
Seattle Pacific University Seattle Pacific University

Digital Commons @ SPU Digital Commons @ SPU

Honors Projects University Scholars

Spring 5-4-2021

Machine Learning in Stock Price Prediction Using Long Short-Machine Learning in Stock Price Prediction Using Long Short-

Term Memory Networks and Gradient Boosted Decision Trees Term Memory Networks and Gradient Boosted Decision Trees

Carl Samuel Cederborg

Follow this and additional works at: https://digitalcommons.spu.edu/honorsprojects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Cederborg, Carl Samuel, "Machine Learning in Stock Price Prediction Using Long Short-Term Memory
Networks and Gradient Boosted Decision Trees" (2021). Honors Projects. 132.
https://digitalcommons.spu.edu/honorsprojects/132

This Honors Project is brought to you for free and open access by the University Scholars at Digital Commons @
SPU. It has been accepted for inclusion in Honors Projects by an authorized administrator of Digital Commons @
SPU.

http://digitalcommons.spu.edu/
http://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/honorsprojects
https://digitalcommons.spu.edu/univ-scholars
https://digitalcommons.spu.edu/honorsprojects?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.spu.edu/honorsprojects/132?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages

MACHINE LEARNING IN STOCK PRICE PREDICTION

by

CARL CEDERBORG

FACULTY MENTORS:

DR. CARLOS ARIAS

HONORS PROGRAM DIRECTOR:

DR. CHRISTINE CHANEY

A project submitted in partial fulfillment of the requirements

for the Bachelor of Arts degree in Honor Liberal Arts

Seattle Pacific University

2021

Presented at the SPU Honors Research Symposium

Date: 5/22/21

ABSTRACT

 Quantitative analysis has been a staple of the financial world and investing for many

years. Recently, machine learning has been applied to this field with varying levels of success.

In this paper, two different methods of machine learning (ML) are applied to predicting stock

prices. The first utilizes deep learning and Long Short-Term Memory networks (LSTMs), and

the second uses ensemble learning in the form of gradient tree boosting. Using closing price as

the training data and Root Mean Squared Error (RMSE) as the error metric, experimental results

suggest the gradient boosting approach is more viable.

 Honors Symposium: ML is an unbelievably powerful tool, and the application of ML

must be subject to our biblical calling as stewards. As technology progresses to make us

increasingly productive, we must direct what we produce towards ends that glorify God. Just as

importantly, we must be vigilant to the great temptation to become lost in decadence. ML has

wildly successful applications in the financial world that far surpass the scope of this paper, but

we cannot lose sight of He who provides. A firm grounding in scripture and a healthy

understanding of Providence should be enough to keep those of us who pursue the blessing of

technology from becoming lost in our own grandeur.

Machine Learning in Stock Price Prediction

Carl Cederborg
College of Arts and Sciences

Seattle Pacific University

Washington, United States of America

cederborgc@spu.edu

ABSTRACT
Quantitative analysis has been a staple of the

financial world and investing for many years.

Recently, machine learning has been applied to this

field with varying levels of success. In this paper,

two different methods of machine learning (ML) are

applied to predicting stock prices. The first utilizes

deep learning and Long Short-Term Memory

networks (LSTMs), and the second uses ensemble

learning in the form of gradient tree boosting. Using

closing price as the training data and Root Mean

Squared Error (RMSE) as the error metric,

experimental results suggest the gradient boosting

approach is more viable.

Keywords
Machine Learning (ML), Deep Learning, Ensemble

Learning, LSTM, Decision Trees, Gradient Boosting,

RMSE

1. INTRODUCTION
The interest of quantitative analysis has always been

to make connections between sets of data and

increase accuracy of predictions. Different tools,

systems, and mathematical models have been applied

to this problem over the years, and as of late, ML has

become increasingly popular among investment

funds. ML is the practice of programming computers

so they can be fed data to learn to solve a problem.

There are many different types of ML with different

strengths; this paper will focus on two in particular:

deep learning in the form of LSTM networks and

ensemble learning in the form of gradient tree

boosting.

 Stock prices and the market in general are

extremely dynamic systems, and as such, are difficult

to predict. There are countless variables that affect

stock price, ranging from quantitative indicators to

feeling/opinion, also known as market sentiment. A

reason ML has become popular in this field is that

ML is able to draw connections between data points

in sets, often providing insight into causation.

However, there must be caution because machine

learning will find patterns in a data set even if there

are none, as the famous quote attributed to economist

Ronald Coase goes, “if you torture the data enough,

nature will always confess.” [1]

 Neural networks, of which LSTMs are a subset,

have been directed at market sentiment due to their

success with natural language processing, so they

may properly discern the attitude of news articles [2].

Their success comes from their ability to “remember”

data, allowing them to effectively process things like

context in language and long-term dependency in

time series. Memory allows them to be directly

applied to price prediction using time series data. As

shown in section four, the LSTM network used for

this paper takes in time series data.

 The fundamental building block of gradient tree

boosting is a decision tree, which is used for both

classification and regression. The latter is used for

the sake of stock price prediction. Decision trees are

convenient because they do not require feature

scaling before training, reducing the amount of

preprocessing of data that needs to be done.

 It is important to note that a large part of ML is

data science, and not simply algorithm design. This is

partially because of an influential paper in 2001 [3]

that showed many different algorithms performing

about the same once given enough data, and it was

further solidified by a paper in 2009 suggesting the

same [4]. This realization that data was essentially as

effective as a good algorithm is important because it

has defined ML for the past couple decades. In

practice, data and feature engineering ends up being

the major focus of work because the heavy lifting of

building models is supplied by libraries.

 Section 2 explains the models and training

techniques used. Section 3 lists a series of related

works on machine learning. Section 4 explains the

methodology of the tests. Section 5 displays the

results. And section 6 is an explanation of the results

and what could be done to improve.

mailto:cederborgc@spu.edu

2. BACKGROUND
LSTMs were made to solve the problem basic

recurrent neural networks (RNNs) had with

remembering data from too many time steps in the

past. With a basic neuron containing only an

activation function, a simple RNN had trouble

learning how to hold on to relevant information. An

LSTM corrects for this by altering the inside of the

cell, taking in and therefore outputting an additional

state to each subsequent cell. Among the alterations

are a forget gate that determines which information to

keep from the previous state, a weighted combination

of what information to add to the current state, and

finally an activation function of the updated state to

form the new output.

Figure 1. An LSTM Cell

 Figure 1 shows the insides of an LSTM cell. The

yellow boxes are neural network layers that use a

weighted input plus bias in an activation function to

produce output, in this case with sigma or tanh as

activation functions. Sigma stands for a sigmoid

function that takes in numerical input and outputs a

value ranging from 0 to 1. Tanh performs a similar

task but output ranges from -1 to 1. The circles are

pointwise operations on the vector input, which can

be simple like multiplication or addition, or it can be

an activation function like tanh. The cell takes as

input a previous state, ct-1, a previous output, ht-1, and

a current data input, xt. In the path of the first neural

network layer is the implementation of the forget

gate. Here, xt and ht-1 are concatenated and put

through a sigmoid layer, producing a series of values

ranging from 0 to 1 for each value in the state ct-1.

When the series is multiplied by ct-1, a value of 0

fully drops or “forgets” previous values in the state,

while a value of 1 fully keeps or “remembers” the

previous values in the state. The second section in

the LSTM processes what values are to be added to

the state (produced by the tanh layer) and scaled by

some amount (produced by the sigmoid layer). After

the new values are scaled, they are added to the state

produced by the forget gate, creating ct, the current

state. In the final section, ct is put through a tanh

function (not a neural network layer) and scaled by a

sigmoid layer of ht-1 and xt; this produces ht, the

output of the cell. Both ct and ht are passed to the next

layer in the network; if it is an LSTM layer, the

process is repeated.

 With the addition of the continuous state and the

forget gate, an LSTM is able to select which

information it wishes to keep moving forward

through time. This allows connections to be drawn

between data points that previously were lost to the

mangling of simple activation functions. An LSTM

is good with time series data for that reason; it can

understand that price from X number of steps ago

affects the current output. Put simply, deep learning

is a neural network that contains multiple “hidden”

layers, or layers that are neither the input nor output

layer.

 A decision tree is a type of supervised ML that can

be used for both classification as well as regression.

They work by splitting the data set into subsets in

such a way as to minimize a cost function. In the

case of regression, often this is mean squared error.

Unrestrained, decision trees are prone to overfitting,

as they will split the data all the way down to the

individual points. Normally, parameters are set to

specify how many times the tree can split the data,

how many points must be in each split, etc. Given the

right parameters, a decision tree will produce a well-

fit model with good predicting power.

 Gradient tree boosting is a form of ensemble

learning, in which many predictors are aggregated to

increase accuracy. This is based on the law of large

numbers; if there are enough predictions with even

only 51% accuracy and the majority opinion is

selected, there is a significantly higher than 51%

likelihood of it being correct. Boosting is an

ensemble method that trains the predictors

sequentially, attempting to correct the previous

predictor’s errors. Gradient tree boosting uses

decision trees as the predictors, and it trains each

following predictor on the residual error of the one

prior. In this way, having more predictors accounts

for the errors of the previous predictors. The model

in this paper uses the optimized Python library,

XGBoost [5, 6], which has found recent success in

algorithm competitions.

 In machine learning models, there are some

common problems to be aware of. The overarching

issue in training is the Bias/Variance tradeoff. If the

model is too simple (highly constrained/low degree

of freedom), then it is unable to adapt to the data and

is prone to underfitting. If the model is too complex

(high degree of freedom), then it adapts too well to

the data and is prone to overfitting. The goal before

and during training is to minimize these two

conflicting sources of error so the model can

generalize well. One factor in the complexity of the

model is the number of parameters being measured.

Another is the type of model; decision trees are easily

capable of overfitting due to the lack of assumptions

made about the data.

 There is a tendency to anthropomorphize machine

learning, but what either of the models are actually

doing under the hood often differs greatly from a

human’s perception of the problem. The split here is

referred to as a white or black box approach. Neural

networks are black boxes; it is unclear why they

make the decisions they do after training. Decision

trees are white boxes; their method can be broken

down easily into what factors they consider, how

important they are, and more.

 Coding either of these machine learning methods

used to take much more work. Fortunately, creating

these networks has been trivialized by many modern

libraries, namely Keras, Tensorflow, and XGBoost,

so more emphasis can be placed on feature selection

and fine tuning the parameters.

3. RELATED WORKS
Neural Nets have been applied to time series data

even before the advent of the LSTM, just not as well.

LSTMs are mainly used in prediction or sequence

classification [2, 7] by themselves, while different

neural nets like convolutional neural networks can be

used in more complex graph structures [8]. For more

complicated structures like multi-task RNNs, in

which attention-based neural nets are used, LSTMs

have shown to not be as effective [9].

 Gradient boosting was first published in 1997 [10]

improving on the concept of boosting, which had

existed for a short while. In 2016, Tianqi Chen

published his paper [6] that established XGBoost, a

system based on extreme gradient boosting.

 Other kinds of machine learning have also been

directed at finance. Support vector machines (SVMs)

are a popular, supervised approach that have had

some amount of success in prediction [11, 12].

Reinforcement learning (RL) is similar in that it can

use neural networks as their decision policy, but the

machine learning is the agent that acts on the market,

not just a predictor. RL has found real financial

success as automated trading bot [13].

4. METHODOLOGY
These tests were run on an Intel Core i7-7700HQ

CPU at 2.80GHz with four cores, eight logical

processors, and 16GB of RAM. The language used

was Python version 3.8, utilizing the Keras,

Tensorflow, and XGBoost libraries, and the work

was done in a mix of Atom/Command Line and

Jupyter Notebooks.

 The data was pulled from TradingView [14], a

chart tracking and data website that can integrate

with brokers to track the market. The data used in

these tests was a comma-separated value (.csv) file of

AAPL stock from 2015 to 2020 in two hour (2h)

candles. The Pandas [15] library, which provides

matrix and database functionality, was used to

process and sort the .csv data. Each model was

trained on the closing price data.

 The LSTM was constructed from the Keras library

using three LSTM layers followed by one Dense

layer containing one neuron for the output. A Dense

layer is a fully connected layer, where each neuron

(in this case, just one) receives input from every

neuron in the previous layer. The model used in

these tests consisted of three LSTM layers of 50

neurons each; the number of neurons for each layer is

selected with both functionality and training time in

mind. It is not clear that having more neurons strictly

means a better result, but too few neurons does

increase error. The loss function used was mean

squared error. The input shape of the first LSTM

layer was [100,1] because the model was being

trained taking in the previous hundred days of data

and making a prediction of the next day. For most of

the test runs, dropout layers were used in between the

LSTM layers, which weaken the impact of certain

layers by reducing their effects by a percentage.

 The gradient tree boosting model using XGBoost

used regression with squared loss as the learning

objective, and it had estimators set to 1000, meaning

there were 1000 gradient boosted trees contributing

to the final output.

 The data was split at 75/25 percent for the LSTM

training/test data. Out of 7474 data points of closing

price, the training set size was 5605, and the test set

size was 1869. The training set for the LSTM

consisted of two arrays, x_train for the input and

y_train for the expected output, which is supervised

learning. X_train contained a sequence of the 100

prior data points for each point in the training data,

and y_train was each 101st data point as the expected

output. Once the data is cleaned and split, the model

is fitted and validated using the Keras fit() and

predict() methods. The fit() method’s input

parameters such as dropout, epochs, and batch size

were tested at different levels, as shown in Results.

The output of the model using predict() is compared

to the y_train and y_test (the data points in the test

set) arrays to compute the RMSE.

 The XGBoost model was also trained on the entire

AAPL data set (7474). The process for training and

fitting the model was similar, splitting the data this

time at 80/20 percent for train/test set. Decision trees

also use supervised learning, so there was an input,

x_train, and expected output, y_train. The x_train

array for this model consisted of the current closing

price, and the y_train array consisted of the following

day’s closing price. Once the data was cleaned and

split, the model was fitted using XGBoost’s fit()

method and validated using a method called walk

forward validation. Walk forward validation is a

process in which predictions are made, but the model

is retrained on the “new”, real data of the test set

every step. This way, the model is kept up to date.

The “expanding window” method was used, in which

new test data points are added to the old set and none

are removed.

Run/Input Dropout: #layers (amount) Epochs Batch Size Train RMSE Test RMSE

1 None 25 64 39.47 88.65

2 3 (.2, .2, .2) 25 64 39.26 86.22

3 3 (.2, .2, .2) 20 128 38.75 85.17

4 3 (.8, .5, .5) 25 64 39.3 81.53

5 3 (.8, .5, .5) 25 256 39.07 83.06
Table 1: LSTM Results

5. RESULTS
Keeping in mind that the validation methods were

different, the results of both models were vastly

different. The LSTM model was fitted with different

parameters, but they all produced similar results, as

shown in Table 1. Utilizing substantial dropout in

the training process achieved the best test RMSE at

81.53 dollars. Figure 2 shows the graph of the last

768 data points in the test set for Run 4.

Figure 2: LSTM Predictions for Run 4

 While it may have had the lowest Test RMSE, the

graph shows a bit of underfitting. Figure 3 shows the

graph for Run 1, which fits the data better but has a

higher RMSE.

Figure 3: LSTM Predictions for Run 1

 The results for the XGBoost model were

substantially better, with an RMSE of 1.28 over the

test set. Figure 4 shows the last 768 data points in the

test set for the XGBoost model.

Figure 4: XGBoost Predictions

 A zoomed-in perspective of Figure 4 is shown in

Figure 5, which is the last 50 data points in the test

set. And Figure 6 shows a point where the XGBoost

model can have high variance.

Figure 5: Last 50 Points of Figure 4

Figure 6: High Variance XGBoost

6. CONCLUSION
From the data observed, it seems to suggest that

gradient boosted decision trees are superior to basic

LSTMs when it comes to time series prediction.

There are multiple flaws in the comparison and

methodology that could be improved upon. These

improvements include, but are not limited to, lining

up the dataset, fleshing out the model by testing

different layer structures, and using multivariate

analysis instead of univariate. The validation method

for each model differs as well, which can skew

results if interpreted incorrectly. RMSE is in the

units of what is being measured, which in this case is

dollars. Lower RMSE is better, but depending on the

context, an RMSE of 30 could be acceptable. If the

stock price is 1000 dollars, an RMSE of 30 would be

good. However, in this case, AAPL only gets up to

~120 dollars, which leads me to conclude that my

simple LSTM did not perform well, despite showing

a promising graph at times.

 The market viability of these models was not the

initial goal, but even so it is questionable for multiple

reasons. Back testing itself is full of pitfalls and

never guarantees future results. Referring back to the

black box nature of neural networks, it is difficult to

determine what throws off the results. The LSTM

model does not seem to be grossly underfitted, but it

is underfitted to some degree. On the other hand,

there is high variance in the XGBoost model that may

speak to some overfitting. An increase in

complexity, namely updating from univariate to

multivariate analysis (more features) may help both

models perform better.

 While these two methods were just predictors, it

would be interesting to develop a RL method that

trades on its own. Machine learning is often used as

an aid to discretionary trading, but RL agents act on

their own. Further research to be pursued in the way

of RL would be applying the deep neural net I

created and use it to update a policy.

REFERENCES

[1] R. Coase, Lecture, Topic: “How Should

Economists Choose?” American Enterprise

Institute, Washington, D.C., 1981.

[2] Huy D. Huynh, L.Minh Dang, and Duc

Duong. 2017. A New Model for Stock Price

Movements Prediction Using Deep Neural

Network. In SoICT ’17: Eighth International

Symposium on Information and

Communication Technology, December 7–8,

2017, Nha Trang City, Viet Nam. ACM,

New York, NY, USA, 6 pages.

https://doi.org/10.1145/3155133.3155202

[3] Michele Banko and Eric Brill. 2001. Scaling

to very very large corpora for natural

language disambiguation. In Proceedings of

the 39th Annual Meeting on Association for

Computational Linguistics (ACL '01).

Association for Computational Linguistics,

USA, 26–33.

DOI:https://doi.org/10.3115/1073012.10730

17

[4] Alon Halevy, Peter Norvig, and Fernando

Pereira. 2009. The Unreasonable

Effectiveness of Data. IEEE Intelligent

Systems 24, 2 (March 2009), 8–12.

DOI:https://doi.org/10.1109/MIS.2009.36

[5] “XGBoost Documentation,” XGBoost

Documentation - xgboost 1.5.0-SNAPSHOT

documentation, 2020. [Online]. Available:

https://xgboost.readthedocs.io/en/latest/.

[Accessed: 14-Apr-2021].

[6] Tianqi Chen and Carlos Guestrin. 2016.

XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining

(KDD '16). Association for Computing

Machinery, New York, NY, USA, 785–794.

DOI:https://doi.org/10.1145/2939672.29397

85

https://doi.org/10.1145/3155133.3155202

[7] Liheng Zhang, Charu Aggarwal, and Guo-

Jun Qi. 2017. Stock Price Prediction via

Discovering Multi-Frequency Trading

Patterns. In Proceedings of the 23rd ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining

(KDD '17). Association for Computing

Machinery, New York, NY, USA, 2141–

2149.

DOI:https://doi.org/10.1145/3097983.30981

17

[8] Pratik Patil, Ching-Seh Mike Wu, Katerina

Potika, and Marjan Orang. 2020. Stock

Market Prediction Using Ensemble of Graph

Theory, Machine Learning and Deep

Learning Models. In Proceedings of the 3rd

International Conference on Software

Engineering and Information Management

(ICSIM '20). Association for Computing

Machinery, New York, NY, USA, 85–92.

DOI:https://doi.org/10.1145/3378936.33789

72

[9] Chang Li, Dongjin Song, and Dacheng Tao.

2019. Multi-task Recurrent Neural Networks

and Higher-order Markov Random Fields

for Stock Price Movement Prediction:

Multi-task RNN and Higer-order MRFs for

Stock Price Classification. In Proceedings of

the 25th ACM SIGKDD International

Conference on Knowledge Discovery &

Data Mining (KDD '19). Association for

Computing Machinery, New York, NY,

USA, 1141–1151.

DOI:https://doi.org/10.1145/3292500.33309

83

[10] L. Breiman, “Arcing the Edge” UC Berkeley

Statistics Department, Berkeley, CA,

Technical Report 486, 1997

[11] Carson Kai-Sang Leung, Richard Kyle

MacKinnon, and Yang Wang. 2014. A

machine learning approach for stock price

prediction. In Proceedings of the 18th

International Database Engineering &

Applications Symposium (IDEAS '14).

Association for Computing Machinery, New

York, NY, USA, 274–277.

DOI:https://doi.org/10.1145/2628194.26282

11

[12] Hongming Wang. 2020. Stock Price

Prediction Based on Machine Learning

Approaches. In Proceedings of the 3rd

International Conference on Data Science

and Information Technology (DSIT 2020).

Association for Computing Machinery, New

York, NY, USA, 1–5.

DOI:https://doi.org/10.1145/3414274.34142

75

[13] Alexander A. Sherstov and Peter Stone.

2004. Three automated stock-trading agents:

a comparative study. In Proceedings of the

6th AAMAS international conference on

Agent-Mediated Electronic Commerce:

theories for and Engineering of Distributed

Mechanisms and Systems (AAMAS'04).

Springer-Verlag, Berlin, Heidelberg, 173–

187.

DOI:https://doi.org/10.1007/11575726_13

[14] “TradingView” 2021. [Online]. Available:

https://www.tradingview.com/. [Accessed:

2-Apr-2021].

[15] “Pandas API Reference” 2021. [Online].

Available:

https://pandas.pydata.org/docs/reference/ind

ex.html. [Accessed: 3-Apr-2021].

Honors Symposium Presentation

The interest of quantitative analysis in finance has always been to make connections between

datasets and to increase the accuracy of predictions. Different tools, systems, and mathematical models

have been applied to these endeavors over the years, and as of late, machine learning has become

increasingly popular among investment funds. Machine learning is the practice of programming

computers so they can be fed data to learn to solve a problem. There are many different types of machine

learning with different strengths, and my project focused on two in particular: deep learning in the form of

Long Short-Term Memory networks and ensemble learning in the form of gradient tree boosting.

 (Slide Change)

When we say a machine can “learn” from data, we mean that data is put through an algorithm, an

output is measured with a cost function, and the machine attempts to minimize that cost function. Cost

functions and the method the machine takes to minimize them (known as the learning method) differ from

task to task and across different machine learning architectures. One way learning methods can be

categorized is by the amount of human supervision involved, called supervised, unsupervised, semi-

supervised and reinforcement learning. Both types of learning implemented here use supervised learning

methods, meaning the input data comes with a corresponding label which shows the expected output.

This is the most direct form in the sense that the programmer is giving the algorithm the answers in the

hope it will learn to generalize. The tasks a machine learning algorithm is expected to perform generally

fall into two categories: classification, such as identifying pictures, and regression, such as time series

prediction. As the name suggests, stock price prediction is most directly represented as a time series

prediction problem (although there are other ways to conceptualize it).

Stock prices and the market in general are extremely dynamic systems, and as such, are difficult

to predict. There are countless variables that affect stock price, ranging from quantitative indicators to

feeling/opinion, also known as market sentiment. A reason machine learning has become popular in this

field is that it is able to draw connections between data points in sets, often providing insight into

causation. However, we must be cautious because machine learning will find patterns in a dataset even if

there are none, as the famous quote given in a 1981 lecture by economist Ronald Coase goes, “if you

torture the data enough, nature will always confess.”

(Slide Change)

The first model I created is an LSTM, which is a type of recurrent neural network. To get to

LSTMs, the fundamentals of neural nets should be explained. Based originally on a conceptual

representation of the brain, the terminology has remained, but the similarity in function has mostly faded.

A neural net is composed of layers of “neurons”, or cells, that contain what is called an activation

function, which typically sorts values between an easier-to-handle range of 0 and 1 or -1 and 1. These

activation functions take as input the weighted sum of the previous layer’s outputs and they output the

result to one or more of the neurons in the next layer until the output layer is reached. These connections

have a weight that represents the strength of the connection, and deep learning is simply when there are

layers in between the input and output layer, called hidden layers. Neural nets train through a process

called Gradient Descent, in which partial derivatives and the chain rule are used to determine how much

each input is responsible for the output, thereby indicating which weights should be adjusted to help

minimize the cost. This is often represented in an analogy of a climber lost in the mountains trying to

find his way down to the valley. A possible solution is to repeatedly go downhill in the direction that is

steepest. Eventually, when no direction has a “downhill”, the climber has reached the bottom, also known

as a minimum. However, this may only be a local minimum, such as between two mountains but not yet

in the valley. There are multiple methods to avoid this, one of which for regression is the shape of the

mean squared error function. Because mean squared error is a convex function, it implies that there is

only one minimum, which makes it global. Additionally, the learning rate is set higher at the beginning

of training and decays over time to settle into a minimum.

(Slide Change)

LSTMs were made to counter what is called the vanishing gradient problem. Due to the shape of

activation functions like sigmoid or hyperbolic tangent, the gradient can be vanishingly small, sometimes

to the point of stopping updates to weights altogether. LSTMs corrected this by changing the contents of

the neuron from a simple activation function to also contain a memory state that is passed to subsequent

cells. This means that LSTMs are able to remember patterns for much longer than a vanilla RNN because

they can choose what values to add to and forget from the state. (Quick Description if time is needed)

(Slide Change)

The second model uses decision trees, which are a bit simpler than LSTMs, but they are quite

powerful. They work by splitting the dataset in sections as to minimize some cost measurement, which in

the case of regression is often mean squared error. The number of splits determines the depth of the tree,

which is specified by a hyperparameter, the parameters we give the machines that alter their learning

process. This graph is showing the likelihood of kyphosis after spinal surgery given the vertebrae in

which it started and the age at which surgery was performed.

(Slide Change)

The second model is not just a single decision tree, but rather many, utilizing what is called

ensemble learning. Ensemble learning is any learning method that combines weak learners, learners that

are barely better than random guessing, into a strong learner. This operates on the statistical principle of

the law of large numbers, which essentially says that as the number of trials increases, the average results

trend closer to the expected average. This means if you combine enough predictors that guess correctly

51% of the time and take the majority result, you can expect accuracies much higher than 51%. Boosting

is a process of training the learners sequentially in order to improve results, each time compensating with

weights for what the previous learners missed. Gradient boosting is a subset that fits the following

learners on the previous residual error, rather than changing weights. The library used, XGBoost,

implements gradient boosted decision trees, so the weak learners of the ensemble method are decision

trees.

The implementation of both methods was done using libraries available to the public that have

trivialized the creation of ML. Keras, tensorflow, were developed and are used by Google. XGBoost was

developed by Tianqi Chen in 2016. The models were trained using AAPL two hour closing price data

from 2015-2020. Around 75-80% of the data is set aside to be used in the training set. The remainder is

used as the test set, data the model has not seen in order to check its ability to generalize. The overarching

issue in training is the Bias/Variance tradeoff. If the model is too simple (highly constrained/low degree

of freedom), then it is unable to adapt to the data and is prone to underfitting. If the model is too complex

(high degree of freedom), then it adapts too well to the data and is prone to overfitting. The goal before

and during training is to minimize these two conflicting sources of error so the model can generalize well.

One factor in the complexity of the model is the number of parameters being measured. Another is the

type of model; decision trees are easily capable of overfitting due to the lack of assumptions made about

the data, and if they had unlimited depth, they would make a split for every data point, losing generality.

(Slide Change)

On the left is the LSTM and on the right is the Gradient Boosted model. As you can see, these

models likely lack any real financial viability. The LSTM, while it has a promising fit at times, had a root

mean squared error of around 83 on the test set, which is terrible given a stock price ranging from 30-120

dollars over the time period. The XGBoost model is certainly more promising than the LSTM with a root

mean squared error of only 1.28, but the high variance as shown in the bottom right is worrisome. In the

future, I would improve the tests by putting more effort into feature selection; I would not only use

closing price but other factors as well. It also would be fascinating to develop a reinforcement learning

agent, which executes the trades itself, instead of just predicting.

(Slide Change)

However, in the case that they were financially successful, there would be more considerations at

hand. Machine learning is an unbelievably powerful tool, and the application of machine learning must

be subject to our biblical calling as stewards. As technology progresses to make us increasingly

productive, we must direct what we produce towards ends that glorify God. Just as importantly, we must

be vigilant to the great temptation to become lost in decadence. Machine learning has wildly successful

applications in the financial world that far surpass the scope of this project, but we cannot lose sight of He

who provides. A firm grounding in scripture and a healthy understanding of Providence should be

enough to keep those of us who pursue the blessing of technology from becoming lost in our own

grandeur.

It is clear to me in the Parable of the Talents that God wants us to use our gifts maximally for the

good. It is not good to bury the talent and become a “wicked and slothful servant,” (ESV, Matt. 25:26).

In a similar vein, the wife of noble character in Proverbs 31 “does not eat the bread of idleness.” In these

two passages, we see that our talents are good and should be used industriously for those around us,

which is ultimately for the glory of God. Further solidifying the point, in both the Sermon on the Mount

and in the Parable of the Sheep and the Goats, Christ shows that talk is not enough. It is not enough to

simply say, “Lord, lord!” to enter the kingdom of heaven, but “whatever you did for one of the least of

these brothers and sisters of mine, you did for me,” (NIV, Matt. 25:40). It takes action, dedication of

resources, and self-sacrifice to glorify God and do his will. Importantly, the Bible also reinforces

temperance, “It is good to grasp the one and not let go of the other. Whoever fears God will avoid all

extremes,” (NIV, Ecc. 7:18). Though we are to be productive, we are not to ruthlessly drive ourselves

into the ground for the sake of money or success.

It is a little late to say that our world is becoming increasingly controlled by technology; we are

living in a digital age, and we must wield this tool responsibly. All advancements bring a wide array of

new ethical concerns, and computer science is no different. Already showcased by the ethical standards

of the ACM are lying, cheating, harm, and integrity. I would posit that a few more are serving political

masters, seeking wealth above all else, and environmental concern, all three of which are interwoven with

the aforementioned ACM standards.

I believe the political realm has still not recovered from the onset of the digital age. On one hand,

the mass dissemination of information is good, but the state of our discourse has only grown more

polarized, and we have grown isolated. I think of this as I develop a social media app in my senior

capstone class for the sake of a grade, but I feel I would hate to be the person to inflame our current state

of isolation sadly masked by faux connection. Additionally, it is easy to see how technology can be used

to abuse and trample on rights. When such few people have acquired such overwhelming power to

silence speech, how do we have discourse? None of this even begins to mention the new security

concerns with the development of cyberattacks. Whatever we produce in the tech realm should be done

mindful of our civic duties.

Avarice is one of the oldest sins in the book, and a golden goose such as machine learning throws

blatantly obvious warning signs. Personally, I have never struggled with an attachment to money.

However, I am only human, and I can imagine the draw wealth could have on me, should God choose to

bless me in my endeavors. Maybe I would begin to seek out a higher and higher salary in the name of

security, or worse, because I think I deserve it. There should be charity in all things, and that includes the

simplest, direct application, our resources. Tithing and an open-palm attitude towards money, the faith

that there will again be manna tomorrow, are important factors in maintaining a healthy life with a tool

like machine learning.

During my computer science classes at SPU, we have discussed the notion of green computing.

The reality is that computers drain a lot of power, cost many expensive resources, and the understandable

and cost-effective inclination to replace rather than repair can be extremely wasteful. Does this mean we

cease production or somehow regress? No, I hardly think removing a tool that has helped lift millions out

of poverty to be a good idea. I believe that the answer is found moving forwards. This does not mean

pursuing more of the same wasteful endeavors; there should be a morality that rules above the market.

The logical path of technology has been the path to efficiency, the path to cheaper, better, cleaner.

Obviously, this is not always carried out, and I understand that there may need to be certain areas that are

subsidized in order to incentivize those who can make change to make it, such as battery tech. But I truly

believe that technology is the ally of the environment. Cleaner, safer energy like nuclear could help

lessen our dependence on other forms of fuel. To decry tech and fossil fuels as evil is to be ignorant of

the good they have done and continue to do in lifting people out of poverty. But I see it as perfectly

reasonable to want greener energy, and how we apply technology can help further that goal.

I have always been a proponent of individual action as the route to bettering society. Here too, in

being stewards, is the route forwards. Before our minds move on to grand, sweeping social change, we

should first consider and reflect on ourselves. How can we be the hands and feet of Christ? The path to

macro change is micro change. How can we improve our social fabric? Be the one who builds

community, gets involved in schools and churches. How can I further the kingdom of God with

software? Do not be the one to build software that degrades life, and further than that, be the one to make

software that honors him. This does not mean the software built has to be explicitly religious, or that we

are all destined for a life in the clergy. But at all times, we are called to be the salt of the earth and a light

to others. Just as a Christian artist brings glory to God by being the best artist they can be, a Christian

software engineer brings glory by producing the best code they can. If it is God’s will, the opportunities

to larger things will be made apparent.

Us students at SPU are fortunate enough to be attending university in a free society. I hope we all

have our minds set on how we can steward these gifts of both skill and opportunity. I am excited to be

pursuing a startup after college with close, like-minded friends with hearts for Christ. Hopefully that

way, I can turn these ones and zeroes into something beautiful, honorable, and glorifying to God.

Power Point Slides:

	Machine Learning in Stock Price Prediction Using Long Short-Term Memory Networks and Gradient Boosted Decision Trees
	Recommended Citation

	tmp.1623642862.pdf.ohszx

