Cell Reports Physical Science, Volume 2

Supplemental information

Topology and ground state control in open-shell

donor-acceptor conjugated polymers

Kevin S. Mayer, Daniel J. Adams, Naresh Eedugurala, Molly M. Lockart, Paramasivam Mahalingavelar, Lifeng Huang, Luke A. Galuska, Eric R. King, Xiaodan Gu, Michael K. Bowman, and Jason D. Azoulay

Supplemental Experimental Procedures

- 1. General remarks
- 2. Synthesis

3. Experimental section

- 3.1. UV-vis-NIR and Fourier transform infrared spectroscopy
- 3.2. Electrochemistry
- 3.3. Conductivity
- 3.4. Grazing-incidence wide-angle x-ray scattering (GIWAXS)
- 3.5. Electron paramagnetic resonance (EPR) spectroscopy
- 3.6. Superconducting quantum interference device (SQUID) magnetometry
 - 3.6.1. Curie-Weiss fitting
 - 3.6.2. Brillouin fitting
 - 3.6.3. Bleaney-Bowers fitting
- 3.7. Thermogravimetric Analysis (TGA)
- 3.8. Doping Study
- 3.9. Computational Methods
- 4. Supplemental figures S1–S35
- 5. Supplemental tables S1–S12
- 6. Supplemental references

1. General remarks

All manipulations of air and/or moisture sensitive compounds were performed under an inert atmosphere using standard glovebox and Schlenk techniques. Reagents, unless otherwise specified, were purchased from Sigma-Aldrich and used without further purification. 1,1,2,2-Tetrachloroethane- d_2 and chloroform-d were purchased from Cambridge Isotope Laboratories and used as received. Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh_3)_4) and aluminum trichloride (AlCl_3) were purchased from Strem Chemicals and used as received. (4,4-dimethyl-4*H*-cyclopenta[2,1-b:3,4-b]dithiophene-2,6-diyl)bis(trimethylstannane) (M1),¹ dithieno[3,2-b:2',3'-d]thiophene (DTT), 2,6-bis(trimethylstannyl)dithieno[3,2-b:2',3'-d]thiophene (M2),² 4,7-dibromobenzo[c][1,2,5]thiadiazole-5,6-diamine,³ 2-hexadecylthiophene⁴ were prepared according to literature procedures.

¹H and ¹³C NMR spectra were collected on a Bruker Avance III 600 MHz spectrometer and chemical shifts, δ (ppm) were referenced to the residual solvent impurity peak of the solvent. Data are reported as: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, and coupling constant, (*J*) are reported in Hz. Flash chromatography was performed on a Teledyne Isco CombiFlash Purification System using Redi*Sep* Rf prepacked columns. Microwave assisted reactions were performed in a CEM Discover SP microwave reactor. The number average molecular weight (*M*_n) and dispersity (*D*) were determined by gel permeation chromatography (GPC) using a universal calibration method at 160 °C in 1,2,4-trichlorobenzene (stabilized with 125 ppm of BHT) in an Agilent PL-GPC 220 high temperature GPC/SEC system using a set of three PLgel 13 µm Olexis columns. Polymer samples were dissolved at a concentration of 1–2 mg mL⁻¹ in 1,2,4-trichlorobenzene with stirring for 4 hours at 160 °C.

2. Synthesis

1,2-bis(5-hexadecylthiophen-2-yl)ethane-1,2-dione (1). Anhydrous methylene chloride (50 mL) was added to AlCl₃ (8.17 g, 61.3 mmol) under a nitrogen atmosphere and stirred to fully disperse the contents. The mixture was then cooled to -10 °C. Oxalyl chloride (1.74 g, 13.7 mmol) was added dropwise. After addition, the mixture was stirred for an additional 20 minutes and a solution of 2-hexadecylthiophene (9.0 g, 29.2 mmol) and pyridine (2.13 g, 27.0 mmol) in methylene chloride (15 mL) was added dropwise using an addition funnel. The reaction mixture was allowed to slowly warm to room temperature. After reaching room temperature, the reaction was quenched with ice, resulting in precipitation of a solid material. The solid precipitate was collected by vacuum filtration and recrystallized from 2-propanol affording 17.22 g of a yellow crystalline solid (25.66 mmol, 88%). Data are as follows: ¹H NMR (600 MHz, chloroform-*d*): δ 7.86 (d, *J* = 3.8 Hz, 2H), 6.88 (d, *J* = 3.8 Hz, 2H), 2.88 (t, *J* = 7.6 Hz, 4H), 1.72 (p, *J* = 7.6 Hz, 4H), 1.37 (br, 4H), 1.26 (br, 48H), 0.88 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (151 MHz, chloroform-*d*) δ 182.73, 160.18, 137.87, 136.68, 126.53, 32.08, 31.43, 30.98, 29.83, 29.64, 29.51, 29.43, 29.19, 22.84, 14.25. Mass spectrometry (MS) [electrospray ionization (ESI)] exact mass calculated for C₄₂H₇₀O₂S₂ is as follows: m/z 671.4890 ([M⁺] + [H⁺]) and 671.4884 (found).

4,9-dibromo-6,7-bis(5-hexadecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline (TQBr₂). 1,2-(1.24 4.7bis(5-hexadecylthiophen-2-yl)ethane-1,2-dione (1) 1.85 mmol). g, dibromobenzo[c][1,2,5]thiadiazole-5,6-diamine (1.20 g, 3.70 mmol) and 80 mL of an acetic acid:chloroform solution (5:1) were combined in a Schlenk flask equipped with a stir bar. The mixture was vigorously purged with nitrogen for 5 minutes and then sealed. The mixture was heated to 70 °C and stirred over the course of 5 days. After cooling to room temperature, the mixture was poured into methanol (15 mL). The resulting precipitate was collected by vacuum filtration and residual solvents were removed in vacuo. Purification by flash chromatography using a hexanes: methylene chloride solution (20:1) gave 613 mg of red solid (0.639 mmol, 35%). Data are as follows: ¹H NMR (600 MHz, chloroform-d): δ 7.53 (d, J = 3.8 Hz, 2H), 6.76 (d, J = 3.8 Hz, 2H), 2.90 (t, J = 7.7 Hz, 4H), 1.78 (p, J = 7.6 Hz, 4H), 1.43 (br, 4H), 1.36 (s, 4H), 1.26 (br, 44H), 0.88 (t, J = 6.9 Hz, 6H). ¹³C NMR (151 MHz, chloroform-d) δ 154.52, 152.43, 148.97, 139.01, 137.86, 132.54, 125.44, 112.62, 32.08, 31.62, 30.81, 29.85, 29.82, 29.80, 29.71, 29.50, 29.38, 22.84, 14.26. Mass spectrometry (MS) [electrospray ionization (ESI)] exact mass calculated for C₄₈H₇₀Br₂N₄S₃ is as follows: m/z 957.3208 ([M⁺] + [H⁺]) and 957.3211 (found).

Poly(4-(4,4-dimethyl-4*H*-cyclopenta[2,1-*b*:3,4-*b*]dithiophen-2-yl)-6,7-bis(5-hexadecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P1). A microwave tube was charged with M1 (0.106 mmol, 1.05 equiv.) and TQBr₂ (0.101 mmol, 1.00 equiv.) The tube was brought inside a nitrogen filled glovebox, and 400 μ L of a Pd(PPh₃)₄/xylenes stock solution (3.50 mol %) was added followed by an additional 400 μ L xylenes. The tube was sealed and subjected to the following reaction conditions in a microwave reactor with stirring: 120 °C for 5 minutes, 140 °C for 5 minutes, and 170 °C for 30 minutes. After this time, the reaction was allowed to cool, leaving a solid gelled material. The mixture was precipitated into methanol and collected via filtration. The residual solid was loaded into an extraction thimble and washed successively (under a nitrogen atmosphere and in the absence of light) with methanol (2 hours), acetone (2 hours), hexanes (2 hours), a 1:4 mixture of hexanes and tetrahydrofuran (12 hours), and then acetone (2 hours). The polymer was dried *in vacuo* to give 78.3 mg (54 %) of a black solid. Data are as follows: M_n = 14.2 kg mol⁻¹ and D = 2.24; ¹H NMR (600 MHz, 1,1,2,2-tetrachloroethane- d_2 , 413 K): δ 9.14–6.93 (br, 6H), 3.07 (br, 4H), 1.95 (br, 10H), 1.34 (br, 52H), 0.95 (br, 6H).

Poly(4-(4,4-dimethyl-4H-cyclopenta[2,1-b:3,4-b]dithiophen-2-yl)-6,7-bis(5-hexadecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P2). A microwave tube was charged with **M2** (0.0657 mmol, 1.05 equiv.) and **TQBr**₂ (0.0626 mmol, 1.00 equiv.) The tube was brought inside a nitrogen filled glovebox, and 300 µL of a Pd(PPh₃)₄/xylenes stock solution (3.50 mol %) was added followed by 250 µL xylenes. The tube was sealed and subjected to the following reaction conditions in a microwave reactor with stirring: 120 °C for 5 minutes, 140 °C for 5 minutes, and 170 °C for 45 minutes. After this time, the reaction was allowed to cool, leaving a solid gelled material. The mixture was precipitated into methanol and collected via filtration. The residual solid was loaded into an extraction thimble and washed successively (under a nitrogen atmosphere and in the absence of light) with methanol (2 hours), acetone (2 hours), hexanes (2 hours), a 1:5 mixture of hexanes and tetrahydrofuran (12 hours), and then acetone (2 hours). The polymer was dried *in vacuo* to give 66.3 mg (46%) of a black solid. Data are as follows: *M*_n = 30.5 kg mol⁻¹ and *Đ* = 1.91; ¹H NMR (600 MHz, 1,1,2,2-tetrachloroethane-*d*₂, 413 K): δ 7.80–7.03 (br, 6H), 3.12 (br, 4H), 1.38 (br, 4H), 1.34 (br, 52H), 0.97 (br, 6H).

3. Experimental section

3.1. UV-vis-NIR and Fourier transform infrared spectroscopy

UV-vis-NIR and Fourier transform infrared (FTIR) spectra were recorded from 0.375 to 3.30 μ m and from 3.30 to 16.40 μ m using a Cary 5000 UV-vis-NIR spectrophotometer and Bruker VERTEX 80 FTIR spectrometer, respectively. Thin films were prepared by spin coating a chlorobenzene solution (10 mg mL⁻¹) onto quartz or NaCl substrates at 1,000 rpm. Solution spectra were recorded from 0.375 to 3.30 μ m in chlorobenzene.

3.2. Electrochemistry

Electrochemical characteristics were determined by cyclic voltammetry (50 mV s⁻¹) carried out on drop-cast polymer films at room temperature in degassed anhydrous acetonitrile with tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte. The working electrode was a platinum wire, the counter electrode was a platinum wire and the reference electrode was Ag/AgCl. After each measurement the reference electrode was calibrated with ferrocene and the potential axis was corrected to the normal hydrogen electrode (NHE) using -4.75 eV for NHE.⁵ The highest occupied molecular orbital energy level (E_{HOMO}) was estimated as -4.41 eV and -4.86 eV from the onset of oxidation for P1 and P2, and lowest unoccupied molecular orbital energy level (E_{LUMO}) estimated as -4.03 eV and -4.10 eV from the onset of reduction of the third scan for P1 and P2. The electrochemical band gap was calculated as 0.38 eV and 0.76 eV from the difference between E_{HOMO} and E_{LUMO} for P1 and P2.

3.3. Conductivity and charge transport measurements

The conductivity and organic field-effect transistor (OFET) characteristics were evaluated using a typical bottom-gate, bottom-contact geometry. Silicon substrates were cleaned sequentially using 2% Hellmanex detergent in DI water, DI water, acetone, and isopropyl alcohol for 10 min each using sonication and then dried in an oven. The substrates were then treated in a UV/ozone cleaner for 20 min. The heavily n-doped silicon substrates with a 300 nm thermally grown SiO₂ dielectric were prepared as the bottom-gate electrode. The SiO₂ dielectric was passivated with octadecyltrichlorosilane (CH₃(CH₂)₁₇SiCl₃). 5 nm of chromium was thermally evaporated as an adhesive layer followed by 60 nm of gold at 10^{-6} torr using a shadow mask. The defined channel width was 1 mm, and the channel length was 30 μ m. A 10 mg mL⁻¹ polymer solution was spin coated onto the substrate with pre-patterned Au electrodes at 1000 rpm for 60 s.

Devices were tested on a probe station (Signatone 1160 series) inside a nitrogen filled glovebox, and the data were recorded on a Keithley 4200 semiconductor characterization system. The conductivity measurements were conducted using a two-point probe method (source and drain, without gate) by sweeping the voltage from –2 to 2 V. The conductivity was determined from the equation (S1):

$$\sigma = \frac{I}{V} \times \frac{L}{WT}$$
(Eq. S1)

where σ , *I*, *V*, *L*, *W*, and *T* represent conductivity, current, voltage, channel length, channel width, and polymer layer thickness (measured by AFM), respectively.⁵ The hole mobility was extracted from the linear region of the transfer curve in a transistor geometry based on the equation (S2):

$$\mu = \frac{L}{WC_{i}V_{D}} \frac{\Delta I_{D}}{\Delta V_{G}}$$
(Eq. S2)

where μ , L, W, C_i, V_D, I_D, and V_G represent the mobility, channel length, channel width, capacitance of the dielectric layer (300 nm thick SiO₂ layer), drain voltage, drain current, and gate voltage, respectively.⁵

3.4. Grazing-incidence wide-angle x-ray scattering (GIWAXS)

GIWAXS was performed using a Xenocs Xeuss 2.0 SAXS/WAXS lab source instrument. Each sample was prepared by spin-coating a film from chlorobenzene onto a Si wafer (as previously described). Films were dried and used after casting or thermally annealed at 125°C for 10 minutes. Samples were exposed for 2 hours, under a vacuum environment, with an incident beam energy of 8.05 keV and a beam geometry of 1.2 × 1.2 mm². The sample-to-detector distance was approximately 157 mm as determined via a silver behenate standard. Data processing was performed using WaveMetrics Igor Pro with Nika script and WAXStools software. Line-cuts were utilized to assess both in-plane and out-of-plane scattering.

3.5. Electron paramagnetic resonance (EPR) spectroscopy

Room temperature continuous-wave EPR spectra were recorded on a Bruker EMXmicro EPR spectrometer operating in the X-band. Solid-state samples were loaded into 4 mm quartz tubes and evacuated to 40 mbar for 12 hours before flame sealing under vacuum. Spin concentration was obtained by comparing solid-state samples against a 2,2-diphenyl-1-picrylhydrazyl standard with a known spin concentration. EPR measurements of solid samples stored at room temperature under a nitrogen atmosphere showed no discernable changes over a period of two weeks (Figure S31). Solution samples were prepared from diluting a stock polymer solution in chlorobenzene to 0.4 mg mL⁻¹ (~10⁻⁵ M) and sealed in the quartz tube in a nitrogen filled glovebox. Variable-temperature measurements were performed on a Bruker E540 or E680 EPR spectrometer operating at the X-band. The EPR signal intensity from 20 to 5 K was utilized to extract the singlet–triplet energy splitting (ΔE_{ST}) through fitting the data to the Bleaney–Bowers equation⁶ (S3):

$$I_{\rm EPR} = \frac{C}{T} \frac{3e^{-2J/k_{\rm B}T}}{1+3e^{-2J/k_{\rm B}T}}$$
(Eq. S3)

where *C* is a constant, $k_{\rm B}$ is the Boltzmann constant, *J* is the intramolecular exchange coupling constant, and 2*J* is $\Delta E_{\rm ST}$. A dilute solution (0.4 mg mL⁻¹) was used to elucidate the single-chain behavior. The fit parameters $\Delta E_{\rm ST} = 7.10 \times 10^{-3}$ and -5.24 kcal mol⁻¹ were obtained for **P1** and **P2**.

In the two-pulse spin echo experiment, the two-pulse Hahn echo sequence was used ($\pi/2-r$ - π -r-echo) and the intensity of the echo was measured as a function of r for different microwave powers at 5 K on a solid-state sample. The fractal dimensionality (d) for the spatial distribution of electron spins for **P1** was determined from these two-pulse spin echo measurements of instantaneous diffusion by fitting the ratio of the spin echo decays at the two-pulse powers differing by 6 dB with the equation (S4):

$$\ln[V_1(\tau)/V_2(\tau)] = a_0 - k\tau^{(d/3)}$$
(Eq. S4)

where V_1 and V_2 represent the echo measured at different microwave powers, 8 and 14 dB respectively, r is the inter-pulse delay, and a_0 , k, d are fit parameters. The fit revealed that d is approximately equal to 1 (0.75) for the solid-state sample. This form of pulse dipolar spectroscopy indicates that the density of spins f(r)dr increases linearly with the distance r for the first several nanometers.⁷

3.6. Superconducting quantum interference device (SQUID) magnetometry

Magnetometry data was collected using the Quantum Design MPMS3-SQUID VSM by loading the powder samples into polycarbonate capsules from Quantum Design and suspending the capsules in straws, also from Quantum Design. For the magnetization as a function of temperature measurements, the magnetic moment was recording upon warming after cooling in zero-magnetic-field, after allowing the sample to reach thermal equilibrium (approximately 10 minutes) at low temperature. For the magnetization as a function of field isotherms, the magnetic moment was recording after allowing the sample to reach thermal equilibrium, beginning from high field, ramping down incrementally and allowing the field to stabilize at each step before recording. Background of the straw and capsule was recorded and accounted for. In Figure S8B and C, we plot the signal from the sample together with the background measurement to highlight the relative intensity of the sample signal to the weak background signal. Considering the strength of the magnetic moment of the sample, it is not surprising that the original curve is largely unaffected by background subtraction. It is also important to note that these data show the raw signal and therefore have not undergone an adjustment of the diamagnetic component of the polymer which is inherently present. Magnetization data was collected over the range of T = 2 - 375 K with applied field H = 1 kOe. The descending magnetization curve at 5, 6, and 7 K was measured from H = 70 kOe to 0 kOe to facilitate comparisons between the range of temperatures for which **P1** EPR data was collected.

3.6.1. Curie–Weiss fitting

The Curie-Weiss function of equation (S5) can be derived beginning from the Hamiltonian of a magnetic moment μ in a magnetic field B,

$$H = -\mu \cdot B$$

From here, the Curie Law can be found as,

$$M = \frac{CH}{T} \to \chi = \frac{C}{T}$$

where $\chi = \frac{M}{H}$ and in the general case $C = \frac{Ng^2 J (J+1) \mu_B^2 \mu_0}{3k_B}$, where *N* is the number of magnetic moments,

J is the total angular momentum, μ_B is the Bohr magneton, and μ_0 is the permeability of free space. If we consider interaction between magnetic moments and define the field due to neighbors as N_WM , the magnetization becomes $M = \frac{C(H + N_WM)}{T} = \frac{CH}{T - CN_W}$ and the susceptibility is found as the Curie-Weiss

Law,

$$\chi = \frac{C}{T - \theta}$$
(Eq. S5)

3.6.2. Brillouin fitting

The Brillouin function of equation (S7) can be derived beginning from the Hamiltonian of a magnetic moment μ in a magnetic field *B*,

$$\mathbf{H} = -\mathbf{\mu} \cdot \mathbf{B}$$

The final form used here is found by taking the derivative of free energy with respect to the field, simplifying, and letting $J \rightarrow S$ and $B \rightarrow H$.

$$\frac{M}{M_{sat}} = \frac{2S+1}{2S} \operatorname{coth}\left(\frac{2S+1}{2S}\frac{gS\mu_{\rm B}}{k_{\rm B}}x\right) - \frac{1}{2S}\operatorname{coth}\left(\frac{1}{2S}\frac{gS\mu_{\rm B}}{k_{\rm B}}x\right)$$
(Eq. S6)

where the parameter x is defined as x = H/T, H is the field in Oersted and T is the temperature, g is the gfactor, $k_{\rm B}$ is the Boltzmann constant, $M_{\rm sat}$ is the saturation magnetization, $\mu_{\rm B}$ is the Bohr magneton and S, the spin quantum number, is the fitting parameter.

3.6.3. Bleaney–Bowers fitting

The Bleaney-Bowers equation (S6) is derived for two magnetically coupled $S = \frac{1}{2}$ centers. The general exchange Hamiltonian is:

$$\hat{\mathbf{H}} = -2J(\mathbf{S}_1 \cdot \mathbf{S}_2)$$

The final form of the Bleaney-Bowers equation results from simplifications of the Van Vleck equation and is found to be:

$$\chi = \frac{N_{\rm A} \mu_{\rm B}^2 g^2}{kT} \frac{2e^{2J/k_{\rm B}T}}{1 + 3e^{2J/k_{\rm B}T}}$$
(Eq. S7)

where N_A is Avogadro's number, μ_B is the Bohr magneton, *g* is the g-factor, *k* is the Bohr magneton, and the fit parameter is the temperature $T^{.8}$.

3.7. Thermogravimetric Analysis (TGA)

TGA was conducted on a TA Instruments Q500 thermogravimetric analyzer by heating from room temperature to 800° at a heating rate of 10°C min⁻¹ under a N₂ flow of 40 mL min⁻¹. The polymers displayed good thermal stability with 1% degradation at approximately 360.2 °C for **P1** and 251.8 °C for **P2** and 5% at approximately 424.7 °C for **P1** and 360.2 °C for **P2** (Figure S30).

3.8. Doping Study

Thin films were prepared by spin-coating a chlorobenzene solution (10 mg mL⁻¹) onto quartz substrates at 800 rpm for 60 s. The pristine thin-film absorption spectrum was recorded as a reference. The solutions were heated at 60 °C for 2 hours and spin-coated onto quartz substrates at 800 rpm for 60 s. In the sequential doping study, 0.25 mL of a 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) solution in acetonitrile (concentration: 5, 10, 50, and 100 ppm) was applied to the film, equilibrated (20 s), and the excess solution was removed by spin-coating at 800 rpm for 60 s. The absorption spectrum was recorded, and the experiment repeated via the iterative deposition of F4TCNQ solutions with different concentrations onto the same film. We also reacted the polymer with hydrazine by combining 78 µL of hydrazine solution (1.0 M in THF) with 0.5 mL of a polymer solution of P1 and P2 (10 mg mL⁻¹ in chlorobenzene). After stirring for 2 hours, the solution was spin-coated onto guartz substrates at 800 rpm for 60 s yielding an identical absorption spectrum. The experiment was repeated with new films to include the sequential doping with 0.25 mL of the free radical form of 2,6-Di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5cyclohexadien-1-ylidene)-p-tolyloxy (galvinoxyl). Acetonitrile solutions (concentration: 6, 12, 18, and 24 ppm) were applied to the film, equilibrated for 20 s, and excess removed by spin-coating at 800 rpm for 60 s. The absorption spectrum was recorded, and the experiment repeated via the iterative deposition of galvinoxyl solutions with different concentrations onto the same film. This was repeated again with new films to include the sequential doping with 0.25 mL of hydrochloric acid (HCI) in water (concentration: 0.5, 1.0, 1.5, 2.0, and 2.5 M) applied to the film, equilibrated (20 s), and excess solution removed by spin-coating at 800 rpm for 60 s. The absorption spectrum was recorded, and the experiment repeated via the iterative deposition of HCI solutions with different concentrations onto the same film.

3.9. Computational methods

Molecular geometries for the electronic ground state (S₀) and the triplet state of the model oligomers (n = 1-8) were optimized in the gas phase using density functional theory (DFT) with Becke's threeparameter functional B3LYP⁹ and 6-31G^{**} basis set. Hexadecyl ($-C_{16}H_{25}$) side chains were truncated with methyl ($-CH_3$) groups. Broken-symmetry (BS) singlet state calculations were started with a restricted wavefunction. NICS_{iso}(1) was computed by the gauge-independent atomic orbital (GIAO) method on the BS optimized geometry by single point energy calculation at the UB3LYP/6-31G^{**} level of theory at 1 Å perpendicularly above the ring plane to account for only the π -electrons' contribution. At this distance, the contribution of the π -electrons is maximized.¹⁰ The diradical index (y) was calculated at UB3LYP/6-31G^{**} level of theory using both HONO and LUNO occupation number and Yamaguchi's formula (Table S1).¹¹ The spin locations were predicted from natural spin densities of Kohn-Sham molecular orbitals (MO). 4. Supplemental figures S1–S29

Figure S1. ¹**H and** ¹³**C NMR spectra of compound 1.** (Top) ¹H NMR spectrum (600 MHz, chloroform-*d*) of 1,2-bis(5-hexadecylthiophen-2-yl)ethane-1,2-dione. (Bottom) ¹³C NMR spectrum (151MHz, chloroform-*d*) of 1,2-bis(5-hexadecylthiophen-2-yl)ethane-1,2-dione.

Figure S2. ¹**H and** ¹³**C NMR spectra of compound M2.** (Top) ¹**H** NMR spectrum (600 MHz, chloroform-*d*) of 4,9-dibromo-6,7-bis(5-hexadecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-*g*]quinoxaline. (Bottom) ¹³C NMR spectrum (151MHz, chloroform-*d*) of 4,9-dibromo-6,7-bis(5-hexadecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-*g*]quinoxaline.

Figure S3. ¹H NMR spectra (600 MHz, Tetrachloroethane-*d*₂, 413 K). (Top) P1, (bottom) P2.

Figure S4. UV–vis–NIR absorption spectra of P1 (A) and P2 (B) comparing both the solid-state film absorption and the dilute solution in CIBz indicating strong aggregation behavior.

Figure S5. OFET output and transfer (inset) characteristics for **P1** (A) and **P2** (B). In both samples, the output curves do not illustrate distinct linear and saturation regions at varying gate voltages, and the transfer curves do not demonstrate any off-state, indicating the abundant intrinsic charge carriers shielding the field effect.

Figure S6. Two-dimensional GIWAXS profiles of **P1** (A) and **P2** (B) (as-cast). (C) One-dimensional line cuts of the integrated in-plane and out-of-plane GIWAXS profiles illustrating distinct backbone packing in P1, π - π stacking, and weakly ordered lamellar stacking for both **P1** and **P2**.

Figure S7. (A) EPR spectra of **P1** solid-state sample from 25 to 5 K and (B) temperature-dependent fit to the Bleaney-Bowers equation with ΔE_{ST} of 9.15 ×10⁻³ kcal mol⁻¹, which demonstrates a slightly larger ΔE_{ST} for the high-spin sample compared to **P1** in solution.

Figure S8. (A) SQUID magnetometry of solid sample. Main plot: Magnetic susceptibility, χ versus *T*, from 2 to 375 K fit to the Curie-Weiss law (red line). Inset: Observed χT versus *T* dependence. The unprocessed signal from (B) **P1** and (C) **P2** accompanying background scan used to subtract the diamagnetism due to the sample holder assembly.

Figure S9. The fractal dimensionality (*d*) for spatial distribution of electron spins of **P1** was determined from the two-pulse spin echo measurements of instantaneous diffusion. The d = 1 (0.75) for the electron spin distribution at 5 K of solid-state sample demonstrates a one-dimensional intra-chain spin distribution.

Figure S10. Calculated data for the oligomers (n = 2 - 8) at the UB3LYP/6-31G^{**} level of theory for **P1** and **P2**. (A) ΔE_{ST} of the oligomers and extrapolation of ΔE_{ST} DFT vs. *n* to the polymer limit ($n \rightarrow \infty$) which gives a horizontal asymptote of 0.0 and 0.2 eV for **P1** and **P2**, respectively which is consistent with experimental results in Figure 5C, F. (B) *y* vs. *n* of the oligomers. As *n* increases, *y* increases rapidly and trends towards a value of 1.0 for n = 8 in **P1**, while **P2** is essentially closed-shell for $n \le 6$.

Figure S11. Optimized ground state geometric structures for the single repeat unit (n = 1) of **P1** and pictorial representations of the frontier MOs. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO of the singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S12. Optimized ground state geometric structures for the single repeat unit (n = 1) of **P2** and pictorial representations of the frontier MOs. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO of the singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S13. Optimized ground state geometric structures for the dimer (n = 2) of **P1** and pictorial representations of the frontier MOs. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO of the singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S14. Optimized ground state geometric structures for the dimer (n = 2) of **P2** and pictorial representations of the frontier MOs. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO of the singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S15. Optimized ground state geometric structures for the tetramer (n = 4) of **P1** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the open-shell singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S16. Optimized ground state geometric structures for the tetramer (n = 4) of **P2** and pictorial representations of the frontier MOs. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO of the singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S17. Optimized geometric structures for the hexamer (n = 6) of **P1** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the open-shell singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S18. Optimized ground state geometric structures for the hexamer (n = 6) of **P1** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the triplet state. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S19. Optimized ground state geometric structures for hexamer (n = 6) of **P2** and pictorial representations of the frontier MOs. (A) α -SUMO and (B) β -SUMO, (C) α -SOMO and (D) β -SOMO of the singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S20. Optimized geometric structures for the octamer (n = 8) of **P1** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (C) β -SUMO, (B) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the open-shell singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S21. Optimized ground state geometric structures for the octamer (n = 8) of **P1** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (C) β -SUMO, (B) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the triplet state. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S22. Optimized ground state geometric structures for the octamer (n = 8) of **P2** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (C) β -SUMO, (B) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the open-shell singlet. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S23. Optimized ground state geometric structures for the octamer (n = 8) of **P2** and pictorial representations of the frontier MOs and spin density distribution. (A) α -SUMO and (C) β -SUMO, (B) α -SOMO and (D) β -SOMO, and (E) Spin density distribution of the triplet state. The green and red surfaces represent positive and negative signs of the MO at isovalue = 0.02 au, respectively. The blue and green surfaces represent positive and negative contributions of the spin density at an isovalue = 0.0004 au. Color codes for the atoms are: gray for C, blue for N and yellow for S.

Figure S24. Anisotropy of the induced current density (ACID) of the π -system at CSGT-UB3LYP/6-31G^{**} level of theory for the single repeat unit (*n* = 1) of (A) **P1** singlet and (B) **P2** singlet. The current density vectors plotted on the ACID isosurface indicate ring current (clockwise, counterclockwise) and prevalent delocalization pathways present in these systems.

Figure S25. ACID of the π -system at CSGT-UB3LYP/6-31G^{**} level of theory for the dimer (n = 2) of (A) **P1** singlet and (B) **P2** singlet. The current density vectors plotted on the ACID isosurface indicate ring current (clockwise, counterclockwise) and prevalent delocalization pathways present in these systems.

Figure S26. ACID of the π -system at CSGT-UB3LYP/6-31G^{**} level of theory for the tetramer (n = 4) of (A) **P1** open-shell singlet and (B) **P2** singlet. The current density vectors plotted on the ACID isosurface indicate ring current (clockwise, counterclockwise) and prevalent delocalization pathways present in these systems.

Figure S27. ACID of the π -system at CSGT-UB3LYP/6-31G^{**} level of theory for the hexamer (n = 6) of (A) **P1** triplet and (B) **P2** singlet. The current density vectors plotted on the ACID isosurface indicate ring current (clockwise, counterclockwise) and prevalent delocalization pathways present in these systems.

Figure S28. ACID of the π -system at CSGT-UB3LYP/6-31G^{**} level of theory for the octamer (n = 8) of the **P1** triplet (A). The blown-up image of the internal repeat unit (B) of the chain shows ring current and delocalization pathways. The current density vectors plotted on the ACID isosurface indicate ring current (clockwise, counterclockwise) and prevalent delocalization pathways present in these systems.

Figure S29. ACID of the π -system at CSGT-UB3LYP/6-31G^{**} level of theory for the octamer (n = 8) of the **P2** open-shell singlet (A). The expanded image of the internal repeat unit (B) of the chain shows ring current and delocalization pathways. The current density vectors plotted on the ACID isosurface indicate ring current (clockwise, counterclockwise) and prevalent delocalization pathways present in these systems.

Figure S30. TGA curve of pristine polymer powder showing that the 1% degradation does not occur until approximately 360.2 °C for **P1** and 251.8 °C for **P2** with 5% occurring at approximately 424.7 °C for **P1** and 360.2 °C for **P2**.

Figure S31. EPR (X-band) spectra of solid samples stored at room temperature under a nitrogen atmosphere showed no discernable changes in spin concentration over a period of 14 days.

Figure S32. A deviation in the Curie-Weiss behavior can be seen around 50 - 60 K in the magnetic susceptibility plots due to adsorbed oxygen which can occur while preparing the sample for measurement (black circles).

Figure S33. Absorption spectra of **P1–P2** (A, B) following sequential doping with varying concentrations of F4TCNQ in acetonitrile. The lack of spectral variance upon addition of hydrazine and the substantial change upon addition of F4TCNQ highlights the undoped nature of **P1–P2**.

Figure S34. Absorption spectra of P1–P2 (A, B) following sequential doping with varying concentrations of galvinoxyl in acetonitrile.

Figure S35. Absorption spectra of P1–P2 (A, B) following sequential doping with varying concentrations of HCl in water.

5. Supplemental tables S1–S11 Table S1. Selected electronic properties of oligomers as a function of number of repeat units.

	nª	ΔE_{ST}^{b}	<i>n</i> HONO ^c	<i>n</i> LUNO ^c	Уо ^d
	1	-0.740	2.000	0.000	0.000
	2	-0.294	2.000	0.000	0.000
D 4	4	-0.064	1.39742	0.60258	0.314
P1	6	-0.019	1.10392	0.89608	0.794
	8	-0.006	1.02284	0.95434	0.954
	1	-0.838	2.000	0.000	0.000
	2	-0.446	2.000	0.000	0.000
50	4	-0.275	2.000	0.000	0.000
PZ	6	-0.224	2.000	0.000	0.000
	8	-0.203	1.97133	0.02867	0.000423

^aNumber of repeat units (*n*) for the calculated oligomers. ^bSinglet^{BS}-triplet energy gap. ^cNatural orbital occupancies, and ^ddiradical character index (*y*) calculated from Yamaguchi's formula as determined at the UB3LYP/6-31G** level of theory. All energies are in eV, natural orbital occupancies and *y* are unitless quantities.

Table S2. Tabulated NICS values of the single repeat unit (*n* = 1)

	С ₁₆ п ₃₃						
Ring index	P1 Singlet	P2 Singlet					
1	-10.17	-9.52					
2	-1.94	-8.34					
3	-8.09	-7.99					
4	-14.65	-15.21					
5	-9.51	-9.7					
6	-6.8	-6.74					
7	-8.27	-9.73					
8	-8.62	-8.92					

Table S3. Tabulated NICS values of the dimer (n = 2)

Ring index	P1 Singlet	P2 Singlet
1	-9.29	-8.66
2	-2.28	-7.65
3	-7.61	-6.94
4	-13.48	-13.19
5	-6.47	-7.07
6	-6.36	-6.65
7	-8.37	-10.11
8	-8.98	-8.44
9	-7.05	-6.98
10	-2.22	-6.69
11	-7.09	-6.77
12	-14.38	-14.01
13	-8.15	-8.65
14	-6.36	-6.38
15	-9.41	-8.05
16	-8.93	-8.84

Table S4. Tabulated NICS values of the tetramer (n = 4)

Ring index	P1 Singlet	P2 Singlet	Ring index	P1 Singlet	P2 Singlet
1	-10.11	-8.86	17	-7.01	-7.35
2	-1.93	-7.54	18	-1.94	-5.96
3	-8.37	-7.5	19	-6.8	-6.34
4	-12.69	-13.97	20	-12.71	-14.09
5	-5.5	-6.91	21	-4.83	-6.64
6	-6.6	-6.62	22	-6.78	-6.6
7	-9.15	-9.91	23	-8.95	-7.73
8	-8.41	-8.41	24	-7.96	-8.49
9	-7.16	-7.3	25	-7.7	-7.12
10	-1.9	-6.51	26	-1.81	-7.09
11	-7.02	-6.78	27	-7.28	-6.26
12	-12.37	-13.68	28	-13.46	-14.91
13	-4.44	-6.43	29	-7.79	-8.7
14	-6.79	-6.32	30	-6.4	-6.4
15	-8.57	-9.19	31	-9.36	-9.19
16	-8.62	-8.92	32	-8.27	-9.02

Ring index	P1 Triplet	P2 Singlet	Ring index	P1 Triplet	P2 Singlet	Ring index	P1 Triplet	P2 Singlet
1	-9.38	-9.46	17	-5.47	-7.18	33	-5.9	-7.79
2	-2.03	-8.46	18	-2.04	-6.64	34	-2	-6.59
3	-6.89	-8.34	19	-5.18	-7.13	35	-6.06	-8.11
4	-11.88	-15	20	-10.42	-14.14	36	-10.76	-14.73
5	-3.52	-6.93	21	-1.32	-6.46	37	-2.66	-6.56
6	-6.34	-6.59	22	-6.58	-6.57	38	-6.46	-6.69
7	-9.63	-7.76	23	-8.53	-8.19	39	-7.96	-9.33
8	-9.13	-8.56	24	-8.7	-8.54	40	-8.85	-9.4
9	-6.06	-6.7	25	-5.28	-7.22	41	-5.73	-6.98
10	-2.02	-6.92	26	-2.05	-6.78	42	-1.99	-5.88
11	-5.73	-6.48	27	-5.16	-9	43	-6.1	-6.45
12	-10.45	-15.12	28	-10.97	-13.63	44	-13.85	-16.04
13	-1.89	-6.3	29	-1.52	-6.27	45	-7.27	-8.38
14	-6.53	-6.32	30	-6.58	-6.34	46	-6.42	-6.45
15	-9.37	-8.49	31	-9.77	-8.76	47	-9.15	-9.22
16	-9.12	-9.47	32	-8.04	-9.1	48	-8.8	-9.5

P1 : X = C(CH ₃) ₂ P2 : X = S C ₁₆ H ₃₃ -	(16) (16) (16) (16) (16) (16) (16) (16)	$C_{16}H_{33}$ (31) (210)	$C_{16}H_{33} - \underbrace{\begin{pmatrix} 47\\ 8\\ 8 \end{pmatrix}}_{S} = \begin{bmatrix} C_{16}H_{33}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C ₁₆ H ₃₃ 63 64 S
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$	N 14 N 17 18 19 20 S 13 S 21	N 30 N 33 34 35 S S 29 S S	N 36 N N 46 N X 50 51 37 5 5 45 5 5 5	
C ₁₆ H ₃₃ 7 8 C ₁₆ H ₃₃ 7 C ₁₆ H ₃₃	$\begin{array}{c} 0 & 12 \\ N \\ S \\ C_{16}H_{33} \\ \hline \\ 23 \\ 24 \end{array}$	26)		54 N 60 N 56 C 16H ₃₃

Table S6. Tabulated NICS values of the octamer (n = 8)

Ring	P1	P2									
index	Triplet	Singlet									
1	-10.99	-9.22	17	-5.11	-6.59	33	-6.5	-6.8	49	-5.67	-7.57
2	-1.94	-7.27	18	-2.05	-7.72	34	-2.05	-6.09	50	-2.03	-6.32
3	-6.77	-6.73	19	-4.64	-6.1	35	-6.65	-6.67	51	-6.6	-7.67
4	-12	-13.37	20	-11.55	-13.81	36	-11.9	-13.94	52	-11.95	-14.02
5	-3.81	-6.92	21	-1.66	-6.33	37	-1.3	-6.42	53	-2.94	-6.59
6	-6.52	-6.65	22	-6.45	-6.6	38	-6.73	-6.65	54	-6.71	-6.61
7	-9.42	-7.99	23	-8.33	-8.67	39	-8.02	-8.5	55	-9.25	-8.16
8	-8.27	-9.79	24	-8.06	-9.02	40	-9.96	-7.59	56	-8.22	-8.99
9	-6.7	-9.04	25	-5.27	-6.8	41	-7.01	-6.96	57	-10.45	-6.53
10	-2.02	-7.1	26	-2.02	-6.28	42	-2.02	-6.41	58	-1.88	-6.47
11	-5.1	-6.48	27	-5.31	-6.74	43	-6.83	-6.69	59	-8.57	-6.55
12	-9.04	-13.84	28	-10.65	-12.78	44	-11.2	-13.23	60	-13.99	-15.51
13	-2.19	-6.32	29	-1.45	-6.31	45	-1.74	-6.28	61	-7.4	-8.42
14	-6.4	-6.39	30	-6.71	-6.29	46	-6.74	-6.34	62	-6.43	-6.33
15	-8.86	-8.16	31	-8.34	-8.44	47	-9.48	-8.34	63	-8.33	-8.79
16	-8.94	-10.53	32	-7.84	-8.51	48	-9.11	-8.63	64	-9.86	-8.78

Table S7. Tabulated bond length values (Å) of the single repeat unit (n = 1)

10

11

1.4515

1.3867

1.4516

1.3864

Table S8. Tabulated bond length values (Å) of the dimer (n = 2)

Bond Index	P1 Singlet	P2 Singlet	Bond Index	P1 Singlet	P2 Singlet
1	1.3742	1.3683	13	1.4045	1.3957
2	1.4181	1.4224	14	1.3959	1.4018
3	1.3875	1.3962	15	1.3960	1.4005
4	1.4363	1.4172	16	1.4261	1.4111
5	1.3901	1.3953	17	1.3961	1.4000
6	1.3998	1.4060	18	1.3959	1.4027
7	1.4018	1.3932	19	1.4039	1.3948
8	1.4447	1.4493	20	1.4445	1.4499
9	1.4228	1.4195	21	1.4244	1.4206
10	1.4533	1.4532	22	1.4512	1.4641
11	1.4292	1.4262	23	1.3872	1.4048
12	1.4458	1.4500			

P1 • X	$= C(CH_{e})$	-				₆ H ₃₃					C ₁₆ H ₃₃
P2: X	(= 0(0113) (= S	2	C ₁₆ H ₃₃ -	\sim '	\$			C ₁₆	H ₃₃ -	$\neg \checkmark$	S
	Y	N-S		`s-	L.	x		-S	Ś		
		B L	١	/ N	^N 24		─ 32 ⊥	Ň		N N	
s	4 S	$\sqrt{1}$	12 _{_S} 1	6 _{_S} 20		S 28	s	36	_ج 40 ج	s 44	
	- N	\sim	\checkmark			20	N	\sim	\square	$\mathcal{I} \rightarrow$	λ N
		Ň	×	$\langle -$	Ń∼s∕			Ń	X	N~_	s
CteHa	\prec				С	16H22→		<u></u>			
0 103.	» /	$\langle \downarrow$			-	10. 33	\checkmark				
		- (C ₁₆ H ₃₃				_	`С ₁₆ Н	33		
Bond	P1	P2	Bond	P1	P2	Bond	P1	P2	Bond	P1	P2
Index	Singlet	Singlet	Index	Singlet	Singlet	Index	Singlet	Singlet	Index	Singlet	Singlet
1	1.3747	1.3683	13	1.4196	1.3972	25	1.4240	1.3980	37	1.4159	1.3967
2	1.4173	1.4224	14	1.3814	1.4002	26	1.3780	1.3996	38	1.3864	1.4011
3	1.3891	1.3963	15	1.4113	1.4019	27	1.4143	1.4023	39	1.4046	1.4009
4	1.4336	1.4171	16	1.4050	1.4090	28	1.4022	1.4086	40	1.4162	1.4105
5	1.3931	1.3953	17	1.4124	1.4016	29	1.4138	1.4019	41	1.4027	1.4004
6	1.3962	1 /050	18	1 3801	1 4004	30	1.3793	1.4001	42	1.3906	1.4023
7		1.4000	10	1.5001							
•	1.4073	1.3934	19	1.4231	1.3982	31	1.4232	1.3984	43	1.4092	1.3952
8	1.4073 1.4366	1.3934 1.4490	19 20	1.4231 1.4192	1.3982 1.4446	31 32	1.4232 1.4199	1.3984 1.4445	43 44	1.4092 1.4388	1.3952 1.4495
8 9	1.4073 1.4366 1.4329	1.3934 1.4490 1.4198	19 20 21	1.4231 1.4192 1.4431	1.3982 1.4446 1.4227	31 32 33	1.4232 1.4199 1.4412	1.3984 1.4445 1.4226	43 44 45	1.4092 1.4388 1.4284	1.3952 1.4495 1.4209
8 9 10	1.4073 1.4366 1.4329 1.4489	1.3934 1.4490 1.4198 1.4530	19 20 21 22	1.4231 1.4192 1.4431 1.4450	1.3982 1.4446 1.4227 1.4521	31 32 33 34	1.4232 1.4199 1.4412 1.4462	1.3984 1.4445 1.4226 1.4522	43 44 45 46	1.4092 1.4388 1.4284 1.4497	1.3952 1.4495 1.4209 1.4513
8 9 10 11	1.4073 1.4366 1.4329 1.4489 1.4456	1.4033 1.3934 1.4490 1.4198 1.4530 1.4273	19 20 21 22 23	1.4231 1.4192 1.4431 1.4450 1.4523	1.3982 1.4446 1.4227 1.4521 1.4287	31 32 33 34 35	1.4232 1.4199 1.4412 1.4462 1.4466	1.3984 1.4445 1.4226 1.4522 1.4522	43 44 45 46 47	1.4092 1.4388 1.4284 1.4497 1.3897	1.3952 1.4495 1.4209 1.4513 1.3868

Table S9. Tabulated bond length values (Å) of the tetramer (n = 4)

Bond Index	P1 Triplet	P2 Singlet	Bond Index	P1 Triplet	P2 Singlet	Bond Index	P1 Triplet	P2 Singlet
1	1.3749	1.3684	25	1.4348	1.3984	49	1.4327	1.3983
2	1.4170	1.4224	26	1.3683	1.3992	50	1.3707	1.3994
3	1.3896	1.3963	27	1.4259	1.4026	51	1.4224	1.4024
4	1.4328	1.4171	28	1.3872	1.4081	52	1.3926	1.4083
5	1.3941	1.3953	29	1.4265	1.4022	53	1.4212	1.4021
6	1.3950	1.4059	30	1.3681	1.3997	54	1.3732	1.4000
7	1.4089	1.3934	31	1.4367	1.3989	55	1.4301	1.3986
8	1.4342	1.4490	32	1.4033	1.4438	56	1.4120	1.4443
9	1.4358	1.4199	33	1.4536	1.4232	57	1.4464	1.4227
10	1.4476	1.4530	34	1.4405	1.4519	58	1.4441	1.4522
11	1.4503	1.4276	35	1.4640	1.4292	59	1.4442	1.4278
12	1.4202	1.4482	36	1.4043	1.4465	60	1.4243	1.4486
13	1.4248	1.3973	37	1.4369	1.3984	61	1.4195	1.3967
14	1.3766	1.4001	38	1.3669	1.3991	62	1.3835	1.4011
15	1.4168	1.4020	39	1.4273	1.4027	63	1.4075	1.4010
16	1.3977	1.4090	40	1.3859	1.4081	64	1.4130	1.4105
17	1.4186	1.4017	41	1.4271	1.4023	65	1.4048	1.4005
18	1.3745	1.4003	42	1.3679	1.3996	66	1.3889	1.4022
19	1.4299	1.3983	43	1.4368	1.3989	67	1.4109	1.3953
20	1.4107	1.4444	44	1.4037	1.4438	68	1.4370	1.4494
21	1.4497	1.4228	45	1.4528	1.4232	69	1.4481	1.4209
22	1.4421	1.4521	46	1.4411	1.4520	70	1.4650	1.4513
23	1.4614	1.4291	47	1.4616	1.4291	71	1.3905	1.3868
24	1.4070	1.4467	48	1.4086	1.4468			

Table S11. Tabulated bond length values ((Å)	of the	octamer	(<i>n</i> = 8))
---	-----	--------	---------	-----------------	---

Bond Index	P1 Triplet	P2 Singlet	Bond Index	P1 Triplet	P2 Singlet	Bond Index	P1 Triplet	P2 Singlet
1	1.3748	1.3684	33	1.4526	1.4232	65	1.4256	1.4024
2	1.4171	1.4224	34	1.4410	1.4519	66	1.3691	1.3996
3	1.3895	1.3963	35	1.4631	1.4293	67	1.4353	1.3990
4	1.4330	1.4171	36	1.4051	1.4465	68	1.4055	1.4436
5	1.3938	1.3953	37	1.4363	1.3985	69	1.4515	1.4234
6	1.3953	1.4059	38	1.3672	1.3990	70	1.4415	1.4520
7	1.4086	1.3934	39	1.4270	1.4027	71	1.4487	1.4292
8	1.4347	1.4490	40	1.3859	1.4080	72	1.4104	1.4468
9	1.4353	1.4199	41	1.4273	1.4024	73	1.4313	1.3983
10	1.4479	1.4530	42	1.3675	1.3996	74	1.3720	1.3993
11	1.4494	1.4275	43	1.4374	1.3990	75	1.4210	1.4024
12	1.4215	1.4482	44	1.4027	1.4436	76	1.3944	1.4083
13	1.4238	1.3973	45	1.4538	1.4234	77	1.4198	1.4021
14	1.3775	1.4001	46	1.4405	1.4519	78	1.3743	1.3999
15	1.4157	1.4020	47	1.4639	1.4294	79	1.4288	1.3986
16	1.3991	1.4090	48	1.4042	1.4464	80	1.4135	1.4442
17	1.4175	1.4016	49	1.4369	1.3985	81	1.4454	1.4228
18	1.3755	1.4003	50	1.3668	1.3990	82	1.4445	1.4522
19	1.4287	1.3983	51	1.4274	1.4028	83	1.4438	1.4278
20	1.4122	1.4445	52	1.3856	1.4080	84	1.4253	1.4487
21	1.4486	1.4228	53	1.4275	1.4024	85	1.4188	1.3967
22	1.4426	1.4520	54	1.3674	1.3995	86	1.3840	1.4011
23	1.4599	1.4291	55	1.4373	1.3990	87	1.4069	1.4009
24	1.4090	1.4467	56	1.4029	1.4436	88	1.4136	1.4105
25	1.4332	1.3984	57	1.4535	1.4234	89	1.4044	1.4005
26	1.3697	1.3992	58	1.4406	1.4520	90	1.3892	1.4022
27	1.4242	1.4026	59	1.4503	1.4295	91	1.4106	1.3953
28	1.3892	1.4082	60	1.4055	1.4465	92	1.4374	1.4494
29	1.4249	1.4023	61	1.4357	1.3986	93	1.4295	1.4210
30	1.3694	1.3997	62	1.3680	1.3991	94	1.4493	1.4513
31	1.4352	1.3989	63	1.4259	1.4027	95	1.3903	1.3868
32	1.4050	1.4438	64	1.3876	1.4080			

Reference	Year	Compound	Half-life	Conditions
12	2011	16	60 min	solution, air, dark
13	2012	1-OS	495 min	solution
14	2013	3a	900 min	solution, air, light
15	2014	1a	7 days	solution, air, dark
15	2014	1b	3.5 days	solution, air, dark
15	2014	1c	43 days	solution, air, dark
16	2021	4	6.5 days	solution, air, light
17	2021	4-PA	180 min	solution, air, light
17	2021	7-PA	25 min	solution, inert
18	2021	8	19 days	solution, inert
18	2021	16	420 min	solution, inert

Table S12. A review of open-shell radical species reported half-life times

6. Supplemental references

- 1. Wang, M., Ford, M.J., Zhou, C., Seifrid, M., Nguyen, T.-Q., and Bazan, G.C. (2017). Linear conjugated polymer backbones improve alignment in nanogroove-assisted organic field-effect transistors. J. Am. Chem. Soc. *139*, 17624-17631. 10.1021/jacs.7b10332.
- 2. Kini, G.P., Lee, S.K., Shin, W.S., Moon, S.-J., Song, C.E., and Lee, J.-C. (2016). Achieving a solar power conversion efficiency exceeding 9% by modifying the structure of a simple, inexpensive and highly scalable polymer. J. Mater. Chem. A *4*, 18585-18597. 10.1039/C6TA08356K.
- 3. Miyaji, T., Tsubota, Y., Suzuki, T., Yamashita, Y., Mukai, T., and Miyashi, T. (1992). Tetracyanoquinodimethanes fused with 1,2,5-thiadiazole and pyrazine units. Heterocycles 33, 337-348. 10.3987/com-91-s44.
- 4. Richter, T.V., Braun, C.H., Link, S., Scheuble, M., Crossland, E.J.W., Stelzl, F., Würfel, U., and Ludwigs, S. (2012). Regioregular polythiophenes with alkylthiophene side chains. Macromolecules *45*, 5782-5788. 10.1021/ma2026644.
- 5. Huang, L., Eedugurala, N., Benasco, A., Zhang, S., Mayer, K.S., Adams, D.J., Fowler, B., Lockart, M.M., Saghayezhian, M., Tahir, H., et al. (2020). Open-shell donor–acceptor conjugated polymers with high electrical conductivity. Adv. Funct. Mater. *30*, 1909805. 10.1002/adfm.201909805.
- 6. Bleaney, B., and Bowers, K.D. (1952). Anomalous paramagnetism of copper acetate. Proc. R. Soc. London, Ser. A *214*, 451-465. 10.1098/rspa.1952.0181.
- Y. D. Tsvetkov, M.K.B., Y. Grishin, A. (2019). Pulsed Electron-Electron Double Resonance: Nanoscale Distance Measurement in the Biological, Materials and Chemical Sciences (Springer International Publishing).
- 8. Morgan, G.G., and Kühne, I.A. (2020). Practical Approaches to Biological Inorganic Chemistry (Second Edition), 2nd Edition (Elsevier). 10.1016/B978-0-444-64225-7.00003-1.
- 9. Becke, A.D. (1993). A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. *98*, 1372-1377. 10.1063/1.464304.
- 10. Chen, Z., Wannere, C.S., Corminboeuf, C., Puchta, R., and Schleyer, P.v.R. (2005). Nucleusindependent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. *105*, 3842-3888. 10.1021/cr030088+.
- 11. Yamaguchi, K., Fukui, H., and Fueno, T. (1986). Molecular orbital (MO) theory for magnetically interacting organic compounds. Ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers. Chem. Lett. *15*, 625-628. 10.1246/cl.1986.625.
- 12. Kubo, T., Katada, Y., Shimizu, A., Hirao, Y., Sato, K., Takui, T., Uruichi, M., Yakushi, K., and Haddon, R.C. (2011). Synthesis, crystal structure, and physical properties of sterically unprotected hydrocarbon radicals. J. Am. Chem. Soc. *133*, 14240-14243. 10.1021/ja2065768.
- 13. Zeng, Z., Sung, Y.M., Bao, N., Tan, D., Lee, R., Zafra, J.L., Lee, B.S., Ishida, M., Ding, J., López Navarrete, J.T., et al. (2012). Stable Tetrabenzo-Chichibabin's hydrocarbons: tunable ground

state and unusual transition between their closed-shell and open-shell resonance forms. J. Am. Chem. Soc. *134*, 14513-14525. 10.1021/ja3050579.

- 14. Konishi, A., Hirao, Y., Matsumoto, K., Kurata, H., Kishi, R., Shigeta, Y., Nakano, M., Tokunaga, K., Kamada, K., and Kubo, T. (2013). Synthesis and characterization of quarteranthene: elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. J. Am. Chem. Soc. *135*, 1430-1437. 10.1021/ja309599m.
- 15. Tian, Y., Uchida, K., Kurata, H., Hirao, Y., Nishiuchi, T., and Kubo, T. (2014). Design and synthesis of new stable fluorenyl-based radicals. J. Am. Chem. Soc. *136*, 12784-12793. 10.1021/ja507005c.
- 16. Shen, J.-J., Han, Y., Dong, S., Phan, H., Herng, T.S., Xu, T., Ding, J., and Chi, C. (2021). A stable [4,3]peri-acene diradicaloid: synthesis, structure, and electronic properties. Angew. Chem., Int. Ed. *60*, 4464-4469. 10.1002/anie.202012328.
- Ajayakumar, M.R., Ma, J., Lucotti, A., Schellhammer, K.S., Serra, G., Dmitrieva, E., Rosenkranz, M., Komber, H., Liu, J., Ortmann, F., et al. (2021). Persistent peri-heptacene: synthesis and insitu characterization. Angew. Chem., Int. Ed. *n/a*. 10.1002/anie.202102757.
- 18. Chen, Q., Baumgarten, M., Wagner, M., Hu, Y., Hou, I.C.-Y., Narita, A., and Müllen, K. (2021). Dicyclopentaannelated hexa-peri-hexabenzocoronenes with a singlet biradical ground state. Angew. Chem., Int. Ed. *60*, 11300-11304. 10.1002/anie.202102932.