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ABSTRACT 

 Quantitative analysis has been a staple of the financial world and investing for many 

years. Recently, machine learning has been applied to this field with varying levels of success.   

In this paper, two different methods of machine learning (ML) are applied to predicting stock 

prices.  The first utilizes deep learning and Long Short-Term Memory networks (LSTMs), and 

the second uses ensemble learning in the form of gradient tree boosting.  Using closing price as 

the training data and Root Mean Squared Error (RMSE) as the error metric, experimental results 

suggest the gradient boosting approach is more viable. 

 Honors Symposium: ML is an unbelievably powerful tool, and the application of ML 

must be subject to our biblical calling as stewards.  As technology progresses to make us 

increasingly productive, we must direct what we produce towards ends that glorify God.  Just as 

importantly, we must be vigilant to the great temptation to become lost in decadence.  ML has 

wildly successful applications in the financial world that far surpass the scope of this paper, but 

we cannot lose sight of He who provides.  A firm grounding in scripture and a healthy 

understanding of Providence should be enough to keep those of us who pursue the blessing of 

technology from becoming lost in our own grandeur. 
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ABSTRACT 
Quantitative analysis has been a staple of the 

financial world and investing for many years. 

Recently, machine learning has been applied to this 

field with varying levels of success.   In this paper, 

two different methods of machine learning (ML) are 

applied to predicting stock prices.  The first utilizes 

deep learning and Long Short-Term Memory 

networks (LSTMs), and the second uses ensemble 

learning in the form of gradient tree boosting.  Using 

closing price as the training data and Root Mean 

Squared Error (RMSE) as the error metric, 

experimental results suggest the gradient boosting 

approach is more viable. 
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1. INTRODUCTION 
The interest of quantitative analysis has always been 

to make connections between sets of data and 

increase accuracy of predictions.  Different tools, 

systems, and mathematical models have been applied 

to this problem over the years, and as of late, ML has 

become increasingly popular among investment 

funds.  ML is the practice of programming computers 

so they can be fed data to learn to solve a problem. 

There are many different types of ML with different 

strengths; this paper will focus on two in particular: 

deep learning in the form of LSTM networks and 

ensemble learning in the form of gradient tree 

boosting.  

    Stock prices and the market in general are 

extremely dynamic systems, and as such, are difficult 

to predict.  There are countless variables that affect 

stock price, ranging from quantitative indicators to 

feeling/opinion, also known as market sentiment.  A 

reason ML has become popular in this field is that 

ML is able to draw connections between data points 

in sets, often providing insight into causation.  

However, there must be caution because machine 

learning will find patterns in a data set even if there 

are none, as the famous quote attributed to economist 

Ronald Coase goes, “if you torture the data enough, 

nature will always confess.” [1] 

    Neural networks, of which LSTMs are a subset, 

have been directed at market sentiment due to their 

success with natural language processing, so they 

may properly discern the attitude of news articles [2].  

Their success comes from their ability to “remember” 

data, allowing them to effectively process things like 

context in language and long-term dependency in 

time series.  Memory allows them to be directly 

applied to price prediction using time series data.  As 

shown in section four, the LSTM network used for 

this paper takes in time series data. 

    The fundamental building block of gradient tree 

boosting is a decision tree, which is used for both 

classification and regression.  The latter is used for 

the sake of stock price prediction.  Decision trees are 

convenient because they do not require feature 

scaling before training, reducing the amount of 

preprocessing of data that needs to be done. 

    It is important to note that a large part of ML is 

data science, and not simply algorithm design. This is 

partially because of an influential paper in 2001 [3] 

that showed many different algorithms performing 

about the same once given enough data, and it was 

further solidified by a paper in 2009 suggesting the 

same [4].  This realization that data was essentially as 

effective as a good algorithm is important because it 

has defined ML for the past couple decades.  In 

practice, data and feature engineering ends up being 

the major focus of work because the heavy lifting of 

building models is supplied by libraries. 

     

  Section 2 explains the models and training 

techniques used.  Section 3 lists a series of related 

works on machine learning.  Section 4 explains the 

methodology of the tests.  Section 5 displays the 

results.  And section 6 is an explanation of the results 

and what could be done to improve. 
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2. BACKGROUND 
LSTMs were made to solve the problem basic 

recurrent neural networks (RNNs) had with 

remembering data from too many time steps in the 

past.  With a basic neuron containing only an 

activation function, a simple RNN had trouble 

learning how to hold on to relevant information.  An 

LSTM corrects for this by altering the inside of the 

cell, taking in and therefore outputting an additional 

state to each subsequent cell.  Among the alterations 

are a forget gate that determines which information to 

keep from the previous state, a weighted combination 

of what information to add to the current state, and 

finally an activation function of the updated state to 

form the new output.  

 
Figure 1. An LSTM Cell 

 

    Figure 1 shows the insides of an LSTM cell.  The 

yellow boxes are neural network layers that use a 

weighted input plus bias in an activation function to 

produce output, in this case with sigma or tanh as 

activation functions. Sigma stands for a sigmoid 

function that takes in numerical input and outputs a 

value ranging from 0 to 1. Tanh performs a similar 

task but output ranges from -1 to 1.  The circles are 

pointwise operations on the vector input, which can 

be simple like multiplication or addition, or it can be 

an activation function like tanh.  The cell takes as 

input a previous state, ct-1, a previous output, ht-1, and 

a current data input, xt.  In the path of the first neural 

network layer is the implementation of the forget 

gate.  Here, xt and ht-1 are concatenated and put 

through a sigmoid layer, producing a series of values 

ranging from 0 to 1 for each value in the state ct-1.  

When the series is multiplied by ct-1, a value of 0 

fully drops or “forgets” previous values in the state, 

while a value of 1 fully keeps or “remembers” the 

previous values in the state.  The second section in 

the LSTM processes what values are to be added to 

the state (produced by the tanh layer) and scaled by 

some amount (produced by the sigmoid layer).  After 

the new values are scaled, they are added to the state 

produced by the forget gate, creating ct, the current 

state.  In the final section, ct is put through a tanh 

function (not a neural network layer) and scaled by a 

sigmoid layer of ht-1 and xt; this produces ht, the 

output of the cell. Both ct and ht are passed to the next 

layer in the network; if it is an LSTM layer, the 

process is repeated. 

    With the addition of the continuous state and the 

forget gate, an LSTM is able to select which 

information it wishes to keep moving forward 

through time.  This allows connections to be drawn 

between data points that previously were lost to the 

mangling of simple activation functions.  An LSTM 

is good with time series data for that reason; it can 

understand that price from X number of steps ago 

affects the current output.  Put simply, deep learning 

is a neural network that contains multiple “hidden” 

layers, or layers that are neither the input nor output 

layer. 

    A decision tree is a type of supervised ML that can 

be used for both classification as well as regression.  

They work by splitting the data set into subsets in 

such a way as to minimize a cost function.  In the 

case of regression, often this is mean squared error.  

Unrestrained, decision trees are prone to overfitting, 

as they will split the data all the way down to the 

individual points.  Normally, parameters are set to 

specify how many times the tree can split the data, 

how many points must be in each split, etc. Given the 

right parameters, a decision tree will produce a well-

fit model with good predicting power. 

    Gradient tree boosting is a form of ensemble 

learning, in which many predictors are aggregated to 

increase accuracy.  This is based on the law of large 

numbers; if there are enough predictions with even 

only 51% accuracy and the majority opinion is 

selected, there is a significantly higher than 51% 

likelihood of it being correct.  Boosting is an 

ensemble method that trains the predictors 

sequentially, attempting to correct the previous 

predictor’s errors.  Gradient tree boosting uses 

decision trees as the predictors, and it trains each 

following predictor on the residual error of the one 

prior.  In this way, having more predictors accounts 

for the errors of the previous predictors.  The model 

in this paper uses the optimized Python library, 

XGBoost [5, 6], which has found recent success in 

algorithm competitions. 

    In machine learning models, there are some 

common problems to be aware of.  The overarching 

issue in training is the Bias/Variance tradeoff.  If the 

model is too simple (highly constrained/low degree 

of freedom), then it is unable to adapt to the data and 

is prone to underfitting.  If the model is too complex 

(high degree of freedom), then it adapts too well to 

the data and is prone to overfitting.  The goal before 

and during training is to minimize these two 



conflicting sources of error so the model can 

generalize well.  One factor in the complexity of the 

model is the number of parameters being measured.  

Another is the type of model; decision trees are easily 

capable of overfitting due to the lack of assumptions 

made about the data. 

    There is a tendency to anthropomorphize machine 

learning, but what either of the models are actually 

doing under the hood often differs greatly from a 

human’s perception of the problem.  The split here is 

referred to as a white or black box approach.  Neural 

networks are black boxes; it is unclear why they 

make the decisions they do after training.  Decision 

trees are white boxes; their method can be broken 

down easily into what factors they consider, how 

important they are, and more.  

    Coding either of these machine learning methods 

used to take much more work.  Fortunately, creating 

these networks has been trivialized by many modern 

libraries, namely Keras, Tensorflow, and XGBoost, 

so more emphasis can be placed on feature selection 

and fine tuning the parameters. 

 

3. RELATED WORKS 
Neural Nets have been applied to time series data 

even before the advent of the LSTM, just not as well.  

LSTMs are mainly used in prediction or sequence 

classification [2, 7] by themselves, while different 

neural nets like convolutional neural networks can be 

used in more complex graph structures [8].  For more 

complicated structures like multi-task RNNs, in 

which attention-based neural nets are used, LSTMs 

have shown to not be as effective [9]. 

    Gradient boosting was first published in 1997 [10] 

improving on the concept of boosting, which had 

existed for a short while. In 2016, Tianqi Chen 

published his paper [6] that established XGBoost, a 

system based on extreme gradient boosting.   

    Other kinds of machine learning have also been 

directed at finance.  Support vector machines (SVMs) 

are a popular, supervised approach that have had 

some amount of success in prediction [11, 12].  

Reinforcement learning (RL) is similar in that it can 

use neural networks as their decision policy, but the 

machine learning is the agent that acts on the market, 

not just a predictor.  RL has found real financial 

success as automated trading bot [13]. 

 

4. METHODOLOGY 
These tests were run on an Intel Core i7-7700HQ 

CPU at 2.80GHz with four cores, eight logical 

processors, and 16GB of RAM.  The language used 

was Python version 3.8, utilizing the Keras, 

Tensorflow, and XGBoost libraries, and the work 

was done in a mix of Atom/Command Line and 

Jupyter Notebooks. 

    The data was pulled from TradingView [14], a 

chart tracking and data website that can integrate 

with brokers to track the market.  The data used in 

these tests was a comma-separated value (.csv) file of 

AAPL stock from 2015 to 2020 in two hour (2h) 

candles.  The Pandas [15] library, which provides 

matrix and database functionality, was used to 

process and sort the .csv data.  Each model was 

trained on the closing price data. 

    The LSTM was constructed from the Keras library 

using three LSTM layers followed by one Dense 

layer containing one neuron for the output.  A Dense 

layer is a fully connected layer, where each neuron 

(in this case, just one) receives input from every 

neuron in the previous layer.  The model used in 

these tests consisted of three LSTM layers of 50 

neurons each; the number of neurons for each layer is 

selected with both functionality and training time in 

mind.  It is not clear that having more neurons strictly 

means a better result, but too few neurons does 

increase error.  The loss function used was mean 

squared error.  The input shape of the first LSTM 

layer was [100,1] because the model was being 

trained taking in the previous hundred days of data 

and making a prediction of the next day.  For most of 

the test runs, dropout layers were used in between the 

LSTM layers, which weaken the impact of certain 

layers by reducing their effects by a percentage. 

    The gradient tree boosting model using XGBoost 

used regression with squared loss as the learning 

objective, and it had estimators set to 1000, meaning 

there were 1000 gradient boosted trees contributing 

to the final output. 

    The data was split at 75/25 percent for the LSTM 

training/test data.  Out of 7474 data points of closing 

price, the training set size was 5605, and the test set 

size was 1869.  The training set for the LSTM 

consisted of two arrays, x_train for the input and 

y_train for the expected output, which is supervised 

learning. X_train contained a sequence of the 100 

prior data points for each point in the training data, 

and y_train was each 101st data point as the expected 

output.  Once the data is cleaned and split, the model 

is fitted and validated using the Keras fit() and 

predict() methods.  The fit() method’s input 

parameters such as dropout, epochs, and batch size 

were tested at different levels, as shown in Results.  

The output of the model using predict() is compared 

to the y_train and y_test (the data points in the test 

set) arrays to compute the RMSE. 

    The XGBoost model was also trained on the entire 

AAPL data set (7474).  The process for training and 

fitting the model was similar, splitting the data this 

time at 80/20 percent for train/test set.  Decision trees 



also use supervised learning, so there was an input, 

x_train, and expected output, y_train.  The x_train 

array for this model consisted of the current closing 

price, and the y_train array consisted of the following 

day’s closing price.  Once the data was cleaned and 

split, the model was fitted using XGBoost’s fit() 

method and validated using a method called walk 

forward validation.  Walk forward validation is a 

process in which predictions are made, but the model 

is retrained on the “new”, real data of the test set 

every step.  This way, the model is kept up to date.  

The “expanding window” method was used, in which 

new test data points are added to the old set and none 

are removed.  

 

 

 

Run/Input Dropout: #layers (amount) Epochs Batch Size Train RMSE Test RMSE 

1 None 25 64 39.47 88.65 

2 3 (.2, .2, .2) 25 64 39.26 86.22 

3 3 (.2, .2, .2) 20 128 38.75 85.17 

4 3 (.8, .5, .5) 25 64 39.3 81.53 

5 3 (.8, .5, .5) 25 256 39.07 83.06 
Table 1: LSTM Results 

 

 

5. RESULTS 
Keeping in mind that the validation methods were 

different, the results of both models were vastly 

different.  The LSTM model was fitted with different 

parameters, but they all produced similar results, as 

shown in Table 1.  Utilizing substantial dropout in 

the training process achieved the best test RMSE at 

81.53 dollars.  Figure 2 shows the graph of the last 

768 data points in the test set for Run 4. 

 
Figure 2: LSTM Predictions for Run 4 

 

    While it may have had the lowest Test RMSE, the 

graph shows a bit of underfitting.  Figure 3 shows the 

graph for Run 1, which fits the data better but has a 

higher RMSE. 

 
Figure 3: LSTM Predictions for Run 1 

 

    The results for the XGBoost model were 

substantially better, with an RMSE of 1.28 over the 

test set.  Figure 4 shows the last 768 data points in the 

test set for the XGBoost model. 

 
Figure 4: XGBoost Predictions 

 

    A zoomed-in perspective of Figure 4 is shown in 

Figure 5, which is the last 50 data points in the test 

set.  And Figure 6 shows a point where the XGBoost 

model can have high variance. 



 
Figure 5: Last 50 Points of Figure 4 

 

 

 
Figure 6: High Variance XGBoost 

 

6. CONCLUSION 
From the data observed, it seems to suggest that 

gradient boosted decision trees are superior to basic 

LSTMs when it comes to time series prediction.  

There are multiple flaws in the comparison and 

methodology that could be improved upon.  These 

improvements include, but are not limited to, lining 

up the dataset, fleshing out the model by testing 

different layer structures, and using multivariate 

analysis instead of univariate.  The validation method 

for each model differs as well, which can skew 

results if interpreted incorrectly.  RMSE is in the 

units of what is being measured, which in this case is 

dollars.  Lower RMSE is better, but depending on the 

context, an RMSE of 30 could be acceptable.  If the 

stock price is 1000 dollars, an RMSE of 30 would be 

good.  However, in this case, AAPL only gets up to 

~120 dollars, which leads me to conclude that my 

simple LSTM did not perform well, despite showing 

a promising graph at times. 

    The market viability of these models was not the 

initial goal, but even so it is questionable for multiple 

reasons.  Back testing itself is full of pitfalls and 

never guarantees future results.  Referring back to the 

black box nature of neural networks, it is difficult to 

determine what throws off the results.  The LSTM 

model does not seem to be grossly underfitted, but it 

is underfitted to some degree.  On the other hand, 

there is high variance in the XGBoost model that may 

speak to some overfitting.  An increase in 

complexity, namely updating from univariate to 

multivariate analysis (more features) may help both 

models perform better. 

    While these two methods were just predictors, it 

would be interesting to develop a RL method that 

trades on its own.  Machine learning is often used as 

an aid to discretionary trading, but RL agents act on 

their own.  Further research to be pursued in the way 

of RL would be applying the deep neural net I 

created and use it to update a policy.  
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Honors Symposium Presentation 

 

The interest of quantitative analysis in finance has always been to make connections between 

datasets and to increase the accuracy of predictions.  Different tools, systems, and mathematical models 

have been applied to these endeavors over the years, and as of late, machine learning has become 

increasingly popular among investment funds.  Machine learning is the practice of programming 

computers so they can be fed data to learn to solve a problem. There are many different types of machine 

learning with different strengths, and my project focused on two in particular: deep learning in the form of 

Long Short-Term Memory networks and ensemble learning in the form of gradient tree boosting. 

 (Slide Change) 

When we say a machine can “learn” from data, we mean that data is put through an algorithm, an 

output is measured with a cost function, and the machine attempts to minimize that cost function.  Cost 

functions and the method the machine takes to minimize them (known as the learning method) differ from 

task to task and across different machine learning architectures.  One way learning methods can be 

categorized is by the amount of human supervision involved, called supervised, unsupervised, semi-

supervised and reinforcement learning.  Both types of learning implemented here use supervised learning 

methods, meaning the input data comes with a corresponding label which shows the expected output.  

This is the most direct form in the sense that the programmer is giving the algorithm the answers in the 

hope it will learn to generalize.  The tasks a machine learning algorithm is expected to perform generally 

fall into two categories: classification, such as identifying pictures, and regression, such as time series 

prediction.  As the name suggests, stock price prediction is most directly represented as a time series 

prediction problem (although there are other ways to conceptualize it). 

Stock prices and the market in general are extremely dynamic systems, and as such, are difficult 

to predict.  There are countless variables that affect stock price, ranging from quantitative indicators to 

feeling/opinion, also known as market sentiment.  A reason machine learning has become popular in this 

field is that it is able to draw connections between data points in sets, often providing insight into 

causation.  However, we must be cautious because machine learning will find patterns in a dataset even if 



there are none, as the famous quote given in a 1981 lecture by economist Ronald Coase goes, “if you 

torture the data enough, nature will always confess.” 

(Slide Change) 

The first model I created is an LSTM, which is a type of recurrent neural network.  To get to 

LSTMs, the fundamentals of neural nets should be explained.  Based originally on a conceptual 

representation of the brain, the terminology has remained, but the similarity in function has mostly faded.  

A neural net is composed of layers of “neurons”, or cells, that contain what is called an activation 

function, which typically sorts values between an easier-to-handle range of 0 and 1 or -1 and 1.  These 

activation functions take as input the weighted sum of the previous layer’s outputs and they output the 

result to one or more of the neurons in the next layer until the output layer is reached.  These connections 

have a weight that represents the strength of the connection, and deep learning is simply when there are 

layers in between the input and output layer, called hidden layers.  Neural nets train through a process 

called Gradient Descent, in which partial derivatives and the chain rule are used to determine how much 

each input is responsible for the output, thereby indicating which weights should be adjusted to help 

minimize the cost.  This is often represented in an analogy of a climber lost in the mountains trying to 

find his way down to the valley.  A possible solution is to repeatedly go downhill in the direction that is 

steepest.  Eventually, when no direction has a “downhill”, the climber has reached the bottom, also known 

as a minimum.  However, this may only be a local minimum, such as between two mountains but not yet 

in the valley.  There are multiple methods to avoid this, one of which for regression is the shape of the 

mean squared error function.  Because mean squared error is a convex function, it implies that there is 

only one minimum, which makes it global.  Additionally, the learning rate is set higher at the beginning 

of training and decays over time to settle into a minimum. 

(Slide Change) 

LSTMs were made to counter what is called the vanishing gradient problem.  Due to the shape of 

activation functions like sigmoid or hyperbolic tangent, the gradient can be vanishingly small, sometimes 

to the point of stopping updates to weights altogether.  LSTMs corrected this by changing the contents of 



the neuron from a simple activation function to also contain a memory state that is passed to subsequent 

cells.  This means that LSTMs are able to remember patterns for much longer than a vanilla RNN because 

they can choose what values to add to and forget from the state.  (Quick Description if time is needed) 

(Slide Change) 

The second model uses decision trees, which are a bit simpler than LSTMs, but they are quite 

powerful.  They work by splitting the dataset in sections as to minimize some cost measurement, which in 

the case of regression is often mean squared error.  The number of splits determines the depth of the tree, 

which is specified by a hyperparameter, the parameters we give the machines that alter their learning 

process.  This graph is showing the likelihood of kyphosis after spinal surgery given the vertebrae in 

which it started and the age at which surgery was performed. 

(Slide Change) 

The second model is not just a single decision tree, but rather many, utilizing what is called 

ensemble learning.  Ensemble learning is any learning method that combines weak learners, learners that 

are barely better than random guessing, into a strong learner.  This operates on the statistical principle of 

the law of large numbers, which essentially says that as the number of trials increases, the average results 

trend closer to the expected average.  This means if you combine enough predictors that guess correctly 

51% of the time and take the majority result, you can expect accuracies much higher than 51%.  Boosting 

is a process of training the learners sequentially in order to improve results, each time compensating with 

weights for what the previous learners missed.  Gradient boosting is a subset that fits the following 

learners on the previous residual error, rather than changing weights.  The library used, XGBoost, 

implements gradient boosted decision trees, so the weak learners of the ensemble method are decision 

trees. 

The implementation of both methods was done using libraries available to the public that have 

trivialized the creation of ML.  Keras, tensorflow, were developed and are used by Google.  XGBoost was 

developed by Tianqi Chen in 2016.  The models were trained using AAPL two hour closing price data 

from 2015-2020.  Around 75-80% of the data is set aside to be used in the training set.  The remainder is 



used as the test set, data the model has not seen in order to check its ability to generalize. The overarching 

issue in training is the Bias/Variance tradeoff.  If the model is too simple (highly constrained/low degree 

of freedom), then it is unable to adapt to the data and is prone to underfitting.  If the model is too complex 

(high degree of freedom), then it adapts too well to the data and is prone to overfitting.  The goal before 

and during training is to minimize these two conflicting sources of error so the model can generalize well.  

One factor in the complexity of the model is the number of parameters being measured.  Another is the 

type of model; decision trees are easily capable of overfitting due to the lack of assumptions made about 

the data, and if they had unlimited depth, they would make a split for every data point, losing generality. 

(Slide Change) 

On the left is the LSTM and on the right is the Gradient Boosted model.  As you can see, these 

models likely lack any real financial viability.  The LSTM, while it has a promising fit at times, had a root 

mean squared error of around 83 on the test set, which is terrible given a stock price ranging from 30-120 

dollars over the time period.  The XGBoost model is certainly more promising than the LSTM with a root 

mean squared error of only 1.28, but the high variance as shown in the bottom right is worrisome.  In the 

future, I would improve the tests by putting more effort into feature selection; I would not only use 

closing price but other factors as well.  It also would be fascinating to develop a reinforcement learning 

agent, which executes the trades itself, instead of just predicting. 

(Slide Change) 

However, in the case that they were financially successful, there would be more considerations at 

hand.  Machine learning is an unbelievably powerful tool, and the application of machine learning must 

be subject to our biblical calling as stewards.  As technology progresses to make us increasingly 

productive, we must direct what we produce towards ends that glorify God.  Just as importantly, we must 

be vigilant to the great temptation to become lost in decadence.  Machine learning has wildly successful 

applications in the financial world that far surpass the scope of this project, but we cannot lose sight of He 

who provides.  A firm grounding in scripture and a healthy understanding of Providence should be 



enough to keep those of us who pursue the blessing of technology from becoming lost in our own 

grandeur. 

It is clear to me in the Parable of the Talents that God wants us to use our gifts maximally for the 

good.  It is not good to bury the talent and become a “wicked and slothful servant,” (ESV, Matt. 25:26).  

In a similar vein, the wife of noble character in Proverbs 31 “does not eat the bread of idleness.”  In these 

two passages, we see that our talents are good and should be used industriously for those around us, 

which is ultimately for the glory of God.  Further solidifying the point, in both the Sermon on the Mount 

and in the Parable of the Sheep and the Goats, Christ shows that talk is not enough.  It is not enough to 

simply say, “Lord, lord!” to enter the kingdom of heaven, but “whatever you did for one of the least of 

these brothers and sisters of mine, you did for me,” (NIV, Matt. 25:40).  It takes action, dedication of 

resources, and self-sacrifice to glorify God and do his will.  Importantly, the Bible also reinforces 

temperance, “It is good to grasp the one and not let go of the other. Whoever fears God will avoid all 

extremes,” (NIV, Ecc. 7:18).  Though we are to be productive, we are not to ruthlessly drive ourselves 

into the ground for the sake of money or success. 

It is a little late to say that our world is becoming increasingly controlled by technology; we are 

living in a digital age, and we must wield this tool responsibly.  All advancements bring a wide array of 

new ethical concerns, and computer science is no different.  Already showcased by the ethical standards 

of the ACM are lying, cheating, harm, and integrity.  I would posit that a few more are serving political 

masters, seeking wealth above all else, and environmental concern, all three of which are interwoven with 

the aforementioned ACM standards. 

I believe the political realm has still not recovered from the onset of the digital age.  On one hand, 

the mass dissemination of information is good, but the state of our discourse has only grown more 

polarized, and we have grown isolated.  I think of this as I develop a social media app in my senior 

capstone class for the sake of a grade, but I feel I would hate to be the person to inflame our current state 

of isolation sadly masked by faux connection.  Additionally, it is easy to see how technology can be used 

to abuse and trample on rights.  When such few people have acquired such overwhelming power to 



silence speech, how do we have discourse?  None of this even begins to mention the new security 

concerns with the development of cyberattacks.  Whatever we produce in the tech realm should be done 

mindful of our civic duties. 

Avarice is one of the oldest sins in the book, and a golden goose such as machine learning throws 

blatantly obvious warning signs.  Personally, I have never struggled with an attachment to money.  

However, I am only human, and I can imagine the draw wealth could have on me, should God choose to 

bless me in my endeavors.  Maybe I would begin to seek out a higher and higher salary in the name of 

security, or worse, because I think I deserve it.  There should be charity in all things, and that includes the 

simplest, direct application, our resources.  Tithing and an open-palm attitude towards money, the faith 

that there will again be manna tomorrow, are important factors in maintaining a healthy life with a tool 

like machine learning. 

During my computer science classes at SPU, we have discussed the notion of green computing.  

The reality is that computers drain a lot of power, cost many expensive resources, and the understandable 

and cost-effective inclination to replace rather than repair can be extremely wasteful.  Does this mean we 

cease production or somehow regress?  No, I hardly think removing a tool that has helped lift millions out 

of poverty to be a good idea.  I believe that the answer is found moving forwards.  This does not mean 

pursuing more of the same wasteful endeavors; there should be a morality that rules above the market. 

The logical path of technology has been the path to efficiency, the path to cheaper, better, cleaner.  

Obviously, this is not always carried out, and I understand that there may need to be certain areas that are 

subsidized in order to incentivize those who can make change to make it, such as battery tech.  But I truly 

believe that technology is the ally of the environment.  Cleaner, safer energy like nuclear could help 

lessen our dependence on other forms of fuel.  To decry tech and fossil fuels as evil is to be ignorant of 

the good they have done and continue to do in lifting people out of poverty.  But I see it as perfectly 

reasonable to want greener energy, and how we apply technology can help further that goal. 

I have always been a proponent of individual action as the route to bettering society.  Here too, in 

being stewards, is the route forwards.  Before our minds move on to grand, sweeping social change, we 



should first consider and reflect on ourselves.  How can we be the hands and feet of Christ?  The path to 

macro change is micro change.  How can we improve our social fabric?  Be the one who builds 

community, gets involved in schools and churches.  How can I further the kingdom of God with 

software?  Do not be the one to build software that degrades life, and further than that, be the one to make 

software that honors him.  This does not mean the software built has to be explicitly religious, or that we 

are all destined for a life in the clergy.  But at all times, we are called to be the salt of the earth and a light 

to others.  Just as a Christian artist brings glory to God by being the best artist they can be, a Christian 

software engineer brings glory by producing the best code they can.  If it is God’s will, the opportunities 

to larger things will be made apparent. 

Us students at SPU are fortunate enough to be attending university in a free society.  I hope we all 

have our minds set on how we can steward these gifts of both skill and opportunity.  I am excited to be 

pursuing a startup after college with close, like-minded friends with hearts for Christ.  Hopefully that 

way, I can turn these ones and zeroes into something beautiful, honorable, and glorifying to God. 

  



Power Point Slides: 

 

 

                          
                

              

               

                

                        

                    

                         

                                  

                         

                                                       

        

                          



 

 

                                

     



 

 

              

                                       



 

 

       

          

                 


	Machine Learning in Stock Price Prediction Using Long Short-Term Memory Networks and Gradient Boosted Decision Trees
	Recommended Citation

	tmp.1623642862.pdf.ohszx

