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Abstract: This paper aims to highlight the new research and significant advances in our understand-
ing of links between coastal habitat quality/quantity/diversity and the diversity of fisheries species
and other mobile aquatic species (hereafter nekton) that use them within coastal landscapes. This
topic is quite diverse owing to the myriad of habitat types found in coastal marine waters and the
variety of life history strategies fisheries species and nekton use in these environments. Thus, we
focus our review on five selective but relevant topics, habitat templates, essential fish habitat, habitat
mosaics/habitat connectivity, transitory/ephemeral habitat, and the emerging/maturing approaches
to the study of fish-habitat systems as a roadmap to its development. We have highlighted selected
important contributions in the progress made on each topic to better identify and quantify landscape
scale interactions between living biota and structured habitats set within a dynamic landscape.

Keywords: review; estuary; connectivity; nekton; techniques

Individual coastal and marine systems are components of the coastal aquatic landscape
and as such, organisms that use these landscapes during a portion of their life history must,
by definition, encounter a number of “environments” and “habitats” [1]. These mosaics are
a mix of interconnected vegetated, lithogenous, and human- and animal-made structures
that ultimately act as templates on which population and community dynamics occur [2–4].
Thus, effective conservation and management of coastal ecosystems must take into account
both the variability in abiotic conditions and the nested structural habitat component [5,6].
However, many linkages between habitat and fisheries and nektonic species production
have been and continue to be altered by urbanization. Thus, we are studying these linkages
(functions) for sustainability and biodiversity while they are changing in quality, quantity,
and interconnectedness [7–9]. Another important consideration is that despite our best
intentions with restoration activities, we are ultimately exchanging one habitat type for
another and restoring habitats in spatially different locations within the landscape, which
further alters the community dynamics and linkages.

1. Habitat Templates

In an often overlooked study, Ryder and Kerr [1] identified the need to set habitat
structure within the appropriate, but dynamic, abiotic environmental condition when
restoring habitat. Although their argument was focused on salmon stocks, it can be used
across a spectrum of ecosystems as it is hierarchical in nature. Thus, set within an abiotic
framework, habitat templates and the ever-changing nature of coastal landscapes establish
and maintain the underpinning for coastal biodiversity. Ryder and Kerr [1] have defined
environment as the “... total physical, chemical, and biological surroundings of an organism,
including habitat and other organisms.” “They view environment and habitat hierarchically
as”... the pervasiveness of relatively structureless environment which provides background
ambience, against the localized and highly structured habitat which acts as a center of
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organization and attractor for fish (and nekton) communities.” McCoy and Bell [10] and
Hoss and Thayer [11] supported this approach. In their review of estuarine systems,
Simenstad et al. [12] indicated “...habitat structure at the ecosystem scale encompasses
the configuration, and arrangement and connectivity, of habitat elements that typify most
estuaries”. Based on their review, they suggested eight major steps to enhance a fuller
understanding of habitat-biotic linkages ranging from (1) coastal habitat delineation relative
to production and food web processes to (2) use of long-term data sets on habitat variability,
and (3) comparative studies on habitat function along with five other estuarine-specific
topics [12]. Some of which are addressed in this Special Issue volume.

2. Early Papers on Habitat Use and Nursery Function

Early studies on nursery habitat use and function were simplistic, but they provided a
platform whereby others could focus their collective efforts with extensive and detailed
field studies. These subsequent studies incorporated not only biotic collections but also
abiotic factors known to be important for the survival, growth, and other life history vital
metrics. Joseph [13] identified three broad criteria that must be met if an area is to serve a
significant nursery role. These criteria are: “1. The area must be physiologically suitable
in terms of chemical and physical features; 2. it must provide an abundant, suitable food
supply with a minimum of competition at critical trophic levels; and 3. it must in some way
provide a degree of protection from predation.” Although these were based on a vast array
of long-term data sets and are overly simplistic, they were fundamental to subsequent
studies. Two of the earliest and far-reaching landscape-scale studies of fisheries and
nektonic species and habitat occurred in the Cape Fear River estuary, North Carolina, USA,
by Weinstein [14] and Weinstein et al. [15]. There were a number of key results of these
two landscape-scale studies. First, multivariate analyses demonstrated that each saltmarsh
complex was unique. Second, assemblage differences were correlated to both salinity
gradients and an “edge effect” where saltmarshes closest to the river mouth were species
rich due to seasonal invasion by low densities of reef, nearshore, and shelf marine species
coupled with freshwater fishes in brackish marshes during high flow periods. Finally, these
data sets indicated ocean-spawned species were exported to the adult offshore marine
habitat annually in the form of living biomass.

Peters and Cross [16] further outlined habitat types and other habitat structural
features (e.g., habitat edges, river plumes, turbidity maxima, etc.) not considered in earlier
studies as important to fisheries species and nekton in coastal and marine ecosystems.
They relied heavily on Ryder and Kerr [1] in terms of abiotic factors and habitat structure
hierarchically in defining fish habitat and thus nurseries. They concluded that although
we know a lot about fish and habitat independently, ecologists and managers have yet to
examine quantitatively fish-habitat interactions for a single species let alone for a single
(or multiple) species across a mosaic of habitat types within a landscape. This early
hierarchical concept was further formalized in Hoss and Thayer [11], who discussed the
importance of studying estuarine and coastal nearshore marine fish habitat connectivity
patterns instead of individual habitat types. Finally, in a review of the impacts of fishing
pressure on fisheries species and their habitat, Langston and Auster [17] indicated the need
to “ . . . develop a predictive capability given a particular management protocol so that
fishery management becomes tactical and strategic rather than anecdotal and speculative.”
They postulated that to achieve this, ecological processes must be quantified and then
applied that will allow the maintenance of habitat integrity (and therefore biodiversity)
across the interconnected landscapes of coastal and marine ecosystems.

3. Essential Fish Habitat

Beck et al. [18,19] reviewed, focused, and delineated quantitatively essential fish habi-
tat (EFH) requirements and approaches to better define it in a multitude of habitat types.
Following Beck et al. [18,19], a habitat is considered a juvenile nursery if its contribution
per unit area to the production of individuals that recruit to adult populations is greater,
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on average, than production from other habitats in which juveniles occur. One vital link
needed to develop a complete understanding of which habitats serve nursery function is
quantifying the connectivity among habitat types throughout ontogeny for a species [20].
These data are valuable for resource managers in delineating EFH as well as promoting
the conservation of the mosaic of habitat types and biodiversity in coastal and marine
ecosystems. Dahlgren et al. [21] refined the initial EFH concept as the Effective Juvenile
Habitat (EJH) concept to refer to habitat types that make a greater than average overall con-
tribution to adult populations see [22,23] rebuttals. Regardless of these different schools of
thought, typically EFH is associated with structured habitat types like submerged aquatic
vegetation (SAV), seagrass, mangrove, coral reefs, or salt marshes [24–28]. However, this is
not always the case e.g., [11,29], as many pelagic nekton species like menhaden, silversides,
and anchovies comprise a significant biomass component of coastal and marine environ-
ments and appear not to require discrete habitat structure. Maintaining the availability and
connectivity of the mosaic of habitat types is critical to a diverse ecosystem [30,31].

4. Habitat Mosaics/Habitat Connectivity

Aquatic resource conservation and sustained fisheries species and nekton production
requires a combined approach of managing the mosaic of habitat types used by living
biota within a particular landscape coupled with management of fishing effort for commer-
cial/recreational species e.g., [5,17]. Sheaves [32] in his review of connectivity indicated the
multifaceted linkages among the diverse habitat types comprising ecosystem complexes
like the coastal ecosystem mosaic (CEM)—the tightly interlinked coastal, estuarine, wet-
land, and freshwater habitats at the interface of land and sea. The diversity of connected
habitat types is integral to an array of organism life history vital metrics, with connectivity
between habitat types being crucial to important functions like nursery use.

Although debatable, it is generally believed that aquatic organisms survival depends
upon approaching a physiological optimal range of conditions first and then behaviorally
searching out the appropriate life-stage-dependent habitat. Recently, Fulford et al. [33]
extended a terrestrial model of small-scale movement patterns to describe habitat choices
of an index juvenile estuarine fish using the critical laboratory experiments. They found
movement was influenced by both spatial and temporal patterns in habitat quality, and
it was a balanced mix of both that resulted in an optimal juvenile distribution. Model
outcomes indicated a hierarchical approach is best for describing habitat choice in juvenile
fishes. However, there are tradeoffs among available factors that determine the distribu-
tion of animals, such as the presence of suitable food [34,35], structural complexity [36],
the proximity to linked habitat types [37], transport of planktonic propagules [38], and
recruitment by opportunistic species (i.e., freshwater or marine). As Able et al. [39] noted,
based on long-term saltmarsh nekton collections in Delaware Bay (USA), it is clear that
there are few truly marsh-dependent species as almost all species simultaneously use a
variety of other bay and river habitats that vary seasonally and ontogenetically.

Sheaves et al. [22] recognized that nursery ground value cannot be measured solely as
a numeric contribution to the adult stock e.g., [18,21], but must include the contribution to
future generations. They argued that preserving “keystone” habitat types at the expense of
other habitat types is philosophically problematic because coastal and marine ecosystem
are linked in space and time and the degradation of non-keystone habitat types can lead
to alteration of these important landscape linkages for a number of species we wish to
protect. Thus, because of our current lack of understanding of these linkages and which
habitat types may be more “valuable and worth saving,” decisions made relative to these
presumed more valuable habitat types alone may likely produce unknown consequences
based on these choices. For example, Sambrook et al. [40] reviewed the use of non-coral
reef habitat types by fishes and for the 170 species with complete life history data, about
76% used non-reef habitats in juvenile and adult life stages. This use of non-reef habitats by
“coral reef” fishes was widespread, indicating resource managers need to consider broader
scales and different forms of connectivity when dealing with human induced impacts.
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Finally, urbanization, climate change, and subsequent restoration in real-time are changing
many of these linked relationships between environment-habitat processes in coastal and
marine mosaics [8,9,41].

Moreover, Sheaves et al. [42] argued the true value of coastal nurseries for nekton is
much more extensive and requires other fundamentally important ecosystem processes.
Not considering these broader aspects may allow for “suboptimal conservation outcomes,”
especially given the increasing urbanization of coastal and marine systems and the like-
lihood that protection will be focused on specific locations, (see [43] on marine spatial
planning) rather than landscape habitat mosaics. Finally, in a recent meta-analysis of nurs-
ery function, Lefcheck et al. [30] confirmed the basic nursery function of certain structured
habitats, which lends further support to their conservation, restoration, and management at
a time when our coastal environments are becoming increasingly urbanized (e.g., [42,43]).
This continued need for further long-term and location or habitat-specific studies are espe-
cially critical for nekton as are the studies of the functional significance of estuarine-specific
contributions to continental shelf metapopulations [44]. Lefcheck et al. [30] advocates for
a renewed emphasis on more direct assessments of juvenile growth, survival, reproduc-
tion, and recruitment compared to increasingly complex approaches that examine nursery
function in a landscape.

5. Transitory/Ephemeral Habitat

We believe a special statement related to non-structural transitory and ephemeral
structured habitat types is necessary because these habitats are typically often not exam-
ined as closely as traditional structured habitat types e.g., [11]. Transitory/ephemeral
habitat types appear seasonally or aperiodically within a coastal landscape and enhance
biodiversity of organisms within the landscape. Ephemeral structured habitats (e.g., drift
algae, Sargassum, mobile macrophytes, bryozoan mats) and non-structured habitats [5,11]
(e.g., local hydrodynamics, upwelling zones, coastal currents, etc.) appear to provide or-
ganisms within a landscape additional foraging sites and predator refuge indicating these
could be a valuable, temporary habitat type for small, motile species or early life stages of
ecological/commercial/recreational species [45–47]. Studies on various drifting ephemeral
habitats indicate that species richness and/or biomass of living biota are highly correlated
with these ephemeral habitats e.g., [48–51], likely due to increased complexity and living
space that may decrease intraspecific competition and predator encounter rates. These
ephemeral habitat types clearly enhance biodiversity in coastal and marine environments,
albeit, on reduced temporal and/or spatial scales. Furthermore, ephemeral habitats and
rafting of such habitats can increase dispersal and population connectivity for coastal
species [52].

6. New Approaches/Techniques

Like all fields, the study of coastal fisheries species and other nekton have benefited
greatly from technological advancements and increases in computing power. Adequate
sampling of coastal systems is difficult, in part because of the rate of change (both natural
and anthropogenic) in these environments, how connected these systems are to other
habitats or ecosystems (e.g., terrestrial or adjacent systems), and how fisheries and nektonic
species use the coastal realm through their ontogeny. Traditional sampling methodologies
(physical capture) all have inherent selectivity biases as well which make additional tech-
niques necessary to adequately understand and quantify these species-habitat linkages.
Here we highlight just a few of these techniques that continue to refine and reshape our
understanding of connectivity and biodiversity patterns in the coastal zones. This list is
not meant to be exhaustive by any means and should not be taken as such.

The microchemistry of hard parts (e.g., otoliths, spines, eye lenses), although not
necessarily a new approach, has been instrumental in determining habitat use, population
connectivity, natal origin, and migrations of various fish species [53]. This line of research
has even moved into understanding ecological disturbances like hypoxic events [54],
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fisheries management [55], and efficacy of marine protected areas [56]. This technique is
especially valuable for understanding the connectivity and potential for dispersal of larvae
when combined with genetics approaches as data pertaining to space (microchemistry),
time (otolith rings), and population (genetics) are all integrated.

Similar to microchemical analyses, genetic analyses are not novel; however, the sus-
tained decrease in cost of sequencing, the optimization of PCR, and sequencing techniques,
and the growing sequence library for coastal species has allowed for the field of environ-
mental DNA (eDNA) to flourish. eDNA studies have some advantages over traditional
sampling techniques (albeit with some caveats) in that they are generally less expensive,
require less field time, and are less invasive. This field has provided novel insight into
range determination for rare/protected species [57,58], detection of non-natives [59], and
has opened the door for metabarcoding studies to roughly characterize the biodiversity of
various habitats with a single water sample [60,61]. However, caution must be noted in
that sequence libraries (barcodes) are still incomplete for most nekton species, metadata
standards for sequence data are not well unified, and incomplete vouchering of taxa used
to derive sequence data is still common [62]. This is especially important as ranges for
many taxa are being altered in the face of a changing climate; therefore, emphasis on
training future scientists with a strong coupling of taxonomic and molecular expertise is
still needed.

The invention of inexpensive, small cameras for action sports have been repurposed
by coastal ecologists for developing a more complete understanding of shallow, coastal
habitats. Remote underwater camera station (RUVS) arrays for reef fish surveys and baited
RUVS (BRUVS) for large coastal predators and deep water applications have a longer
history of use [63,64], but the cost of such equipment and size largely precluded their
use in coastal waters. The smaller “GoPro” style cameras have the ability to function
in a passive or baited way to document fine-scale habitat use, community assemblage,
behavioral and feeding patterns that would otherwise prove difficult using traditional sam-
pling gear [65–67]. These systems are particularly effective in habitats like mangroves and
intertidal oyster reefs where water clarity is relatively clear, but effective net sampling is
difficult because of the complex shape and silty/detrital nature of the sediments. These sys-
tems are limited in breadth of habitat sampled, deployment time, and memory card/battery
life, but are especially effective when combined with other concurrent sampling techniques.
An extension of the decrease in size and increase in sensor resolution of small cameras
is the increasing use of drone (or unmanned aircraft systems) technology for surveying
difficult to access coastal habitats. Drones have been successful in reducing the cost of
traditional aerial surveys for mapping fish nursery grounds [67], estimating the number
individuals in a spawning aggregations [68] and for determining the extent of intertidal
and subsurface habitat like coral reefs [69] and oyster reefs [70]. This application has
some current limitations related to weather conditions suitable for flying, local governance
for airspace, and water clarity/surface reflection, but the last can be partially overcome
because of the large number of sensors available for mounting on the drones. Recently,
mapping subtidal estuarine habitats using a remotely operated underwater vehicle (ROV)
piloted from a boat was developed and tested in a South African estuary. Similarly, ROVs
have seen a similar reduction in size/cost, that has enabled their application in shallow
water and have shown promise for surveying/mapping submerged aquatic vegetation
beds [71].

7. Summary

Our understanding of nuances associated with the ecology and biodiversity of fisheries
species and other nekton using the mosaic of habitat types in the coastal zone has improved
and new technologies have helped address many questions that will allow us to focus
our hypotheses concerning fish–habitat relationships. However, the dynamic nature of
these habitats coupled with the ever-increasing modifications of the coastal zone (in the
name of both development and restoration) and a warming climate mean that new research
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trajectories are always occurring. Restoration projects within these mosaics require clear
goals for success as well as continued monitoring to determine if goals are being met and
to document any unintended consequences of restoration activities. Other aspects that
require additional data collection to completely understand the diversity and function are
related to the role parasites and pathogens have on the ecology of nekton in these systems.
Parasites are often ignored by researchers of free living organisms despite their ability
to act on the individual, population, and community level [72], only becoming a focus
once a given problem raises significant concern [73]. The role of non-fisheries nekton in
coastal mosaics are especially important as well. Recent works have further demonstrated
the need to understand the ecology and diversity of cryptobenthic fishes in many coastal
systems including coral reefs [74,75], soft sediments [76], and estuarine habitats [77–79].
Although there has been significant strides in the understanding of living biota-habitat
connectivity over the last three decades, more work has to be done. Future research needs
to be completed in a manner that will allow resource managers to assess the continued loss
of habitat and fisheries and nektonic species collectively. This research is fundamental to
better quantify the functionality, sustainability, and thus the long-term biodiversity of these
economically and aesthetically valuable ecosystems and to assure their contribution to a
viable planet.
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