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THE USE OF SHEAR RATE-DIAMETER DOSE-RESPONSE CURVES AS AN 

ALTERNATIVE TO THE FLOW-MEDIATED DILATION TEST 

 

Abstract 

The brachial artery flow-mediated dilation test (FMD) is the non-invasive gold-standard used to 

test endothelial function. Reduced FMD precedes the development of atherosclerosis and 

provides an early marker for predicting future cardiovascular disease events. Although, this test 

is used extensively, it is somewhat limited by poor reproducibility. By utilizing hand warming 

and grip exercise combined with hierarchical linear modeling, shear rate-diameter dose-response 

curves may provide a novel and more accurate way to assess endothelial function in humans. 

Shear rate-diameter dose-response curves could potentially improve upon the traditional FMD 

measurement and serve as a clinical and research tool for assessing cardiovascular disease risk in 

a variety of populations.  

 

KEYWORDS: Flow mediated dilatation; ultrasound; blood flow; shear stress; cardiovascular 

disease. 
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Introduction 

The vascular endothelium is implicated in many important constructs underlying cardiovascular 

disease (CVD). Disruption of this monolayer of cells is thought to occur early in the 

pathogenesis of CVD, and non-invasive clinical bio-markers can play a vital role in early 

detection of endothelial dysfunction.  

 

Currently, the flow-mediated dilation (FMD) test is the non-invasive gold-standard used to 

assess endothelial function (1). Duplex Doppler-Ultrasound is used to scan an artery (e.g., 

brachial or popliteal) to measure the vasodilatory response to blood flow-induced increases in 

shear stress. Typically, a pneumatic cuff is placed around the forearm distal or proximal to the 

scanned region and inflated to a supra-systolic blood pressure (i.e., 220 mmHg) for 5 minutes (1). 

Rapid deflation of this cuff leads to increased blood flow (reactive hyperemia) to the oxygen 

starved forearm muscles, with a subsequent increase in flow through the up-stream conduit 

artery. The resultant flow-induced elevation in shear stress stimulates endothelial cell release of 

vasodilators, most notably nitric oxide (NO) when the occluding cuff is placed distally, with 

subsequent smooth muscle cell relaxation (2, 3). The FMD is typically expressed as the 

percentage increase in artery diameter from baseline to peak dilation (Fig. 1). Reduced FMD is 

an early event in the development of atherosclerosis (1) and provides a bio-marker for predicting 

future CVD events (4). Despite the FMD test being considered the current gold standard, it is 

somewhat limited by poor reproducibility and reliability. Specifically, the within-subject 

variability of FMD has been reported to be as high as 50% (5). Most of the poor reproducibility 

is accounted for by three major limitations associated with the standard FMD methodology: 1) 
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inappropriate calculation of FMD, 2) lack of normalization to the stimulus, and 3) short-lived 

peak diameter response.  

 

Flow-Mediated Dilation Limitations 

Firstly, FMD expressed as a percentage limits statistical power (6). FMD can be calculated as: 1) 

post-only score, 2) delta score, 3) fraction, or 4) co-varied for resting diameter. A simulation 

study found the analysis of covariance approach (i.e., option 4 above) had the greatest statistical 

power, with percentage change from baseline producing the lowest statistical power (6). 

Expressing FMD as a percentage effectively squares the variation due to resting diameter, and 

may result in a non-normally distributed statistic from normally distributed data. Using resting 

diameters as a covariate is most likely to adjust for the bias due to baseline values (6-8). 

 

Secondly, most studies still fail to account for the stimulus, i.e., shear stress  (9). Shear stress is 

primarily related to movement of red blood cells close to the endothelial layer (represented by 

bottom and top-most arrows in Fig. 2.1b). As fluid particles “travel” parallel to the vessel wall, 

their average velocity increases from a minimum at the wall to a maximum value at some 

distance from the wall, resulting in a gradient of velocities that form concentric circles in the 

lumen of the vessel (Fig. 2.1a). This shearing stress therefore acts at a tangent to the wall to 

create a frictional force at the surface of the endothelium. Mitchell et al. (10) demonstrated that 

reduced FMD may be attributable not only to impaired NO bioavailability, but also to a lesser 

shear stimulus. Fortunately, the ultrasound technology used to conduct the FMD test can also 

provide estimates of shear stress.  

 



  Shear rate-diameter dose-response curves 

4 of 17 

Thirdly, the peak diameter in response to reactive hyperemia is short lived (see Fig. 1) and, 

therefore, difficult to capture unless utilizing a high-resolution acquisition and analysis system. 

Variance in peak diameter measurements may be attributable to differences in the stimulus (i.e., 

shear stress), or measurement error (Fig. 3). Variance due to change in the stimulus can be 

accounted for by normalizing FMD to shear stress. To account for measurement error, according 

to laws governing regression to the mean (11), the FMD test would need to be repeated multiple 

times in order to obtain a “true” response (Fig. 3). Alternatively, a more accurate assessment of 

endothelial function can be achieved by estimating shear rate-diameter dose-response curves. 

The addition of shear rate-diameter dose-response curves may provide a valuable component to 

assessing endothelial function. 

 

Shear rate-diameter dose-response curves 

In the biological sciences, dose-response curves are widely used to understand and model the 

response of a living organism to a particular stimulus. A dose-response curve is used to relate the 

magnitude of a stressor (e.g., shear stimulus) to the response of the receptor (e.g., arterial 

dilation). This approach can be used to assess endothelial function. The following questions 

would need to be addressed prior to utilizing dose-response curves: 1) how should we estimate 

the shear stimulus? 2) how should we manipulate the shear stimulus? And, 2) how should we 

express dose-response outcomes? 

Hypothesis 

Endothelial function is a necessary and vital component of assessing cardiovascular health. As 

discussed, the current methods may suffer from potential sources of error variability, limiting test 

reliability. Here we hypothesize that shear rate-diameter dose-response curves may improve 
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upon measurement reliability and validity, therefore, serving as a valuable clinical and research 

tool for the evaluation of endothelial function.  

 

Evaluation of the hypotheses 

Shear Stress Calculation 

Clinical studies in humans, including FMD studies, typically estimate shear stress by employing 

a simplified mathematical model based on Poiseuille’s law, where shear rate equals: 

 

Shear rate (γ) = 2(2+n) v 
                d 
 

…where d is the internal arterial diameter, v is time averaged mean blood 

velocity, and n represents the shape of the velocity profile (for a fully developed 

parabolic profile, n is 2).  

 

Poiseuille’s law assumes that: 1) the fluid (blood) is Newtonian, 2) blood flows through a rigid 

tube, 3) whole blood viscosity represents viscosity at the vessel wall and is linearly proportional 

to shear rate, and 4) the velocity profile is parabolic. First, although blood is non-Newtonian, the 

effect of the non-Newtonian behavior does not appear to be pronounced in large arteries (12). 

Second, blood vessels are distensible, meaning that wall shear rate may be ~30% less in a 

distensible artery as compared with a rigid tube (13). Third, blood viscosity exhibits low intra-

subject variability (14), particularly among a healthy, homogeneous group. Thus, shear rate has 

been used as a surrogate measure of shear stress in a number of previous studies (14-18). Lastly, 

in arteries, the velocity profile will generally not develop in to a full parabola, as a consequence 
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of flow unsteadiness and short vessel entrance lengths. However, in the brachial artery, under 

resting conditions, the underestimation is less pronounced - likely due to a more parabolic 

velocity profile in this artery, i.e., n (velocity profile) is closer to 2 (19). However, this may only 

be true for resting conditions; occurrence of flow turbulence is possible during reactive 

hyperemia, which may limit the validity of shear rate estimate under such conditions, i.e., 

standard FMD test (20). 

 

Manipulating the Shear Stimulus Using Hand Warming and Handgrip Exercise 

Since one is assessing a physiological system, an appropriate range of stimuli should create an S-

shape dose-response curve (see Fig. 4). Assuming one can use resting diameter to represent the 

baseline response, at least five progressive intensities of shear stimulus would be needed: one 

intensity to estimate the onset of the reactive portion of the curve (the slope), two intensities to 

estimate the slope, and two intensities to estimate the plateau. To overcome the short lived 

change in diameter induced by reactive hyperemia, shear stress may be progressively increased 

in a sustained manner, e.g., through local hand warming and low-intensity handgrip exercise (17, 

21-23). This approach would also allow for a more accurate assessment of shear rate (see above 

discussion). 

 

Local warming of the skin induces localized dilation that is graded with skin temperature with 

the maximal dilation and blood velocity response occurring at 42°C (24, 25). Local warming of 

the skin over a small region (i.e., forearm) is thought to increase blood flow locally without 

significant systemic autonomic influences (24-27). The mechanism responsible for this response 

is not fully understood, but endothelial NO production is thought to play a central role (26-28). 
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There is evidence to suggest that this response may be produced through a neurogenic reflex 

with NO serving a permissive role to some unknown neurotransmitter (29). Under controlled 

conditions, gradually increasing skin temperature can induce successive, sustained, and 

reproducible increases in local blood flow (17, 22, 25, 30). To ensure that the brachial artery is 

not directly heated, the forearm should be encased within an airtight container. Furthermore, the 

skin temperature of the bicep should be continuously monitored. 

 

 Rhythmic handgrip exercise can also be used to increase blood flow. Handgrip exercise 

increases metabolic demand of the forearm. The role of the endothelium in exercise-induced 

vasodilatation is not clear. A possible limitation is the potential for recruitment of the bicep 

muscle, thereby directly activating the region of interest. The exercise intensity has to be low 

enough to prevent synergistic muscle activity. Electromyography can be used to ascertain that 

the bicep remains inactivated. Shear rate has been manipulated using this approach (31-33); 

subjects were able to squeeze a handgrip ergometer to 10% of their maximal voluntary 

contraction up to twice every 3 seconds without recruiting the bicep. 

 

Recently, we found that the relationship between shear rate and vasodilatation is comparable 

when shear rate is increased in a sustained manner (local hand warming and handgrip exercise-

induced) (31) (see Fig. 5). This is consistent with a recent study by Pyke et al. (34), who 

similarly found a significant relationship between handgrip exercise-induced FMD when the 

FMD responses were normalized to shear rate. Consideration has to be given to the 

mechanism(s) inducing FMD; the mechanisms regulating conduit artery vascular tone may be 

dependent on the duration of the shear stimulus (21, 35-38), with FMD in response to sustained 
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shear rate likely being less NO-dependent (32). Nonetheless, the endothelium is still thought to 

primarily govern conduit artery vasodilation under steady-state shear rate conditions. For 

instance, hand warming has no effect on brachial artery diameter when flow is not allowed to 

increase (15, 17, 21). Furthermore, pharmacological blockade of the autonomic nervous system 

has no effect on radial artery vascular tone in response to hand warming (21), consistent with 

animal studies suggesting that FMD is preserved after surgical or pharmacological denervation 

(39, 40).  

 

Expressing Dose-Response Outcomes 

A standard dose-response curve for FMD is defined by four parameters: 1) the baseline response 

(bottom), 2) the maximum response (Top), 3) the slope, and 4) the stimulus which provokes a 

halfway response between baseline-maximum (EC50). The slope, which would represent the 

change in diameter per one unit change in shear rate, is likely to be the parameter which most 

accurately reflects endothelial function. An alternative is to use the EC50; however, this 

parameter requires that the baseline and maximum are adequately characterized. The maximum 

response would most likely reflect the degree of arterial stiffness (41-44). To estimate non-biased 

outcomes each parameter (slope, EC50, and/or maximum) of interest should be co-varied to 

baseline diameter (6-8). 

 

Statistical Analysis 

Shear rate: diameter slopes for each subject can be estimated by regressing shear rate against 

diameter for each condition (i.e., each intensity of heat/exercise). Between- or within-group 
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slopes can then be compared using the general linear model approach, e.g., t-test or analysis of 

variance.  

 

An alternative is to normalize the FMD response (i.e., change in diameter) to shear using 

hierarchical linear modeling (HLM) (45). HLM is a more advanced form of multiple linear 

regression that accounts for hierarchical (i.e., successive inter-related levels) effects on the 

outcome variable.  This is accomplished in HLM by including a complex random subject effect 

which can appropriately account for correlations among the data. This approach models different 

patterns in the data by allowing for the intercepts (initial diameter) and slopes (shear rate-

diameter) to randomly vary. A third level may also be specified; this may be the specification of 

groups (e.g., to delineate differences in endothelial function), an intervention or a modifiable risk 

factor such as smoking. This approach has been used to compare upper vs. lower extremity 

arterial health in persons with spinal cord injury (SCI) (43), to assess improvements in arterial 

health following electrical stimulation-evoked resistance exercise therapy in persons with SCI 

(46), to look at the effects of occasional cigarette smoking on arterial health (47), to determine 

whether velocity acceleration is an important contributor to FMD (48), and to assess whether 

peak- and time-integrated shear rates independently predict FMD (31). The disadvantage of this 

approach is that multiple stimuli (preferably ranging from minimal to maximal shear stimuli) are 

required to generate a reliable shear-diameter relationship. 

 

Validity and Reliability 

Prior to the application of a physiological test, the validity and reliability should be ascertained. 

To test the validity, the proposed method should be directly compared against the standard FMD 
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methodology. Discriminant function analysis may be used to determine which dependent 

variable (current FMD test or proposed test) is the most important for classifying groups who are 

known to be either disease free of afflicted with CVD. To test reliability, intra-class coefficients 

may be calculated by conducting each test on three separate mornings under standardized 

conditions (20). Optimally, to ensure subsequent studies can be appropriately powered, using 

between-day reliability will be calculated for at least two groups: with and without known CVD. 

 

Consequences of the hypothesis 

Advantages 

The use of parameters from dose-response curves would offer a number of advantages over 

standard FMD methodology: 1) the stimulus (shear) is directly accounted for in a manner that 

does not violate statistical assumptions, 2) improved sensitivity, i.e., the slope (endothelial 

function) can be clearly identified (with the standard FMD test it cannot be ascertained at which 

point on the slope endothelial function is being estimated), 3) improved reliability, i.e., the dose-

response slope is more resistant to measurement error when compared to a single measurement 

(11), and 4) more information is provided, i.e., the slope isolates endothelial function whereas 

the maximum response more likely reflects the degree of arterial stiffness (41-44). 

 

Clinical Implications   

A recent meta-analysis by Green et al. (49), assessed the CVD prognostic strength of FMD by 

conducting a meta-analysis of observational studies which examined the associations between 

brachial artery FMD and future cardiovascular events. Green et al. found that FMD resulting 

from a more intense and prolonged shear stimuli, using proximal cuff placement (50) provided a 
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better prognosis for CVD risk. Recently, Green et al. (49) re-analyzed the meta-analysis 

conducted by Inaba and colleagues (51) by assessing the prognostic strength of those studies that 

used distal versus proximal cuff placement. For studies in which a distal cuff placement was 

selected (the standard and widely advocated approach), a 1% increase in FMD was associated 

with a relative risk of 0.91, that is, a 9% (95% CI: 4% to 13%) decrease in the future risk of 

cardiovascular events. For studies involving proximal cuff placement, the relative risk improved 

to 0.83, that is, a 17% (95% CI: 12% to 22%) decrease in cardiovascular risk for every 1% 

increase in FMD. The difference between these two relative risks was found to be statistically 

significant (P = 0.01), indicating that FMD conducted using proximal cuff placement, which has 

been demonstrated to be less NO-dependent (50), provides a more accurate prognosis for CVD 

risk. Therefore, it appears probable that endothelial function has prognostic value beyond the 

narrow limits attributable to NO bioavailability. 

 

Conclusions 

Shear rate-diameter dose-response curves may prove to be a more reliable and sensitive marker 

of endothelial function compared to the standard FMD test. The use of progressive shear stimuli 

- isolated heating and exercise - would make it more challenging to ascertain the mechanism[s] 

responsible for dilation. Nonetheless, the health of the endothelium remains an important 

construct. Further study is required to ascertain whether shear-rate diameter dose-response 

curves offer greater statistical power and prognostic capacity for predicting cardiovascular 

events.  
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Figure Legends 

 

Figure 1.  Shear rate and diameter responses to 5 minutes ischemia. The horizontal line 

represents resting diameter. Flow-mediated dilation (FMD) is typically represented as the peak 

percentage increase in diameter above rest. Note that the peak diameter occurs at ~40 sec 

whereas the bulk of the hyperemic (shear) response occurs within the initial 20 sec. 

 

Figure 2. Endothelium-dependent dilation. (1) Blood flowing through an artery creates a 

shearing stress at the endothelial surface. A composite of superimposed concentric circles is 

shown in 1a (i.e., transverse plane) to correspond with the gradient of increasing RBC velocity 

from the periphery to the center of the lumen.  RBC velocity is represented as a parabola (i.e., 

longitudinal plane) in 1b using the same color coding as in 1a.  The magnitude of the parabola 

(left to right) corresponds with the gradient of increasing RBC velocity from the periphery to the 

center of the lumen. (2) Shear stress-induced deformation of the endothelial cells is detected by 

mechanoreceptors on the cell membrane. (3) In response to mechanotransduced shear stress, a 

signaling cascade results in the production of NO, PGI2 and EDHF. (4) The vasodilators diffuse 

cross the interstitial space and enter the vascular smooth muscle cells.  (5) A signaling cascade is 

initiated which lowers Ca2+ concentration and results in smooth muscle cell relaxation (i.e., 

vasodilation). Ca2+ = calcium; eNOS = endothelial NO synthase; COX-2 = cyclooxygenase; 

EDHF = endothelial-derived hyperpolarizing factor; NO = nitric oxide; PGI2 = prostaglandins; 

RBC = red blood cell. 
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Figure 3. Flow-mediated dilation (FMD) measurement variance. Open circles represent multiple 

FMD measurements (hypothetical data). The closed circle represents mean FMD. Variance due 

to change in stimuli (shear rate) can be accounted for by normalizing to shear rate. Variance due 

to measurement error can be minimized by multiple FMD measurements (or by calculating a 

shear rate : diameter dose response curve). 

 

Figure 4. Theoretical shear rate-diameter dose-response curve. Six data points are shown: 

baseline, and the responses to 5 intensities of heating/exercise. 

 

 

Figure 5. Hierarchical linear model (HLM) estimates for shear rates regressed against peak 

diameters. HLM models without (A) and with (B) peak shear being co-varied are shown.   
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