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Direct determination of absolute stereochemistry of α-methylselenocysteine
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A B S T R A C T

Mosher amides of α‐methylselenocysteine were synthesized to determine the absolute stereochemistry of the
sterically hindered α‐carbon utilizing 1H, 13C, 19F, and 77Se NMR spectroscopies. After analysis of these spectra
using the established Mosher method, the stereochemistry of the α‐carbon was determined to be (R), which was
subsequently confirmed using x‐ray crystallography.

1. Introduction

α‐Methyl amino acids have seen a resurgence of interest in recent
years. Incorporating α‐methyl amino acids into proteins and peptides
results in increased stability [1,2] and distinctive secondary structures
[3–6]. We have previously synthesized several α‐methyl amino acids
from a common starting material, which most recently includes α‐
methylselenocysteine [7–10]. Scheme 1 illustrates our method of
preparing α‐methylselenocysteine utilizing Pig Liver Esterase (PLE)
to provide the needed chirality with a high level of optical purity. In
general, PLE hydrolysis tends to produce the (R)‐enantiomer. How-
ever, there are cases where PLE hydrolysis favors the formation of
the (S)‐enantiomer which can lead to uncertainty in the assignment
of the resulting stereocenter for unexplored substrates [11,12]. There-
fore, it is necessary to have a convenient method that can reliably
assign the absolute stereochemistry of the α‐carbon.

The Mosher method has seen numerous uses as a reliable method to
analyze chiral molecules by NMR [13]. The Mosher method is success-
ful in identifying enantiomeric excess as well as establishing absolute
stereochemistry to an unassigned stereocenter. This method typically
employs a secondary stereogenic carbon bearing an alcohol or amine
that is converted to an ester or amide, respectively, by coupling α‐meth
oxy‐α‐trifluoromethylphenylacetic acid (MTPA) [14]. While alterna-
tive chiral derivatizing reagents and techniques have been developed
by other labs [15–17], the Mosher method using MTPA is more com-
monly used. However, if the stereogenic carbon is tertiary, the Mosher
method becomes problematic since the steric bulk can prevent access
to the expected conformation as there is no longer an α‐hydrogen to sit

in the MTPA plane on the original substrate [13,18]. With this added
complication, many opt to use the method for enantio‐purity determi-
nation for these congested systems [19–21]. To the best of our knowl-
edge, there is only a single report employing the Mosher method on
tertiary alcohols [18]. We chose to explore the possibility to achieve
direct stereocenter assignment in the congested systems of α‐methyl
amino acids utilizing the Mosher method.

2. Results and discussion

We utilized the Mosher method in an attempt to determine the
absolute stereochemistry of α‐methylselenocysteine 2, which we
hypothesized to be the (R)‐enantiomer (ca. 88% ee) based on compar-
isons of the optical rotation data with that of an α‐methylcysteine
homologue of known absolute configuration [22]. Amino acid 2 was
converted to two diasteromeric MTPA‐amides, (X,R)‐5 and (X,S)‐5
(where X is the unassigned stereochemistry of the α‐carbon of the
amino acid), through a series of reactions (Scheme 2), with retainment
of the original stereochemistry at the stereocenter in question. Several
spectra were obtained comparing the chemical shift differences due to
anisotropic effects of the two diastereomers.

The α‐methyl hydrogen atoms show a strong shielding effect from
the MTPA‐phenyl (+13.4 Hz with a 400 MHz spectrometer using
the δ(X,S)‐δ(X,R) convention) in 1H NMR for (X,R)‐5 which strongly
correlates to an ipsilateral position to the phenyl, whereas the opposite
is observed when considering (X,S)‐5 (Fig. 1). Due to their diastereo-
topic nature, the methylene protons (+1.7 and + 11.6 Hz) adjacent
to the selenium did not shift, and is presumed to be caused by the
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geminal 2J‐coupling or shielding from the adjacent selenium atom
interfering with the anisotropic effects. The tert‐butyl protons experi-
ence only a small anisotropic shift (−6.2 Hz), believed to result from
the larger distance from the MTPA‐phenyl. Considering the more reli-
able anisotropic shifts presented in the 1H spectra, the side groups take
the configurations that are presented in Fig. 1 for each diastereomer.

The 13C spectra were more conclusive with stereocenter assignment
than the 1H spectra. In agreement with the 1H spectra, the α‐methyl
carbon (+28.6 Hz) experienced a large anisotropic shift upfield with
(X,R)‐5 (Fig. 2). Inversely, the methylene carbon atom (−43.5 Hz)
as well as the quaternary tert‐butyl carbon atom (−14.8 Hz) are
shifted upfield on (X,S)‐5. The tert‐butyl methyl carbon atoms on both
diastereomers did not experience any noticeable anisotropic shifts,

which could be attributed to the increasing distance from the MTPA‐
phenyl tapering its influence on the methyl carbon atoms. A dimin-
ished anisotropic effect was also noticed in the 1H spectra as the tert‐
butyl protons also experienced very little anisotropic shifting. Consid-
ering the observed anisotropic shifts in the 13C spectra, the side groups
match with the configurations proposed for the 1H spectra as sug-
gested in Fig. 1, with even more confidence.

The resonances of the trifluoromethyl groups of each diastereomer
are markedly magnetically inequivalent in the 19F NMR (Fig. 3) spec-
tra. The 19F signal of (X,R)‐5 is downfield compared to (X,S)‐5. Based
on literature precedence [13,23,24], this is caused by the steric effects
of a large side group interacting with the MTPA‐phenyl, destabilizing
the rotomer.

Scheme 1. Synthesis of 2 showing the formation of the stereocenter from PLE hydrolysis [7].

Scheme 2. Synthesis of the MTPA-amides from 2.

Fig. 1. 1H spectra of (X,S)-5 (blue) and (X,R)-5 (red) showing the sp3 hybridized region as well as structures showing the predicted placements of groups off of the
α-carbon. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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This destabilization causes the trifluoromethyl to spend less time in
the preferred deshielding cone of the MTPA‐carbonyl resulting in an
overall upfield anisotropic shift when the MTPA‐phenyl and the large
side group are ipsilateral. If the MTPA‐phenyl is on the same side as
the smaller group, there is less destabilization, and therefore the triflu-
oromethyl remains longer in the carbonyl deshielding cone. With the
selenium containing side group being much larger than the methyl
group, and the trifluoromethyl group in (X,S)‐5 experiencing the
upfield shift, the 19F NMR corroborates the previously proposed con-
figurations presented in Figs. 1 and 2.

We hypothesized that 77Se NMR would give a large anisotropic
shift difference between the two disateromers since selenium is sensi-
tive to its electronic environment [25–27]. However, the 77Se shift dif-
ference was small (ca. 1 ppm) (Fig. 4). The 77Se spectra gave results
that appear contradictory to the hypothesized configuration of the α‐
carbon. Other effects, such as steric hindrance, atom distance, or the
large electron cloud shielding the nucleus may prevent the observance
of significant chemical shift differences.

Based on all the spectra collected, we have determined the config-
uration of the side groups on the α‐carbon, leaving the ester to sit in
the MTPA‐plane. We propose that the ester will sit on the same side
of the molecule as the amide hydrogen, allowing for hydrogen bond
formation. With the ester sitting syn‐periplanar to the amide hydrogen,
the absolute configuration of the α‐carbon would be (R) as illustrated
in Fig. 5. This configuration coincides with what is suspected when
compared to the α‐methylcysteine analogues synthesized using our
PLE method. Both α‐methylcysteine and α‐methylselenocysteine prod-
ucts have the same direction of rotation, −1° (c = 1.00 in CHCl3 at
91% ee) [28] and −2.1° (c = 1.07 in CHCl3 at 88% ee) [7] respec-
tively, supporting the hypothesis that the stereocenters are the same
configuration.

After completing the Mosher analysis, it was fortuitous that x‐ray
quality crystals of 1 could be obtained. The crystals of 1 were grown
from octane by slow evaporation. The enzymatic product 1 shares
the same configuration as 2 as it is well established that the Curtius
rearrangement employed in the synthesis is known to preserve the
stereochemistry at the α‐carbon [28]. X‐ray diffraction on this crystal
confirmed the assignment of an (R)‐stereocenter of the parent amino
acid, ultimately validating the assignment of the stereocenter utilizing
the Mosher method (Fig. 6).

Based on our findings, a sterically hindered, tertiary, stereocenter
bearing an amine can be assigned utilizing the classic Mosher method.
With the added steric effects provided from the α‐methyl group, these
structures do not sit in the MTPA‐plane as normally observed when an
α‐hydrogen is present. This procedure provides a convenient method
of determining the absolute stereochemistry of novel α‐methyl amino
acids.

Fig. 2. Sp3 regions of the 13C spectra of (X,S)-5 (blue) and (X,R)-5 (red). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. The 19F spectra of the diastereomers ((X,S)-5, blue; (X,R)-5, red)
comparing the trifluoromethyl fluorine shifts. In (X,S)-5, the trifluoromethyl
group is shielded, so the larger selenium containing group must be on the
same side as the phenyl. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 77Se NMR spectra of (X,S)-5 (blue) and (X,R)-5 (red) spiked with diphenyl diselenide (463 ppm) as an internal standard. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Both diastereomeric amides laid in a plane. Based on the data the
amides appear to sit in these conformations with the parent amino acid having
the (R)-configuration.

Fig. 6. X-ray crystal structure of the enzymatic hydrolysis product at an elipsoid displacement probability of 50%. The α-carbons (C6A and C6B) have (R)-absolute
stereochemistry.
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