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Abstract: To date, high-performance organic electrochemical transistors (OECTs) are all based on 

polythiophene systems. Donor-acceptor (D-A) conjugated polymers are expected to be promising materials for 

OECTs owing to their high mobility and comparatively low crystallinity (good for ion diffusion). However, the 

OECT performance of D-A polymers lags far behind that of the polythiophenes. Here we synergistically 

engineered the backbone, side chain of a series of diketopyrrolopyrrole (DPP)-based D-A polymers and found 

that redox potential, molecular weight, solution processability, and film microstructures are essential to their 

performance. Among the polymers, P(bgDPP-MeOT2) exhibited a figure-of-merit (μC*) of 225 F cm–1 V–1 s–1, 

over one order of magnitude higher than previously reported D-A polymers. Besides, the DPP polymers exhibited 

high hole mobility over 2 cm2 V−1 s−1, significantly higher than all D-A polymers employed in OECTs, leading 

to fast response OECTs with a record low turn-off response time of 30 μs. The polymer also exhibited better 

stability than polythiophene systems with current retention of 98.8% over 700 electrochemical switching cycles. 

This work provides a systematic solution to unleash the high-performance and fast-response nature of D-A 

polymers in OECTs. 

Keywords: conjugated polymers, organic electrochemical transistors, diketopyrrolopyrrole polymers, operation 

stability, fast response 

 

Introduction 

Organic mixed ionic and electronic conductors (OMIECs), especially polymers, have attracted increasing 

attention because they can be low-temperature processed, facilely chemically modified, and readily 

electrochemically doped, while having good ion transport channels and “soft” biological interface.[1] OMIECs 

have been used for a wide range of applications including sensors, optoelectronics, bioelectronics, and energy 



storage devices.[2] Among these devices, organic electrochemical transistors (OECTs) are particularly attractive 

because they couple both ionic and electronic inputs to modulate the channel conductance of a transistor in 

aqueous environment. OECTs have demonstrated their utility in transducing and amplifying low amplitude 

electrophysiological signals,[3-5] metabolite sensors,[6-8] and neuromorphic computing.[9,10] 

To evaluate the performance of an OECT material, the following equation is often used (Equation 1): 

𝑔m =
𝑊

𝐿
∙ 𝑑 ∙ 𝜇 ∙ 𝐶∗ ∙ (𝑉Th − 𝑉GS)                            (1) 

where gm is the transconductance in the saturation regime; IDS is the drain current; L, W, d are the channel length, 

width, and film thickness, respectively; μ is the charge carrier mobility; C* is the volumetric capacitance, VTh is 

the threshold voltage, and VGS is the applied gate voltage. Recently, the product of μ and C* has been proposed 

to benchmark an OECT material and to realize a better comparison between different materials. μC* is the 

intrinsic property of a material independent of device geometry and bias condition. The higher the μC* of the 

channel material, the more excellent the performance of an OECT under certain device geometry and operating 

conditions. 

Response speed is another important factor of an OECT device, which is particularly important for 

applications, such as real-time neural signal amplification, high-quality bio-interfacing transmission, and 

neuromorphic simulation.[4,11,12] Notably, the response speed of OECTs is usually slower than that of 

organic field-effect transistors (OFETs) because both polymer swelling and ion diffusion are involved. 

The slow speed substantially limits the applications of OECTs in applications requiring fast signal 

response.[13] A recent study reveals that when employing an extremely short gate-to-channel length, the 

response speed of an OECT is limited by hole/electron mobility rather than ion 

diffusion/redistribution.[14] Therefore, conjugated polymers with high charge carrier mobility are desired 

for OECTs. 

Recently, several thiophene-based conjugated polymers functionalized with ethylene glycol (EG) side 

chains, e.g. P(g2T-TT),[15] P(g2T-T),[16] and P(g2T2-g4T2)[17] have been developed. These polythiophene 

systems have exhibited high μC* over 100 F cm−1 V−1 s−1, outperforming the conventional materials poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)[18] and its derivatives, e.g. Crys-P,[19] in many 

aspects. However, it is also should be noted that the backbone and the corresponding energy level of 

polythiophene systems are facing the problem of limited tunability, leaving no room for the development of n-

type conjugated polymers, which hampers the application of OECTs in CMOS-like logic circuit and 

bioelectronics.[20,21] 

Donor-acceptor (D-A) conjugated polymers have made great advances in the past few years, and 

their device performances have ranked the top positions in many organic electronics fields, including 

OFETs,[22] organic photovoltaics (OPVs),[23] and organic thermoelectrics (OTEs).[24] The good backbone 

planarity, low energetic disorder, and strong interchain interactions make D-A polymers successfully 

realize high charge carrier mobility with low crystallinity or near amorphous films (Figure 1).[25] Very 



recently, several D-A polymers, using isoindigo (IID), naphthalenediimide (NDI), and pyridine-flanked 

diketopyrrolopyrrole (PyDPP) building blocks, have been developed as the OECT channel materials.[26-

29] These materials have shown huge potentials for OECTs, including (i) diverse structures that provide 

vast exploration space and possibilities (ii) large regulation range of frontier orbital energy level to 

achieve n-type polymers and prevent side-reactions during device operation.[29] Unfortunately, these D-

A polymers onlyexhibited moderate OECT performance with inferior μC* (<10 F cm−1 V−1 s−1) and 

slow temporal response (>100 ms) which have not shown the full potential of D-A polymers from our 

perspective. The performance-limiting factors of D-A polymers are unknown and essential to alter the 

situation. 

To explore the performance-limiting factors of D-A polymers, here, we report a series of 

diketopyrrolopyrrole (DPP)-based D-A polymers copolymerized with various donor moieties and 

grafted with linear or branched EG side chains. DPP was specially chosen because its copolymers have 

shown high charge carrier mobility in OFETs.[30] Through donor, side chain, polymerization method, 

and processing solvent engineering, we successfully realized high figure-of-merit OECTs with μC* of 

up to 225 F cm–1 V–1 s–1, high carrier mobility over 2 cm2 V–1 s–1, and fast temporal response. The μC* 

values are over one order of magnitude higher than previously reported D-A copolymers. 

Results and discussion 

 

Scheme 1 Synthesis and chemical structures of DPP D-A polymers with different donor moieties and grafted with linear or 

branched ethylene glycol side chains. 

Several donor moieties with increased electron-donating properties, e.g. thiophene, 2,2’-bithiophene, and 3,3’-

methoxy-2,2’-bithiophene (Scheme 1), were used as the donor to tune the highest occupied molecular orbital 

(HOMO) energy level of the polymers. Similar to previous studies,[15,16] triethylene glycol (R1 in Scheme 1) was 



first used as the side chains. However, the strong π-π stacking interactions of DPP moiety made all the polymers 

insoluble after polymerization. Therefore, branched EG side chains (R2 in Scheme 1) were employed to increase 

the solubility of the polymer. We found that when the monomer grafted with branched EG chains, Stille 

polymerization using Pd2(dba)3/P(o-tolyl)3 as the catalyst only yielded oligomers and unreacted monomers. D-

A polymers grafted with EG chains synthesized with similar polymerization conditions inliterature only showed 

low molecular weights (<10 kDa),[26] consistent with our results. After several trials, we found that Pd(PPh3)4 or 

Pd(PPh3)2Cl2 can provide obviously higher molecular weight polymers when using N,N-dimethylformamide 

(DMF) as the solvent. We hypothesize that the branched EG side chains may inhibit the catalytic activity of 

Pd2(dba)3/P(o-tolyl)3, probably due to the bulky P(o-tolyl)3. Our observations are supported by previous studies 

using PEG as the side chains for Stille cross-coupling reactions.[31] To prevent the precipitation of polymers 

caused by the decreased polymer solubility in DMF, we used DMF/chlorobenzene 1:1 mixture as the solvent. 

CuI was added to accelerate the rate of transmetalation for higher molecular weight.[31] We observed that the 

reaction rate significantly increased as the reaction mixture turned into deep blue in a few minutes, and higher 

molecular weight polymers can be obtained. 

Unlike D-A polymers with alkyl side chains, whose molecular weight can be evaluated using high-

temperature GPC (HT GPC, usually 150 oC) and 1,2,4-tricholorobenzene (TCB) as the eluent,[24] these polymers 

did not show reasonable molecular weight or observable signals using HT GPC. This is probably due to the 

hydrophilic side chains since we observed that even though the polymers are visually dissolved in common 

aromatic or chlorinated solvents (e.g. o-DCB and chloroform), after spin-coating, the polymer films showed 

large chunks (Figure S1). After trying several eluents, we found that polar solvent hexafluoroisopropanol (HFIP) 

is a good eluent for molecular weight characterization. When using chloroform as the eluent, the polymers 

showed high molecular weights with Mn in the range of 61~71 kDa. In contrast, the molecular weights measured 

using HFIP showed Mn in the range of 26~30 kDa, suggesting the disaggregation of the polymers in HFIP (Table 

S1 in the Supporting Information (SI)). These molecular weight values are comparable to their alkyl side chain 

counterparts.[32] To understand the side-chain effects (linear vs. branched), a longer linear EG side chain (R3 in 

Scheme 1) with the same number of EG segment (−OCH2CH2−) was used, yielding polymer P(lgDPP-MeOT2). 

The long linear glycol chains cannot provide enough solubility and only part of the polymers was Soxhlet 

extracted, giving a low yield of 26%. All the polymers exhibited good thermal stability with the decomposition 

temperature over 300 oC (Figure S2). 

The optoelectronic properties of the polymers were evaluated using UV-Vis-NIR absorption spectroscopy 

and cyclic voltammetry (CV). The polymers exhibit a gradual red-shift of absorption maxima when replacing 

the donor moiety with a stronger electron-donating unit, no matter in solution, film, or annealed film (Figure 1a 

and Figure S3). DPP polymers containing the most electron-rich donor, namely MeOT2, including P(lgDPP-

MeOT2), and P(bgDPP-MeOT2), exhibited smaller bandgap than P(bgDPP-T) and P(bgDPP-T2) (Table S2). 

Therefore, introducing a stronger electron-donating moiety (MeOT2) can remarkably lower the bandgap, largely 

due to increased HOMO energy levels and enhanced intrachain charge transfer. Interestingly, P(lgDPP-MeOT2)  



 

Figure 1 (a) UV-Vis-NIR spectra of spin-coated films of the four polymers after annealing. (b) DFT-optimized geometries and 

molecular frontier orbitals of the trimer of DPP-MeOT2. Calculations were performed at B3LYP/6-311G(d,p) level. Side chains 

were replaced with methyl groups to simplify the calculation. (c, e) Cyclic voltammograms and (d, f) differential electrochemical 

absorption spectra of DPP polymers with branched EG side chains. The color-coding UV-Vis-NIR spectra indicate the applied 

voltage, ranging from −0.2 V to 0.6 V with an interval of 0.1 V. The variation trends of spectra were highlighted with arrows. 

with linear chains exhibited more redshifted absorption than P(bgDPP-MeOT2) with branched side chains. These 

results were further confirmed by CV measurements (Figure S5-S6 & Table S2). According to the ionization 

potentials (IPs) extracted from CV, DPP polymers with MeOT2 donor possess lower IPs of 4.62 eV for 

P(bgDPP-MeOT2) and 4.35 eV for P(lgDPP-MeOT2), suggesting that they are more susceptible to oxidation 

than P(bgDPP-T) and P(bgDPP-T2). DFT calculations showed that all the polymers exhibited planar backbones 

with small dihedral angles (Figure 1b and Figure S7). The HOMO was delocalized along the backbone, whereas 

the LUMO was largely localized on the DPP unit. Since linear side chains provide less interchain steric hindrance, 

we will prove later that P(lgDPP-MeOT2) has a closer molecular packing. This will lead to more planar 

backbones and increase the delocalization of the HOMO, thus leading to a higher HOMO level and smaller 

bandgap. 

Spectroelectrochemistry was used to evaluate the electrochemical activity of the DPP polymers, by virtue 

of its consecutive and controllable electrochemical doping under programmable bias conditions. The changes in 

absorption spectra and current density upon different potential were monitored in 0.1 M NaCl aqueous solution. 

All polymers exhibited reversible and stable electrochemical redox features over 20 CV cycles (Figure S5). 

Gradually increasing the bias voltage from −0.2 to 0.6 V, three DPP polymers with different donors exhibited 

different electrochromic activities (Figures 1c-1f & Figures S7-S8). Concretely, both P(bgDPP-T) and P(bgDPP-

T2) exhibited a partial extinction of π-π* absorption band (650-850 nm) and a gradually increased polaron 



absorption band (1000-1300 nm). It is notably that the absorption variations of P(bgDPP-T) and P(bgDPP-T2) 

at 750 nm and 1100 nm are not obvious until applied bias exceeds 0.3 V, higher than that (0.1 V) of P(bgDPP-

MeOT2). To quantify the oxidation degree of the films during the electrochemical scan, differential spectra of 

DPP polymers were calculated to highlight the absorption variation by subtracting the spectrum of each film 

recorded under their neutral states (Figure 2).[33] Clearly, P(bgDPP-MeOT2) exhibited a more significant 

absorption variation in the π-π* absorption band (750-1050 nm) and the polaron absorption band (1050-1300 

nm). These results indicate that P(bgDPP-MeOT2) is more liable to be p-doped in the aqueousenvironment. 

Similar results were also found in the linear chain polymer P(lgDPP-MeOT2), which is even more facile to be 

oxidized due to its increased HOMO energy level (Figure S8). 

 

Figure 2 OECT device structure and the device characteristics of P(bgDPP-MeOT2). (a) Schematic illustration of the OECT device 

structure in cross-section view and wiring diagram for device operation. (b) Transconductance curves of P(bgDPP-T), P(bgDPP-

T2), P(lgDPP-MeOT2) and P(bgDPP-MeOT2). (c) Transfer and (d) output characteristics of P(bgDPP-MeOT2) OECTs. VDS = 

−0.6 V. (e) Long-term on-off switching of P(bgDPP-MeOT2) operated with the indicated VDS, VGS values. Switching on time of 

VGS and the interval time were set as 2 s both. All OECTs were measured in 0.1 M NaCl aqueous solution. W/L = 1000/10 μm in 

all devices. 

OECTs were fabricated using photolithography and parylene patterning method according to literature.[18,34] 

We explored many solvents for device fabrication, including o-DCB, chlorobenzene (CB), chloroform, 

trichloroethane, and HFIP. We found that except for HFIP, other solvents cannot provide good device 

performance (gm usually < 0.1 mS for P(bgDPP-MeOT2)) using the spin-coating method. When chloroform with 

the drop-casting method was used, similar performance as HFIP can be obtained but with poor film uniformity. 

This is probably due to the strong aggregation of the D-A polymers in the solution state (Figure S1).[35] We have 

noticed that many papers used drop-casting for device fabrication.[16,36] Hence, HFIP and the spin-coating were 

used for good film uniformity and reproducibility in this work. The figure of merit, μC*, was extracted for 



performance comparison among different materials. All the DPP polymers exhibited typical p-type OECT 

behaviors and worked in accumulation mode (Figure 2 and Figure S9). Among all the polymers, P(bgDPP-

MeOT2) and P(lgDPP-MeOT2) with the strongest electron-donating moiety MeOT2, exhibited high gm and high 

μC* values (Table 1). P(bgDPP-MeOT2) exhibited the best OECT performance with a maximum 

transconductance of up to 5.33 mS with a film thickness of 64 nm, and high μC* of up to 225 F cm–1 V–1 s–1. 

P(bgDPP-MeOT2) showed negligible hysteresis during the forward and backward scans, suggesting its good 

and facile ion transport properties (Figure 2c&2d). With linear side chains, P(lgDPP-MeOT2) also exhibited 

outstanding OECT performance with high μC* of 174±25 F cm–1 V–1 s–1 (Figure S9). In contrast, P(bgDPP-T2) 

and P(bgDPP-T) showed inferior OECT performance with μC* values of 42±10 and 5.9±0.7 F cm–1 V–1 s–1. 

Thus, the electron-donating properties play an important role in the OECT performance of the DPP polymers. 

Notably, polymer containing MeOT2 moiety showed lower threshold voltage (VTh) than that containing T and 

T2 moieties. Interestingly, P(lgDPP-MeOT2) with linear side chains showed even lower VTh (Figure S11). These 

results are consistent with the CV and spectroelectrochemistry studies. The criteria to judge whether a device 

works in OECT mode or electrolyte-gated organic field effect transistor (EGOFET) mode is the channel 

thickness dependence.[4,37] OECTs with different film thicknesses were also fabricated (Figure S10). Our devices 

showed clear film thickness dependent transconductance, suggesting that they indeed work in OECT mode. 

P(bgDPP-MeOT2) and P(lgDPP-MeOT2) show much higher μC* values than other D-A copolymer OECT 

materials, e.g. 5.4 F cm–1 V–1 s–1 for PIBET-AO, 0.18 F cm–1 V–1 s–1 for P(gNDI-g2T) (Figure 3f, Figure S12 & 

Table S3).[26,27] The performance of the DPP polymers also outperforms most of the polythiophene systems that 

have been developed for many years. 

Table 1 Summary of the OECTs Performance and Molecular Packing for the DPP Polymers.a) 

Polymer d [nm]a) 

gm,max 

[mS]a) 

Ion/off 
VTh 

[V]b) 

μ 

[cm2 V−1 s−1]c) 

C* 

[F cm-3] 

μC* 

[F cm-2 V-1 s-1]d) 

τon 

[μs] 

τoff 

[μs] 

dlamellar 

[Å] 

dπ-π 

[Å] 

P(bgDPP-T) 29.1±0.8 0.019 2.2×103 −0.60 1.59±0.15 3.7±0.1 5.9±0.7 - - 22.7 3.57 

P(bgDPP-T2) 72.5±0.9 0.403 1.8×105 −0.57 0.50±0.11 84.1±1.5 42±10 - - 20.7 3.51 

P(lgDPP-MeOT2) 60.9±0.4 7.04 4.9×104 −0.17 2.15±0.27 80.8±1.4 174±25 578 63 18.6 3.45 

P(bgDPP-MeOT2) 64.1±2.4 5.33 1.7×105 −0.33 1.63±0.14 120.0±2.4 195±21 516 30 20.7 3.55 

All the OECT devices were operated in a 0.1 M NaCl aqueous solution. a) 14 devices with the same channel dimensions were tested 

and counted for each polymer (W/L =100/10 μm), VDS = −0.6 V; b) The threshold voltage, VTh, was determined by extrapolating the 

corresponding IDS
1/2 vs. VGS plots; c) Charge carrier mobility μ was calculated from the μC* and the measured volumetric capacitance 

C*; d) Materials’ figure of merit μC* were calculated from the measured transconductance. 

Stressing measurements upon continuous biasing and long-term on-off switching tests were performed to 

demonstrate the stable operation of P(bgDPP-MeOT2) statically and dynamically. The drain current of the 

P(bgDPP-MeOT2) devices stayed almost unchanged atlow and moderate DC bias voltages, after continuous 

stressing for 10 minutes, while higher biasing condition only leads to a slight loss of ~1.7% on drain current (VDS 



= VGS = −0.6 V) (Figure S13). Moreover, long-term on-off switching cycle tests of P(bgDPP-MeOT2) were also 

monitored (Figure 2e). The P(bgDPP-MeOT2) device exhibited good stability with current retention of 98.8% 

for 700 switching cycles and 89% for over 3000 cycles (Figure 2e & Figure S14), better than current state-of-

the-art polythiophene based OECT channel materials.[15,17] Hence, P(bgDPP-MeOT2) also possesses outstanding 

stability upon continuous operation. 

 

Figure 3 Capacitive, and transient behaviours of P(bgDPP-MeOT2). (a) Volume-capacitance relationship of P(bgDPP-MeOT2) 

was measured through the electrochemical impedance spectrum. The linear fit to the capacitance data was marked with the red 

dashed line. (b) The corresponding Bode and phase plot of P(bgDPP-MeOT2) with a channel area of 1 mm2 and thickness of 

56.8±4.2 nm. Data fits were performed via the equivalent circuit of Rs(Rp||C). (c) Performance comparison via 2D μ-C* plot for 

P(lgDPP-MeOT2), P(bgDPP-MeOT2), and other reported D-A polymer materials for OECTs. (d, e) Off- & on-time constant of 

P(bgDPP-MeOT2) obtained by applying a gate voltage pulse with a time scale of 5 ms. Blue and red lines were fitted through 

exponential decay function. W/L = 100/10 μm and d = 34.8±0.8 nm. (f) Performance comparison via 2D μC*-1/τoff plot for P(lgDPP-

MeOT2), P(bgDPP-MeOT2), and other reported D-A polymer materials for OECTs. 

To further understand the volumetric doping process of DPP polymers, the electrochemical impedance 

spectroscopy (EIS) technique was used. Gold electrodes coated with polymer films with certain areas and 

thicknesses were served as the working electrode with respect to Pt mesh as the counter electrode and Ag/AgCl 

pellet as the reference electrode. The effective capacitance could be extracted by fitting their EIS data via an 

equivalent circuit model (Rs(Rp||C)), i.e. a capacitor (C) connects a resistor (Rp) in parallel and further with a 

resistor (Rs) in series (Figure 3b). The extracted capacitances of P(bgDPP-MeOT2) upon different channel 

volumes were plotted, exhibiting a good linear relationship with the channel volume (Figure 3a). The volumetric 

capacitance (C*) was extracted with a value of 120.0±2.4 F cm−3. With linear EG chains, P(lgDPP-MeOT2) 

showed a volumetric capacitance of 80.8±1.4 F cm−3 (Figure S15 & Table 1), lower than that of P(bgDPP-



MeOT2). Based on the μC* and C* values, the hole mobility (μ) of both MeOT2 polymers can be calculated. 

P(bgDPP-MeOT2) showed hole mobility of 1.63±0.14 cm2 V−1 s−1, and P(lgDPP-MeOT2) showed higher hole 

mobility of 2.15±0.27 cm2 V−1 s−1 (Table 1). The mobility values are very close to their alkyl side chain 

counterparts measured in OFETs.[32,38] In OFETs, after introducing linear side chains, the mobility will also 

increase, largely due to less steric hindrance at the branching positions and a closer π-π stacking distance.[39,40] 

To evaluate the response speed of P(bgDPP-MeOT2), time constants during turn-on and turn-off operation 

were both measured. As depicted in Figure 3d & 3e, after applying a 5 ms pulse voltage on the Ag/AgCl gate, 

temporal responses of drain current were recorded and fitted with the exponential decay function as described 

by the equation below,[41] 

𝑰𝐃𝐒(𝒕) = 𝑰𝐃𝐒,𝟎 + 𝒂 × 𝐞𝐱𝐩(− 𝒕 𝝉⁄ )                              (2) 

where IDS(t) represents the drain current at time t after applying the pulse gate bias, IDS,0 represents the initial 

drain current before applying the pulse bias, a is a constant and τ is the time constant. The off-time constant (τoff) 

and on-time constant (τon) were estimated to be 30 μs and 516 μs for P(bgDPP-MeOT2, with a channel geometry 

of 100 μm /10 μm (W/L). Obviously, both off- and on-time constants of P(bgDPP-MeOT2) reach the top-

performing level among reported polymers, including D-A polymers and polythiophenes (Figure 3f & Table S3). 

According to literature, the time constant of p-type OECT is mainly dominated by the ion injection process and 

the removal of holes from the source electrode. Gaining higher hole mobility or volumetric capacitance can 

effectively enhance the response speed. In specific, P(lgDPP-MeOT2) also exhibited fast response characteristic 

on the transient behaviors. On- & off-time constant of P(lgDPP-MeOT2) under similar channel geometry 

achieved 578 μs and 63 μs, respectively (Figure S16). To fully compare thecomprehensive performance of 

P(bgDPP-MeOT2) with other reported polymers, the reciprocal of on- and off-time constant and the μC* are 

plotted in Figure 3f.[15,16,26,34,42,43] 

 

Figure 4 2D-GIWAXS patterns of (a) P(bgDPP-MeOT2) and (b) P(lgDPP-MeOT2); (c-d) The corresponding line cuts of P(bgDPP-

MeOT2) and P(lgDPP-MeOT2). Cuts along the qxy direction (red) represent scattering in the plane of the substrate, while the 

scattering in the qz direction (black) results from out-of-plane scattering. 



Crystallinity and molecular packing of conjugated polymers strongly influence water uptake, ion transport, 

and charge carrier transport in the polymer bulk. Two-dimensional (2D) GIWAXS was employed to reveal the 

differences among the polymers. All bgDPP polymers oriented preferably in a face-on fashion, while P(lgDPP-

MeOT2) with linear EG chains, oriented predominantly with edge-on (Figure 4). P(lgDPP-MeOT2) exhibited a 

closer π-π stacking distance of 3.45 Å, smaller than those of the bgDPP polymers (3.51-3.57 Å), consisting with 

our previous absorption spectra analysis and mobility results (Figure S17). In addition, P(lgDPP-MeOT2) also 

exhibited three orders of lamellar scattering peaks, (100), (200), and (300), indicating the well-packed polymer 

side chains compared with those with branched side chains. For conjugated polymers with highly ordered 

crystallites, the injection of hydrated ions into polymer bulk may induce destruction of morphology and then 

impede charge transport between adjacent crystallites.[13,44] Therefore, less ordered packing of P(bgDPP-MeOT2) 

might contribute to the enhanced penetration of hydrated ions into the polymer bulk (higher C*) and faster 

temporal response, though its hole mobility is slightly sacrificed. 

Conclusions 

In conclusion, we have systematically explored the influences of the donor, side chain, molecular weight, and 

processing conditions to solve the low-performance issue in D-A conjugated polymers. The high-performance 

of P(bgDPP-MeOT2) can be attributed to the following molecular design and device fabrication considerations: 

(i) strong electron-donating moiety MeOT2 reduces the ionization potential of DPP polymers, leading to a low 

threshold voltage and high volumetric capacitance; (ii) the branched EG chains guarantee enough solubility for 

high molecular weight polymers and also facilitate ion injection/ejection in the polymer bulk; (iii) optimized 

polymerization method allows comparable molecular weight and hole mobility as its alkyl side chain counterpart; 

(iv) the “uncommon” polar solvent HFIP is used to disaggregate the polymers for better film quality. These 

efforts lead to a high μC* (> 200 F cm−1 V–1 s–1), high hole mobility (>2 cm2 V−1 s−1), and fast response (τoff 30 

μs; τon 516 μs), much higher than other D-A polymer-based OECT materials (Table S3). Considering that most 

n-type conjugated polymers are based on D-A copolymers, we believe that our study will not only benefit high-

performance and fast-response p-type OECT materials but also will be valuable for n-type OECT materials 

whose performance lags far behind that of the p-type ones. 
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1. Experimental Details 

Materials 

All chemical reagents were purchased and used as received unless otherwise indicated. All air and water 

sensitive reactions were performed under nitrogen atmosphere. Dichloromethane (DCM), tetrahydrofuran 

(THF), toluene, and N,N-dimethylformamide (DMF) were dried by a JC Meyer solvent drying system. 

 

Chemical Structure and Optoelectronic Property Characterization 

1H NMR and 13C NMR spectra were recorded on Bruker ARX-400 (400 MHz), Bruker AVANCE III (500 

MHz), and Bruker 600M (600 MHz). All chemical shifts were reported in parts per million (ppm). 1H NMR 

chemical shifts were referenced to CDCl3 (7.262 ppm) and CDCl2CDCl2 (5.984 ppm), 13C NMR chemical 

shifts were referenced to CDCl3 (77.00 ppm). Mass spectra were recorded on an AB Sciex-5800 MALDI-

TOF mass spectrometer and a Bruker Solarix XR mass spectrometer. Elemental analyses were performed on 

Vario EL elemental analyzer. Thermal gravity analyses (TGA) were carried out on a TA Instrument Q600 

SDT analyzer. Absorption spectra were recorded on PerkinElmer Lambda 750 UV-Vis spectrometer. Cyclic 

voltammograms were measured through an electrochemical workstation SP-300 (BioLogic Science 

Instruments). A standard three-electrode setup was established with employing polymer-coated ITO glass 

slides as the working electrode (WE), a block of platinum mesh as the counter electrode (CE), and an 

Ag/AgCl pellet (Warner Instruments) as the reference electrode (RE), further calibrated against ferrocene 

(Fc/Fc+). The measurements were carried out in aqueous solution with 0.1 M NaCl or in acetonitrile with 0.1 

M tetrabutylammonium hexafluorophosphate as the supporting electrolyte with a scan rate of 50 mV/s. 

Ionization potentials and electron affinity were obtained using the equation: IP = (EOx – EFc/Fc
+

 + 4.8) eV, EA 

= (ERed – EFc/Fc
+ + 4.8) eV. The geometries and frontier orbitals of bgDPP-T, bgDPP-T2, lgDPP-MeOT2, and 

bgDPP-MeOT2 trimers were calculated at the B3LYP/6-311G(d,p) level using Gaussian 16 software package. 

 

Size Exclusion Chromatography Measurement 

Polymer number-average molecular weight (Mn) and molecular weight distributions (Ð = Mw/Mn) were 

measured by size exclusion chromatography (SEC). Chloroform SEC analyses were performed on a Waters 

1515 instrument equipped with a PLMIXED 7.5×50 mm guard column and two PLMIXED-C 7.5×300 

columns and a differential refractive index detector using chloroform as the eluent at 35℃ with a flow rate 
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of 1 mL min–1. The instrument was calibrated with 10 PS standards, and chromatograms were processed with 

Waters Breeze software. Hexafluoroisopropanol SEC analyses were performed on a Waters 1515 instrument 

equipped with a PLMIXED 7.5×50 mm guard column and two PLMIXED-C 7.5×300 columns and a 

differential refractive index detector using hexafluoroisopropanol as the eluent at 35 ℃ with a flow rate of 1 

mL min–1. The instrument was calibrated with 10 PMMA standards, and chromatograms were processed with 

Waters Breeze software. 

 

AFM and GIWAXS characterization 

Atomic Force Microscopy (AFM) measurements were performed with a Cypher atomic force microscope 

(Asylum Research, Oxford Instruments). The surface morphology was recorded with a scan rate of 2-3 Hz at 

AC mode. GIWAXS experiment was performed on Xenocs Xuess 2.0 beamline, with an incident X-ray angle 

of 0.2 degrees and wavelength of 1.54 angstrom. The scattered signal is collected by Pilatus 1M detector at 

a sample to detector distance of 150 mm. Data processing is performed in Igor Pro software with Nika and 

WAXTools packages. 

 

Spectroelectrochemistry 

Spectroelectrochemistry was performed with an ITO-coated glass slide, spun cast with the polymer solution 

(3*10–3 M chloroform solution) at the rotating speed of 500 rpm for 45 s without any additional processing. 

These polymer-coated ITO slides were employed as the WE and immersed into the cuvette filled with 0.1 M 

aqueous NaCl solution, following with the use of Pt mesh (CE) and Ag/AgCl pellet (RE). A PerkinElmer 

Lambda 750 UV-vis spectrometer was used with the beam path passing through the electrolyte-filled cuvette 

and polymer-coated ITO samples. A background spectrum with cuvette/electrolyte/ITO was recorded before 

a potential was applied to the cell. The potential was applied to the WE for 5 s before the spectra were 

recorded and lasted for a certain amount of time until the completion of spectrum scanning. 

 

OECT Fabrication and Characterization 

The OECTs fabrication included the deposition and patterning of the metallic electrodes, parylene layer, and 

polymer in the channel. In detail, the silica substrates were thoroughly cleaned by sonication in acetone, DI 

water, and isopropyl alcohol, followed by nitrogen blow drying and brief oxygen plasma cleaning. Metal 
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pads, interconnects, and source/drain contacts (defining the channel length and width) were patterned by a 

lift-off process. 5 nm of chromium and 50 nm of gold were subsequently deposited using a metal evaporator, 

and metal lift-off was carried out in acetone. Metal interconnects and pads were insulated by depositing 2 μm 

of parylene-C using a PDS 2010 Labcoater-2, with a 3-(trimethoxysilyl)propyl methacrylate (A-174 Silane) 

adhesion promoter. A 2% aqueous solution of industrial cleaner (Micro-90) was subsequently spun coated to 

act as an anti-adhesive for a second, sacrificial 2 μm parylene-C film, which was used to simultaneously 

define the active channel area, and to pattern the underlying parylene layer. Samples were subsequently 

patterned with a 5 μm thick layer of AZ9260 photoresist and AZ-400K developer. The patterned areas were 

opened by reactive ion etching with O2 plasma using an LCCP-6A reactive ion etcher (Leuven Instruments). 

For the polymer film formation in the opened channels, the polymer solution was spun cast on the etched 

devices with different rotating speeds depending on the desired film thickness. After a peeling-off process of 

the second sacrificial parylene layer, the OECTs were ready for measurement. The device characterization 

was performed on the Keithley 4200 SCS. Ag/AgCl pellet (Warner Instruments) was employed as the gate 

and immersed into a 0.1 M NaCl solution, which covers the polymer film in the channel. 

 

Electrochemical Impedance Spectra 

Electrochemical impedance spectra (EIS) were performed on the polymer-coated electrodes using the 

electrochemical workstation SP-300 (BioLogic Science Instruments). Polymer coated electrodes were 

patterned as squares with different areas through lithography. These polymer-coated electrodes with glass 

substrate were employed as the working electrode and fully covered with a 0.1 M NaCl solution, followed 

with the employment of Pt mesh (CE) and Ag/AgCl pellet (RE) to establish a standard three electrodes system. 

The capacitances of polymers on electrodes with various sizes were obtained through the potentio-EIS 

method, with setting the DC offset voltage as the maximum achievable doping for each polymer. The AC 

amplitude of voltage in the form of sine-wave on the WE was set as 10 mV (RMS) and the frequency was 

scanned from 100 kHz to 1 Hz. The as-obtained Bode plots or Nyquist plots were fitted to an equivalent 

circuit, namely the Randle’s circuit Rs(Rp||C), via the software EC-Lab view. The thickness of the films was 

determined in the dry state with a DEKTAK profilometer (Bruker).  
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2. Table S1-S3 and Figure S1-S17 

Table S1. Summary of Synthetic Conditions and Molecular Weights of the DPP Polymers. 

Polymer Catalyst/ligand Cocatalyst 
Yield 

[%] 

Mn
a 

[kDa] 
PDIa 

Mn
b 

[kDa] 
PDIb 

P(lg3DPP-T) Pd2(dba)3/P(o-tolyl)3 / 20c / / / / 

P(bgDPP-T) Pd(PPh3)4 CuI 62 69.0 2.32 29.5 2.50 

P(bgDPP-T2) Pd (PPh3)2Cl2 CuI 79 70.6 2.27 26.1 2.48 

P(bgDPP-MeOT2) Pd(PPh3)2Cl2 CuI 84 61.7 2.37 30.1 2.62 

P(lgDPP-MeOT2) Pd(PPh3)2Cl2 CuI 26c 64.9 2.13 29.9 2.39 

a Using chloroform as the eluent. b Using HFIP as the eluent. c Low yield because most of the polymers is 

insoluble. 

 
Table S2. Optical and Electrochemical Properties of the DPP Polymers. 

Polymer 
Eonset

a 

[V] 
IPa 

[eV] 
EAa 
[eV] 

Eonset
b 

[V] 
HOMOc 

[eV] 
Eg,DFT

c 
[eV] 

Eg,Opt
d 

[eV] 
λonset

d 
[nm] 

P(bgDPP-T) 0.55 4.98 3.69 0.58 –4.93 1.69 1.42 875 

P(bgDPP-T2) 0.48 4.91 3.74 0.40 –4.92 1.74 1.37 906 

P(bgDPP-MeOT2) 0.19 4.62 3.72 0.23 –4.53 1.50 1.17 1062 

P(lgDPP-MeOT2) –0.08 4.35 3.75 0.02 –4.53 1.50 1.07 1163 

a Determined by the CV of the polymer film on ITO coated glass substrates in acetonitrile with 0.1 M [n-

Bu4N][PF6] as the supporting electrolyte. b 0.1 M NaCl aqueous solution as the supporting electrolyte. c 

Calculated results at the B3LYP/6-311G(d,p) level. d Obtained from the UV-Vis-NIR absorption spectra. 

 

Table S3. Comparison of the OECT Performances for Polythiophene and D-A Type Polymers. 

Polymer D-A polymer 
Y(es)/N(o) 

μ 
[cm2 V–1 s–1] 

C* 
[F cm–3] 

μC* 
[F cm–1 V–1 s–1] 

τon 
[ms] 

τoff 
[ms] Reference 

P(g2T-T) N 0.28±0.10 220±30 135±9 1.4a 1.4a 1, 2 

P(g2T-TT) N 0.94±0.25 297 261±29 0.42a 0.043a 3, 4 

PEDOT: PSS N 1.9±1.3 39±3 47±6 N/Ae 0.102a 5 

PTHS+EG N 1.3±1.1×10–3 124±38 5.5±0.1 0.4b N/Ae 6, 7 

PIBET-AO Y N/Ae N/Ae 5.4f 590c 390c 8 

BBL Y 7×10–4 930±40 0.65±0.028g 900c 200c 9 

CPEK Y 5×10–3h 134 0.67f N/Ae 0.137d 10 

P(gPyDPP-MeOT2) Y 0.030±0.007 60 1.8±0.42g 0.77a 0.46a 11 

P(bgDPP-MeOT2) Y 1.63±0.14h 120.0±2.4 195±21 0.516a 0.030a This work 

P(lgDPP-MeOT2) Y 2.15±0.27h 80.8±1.4 174±25 0.578a 0.063a This work 

Time constant measurements were performed with channel geometries (W/L) of a 100/10 μm, b 5/10 μm, c 

390000/20 μm, and d 1000/40 μm. e Data not available in the reference. f μC* was estimated based on the 
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given transconductance and device geometries. g μC* was calculated as the product of the measured μ and 

C*. h μ was calculated from the measured μC* and C*.  
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Figure S1 AFM topography images of the as-fabricated P(bgDPP-MeOT2) film. The polymer channel was 

fabricated by spin-coating its 3 mg/mL (a) chloroform and (b) hexafluoroisopropanol solution at 1000 rpm 

for 60 s on a silicon dioxide substrate.  

 

 

Figure S2 Thermal gravity analyses (TGA) of (a) P(bgDPP-T), (b) P(bgDPP-T2), (c) P(lgDPP-MeOT2), and 

(d) P(bgDPP-MeOT2). 
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Figure S3 Normalized UV-vis-NIR absorption spectra of (a) P(bgDPP-T), (b) P(bgDPP-T2), (c) P(lgDPP-

MeOT2) and (d) P(bgDPP-MeOT2) in diluted chloroform (1.0 × 10−5 M), in thin film, and in annealed thin 

film (80 oC, 10 min). 

 

 

Figure S4 Cyclic voltammograms of (a) P(bgDPP-T), (b) P(bgDPP-T2), (c) P(lgDPP-MeOT2), and (d) 

P(bgDPP-MeOT2) in acetonitrile solution with 0.1 M tetrabutylammonium hexafluorophosphate as the 

supporting electrolyte. 
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Figure S5 Cyclic voltammograms of (a) P(bgDPP-T), (b) P(bgDPP-T2), (c) P(lgDPP-MeOT2), and (d) 

P(bgDPP-MeOT2) in aqueous solution with 0.1 M sodium chloride as the supporting electrolyte. All the CV 

scans were repeated for 20 cycles. 
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Figure S6 DFT-optimized geometries and molecular frontier orbitals of the trimer of (a) bgDPP-T and (b) 

bgDPP-T2. Calculations were performed at B3LYP/6-311G(d,p) level. Branched glycol side chains were 

replaced with methyl groups to simplify the calculation. 

 

 

Figure S7 UV-vis-NIR spectra of (a) P(bgDPP-T) and (b) P(bgDPP-T2) upon continuously increasing the 

bias on the polymer film. The applied voltage ranged from −0.2 V to 0.6 V with an interval of 0.1 V. 
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Figure S8 Cyclic voltammograms, UV-vis-NIR spectra, and the differential spectra of (a-c)P(bgDPP-T), and 

(d-f) P(lgDPP-MeOT2). The color-coding UV-vis-NIR spectra indicate the applied voltage on the polymer 

film, ranging from −0.2 V to 0.6 V with an interval of 0.1 V. 

 

 

Figure S9 Transfer and output characteristics of (a-b) P(bgDPP-T2) and (c-d) P(lgDPP-MeOT2) OECTs. 

Channel dimensions: W/L = 1000/10 μm, d = 30.8±1.7 nm for P(bgDPP-T2), and 31.0±1.3 nm for P(lgDPP-

MeOT2). VDS was set to −0.6 V. 
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Figure S10 (a) Transfer and transconductance characteristics of P(bgDPP-MeOT2)-based OECT with a thick 

film, (b) The corresponding output characteristics. Channel dimensions: W/L = 1000/10 μm, d = 75.0±2.0 

nm. VDS was set to −0.6 V. 

 

 

Figure S11 IDS
1/2 vs. VGS plots of the DPP polymer based OECTs. The threshold voltages, VTh, were 

determined by extrapolating the linear region of the curves. Channel dimensions: W/L = 1000-10 μm, d = 

29.0±0.8 nm for P(bgDPP-T), 30.8±1.7 nm for P(bgDPP-T2), 35.2±1.7 nm for P(bgDPP-MeOT2), and 

31.0±1.3 nm for P(lgDPP-MeOT2). VDS was set to −0.6 V. 
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Figure S12 Performance comparison of the μC*-1/τon plot for P(bgDPP-MeOT2), P(lgDPP-MeOT2) and 

other reported D-A polymers. 

 

 

Figure S13 Continuous stressing of a P(bgDPP-MeOT2) OECT device upon the indicated VDS and VGS values. 
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Figure S14 The enlargement view of the on-off switching plot of P(bgDPP-MeOT2) OECT device at two 

different time zones, highlighted with red and blue boxes. Switching on time of VGS and the interval time 

were set as 2 s both. 

 

 

Figure S15 Capacitance-volume relationship of the DPP polymers. All the data were measured through the 

electrochemical impedance spectroscopy method. Linear fitting was performed to obtain their corresponding 

volumetric capacitance. 
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Figure S16 (a, b) Off- & on-time constant of P(lgDPP-MeOT2) obtained by applying a gate voltage pulse 

with a time scale of 5 ms. Blue and red lines were fitted through exponential decay function. W/L = 100/10 

μm and d = 31.7±1.0 nm. VDS was set to −0.6 V. 

 

 

Figure S17 2D GIWAXS patterns of (a) P(bgDPP-T), and (b) P(bgDPP-T2). (c-d) The corresponding line 

cuts of P(bgDPP-T) and P(bgDPP-T2). Cuts along the qxy direction (red) represent the scattering from the in-

plane, while the scattering in the qz direction (black) results from the out-of-plane. The associated lamellar 

(h00), and π-π stacking (0k0) peaks are indicated.  
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3. Synthetic Procedure and Characterization 

Scheme S1. Synthesis of the monomers and polymers. 

 

 

Compound 1 was synthesized according to the reported procedure.12  

 

Synthesis of 2: To a 25 mL two-necked round-bottom flask, 1 (500 mg, 1.26 mmol), carbon tetrabromide 

(461 mg, 1.39 mmol), and 5 mL DCM were added. Then triphenylphosphine (362 mg, 1.38 mmol) in 5 mL 

DCM was added slowly. The mixture was stirred at room temperature for 4 hours. The resulting mixture was 

sent to rotary evaporation, and the solvent was removed. The residue was purified through silica gel 

chromatography (DCM/ethyl acetate (EA) = 1/1) to afford 2 as a colorless liquid (425 mg, yield 73%). 1H 
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NMR (400 MHz, CDCl3) δ 3.68-3.45 (m, 30H), 3.39 (s, 6H), 2.27 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 

71.9, 70.6, 70.6, 70.5, 70.4, 70.0, 59.0, 41.3, 33.5. MALDI-TOF HRMS calcd. for [M + NH4]+: 461.1750; 

found: 461.1734. 

 

 

Synthesis of 3: A 25 mL Schlenk tube was charged with 2 (440 mg, 0.95 mmol), 3,6-bis(5-bromothiophen-

2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP) (200 mg, 0.44 mmol), potassium carbonate (88 mg, 

0.436 mmol), tetrabutylammonium bromide (300 mg, 0.93 mmol), and 5 mL dry DMF. The resulting mixture 

was heated to 120 oC and stirred for 7 h. Then the reaction mixture was cooled to room temperature and 

poured into water. The mixture was extracted with DCM with three times and washed with brine. Then the 

solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography 

(DCM/methanol = 60/1) to afford 3 (201 mg, yield 38%) as a purplish red liquid. 1H NMR (400 MHz, CDCl3) 

δ 8.54 (d, J = 4.2 Hz, 2H), 7.22 (d, J = 4.2 Hz, 2H), 4.12 (d, J = 7.4 Hz, 4H), 3.63 (m, 56H), 3.36 (s, 12H), 

2.43 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 161.2, 134.7, 131.4, 131.2, 119.2, 107.7, 71.8, 70.6, 70.5, 70.4, 

70.3, 70.0, 58.9, 41.6, 40.1. MALDI-TOF HRMS calcd. for [M + NH4]+: 1234.3396; found: 1234.3406. 

 

   

Synthesis of 4: Under nitrogen atmosphere, to a 250 mL two-necked round-bottom flask, DPP (500 mg, 1.66 

mmol), triethylene glycol monomethyl 4-methyl-benzenesulfonicacimethyl ester (MPEG3-OTs, 1.163 g, 

3.66 mmol), potassium carbonate (176 mg, 1.66mmol), 18-crown-6 (5 mg, 0.02 mmol) and 30 mL anhydrous 

DMF were added. The mixture was heated and stirred under 70 oC for 8 hours. Then the mixture was poured 
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to water and exacted with DCM. The organic phase was dried with Na2SO4 and sent to a rotatary evaporator 

to remove the solvent. The residue was purified through silica chromatography (petroleum ether (PE)/EA = 

3/1) to afford 4 as a dark red solid (574 mg, yield 57%). 1H NMR (400 MHz, CDCl3) δ 8.48 (d, J = 4.2 Hz, 

2H), 7.20 (d, J = 4.2 Hz, 2H), 4.16 (t, J = 5.9 Hz, 4H), 3.77 (t, J = 5.9 Hz, 4H), 3.66–3.53 (m, 12H), 3.52–

3.45 (m, 4H), 3.34 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 161.2, 139.5, 134.8, 131.4, 131.1, 119.3, 107.9, 

71.9, 70.8, 70.5, 70.5, 68.9, 59.0, 42.2. MALDI-TOF HRMS calcd. for [M + NH4]+: 766.0463; found: 

766.0462. 

 

Synthesis of 5 

 

Under nitrogen atmosphere, to a 250 mL two-necked round-bottom flask, DPP (1.00 g, 2.18 mmol), methoxy 

hepta(ethylene glycol)bromide (MPEG7-Br, 1.101 g, 5.46 mmol), potassium carbonate (578 mg, 5.46 mmol), 

tetrabutylammonium bromide (1.40 g, 4.36 mmol), and 30 mL anhydrous DMF were added. The resulting 

mixture was heated to 120 oC and stirred for 4 h. Then the reaction mixture was cooled to room temperature 

and poured into water. The mixture was extracted with DCM three times and washed with brine. Then the 

solvent was removed under reduced pressure, the residue was purified by silica gel chromatography 

(DCM/methanol = 40/1) to afford 5 (351 mg, yield 14%) as a purplish-red solid. 1H NMR (400 MHz, CDCl3) 

δ 8.46 (d, J = 4.2 Hz, 2H), 7.18 (d, J = 4.2 Hz, 2H), 4.14 (t, J = 5.9 Hz, 4H), 3.74 (t, J = 5.9 Hz, 4H), 3.67-

3.49 (m, 48H), 3.35 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 161.1, 134.8, 131.3, 131.0, 119.2, 107.9, 70.7, 

70.5, 70.5, 70.4, 68.8, 58.9, 42.1. MALDI-TOF HRMS calcd. for [M+ NH4]+: 1118.2559; found: 1118.2559. 

 

General Procedure for Polymerization: 

To a 25 mL Schlenk tube, tin reagent (1.00 eq.), DPP monmer (1.00 eq.), Pd catalyst (0.04 eq.), CuI (0.04 

eq.), anhydrous DMF, and anhydrous chlorobenzene were added under nitrogen atmosphere. The tube was 

charged with nitrogen through a freeze-pump-thaw cycle for three times. The sealed tube was heated to 135 

oC and stirred for a given time (Scheme S1). After cooling the reaction mixture to room temperature, 

diethylphenylazothioformamide (3 mg) was added to remove the catalyst and the resulting mixture was 
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stirred at 80 oC for 1 h. The reaction mixture was poured into 20 mL hexane to precipitate the polymer and 

filtered. The polymer solid was placed in a Soxhlet extractor and extracted with hexane, methanol, acetone, 

and chloroform. The chloroform solution was concentrated under reduced pressure and then poured into 20 

mL hexane to re-precipitate the polymer. The suspension was filtered and dried in vacuum to afford the 

polymer. 

P(lg3DPP-T): Dark green solid (yield: 20%). Most of the polymer is insoluble, leading to a low yield.  

P(bgDPP-T): Dark green solid (yield: 62%). 1H NMR (600 MHz, CDCl3, 293 K, ppm) δ 8.83, 7.75, 4.24, 

3.84-3.45, 3.35, 2.52. 

P(bgDPP-T2): Dark green solid (yield: 79%). 1H NMR (600 MHz, CDCl3, 293 K, ppm) δ 8.84, 7.04, 3.78-

3.55, 3.35, 2.46. 

P(bgDPP-MeOT2): Dark green solid (yield: 84%). 1H NMR (600 MHz, CDCl3, 293 K, ppm) δ 8.82, 7.08, 

4.30–3.45, 3.35, 2.54. 

P(lgDPP-MeOT2): Dark green solid (yield 26%). Most of the polymer is insoluble, leading to a low yield. 

1H NMR (500 MHz, CDCl2CDCl2, 383 K, ppm) δ 8.68, 7.35, 7.06, 4.43-3.43, 3.31. 
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4. 1H and 13C NMR spectra 

Figure S18 1H NMR spectrum of 2. 

 

Figure S19 13C NMR spectrum of 2. 
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Figure S20 1H NMR spectrum of 3. 

 

Figure S21 13C NMR spectrum of 3. 
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Figure S22 1H NMR spectrum of 4. 

 

Figure S23 13C NMR spectrum of 4. 
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Figure S24 1H NMR spectrum of 5. 

 

Figure S25 13C NMR spectrum of 5. 
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Figure S26 1H NMR spectrum of P(bgDPP-T). 

 

Figure S27 1H NMR spectrum of P(bgDPP-T2). 
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Figure S28 1H NMR spectrum of P(bgDPP-MeOT2). 

 

 

Figure S29 1H NMR spectrum of P(lgDPP-MeOT2).  
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