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measure properties of black hole systems, such as the spin parameter and the inclination of

the observer to its spin axis. My results enable the measurement of these parameters with
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Chapter 1

Introduction

Invisible to telescopic eye
Infinity, the star that would not die

All who dare to cross her course
Are swallowed by a fearsome force

— Rush, Cygnus X-1 Book I: The Voyage

1.1 Motivation

X-ray astronomy was made possible by the development of the rocket. This allowed detectors

to travel into space (originally for minutes at a time), above the atmosphere which attenuates

all X-rays from astronomical sources. On June 13, 1962, the most sensitive detector that

had yet been flown aboard a sounding rocket observed a single source dominating the sky:

Scorpius X-1, a neutron star accreting matter from a stellar companion [61]. Ever since,

physicists and astronomers have been developing more advanced and specialized instruments

to study sources of X-rays. Simultaneously, theoreticians have been working to understand

why we see what we see: what physical process are happening in these extreme sources; what

underlying physical laws govern the behaviour of matter and energy close to strong sources

of gravity; what do we still not know? These are mutually beneficial efforts, each motivating

the other and offering guidance towards questions that we have the ability to answer and

phenomena that we need to explain.

In this thesis, I describe my work predicting the X-ray signals from black holes whose accre-
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tion disks are warped. I will discuss the prospects of studying such warped systems using the

polarization of X-rays emitted from the hot accretion disk and the profile of the fluorescent

iron line from power law emission reflecting off the warped disk. Then, I will discuss the

experimental prospects of observing this polarization, focusing on my contributions to the

balloon-borne mission X-Calibur.

1.2 Theory of Black Holes

Black holes are the simplest objects in the universe in that they can be described by a few

quantities: their mass, their angular momentum, and their electric charge (though this is

usually thought to be zero) [22]. The idea that black holes can be described by these few

simple parameters is called the no-hair theorem – any additional parameters would make

them more ‘hairy’. Black holes come out of the General Theory of Relativity, presented

by Einstein in 1915 and published in 1916 [44]. Einstein’s theory, familiarly called GR,

considers space and time as the unified fabric of the universe – spacetime – which matter

and energy act to deform. Shortly after GR was introduced, Schwarzschild found the exact

solution to Einstein’s field equations describing the spacetime around an uncharged, spheri-

cally symmetric object with no angular momentum [139]; the Schwarzschild solution is valid

for the spacetime around stars, including our Sun. For objects with non-negligible angular

momentum, such as astrophysical black holes, we use the Kerr solution [83]. Black holes are

such a strange phenomenon by the standards of classical physics that there was no consensus

on their existence until the discovery that Cygnus X-1 was too massive to be a neutron star

[157, 17].

The environments around black holes are so extreme that the accreting matter – whether

from a star locked in companion orbit (in the case of binary black holes) or from the sur-

rounding galactic matter (in the case of supermassive black holes at the center of galaxies)

– emits energy as it falls into the black hole, its gravitational potential energy converted
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Fig. 1.1: Schematic of a black hole system, highlighting the different components and emis-
sion types discussed here.

into radiation in the ultraviolet and X-ray bands. Black holes are thought to have some

additional concentration of matter outside of the disk, called the corona. The exact location

and size of the corona is not yet known, but the radiation emitted from the accretion disk

gains energy in the corona and is emitted back out towards infinity; one of the main goals

of studying black holes is to better understand this corona.

A schematic diagram of a black hole is shown in Figure 1.1, including the accretion disk and

lamppost corona, as well as the thermal emission and power law emission.

1.2.1 Accretion Disks around Black Holes

Shakura and Sunyaev [142] described a model for a geometrically thin accretion disk. As

matter from the surrounding environment falls towards a black hole, it enters a circular orbit

due to its significant angular momentum. Shakura and Sunyaev make the approximation that

these orbits are Keplerian, with angular velocity ω =
√

GM
R3 . They lie in the equatorial plane

(perpendicular to the direction of the black hole’s angular momentum), and their vertical

extension is small – making the disk geometrically thin. Viscosity between matter in adjacent

orbits causes it to lose angular momentum and spiral inward, its gravitational energy radiated

away to infinity and angular momentum transported outward along the disk with efficiency

α. Novikov and Thorne [122] extended the work of Shakura and Sunyaev into a steady-
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state model including general relativity, and this was further extended into a time-averaged

model by Page and Thorne [130]. Page and Thorne derived the radial brightness profile for

a generic axially symmetric spacetime, such as the Kerr metric describing a spinning black

hole. In these standard thin disk models, the accreting matter is radiatively efficient: the

emitted energy is able to escape to infinity rather than scattering within the matter of the

disk until it is reabsorbed. If the disk were not radiatively efficient, the increased radiation

pressure could ‘puff up’ the disk, invalidating the thin disk approximation [16].

Thse models tend to treat the inner edge of the accretion disk simplistically: they assume

no torque at the innermost stable circular orbit (ISCO) of the disk. Within this radius,

matter cannot sustain a stable circular orbit, so it is assumed to fall freely inward to be

swallowed by the black hole. This is not the case, as infalling matter may still experience

some gas pressure and emit light; it is, however, a good approximation, as this matter is

deep enough in the potential well of the black hole that little photon energy is able to reach

infinity. The location of this ISCO depends on the spin rate of the black hole, with higher

spins allowing for smaller radii. This, combined with the fact that the brightness profile

of Page and Thorne [130] is inversely proportional to radius in the disk, yields a powerful

tool for measuring black hole spin. A comparison of the thermal spectra for different spins

is shown in Figure 1.3, based on simulations of a 10 M� black hole accreting at half the

Eddington accretion rate (the rate at which the inward pull of gravity is balanced by the

thermal pressure of the accreting matter). The accretion disk extends from the ISCO out to

100 rg. rg is the radius in gravitational units, where we divide by the black hole mass to get

units independent of the size of the black hole: rg = GM
c2 . In these units, the event horizon

and ISCO depend only on the spin of black hole, and decrease as spin increases as shown in

Figure 1.2 [9].

While the thin disk model is often a good descriptor of observational data, it will likely need

modification as observation techniques advance further. As mentioned earlier, disks may not

be geometrically thin if they do not sufficiently radiate away energy; or, rather than being
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Fig. 1.2: A comparison of the location of the event horizon and innermost stable circular
orbit around black holes with different spin. For a Schwarzschild black hole (a = 0), the event
horizon is at 2 rg and the ISCO is at 6 rg. These both approach 1 rg as the spin parameter
approaches 1.

in the equatorial plane and perpendicular to the spin axis, the disk may be misaligned. In

a binary black hole system, this could occur if the angular momentum axes of the binary

orbit and the black hole are not parallel. Throughout this work, I use ’binary black hole’

to refer to a black hole in a binary orbit with a stellar companion, not two black holes in

binary orbit. In supermassive black holes, it could be the result of galaxy mergers [84].

Bardeen and Petterson [8] first theorized what would happen to the disk around a black hole

with misaligned accretion. They predicted that the Lense-Thirring effect [94] would drag

the inner region of the disk into alignment and it would remain connected by a smooth warp

to the outer misaligned region.

Warped Accretion Disks around Black Holes

We can characterize a warped disk like the one described by Bardeen and Petterson [8] with

two additional properties: the ‘Bardeen-Petterson’ radius rBP, and the tilt β. rBP is the

radius at which the aligned inner disk transitions to the misalinged outer disk, which could
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Fig. 1.3: The spectra of thermal emission from the accretion disks around black holes with
spins between 0 and 0.998. The higher the spin of the black hole, the higher in energy the
spectrum extends. This plot was produced by the code described in Chapter 2.

be a smooth warp or a clean break. The tilt β is the angle between the inner and outer

disks, with β = 0° being a completely aligned disk.

In nature, warped disks may not be so uncommon: Brandt and Podsiadlowski [18] used

Monte Carlo simulations of supernova kick velocities to estimate that 60 % of x-ray binaries

have a degree of misalignment between 5° and 45°, while the median misalignment is 20°.

This has even been measured in some systems: assuming a radio jet is aligned with the black

hole spin axis (thus the inner disk) and the binary orbit with the outer disk, the black hole

binary GRO J1655-40 has a misalignment of about 15° [70, 64].

Papaloizou and Pringle [131] analytically described the dynamics of a warped accretion disk

by linearizing the hydrodynamical equations of a misaligned disk with a small tilt, conserving

angular momentum where previous attempts failed to do so. Their method is valid when

the viscosity is greater than the disk thickness at a given radius, α > H/R. In this regime,

disk instabilities can diffuse through the disk; when α < H/R, they propogate in a wave-like

manner, allowing for oscillation modes. These two regimes are referred to as the ‘diffusive’
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and ‘bending wave’ regimes, respectively.

Kumar and Pringle [93] utilized the equations of Papaloizou and Pringle [131] to calculate

values of tilt β and warp radius rBP for different disks. They found that the disk can align

with the black hole spin at small radii, agreeing with the predictions made by Bardeen and

Petterson. Both Kumar and Pringle and Papaloizou and Pringle, though, note that their

linearization is not valid for large tilts.

Pringle [133] derived equations for the time evolution of a disk warp by considering two

viscosities between adjacent annuli of disk material: one for the shear in the disk and one

for the shear perpendicular to it. The second viscosity can be thought of at the ‘twist’ of the

misaligned part of the disk. This method works for larger values of β and predicts that over

time more of the disk will align. Scheuer and Feiler [137] used Pringle’s equations to find

a steady state, but were forced to use a small tilt due to computational limits of the time.

They predicted that for a Shakura and Sunyaev disk the steady state radius would be very

large, past the radii from which X-rays originate, and that it would take millions of years to

reach this. Lodato and Pringle [98] innovated on the work of Pringle [133] by allowing the

axis of the black hole spin to move; in a physical system, both the disk and the black hole

can torque each other, which may be why some astrophysical jets are observed to precess.

They note, though, that the timescale of the Bardeen-Petterson effect is much longer than

the precession timescale observed by Lister et al. [97] in the quasar PKS 1345+125.

A caveat to Pringle [133] is that it completely ignores the internal fluid dynamics of the disk,

though further numerical work shows that this does not entirely invalidate it [100]. Ogilvie

[125] set out to include these, assuming that the fluid obeys the compressible Navier-Stokes

equations (i.e. is isotropic). For a thin disk in the diffusive regime, Ogilvie generalized

Papaloizou and Pringle [131] into non-linear equations. This resulted in three coefficients,

agreeing with Pringle [133] when the dispersion goes to zero. Ogilvie extended this work later

to investigate the bending wave regime, including a proper treatment of radiative transport

and viscous dissipation [126, 101].
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With these advancements in the one dimensional analytical understanding of disk warping,

three dimensional numerical models were developed to study the effect of disk warping

based on first principles. Nelson and Papaloizou used smoothed particle hydrodynamics to

simulate a disk in the bending wave regime [116, 117]. Smoothed particle hydrodynamics is

a computational method in which the medium is treated as collection of particles and the

fluid properties such as viscosity and pressure are represented as interactions between pairs

of particles. To find a value at any point, an integral is done over a kernal function with

some smoothing radius; a common choice for this is the Gaussian function [112].

The first three dimensional simulation of a disk in the diffusive regime was done by Fragile

and Anninos [51], where they found that an initally misaligned disk will warp, at which point

the warped disk will precess as a nearly solid body. This simulation, though, was done for a

thick disk, not a thin disk like the Shakura and Sunyaev model. Later work which included

a magnetic field actually found no disk alignment [53].

Lodato and Pringle [100], followed by Lodato and Price [99] (improving upon several issues

with the prior work), used numerical SPH to simulate a disk in the diffusive regime; their

results agreed with the analytical results of Ogilvie [125]. A fascinating result of this was

that the the accretion disk could, for large enough misalignments, break – rather than the

two regions being connected by a smooth warp, there is a clean separation with little to

no matter between them. This was corroborated by Nixon and King [120], who included

internal fluid dynamics in their simulation. They showed that the viscosity must be small

to allow the disk to break, and that this could lead to rapid accretion onto the black hole

[119].

Recently, Liska et al. [95] used the highly advanced General Relativistic Magnetohydrody-

namic (GRMHD) code H-AMR [96] to simulate a very thin disk with H/R = 0.03. Applying

a warp of 10° to a disk around a black hole with spin 0.9375, they found that the inner disk

entered a persistent Bardeen-Petterson configuration with a transition radius of rBP ≈ 5 rg

between the inner aligned disk and the outer misaligned disk. The outer disk aquired an
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intermediate orientation, possibly due to the cancellation of misaligned angular momentum

because of different precession angles of adjacent annuli of the disk [144]. A very important

advancement that allowed H-AMR to achieve these results was the inclusion of jets, wich

act to torque the inner disk into alignment [109].

1.2.2 Coronae

The corona is the term for the source of the power law continuum observed at high energies

in black hole X-ray spectra. It is some hot plasma in which thermal disk photons Compton

scatter multiple times and gain energy, a process referred to as Comptonization [65]. From

the observed power law we can infer properties of the corona such as its temperature and

optical depth; the three dimensional geometry, though, remains unknown. There are several

models, including a layer above and below the disk, a sphere surrounding the black hole, or a

pseudo-point source above the black hole. This last model (perhaps related to the base of the

jet launched by the black hole) is called a lamppost corona. It is often used in simulations

due to its simplicy and ability to reproduce observational data [104, 43]. In reality, the

corona must have some extension in order to Comptonize thermal disk photons.

1.3 X-ray Spectral and Timing Observation of

Compact Stellar Remnants

1.3.1 Black Holes

The X-ray energy spectra of black holes can be decomposed into several components: below

a few kiloelectronvolts the thermal emission dominates, but at higher energies a power law

continuum dominates. The thermal emission is the blackbody radiation coming off the

accretion disk, and its energy is inversely proportional to the size of the black hole: for AGN

it peaks in the ultraviolet part of the electromagnetic spectrum, while for binary black holes
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it peaks in the X-ray around 1 keV. As mentioned above, the power law continuum is the

result of thermal photons Comptonizing in the corona.

Black holes tend to emit in three states, which are combinations and variants of these two

types of emission [135]. When the thermal emission dominates, with little to no presence

of the power law, the black hole is said to be in the ‘thermal state’. The ‘hard state’ is

when instead the power law dominates over small contributions from the thermal emission.

This state is associated with the presence of a jet detected in the radio band, reinforcing the

association of the lamppost corona with the base of the jet. The third state is the ‘steep

power law’, in which the power law still dominates, but a larger photon index Γ means the

emission does not extend out to as high energies as in the hard state.

While some of the power law photons travel directly from the corona to the observer, a

portion illuminate the accretion disk. In binary black holes, where the temperature of the

disk is higher, these photons tend to reflect off the disk, changing direction but not energy.

In AGN, though, more often these reflected photons are of high enough energy to cause

ions in the disk to fluoresce: one of the electrons in the ion will transition to a higher state

as it absorbs the incident photon, then as the electron fall back to its original state it will

emit another photon with energy matching the transition. In accretion disks, the most

prominent ionization line is the Iron Kα line at about 6.4 keV [60]. The line is comprised of

contributions from several transitions in different ions; the two most prominent are the Kα1

and Kα2 transitions in the FeI ion at 6.404 keV and 6.391 keV, respectively.

The iron line is interesting for the astrophysical study of accreting systems because it is

relativistically blurred by two effects: redshift from escaping the gravitational well of the

black hole and Doppler shift due to the orbit of the fluorescing disk matter. Since, as

previously mentioned, the inner edge of the accretion disk depends on black hole spin, the

degree of redshift of the reflection from the ISCO will be correlated with spin. The degree

of Doppler shift depends on how quickly the disk material is movings towards or away from

us, so the more highly inclined (i.e. edge-on) the disk is the more parallel the motion of the
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Fig. 1.4: Left: An example iron line profile produced by relxill for a binary black hole
with spin a = 0.998 and inclination of 60°. Right: An example of the line emission in the
local reference frame of the disk material.

material will be to to the line-of-sight and the stronger the shift will be. We define inclination

as the angle between the line of sight and disk angular momentum, which is usually parallel

to the black hole spin axis; the disk will be fully edge-on at an inclination of 90°.

These effects smear the iron line out over several kiloelectronvolts on either side of the rest-

frame energy. This can be modelled based on radiative transfer calculations of the reflection

combined with photon propagation through the Kerr spacetime around the black hole. One

such model is relxill, to which data can be fit to find the most likely spin and inclination

of black hole systems [46]; an example of a profile produced by relxill is shown in Figure

1.4. Since warped disks have two characteristic inclinations (of the inner and outer disks),

the iron line can carry information about the degree of warping [52].

The iron line also allows us to do reverberation mapping of the black hole environment. Any

temporal fluctuations in the power law source will be present in both the power law emission

travelling directly to us as well as the component reflection off the disk. The time difference

between the direct and reflected components will be based on the distance between the

power law source and the disk from which it reflects, so by isolating the reflected component

through the iron line, we can constrain the position and size of the corona [153, 82].
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1.3.2 Neutron Stars

The accretion picture looks different around neutron stars than it does around black holes.

Though an accretion disk may form far out from the neutron star in much the same way it

does around a binary black hole, near the neutron star its strong magnetic field forces the

matter towards its poles. Within the Alfvén radius (the radius as which magnetic energy

density of matter of is equal to its kinetic energy density) the accreting plasma couples to

the magnetic field lines and forms an accretion column. For typical neutron star parameters,

this radius is 1800 km [20].

There are two accepted models for the pulsed X-ray emission from neutron stars. In brighter

neutron stars, where the optical depth of the accretion column is large, the matter falling

towards the magnetic pole is shocked at some height above the surface and slowly sinks,

emitting radiation out of the column perpendicular to the magnetic field lines; this is the

fan beam model. If instead the optical depth is low, the matter is able to fall all the way to

a hot spot on the surface of the star, which emits radiation parallel to the field lines; this is

the pencil beam model [111].

The X-ray spectrum of neutron stars is well-described by a power law with an exponential

cutoff; typically, the power law peaks at 5 to 20 keV, and the cutoff energy is 20 to 30 keV.

Becker andWolff [10] model the spectrum from a fan beam accretion column as a combination

of bremsstrahlung, cyclotron, and thermal emission Comptonizing; they use this to fit the

spectrum of Hercules X-1. The power law spectrum can be modified by an iron line like we

see in the reflection spectra of black holes, as well as cyclotron resonant scattering features

(CRSFs), also called cyclotron lines. In the strong magnetic fields near neutron stars, the

energy of electrons are quantized into Landau levels, and thus photons scattering off these

electrons have specific energies given by

ECRSF = n
11.6 keV

1 + z

B

1012 G . (1.1)
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z is the redshift from the emission site (which can be as high as ∼0.3 if coming from the

neutron star surface), B is the magentic field at the emission site in Gauss, and n is an

integer to indicate the presence of harmonics. Cyclotron lines are of extreme interest because

they offer the best way to measure the magnetic field of neutron stars. They also allow us

to observe the changing height of the emission region in these sources: with an increase

in luminosity, the fan beam shock front moves higher in the accretion column where the

magnetic field is weaker, thus lowering the energy of the cyclotron line [152, e.g.]

1.3.3 X-ray Timing and Spectroscopic Instruments

In the early days of X-ray astronomy, the most reliable way to get above the atmosphere was

with sounding rockets [61]. Once inserting satellites into orbit around Earth became feasible,

instruments could observe for much longer periods of time. The first such satellite was Uhuru,

launched from an Italian platform off the coast of Kenya in 1970. Over they next few years

it discovered 339 X-ray sources [49]. Uhuru consisted of a pair of proportional counters each

with an effective area of 840 cm2, and fields of view of 0.52° and 5.2°. It operated in the 1.7

to 18 keV bandpass, with eight energy bins for spectra [143].

The Rossi X-ray Timing Explorer (RXTE), in operation from 1995 to 2012, was designed to

study the time variablity of X-ray sources; though its energy resolution was relatively poor

(3.2 keV at 10 keV), its timing resolution was on the order of 1 µs [76, 143, 4].

One of the greatest achievements of X-ray astronomy is the Chandra X-ray Observatory,

launched in 1999 with a nominal lifetime of five years – but still in operation at time of

writing. Chandra uses a Wolter Type 1 grazing incidence mirror to focus X-rays onto four

different detectors. It has an angular resolution more than a thousand times smaller that

Uhuru – the point spread function (PSF) of the mirror is 0.5′′. The Advanced CCD Imaging

Spectrometer (ACIS) instrument on Chandra has two arrays, ACIS-I and ACIS-S, which

have energy resolutions at 1.5 keV of 140 eV and 100 eV, respectively, and effective areas of

580 cm2 and 670 cm2. There are also gratings on Chandra, which can do spectroscopy with
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energy resolutions on the order of 1 keV; this sacrifices the imaging capabilities of the ACIS,

though, and has roughly one-tenth the effective area [160, 143].

The European equivalent to Chandra, XMM-Newton, is also still in operation. It trades off

angular resolution for collecting area, consisting of three Wolter I mirrors with 14′′ PSFs.

The primary instrument on each of the XMM telescopes is the EPIC-MOS, an X-ray CCD

with an effective area of 1000 cm2 and energy resolution of 94 eV at 1.8 keV [78, 143].

In 2004, the Neil Gehrels Swift Observatory was launched, containing three different in-

struments designed help localize gamma-ray bursts (GRBs). The Burst Alert Telescope,

sensitive in the 15-150 keV range, scans the sky constantly; when a GRB is discovered, it

quickly slews the co-aligned X-ray Telescope (XRT) and Ultraviolet/Optical Telescope to

observe the GRB [58].

More recent observatories include NuSTAR (the Nuclear Spectroscopic Telescope Array)

and NICER (Neutron Star Interior Composition Explorer). NuSTAR which was launched in

2012 and observes high energy X-rays (3-79 keV) using four Cadmium Zinc Telluride detectors

[66]. NICER was launched in 2017; it is attached to the International Space Station rather

than in free orbit around the Earth. It observes X-rays in the 0.2-12 keV range with an

absolute timing better than 300 ns. This unmatched timing resolution allows NICER to do

phase-resolved spectroscopy of pulsars, constraining their radii and interior structure [59].

With both Chandra and XMM-Newton approaching their anticipated end-of-life in the com-

ing years, there are three next-generation X-ray missions currently in the planning and

construction phases. The European Space Agency is planning to launch Athena (Advanced

Telescope for High-Energy Astrophysics) in the early 2030s. Athena is the successor to

XMM-Newton and observers in a similar energy range, 0.2-12 keV, but is significantly more

advanced: the specifications are not finalized, but the goal is for the X-IFU, Athena’s pri-

mary X-ray detector, to have an effective area of 2 m2 at 1 keV, and a spectral resolution

of 2.5 eV, made possible by the use of highly efficient Transition Edge Sensors [115]. NASA

and JAXA (the Japanese space agency) are jointly launching XRISM (X-ray Imaging Spec-
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troscopy Mission) in 2022 to recover some of the capabilities of the JAXA satellite Hitomi,

which was lost shortly after launch in 2016. Specifically, the Resolve soft X-ray spectrometer

on XRISM will have a spectral resolution of 7 eV [164]. Lastly, the Lynx mission [57] is

one of the contenders for the Great Observatory likely to be recommended by 2020 Decadal

Survey of the National Academy of Sciences, and if selected will launch in the mid 2030s. It

is the successor to Chandra, achieving a similar angular resolution while also having a large

effective area comparable to Athena.

1.4 X-ray Polarimetry

Polarization of a light source refers to its tendency to emit photons with their electric fields

aligned with one another. In the most general case, a light source will be unpolarized; that is,

it will emit photons with random electric field directions. Some processes, however, will tend

towards a specific direction, giving rise to polarization. Polarization gives two observables

of light: polarization angle is the direction of electric field oscillation that the light tends

towards, and polarization fraction is the percent of photons that will have that direction.

It is often useful to use Stokes parameters to describe the polarization of individual photons.

There are three Stokes parameters of linear polarization: Q, U , and I (a fourth, V, describes

circular polarization, but is not relevent to this work as the discussed X-ray polarimeters do

not constraint V ). Q and U are a measure of the polarization, while I is the intensity of the

light; Figure 1.5 shows Q and U. These are related to polarization fraction Π and direction

χ by

Π =
√(

Q

I

)2
+
(
U

I

)2
χ = 1

2 arctan
(
U

Q

)
(1.2)

A photon with +Q = I is fully polarized in the +Q direction. The Stokes parameters of

combined beams of light are additive, which makes them particularly well suited to use in X-

ray astronomy since we observe individual photons and can thus add their Stokes parameters

to find the net polarization of a source.
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Fig. 1.5: Stokes parameters Q and U

Scattering is one of the most common source of polarization; Chandrasekhar [24] calculated

the incoming and outgoing Stokes parameters of light in a variety of scattering conditions,

such as diffuse and planar atmospheres. His work forms a backbone for studying polarization

of astrophysical sources; in particular, this is the main resource we use to calculate the

scattering of photons off the geometrically thin, optically thick accretion disk in our ray-

tracing code discussed in Chapter 2 and used to predict polarization and flux spectra in

Chapters 3 and 4.

Polarization has long been a tool of observational study in bands of the electromagnetic

spectrum other than X-ray (optical and radio polarization have a pedigree going back decades

[see 72, for more information]). Long studied theoretically [111, 24, e.g.], X-ray polarimetry

has had, at the time of writing, a single dedicated satellite with OSO-8, launched in 1975.

It consisted of a pair of Bragg-diffracting graphite crystals [158] with which it measured

the polarization fraction of only the brightest X-rays sources at 2.6 and 5.2 keV, including a
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Fig. 1.6: The change in polarization over spin, for a 10 M� black hole accreting at half the
Eddington rate. This plot was produced by the code described in Chapter 2.

19 % polarization of the Crab nebula [159]. Recent technical developments such as gas pixel

detectors [113] and high efficiency Cadmium Zinc Telluride (CZT) detectors have made

possible the ability to measure the polarization of weaker astrophysical sources with higher

accuracy. In Chapter 5, I will discuss my contributions to one such mission, X-Calibur,

which uses CZTs.

1.4.1 Polarization of X-rays from Mass Accreting Black Holes

The thermal emission from a black hole tends to be polarized parallel to the plane of the

accretion disk from which its emitted, though it can become weakly polarized due to rotation

of the plane of polarization along the geodesic of photons travelling close to the black hole.

The main cause of polarization in these systems is reflection: according to Chandrasekhar,

when light scatters perpendicular to its initial trajectory, the resulting beam is nearly 100 %

polarized. This can occur when the strong gravitational curvature near black holes leads some

thermal disk photons emitted near the ISCO to bend back towards the disk and scatter. Since

the energy of thermal photons increases towards smaller radii, the spectrum of polarization

angle swings by ∼90° when the reflected emission begins to dominate.

Polarization spectra (examples of which are shown in Figure 1.6) give us information about

two properties of a black hole: its spin and inclination. The polarization fraction at low
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energies, below the transition, depends on the inclination of the system. When the accretion

disk is more highly inclined, the direct emission that reaches the observer comes out of the

disk atmosphere more obliquely, which makes it more polarized [24]. This is a weak effect –

even at high inclinations the polarization fraction is still just a few percent. The spin can be

measured by the energy at which the polarization angle transitions from being dominated

by direct emission to reflected. Assuming the accretion disk follows the Novikov and Thorne

model, the transition energy changes by several kiloelectronvolts between a non-spinning and

maximally spinning black hole.

This effect can be used to test the validity of general relativity in the strong gravity regime:

since some alternative theories of gravity allow for different innermost stable circular orbits,

spin measurements using polarization will disagree with measurement by other methods [see

91, 71].

1.4.2 Polarization of X-rays from Mass Accreting Neutron Stars

Meszaros et al. [111] calculated the expected polarization for the fan and pencil beam models.

In the environment of a pulsar, the predictions from quantum electrodynamics (QED) of the

birefringence of the magnetized vacuum become important, as does the mode dependence

of scattering and absorption. Using the results of Meszaros and Nagel [110], Meszaros et

al. [111] calculated the polarization of an accreting pulsar at various energies and relative

inclinations of the observer and magnetic field. They found that polarimetry can robustly

differentiate between the fan and pencil beams. In Figure 1.7, I have adapted plots of their

results. Over all inclinations and energies, when phase resolved, the peak in pulse amplitude

is correlated with the peak in polarization fraction in the fan beam model, while the pulse

peak is anticorrelated with the fraction peak in the pencil beam.
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Fig. 1.7: Predicted polarization fraction and angle from the pencil beam (top) and fan beam
(bottom) resolved over the pulse phase. Results are shown for 18.4 keV and 29.1 keV. The
five division left-to-right are for different observer inclinations, labeled at the top in the form
(inclination of the observer)/(inclination of the magnetic field), both of which are compared
to the angular momentum of the pulsar. Adapted from Meszaros et al. [111] (Original figure
© AAS, reproduced with permission).
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1.4.3 X-ray Polarization Instruments

X-ray polarization is particularly difficult to observe, since statistics tend to work against it:

X-ray observations often consist of a handful of photons, which does not allow for strong po-

larization measurements. The governing statistic for polarization is the minimum detectable

polarization (MDP), shown in Equation 1.3 for a confidence of 99 % [13].

MDP = 4.29
µRS

√
RS +RB

T
. (1.3)

µ is the modulation factor of the given polarimeter (typically around 0.5), representing the

modulation in signal detected for a 100 % polarized source. If µ = 0.5, there will be a 50 %

increase in photons measured at ±90° from the polarization angle. T is the observation

length, and RS and RB are the signal and background rates, respectively. Polarized sources

tend to have polarization fractions on the order of 10 %, so 90 % of X-rays from the source are

unpolarized and contribute to the background. Long observations are thus required to push

the MDP down to a useful level: for example, detecting an MPD of 5 % with an instrument

that has a modulation factor of 0.5 and sees no background requires 3× 104 photons. To

put this in perspective, the Crab nebula, the second brightest persistent X-ray source in the

sky, would need to be observed by the Swift Burst Alert Telescope for almost two days in

order to see this many counts. The Crab is a useful source for such comparisons, as its rate

of activity is very consistent. It is often even used as a unit of measure: we might refer to

the rate of another source active at half the level of the Crab as 500 mCrab, for example.

None of the plans for X-ray polarimeters in the intervening time since OSO-8 have come

to fruition: a polarimeter was part of the original plan for Spectrum-X-Gamma [80] be-

fore that mission was abandonded during the fallout of the dissolution of the Soviet Union

[33], to name one example. There have, however, been gamma-ray instruments with polar-

ization capabilities. INTEGRAL (the International Gamma-ray Astrophysics Laboratory),

launched in 2002 by the European Space Agency, is a hard X-ray/soft gamma-ray obser-
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vatory. Above 100 keV, its spectrometer, called SPI, is sensitive to polarization due to its

reliance on Compton scattering, a process inherently sensitive to polarization [25]. The SPI

consists of 19 hexagonal Germanium crystals [154]. The polarization angle of a photon can

be measured when it Compton scatters in one crystal and, rather than being absorbed in

that same crystal, deposits energy in an adjacent one; these type of detections account for

about 20 % of the flux above 100 keV. INTEGRAL has observed the Crab nebula multiple

times over its mission, and has found that the polarization of emission is aligned with the

pulsar spin axis [39, 50]. Recent analysis of the entire set of Crab observations found a

polarization fraction of (24± 4) % [79].

Within the last decade, X-ray polarimetry has become a viable observational program. Dur-

ing a balloon flight from Sweden in 2016, PoGO+ constrained the polarization of the Crab

nebula [27, 29] and the accreting black hole Cygnus X-1 [28, 30]. PoGO+ is a Compton

scattering hard X-ray (>20 keV) polarimeter in which incident photons scatter within an

array of 61 plastic scintillating rods, each read out by a photomultiplier tube (PMT). This

setup allows PoGO+ to measure the angle of photon scattering when two scintillations occur

within a small enough time window of each other.

X-Calibur, a balloon-borne Compton polarimeter, flew from McMurdo, Antarctica in the

2018-2019 Austral summer and constrained the polarization of the accreting pulsar GX 301-

2 [1]. In X-Calibur, X-rays are focused by a grazing incidence mirror onto a beryllium

rod, which is aligned with the optical axis of the mirror. The X-rays Compton scatter in

the beryllium rod and are detected by CZT detectors on all four sides, from which their

scattering angle is deduced.

1.5 Outline of Thesis

The rest of my thesis is organized as follows: In Chapter 2, I describe the ray-tracing code

we use and the warped disk model I implemented. In Chapter 3, I present my results
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from simulating the polarization of the thermal emission from a warped disk. I discuss the

prospects for measuring disk warping X-ray polarization, specifically using IXPE. In Chapter

4, I use the warped disk model to simulate the reflected emission originating in a lamppost

corona. I compare the results to relxill, and discuss the implications on extracting black

hole spin and disk inclination from measured iron line profiles. In Chapter 5, I summarize my

work on X-Calibur that contributed to the polarimetric observations of the pulsar GX 301-2.

In Chapter 6, I discuss several future projects, including upcoming polarimetry missions and

advancements in simulation; finally, I summarize the main results of this thesis.
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Chapter 2

General Relativistic Ray-Tracing of

X-rays from Accreting Black Holes

Black holes collect problems faster than they collect matter.

—Carl Sagan, Contact

2.1 Introduction

In the last few years, GRMHD simulations have achieved a high degree of maturity which

enables the study of black hole dynamics and accretion from first principles, accounting

for general relativistic effects, plasma hydrodynamics, and global as well as dynamically

generated magnetic fields. GRMHD techniques have advanced from being able to simulate

thick, radiatively inefficient disks [e.g. 67] to geometrically thin disks as in the Shakura

and Sunyaev model [121]. Recent codes such as H-AMR [96] have sufficient resolution to

capture the magnetic turbulence which is the source of viscosity in the disk plasma that

allows angular momentum to transport outward, and thus matter inward. Currently, efforts

are focused on including the energy transport and radiation pressure, but we are still far

from capturing the full angle and frequency dependent radiative flux in GRMHD codes.

It is useful, then, to use ray-tracing codes like Geokerr [40] to interpret the results of GRMHD

simulations to predict the signals from black hole sources. Many codes, Geokerr included,
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tend to calculate geodesics from the observer to the emitter, which precludes the inclusion

of polarization-dependent photons scattering dynamics, as well as possibility for photons

to scatter off the disk multiple times. Agol and Krolik [5] studied the impact of multiple

scatterings by placing an observer on the accretion disk and calculating geodesics originating

in other parts of the disk, and Schnittman and Krolik [138] developed a ray-tracing code

which forward evolves photons along geodesics, allowing both the inclusion of scattering

dynamics and multiple scatterings. They showed that such photons have a significant effect

on the polarization of X-rays from the disk. Krawczynski [91] developed a similar code in

order to investigate the usefulness of polarimetry to test general relativity; this is the basis

for the code which I discuss in this chapter.

In Section 2.2 I present an overview of the ray-tracing code we use, including the Cash-

Karp method I implemented to integrate the photon geodesic and parallel transported the

polarization vector through the Kerr spacetime around the black hole. Then, in Section

2.3 I describe the orthonormal reference frame used to transform photon beams into the

inertial local frame of the orbitting disk material. In Section 2.4 I develop an approximate

description of misaligned accretion disks in the Kerr metric; this allows us to study the

observational appearance of disks with warps in the very inner portion of the accretion flow

where the background metric cannot be approximated by the Schwarzschild metric.

2.2 Overview of the General Relativistic Ray-Tracing

Code

Our ray-tracing code [91, 71, 11, 89], written in C/C++, generates photon packages (or

beams) either in an accretion disk located in the equatorial plane or a point or spatially

extended corona. After emission, we use the Cash-Karp method [23, 132] to integrate the

geodesic equation:
d2xµ

dλ2 = −Γµσν
dxσ

dλ

dxν

dλ
, (2.1)
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and to parallel transport the polarization vector fµ:

dxµ

dλ
= −Γµσνfσ

dxν

dλ
. (2.2)

Here, λ is the affine parameter and Γµσν are the Christoffel symbols, defined in terms of the

metric coefficients by

Γµσν = 1
2g

µρ (∂σgνρ + ∂νgσρ − ∂ρgσν) . (2.3)

The integration gives us the geodesics xµ(t), as well as the wave vector kµ and polarization

vector fµ of each photon along the geodesic.

We use the Kerr metric in Boyer-Lindquist coordinates for the spacetime around an un-

charged black hole:

ds2 =− r2 − 2Mr + a2

r2 + a2 cos2 θ

(
dt− a sin2 θdφ

)2
+ sin2 θ

r2 + a2 cos2 θ

((
r2 + a2

)
dφ− adt

)2
(2.4)

+ r2 + a2 cos2 θ

r2 − 2Mr + a2dr
2 + (r2 + a2 cos2 θ)dθ2,

where the black hole has massM and angular momentum J , and a = J/M is the dimension-

less spin parameter. Boyer-Lindquist coordinates are useful because the metric is maximally

diagonal outside of the black hole.

Photons are tracked until they get within 2 % of the black hole event horizon or until they

reach 10 000 rg. In the former case, photon beams are assumed to be lost within the event

horizon; we stop tracking here due to the Boyer-Lindquist coordinate singularity at the event

horizon. When the latter occurs, the wave vector is transformed into the reference frame of

a coordinate stationary observer for post-processing.
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2.2.1 Thermal Photons

Emisson

Emission of thermal photons is based on the model of Page and Thorne [130]. They describe

a geometrically thin, optically thick accretion disk with temperature

Teff =
(
F (r)
σSB

)1/4

. (2.5)

σSB is the Stefan-Boltzmann constant, and F (r) is the time averaged flux from the disk

F (r) = Ṁ0

4π e
−(ν+ψ+µ)−p

t
,r

pφ

∫ r

rISCO

pφ,r
pt
dr. (2.6)

“, r” indicates partial differentiation with respect to r, pµ is the four-momentum of the disk

material, Ṁ0 is the time averaged rate at which rest mass flows inward through the disk,

and ν, ψ, and µ are determined by the metric.

Thermal photons are emitted from 10 000 radial bins spaced equally logarithmically between

rISCO and 100 rg. They are given a random initial trajectory into the upper hemisphere

with equal probability per solid angle in the frame of the disk plasma (hereafter called the

plasma frame). For the statistical weight and initial polarization fraction of each photon

we use Table XXIV from Chandrasekhar [24], which gives the limb brightening function of

an indefinitely deep electon-scattering atmosphere. The polarization vector of the photon is

initially perpendicular to its wave vector and the θ direction in Boyer-Lindquist coordinates;

this makes it parallel to the surface of the disk. Finally, we transform into the global Boyer-

Lindquist coordinates for tracking.

Scattering off the Disk

When a thermal photon impinges on the accretion disk, it is scattered using the formalism

of Chandrasekhar [24] for scatterings of polarized photons off an infinitely thick electron-
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scattering atmosphere. The disk is assumed to be highly ionized, reflecting nearly 100 %

of incident photons; this is often the case around stellar mass black holes. The properties

of the photon, includings its position, wave vector, and polarization vector, are recorded at

each scattering event, and so during analysis we can apply a different weighting if we wish

to simulate a disk which reflects fewer photons.

The scattering is implemented in several steps: First, the wave vector and polarization

vector of the incoming beam are transformed from the global Boyer-Lindquist coordinates

into the Lorentz frame of the reflecting material; this procedure is described in more detail in

Section 2.3. Given the polarization vector in this frame, the incoming Stokes parameters are

calculated. A random scattered direction is drawn with equal probability per solid angle, and

Equation (164) and Table XXV from Chapter X of Chandrasekhar [24] are used to determine

the Stokes parameters of the outgoing beam. The Stokes parameters are subsequently used

to calculate the polarization fraction and polarization angle of the outgoing beam and to

calculate the statistical weight for the particular scattering direction. In the final step, the

polarization angle is converted into the local polarization vector, and the wave vector and

polarization vector are transformed back into the global Boyer-Lindquist coordinates.

2.2.2 Power Law Photons

Emission

Each geodesic from the lamppost corona represents a beam of photons with energies dis-

tributed accorting to the power law N(> E) ∝ E−(Γ−1). To emit power law photon beams,

I use the lamppost corona model [106, 43] which I described in Section 1.2.2. The lamppost

has a programmable height and is located 1° off the φ = 0° axis due to the Boyer-Lindquist

coordinate singularity there. Photons initially have a random trajectory down towards the

disk, but with the θ component of their four velocity equal to zero. Lamppost photons are

initially unpolarized, and since fluorescence is not a polarizing process I do not consider

the polarization of these photons in my work. Our code is also capable of simulating the
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Comptonization and emission of photons from several extended corona models, including

the wedge and spherical corona [11], but I do not use these in this work.

Scattering off the Disk

When a beam hits the accretion disk, we record the frequency shift undergone between emis-

sion in the lamppost frame and reflection in the accretion disk plasma frame, and launch

a new photon beam in a random direction in the plasma frame. Once a beam reaches the

distant observer, we take its contribution to the total spectrum from the inclination depen-

dent intensity from xillver. This is the line-producing part of relxill (it is responsible

for the unblurred profile on the right in Figure 1.4), and thus by itself does not include the

relativistic effects of the entire relxill package.

xillver simulates a forest of atomic absorption and emission lines, all of which depend on

the properties of the black hole system: the lamppost height, black hole spin, inclination

of the disk to the observer, abundance of iron, power law index, and ionization state of

the disk are among the most important. Most of these properties are uniform for a given

simulation; the exception is the apparent disk inclination due to general relativistic light

bending and frame transformations as the fluoresced photon travels to the observer. Thus,

for each photon beam, we take the xillver spectra for the emission angle in the plasma

frame. During analysis, we add together the spectra of all photon beams that reach the

observer, applying the frequency shift experienced by the beam as it travels from the point

of emission to the observer, including the effect of transforming out of the plasma frame and

into the coordinate stationary observer frame.

2.2.3 The Cash-Karp Method

The Cash-Karp method is a 5th order Runge-Kutta numerical integration method which

allows for an adaptive step size. The Runge-Kutta methods are a family of ordinary differ-

ential equation solvers which take the known solution to the function y(x) (in our case, the
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geodesic equation) at a single point (when the photon is generated) and propagate it over

steps of size h until we reach the desired endpoint (the distant observer). The general form

for a solution of order m is to calculate each function kn, for n from 1 to m+ 1, by

kn = hf

xinitial + anh, yinitial +
n∑
j=1

bnjkj

 , (2.7)

where each subsequent function depends on the previous. From the functions kn, the next

step is calculated using

yfinal = yinitial +
n∑
j=1

cjkj. (2.8)

The coefficients an, bnj, and cj are particular to the Runge-Kutta method being used; for

the Cash-Karp method, they are collected in Table 2.1. The Cash-Karp is an embedded

Runge-Kutta method; this means that it contains a fourth-order solution y∗ calculated with

the same kn functions and different set of coefficients c∗j :

y∗final = yinitial +
n∑
j=1

c∗jkj. (2.9)

This second solution allows us to estimate the error in the fifth-order solution as the difference

between the two, yfinal−y∗final, and for subsequent steps we can increase or decrease h based

on how precise we wish the calculation to be.

I implemented the Cash-Karp method into our ray-tracing code because of its inclusion of

adaptive step size; previously, the code used the standard 4th order Runge-Kutta method.

In addition to the Cash-Karp method, I tested the Fehlberg [48] and Dormand-Prince [41]

adaptive step size methods, but found that the Cash-Karp method performed best for our

purposes. Adaptive step size is especially important in general relativistic calculations since

space is highly curved near the black hole (where a large step size introduces error) and

asymptotically flat far from the black hole (where a small step size causes the photon to take

an enormous amount of CPU time to reach the observer); the step size in our code varies
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an bnj

0

1/5 1/5

3/10 3/40 9/40

3/5 3/10 -9/10 6/5

1 -11/54 5/2 -70/27 35/27

7/8 1631/55296 175/512 575/13824 44275/110592 253/4096

ci: 37/378 0 250/621 125/594 0 512/1771

c∗i : 2825/27648 0 18575/48384 13525/55296 277/14336 1/4

Tab. 2.1: The Cash-Karp Butcher tableau

by several orders of magnitude along a geodesic. In addition to the embedded Cash-Karp

error, our code keeps track of the integration error using k2, which should be zero for a

null geodesic, and f 2, which should remain constant along the geodesic. By implementing

the Cash-Karp method, I improved the error as measured by k2 by roughly an order of

magnitude and halved the runtime per photon beam. In its current state, the ray-tracing

code is able to simulate about 107 photons per hour on the WUSTL physics department’s

computing cluster.

2.3 Orthonormal Bases

In general relativity, we have the ability to transform our coordinate system in to a reference

frame which is most useful for a given problem. While the Boyer-Lindquist coordinate

system is best for tracking photon beams through the Kerr spacetime around the black hole,

these coordinates obscure the physics of scattering when a photon impinges on the accretion

disk. Chandrasekhar [24] calculated polarized scattering for an indefinitely thick electron

scattering atmosphere in a reference frame for which the scattering atmosphere is at rest.

To transform the wave and polarization vectors of a scattering photon beam into this locally
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flat rest frame for the orbiting disk material, we use a tetrad – a system of orthonormal

basis vectors describing a given local inertial frame. The tetrad eµ̂ for disk matter in the

equatorial plane is defined in terms of the Boyer-Lindquist basis vectors ∂µ. To make this

represent the rest frame of the orbiting disk material, we set its first component et̂ equal to

the four-velocity of the matter. Since circular orbits in the equatorial plane have constant r

and θ coordinates, er̂ and eθ̂ are unchanged. Lastly, eφ̂ is chosen to ensure orthonormality.

These four vectors are defined as

et̂ =∂t + Ωk∂φ (2.10)

er̂ =∂r/
√
grr (2.11)

eθ̂ =∂θ/
√
gθθ (2.12)

eφ̂ =α∂t + β∂φ. (2.13)

The orthonormality conditions eφ̂ · er̂ = 0 and eφ̂ · eθ̂ = 0 are trivially satisfied, and the

conditions eφ̂ · eφ̂ = 1 and eφ̂ · et̂ = 0 determine α and β to be

α = −gtφ − gφφΩk√(
g2
tφ + gttgφφ

)
(gtt + 2gtφΩk + gφφΩ2

k)
(2.14)

β = gtt + gtφΩk√(
g2
tφ + gttgφφ

)
(gtt + 2gtφΩk + gφφΩ2

k)
. (2.15)

Transformations of a four vector in Boyer-Lindquist coordinates can be effected by dotting

with the four basis vectors (giving, up to a sign for the zero-component, the coordinates

in the accretion disk frame), and by multiplying the accretion disk coordinates with the

respective basis vectors in Boyer-Lindquist coordinates.

31



General Relativistic Ray-Tracing of X-rays from Accreting Black Holes

2.4 The Warped Accretion Disk

This section is adapted from Abarr and Krawczynski [3], where I originally presented my

warped disk model. I represent a warped accretion disk as residing in two planes, with

a clean break between the two regions. For radial coordinates r ≤ rBP, I use a standard

equatorial accretion disk at a polar angle θ = π
2 . In the Kerr metric, inclined test particle

orbits precess and have cork-screw type shapes [e.g. 94, 163, 95]. I assume that viscous

stresses force the disk material for r > rBP into orbits of constant r inclined by an angle β

relative to the equatorial plane.

The plane of the disk is defined by the solutions of

cos(θ) cos(β)− sin(θ) cos(φ) sin(β) = 0. (2.16)

The disk thus extends from an inclination of θ = 90°−β at φ = 0° to θ = 90°+β at φ = 180°

(Fig. 2.1). The left-hand side of Eq. 2.16 is positive above the disk and negative below, and

so a photon scatters off the inclined disk when this value changes sign.

The Boyer-Lindquist coordinates of a disk segment are given by

xµ(t, r) = (t, r, θ(t), φ(t)). (2.17)

To find the angles θ and φ, I first parameterize a circular orbit in the equatorial plane at

radial coordinate r around a black hole with spin parameter a ∈ [−1,+1]. This orbit has

the Keplerian angular velocity

ΩK = (a+ r3/2)−1. (2.18)

Tilting the orbit by the angle β gives

θ = arccos (sin β cos (ΩKt)) (2.19)

φ = arctan (sec β tan (ΩKt)) . (2.20)
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Fig. 2.1: The warped disk configuration, including the lamppost corona. The angular mo-
mentum of the inner accretion disk is aligned with the black hole spin axis. At rBP, there is
a tilt of β between the inner and outer disks. Shown is an example observer at an inclination
of θ = 90°, φ = 180°. I use the spherical Boyer-Lindquist coordinates with θ = 0° pointing
along the spin axis of the black hole. For θ = 90°, φ = 0° points to the right, φ = 180° points
to the left, and φ = 270° points to the reader.

Reflection off the inclined disk requires a different tetrad for the rest frame of these inclined

orbits; I label this new tetrad eâ with a = 0, 1, 2, 3. The four components of the tetrad

are roughly analagous to t, r, θ, and φ, though inclined orbits require mixing of t, θ, and φ

rather than just t and φ as in the equatorial case.

The first basis vector e0̂ is simply the four velocity of the disk material u = dxµ/dτ . The

four velocity is proportional to dxµ/dt but is normalized to -1. I choose e1̂ and e3̂ to be

tangent to the inclined disk: e1̂ ∝ ∂r, and e3̂ is the component of the vector tangent to

the particle orbit that is also perpendicular to e0̂ and e1̂. The last basis vector e2̂ is the

component of the gradient across the disk perpendicular to the first three basis vectors. For

e2̂ and e3̂ I get the components perpendicular to the other basis vectors by using Gram-

Schmidt orthonormalization to subtract out the parallel components with the help of the

metric.
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In terms of the Boyer-Lindquist basis vectors ∂µ, the new basis vectors are given by:

e0̂ =
(
∂t + ΩK sin β sinφ∂θ + ΩK cos β csc2 θ∂φ

)
/
√

Σ (2.21)

e1̂ =∂r/
√
grr (2.22)

e2̂ =
√
gθθ sin β sinφ√
ζ
(
g2
tφ − gttgφφ

) (gtφ∂t − gttgφφ∂φ)−

√√√√g2
tφ − gttgφφ
ζgθθ

cos β csc2 θ∂θ (2.23)

e3̂ =
[(
−gtφ cos β csc2 θ − gφφΩK cos2 β csc4 θ − gθθΩK sin2 β sin2 φ

)
∂t

+
(
gtt + gtφΩK cos β csc2 θ

) (
sin β sinφ∂θ + cos β csc2 θ∂φ

)]
(2.24)

÷
√

Σ cos2 β csc4 θ
(
g2
tφ − gttgφφ

)
+ gttgθθ sin2 β sin2 φ

where

Σ =− gtt − ΩK
(
2gtφ cos β csc2 θ + gφφΩK cos2 β csc4 θ + gθθΩK sin2 β sin2 φ

)
(2.25)

ζ =
(
g2
tφ − gttgφφ

)
cos2 β csc4 θ − gttgθθ sin2 β sin2 φ. (2.26)

Equations 2.21-2.24 are only valid in the upper hemisphere of the inclined disk, so I restrict

photon emission to kθ < 0. It is possible that a photon emitted from the inner disk near

φ = 0◦ scatters off the bottom of the outer disk, or a photon emitted from the outer disk

near φ = 180◦ scatters off the bottom of the inner disk, in which case the reflected photon

would be emitted back into the lower hemisphere. In these cases, I take advantage of the

symmetry of the disk to ‘mirror’ the reflected photon into the upper hemisphere with

θ → π − θ

φ→ φ+ π

kθ → −kθ

f θ → −f θ.
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This changes our tracked photon into the equivalent photon which was initially emitted into

the lower hemisphere and scattered into the upper hemisphere. During analysis, I perform

this same transformation to any photons arriving in the lower hemisphere to account for

their mirrored twins initially emitted into the lower hemisphere.
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Chapter 3

Polarization of Thermal Emission

from Warped Accretion Disks

3.1 Introduction

The majority chapter is adapted from Abarr and Krawczynski [3]. I produced all of the

simulated data, performed all of the analysis, and wrote the majority of the text.

As mentioned in Chapter 1, at least half of black holes in binaries may have angular momenta

significantly misaligned with the angular momenta of the orbiting companion due to the kick

from the supernova [18]. One of the strongest cases for misalignment is GRO J1655-40, whose

binary and jet inclinations disagree by ∼15° [70, 64]. If this misalignment causes a persistent

warp in the accretion disk like what Bardeen and Petterson [8] predicted, a signature of this

warp should be carried in the polarization signal due to the strong dependence of polarization

on disk inclination.

In this chapter, I show the effect that a warped disk configuration similar to that of Liska

et al. [95] has on the polarization of the thermal emission from the accretion disk. I limit

the discussion to a single warp configuration viewed from different azimuthal viewing angles,

and compare the observational signatures to those of the standard equatorial geometrically

thin, optically thick disk. Cheng et al. [31] previously studied the polarization of warped

disks around a non-spinning and a spinning black hole with a misalignment of 30° and rBP
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between 30 and 1000 rg, and I improve on their work in several ways. As our code tracks

photons forward in time, it allows us to model single and multiple reflections of photons off

the inner and outer portions of the accretion disk. In contrast, Cheng et al. [31] included

only single reflections of photons from the inner disk reflecting off the outer disk.

Section 3.2 compares the results for a warped disk to a standard disk aligned in the equatorial

plane, showing the impact of the warp on the flux and polarization energy spectra. I examine

the results and study the impact of the azimuthal viewing angle, and the reflections off

different disk sections on the flux and polarization spectra. In Section 3.3, I investigate the

possible polarization signal from two sources which may contain warped disks. In Section

3.4, I discuss the results and emphasize the opportunities to explore the dynamics of warped

disks with upcoming and future X-ray polarization measurements.

3.2 Polarization of Thermal Emission

I focus on a single warped disk configuration around a stellar mass black hole. I choose a

black hole with a spin of 0.9, rBP of 8 rg, and a misalignment of 15°. The black hole has a

mass of 10 M� and an accretion rate of 8.98× 1018 g/s, or 0.5 ṀE.

I generate 3.5×108 photon packages between rISCO=2.32 rg and 100 rg for the warped disk,

and compare the results to those for 107 photons generated for a standard equatorial disk.

The former case requires more photons due to the lack of azimuthal symmetry. For each

observer, I collect all photons within 4° of the location of the observer.

I will discuss in the following the observers at a constant inclination of iin = 75° measured

from the angular momentum vector of the black hole and the inner disk. In Table 3.1 I list

the eight observers analyzed, each with a different azimuthal angles φ starting at φ = 90°;

for clarity, I label each observer with their azimuth φ in the form Obφ. Given the inner disk

inclination iin (tied to the observer location θ), φ, and β, the inclination of the outer disk is

iout = arccos (cos iin cos β − sin iin cosφ sin β) . (3.1)
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Thus, for Ob90, the outer disk is inclined at iout = 75.52°, almost the same as iin.

We can distinguish between three classes of events: total emission, direct emission, and

reflected emission off the whole disk. Figure 3.1 shows black hole images for the three event

classes, with their polarization plotted on top. The direct emission (bottom left panel) is

polarized along the plane of disk from which it emits; this is more obvious for the outer

disk, where the emission is less affected by light bending. The front of the inner disk is more

horizontally polarized than the outer disk, and its back is more weakly polarized since the

strong light bending causes this part of the disk to be viewed at a lower inclination angle.

The reflected emission (bottom right panel) shows high degrees of polarization, and tends to

come from the region close to the black hole. On the left side of the black hole, where the

emission is beamed towards the observer, photons can reflect at radii of up to 15 or 20 rg; for

a fully aligned disk, almost all scattering of returning radiation should occur within 10 rg.

Figure 3.2 shows the energy spectrum, polarization fraction, and polarization angle for the

observer Ob90 and compares it to the total emission from two different unwarped disks: the

completely aligned disk lies in the equatorial plane of the black hole, and the completely

misaligned disk lies in the plane of the binary orbit (the same plane as the outer disk in

the warped case). It is important to note that for both the completely aligned disk and

the completely misaligned disk the angular momenta of the black hole and disk are aligned;

these are only ‘misaligned’ in the sense that they represent unwarped disks in the same plane

as the inner and outer disks, respectively. The flux and polarization fraction of the warped

disk are very similar to those of the completely aligned disk. The polarization angle of the

warped disk configuration, however, is shifted by ∼ 15◦ and roughly matches the angle of

the completely misaligned disk. It matches particularly well at low energies, where direct

emission from the outer disk dominates, and seems to settle back down at high energies

where the reflected emission dominates.

In Figure 3.3, the reflected emission is split into two parts: emission reflected off the outer

disk and emission reflected off the inner disk. There is a third component which reflects
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Fig. 3.1: The three emission types: Total emission (top), direct emission (bottom left),
reflected emission (bottom right). The color bar gives the surface brightness in logarithmic
units. Over the images is plotted the polarization, where the length of the black bars gives
the polarization fraction and the orientation gives polarization angle.
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Observer φ-viewing angle iout Figure
Ob90 90° 75.52° 3.1, 3.2
Ob135 135° 64.74° 3.4
Ob180 180° 60° 3.5
Ob225 225° 64.74° 3.6
Ob270 270° 75.52° 3.7
Ob315 315° 85.8° 3.8
Ob0 0° 90° 3.9
Ob45 45° 85.8° 3.10

Tab. 3.1: Summary of the eight observers in this work. For each, the inner disk inclination
is fixed at 75°.

off both disks, but this is a comparatively small effect. The overall reflected polarization

fraction and angle clearly falls between the two components, with the outer disk component

being more highly polarized than the inner disk.

3.2.1 Azimuthal Dependence of the Polarization Signature

Ob135 (Figure 3.4) sees a slightly softer energy spectrum since more of the outer disk is

visible and thus more direct emission is reaching the observer. The polarization fraction

is slightly lower than in the completely aligned disk. At low energies, though, it matches

the completely misaligned disk well. The polarization angle roughly matches the completely

misaligned disk, which is offset from the completely aligned disk by ∼12°; this is the angle

the observer sees between the angular momentum axes of the inner and outer disks.

Qualitatively, the flux and polarization fraction seen by Ob180 (Figure 3.5) match that

seen by Ob135 (Figure 3.4). The polarization fraction, though, matches the completely

aligned disk instead of the completely misaligned disk. Cheng et al. [31] reported that the

warped disk polarization angle matched that of their completely aligned disk. Their system

orientation was limited to one similar to our Ob180 (Figure 3.5), though; the previously

examined observers make it clear that in general this is not the case.

Ob225 (Figure 3.6) and Ob270 (Figure 3.7) are qualitatively similar to Ob135 and Ob90,
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Fig. 3.2: Energy spectrum (top left), polarization fraction (top right), and polarization angle
(bottom) for the warped disk simulations (rBP = 8 rg, β = 15◦) and selected results from
the equatorial disk for an observer at θ = 75◦ and φ = 90◦. Included are the total emission
(thick black), direct emission (dash-dot-dotted blue), and reflected emission (dash-dotted
red). These are compared to the total emission of the completely aligned (equatorial) disk
(dotted black) and the completely misaligned disk (dashed black). The bottom panel of the
polarization angle plot shows the difference between the warped disk and the aligned disks.
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Fig. 3.3: Polarization of the reflected emission (dash-dotted red) from Fig. 3.2 split up
into the portion reflected only off the inner disk (dashed yellow) and only off the outer disk
(dotted purple).

respectively, since their outer disk inclinations match.

Ob315 (Figure 3.8) sees the outer disk almost edge on, and thus sees fewer photons from it.

The light that curves around the bottom of the black hole is visible, which is not true of the

completely aligned disk. This means the warped disk produces a slightly harder spectrum

than the completely aligned disk. This may only be true for our razor thin disk model, how-

ever; in a physical disk, the vertical extension at large radii may block the emission curving

around the bottom. The polarization fraction of the warped disk fits squarely between two

aligned disks. Polarization angle even further deviates from either aligned disk at high ener-

gies; it appears to carry the difference between the two aligned disks at low energies up past

the swing, presumably because many of the high energy photons emitted from the inner disk

are scattering off the inclined outer disk instead. This gives us a clear indication that the

polarization angle does not always line up with either that of the inner or outer disks.

Ob0 (Figure 3.9) sees the outer disk fully edge on, and thus is somewhat qualitatively

similar to Ob315 (Figure 3.8). The polarization angle, though, fully matches the inner disk;

in this sense, Ob0 is similar Ob180 (Figure 3.5), since to both of these observers the angular

momentum axes of both disks appear to be parallel.

The last azimuth, for Ob45, is shown in Figure 3.10, and is qualitatively similar to Ob315.
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Fig. 3.4: Image of the black hole (top left), energy spectrum (top right), polarization fraction
(bottom left), and polarization angle (bottom right) seen by Ob135. Included are the total
emission, direct emission, and reflected emission of the warped disk, as well as the total
emission of the completely aligned and completely misaligned disks. This uses the same
style conventions as in Figure 3.2.
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Fig. 3.5: As in Figure 3.4, but for Ob180.
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Fig. 3.6: As in Figure 3.4, but for Ob225.
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Fig. 3.7: As in Figure 3.4, but for Ob270.
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Fig. 3.8: As in Figure 3.4, but for Ob315.
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Fig. 3.9: As in Figure 3.4, but for Ob0.
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Fig. 3.10: As in Figure 3.4, but for Ob45.
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3.2.2 Comparison to Earlier Results

Our results can be compared to Figure 5 of Cheng et al. [31] showing the polarization of disks

with rBP values between 30 and 1000 rg. Their inner disk is inclined at 75°, matching ours,

while their inner disk is at 45°; this corresponds to a β = 30°. They ignore radiation which is

curved by the black hole, returns to disk, and is reflected, as well as radiation emitted from

the outer disk and reflected by the inner disk. They find that the disk warp does not affect

the polarization angle, but that it is imprinted on a transition in the polarization fraction

from matching the inclination of the outer disk at low energies to matching the inner disk

at high energies, with the transition changing with rBP.

My results show that in general the polarization does not behave so predictably. At low

energies, where the polarization is dominated by the direct emission from the outer disk,

the polarization angle matches the case of the completely misaligned disk. Polarization

fraction at high energies either matches or is lower than that of the completely aligned

disk, while it can be higher or lower than the completely misaligned disk depending on

the observer. Polarization angle tends to be offset from the completely aligned disk by the

rotation between the two disk axes. When there is no visible rotation between the axes of

the outer and inner parts of the warped disk (i.e. the outer disk is tilted directly towards

or away from the observer), the polarization angle matches the completely aligned disk. For

every other observer, the polarization angle roughly matches the completely misaligned disks

until the observer sees the warped outer disk close to edge on; in these cases, the scattered

X-rays at high energies carry the angle of rotation between the inner and outer disks.

Thus, with some measure of the jet direction, the polarization angle can give a lower limit on

the misalignment between the inner and outer disks. Cheng et al. [31] note that the energy

at which the polarization fraction transitions from that of the outer disk inclination to the

inner disk inclination is inversely related to rBP. Since the closest of our observers to theirs

is Ob180 (Figure 3.5), where the polarization fraction is lower across the board, I assume

that the transition energy corresponding to rBP = 8 rg is greater than the energy range of
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Fig. 3.11: The swing in polarization angle over this inclination. Shown are for the warped
disk (solid black), the fully aligned disk (dotted), and fully misaligned disk (dashed).

our analysis. I also note that this is not true for other observers, where the misalignment is

not entirely measured by the difference in inclinations between the inner and outer warped

disks.

To see how these observers might be distinguished, Figure 3.11 shows the swing in polar-

ization angle for each warped disk, completely misaligned disk, and the completely aligned

disk. This shows us that the warped disk at this inclination has a swing that could always

be mistaken for an aligned disk.

3.3 Potential Sources with Warped Accretion Disks

Cygnus X-1

The inclination of the binary orbit of Cygnus X-1 has been measured to be (27.1± 0.8)°

[129], while the inclination of the reflecting region (likely the innermost part of the accretion

disk) has been measured to be ∼40° [149, 155]. I simulated one possible polarization of this

system based on these measured values, taking the value of the tilt to be 15°, roughly the

observed angle of misalignement. This is not a trivial assumption, however: the tilt could
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Fig. 3.12: Possible polarization fraction and direction for Cygnus X-1, based on disagreement
between measured inclinations of the system. This polarization assumes an observer located
at φ = 180° such that the tilt angle is entirely carried in the visible misalignement. Included
are the polarization for the warped disk (solid line), fully aligned disk (dotted), and fully
misaligned disk (dashed).

be 30° if we are observing the system from φ = 137°. Figure 3.12 shows these results in the

energy range of IXPE. It shows that the warped disk sees a swing in polarization angle that

differs from either aligned disk by >10°. Due to the low inclination of the system, however,

the degree of polarization is incredibly low; a very long observation would be required to

achieve an MDP this small.

Recent results indicate that the inner disk inclination may be much closer to binary orbit

inclination; the previous results required iron abundances upwards of an order of magnitude

greater than solar values. Tomsick et al. [150] fit data from NuSTAR and Suzaku and found

that by keeping the iron abundance at the solar value and increasing the inner edge of the
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Fig. 3.13: Possible polarization fraction and direction for GRO J1655-40, based on disagree-
ment between measured inclinations of the system. Polarization is shown for the warped
disk (solid line), fully aligned disk (dotted), and fully misaligned disk (dashed).

disk to ∼3 rISCO, the inclination drops to ∼20°. While this does not exactly agree with the

value found by Orosz et al. [129], it does cast doubt on the possibility that Cygnus X-1

contains a warped disk.

GRO J1655-40

GRO J1655-40, another binary black hole, has a disagreement of ∼15° between measured

inclinations: Hjellming and Rupen [70] measured the inclination of the radio jet at (85± 2)°,

while Greene, Bailyn, and Orosz [64] measured the binary orbit inclination at (70.2± 1.9)°.

Offering the same caveat as before that I have assumed the measured misalignement is equal

to the warp angle, I have plotted the polarization for GRO J1655-40 in Figure 3.13. We

see that the swing in polarization angle differs significantly from both aligned cases; it is
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∼20° higher than the swing by a aligned disk with the inclination of the jet. Though the

inclination of the system is higher than Cygnus X-1, the polarization fraction is still quite

low, never surpassing 2 %. So, although this makes a slightly better target than Cygnus X-1,

it would still require a long observation to see such low polarization levels.

3.4 Discussion

In this chapter, I examine the spectropolarimetric signature of a warped accretion disk,

similar to what might result from the Bardeen-Petterson effect. I find that small values of

rBP complicate the simple picture that the inner accretion disk properties are responsible

for the polarization at high energies while the outer disk properties are responsible at low

energies. Since most returning radiation scatters within ∼10 rg, a small value for rBP means

that some of this radiation reflects off the outer disk. Figure 3.1 shows that the disk warp

leads to a larger fraction of photons scattering at larger radii. Our results show that the

measured polarization is highly dependent on the azimuthal viewing angle of the misaligned

system, especially in regards to the polarization angle.

Since a warped disk does not affect the energy at which the polarization angle swings,

polarization can still be used to measure black hole spin (see Fig. 7 in Schnittman and

Krolik [138]). Similarly, the continuum-fitting method [107] is still valid as the spectrum is

not significantly modified by the presence of a warped disk. The complication to using the

continuum-fitting method is instead in assuming the inclination of the inner accretion disk

based on eclipse observations (though jet inclinations are still valid). For a given source, then,

polarimetric observations could tell us whether the binary plane inclination is an appropriate

assumption. We may also expect to measure a lower misalignment with polarization than by

comparing the jet and binary inclinations, as Liska et al. [95] showed that global alignment

can make the disk warped smaller than the overall system misalignment.

I investigate the possible polarization measurement of Cygnus X-1 and GRO J165-40, two
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binary black holes in which different measures of inclination disagree. I do not analyze all

possible configurations due to the degeneracy between visible misalignment, warp angle, and

azimuth, but for the simulated parameters both sources would show low polarization levels

that would require very long observations.

Another possible target for observation is 4U 1957+11, a low-mass X-ray binary that is

a black hole candidate. It is consistently in the spectrally soft state, and is likely highly

spinning and highly inclined [123]. Most of the time it is well fit by a purely thermal

spectrum, so would be a good test case for the results in this chapter.

Without some prior measure of the orientation of a system, we would be unable to interpret

the polarization results. We are fortunate, then, that misaligned accretion is thought to be

a driver of corona and jet formation in black hole binaries [85], and so an observed jet is an

indication that the source would be a good target for polarimetric measurement. Another

benefit to focusing on sources with visible jets is their association with a strong power law

component; I expect that the time lag in the reflected power law emission from the corona

will track rBP and the misalignment, and in Chapter 4, I investigate the impact a warped

disk has on the iron line profile resulting from reflected power law emission.

The Bardeen-Petterson effect has many interesting implications on the dynamics of accreting

black holes, and polarimetry is in a unique position to examine this. X-ray polarimetry could

confirm that the precession of the inner disk before its angular momentum is aligned with the

black hole is the driver of quasi-periodic oscillations [74]. The BP effect could help explain

state transitions in black hole X-ray binaries according to Nixon and Salvesen [118]. In their

model, a warp or break in the disk is present in both the soft intermediate state (SIMS) and

the thermal state, so we would expect to see some polarimetric signature of these, possibly

of both the thermal and power law emission (which becomes prominent in the SIMS).
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Chapter 4

Iron Line Profile from Warped

Accretion Disks

4.1 Introduction

This chapter is adapted from Abarr and Krawczynski [2]. I produced all of the simulated

data, performed all of the analysis, and wrote the majority of the text.

Emission lines are a powerful tool for probing the geometry and structure of the inner

accretion flows of compact objects. In the case of stellar mass and supermassive black holes,

the fluorescent iron Kα emission centered at 6.4 keV has proven to be a particular powerful

diagnostic [see 136, 19, 108]. In some objects, this line is broadened by the gravitational

redshift from the potential well and Doppler shift from the orbital motion of the disk plasma.

The resulting profile is peaked both above and below 6.4 keV, with both blueshifted and

redshifted ‘horns’. The line shape depends on many parameters, including the emissivity

profile of the disk, the ionization state of the disk material, the inner edge of the disk, and

the inclination of the observer relative to the angular momentum vector of the disk. When

studying the spectra of black holes, the inclination and spin of the black hole are often

inferred from a fit to the data assuming that the disk is geometrically thin with parallel

black hole spin and accretion disk spin axes. This assumption, although common, may not

be accurate in a significant fraction of observed objects.
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Since warped disks may be relatively common, it is important to understand how the disk

warp impacts the observed properties of the X-ray emission. Fragile, Miller, and Vandernoot

[52] showed that the iron line profiles are sensitive to the tilt and radius of the warp [see

also 156]. They argue that the broadened iron line of the AGN MCG–6-30-15 may require

a warped disk model. Ingram and Done [73] linked the change in median iron line energy

to the frequency of quasi-periodic oscillations (QPOs) if the QPO comes from precession of

the inclined hot inner flow.

In this chapter, I present results from modeling the reflected emission in greater detail than

before. I assume a lamppost geometry to infer the irradiation of the accretion disk with hard

X-rays (rather than assuming a power law emissivity profile). Furthermore, I replace the

delta function line emissivity in the plasma frame (ε ∝ δ(E−6.4 keV)) used by Fragile, Miller,

and Vandernoot [52] and Wang and Li [156] with the inclination dependent reflection energy

spectrum inferred from detailed radiation transport calculations [55]. Invoking simplifying

assumptions (i.e. neglecting radiative heating of the emitting plasma), I explore the impact

of photons that scatter in the warped disk configuration. I fit the results with the commonly

used relxill_lp model [56] and show how the warp impacts the inferred black hole disk

properties, such as inclination and spin.

The outline of this chapter is as follows. In Section 4.2, I present the simulated energy

spectra, including the contribution of photons which scatter multiple times off the disk, and

show how the line profiles change as a function of the warp geometry. In Section 4.3 I fit

the simulated energy spectra with relxill_lp, emphasizing that some of the energy spectra

can be fit rather well with a two-component disk model. Finally, in Section 4.4, I summarize

the main results.
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Fig. 4.1: For a simulation with rBP = 15 rg, β = 15° and an observer located at φ = 270°, θ
= 75°, the total reflected flux (in black) is broken down into contributions from the photons
reflected off the inner disk (blue) or outer disk (red).

4.2 Iron Emission from Warped Disks

In this chapter, I track photon beams originating in the lamppost corona. I vary β, rBP, and

h, but for all simulations I use a black hole spin of a = 0.9 since the affect of spin on the iron

line profile is well studied [see e.g. 136]. The default simulation parameters are rBP = 15 rg,

β = 15°, and h = 5 rg; if not otherwise stated, these will be the parameters used. I focus on

the reflected emission from AGN, so I use the xillver results for a power law index of Γ =

2, ionization of log (ξ) = 1.3, and iron abundance AFe = 1.

In Figure 4.1 the iron line profile for our standard simulation observed from φ = 270°, θ =

75° is broken down into the contributions from photon beams which scatter once off either

the inner or outer disk. Each contributes a blue and red horn, and so even though the

blueshifted peak of the inner disk is the dominant feature, there is an enhancement in the

profile at the peak red and blue energies from the outer disk.
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4.2.1 Photon beams undergoing multiple scatterings

Previous studies have used backwards ray-tracing codes, which cannot account for photon

beams which are incident on the disk multiple times before arriving at the observer. With

our forward ray-tracing code, we can track photon beams through an arbitrary number of

scattering events before reaching the observer, allowing an investigation of the effect this

has on the iron line profile. The question of how to weight photons which scatter multiple

times is a difficult one. Consider a beam which scatters twice, for example: at the second

scattering the incident flux would not be a pure power law, like xillver assumes, but would

instead be a combination of the power law and the fluorescence from the first scattering.

To get a rough approximation of the magnitude of multiple scatterings, I do the following:

For photons which scatter multiple times, I take the xillver spectrum of the first scattering

event. Then, I apply the frequency shift of the geodesic from the final scattering event to the

the coordinate stationary observer. This profile will obviously not be accurate, but should

give us a useful estimate of how much of a correction the inclusion multiple scatterings would

be.

In Figure 4.2, I show result from this analysis. There is an approximately order of magni-

tude drop in flux with each subsequent scattering event. The profiles are mostly similar in

shape, although the multiple scatterings show a slight enhancement around 5 keV, likely from

scattering off the outer disk since this is the peak of the redshifted energy of the outer disk

contribution in Figure 4.1. To investigate this, in Figure 4.3 I show two images of the disk:

on the left is the net frequency shifts between emission in the plasma frame and detection in

the observer frame for all detected photon beams, and on the right is the apparent surface

brightness of the disk, but only from photon beams which scatter multiple times. There is

a significant asymmetry in the intensity from the outer disk, with the majority coming from

the part of the disk inclined above the equatorial plane. This is likely because photons do not

have to bend as much when they travel over the black hole to encounter the inclined outer

disk as they would to encounter an unwarped disk in the equatorial plane. This enhanced
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Fig. 4.2: For a simulation with rBP = 15 rg, β = 15° and an observer located at φ = 270°, θ
= 75°, the total reflected flux (in black) is broken down based on the number of times the
contributing photons scatter.

region of the outer disk is orbiting away from observer, and based on the left hand plot in

Figure 4.3 this region has a shift of ∼0.8, which lowers the iron peak to ∼5 keV.

In Figure 4.4, I compare the contributions to flux in the unwarped and warped cases. On

the left I plot the fraction of flux between 1.5 and 10 keV from multiply scattered photons

in an unwarped disk. At the highest inclination shown (75°), multiple scatterings accounts

for about 10 % of the total flux. For a warped disk, shown on the right in Figure 4.4, flux

fraction modulates with φ (thus with outer disk inclination; see Equation 3.1), and the degree

of modulation increases with the inner disk inclination. The contribution increases by almost

5 % at the highest inclination when φ = 0°.

To see how the flux fraction varies with the warped disk geometry, I have plotted the fraction

at 75° inclination for simulations with increasing values of rBP and tilt in Figure 4.5. The

modulation is proportional to β and inversely proportional to rBP, with the contribution
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Fig. 4.3: Left: Map of the net frequency shift of photon beams between emission and detec-
tion, and Right: intensity map of the reflected emission from two or more scatterings, both
as seen by an observer at 10 000 rg.

increasing to ∼18 % for rBP = 8 rg, almost twice the value for an unwarped disk. Though the

specifics of these results are based on a rough estimation, clearly disk warping increases the

importance of multiple scattering photons, especially when the disk tilt is large and warp

radius is small. A future effort to integrating the recent xillverRR results [162], which

calculates the reflection spectra of radiation returning to the disk (i.e. two scatterings), will

allow for a more accurate treatment of the reflection spectra of warped accretion disks.

4.2.2 Shadowing of the Outer Disk

In Figure 4.6 I show g-maps of four observers around a black hole with the inner disk fixed

at a 45° inclination. The figure shows that the inner disk shadows the lamppost emission

reaching the inner edge of the outer disk that lies below the inner disk (i.e. on the right in

the φ = 90° g-map ).

This is even more apparent when the degree of tilt is larger; in Figure 4.7, I show the g-map

for a tilt of 20°. Almost the entire blueshifted portion of the outer disk is shadowed. This
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Fig. 4.4: Left: The contributions of multiply scattered photons to the flux for an unwarped
disk and Right: the contributions for a warped disk with a 15° tilt, both as a function of the
observer’s inclination.

Fig. 4.5: Left: The fraction of flux contributed by photons scattering multiple times for
several values of disk warp, and Right: for several values of rBP.
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Fig. 4.6: Maps of the frequency shift factor between emission and observation for our default
configuration. The inclination of the inner disk is fixed at 45°, and the azimuth moves around
the disk. At φ = 180°, the outer disk is inclined at 60°, and at φ = 0° it is inclined at 30°.
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Fig. 4.7: Map of the frequency shifts between emission and detection for an observer located
at θ = 75°, φ = 270°. The disk has tilt of 20°, rBP of 15 rg, and lamppost height of 5 rg.

should affect the iron line profile from the outer disk, as the red or blueshifted portion will

be suppressed, depending on which region of the disk is shadowed.

4.2.3 The Line Profile from Warped Disks

In Figure 4.8, I look at the iron line profiles for observers at four inclinations between θ =

25° and θ = 75° at azimuths all around the system. For the small rBP value used here, the

reflection off the outer disk contributes significantly to the shape of the profile.

The tendency of a warped disk seems to be to smear out the iron line further, though if the

inclinations are different enough two peaks may be visible. This tends to occur around φ

= 180°, where the outer disk is seen with its lowest inclination relative to the inner disk,

and thus the blue horn contributed to the line profile is at its lowest energy. This is most

obvious in the 60° inclination plot (lower left) of Figure 4.8. The contribution from the

inner disk is peaked around 7.5 keV. Around φ = 0°, the outer disk is inclined at about
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75°, so contributes less flux at higher energies. As the azimuth approaches 180°, the outer

disk inclination approaches 45° and the blue horn shifts down in energy to just below 7 keV,

becoming clearly separate from the inner disk contribution. Though in our simulated data

these two peaks are also distinct in the bottom right plot of 75° inclination, the higher

inclination means that both peaks are already smeared and are thus less sharply separated.

Returning to the 60° inclination plot, one might expect the profiles of φ = 90° and φ =

270°, to be identical: their outer disks have the same inclination and are simply rotated with

respect to the inner disk. The profiles, though, show that the blueshifted contribution from

the outer disk is less prominent at φ = 270° – the region of the outer disk orbiting away from

the observer is elevated above the inner disk and thus is irradiated more by the lamppost,

while the blue region is irradiated less as well as shadowed.

Next, I examine the ways that changing properties of the disk misalignment affects the

reflected spectrum. In Figure 4.9, I show the profile for four values of rBP, between 8

and 50 rg, for several different observers. The chosen viewing angles exhibit the most salient

features seen in all the simulations. I vary the warp radius while holding the tilt and lamppost

height constant at 15° and 5 rg, respectively.

The azimuth from which the system is viewed has a strong effect on the reflected spec-

trum. At 60° inclination and 45° azimuth (top left), where the inclination of the outer disk

is approximately equal to the inclination of the inner disk (61.12°), the profile is largely

unchanged, aside from some minor differences in the shape of the peak.

When the outer disk has a lower inclination than the inner disk, as in the top right at 60°

inclination and 180° azimuth (iout = 45°), the two visible peaks from the inner and outer

disk trade prominence as the warp radius extends. Thinking about rBP as the ‘ISCO’ of

the outer disk, as rBP extends further out this emission peaks at lower and lower energies

and contributes less to the total reflected flux. This causes the energy of the peak flux to

shift from being contributed by the outer disk to the inner disk, while in the middle they

are relatively equal. This trend is also seen in the bottom left at 75° inclination and 135°
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Fig. 4.8: Line profiles for observers at different azimuth angles, including the four shown in
Figure 4.6. The profiles are normalized to the same energy flux above 6.4 keV and have been
offset from one another for clarity. Each profile is labeled with azimuth angle on the right
hand side.
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Fig. 4.9: Line profiles for four different values of rBP, with a = 0.9, β = 15°, and h = 5 rg.
On the right, each profile is labeled with the radius of the warp rBP, between 8 and 50 rg.
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Fig. 4.10: Line profiles for four different values of β, with a = 0.9, rBP = 15 rg, and h = 5 rg.
On the right, each profile is labeled with the tilt angle, between 0 and 20°.

azimuth, where the outer disk similarly has a lower inclination (iout = 64.7°).

In the bottom right plot, the inner disk inclination is 75°, the azimuth is 315°, and the outer

disk is nearly edge on at iout = 85.8°. Here there are apparently not two peaks; instead, as the

inner edge of the outer disk rBP gets larger, this emission from the outer disk moves to lower

energies, causing the peak to smear out. The the falling edge of the Fe Kα peak remains in

the same place, the plateau of maximum flux extends, apparently pushing the energy of the

peak lower; this further broadening of the iron line may cause an overestimating of the spin

of the black hole.

Figure 4.10 shows the profile for different values of the disk tilt seen by the same observers as
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Fig. 4.11: Line profiles for four different values of lamppost height, with a = 0.9, rBP = 15 rg,
and β = 15°. On the right, each profile is labeled with the height, between 3 and 20 rg.

in Figure 4.9. In the top right and bottom left, where the outer disk has a lower inclination

than the inner disk, increasing the disk tilt has the effect of shifting the blue horn of the

outer disk to the left, as higher tilt further lowers the inclination of the outer disk. In the

other two plots, the increasing tilt serves to shift the outer disk emission towards higher

energies, though it is already obscured by the peak from the inner disk.

Figure 4.11 shows how the profile changes with lamppost height. The taller the lamppost

is, the larger the break radius of the emissivity, and the more prominent the contribution of

the outer disk to the profile. This is very clear in the top right plot, where at H = 20 rg the

entire profile from the outer disk is clearly separated from the blue horn of the inner disk
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Fig. 4.12: Left: Radially dependent emissivity profile, showing the index for the inner and
outer disks. Right: φ-dependent profile for the outer disk (15 rg< r <100 rg), highlighting
the asymmetry caused by the lamppost being off-axis as well as shadowing by the inner disk.

contribution.

4.2.4 Emissivity profile

Figure 4.12 shows the emissivity profile (i.e. the energy flux ε of photons with an energy

exceeding the energy threshold for iron line emission) for the entire disk, as well as the

φ-dependent profile for just the outer disk (in this case, rBP>15 rg).

There is a dip in the profile at rBP, so for fitting the break in emissivity, I fit qin inside r = h

or rBP, whichever is smaller, (from ε ∝ r−qin) and qout outside rBP or h, whichever is larger.

For all simulated models, the results are collected in Table 4.1.

4.3 Fitting of Simulated Iron Profiles

To determine how disk warping effects the spin measurement of a black hole, I have imported

our profiles into xspec [6] and used them to generate simulated energy spectra. To make

our profiles compatible for fitting with relxill, I only use the profiles from photon beams
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rBP(rg) β(°) h(rg) qIn qOut

Default model
15 15 5 2.88 1.88

Varying transition radius
8

15 5
2.92 2.00

30 2.86 1.88
50 2.86 1.90

Varying tilt

15
0

5
2.86 1.98

5 2.87 1.99
20 2.89 1.83

Varying lamppost height

15 15
3 2.74 1.83
10 1.76 1.92
20 1.21 1.75

Tab. 4.1: Emissivity indices for inner and outer disks. I show results for our default parameter
values, and group the remaining results into three groups for the varied parameter: transition
radius rBP, tilt β, and lamppost height h.

which scatter a single time. Subsequently I fit them with the lamppost source version of

relxill, called relxill_lp [56]. For faking our simulation results as data in xspec, I use

the Cycle 22 sample response files for the HETG instrument on Chandra and bin the spectra

with a resolution of 10 eV. This resolution is similar to that of the microcalorimeters on the

upcoming XRISM [164] and Athena [115] missions and I expect these results will prove more

useful once these two large effective area missions are in operation. For our relxill_lp

model, I fix the inner and outer radius of the disk to the ISCO and 100 rg, respectively; the

cutoff energy to 300 keV; the reflected fraction to -1 (so our model does not include any of

the direct emission from the lamppost); and the redshift of the source to 0. I freely fit spin,

inclination, lamppost height, power law index, the ionization, and the iron abundance, with

each initially set to their simulated value.

To verify that our code broadens the reflected energy spectra from xillver in a manner
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compatible with relxill, I first fit our results for a flat, unwarped disk. I fit four inclinations,

θ = 25°, 45°, 60°, and 75°, and eight azimuths, φ = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and

315°. Figure 4.13 shows the collected results of these fits, with one panel for each inclination.

In general, the results are accurate, though not always within the 90 % errors. The inclination

specifically is under or overestimated, though not by more than a degree. Similarly, the spin

can be under or overestimated, though it is still fit as highly spinning.

I next fit our default warped disk model. The plots of the results from these fits, including

90 % confidence error bars, are in Figure 4.14. The goodness of the fit depends on φ, with the

best fit occurring around φ = 90° and/or 270°, where the outer and inner disk inclinations

are closest to matching. For these azimuths at θ = 25°, h, Γ, log(ξ), and AFe are all fit close

to their true values. The spin is consistently fit too low, though it is still fit with high spin

(∼0.75 – 0.85 ). This underestimation is greater than I found for the aligned disk, which was

only lower than the true value by ∼0.05. At azimuths near φ = 0°, where the outer disk is

more highly inclined than the inner disk, the reduced χ2 tends to be reasonably good, but

the fit values poorly match the simulated values; this is particularly true at θ = 25°, where

the height is half its true value and inclination is off by 15°.

In the case of the 45° inclination results in Figure 4.14, all parameters except the lamppost

height are fit rather well for the azimuths with good fits (∼270 – 90°). For 60° inclination

the best fit appears to be around φ = 270°. Here, once again, the inclination, power law

index, disk ionization, and iron abundance are fit very close to their true values, while the

lamppost height and spin parameter are slightly off. For 75°, the φ = 270° is among the

azimuths with the lowest χ2, though the best fit is actually at 315°. As predicted from the

spectra in Figure 4.9, the spin is consistently overestimated because the profile has been

broadened by the contribution of the outer disk.

The overall result seems to be that there is difficulty finding a good fit for out data with

relxill_lp when the angular momenta axes of the two disks appear aligned to the observer

(at φ = 0° and φ = 180°), likely because these viewing angles are where the tilt manifests
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Fig. 4.13: For an unwarped disk, the xspec results obtained with relxill_lp for all φ
values. In purple are the fit values with 90 % confidence error bars; the points are connected
by a dotted line for clarity. The dashed grey lines show the simulated parameter values.

73



Iron Line Profile from Warped Accretion Disks

1

2

3
Re

d.
 

2

10 54

Nu
ll 

Hy
p.

2.5
5.0
7.5

h 
(r g

)

0.7
0.8
0.9

Sp
in

20

40

(
)

2.0

2.2

0.5
1.0
1.5

lo
g(

)

0 45 90 135 180 225 270 315 360
( )

1.0

1.5

A F
e

RBP=15rg =15  H=5rg

1.0

1.5

Re
d.

 
2

10 14

Nu
ll 

Hy
p.

2

4

h 
(r g

)

0.75

1.00

Sp
in

42.5
45.0
47.5

(
)

2.00
2.05

1.1
1.2
1.3

lo
g(

)

0 45 90 135 180 225 270 315 360
( )

1.0

1.2

A F
e

RBP=15rg =15  H=5rg

1.0

1.5

Re
d.

 
2

10 11

Nu
ll 

Hy
p.

3
4
5

h 
(r g

)

0.8
0.9

Sp
in

59.5
60.0
60.5

(
)

2.00
2.05

1.1
1.2
1.3

lo
g(

)

0 45 90 135 180 225 270 315 360
( )

1.00

1.25

A F
e

RBP=15rg =15  H=5rg

1.25
1.50
1.75

Re
d.

 
2

10 12

Nu
ll 

Hy
p.

5.0

7.5

h 
(r g

)

0.90

0.95

Sp
in

74

76

(
)

2.0

2.1

1.1
1.2
1.3

lo
g(

)

0 45 90 135 180 225 270 315 360
( )

0.8

1.0

A F
e

RBP=15rg =15  H=5rg

Fig. 4.14: For an warped disk with tilt β = 15°, I show the xspec results obtained with
relxill_lp for all φ values. The formatting is the same as in Figure 4.13. Note: for φ =
180° at 45° inclination (the middle point in the top right plot), xspec was unable to calculate
errors with all of these parameters varying freely. I instead froze the lamppost height at 2 rg,
its best fit value, and thus there are no error bars on this point.
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Parameter Simulated Value Fit Value

Reduced χ2 — 1.414

Null hypothesis — 2.13× 10−10

Lamppost height (rg) 5 2.006+0.145
−0.0

Spin 0.9 0.811± 0.004

Inclination(°) 25 36.694+0.241
−0.227

PL Index 2.0 1.961± 0.004

log(ξ) 1.3 1.320± 0.002

AFe 1.0 1.300± 0.043

Tab. 4.2: Results of the fit for a warped disk with a single relxill_lp model.

to the observer entirely as difference in inclination. For other azimuths, where the difference

between the inclinations of the disks is smaller (i.e. close to φ = 90° or 270°), there can be

a reasonable fit with parameters close to their true value, especially at higher inclinations.

Next, I explore the possibility of fitting our data with a two-component relxill_lp disk

and see if it yields better results.

4.3.1 Fitting with a Two-Component Disk

An obvious choice to improve the fitting of a warped accretion disk is to use a two-component

relxill model. For an illustrative example, let us examine the xspec fit for 25° inclination

from 45° azimuth, shown on the left in Figure 4.15. The data shows a spur at 6.4 keV, which

a single relxill_lp model is unable to account for. From this fit, I get the values displayed

in Table 4.2. In particular, the fit values for inclination and lamppost height are significantly

off.

I find that a two-component relxill_lp gives higher-accuracy estimates of the simulated

system parameters than a one-component fit. I perform the two-component fit by adding

two relxill_lp models in xspec. I tie the spin, lamppost height, and power law index

for the two relxill_lp models together. Furthermore, I tie the outer radius of the first
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Fig. 4.15: Left: xspec fit with a single relxill_lp disk model with 25° inclination and φ
= 45°. Right: For the same simulated profile, the fit with a double relxill_lp model.

relxill_lp model to the inner radius of the second model. For the inclination of the outer

disk, I tie it to inner disk inclination with Equation 3.1, using the simulated values of the tilt

β and observer azimuth φ. Note that these angles would not be known for actual systems. I

do not fix the outer disk ionization and iron abundance to the inner disk values; I expect that

the asymmetric illumination due to the lamppost being offset from the outer disk angular

momentum and shadowing by the inner disk may cause these values to be poorly fit. Thus,

the values that I am fitting for the two component model are: lamppost height, black hole

spin, θ, rBP, Γ, inner log(ξ), inner AFe, outer log(ξ), and outer AFe.

The right plot in Figure 4.15 shows the result of the two-component fit, which has much

better residuals. The fit values are collected in Table 4.3, and should be compared to the

results from the one-component fit in Table 4.2. The lamppost height and inclination results

are much closer to the simulated results than in the case of the one-component fit. A

possible explanation for the too-small lamppost height is that the tilted geometry results in
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Parameter Simulated Value Fit Value

Reduced χ2 — 1.037

Null hypothesis — 2.64× 10−1

Lamppost height (rg) 5 4.061+0.345
−0.988

Spin 0.9 0.790+0.023
−0.022

Inclination(°) 25 24.294+0.519
−0.610

PL Index 2.0 2.051+0.023
−0.024

Inner log(ξ) 1.3 1.083+0.104
−0.054

Inner AFe 1.0 0.949+0.276
−0.068

rBP (rg) 15 16.294+3.010
−1.160

Outer log(ξ) 1.3 1.299+0.020
−0.196

Outer AFe 1.0 1.014+0.791
−0.259

Tab. 4.3: Results of the fit for a warped disk with a double relxill_lp model, showing the
simulated value and the fit value where iout is constrained by the simulated values of β and
φ.

the corona being closer to the elevated side of the outer disk than in a the case of a fully

aligned flat disk. The spin is fit with roughly the same value as the single disk model, still

slightly lower than the simulated value. Also noteworth is that the fit recovers the location

of the transition radius rBP. In terms of disk composition, the iron abundance was slightly

overestimated by the single relxill_lp model but is accurate for both the inner and outer

disks in the double relxill_lp model. The ionization, though, was accurate in the single

relxill_lp model, but the double model accurately fits the outer ionization while slightly

underestimating the ionization of the inner disk.

When I remove the constraint on φ and β based on the simulated value, I find that across

all azimuths the fit recovers the simulated values with about the same accuracy as with the

constraint. The outer disk inclination, though, can be off by as much as 20° at φ = 180°,

and so I leave the constraint on φ and β for the remaining fits.

I have fit the simulated data for all azimuths with the double relxill model and plot the
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Fig. 4.16: Results of fitting our simulated data with a double relxill_lp model in xspec.
For log(ξ) and AFe, the purple points indicates the inner disk result and the orange indicates
the outer disk. I do not fit φ = 0° at 75° inclination (the bottom right plot) because the
outer disk is viewed exactly edge on at 90°, and the relxill_lp model is only valid up to
87°.
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results in Figure 4.16. The general trend continues that the two-component model fits the

simulated data much better than the one-component model, specifically with regards to the

lamppost height and inclination, though the spin is still underestimated for some azimuths.

4.4 Conclusions

In this chapter, I have shown the effect that disk warping has on the profile of the fluorescent

iron line from black hole accretion disks. Though I have focused on AGN, our method is

valid for binary black holes as well.

I have estimated the impact of multiple scatterings, finding that their contribution to the

iron line flux is stronger for warped disks than unwarped disks. This contribution does not

appear by eye to fundamentally change the profile of the fluorescent iron line, but due to

the complexities of ray-tracing and fluorescence in the disk, more work is still required to

determine the exact effect this has on the fitting of spin and inclination.

I find that the inclination and spin of a warped disk can be poorly fit using a standard

single disk relxill, especially for viewing angles near φ = 0° and φ = 180° where the warp

manifests to the observer entirely as difference in inclination between the two disks. This can

lead to an under or overestimation of the spin and inclination by tens of percent, especially

for systems with low inclinations. I have shown that by using a two-component relxill_lp

model, the spin inclination, and corona height can be estimated with higher accuracy, and

that this method can also estimate the inclination of the outer disk and the radius of the

warp between the inner and outer disks.

Using two-component relxill_lp models will become more important for the analysis of

the energy spectra that the upcoming high-throughput missions XRISM and Athena will

deliver. Even though our simulations were done with the resolution of XRISM and Athena,

the disk warping may already show in the data from current satellites. This is particularly

true for systems for which the inclinations of the two disk components towards the observer
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differ significantly (φ = 0° at 25° inclination in Figure 4.8).

There are several potential targets for observation which may exhibit reflected power law

emission from warped accretion disks.

Ingram et al. [75] explain the QPO from H 1743-322 as the result of asymmetric illumination

of the disk, which may be a result of disk warping. Their best fit result gives an inner disk

radius of 31.47+5.83
−3.66 rg. This could be the location of rBP, or it could be that the inner flow

within this radius is not dense enough to contribute significantly to the iron fluorescence.

Based on their form of Equation 3.1, they show that β = 15° is consistent with the data

within 0.5σ.

Recently, Connors et al. [35] analysed ASCA+RXTE data of XTE J1550-564 during a 1998

outburst in the hard-intermediate state. Using the latest relxill models, they found the

inclination of the reflection region of the disk to be 40°, disagreeing with previous measure-

ments that the jet is inclined at 75° [128]. Though disk warping may be the cause of this

disagreement, they suggest alternatives such as a thick inner disk. Further work confirms

this low inclination, suggesting that XTE J1550-564 may indeed contain a warped disk [36].

Fitting the H 1743-322 and XTE J1550-564 data with the warped disk models described in

this chapter would be a worthwhile activity.
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Chapter 5

Hard X-ray Polarimetry with

X-Calibur

There drew he forth the brand Excalibur,

And o’er him, drawing it, the winter moon,

Brightening the skirts of a long cloud, ran forth

And sparkled keen with frost against the hilt:

For all the haft twinkled with diamond sparks,

Myriads of topaz-lights, and jacinth work

Of subtlest jewellery.

—Lord Tennyson, Morte d’Arthur

5.1 Introduction

In this chapter, I will discuss my contributions to the hard X-ray polarimeter X-Calibur,

developed at Washington University over the last decade and culminating in a flight from

McMurdo, Antarctica in the 2018-2019 Austral summer. In Section 5.2, I will discuss the

theoretical background of the instrument before describing its individual components. I focus

on my contributions to the alignment system, in particular my temperature testing of the

X-ray mirror and design of an in-field aligner which we used during the Antarctic campaign
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Fig. 5.1: The interaction cross sections for Compton scattering and photoelectric absorption
in beryllium, CZT, and germanium.

to verify alignment of the mirror’s optical axis with the polarimeter. In Section 5.3, I discuss

the Antarctic campaign; this includes preparation and operation of the instrument, and

background on the two mass accreting pulsars observed during the flight. Finally, in Section

5.4, I present and discuss the results from the flight.

5.2 Overview of X-Calibur

X-Calibur is a Compton polarimeter: its detection of the polarization is requisite upon the

direction that X-rays Compton scatter. This is the dominant interaction for hard X-rays

(above 10 keV or so). Below this, the photoelectric effect dominates; its cross section is

proportional to E−7/2, though, so quickly drops off with energy. It is also proportional to

Z5, so it is essential to choose a material with low effective atomic number. Figure 5.1

compares of the cross sections for Compton scattering and the photoelectric effect in several

materials.

Krawczynski et al. [90] studied four potential detector geometries for a hard X-ray polarime-
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Fig. 5.2: Schematic view of X-Calibur. Source X-rays are focused by the InFocµs mirror
onto a beryllium stick, where they scatter into the CZT detectors on all four sides of the
stick. At the rear is a single CZT detector to image the X-rays which do not scatter in the
beryllium stick. The entire detector is enclosed in a Caesium-Iodide anti-coincidence shield.
(Adapted from Beilicke et al. [12])

ter, and found that a design consisting of a scintillating rod surrounded on four sides by CZT

detectors offers the highest source rate and lowest MDP of the designs investigated. This

geometry formed the basis for X-Calibur. X-Calibur has gone through several iterations dur-

ing its design and testing stages (trading the scintillating rod for a beryllium scattering rod,

for example), but I will focus on its final version which flew in 2018 and my contributions to

this flight; for a description of the upgrades, see Beilicke et al. [12] and Kislat et al. [86].

A schematic view of X-Calibur is shown in Figure 5.2, and a picture of it assembled in

McMurdo is shown in Figure 5.3. X-rays from the source are focused by a grazing incidence

X-ray mirror onto the beryllium scattering stick, which is aligned with the mirror’s optical

axis. In the beryllium stick, photons scatter with an angular dependence according to the

Klein-Nishina differential cross section [87]:

dσ

dΩ = r2
0
2
k2

1
k2

0

[
k0

k1
+ k1

k0
− sin2 θ cos2 η

]
, (5.1)

where r0 is the classical electron radius, k0 and k1 are the photon wave vectors before

and after scattering, respectively, η is the incident angle between the photon electric field

and the scattering plane, and θ is the outgoing angle of the photon after scattering. The

Klein-Nishina cross section says that a polarized beam of light will scatter with a sinusoidal

distribution peaked at ±90° to the electric field direction of the polarized light.

After scattering in the beryllium stick, X-rays may deposit their energy in one of the CZT
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Fig. 5.3: X-Calibur on ‘The Boss’ launch vehicle prior to its launch in 2018. On the left side
is the detector, and on the right is the mirror.

detectors surrounding the stick, creating an electron-hole pair. These drift towards the anode

and cathode of the pixel and their charge is read out by an Application Specific Integrated

Circuit (ASIC). The polarimeter consists of sixteen CZTs surrounding the stick in four rings

of four, and a seventeenth CZT at the rear for imaging. X-rays which pass through the

scattering stick may deposit their energy in this CZT, providing rudimentary imaging that

helps to verify alignment and pointing during the flight. Each CZT consists of thirty-two

pixels and is read out by two ASICs of sixteen channels each.

One of the advantages of this ‘scattering element’ design is that due to the use of a focusing

optic the collecting area is not tied to the size of the detector, and thus the polarimeter can

be shielded from background on almost all sides. Compare this to the design of Compton

polarimeters like PoGO+[26] or COSI[32], whose collecting area is based on the surface

area of the polarimetry-sensitive detector, and by necessity their shielding cannot protect

84



Hard X-ray Polarimetry with X-Calibur

one entire side of the polarimeter. X-Calibur is shielded by a Caesium Iodide ‘bucket’ into

which the polarimeter is inserted and a ‘plug’ for the remaining side, which has a hole

in it for the focused X-rays to go through. These two shield parts are each read out by

four photomultiplier tubes. All of the focused X-rays travel through the hole in the top

plug, and so anything going through the shield is background. Before a background particle

deposits energy in one of the CZT detectors, it may scintillate in the CsI shield within a few

microseconds of the polarimeter signal and be rejected.

The polarimeter is held in alignment with the optical axis of the mirror by a stiff truss made

of carbon fiber tubes connected by aluminum joints. It is essential that the focal spot of the

mirror is held as close to the center of the scattering stick as possible, and that any offset

is well known; an uncorrected offset of just a few millimeters can create a false polarization

signal of 10 % [see Figure 30 in 12, e.g.]. To monitor offset, we use camera aligned with the

optical axis of the mirror to image an LED ring pattern attached to the polarimeter. The

mirror’s optical axis is aligned with the polarimeter pre-flight while truss at an elevation of

45°. By calibrating the LED ring position at this elevation, any deviation during flight is

recorded as misalignment of the mirror optical axis.

Pointing of X-Calibur is done by the Wallops Arc-Second Pointer (WASP), a high precision

pointing system designed for balloon platforms [146, 145]. The primary component of WASP

is the pointing control system (PCS), consisting of two aluminium gimbal frames that provide

pitch and yaw control. Each frame is rotated by two hubs; these consist of a brushless DC

torque motor, with the central shaft constantly rotating to reduce the static friction. By

finely balancing the truss such that its center of gravity is exactly at the intersection of the

WASP hubs, pointing can be maintained with arcsecond precision. The Camera Attitude

Reference Determination System (CARDS) star tracker is mounted on the front of the truss

and is used to verify pointing.
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5.2.1 The InFocµs X-ray Mirror

X-Calibur uses the InFocµs mirror, which has an 8 m focal length and 2.37′ angular resolution

[127]. The InFocµs mirror consists of 255 shells of aluminium coated with platinum on carbon

(Pt/C). It is a Wolter Type I mirror, meaning it consists of two sections, one paraboloid and

one hyperboloid. Prior to the X-Calibur long duration balloon flight, the practice was to keep

the mirror at roughly room temperature, above 20 °C at all times; any thermal deformation

would move the focal spot or change its point spread function.

Temperature Testing

One of the critical concerns in launching balloon experiments is power usage; all instruments

must either be powered by batteries stored onboard or through solar panels. To minimize

power usage of mirror heaters during the flight, I temperature tested the mirror at Goddard

Space Flight Center in the fall of 2017 with the guidance of Takashi Okajima and Takayuki

Hayashi. They attached temperature sensors to all four quadrants of mirror and installed

it in a thermal chamber on Goddard X-ray beamline. I lowered the temperature of the

mirror down to 0.01 °C and imaged the focal spot. These images are shown in Figure 5.4;

the reported temperatures are all averages of the values reported by all of the sensors. In

Figure 5.5, I plot the movement of the focal spot with changing temperature against the size

of the beryllium stick, as well as how the half power and 80 % power diameters change. I

also plotted the point spread functions of the images, shown in Figure 5.6. The only PSF

that is slightly different is at at 0.01 °C, possibly due to some instability in the cooler during

this test. During flight, then, we switched on mirror heaters when the temperature reached

5 °C.

Alignment

A forward looking camera is installed on the InFocµs mirror and aligned with the mirror’s

optical axis. It is used to calibrate the WASP star tracker to position the target source in
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Fig. 5.4: Images of the InFocµs focal spot during temperature testing. The four quadrants
of the mirror are clearly visible in all images. The color bars show the number of counts.
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Fig. 5.5: The focal spot positions at all temperatures, and their half power (blue) and 80 %
power diameters (red) compared to the size of the beryllium stick. The plotted diameters
remain centered on the center of the beryllium stick, and are only shown to highlight that they
do not significantly change with temperature. Assuming the focal spot is initally centered
on the stick, lowering the temperature will have no significant effect on its position.

Fig. 5.6: Point spread functions of the InFocµs mirror during temperature testing. All
PSFs look the same, with the exception of the lowest temperature at 0.01 °C. The reason is
unknown, but possibly related to issues with the thermostat during this test.
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Fig. 5.7: Schematic of the mirror with the forward and back looking cameras, aligned with
the optical axis of the mirror.

the field of view of the InFocµs mirror such that the X-rays are focused exactly onto the

center of the scattering stick. A second camera is installed on the mirror looking backward,

also aligned with its optical axis but viewing the polarimeter; this is the same camera used

to image the LED ring. The positions of the target source in the forward looking camera

and its focal spot in the back looking camera are recorded. A schematic of the mirror and

cameras is shown in Figure 5.7.

At Goddard, the two cameras are installed and calibrated using a parallel beam of light.

The parallel beam is created by a fiber-coupled lamp where the fiber endpoint, which emits

as a point source, has been precisely placed at the focus of an off-axis parabolic mirror.

The X-ray mirror is illuminated by this beam and a screen (simulating the polarimeter) is

positioned 8 m away from the mirror so the focal spot lies on the screen. The back looking

camera views this spot, and the forward looking camera views the light source (simulating

the target source in the sky). The positions of these two points are recorded, so during flight

we guarantee the focused X-rays are hitting the center of the scattering stick by positioning

the target source in the corresponding position in the field of view of the forward looking

camera.
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Installation and calibration of the cameras were done at Goddard before the mirror unit was

shipped to the field to be installed on the telescope. We wanted to check that the calibration

remained valid after installation on X-Calibur, so I designed a portable alignment system,

called the in-field aligner, based on the system at Goddard. To create the parallel beam of

light, I used an off-the-shelf Schmidt-Cassegrain telescope and a fiber-coupled laser diode.

By positioning the endpoint of the fiber in the eyepiece hole of the telescope at the focus

of the telescope mirror assembly, I was able to create a parallel beam of light emitted from

the front of the telescope. For the light source, I used a Class 3R 637.4 nm laser from

ThorLabs, and for the telescope I used a 14 inch Celestron. We needed to be able to adjust

the direction of the telescope assembly so the point source position in the forward looking

camera matched the calibration, so the telescope was mounted on Newport rotation and tilt

stages with millimeter precision. These stages were then attached to an aluminum frame

which was mounted in front of the InFocµs mirror on the front panel of X-Calibur.

I tested the in-field aligner at Goddard in the summer of 2018 with the help of Takashi

Okajima, practicing the procedure and verifying that in the lab the calibration was good.

We recorded the image and source positions in the Goddard parallel beam, and then mounted

the in-field aligner in front of the InFocµs mirror on a portable stand. Using the tilt and

rotation stages, I moved the aligner until the source position in the forward looking camera

matched the calibration, and verified that the position of the focal spot in the back looking

camera matched the recorded position. Pictures of the focal spot produced by the Goddard

lab setup and the in field aligner are shown in Figure 5.8.

In December 2018 in McMurdo, the procedure I developed was used to verify that the image

locations in the forward and back looking cameras agreed to within 10′′. An image of the

aligner mounted on the front of X-Calibur during testing is shown in Figure 5.10, and the

focal spot produced by the aligner on the detector is shown in Figure 5.9.
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Fig. 5.8: Left: The focal spot of the parallel light beam produced by the calibration system
at Goddard. This is on a screen placed approximately 8 m from the mirror. Right: Focal
spot produced by the in-field aligner during testing at Goddard.

Fig. 5.9: The focal spot produced on the detector of X-Calibur by the in-field aligner in
McMurdo. The focal spot is on the surface of the beryllium stick. Also visible are the four
windows into the to CsI shield, onto which four photomultiplier tubes were attached before
launch. Photo from Henric Krawczynksi.

91



Hard X-ray Polarimetry with X-Calibur

Fig. 5.10: The in-field aligner mounted on X-Calibur in front of the InFocµs mirror during
preparation for the 2018 flight in McMurdo, Antarctica. Photo from Dana Braun.

5.3 2018-2019 Antarctic Campaign

After integration at the Wallops Flight Facility in February 2018 and the Columbia Scien-

tific Ballooning Facility in July 2018, integration of X-Calibur began in McMurdo in mid

November 2018. It launched at 20:45 UTC on 29 December. After several hours, it reached

float altitude (39 km) and began alternating observations of two accreting pulsars, GX 301-2

and Vela X-1. About three days after launch, the flight was terminated prematurely over

the Antarctic plateau due to a leak in the balloon. A single recovery trip to the remote

landing site was conducted during the same season, bringing back the polarimeter to allow

for refurbishment. During the 2019-2020 season, there was one more recovery trip (after a re-

conaissance flight to assess the landing site) during which the InFocµs mirror was recovered.

Images of X-Calibur taken during these trips are shown in Figure 5.11.
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Fig. 5.11: Top: X-Calibur during recovery in 2019, approximately one month after the
flight. The polarimeter end (back left, obscured by the gondola structure) was recovered,
along with equipment from CSBF and WASP. Styrofoam panels were placed around the
mirror to protect it from the weather until it could be recovered. Flags were places around
the instrument to help future recovery missions find it. Photo from Scott Battaion. Bottom:
X-Calibur during recovery in 2020, approximately one year after the flight. The mirror end
of the truss (front right) was recovered. Photo from Lauren Brown.
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Right Ascension 12 h 26 m 37.561 s

Declination −62° 46′ 13.260′′

Orbital period 41.5 days
Spin period 681 s

Companion type B1.5Ia
Accretion rate 10−5 M� yr−1[81]

Tab. 5.1: Summary of properties of GX 301-2 and its optical companion Wray 997, compiled
from Bildsten et al. [14] unless otherwise noted.

5.3.1 Observed Sources

GX 301-2

GX 301-2 is a pulsar orbiting the star Wray 997 (aka BP Crucis); Table 5.1 summarizes its

known properties. The mass of the neutron star is not well constrained, though the optical

companion is 39–53 M�[81].

The magnetic field estimates from its CRSF are on the order of 1012 G[42], which is lower

than the ∼1014–1015 G generally required to explain the pulsar period: the lower magnetic

field strength would not exert enough torque on the neutron star to prevent the accreting

matter from spinning it up to a higher period than we observe [141]. This discrepency may

suggest that the CRSF originates high up in the accretion column, which is consistent with

the fan beam model [42].

Fürst et al. [54] resolved the CRSF into two separate features, one at 37 keV and one at

50 keV, though their energy can shift by several kiloelectronvolts over the pulsar phase [147].

They posit that these two lines are not harmonically related, but instead are two separate

features from regions at different heights above the neutron star: the higher energy feature

comes from the surface, and the lower energy feature comes from a shock in the accretion

column about 1.4 km above the surface.

Very predictably during its 40.5 days orbit, GX 301-2 is bright for several days as it ap-

proaches periastron; occasionally, it also flares right before apastron. In the past, GX 301-2
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Fig. 5.12: Fermi Gamma-Ray Burst Monitor result for GX 301-2 (from NSSTC Web Page
[124]), showing an unusual period of spin-up in the top plot beginning during the X-Calibur
observation (approximate duration highlighted in green). Simultaneous was a period of high
flux, unusual during this part of the binary orbit.

has undergone periods of rapid spin-up and associated flares [88, 14]; one such example is

visible around MJD 55400 in the spin frequency and flux from the Fermi Gamma-Ray Burst

Monitor shown in Figure 5.12. When X-Calibur launched, GX 301-2 was in the midst of a

similar period of spin-up, during which a temporary disk likely formed around the neutron

star [114]. The approximate duration of the X-Calibur observation is highlighted in green

on Figure 5.12.
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Right Ascension 9 h 2 m 6.861 s

Declination −40° 33′ 16.91′′

Orbital period 8.96 days
Spin period 283.2 s

Companion type B0.5Iae
Accretion rate 6.3× 10−7 M� yr−1[62]

Orbital separation 1.8 R?[134]
Neutron Star Mass 2.12 M�

Tab. 5.2: Summary of properties of Vela X-1 and its optical companion HD 77581, compiled
from Bildsten et al. [14] and Falanga et al. [47] unless otherwise noted.

Vela X-1

Vela X-1 is an accreting pulsar whose properties are summarized in Table 5.2. Its binary

orbit is highly inclined; for one day out of the nine day orbit, we see the source eclipsed, with

little to no X-ray flux [47]. The other eight days it is persistently active at a rate around

200 mCrab, with occasional outburts of much higher activity; this reliability makes it an

ideal target for a long-duration balloon campaign. The orbital separation is quite small,

leaving the neutron star embedded within the stellar wind. This helps explain the persistant

X-ray flux, as it has a constant source of matter for accretion. It is possible that amidst

this wind-fed accretion, a persistent disk-like structure is able to form due to beaming of the

outflow by the orbit [45].

5.3.2 Flight Operations

After the WASP checkout and calibration sequence at the beginning, X-Calibur began ob-

serving GX 301-2 at an elevation of ∼55°. Once it rose above 60°, X-Calibur slewed to Vela

X-1 and observed this until the next day when GX 301-2 lowered below 60°. This observing

pattern is visible in Figure 5.13, where the pointing elevation is shown. Above 60° the bal-

loon blocks the field of view of the CARDS star tracker, leaving WASP unable to maintain

pointing.
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Fig. 5.13: Pointing elevation of X-Calibur during the flight. The arcs of GX 301-2 and Vela
X-1 elevation are visible as X-Calibur alternated between the two. The excursions above and
below each arc are from background pointings 1° away from the source every 15 minutes.

X-Calibur alternated 15 minutes pointing at the source and 15 minutes pointing 1° away

for background measurement. Off pointings cycled through four directions so as not to

contaminate the off measurements with some unknown source or anisotropy in the X-ray

background. To reduce systematic errors and non-uniformities in the detector, the polarime-

ter unit rotated at 2 RPM.

To minimize the rate of telemetered data, X-Calibur performed several data cuts onboard;

specifically, it cut events that coincided with a shield trigger and events with more than

three pixels. When an X-ray deposits energy in the CZT, there is a slight (a few percent)

chance that its charge will be shared between neighboring pixels, thus being read out as a

two-pixel event. In general, though, a multipixel event occurs when an atmospheric particle

travels through the detector, depositing energy on opposite sides of the polarimeter, or when

electronic noise is present in the ASICs.

5.4 Results from the Flight

This section contains results originally presented in Abarr et al. [1]. I helped to take the data

during the flight, made minor contributions to the text, and contributed to the development

of ’xana’, the code used to produce these results; in particular, I added a module to convert
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Fig. 5.14: Altitude of X-Calibur during the flight. After about 1.5 days, it dropped low
enough in the atmosphere to block the majority of source X-rays.
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Fig. 5.15: Light curve for GX 301-2 taken by X-Calibur, in 20 min bins. In red are the ON
pointings and in black are OFF. The average source count rate is 0.23 Hz

photon arrival time into pulsar phase.

Only data from the first day and a half of the flight show a significant detection; after this,

the atmospheric column above the instrument was too large. In Figure 5.14 it is clear that

around the 1.5 day mark X-Calibur dips below 35 km and never regains altitude before the

end of the flight.

The total observation length for GX 301-2 was 8.0 h on source and 7.8 h off, and for Vela

X-1 was 7.9 h on and 7.8 h off. This produced the light curves shown in Figures 5.15 and

5.16, respectively.

The Vela result is consistent with no detection, likely because its low elevation required a

longer observation than the abbreviated flight allowed.
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Fig. 5.16: Light curve for Vela X-1 taken by X-Calibur, binned in 1 h intervals. In red are
the ON pointings and in black are OFF. At all times the source rate is consistent with a
non-detection.

There is, however, a clear signal from GX 301-2. We see in Figure 5.15 the excess while

pointing at the source, which gives an average source rate of 0.23 Hz. Using the spin-up

measurements from Fermi GBM [124], we were able to phase-bin the spectrum. The average

pulse profile measured over the entire X-Calibur observation is shown in Figure 5.17. Since

our statistics are not high enough for a full phase-resolved polarization analysis, we calculated

the polarization for two division: the pulse peak, with phase 0.8 to 1.14, and the off peak,

with phase 0.14 to 0.8.

For the polarization analysis, each event is given a scattering angle χ = arctan (x/y), where in

the polarimeter frame x points east and y points north. Based on this scattering angle, each

event is assigned Stokes parameters Q = − 2
µ

cos (2χ) and U = − 2
µ

sin (2χ), and an intensity

I = 1. The Stokes parameters of all the contributing events are summed with weights based

on their location within the polarimeter. One weighting factor is based on the depth of the

event in the polarimeter, since photons are more likely to Compton scatter towards the top.

The other factor is based on its scattering angle, since pixels towards the center of the CZTs

cover a larger angle from the scattering axis. Q and U are then normalized to Q = Q/I

and U = U/I, so if Q = 1 or U = 1 the signal is fully polarized. From these normalized

Stokes parameters, the polarization fraction is calculated with
√
Q2 + U2 and polarization
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Fig. 5.17: Left: On-source (filled points) and off-source (open) phase binned light curve for
GX 301-2. Right: On-off pulse profile. Highlighted in blue is the pulse peak (phase 0.8-1.14),
and in orange is the off peak (0.14-0.8).

Entire Pulse Pulse Peak (0.8-1.14) Off Peak (0.14-0.8)

Q 0.184± 0.194 0.266± 0.212 0.083± 0.335

U 0.202± 0.194 0.161± 0.211 0.246± 0.336

Π(%) 27+38
−27 32+41

−32 27+55
−27

χ(°) 21± 43 30± 40 10

Tab. 5.3: Polarization results from X-Calibur for 15-25 keV, with errors reported at the 90 %
confidence level. The Off Peak polarization angle is unconstrained at this level.

angle with 1
2 arctan (U/Q). Results are shown in Figure 5.18 plotted in the Q − U plane,

and are summarized in Table 5.3.
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Fig. 5.18: Normalized Stokes parameters for the entire pulse (black dot), peak (blue triangle),
and off peak (orange cross). Error bars on each show the 1σ statistical errors. The red circle
corresponds to 25 % polarization, the green circle to 50 % polarization, and the black circle
to 100 %. An unpolarized source would lie at the origin, with Q = U = 0.
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Chapter 6

Outlook and Summary

Sanity returns (in most cases) when the book is closed.

—Ursula K. Le Guin, The Left Hand of Darkness

6.1 Future X-ray Polarimeters

6.1.1 XL-Calibur

To build on the success of the first flight, the X-Calibur collaboration is currently planning

and constructing its follow-up, XL-Calibur, scheduled to fly from northern Sweden across

the Atlantic Ocean on a roughly week-long flight in 2022. It is based on the same design

principles but with several key upgrades. The truss length will be extended from 8 m to 12 m

to accomodate the focal length of a new mirror, originally fabricated for the FFAST mission

[151]. The FFAST mirror is made of 213 aluminum shells coated with a Pt/C multilayer,

and has an energy-dependent effective area 3 to 10 times better than the InFocµs mirror

[7, 105]. At the time of writing, the second out of three alignments has taken place at the

SPring-8 facility in Japan; the third will take place in late 2020 or early 2021, and the final

calibration of the mirror will take place in 2021. Construction and testing of the new 12 m

truss is in progress at Washington University in St. Louis, led by Lindsey Lisalda. I expect

that with minor refurbishment the in-field aligner will be reused during campaigns to verify

alignement of the FFAST mirror with the polarimeter.
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Fig. 6.1: The angular distance in the sky between the Crab nebula and the Sun during the
months of May, June, and July in 2022, when XL-Calibur is planning to fly from Sweden.
The Crab will be at its closest on June 15, about 1° from the Sun. The dotted red line marks
the limit for how close X-Calibur could observe near the Sun during its 2018 flight.

A key target for the flight from Sweden will be the Crab nebula, one of the best studied

X-ray sources in the sky. During the summer, though, the Crab goes behind the Sun; a plot

of their separation is shown in Figure 6.1. This presents an issue because X-Calibur was

unable to observe sources within 40° of the Sun. Within this limit, sunlight washes out all

the background stars in the CARDS star tracker and pointing cannot be maintained; this

prevented X-Calibur from observing a flaring black hole candidate during the 2018 flight.

From Sweden, X-Calibur would be unable to view the Crab during all but the very earliest

and very latest launch windows. To address this, an off-axis star tracker and a sun sensor will

be installed on XL-Calibur. This will allow pointing to be maintained for the Crab, as well

as any target of opportunity sources, throughout a much larger portion of the flight window.

The new limiting factor will be the thermal limits of the FFAST mirror and polarimeter as

they approach direct illumination by the sun.

XL-Calibur will also use an improved polarimeter. In addition to an all new ASIC readout

system, incorporating the noise-reducing lessons learned during preparation for the 2018

flight, the 2 mm thick CZTs used during the 2018 flight will be replaced by 0.8 mm thick

CZTs. While 1-5 % fewer signal photons will be absorbed by these thinner detectors, the
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Fig. 6.2: An example Eu152 spectra in one pixel of a 2 mm CZT and a 0.8 mm CZT. The
0.8 mm tends have a slightly higher energy resolution, and a smaller low-energy tail near the
energy threshold.

background rate will be 69 % of that seen by the thicker detectors, resulting in an overall

higher signal-to-noise ratio. And example of a 2 mm versus 0.8 mm spectrum is shown in

Figure 6.2, showing the smaller low-energy tail in the 0.8 mm CZTs.

Background will be further reduced by improved shielding, currently being designed and

fabricated by the team at KTH in Stockholm. This will include quicker electronics and

lower energy threshold. The shield anticoincidence window will be reduced from 6 µs to 2 µs.

The shield flag, anticoincidence flag, and event flag from X-Calibur are shown in Figure 6.3.

For XL-Calibur, the start of the anticoincidence window will be delayed after the shield flag

to reduce the dead time. This will reduce the background by a factor of ∼2.

To illustrate the capabilities of XL-Calibur, we can compare it to previous polarimetric

measurements. As mentioned earlier in this thesis, OSO-8 measured the polarization fraction

of the Crab nebula at 2.6 keV to be (19.2± 1.0) %, with a polarization angle of (156.0± 1.4)°
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Fig. 6.3: The shield, anticoincidence, and event flags in the X-Calibur electronics. When
an event flag overlaps with the anticoincidence flag, the event is discarded. By delaying the
start of the anticoincidence flag from the shield flag, the dead time will be reduced.

[159]. This resulted from 71.2 h pointing on the source and 71.3 h off. More recently, the

PoGO+ observation of the Crab nebula from its July 2016 balloon flight took almost two days

of data, 25.56 h on and 21.94 h off. For its entire energy range, about 18-160 keV, PoGO+

measured a polarization fraction of (20.9± 5.0) % and angle of (131.3± 6.8)° [27]. When

resolving the data into pulse phase and removing the peak, leaving the emission dominated

by just the nebula, Chauvin et al. found a polarization fraction of 17.4+8.6
−9.3% and angle of

(137± 15)°. To compare XL-Calibur to these previous measurements, in Figure 6.4 I show a

simulated 48 h observation, divided equally between on and off target. This is a reasonable

assumption for observation length given that XL-Calibur’s maiden flight will follow roughly

the same path as the 2016 PoGO+ flight. This shows that over the energy range 20-60 keV

XL-Calibur will be able to resolve the polarization in 10 keV bins with an MDP of <10 %.
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Fig. 6.4: Simulated XL-Calibur observation for 48 hours of observation.
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6.1.2 The Imagining X-ray Polarization Explorer

2021 will see the launch of a satellite polarimeter, the Imaging X-ray Polarimetry Explorer

(IXPE) [161]. IXPE contains three coaligned telescopes, each consisting of a mirror focusing

X-rays onto a gas pixel detector (GPD). The GPD is of a gas cell in which X-rays produce

photoelectrons, emitted preferentially to the X-ray’s polarization. The electron ionizes the

gas, and the path of this ionization track is read out by a gas electron multiplier. The initial

direction of the electron gives information about the X-ray polarization, and its location of

emission gives imaging [37]. The photoelectron changes direction as it ionizes the gas and

slows down, so key to measuring the polarization is correctly interpreting the shape of track

to find the emission point of the electron and its initial direction.

As IXPE operates on the photoelectric effect, its observational energy range is limited to

where this is the dominant interaction, about 2 to 8 keV. In this range, it will be able to

map the magnetic fields of supernova remnants, AGN jets, and pulsar wind nebulae from

the polarization of the synchrotron X-ray emission from these sources.

6.1.3 Others

IXPE will hopefully be just the first satellite X-ray polarimeter of a new era: PolSTAR,

eXTP, COSI, and XPP are several other missions that may fly in the future. PolSTAR

(Polarimetric Spectroscopic Telescope Array) is a satellite version of X-Calibur, combining

the polarimetric capabilities of X-Calibur with the optical bench of NuSTAR [92]. eXTP

(enhanced X-ray Timing and Polarization mission) consists of a large area detector, and

spectroscopic array, and a polarimetric array based on the design of IXPE; it is scheduled

to be launched by the Chinese Academy of Sciences by 2025 [165].

Compton Spectrometer and Imager (COSI)

COSI is a balloon-borne gamma-ray instrument with a 0.2-5 MeV bandpass [32] that was

recently selected to move forward with a satellite mission [148]. COSI consists of layers of
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germanium strips alternating direction in each layer, cryogenically cooled below 80 K. One of

the main goals of COSI is to map the positron annihilation line at 511 keV in the center of the

galaxy, but it will also detect gamma-rays from gamma-ray bursts (GRBs), black holes, and

neutron stars. Due to the inherent polarimetry-sensitive nature of Compton scattering, COSI

will be able to detect the polarization of signals as low as 15 mCrab. Previous measurements

have indicated that GRBs may be highly polarized [34, 63], so constraining the polarization

of these is one of the main goals of COSI. Within its initial two year mission lifetime, the

COSI satellite is likely to see about 40 GRBs, translating into an MDP of about 50 %.

X-ray Polarization Probe (XPP)

XPP is a design concept for a second generation X-ray polarization observatory [77]. It

has a large bandpass of 0.2-60 keV, achieved by combining several focal plane instruments

sensitive in different energy ranges. XPP would have three Wolter I mirrors, two of which

illuminate identical large bandpass modules and a third illuminating an IXPE-like gas pixel

detector which offers imaging in a small bandpass. The large bandass module consist of

three instruments: a Low, Medium, and High Energy Polarimeter (LEP, MEP, and HEP).

The LEP (0.2-2 keV) is a diffraction grating taking advantage of the polarization dependence

of Bragg diffraction and is transparent above 2 keV [102, 103]. X-rays which are transmitted

through the LEP are incidence on the MEP (2-10 keV), which like IXPE reads out the inital

direction of photoelectrons to measure polarization. In this case, it is based on the design of

PRAXyS [69], which utilized a Time Projection Chamber (TPC) [15] to read out the electron

tracks. There will be a window at the back of the MEP which allows X-rays >10 keV to exit

into the HEP, which is based on the X-Calibur and PolSTAR designs [92]. The HEP will

differ from X-Calibur in that the monolithic beryllium scattering element will be replaced

by a composite of beryllium, lithium hydride, and scintillator to optimize the Compton

scattering cross section across the entire 10-60 keV range.
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6.2 Advancements in Simulation

6.2.1 Combining Ray-Tracing and GRMHD

One of the major drawbacks of ray-tracing codes such as the one described in Chapter 2

is that they rely on idealized models. They make simplifying assumptions about the disk

structure and time evolution of the system, and thus are of limited use when it comes to

timing predictions and simulations. To improve on this, we can use GRMHD simulation

results to inform our ray-tracing. This can allow us to feed realistic disk structures into our

ray-tracing code and evolve it with time, which would be difficult to do while simultaneously

tracking radiation through the environment. This project is currently underway, led by

Andrew West at Washington University in St. Louis and Matthew Liska at Harvard. We

hope to be able to confirm the link between warped disk precession and QPOs [73, 75].

6.2.2 Polarization in Magnetic Fields

The magnetic field around compact objects can strongly impact the polarization. Faraday

rotation is an important effect in photons travelling through the plasma in black hole coronae

and disks, and around highly magnetized neutron stars (called magnetars), the prediction

of QED vacuum birefringence becomes significant.

Faraday Rotation

In the plasma of coronae and disks around black holes, the magnetic fields cause the plane

of polarization of photons to rotate. Davis et al. [38] use the following equation for a photon

traveling the distance of the Thompson optical depth τT :

χF = 3λ2τT
16π2e

−→B · k̂, (6.1)
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where e is electron charge, −→B is the magnetic field, k̂ is the photon wave vector, and λ

is the photon wavelength. Due to the wavelength dependence, this effect will be weak for

X-rays unless the magentic field is quite strong, on the order of 105-106 G. The net effect

of Faraday rotation will be to depolarize the emission, as the polarization angle of photons

from similar locations will be rotated away from each other by slight path differences. When

considering paths through the accretion disk atmosphere, this effect will be small since the

disk is geometrically thin; it will be less so for the lamppost corona, which relies on its size

to capture and Comptonize photons. Stronger still will be the effect of Faraday rotation for

extended corona models [11], where photons spend more time in the corona.

QED Birefringence

One of the early predictions of quantum electrodynamics is that the magnetized vacuum is

birefringent [140]. This requires enormous magnetic fields for the effect to be significant,

and so it has yet to be observed in a laboratory. In magnetars, however, where the magnetic

field can reach ∼1015 G, this effect may become observable. Around black holes, Caiazzo

and Heyl [21] show that this can depolarize the X-rays, especially around black holes with

higher angular momenta where it is more likely that photons will orbit around the black hole

several times, thus spending more time in the magnetic field, before reaching the observer.

Around neutron stars, however, QED birefringence can instead increase the polarization.

Heyl and Caiazzo [68] demonstrate that around magnetars, the polarization angle of the

source follows the direction of the magnetic field far from the star, which can lead to polar-

ization fractions of nearly 100 %. They predict that this is the case around the source 4U

0142+61, and identify it as an ideal target of observation for IXPE.
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6.3 Summary

In this thesis, I have presented the results from my work studying X-rays from warped black

hole accretion disks, as well as my contributions to observational X-ray polarimetry through

my work on X-Calibur.

In Chapter 2, I summarized the methods and abilities of the ray-tracing code used by our

group [91]. I improved the computational ability of this code by implementing the embedded

Cash-Karp method with adaptive step size. Additionally, in this chapter I described the

warped accretion disk model which I added to the code.

I used this warped disk model in Chapter 3 to simulate the polarization signature from such

disks. In this chapter, adapted from Abarr and Krawczynski [3], I found that polarization

angle can be a diagnostic of disk warping in the case of systems which have previous measures

of orientation (from jet inclination or binary orbit, for example), while the energy spectrum

and polarization fraction may be difficult to use to measure disk warping. Using this code,

I simulated IXPE observations of two possible sources: Cygnus X-1 and GRO J1655-40,

both candidates for containing misaligned disks. I found that these sources likely have low

polarization fractions, requiring long observation lengths.

Chapter 4 contains my results from simulating the reflection spectrum from warped disks

using xillver, originally presented in Abarr and Krawczynski [2]. I show that the consider-

ation of photons which scatter multiple times is more important for warped disks, especially

when the warp radius is small or the warp degree is large. To determine the effect that disk

warping has on the measured properties of black hole systems, specifically inclination and

spin, I fit my simulated spectra with the relxill_lp model in xspec, and find that these

parameters can be measured with greater accuracy by using a two part relxill_lp model,

one for each segment of the disk. In particular, this will become more important as more

advanced missions such as XRISM [164] and Athena [115] are launched in the coming years.

I discuss my contributions to X-Calibur, the balloon-borne hard X-ray polarimeter, in Chap-

ter 5. In particular, I worked on the alignment system: I temperature tested the mirror to
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help determine the operating temperature during flight and designed a portable system to

verify the alignment of the mirror after installation on the truss. I took part in the 2018-2019

long duration balloon campaign in McMurdo, Antarctica, and helped in the analysis of the

resulting data that led to the first polarimetric constraint of the accreting pulsar GX 301-2.

Finally, in Chapter 6 I have discussed several future endeavors. I discussed the future of

X-ray polarimetry, including my contributions to the upcoming mission XL-Calibur, and

presented details of the upcoming satellite IXPE. I ended by presenting several projects

which are in the works that improve the usefulness and accuracy of ray-tracing simulations,

including the addition of the effects of a strong magnetic field as well as implementing a disk

structure informed by GRMHD results.
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