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Abstract
Being a developed and promising approach, nanotechnology has attracted a lot of attention in biomedical and pharmaceutical
therapy applications. Among nanostructured materials, mesoporous silica nanoparticles (MSNs) are effectively used as
nanocarriers for drug delivery systems. MSNs can be tailored-designed by different synthetic techniques. Their morphological
characteristics dictate the type of application of such materials. Recently, polymer-based materials have been employed to
functionalize the MSNs surface. These modified nanocarriers are loaded with the drug and can unload their “cargo” upon
exposure to either endogenous or exogenous types of stimuli. In this study, different targeting concepts, including passive,
active, vascular, nuclear, and multistage targeting, are discussed.

Keywords Mesoporous silica nanoparticles . Drug delivery . Endogenous and exogenous stimuli . Anticancer drug delivery .

Targeting

1 Introduction

Drug delivery relies on the presence of a “neutral” carrier that
allows for a “load” drug to reach the desired target and release
the cargo at the site. This approach enables remarkably re-
duced side-effects from the drug effect at “off-target” regions
as well as protecting the drug from degradation or solubilizing
prematurely. Well-designed and functionalized nanoparticles
have proven to be excellent vehicles to carry this task [1].
Another critical factor in this process is the ability of the drug
to be released upon exerting a stimulus upon the carrier nano-
particles to unload its cargo at the desired site. In this respect,
stimuli-responsive polymers were introduced to carry on this
task [2]. Important characteristics have to be realized in these
polymeric systems such as receiving, transmitting the stimu-
lus, and responding conveniently and efficiently. Two types of
stimuli triggers are identified: those are endogenous and ex-
ogenous types. Endogenous biological triggers include pH,

redox, glucose, and enzymatic systems. Endogenous type trig-
gers anticipate the differences between the infected tissue and
the microscopic environment surrounding this tissue in com-
parison to normal tissue physiology. Exogenous or external
stimuli are, for instance, thermal, magnetic, and ultrasound
effects. The latter have higher clinical applications because
of the possible control over the carrier accumulation within
certain positions around the targeted tissues and the precision
in timing of the release of the load.

In the following sections, we will illustrate the synthetic
strategies of mesoporous silica nanoparticles (MSNs) for dif-
ferent applications in drug delivery systems. The various tech-
niques for applying exogenous and endogenous stimuli over
MSNs for drug delivery will also be reviewed.

2 Synthesis of mesoporous silica materials

Mesoporous materials are defined by the international union
of pure and applied chemistry (IUPAC) as those with pore size
ranging between 2 and 50 nm arranged in an ordered pattern
[3]. The first introduced mesoporous silica materials to the
market were credited to those synthesized by Mobil
Research and Development Corporation [4]. Those were des-
ignated commercial names as Mobil Crystalline Materials of
Mobil Composition of Matter with an acronym of MCMs.
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The most popular ones are MCM-41 and MCM-48 and were
introduced as catalysts. Extensive research was carried on
these materials with efforts directed towards fine-tuning the
structure of the resulting materials in terms of pore size. For
example, MCM-48 nanoparticles (90 nm) demonstrated high
permeability of encapsulated drug (resveratrol) compared to
150 and 300 nm ones [5]. On the other hand, the loading
capacity of glucagon-like peptide-1 in dendritic silica nano-
particles (DSNPs) (pore size of 10 nm) was much higher than
MCM-41with small pores [6]. The employment of surfactants
with designated chain lengths and structures are the key
players in controlling mesoporous characteristics. For in-
stance, MCM-41 has been widely studied as a potential can-
didate for drug delivery applications and was synthesized
using cationic surfactants as intercalation templates [4, 7].
Moreover, cationic surfactant (CTAB) was used as a
structure-directing agent for designing a biphasic system com-
posed of MSNs and calcium phosphate for bone-specific drug
delivery (doxycycline hydrochloride) [8]. The researchers in
Mobil used alkyl trimethyl ammonium halide-based surfac-
tants as templates and tetra-ethoxy silicate (TEOS)-sodium
silicate-silica-Ludox mixture as silicate source. Besides,
MCM-41 had a hexagonal structure; MCM-48 had a cubic
structure while MCM-50 had a lamella structure. Several syn-
thesis conditions affected the properties of the resulting meso-
porous materials. These include the concentration of precur-
sors, the type of solvent/co-solvent used, the temperature and
pH of the synthesis solution, the calcination temperature, the
chain length of the surfactant used, electrolytes/solubilizing
agents, and co-surfactants incorporation to the synthesis solu-
tion [7, 9–17].

Another category of mesoporous silica materials widely
used in biomedical applications was synthesized by a group
of scientists at the University of California, Santa Barbara,
designated as SBA [18]. Relatively larger pores characterize
SBA-based silica mesoporous materials compared to those of
MCM- materials. The synthesis of SBA-materials relied on
the use of non-ionic tri-block copolymers such as alkyl poly
(ethylene oxide) and oligomer surfactants. The resulting
mesoporous materials are SBA-11 with cubic structure,
SBA-12 with a 3D hexagonal shape, SBA-15 with a hexago-
nal shape, and SBA-16 with cubic caged-structure. The des-
ignated form depends on the symmetry of the mesoporous
structure and the polymers used [18].

Several mechanisms have been proposed for the prepara-
tion of these materials. Two mechanisms were initially sug-
gested. Firstly, the silica framework is formed around pre-
existing liquid crystalline phases. Secondly, the addition of
inorganic species affected the surfactant assembly and result-
ed in ordered arrays [19]. However, the first mechanism was
not well-established because of the surfactant amount used in
the synthesis solution is short from realizing the formation of
liquid crystalline phase in aqueous media. Several other

mechanisms were also cited, for instance, a mechanism de-
scribed as “swelling-shrinking mechanism”was proposed and
confirmed by time-resolved synchrotron small-angle X-ray
scattering (SAXS) technique [20]. This mechanism is only
valid when TEOS is the only precursor used and in the ab-
sence of any other ethanol-like solvent. Figure 1 showed the
mechanism of formation ofMCM-41 [22]. Figure 2 illustrated
the mechanism of mesoporous silica nanoparticles (MSNs)
according to the swelling-shrinking mechanism [22].
Comprehensive information can be found in the recently pub-
lished review on the diverse routes of MSNs synthesis [23,
24]. Recently, novel virus-like MSNs consisted of nano-
spheres and peripheral perpendicular nanotubes were fabricat-
ed via a single micelle templating epitaxial growth strategy.
These virus-like MSNs demonstrated superior cellular uptake
property, good internalization ability, and prolonged blood
circulation (t1/2 = 2.16 h) [25].

The more likely properties of MSNs that tailor the biomed-
ical performance in terms of drug or gene loading and their
release are particle size, pore size, and volume. For instance,
relatively smaller particle sizes were obtained using some re-
agents, including alcohols, amines, inorganic bases, and inor-
ganic salts [26–28]. Those agents affect the kinetics of hydro-
lysis and condensation reactions of the silica precursor. In
2014, a new generation of floating tablet-based MSNs was
synthesized to enhance the delivery pattern of both hydropho-
bic (curcumin) and hydrophilic (captopril) drugs. The resul-
tant tablets showed improved solubility for curcumin and
prolonged release for captopril [29].

The pore size of the particles varied according to the chain
length of the surfactants used. Thus, the applied surfactants
with longer chain length resulted in the formation of larger
pores [30]. Pore volumes, on the other hand, depended on the
concentration of precursors and surfactants used. For exam-
ple, the concentration of TEOS influenced the mesostructure
ordering of the preparedMSNs [31]. Larger contents of TEOS
resulted in more disordering in the mesostructure of particles,
and insufficient contents hindered the mesoporous formation.
The influence of the surfactant amount was discussed using
cetyl ammonium bromide (CTAB) [21]. When CTAB was
used with low concentrations, no micelles are formed, and
no templates are available for the particle formation.
Whereas, relatively high concentrations of CTAB resulted in
disordered morphologies. Therefore, “moderate” concentra-
tions of the surfactants are recommended for obtaining the
desired mesoporous structure.

3 Stimulus-responsive gatekeeping
of functionalized MSNs

Recently, designing a smart nanoparticle drug delivery system
that responds to specific stimuli has gained a lot of attention
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due to its tremendous promises in diagnostic as well as ther-
apeutic application [32]. Two strategies are adopted in the
synthesis of stimuli-responsive MSNs. In one approach, en-
dogenous stimuli which are explicitly used for diseased tissue
and proved to improve the drug action selectivity. It needs the
addition of a suitable material to MSNs that respond to partic-
ular endogenous stimuli. The MSNs spontaneously enable the
tumor-therapeutic selectivity and efficiency with
bioresponsive therapeutic efficacy [33]. In the other strategy,
it depends mainly on applying external physical stimuli to the
desired tissue after administration of drug-loaded MSNs.
Similarly, these applied exogenous stimuli lead to alteration
of the MSNs structure and release of drug to the desired tissue
[34]. Thus, researchers’ effort is aimed towards applying a
combination of several stimuli-responsive strategies to en-
hance targeting efficiency and avoid the premature drug re-
lease [34, 35].

3.1 Exogenous stimuli-responsive drug delivery

Exogenous-type stimuli are applicable by using an external
factor such as temperature, electromagnetic and magnetic
fields, and ultra-sound. Endogenous or exogenous stimuli
are aimed to trigger the release of a given drug desirably at
targeted locations inside the body. This approach is advanta-
geous in targeting the specific delivery of a particular drug to

its target site and limiting its side effects. The schematic dia-
gram of Fig. 3 summarizes various exogenous and endoge-
nous stimuli for drug delivery [36].

3.1.1 Thermal-triggered drug delivery/release

The strategy of this approach depends on changing the sur-
rounding temperature around the particles loaded with the
drug that resulted in triggering the pores around the surface
of particles. Thermo-responsive drug delivery systems were
widely implemented for anti-tumor treatment regimens [37].
This approach relies on coating or incorporating the MSNs
with a thermo-responsive agent Fig. 4.

For example, MSNs were coated with organic/inorganic
thermosensitive nanomaterials using reversible addition frag-
mentation transfer (RAFT) polymerization and click reaction
[38]. Figure 5 demonstrates the coating ofMSNswith thermo-
responsive poly(N-isopropyl acrylamide) (PNIPAM). In this
mechanism, the drug is released when subjected to heating
stimulus. Similar approaches could be applied to combine
two exogenous stimuli, such as magnetic field and thermal
change. A recent study by Rinaldi et al. suggested the use of
super-magnetic iron oxide nanoparticles that release heat as a
response to an alternating magnetic field. Consequently, mo-
lecular loading was released via Diels-Alder bond scission
[39]. The nanocarriers were coated with poly (ethylene

Fig. 2 Schematic of the structural
changes of CTABmicelles before
and after TEOS addition. (1)
Before the addition of TEOS; (2)
After the addition of TEOS; (3)
The silica monomers are progres-
sively released into the aqueous
solution; (4) Silica monomers
gradually release from the core of
micelles and form a silica shell
aroundmicelles; (5) Silica forms a
strong framework, and particles
and mesopores are formed.
(Reprinted with permission from
reference 20)

Fig. 1 Mechanism of formation
of mesostructured surfactant-
templated inorganic materials for
the synthesis of MCM-alike ma-
terials: (a) Liquid-crystal phase
initiation; (b) Silicate anion initi-
ation. (reprinted with permission
from Elder [21]
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glycol)/poly (lactic acid) block copolymers. In their study, the
authors reported that the release could be triggered multiple
times using a magnetic field gradient to control the targeted
regions for directive drug release spatially.

3.1.2 Magnetic-triggered drug release

Drug delivery based on magnetic trigger relies on releasing
the magnetic and drug nanoparticles in response to the applied
magnetic field. This performance ensures the directed delivery
of magnetic nanoparticles to the targeted area in addition to
controlling the drug release. Drug release in the response of
the magnetic field relies on the ability of magnetic nanoparti-
cles to produce thermal energy that induces morphological
changes [40]. It was assumed that the magnetic core behaves
like a hot spot that releases the drug without the need to ele-
vate the global temperature [41] Fig. 6.

Iron oxide nanomaterials such as superparamagnetic nano-
particles were used extensively, replacing the MRI contrast
agents [42]. Iron oxide nanoparticles have been linked to sev-
eral ligands such as antibodies [43, 44], vitamins [45, 46], and
polysaccharides [47]. In addition, a cyclic nine-amino acids
peptide (Cys-Gly-Asn-Lys-Arg-Thr-Arg-Gly-Cys) (LyP-1)
represented an excellent candidate for breast cancer, hepato-
carcinoma, and atherosclerotic plaque therapies [46, 48]. The
targeting of pancreatic cancer cells in vitro for diagnostic pur-
poses was enhanced by using superparamagnetic mesoporous
nanospheres anchored with lyp-1 ligand [49]. Doxorubicin
has been loaded on graphene quantum dots (GQDs)-capped
magneticMSNs. These materials exhibited a synergistic effect
against breast cancer 4T1 cells compared to chemo-
hyperthermia and chemo-photothermal therapies. Under a
magnetic field, the magnetic MSN/GQDs displayed heat lib-
eration to the hyperthermia temperature [50]. Moreover, mag-
netic mesoporous silica microspheres with core-shell structure

Fig. 3 Schematic diagram
summarizing the various
exogenous and endogenous
stimuli for drug delivery
(reprinted with permission from
36)

Fig. 4 Schematic illustration of
drug release from responsive
MSNs triggered by temperature
as an external stimulus
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and large pores can be applied in bio-catalysis, bio-separation,
and adsorption [51]. Surprisingly, Janßen et al. demonstrated
that magnetic MSNs carriers did not accumulate on the
magnetizable implant and area in orthopedics [52]. But
instead, they were uptake and trapped in the lung, liver, and
spleen of the mice with no significant pathomorphological
alterations.

3.1.3 Light-triggered drug release

Activation delivery by light is a promising strategy due to its
noninvasiveness property and remote control. It does not de-
pend on changes in the chemical environment. The mecha-
nism relies on conformational changes of the nanocarriers in
response to light. Many light-triggered nanocarrier designs
depend on releasing the drug from its cargo upon excitation
by visible light or ultraviolet light. These nanocarriers proved

to be suitable only for vitro studies owing to its fast reduction
in density [53]. Previous reports demonstrated that near-
infrared gives maximum penetration, minimum absorbance,
and more safety for tissues and organs than ultraviolet-
visible light [54, 55]. Yang et al. fabricated smart and novel
light stimulusMSN nanorods (MSNRs) doped with photosen-
sitizer chlorin e6 (Ce6) for anticancer applications [56].
Doxorubicin release was achieved by coating MSNRs using
bovine serum albumin through singlet oxygen-sensitive bis
(alkylthio) alkene Bata linker (CMSNRs) and finally modified
with polyethylene glycol. This carrier was activated via
660 nm with a low power density as low as 5 mW cm−2

through SO-mediated cleavage of the Bata linker. In addition,
they showed marked synergistic therapeutic effects in both
in vivo and in vitro experiments.

Photodynamic therapy is an important therapeutic modality
with high selectivity to the tumor and low invasiveness. A

Fig. 6 Schematic illustration of
the mechanisms of drug release
from MSNs triggered by a
magnetic field and magnetic
hyperthermia

Fig. 5 Schematic diagram.
Schematic illustrating the
synthesis of MSNs coated with
thermo-responsive PNIPAM
brushes using RAFT polymeriza-
tion and click chemistry
(reprinted with permission from
38)
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light source activates the tumor localized photosensitizer, and
this property results in producing highly toxic ROS such as
singlet oxygen that has proven to suppress the tumor with high
efficiency and specificity with little side effects [57]. In 2015,
Liu et al. synthesized double mesoporous silica-shelled
UCNPs that can deliver both photosensitizer and bio-
reductive prodrug tirapazamine [58]. Upon excitation by laser
at 980 nm, a large amount of ROSwas produced that eradicate
the tumor and show the feasibility of NIR-triggered deep PDT
by MSN-based therapeutic. Multifunctional nanoplatform-
based MSN-coated gold nanorods were fabricated for PDT/
PTT synergistic therapy by Liu et al. [59]. MSN-based nano-
sensors were fabricated by incorporating a mesoporous silica
shell with UCNP and oxygen indicator tris(4,7-diphenyl1,10-
phenanthroline) ruthenium (II) dichloride [60]. The mesopo-
rous silica particles provide a large surface area that guaran-
teed high photosensitizer loading, while UCNP can upconvert
NIR light into a light needed to activate these agents. These
nanosensors showed marked selectivity and sensitivity for
sensing the level of hypoxia in the cerebral anoxia model of
zebrafish.

NIR-resonant nano-agents are widely employed in PTT in
cancer. It depends on absorbing NIR and converting it to heat
that eradicates the tumor cells [61, 62]. Novel NIR-induced
DNA hybrid gated nanocarrier-based mesoporous coated with
photothermal agent Cu1.8S nanoparticles were fabricated by
Sun et al. [63]. The produced photothermal effect was directed
towards DNA double strands and causes its denaturation.
Furthermore, it triggered the doxorubicin/curcumin release
that causes marked synergistic impact in the anticancer thera-
py nanoplatform. Yang et al. enhanced the cellular uptake and
anticancer targeting therapy by synthesizing NIR triggered
MoS2 nanosheets coated MSNRs, modified with human se-
rum albumin, and loaded with Ce6 [64]. In addition to NIR
light-stimulated photodynamic therapy (PDT) and
photothermal therapy (PTT), this carrier showed excellent
biocompatibility, high contrast X-ray computed tomography
imaging ability, in vivo fluorescence, and PDT synergistic
effect from hyperthermia generation by MOS2.

Escoto et al. synthesized MSNs capped with gold nanopar-
ticles for photo-triggered controlled drug release [65]. They
found that the MSNs were efficiently linked with gold nano-
particles without the premature release of the paclitaxel into
the normal healthy cells. A novel near-infrared laser-respon-
sive mesoporous silica nanocarriers were composed of gold
nanorods capped with reversible single-strand DNA. This
DNA strand was controlled via a laser switcher that subse-
quently controls the release of drug from the nanocarrier.
These nanocarriers demonstrated precise drug delivery at a
specific time and to a particular region [54]. The isomerization
of the photoactive sites controls the morphology of the
photoactive molecules. Azobenzene is one of the most com-
monly used light-sensitive molecules due to its ability to

undergo reversible photoisomerization under UV irradiation
[66]. A novel strategy for NIR induced anticancer drug release
was introduced by Liu et al. [67]. They fabricated azobenzene-
installed MSNs with up-converting nanoparticles structure
(UCNPs). Owing to light converting capabilities of UCNPs
and trans-cis photoisomerization of azo molecules, at 980 nm,
the drug release was well-controlled and achieved better ef-
fective chemotherapy. Perylene-functionalized poly(dimethyl
aminoethyl methacrylate) have been conjugated electrostati-
cally to MSNs for controlled anticancer drug release.
Perylene-functionalized poly(dimethyl aminoethyl methacry-
late) were sensitive to visible light, and pH causing unsealing
of the nanopores, and this enhanced the drug release because
of synergistic effects [68].

3.1.4 Ultrasound-triggered drug release

Due to the fact of noninvasiveness and capability of penetra-
tion deeply in the tissue without damaging them, ultrasound is
considered as one of the most promising triggers for drug
release nanocarriers [69]. It has been reported that ultrasonic
radiation improves the drug release from both biodegradable
and non-biodegradable matrices. For instance, ultrasound
triggered-MSNs were synthesized by grafting poly(2-(2-
methoxy ethoxy) ethyl methacrylate-co-2-tetrahydropyranyl
methacrylate on its surface [70]. This copolymer consisted
of both ultrasound and temperature triggered monomers.
Upon ultrasound irradiation for 10 min, the hydrophobicity
of the polymer changes leading to opening the pores of
MSNs and releasing the drug in a sustained pattern.
Similarly, at 4 C, the conformation changes resulting in drug
diffusion.

3.2 Endogenous stimuli-triggered drug release

Endogenous stimuli (biological stimuli) are the inherent envi-
ronment of tumor tissues. For example, enzyme presence de-
pends on acidic conditions and glucose concentration. In this
section, we will discuss different responsive designs of
nanocarriers to variations on pH value, enzyme, redox poten-
tial, and glucose.

3.2.1 pH-triggered drug release

The controlled drug released in the response of pH is one of
the most exciting approaches. Drug release in the response of
pH is a promising approach in cancer therapies because of the
acidic microenvironment of the tumor cells, and pH change
resulted from cancer cells internalization [71]. Generally, in-
duced drug release from MSNs was accomplished by several
strategies such as pH-cleavable linkers, acid-sensitive inor-
ganic substances, polyelectrolyte, and supramolecular nano-
valves. In 2009, pH-responsive mesoporous silica spheres
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were synthesized by coating MSNs with poly (methacrylic
acid-co-vinyl triethoxylsilane) (PMV). The PMV shells man-
age the transfer of the drug molecules in response to pH-
change [72]. Furthermore, pH-sensitive cleavable linkers were
conjugated to MSN pores via hydrazine bonds for doxorubi-
cin delivery (prodrug strategy). It was concluded that pH-
directed drug delivery was highly effective with reduced
doxorubicin systemic toxicity. Drug release in a sustained
manner successfully reduced the unspecific secretion due to
enzymatic hydrolysis. Moreover, this approach results in high
drug loading, releasing efficiency, and cellular absorbance
[73]. A polyacrylic acid grafted to MSNs was used to deliver
and control the premature release of doxorubicin in bone can-
cer therapy [74]. Controlled pH triggered the release of drug
molecules was achieved by acid-liable acetal linker and gold
nanoparticles capped onto the MSNs. The release is based on
acetal linkage cleavage at various pH values [75]. ZnO quan-
tum dots were used to cap MSNs for effective intracellular
dissolving in the acidic parts of cancer cells [76]. Recently,
Nasrallah et al. designed core-shell magnetic mesoporous sil-
ica microspheres with a favorable pH-responsive porous shell
for drug delivery [77].

3.2.2 Enzyme-triggered release

Enzyme-responsiveMSNs have also been widely investigated
in the past decade. Hydrolyzed starch attached on the surface
of MSNs was introduced as a potential carrier to release the
entrapped drug in the presence of the appropriate enzyme.
Different delivery profiles were obtained by changing the de-
gree of starch hydrolyzation (i.e., associated with the length of
the saccharides molecules) [78]. Lactose-capped MSNs were
first introduced by Amorous and co-workers in 2009 [79].
They are selectively uncapped using b-d-galactosidase by
the dissociation of a glycosidic bond and hydrolysis of the
disaccharide lactose into the monosaccharides galactose and
glucose.

Cancer is known as overexpressing and down in regu-
lating various enzymes; hence, MSNs can be used as re-
lease triggers for this concept. MSNs act via ester, pep-
tide, and urea bond cleavage. Enzymes such as esterase,
elastase protease, and matrix metalloproteinases (MMPs)
are used. MMPs, especially MMP2 and MMP9, are
employed in almost all tumor cells and accompanied by
cancer metastasis and angiogenesis [80, 81]. A case in
point, MSNs were anchored to avidin via MMP9 to target
overexpressing MMP9 cancer si tes specif ical ly.
Successful MMP-9-triggered drug release was achieved
in patient tumor cells and mouse lung cancer [82].
Cathepsin B is a type of protease that has widely applied
in different enzyme-triggered drug release systems.
MSNs-dependent cathepsin B were synthesized by
Cheng et al. [83].

3.2.3 Redox-triggered release

Redox triggered carrier is considered as one of the most effi-
cient tumor therapeutic approaches. This approach is based on
the significant difference in redox potential between cancer
and healthy tissues. The amount of glutathione (GSH) in tu-
mor cells is threefold higher than that in normal cells [84]. The
existence of GSH biological reducers efficiently cleave disul-
fide bond (S-S), permitting the use of redox-triggered drug
release systems. The first redox-triggered drug delivery sys-
tem was reported by Lai et al. [85]. They used CdS nanopar-
ticles to seal the pore access of MSNs via a disulfide bond.
Several inorganic nanoparticles served as nano valves to trap
the drug inside the MSNs via covalent bonding with disulfide
linkers such as zinc oxide [86], iron oxide [87], and CdS [85].
In another study,MSNswere synthesized with disulfide redox
cleavable linkers on the surface and conjugated to beta-cyclo-
dextrin. The MSNs successfully controlled the drug release
via this linker [88].

Redox responsive MSNs were also functionalized with
polymers such as polyethylene glycol (PEG) using a disulfide
linker. The drug release was significantly increased with an
elevated amount of glutathione; on the other hand, the sealed
PEG in reduced GSH acted as gatekeeper [89, 90].
Furthermore, several supra-molecules were used as gate-
keepers on MSNs. For instance, adamantane was grafted onto
the nanopores of drug-loaded MSNs using a disulfide linker.
The efficient internalization of drug-loaded MSNs into the
cytoplasm of tumor cells was accomplished. The high amount
of GSH removed the adamantane caps by breaking disulfide
linkers [91, 92].

3.2.4 Glucose-triggered release

Glucose-triggered release systems have received a lot of at-
tention recently in drug delivery strategies [93]. Glucose-
responsive MSNs are used in diabetes treatment by releasing
a monitored amount of insulin in response to blood glucose
concentration. For example, Zhao et al. synthesized boronic
acid-functionalized MSNs for controlled delivery of both in-
sulin and cyclic adenosine monophosphate (cAMp) in the
response of glucose [93]. Gluconic acid-modified insulin
was conjugated on the external surface of MSNs, which
served as caps to trap the cAMP molecules inside the
mesopores of MSNs. The presence of boronic acid resulted
in the formation of more stable cyclic esters when exposed to
glucose, leading to a controlled release of insulin and cAMP.
Similarly, glucose-responsive alizarin functionalized MSNs
integrated both drug and fluorescent real-time controlling is-
sues [94]. Gluconate insulin using benzene-1,4-diboronic acid
is integrated with the alizarin MSNs, which served as hypo-
glycemic drugs and gatekeepers. The glucose cleaved the
boronate ester between alizarin and di-boronic acid resulting
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in pores opening and fluorescence disappearance. Recently,
intestinal permeation and oral delivery of insulin (10 U Kg−1)
have been significantly improved by incorporating anionic
small silica nanoparticles (< 200 nm) in both healthy and dia-
betic mice. The enhanced effect was nontoxic and reversible;
in addition, the sustained hypoglycemic effect was achieved
and lasted for a few hours [95].

3.2.5 Adenosine triphosphate (ATP)-triggered release

ATP is a multifunctional nucleotide responsible for providing
energy for all biological processes. The ATP content in intra-
cellular cytosols is higher than that in extracellular ones [96].
Therefore, ATP can be used to trigger the drug release inside
the cytosol. Many reports confirmed the overexpression of
tumor cells to ATP and the uncontrolled cancer growth [97,
98]. Graphene quantum dots were capped onto fluorescent
MSNs through ATP aptamer for intracellular drug release
[99]. The drug delivery was monitored via fluorescence reso-
nance energy transfer, where under extracellular environment
(low ATP concentration), the MSNs pores are closed, and the
drug is trapped inside the MSNs. On the other hand, in the
ATP-rich cytoplasm, the ATP aptamer changes its conforma-
tion resulting in shedding the graphene quantum dots from
MSNs and releasing the drug in the tumor cells. Table 1 sum-
marizes various stimuli systems employed for drug delivery
using MSNs.

4 Targeting approaches

4.1 Passive targeting

Themechanism of passive targeting was discussed for the first
time by Mastumura in 1986. It is mainly based on the leaky
discontinuous microvasculature and defect of lymphatic func-
tions of tumor tissues that result in improving permeability
and retention (EPR) effect. Tumors exhibit rapid angiogenesis
to maintain its proliferation by delivering the needed amount
of oxygen and supplies [100]. This rapid angiogenesis results
in apertures that enable the synthesized nanocarriers to enter
the tumor cells and accumulate in it. However, this accumu-
lation would take place if MSNs can escape from fast renal
clearance and reticuloendothelial systems. This approach has
been widely used to improve targeting using silica
nanocarriers [101]. To illustrate, MSNs were synthesized by
integrating functional nanoparticles in mesoporous shells in-
cluded magnetic nanoparticles, and then attaching it onto the
surface of MSNs. These MSNs successfully accessed the tu-
mor sites of mice via passive targeting. In addition, these
MSNs are applied in fabricating multimodal imaging probs
for MR [102]. In the next sections, the different factors control

the tissue accumulation, and cellular uptake of MSNs will be
introduced.

4.1.1 Size and shape

Nanoparticle size determines circulation, distribution of
MSNs, tissue accumulation, and cellular uptake. The agreed
optimum nanoparticle size for biomedical applications is
ranged from 10 to 300 nm. However, maximum internaliza-
tion was achieved from nanoparticles of 100–200 nm size by
obtaining maximum accumulation in tumors via EPR [103,
104]. Small particles of 80 nm size have the longest mean
residence time (2 h) and slow biodegradation. Nanoparticles
larger than 400 nm display the inability to penetrate the tumor
tissues and offering therapeutic effects. Spherical MSNs of
80–360 nm size are mainly distributed in the liver and spleen
[105]. Lou et al. studied the cellular uptake of MSNs in Hela
cells [106]. The cellular uptake was found to be size-depen-
dent, and particle size of 50 nm is optimum to guarantee effi-
cient cell internalization. In comparison, particles tend to ag-
glomerate when particle size is less than 50 nm, causing en-
docytosis lowering [107].

In addition, the shape of the nanoparticles represents an
essential role in EPR-dependent tumor passive targeting.
Gao et al. proposed the shape impact on cell internalization
[108]. It was hypothesized that upon membrane stimulation, a
diffusive ambulant receptor wraps the ligand coated spherical
particles. Generally, spherical nanoparticles have been widely
used in many biomedical applications because of its simple
fabrication method and shorter wrapping time that resulted in
faster internalization [108]. The shape influence of silica
nanoparticles on cell internalization efficiency was discussed
for the first time by Trewyn et al. [109]. They designed spher-
ical and tube-like MSNs labeled with fluorescein and tested
them in cancer cell lines and noncancerous. The results dem-
onstrated that cellular uptake and endocytosis are morphology
dependent. Similarly, spherical MSNs demonstrated faster in-
ternalization rates in Chinese hamster ovarian than tube-like
ones [109]. Aspect ratios (ARs) showed a positive association
with endocytosis rates and accumulation of MSNs in the cell
[110]. This observation was also confirmed by designing three
MSNs with different aspects ratios (1, 2, and 4) while main-
taining the diameter, chemical structure, and surface charge
unchanged. These MSNs offered different internalization ef-
ficiency in A375 human melanoma. However, particles with
larger ARs provided higher cellular uptake [110]. Another
report demonstrated that rod-like MSNs with ARs of 2.1–
2.5 displayed faster internalization and more efficient penetra-
tion than the spherical ones [111]. Short rod-like MSNs
existed mainly in the liver with a rapid clearance rate while
the long ones distributed in the spleen [112]. Based on these
research findings, it is hard to conclude the most suitable
MSNs shape needed for passive targeting systems.
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4.1.2 Surface

MSN surface plays a vital role in cell internalization,
biodistribution, cell binding, and blood circulation time.
MSNs are well-known to acquire large surface area and pore
volume. The challenges are faced in designing MSNs with
appropriate functionalization and charges to ensure the proper
interaction with the targeted physiological cells [113].
Interaction between red blood cells (RBCs) and silica nano-
particles resulted in hemolysis. The negative charge of the
silanol group results in strong affinity and binding to RBCs.
These underlying phenomena affect the internalization of
MSNs in the tumor tissues and compromise the efficiency of
passive targeting. However, this behavior could be modified
by attaching an organic constituent to MSNs [114, 115].
Additionally, the resulted opsonization from nonspecific ad-
sorptions of plasma proteins on the MSNs surface affects the

passive targeting. This adsorption creates protein corona that
rapidly cleared via RES system [116]. PEGylation is a com-
mon strategy used to overcome these phenomena. PEGylation
can be achieved by surface functionalization of MSNs using
polyethylene glycols (PEGs) [117]. This functionalization
process reduces the protein binding via electrostatic repulsion
and steric hindrance effects. The optimum PEG molecular
weight for this purpose is 10,000–20,000 g/mol. Moreover,
PEGylated MSNs displayed a significant reduction in hemo-
lysis events [118]. Recently, the influence of surface modifi-
cation of MSNs using lipids and PEGs on mesenchymal stem
cell internalization was investigated [119]. This modification
resulted in improving internalization capacity 17 times higher
(> 80%) than the unmodified ones. On the other hand, the
protein resistance character was reduced at temperatures
higher than 35 °C. Moreover, the pharmacokinetics property
of PEGylated MSNs was altered over time with repeated

Table 1 Reviewed stimuli
employed for drug delivery using
MSNs

Stimuli Mechanisms Reference

1. External stimuli

Temperature MSNs coating with PNIPAM [38]

Dual responsive MSNs

(Magnetic field + temperature)

Increase of temperature under the action of an alternating magnetic field

[39]

Magnetic
field

Superparamagnetic iron core in MSNs [40–42, 51]

Magnetic MSNs+ cyclic amino acid lyp [46, 48, 49]

Magnetic MSNs + quantum dots as a cap [50]

Light NIR [54, 61–64, 67]

MSNs capped with gold nanoparticles [59, 65]

Activated via photosensitizer agent [56, 58, 60]

Dual responsive MSNs (NIR + pH) Perylene-functionalized poly
(dimethyl-aminoethyl methacrylates)

[68]

Ultrasound -MSNs were synthesized by grafting 2-(2methixyethoxy) ethyl
methacrylate co-tetrahydro-pyranyl methacrylate on its surface

[70]

2. Internal stimuli

pH PH-responsive mesoporous silica spheres, accomplished by coating with
poly (methacrylic acid-co-vinyl triethoxylsilane) (PMV).

[72]

Conjugating pH-sensitive cleavable linker to MSN pores via hydrazine. [73]

A poly acrylic acid grafted to MSNs [74]

Acid- liable acetal linker and gold nanoparticles capped onto the MSN. [75]

MSNs capped with ZnO (Acidic cleavage) [76]

Enzyme Hydrolyzed starch attached to MSNs surface [78]

Lactose capped MSNs [79]

MSNs anchored to avidin via MMP9, specifically target over
expressing-MMP9 cancer sites

[82]

MSN-dependent cathepsin B [83]

Redox S-S cleavage disassembly [89–92]

Small
molecules

Glucose concentration [93, 94]

Anionic small silica nanoparticles (oral insulin delivery) [95]

Competitive binding in presence of ATP [99]

ATP, denosine triphosphate; pNIPAM, poly(N-isopropylacrylamide); NIR, near infrared radiation; ZnO, zinc
oxide
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injections in animals [120]. It was emphasized that PEGs pro-
duce anti-PEG IgM that resulted in faster blood elimination
[120]. Recently, the conjugation of MSNs with zwitterionic
copolymers resulted in enhancing the stability and increasing
blood circulation half time [121].. Lipid coating has also been
applied as an alternative strategy to escape from RES clear-
ance [122]. The charge on the surface of the nanoparticles
plays a significant role in passive targeting. Since the cell
membranes are negatively charged, positively charged surface
nanocarriers offer higher cell uptake than the negatively or
neutrally charged ones. The final surface charge of
nanocarriers tends to be negative due to plasma coating
[123]. Surface functionalization of MSNs with contrast agent
indocyanine green (ICG) was investigated for photoacoustic
imaging to overcome ICG serum protein binding problems
and rapid clearance [124]. NH2 modification of MSNs
displayed higher ICG loading ability (16.5 wt%) compared
to PO3 modified MSNs (3.5 wt%). Furthermore, NH2MSNs
showed 1.34-fold PA signal improvement compared to ICG
alone. MSNs modification with silanes having NH2 or PO3

groups resulted in improving the solubility of Vorinostat for
the treatment of cutaneous T cell lymphoma (3.9-fold and 4.3-
fold respectively, compared to the free drug) [125].
Furthermore, resveratrol was efficiently encapsulated with
NH2 and PO3 modified MSNs. These MSNs showed dose-
dependent sensitization of docetaxel for the hypoxic condition
in prostate cancer [126].

4.2 Active targeting

Active targeting relies on the interaction between cancer cells
and drug loading cargos. Functionalizing the surface ofMSNs
with a specific ligand is necessary for the active targeting of
cancer cells. Macromolecules, antibodies, nucleic acids, vita-
mins, sugars, and peptides are examples of ligands that ap-
plied to anchor the MSNs for successful active targeting. This
strategy depends on the ligand affinity to the cancer cells
overexpressed receptors [127]. In general, the site-specific
active targeting strategies can be classified into a tumor cell,
vascular, and subcellular organelles targeting (Fig. 7).

4.2.1 Surface functionalization of MSNs for cancer
applications

4.2.2 Functionalization by folic acid

Targeting using folic acid has been widely used in many
in vitro studies, yet there are limited reports discussed
in vivo studies. To illustrate, docetaxel-loaded folic acid
MSNs showed improved cellular uptake, apoptotic, and anti-
cancer activity against breast cancer MCF-7 cells. The vivo
fluorescent imaging revealed the accumulation of folic acid
MSNs in the kidney of healthy mice [129]. Other conducted

studies compared the performance of camptothecin-loaded
MSNs to folic acid functionalized camptothecin/MSNs in
terms of xenograft pancreatic cancer suppression. Folic acid-
functionalized camptothecin/MSNs provided excellent bio-
compatibility and significant inhibition of tumor growth
[130]. Naturally originated anticancer prodrug colchicine,
quercetin, and curcumin have been loaded on folic acid con-
jugated MSNs. These novel MSNs were successfully
employed in targeting vitro hepatocellular cancer cells
(HeLa). Additionally, they showed marked enhanced
targeting to liver cancer cells [131].

4.2.3 Functionalization by mannose

Another promising approach is the functionalization of MSNs
using mannose. Anchoring mannose to MSNs with photosen-
sitizer showed remarkable targeting breast cancer cells
(MDA-MB-231). Mannose exhibited high photodynamic ef-
ficiency on breast cancer cells [132]. Cancer cells were dem-
onstrated to have a high affinity to glycosylated moieties. The
galactose-conjugated fluorescent nanoparticles were designed
using lactobionic acid (LA) through EDAC linkage. They are
highly selective to liver cancer cells without harming the nor-
mal ones [133]. Besides, colorectal cancer cells can be
targeted using galactose-functionalized camptothecin/
porphyrin-loaded MSNs. This synergistic combination of
photodynamic therapy (porphyrin) and targeted drug delivery
(camptothecin) enhanced the internalization of MSNs in the
endosome [134].

4.2.4 Functionalization by monoclonal antibody

The monoclonal antibody can target cell receptor antigens that
are overexpressed on cancer cells more than that
overexpressed on the normal ones. For this purpose, a mono-
clonal antibody (mAb) functionalizedMSNs containing green
fluorescent dye were prepared by grafting Herceptin to MSNs
outer surface for selective targeting epidermal growth factor
receptor HER2/neu glycoprotein. The synthesized nanocom-
posites showed high internalization in breast cancer cells as
well as selective targeting by Herceptin [135]. Epithelial cell
adhesion molecule antibody (EpCAM) is a transmembrane
glycoprotein, which is overexpressed in many cancer cells
and cancer stem cells. EpCAM acts as an efficient preventive
of metastatic cancer by targeting the circulating tumor cell and
inhibiting the contact-invasion to vascular intima [136].
Interestingly, long-circulating (EpCAM) grafted to mifepris-
tone (MIF)-loaded MSNs prevented lung metastasis cascade
in the mouse. This system selectively targets colorectal cancer
cells in both cell and blood mediums [137]. Similarly,
doxorubicin-loaded MSNs anchored to EpCAM-aptamer
were efficiently delivered to colon EpCAM overexpressing
SW620 tumor cells. This unique design exhibit a controlled
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release pattern, and the drug release was favored in acidic
medium (pH 5.5) resulted in improving targeted therapy and
reducing side effects [138]. Mucin-1 is also a transmembrane
glycoprotein that is overexpressed nearly in all epithelial can-
cer cells. Near-infrared MSNs were linked to the mucin-1
antibody successfully to detect primary breast carcinoma and
to track breast cancer cell metastases in transgenic mouse
model [139]. Recently, targeting cancer stem cells have
grabbed researchers’ interest in initiating and maintaining tu-
mor proliferation. For instance, daunorubicin-loaded MSNs
were conjugated to succinic anhydride capped with the anti-
B220 antibody for targeting leukemia stem cells. Also, incor-
porating these MSNs markedly retarded leukemia prolifera-
tion in mice model [140].

4.2.5 Functionalization by DNA aptamer

Recently, the functionalization using signal responsive DNA
switches has gained a lot of attention, making them valuable
alternatives to antibodies and peptides. Various triggers can be
used to stimulate the DNA switches such as light, metal ions,
pH, and aptamer substrate complexes [141]. The release of the
substrate entrapped in MSNs is controlled by tailoring nucleic
acid tags. In normal cases, this tag inhibits the release of the
substrate from the MSN pores. On the other hand, the pres-
ence of a biomarker induces a catalytic decomposition
resulting in nucleic acid rearrangement and pore opening, per-
mitting the substrate release [142]. Nucleic acid cap identifies
molecular biomarkers via aptamer substrate complexes [142].
Mucin-1 is overexpressed in about 90% of breast cancer ther-
apies. Safranin O-loaded MSNs have been capped with nega-
tively charged aptamers for efficient internalization in MDA-
MB-231 breast cancer cells and controlled substrate release.

Furthermore, the MSNs were radiolabeled with 99mTC for
improved carcinoma targeting [143].

4.2.6 Functionalization by hyaluronic acid

Hyaluronic acid (HA) is the main component of the extracel-
lular matrix of the biocompatible glycosaminoglycan needed
for growth and maintaining tissue stability. Many tumor cells,
such as CD44, have been reported to have overexpression to
HA. Besides, HA exhibits multifunctional moieties available
for binding several anticancer drugs and nanocarriers. Thus,
HA functionalized MSNs are widely used in various pharma-
ceutical applications [144]. Colon cancer cell (HCT-116) sur-
face exhibits CD-44 overexpression. Therefore, it has been
targeted using HA-conjugated doxorubicin-loaded MSNs.
High apoptosis to HCT-116 and enhanced internalization in
the tumor cells was achieved [145]. Lee et al. investigated for
the first time the antiviral characteristics of functionalized
MSNs for herpes simplex virus infection [146]. They demon-
strated that glycosaminoglycans mimetic functionalized
MSNs act as viral binding/entry inhibitors that prevent the
cells from being infected by HSV-1 and HSV-2.

4.2.7 Functionalization by peptides

The integrin receptor is overexpressed in various cancer cells,
and this receptor could be selectively targeted using
tripeptides (arginine-glycine-aspartic acid) (RGD). For in-
stance, MSNs were designed for NIR-responsive drug deliv-
ery and chemo/photothermal therapy. RGD sequences were
anchored on the doxorubicin-loaded MSNs surface, and they
showed efficient internalization in tumor cells through
receptor-mediated uptake and high stability in the blood-
stream [147]. RGD anchored to MS-encapsulated gold

Fig. 7 Schematic diagram
illustrating active targeting by
MSNs. (1) Cancer vascular
targeting. (2) Cancer cell
targeting. (3) Nuclear targeting
(reprinted with permission from
128)
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nanorods offered an improved uptake in breast carcinoma via
alpha V beta3 integrin, and they significantly enhanced the
radio-sensitization of triple-negative breast cancer cells
[148]. ADDA-TCPP amphiphile peptides were immobilized
onto doxorubicin-loaded MSNs. These MSNs blocked the
premature release of doxorubicin via the hydrophobic interac-
tions between alkyl sequences of ADDA-TCPP. Additionally,
the release of the drug was triggered by glutathione [149].
Moreover, MSNs showed promising potential for guided tis-
sue regeneration [150]. Xu et al. fabricated MSNs by coaxial
electrospinning, where both growth and antibiotic factors
were loaded in the core and shell of MSNs, respectively.
These MSNs demonstrated sustained release patterns of the
growth factor besides efficient ontogenetic regeneration abil-
ities towards bone marrow stromal cells (BMSCs) as well as
excellent antibacterial properties.

4.3 Vascular targeting

Angiogenesis (formation of new blood vessels) is necessary for
the growth and metastasis of cancer cells [151]. Therefore, vas-
cular targeting is considered as a promising alternative for
targeting solid tumors. This strategy is based on indirect
targeting carcinomas through destructing endothelial cells of
tumor vessels to cease their needed oxygen and nutrients
[152]. Vascular targeting is more favored than other approaches
as cellular internalization in tumors and extravasation from
blood vessels are not required [153]. Therefore, many chal-
lenges can be overcome using this strategy, such as tumor het-
erogeneity and poor delivery. Although the concept of vascular
targeting was introduced in the 1920s [154], but the first suc-
cessful vivo cancer vascular targeting was achieved by Burrows
and Thorpe in 1993 [155]. This approach is based on conjugat-
ing the nanocarriers with vasculature-targeting ligands such as
vascular endothelial growth factor (VEGF) and arginine gly-
cine aspartic acid (RGD) peptides. In addition, VEGFR-
targeted MSNs anchored to Cu-NOTA/PEG-VEGF were syn-
thesized [154]. These MSNs displayed threefold improvement
in terms of cancer accumulation [156]. Similarly, conjugating
ursolic acid andVEGF-targeted siRNA toMSNs anchoredwith
folic acid were examined on folate receptor overexpressing
HeLa cells and folate receptor-negative HepG2. They com-
bined active and passive targeting concepts and achieved a
significant improvement in targeting efficiency. Furthermore,
the stability of VEGF-targeted siRNAwas enhanced using folic
acid ligand [157]. In summary, incorporating suitable ligands
results in improving targeting efficiency and overcoming the
existing challenges.

4.4 Nuclear targeting

The concept of nuclear targeting using MSNs has been intro-
duced by Pan et al. [158]. MSNs were conjugated to nuclear

localization signal TAT peptides. The MSNs-TAT systems of
50-nm diameter were able to target the nucleus and accumu-
late doxorubicin in the tumor nucleus. This approach has been
developed to overwhelm many challenges. For instance, sev-
eral free anticancer drugs provided a suppressed therapeutic
efficiency after reaching the nucleus owing to many physio-
logical barriers [159]. The nuclear-targeted strategy is adhered
via anchoring MSNs surface to nuclear localization signals
such as gold nanoparticles [160, 161], magnetic nanoparticles
[162], and quantum dots [163]. Recently, this approach has
been widely applied in gene therapy [164]. To illustrate, func-
tionalized MSNs were employed in codelivery of osteogenic
genes and drugs. This dual system showed synergistic im-
provement in the osteogenic impact of stem cells. Moreover,
doxorubicin delivery via nuclear targetedMSNs overcome the
multidrug-resistant problem (MDR) by upregulating the genes
responsible for the apoptosis of multidrug-resistant cells.
Additionally, this approach accomplished downregulated ex-
pression of the apoptosis-suppressing gene bcl-2 and
prevented the activation of the DNS repair system for im-
proved MDR cells apoptosis [165].

4.5 Multistage targeting

This approach was recently developed due to unsatisfactory
therapeutic outcomes resulted from single targeting ones (can-
cer cells, nuclei, or endothelial cells). This novel strategy can
be achieved via conjugating multiple ligands on the surface of
MSNs exhibiting high selectivity and affinity to different tu-
mor types. This design results in targeting various disease
sites, a high therapeutic index, and reduced systemic side ef-
fects [166]. Multistage ongoing targeting approach relies on
synthesizing magnetic MSNs for efficient accumulation in the
cancer tissues, then conjugating TAT peptide toMSNs surface
for nuclear targeting, and finally attaching charge-
conversional polymer originated from folate anchored chito-
san. This smart approach causes accumulation of MSNs in the
tumor using magnetic nanoparticles, enhances cellular uptake
via folate receptor endocytosis, and targets cell nucleus using
TAT peptides [167]. Pan et al. have extrapolated the multi-
stage targeting approach to vivo application. MSNs were
coupled with RGD peptide that resulted in efficiently targeting
the tumor vasculature and cell membrane [168]. Additionally,
TAT peptides were used for nuclear targeting signals that
guaranteed efficient nuclear uptake. Significant enhancement
in therapeutic efficacy and tumor suppression (98.6%) were
noticed as a result of sequential vascular-to-cell nuclear-
targeted drug delivery. Naz et al. developed novel
multistage-targeted anticancer MSNs that are capable of
targeting both CD44 and mitochondria [169]. Utilizing
triphenylphosphine (TPP) as a mitochondrial targeting agent
was anchored onto the surface of MSNs. Doxorubicin was
loaded in MSNS, and HA was capped with MSNs (as a
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tumor-targeting agent). CD44 receptor of tumor cells uptake
these MSNs composite, then accumulated in mitochondria
due to the presence of the TPP compound. HAase enzyme
overexpression in cancer cells caused degradation of HA
and release of doxorubicin and resulted in efficient eradication
of cancer cells. Hollow MSNs anchored with tLyp-1 peptide
(tHMSN) for dual-targeting drug delivery to cancer cells, and
angiogenic blood vessels were synthesized by Liu et al. [170].
Doxorubicin loaded on tHMSN showed a high inhibitory ef-
fect on MDA-MB-231 cells and HUVECs in vitro. In another
study, cell-targeting agents, folic acid, dexamethasone, and
nucleus targeting agent (TAT) were coupled in 40 nm
MSNs [171]. These cell-nucleus sequential targeting-based
MSNs improved the inhibition efficacy of doxorubicin on
Hela cells and decreased the toxic side effects on normal cells.

5 Conclusion

It is evident from ineffective conventional therapies that there
is a desperate need for distinct and promising therapies. As
extensively discussed, MSN-based nanostructure technology
has the potential to play critical functions in cancer treatment.
MSNs have promising potential in drug delivery due to its
unique physical-chemical characteristics. Through
functionalization with various groups and molecules on
MSNs surface, stimuli-responsive and targeting approaches
have been proved to provide unprecedented opportunities
and advances for novel theranostic modalities. However, de-
spite the extraordinary breakthrough that has been made to
modify and enhance MSNs based drug loading and release,
still, using MSNs in clinical applications require more efforts
to translate these preclinical findings into the clinic. Currently,
the most significant studies are achieved as in vitro experi-
ments (cell culture), while tissue penetration is not demon-
strated yet. Such results may not mimic the in vivo environ-
ment and described critical difficulties in translating these
MSNs based nano-systems in the clinical trials. Furthermore,
it is widely noticed that very few articles discussed the fate and
the clearance pathways of these nanomaterials that may be
accumulated and caused massive toxicity. Therefore, more
preclinical in vivo animal studies need to be conducted to
demonstrate various unknown systemic aspects of these
nanocarriers, such as processing, accumulation, and elimina-
tion in the living organisms.

Nanostructured materials, namely mesoporous silica nano-
particles, represent a promising candidate in drug delivery
applications. In this review, we highlighted the recent insights
in the functionalization of MSNs for cancer therapy applica-
tions, including stimuli triggered drug release and cancer-
targeted delivery. We also reviewed the current designs ap-
plied for successful targeting using MSNs. Prospective

investigations are still needed to ensure the introduction of
MSN-based drug delivery systems to the clinical market.
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