Another approach is to 

find the kernel density estimation of the logarithm of the GVTD values, which is closer to normal 

than GVTD itself. Then, one could find the mode of the probability density function (pdf) of the 

log (GVTD) and find the corresponding mode value for GVTD itself. 
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Appendix B: Supplementary Materials for 

Chapter 5 

B.1 Data quality measures 
After preprocessing, all data were passed through a rigorous data quality assessment, including 

three steps: 1) linearity of the log of light fall-off with source-detector distance (characteristic of 

the modified Beer-Lambert law). 2) Presence of the ~1 Hz frequency content of the heartbeat. 3) 

Exclusion of the motion content using the gray plots and GVTD time-traces. These steps are 

elaborated in more detail below. All data not passing these measures were excluded from the group 

analysis. 

B.2 Linear logarithmic falloff 
One way to ensure that the collected data with the DOT devices are reliable is to evaluate the 

coupling extent of the optodes to the scalp by looking at the plot of the detected light levels (optical 

density changes) vs. the source-detector separation. The detected optical density changes from 

each subject at the baseline are following a linear log falloff, which is the characteristic of the 

modified Beer-Lambert Law (Figure B.1C).  

Based on the modified Beer-Lambert law, the changes in the optical density (ΔOD) of the sample 

(determined by the negative log ratio of the detected intensity of light I with respect to the incident 

intensity of light I0) is proportional to the change in the absorption coefficient of the 

tissue μa multiplied by the net distance traveled by the light from the source to the 

detector, L, scaled by the differential path-length factor DPF. DPF accounts for the extra total 

distance that light travels through the tissue due to scattering. 

ΔOD  = − log I  / I0 = Δμa × L DPF             (A.2) 
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Therefore, in an ideal measurement, the detected light levels should be linearly dependent to the 

source-detector separation: 

− log I  / I0 ~ L          (A.3) 

In our HD-DOT device, the light from each source is detected at multiple source-detector distances 

(Fig. B.1A). We define the closest separation as 1st-nearest neighbors, and increasing distances 

are known as second-, third-, and fourth-nearest neighbors (shortened to nn1, nn2, nn3, nn4, etc.). 

Therefore, the detected optical density changes can be plotted with respect to all source-detector 

separations and be evaluated whether they follow a reasonable trend (Figure B.1C) or not (Figure 

B.1D). If the changes in the light levels detected from nn2 or nn3 do not drop in a linear trend, that 

could be an indicator of poor absorption and scattering of light to the head tissue and, thus, a low-

quality measurement. 

 

Figure B.1: Examples of a good and a bad light falloff plot in HD-DOT data. (A) Slices through a semi-

infinite simulation of photon flow for 1st- and 2nd-nearest neighbor separation, Greg et al., 2010. We see 

that 1st-nearest neighbors are sensitive mostly to scalp and skull, while 2nd-nearest neighbors’ sample into 

the brain Eggebrecht et al., 2014. (B) (C) As source-detector distance increases, the power detected falls 

off exponentially, until it reaches the noise floor (~10 pW) in a good quality scan. However, if the optodes 

are not fully coupled to the head or there is a lot of noise due to motion, this linear log falloff is not present 

as the source-detector separation increases.  
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B.3 Presence of the heartbeat frequency in the signal 
In order to evaluate how well the collected HD-DOT data could capture the physiological signal 

in each data run, it is easy to look for the very well-known measure of heartbeat frequency 

(typically ~ 1 Hz in adult humans) in both time and frequency domains (Figure B.2A, B). If the 

intensity of this frequency is low or missing, that is an indicator of a low-quality data that could 

not capture the physiological signal with lower frequencies (task responses 0.02-0.5 Hz and resting 

state 0.009-0.08 Hz) (Figure B.2). 

 

 

Figure B.2: Examples of a good and a bad heartbeat SNR plot in HD-DOT data. High SNR for the frequency 

of the heartbeat (~1 Hz) is a characteristic of high-quality HD-DOT data (A, B). (C) power spectra of the 

HD-DOT baseline signal, White 2010. (D) The plot of a selection of the measurements from the HD-DOT 

array shows the heartbeat frequency (10 peaks in 100 time-points, equivalent of 10 sec = 1 Hz). 
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B.4 Motion detection using GVTD 
Motion artifacts were detected in a time-point by time-point manner on the 10 Hz light-level 

signals, using the global variance of the temporal derivatives (GVTD) motion index fully described 

in chapter 3 [29]. 

Figure B.3 shows an example GVTD time-trace for a low-motion and a high-motion hearing words 

run. For this project, I evaluated different methods for using the GVTD time-trace in denoising 

HD-DOT block-design (hearing words) and event-related design (sentence and noise task). 

 

Figure B.3: Examples of GVTD time-traces for a low-motion and a high-motion HD-DOT data. 
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