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Abstract. Accelerated melting of the Greenland Ice Sheet
has increased freshwater delivery to the Arctic Ocean and
amplified the need to understand the impact of Greenland
Ice Sheet meltwater on Arctic greenhouse gas budgets. We
evaluate subglacial discharge from the Greenland Ice Sheet
for carbon dioxide (CO2) and methane (CH4) concentrations
and δ13C values and use geochemical models to evaluate sub-
glacial CH4 and CO2 sources and sinks. We compare dis-
charge from southwest (a sub-catchment of the Isunnguata
Glacier, sub-Isunnguata, and the Russell Glacier) and south-
ern Greenland (Kiattut Sermiat). Meltwater CH4 concentra-
tions vary by orders of magnitude between sites and are sat-
urated with respect to atmospheric concentrations at Kiattut
Sermiat. In contrast, meltwaters from southwest sites are su-
persaturated, even though oxidation reduces CH4 concentra-
tions by up to 50 % during periods of low discharge. CO2
concentrations range from supersaturated at sub-Isunnguata
to undersaturated at Kiattut Sermiat. CO2 is consumed by
mineral weathering throughout the melt season at all sites;
however, differences in the magnitude of subglacial CO2
sources result in meltwaters that are either sources or sinks
of atmospheric CO2. At the sub-Isunnguata site, the predom-
inant source of CO2 is organic matter (OM) remineralization.
However, multiple or heterogeneous subglacial CO2 sources
maintain atmospheric CO2 concentrations at Russell but not
at Kiattut Sermiat, where CO2 is undersaturated. These re-
sults highlight a previously unrecognized degree of hetero-
geneity in greenhouse gas dynamics under the Greenland Ice

Sheet. Future work should constrain the extent and controls
of heterogeneity to improve our understanding of the impact
of Greenland Ice Sheet melt on Arctic greenhouse gas bud-
gets, as well as the role of continental ice sheets in green-
house gas variations over glacial–interglacial timescales.

1 Introduction

Glaciers play an important role in global chemical cycles
due to the production of fine-grained sediments that partic-
ipate in carbonate and silicate mineral weathering reactions
(Table 1), which are the principal sink of atmospheric CO2
over geologic timescales (Berner et al., 1983; Walker et al.,
1981). Variations in the weathering intensity of comminuted
sediments may contribute to glacial–interglacial atmospheric
CO2 variations as sediments are alternately covered by ice
and exposed following ice retreat. However, the importance
of CO2 consumption by mineral weathering is poorly un-
derstood, including effects from the advance and retreat of
continental ice sheets (Ludwig et al., 1999). Recent eval-
uations of carbon budgets in proglacial environments indi-
cate that mineral weathering results in net sequestration of
atmospheric CO2, suggesting that proglacial systems are un-
derrecognized as Arctic CO2 sinks (St Pierre et al., 2019);
however, alternate processes could lead to the production of
greenhouse gases in glacial systems. For instance, CH4 pro-
duction in anaerobic subglacial environments driven by the
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remineralization of organic matter (OM) contained in soils
and forests covered during glacial margin fluctuations has
been suggested as a potential carbon feedback to drive warm-
ing (Sharp et al., 1999; Wadham et al., 2008). Because the
global warming potential of CH4 is 25 times greater than
CO2, even limited subglacial methanogenesis has the po-
tential to strongly impact the greenhouse gas composition
of glacial meltwater. Combined inorganic and organic sub-
glacial processes may therefore produce glacial meltwater
that is a source or sink of greenhouse gas. While the net im-
pact of these processes on modern carbon fluxes is poorly
constrained, determining these impacts will improve mod-
ern carbon budgets as well as depictions of how fluxes may
have evolved during the advance and retreat of continental
ice sheets.

In subglacial environments where remineralization is lim-
ited by low OM availability, the major element solute load
of glacial meltwater is typically dominated by products of
mineral weathering reactions (Tranter, 2005). The extent of
mineral weathering in subglacial environments depends in
part on the availability of acids to drive reactions, namely
sulfuric and carbonic acids (Table 1). Sulfuric acid is de-
rived from the oxidation of reduced sulfur species, which
largely occur as iron sulfide minerals including pyrite (Tran-
ter, 2005). Sulfide oxidation may occur abiotically; however,
the kinetics of microbially mediated sulfide oxidation is sev-
eral orders of magnitude faster and may lead to local deple-
tion of oxygen given a sufficient supply of sulfide minerals
(Sharp et al., 1999). In contrast, carbonic acid may be derived
from multiple external or in situ sources of CO2 to the sys-
tem. The dominant external source is supraglacial meltwa-
ter that flows to the subglacial system through moulins fol-
lowing equilibration with atmospheric CO2 (Fig. 1). Unlike
proglacial environments where free exchange between water
and the atmosphere may resupply CO2 consumed by weath-
ering, subglacial environments may be partially or fully iso-
lated from the atmosphere, limiting further atmospheric CO2
invasion and thus the extent of mineral weathering with car-
bonic acid. However, additional atmospheric CO2 may be de-
livered in open portions of the subglacial environment though
exchange in fractures or moulins along subglacial flow paths
or in partially air filled conduits, allowing a much greater
magnitude of carbonic acid mineral weathering (Graly et al.,
2017). CO2 may also be derived from in situ sources, such
as gaseous CO2 contained in ice bubbles of basal ice or fluid
inclusions in rocks that release volatiles (including CO2) fol-
lowing mechanical grinding (Macdonald et al., 2018). When
OM is available, its remineralization also generates CO2 (and
potentially CH4) along with nutrients, but low OM availabil-
ity in many subglacial systems limits remineralization as a
CO2 source (Fig. 1).

The role of subglacial carbon processes may play an in-
creasingly important role in modern Arctic carbon budgets
as disproportionate warming increases glacial meltwater and
sediment fluxes to the ocean, particularly from the Green-

Figure 1. Conceptual diagram of subglacial sources and sinks of
CO2 and CH4. Arrows indicate the direction of fluxes. Boxes rep-
resent processes, and sources of gases to subglacial meltwaters are
indicated by blue text, while sinks of gases to subglacial meltwater
are indicated by red text. Gas bubbles, mechanical grinding, and
OM remineralization are grouped because all are CO2 and CH4
sources.

land Ice Sheet (Wadham et al., 2019). The is the last re-
maining ice sheet in the Northern Hemisphere following col-
lapse of other ice sheets since the Last Glacial Maximum
(∼ 20 ka). It has been losing mass at increasing rates that av-
eraged 286± 20 Gt/yr between 2010–2018, representing a 6-
fold increase since the 1980s (Mouginot et al., 2019). While
mineral weathering significantly modifies the chemical com-
position of Greenland Ice Sheet subglacial discharge (e.g.,
Hindshaw et al., 2014; Deuerling et al., 2018; Urra et al.,
2019) and should consume CO2 similar to other glacial and
proglacial environments, the recent identification of micro-
bially driven reactions (including methanogenesis) in sub-
glacial environments of the Greenland Ice Sheet indicates
that organic processes may also play a role (Dieser et al.,
2014; Lamarche-Gagnon et al., 2019). The relative impor-
tance of subglacial greenhouse gas sinks (CO2 consumption
through mineral weathering) and sources (such as OM rem-
ineralization) determines the greenhouse gas composition of
subglacial discharge, which may then serve as a source or a
sink of atmospheric greenhouse gases. Constraining the rela-
tive impacts and variability of these processes underneath the
Greenland Ice Sheet will provide important information re-
garding the current and future impact of Greenland Ice Sheet
loss on Arctic carbon budgets, as well the role of continental
ice sheets on carbon cycle feedbacks.

To evaluate the net impact of carbon processes on the
greenhouse gas composition of subglacial discharge of the
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Table 1. Mineral weathering reactions and impacts on dissolved CO2 concentrations.

Eq. Mineral Acid Abbreviation∗ Reaction Impact on CO2

(1) Carbonate Carbonic CarbCA (Ca, Mg)CO3+ H2O+ CO2→ (Ca2+, Mg2+)+ 2HCO−3 CO2 sink
(2) Sulfuric CarbSA 2(Ca, Mg)CO3+ H2SO4→ 2(Ca2+, Mg2+)+ SO−2

4 + H2O + CO2 CO2 source
(3a) Silicate Carbonic SilCA (Ca, Mg)Al2Si2O8+ 2CO2+ 3H2O→ (Ca2+, Mg2+)+ 2HCO−3 + Al2Si2O5(OH)4 CO2 sink
(3b) (Na, K)AlSi3O8+ CO2+ 5.5H2O→ (Na, K) + HCO−3 + 0.5Al2Si2O5(OH)4+ 2H4SiO4 CO2 sink
(4a) Sulfuric SilSA (Ca, Mg)Al2Si2O8+ H2SO4+ H2O→ (Ca2+, Mg2+)+ SO−2

4 + Al2Si2O5(OH)4 No impact
(4b) 2(Na, K)AlSi3O8+ H2SO4+ 9H2O→ 2(Na+, K+)+ SO2−

4 + Al2Si2O5(OH)4 No impact

∗ Abbreviations are based first on the mineral class (carbonate: carb; silicate: sil) and then on the acid (carbonic acid: CA; sulfuric acid: SA).

Greenland Ice Sheet, we compare water chemistry, dissolved
CO2 and CH4 concentrations, and gas stable isotopic com-
positions between three subglacial discharge sites draining
land-terminating glaciers of the Greenland Ice Sheet over the
melt seasons of 2017 and 2018 (Fig. 2). We employ mass
balance models utilizing the concentrations of major cations
and anions to determine the magnitude of the impact on
CO2 concentrations from mineral weathering reactions (Ta-
ble 1). These results are combined with measured gas con-
centrations and δ13C to determine the relative importance of
mineral weathering compared to OM remineralization on the
CH4 and CO2 content of subglacial discharge. We also as-
sess the temporal and spatial variability of these processes
under the Greenland Ice Sheet to improve our understanding
of carbon cycling in Greenland subglacial environments and
the implications of Greenland Ice Sheet mass loss on Arctic
carbon budgets.

2 Methods

2.1 Study locations

Our three subglacial discharge locations are located in south-
west (Fig. 2a, b) and southern (Fig. 2a, c) Greenland (pictures
given in the Supplement). Our sub-Isunnguata watershed (IS;
67◦09′27.1′′ N, 50◦03′25.0′′W) and Russell Glacier water-
shed (RU; 67◦05′22.1′′ N, 50◦14′18.7′′W) drain to the Aku-
liarusiarsuup Kuua, which is a tributary to the Qinnguata
Kuussua. The short stretch of river downstream of the con-
fluence of the Akuliarusiarsuup Kuua and the main stem of
the Qinnguata Kuussua near the town of Kangerlussuaq is
also known as the Watson River (Fig. 2b). The majority of
drainage from the Isunnguata Glacier drains to the north-
ern Isortoq River (Fig. 2); however, a sub-catchment of the
Isunnguata drains to a stream that directly feeds the Aku-
liarusiarsuup Kua, which we refer to as the Northern Trib-
utary, while the Akuliarusiarsuup Kuua refers to river that
flows between the outlet of the Russell Glacier and the con-
fluence with the Qinnguata Kuussua (Fig. 2b). Watson River
discharge is monitored by PROMICE (Programme for Mon-
itoring of the Greenland Ice Sheet; van As et al., 2018), and
total discharge was 4.3 and 3.6 km3 of water in 2017 and

2018, respectively (van As et al., 2018). The total catchment
size for the Isunnguata is 15 900 km2, though the size of the
sub-catchment draining to the Northern Tributary is much
smaller with a drainage area of approximately 40 km2 (Lind-
bäck et al., 2015; Rennermalm et al., 2013); therefore, we
hereby refer to this site as the sub-Isunnguata watershed. The
total drainage area for the Russell Glacier is not precisely
known; however, the catchment draining both the Russell
and Leverett glaciers has been estimated at approximately
900 km2 (Lindbäck et al., 2015), while the Leverett drainage
area alone is estimated at approximately 600 km2 (Hawk-
ings et al., 2016). We therefore estimate the Russell drainage
area at approximately 300 km2, though it may be consider-
ably smaller (van de Wal and Russell, 1994). Discharge from
the third site in southern Greenland, Kiattut Sermiat (KS;
61◦12′13.5′′ N, 45◦19′49.1′′W), drains to the Kuusuaq River
near the town of Narsarsuaq. While Kuusuaq discharge is not
monitored, a previous study using dye tracing techniques es-
timated approximately 0.22 km3 of discharge in 2013, and
its catchment size was estimated at 36 km2 (Hawkings et al.,
2016).

Underlying lithologies differ between sites. Southwest
Qinnguata Kuussua sites are located near the boundary be-
tween the Archean craton to the south and the southern
Nagssugtoqidian Orogen to the north (Henriksen et al.,
2009). The Archean block is composed of granites and gran-
ulite facies orthogneisses that were intruded by mafic dikes
during Paleoproterozoic rifting. These rocks were deformed
and modified during subsequent continent-to-continent colli-
sion in the Paleoproterozoic to create the amphibolite facies
gneisses of the southern Nagssugtoqidian Orogen (van Gool
et al., 2002). Kiattut Sermiat lies within the Paleoprotero-
zoic Ketilidian fold belt (Henriksen et al., 2009). Lithologies
in this region include the Julianehåb granite and associated
basic intrusions and the sedimentary and volcanic rocks of
the Mesoproterozoic Gardar Province that include a suite of
alkaline igneous rocks and basaltic dikes with interbedded
sandstones (Kalsbeek and Taylor, 1985; Upton et al., 2003).

Previous studies have characterized chemical weathering
reactions in subglacial discharge to the Akuliarusiarsuup Kua
and Qinnguata Kuussua (Deuerling et al., 2018; Hasholt et
al., 2018; Yde et al., 2014), in the Kuusuaq that drains Kiat-
tut Sermiat (Hawkings et al., 2016), and in comparison be-
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Figure 2. Google Earth satellite images of study locations in (a) Greenland including (b) locations near the town of Kangerlussuaq, including
the sub-Isunnguata water sampling location (dark blue circle) and Russell water sampling location (light blue square). The gold star represents
the location of AK4, where proglacial river discharge records were collected. (c) Location of Kiattut Sermiat site (orange triangle) near the
town of Narsarsuaq in southern Greenland where water samples were collected. © Google Earth.

tween these two sites (Urra et al., 2019). There has been ex-
tensive work regarding ice sheet dynamics and hydrology in
the southeast glaciers draining to the Akuliarusiarsuup Kua
and Qinnguata Kuussua (Van As et al., 2017, 2018; Lind-
bäck et al., 2015) as well as southern Kuusuaq catchments
(Warren and Glasser, 1992; Winsor et al., 2014). Subglacial
permafrost has been identified near the sub-Isunnguata site
(Ruskeeniemi et al., 2018) and mostly likely formed during
Holocene fluctuations in the ice sheet margin. While a sim-
ilar Holocene ice retreat and re-advance may have occurred
in southern Greenland (Larsen et al., 2016), it is unknown
whether this retreat led to the organic deposits below the ice
sheet.

2.2 Sample collection

We collected water samples from subglacial discharge sites
in spring and fall of 2017 and the summer of 2018 to ob-
serve seasonal variations in water chemistry. To minimize
atmospheric influence, samples were collected as close as
possible to the glacier front where subglacial waters emerge,

which was less than 10 m for the sub-Isunnguata site and ap-
proximately 100 m for the Russell Glacier site. Subglacial
discharge from Kiattut Sermiat site flowed through a glacial
meltwater lake prior to arriving at the sampling location,
which was approximately 1.1 km from the glacial outlet
(Fig. 2) and therefore may experience a more interaction
with atmospheric gases during transport from the subglacial
discharge site to our sampling location. We collected water
samples by pumping water through a 0.5 cm flexible PVC
tube that was placed in flowing water as far as possible from
shore (approximately 1–2 m). A YSI Pro Plus sensor that was
calibrated daily was installed in an overflow cup filled from
the bottom to measure specific conductivity (Sp.C), temper-
ature, pH, dissolved oxygen, and oxidation–reduction po-
tential (ORP). These parameters were monitored until sta-
ble, between about 10 and 30 min, after which samples were
collected and preserved in the field according to the solute
to be measured after being filtered through a 0.45 µm trace-
metal grade Geotech high-capacity disposable canister filter.
Samples for cations and anions were collected in HDPE bot-
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tles; cation samples were preserved with Optima-grade ul-
trapure nitric acid (pH< 2), while no preservative was added
to anion samples. Dissolved inorganic carbon (DIC) samples
were filtered through 0.2 µm filters directly to the bottom
of 20 mL Qorpak glass vials and allowed to overflow until
sealed tightly with no headspace.

Gas samples were collected in duplicate via headspace ex-
tractions according to methods outlined in Repo et al. (2007)
and Pain et al. (2019b). Unfiltered water was pumped into
the bottom of 500 mL bottles until they overflowed. Bottles
were immediately capped with rubber stoppers fitted with
two three-way inlet valves. A total of 60 mL of water was
extracted from one inlet and replaced with 60 mL of atmo-
spheric air (for spring and fall 2017 sampling trips) or ul-
trapure N2 gas in a gas bag (summer 2018 sampling trip).
Bottles were shaken for 2 min to equilibrate headspace gas
with water, and headspace gas was extracted and immedi-
ately injected into 60 mL glass serum bottles that had been
evacuated immediately prior to sample introduction. Sam-
ples were stored at room temperature until analysis, which
occurred within 1 week of collection. Measured headspace
concentrations were converted to dissolved concentrations
using methods outlined in Pain et al. (2019b). When atmo-
spheric air was used for headspace extractions, atmosphere
samples were collected in tandem and analyzed to correct
the calculated dissolved CO2 and CH4 concentrations and
isotopic compositions for atmospheric CO2 and CH4. This
correction altered CH4 concentrations by up to 22 % for one
sample from the Russell Glacier, though less than 5 % for all
other samples, and resulted in a correction of δ13C-CH4 of
up to 1.3 ‰. For CO2, the correction altered concentrations
by up to 15 % for one sample collected at Kiattut Sermiat,
though less than 10 % for all other samples, and resulted in a
correction of δ13C-CO2 of up to 0.4 ‰.

In samples collected in fall 2017 and summer 2018, al-
kalinity was measured in the field laboratory within 3 d
of collection by titration with 0.01 N HCl using the Gran
method. Because alkalinity measurements were not avail-
able for the spring 2017 sampling trip, we estimate alkalin-
ity with PHREEQC modeling and the phreeqc.dat database
(Parkhurst, 1997) using major cations and anions, pH, tem-
perature, and DIC concentrations as model inputs.

2.3 Laboratory analysis

Gas samples were analyzed for CO2 and CH4 concentrations
as well as δ13C-CO2 and δ13C-CH4 on a Picarro G2201-i
cavity ring-down spectrometer in the field within a few days
of collection. Carbon isotopic compositions are reported in
reference to Vienna Pee Dee Belemnite (VPDB). Check
standards of known CO2 and CH4 concentrations and iso-
topic compositions were measured during each sample run
and were accurate within 10 %. Anion and cation concentra-
tions were measured on an automated Dionex ICS-2100 and
ICS-1600 ion chromatograph, respectively. Error on replicate

analyses was less than 5 %. DIC concentrations were mea-
sured on a UIC (coulometrics) 5011 CO2 coulometer cou-
pled with an AutoMate Preparation Device. Samples were
acidified, and the evolved CO2 was carried through a silver
nitrate scrubber to the coulometer where total C was mea-
sured. Accuracy was calculated to be ±0.1 mg/L based on
measurement of check standards.

2.4 Methane modeling

To assess CH4 sources and sinks, we calculate εc, or the car-
bon isotopic fractionation factor between CO2 and CH4 as
defined in Whiticar (1999):

εc = δ
13CCO2 − δ

13CCH4 . (5)

Values of εc reflect methanogenesis pathways (acetoclastic or
CO2 reduction) as well as the extent of oxidation. Values of
εc between approximately 40 ‰ and 55 ‰ are produced for
CH4 generated via acetoclastic methanogenesis, while CO2
reduction produces values between approximately 55 ‰ and
90 ‰. Lower values (εc between 5 and 30) result when CH4
oxidation predominates. Modern atmospheric input without
additional alteration of CO2 or CH4 isotopic systematics re-
sults in a εc value of approximately 40 (Whiticar, 1999).

We calculated CH4 oxidation using the isotopic method
outlined in Mahieu et al. (2008) and Preuss et al. (2013). The
fraction of oxidized methane (fox) in an open system is given
by

fox =
δE− δP

1000× (αox−αtrans)
, (6)

where δE is the measured δ13C-CH4 value for each water
sample, δP is δ13C-CH4 of produced methane, αox is the
oxidation fractionation factor, and αtrans is a fractionation
factor resulting from diffusive transportation of CH4. While
the exact value of δP is unknown, diagenetic alteration of
δ13C-CH4 values through oxidation or transport only enrich
δ13C-CH4 signatures; therefore, the value of δP is taken as
the most depleted δ13C-CH4 signature assuming it is the
least impacted by diagenetic alteration. Literature-reported
values for αox range between 1.003 and 1.049. We calcu-
late the fraction of oxidized methane with the largest frac-
tion factor (αox = 1.049; Mahieu et al., 2008), which yields
the minimum amount of CH4 oxidation required to explain
the observed variations in δ13CH4 and thus is a conserva-
tive estimate for CH4 oxidation, and actual oxidation ratios
may be higher. Literature-reported values for αtrans vary from
1 for advection-dominated systems to 1.0178 for diffusion-
dominated porous media (de Visscher et al., 2004; Mahieu et
al., 2008; Preuss et al., 2013). We assume that transport is ad-
vection dominated and thus assume αtrans = 1; however, dif-
fusive transport of CH4 may result in fractionation of CH4 in
the subglacial environment and lead to relatively lower esti-
mates of fox. Because hydrologic connectivity between sub-
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glacial methanogenic meltwater pockets and drainage fea-
tures is not well described, the relative importance of ad-
vective compared to diffusive CH4 transport within the sub-
glacial drainage system is not well understood; however, it
is presumed to be an advection-dominated system in which
expanding drainage networks access and drain methanogenic
meltwater pockets throughout the melt season.

2.5 Mineral weathering and carbonate modeling

We used major cation and anion concentrations and alkalin-
ity to partition solutes into the four mineral weathering re-
actions in Table 1 after correcting solute concentrations for
marine aerosol deposition using measured chloride concen-
trations and standard seawater element ratios. The mass bal-
ance model followed the methods of Deuerling et al. (2019).
After apportioning solutes to mineral weathering reactions,
we used the stoichiometries of reactions to calculate the im-
pact of each reaction on dissolved CO2 concentrations (Ta-
ble 1). The mineral weathering model apportions solutes to
reactions in Table 1 based on the ratios of Ca/Na and Mg/Na
in silicate minerals in stream bed load samples, which were
taken to be 0.54 and 0.38, respectively, for sub-Isunnguata
and Russell Glacier samples (Deuerling et al., 2019; Hind-
shaw et al., 2014; Wimpenny et al., 2010, 2011) and 0.39 and
0.27, respectively, for Kiattut Sermiat samples (Da Prat and
Martin, 2019). Because mineral weathering reactions may
both add and remove CO2, we discuss both the net impact of
mineral weathering on CO2 concentrations (Net CO2-MW),
which may have a positive or negative value,

[Net CO2-MW] = [CO2-CarbCA] + [CO2-CarbSA]

+ [CO2-SilCA], (7)

as well as the total impact of mineral weathering on CO2
concentrations (Total CO2-MW),

[Total CO2-MW] = |[CO2-CarbCA]| + |[CO2-CarbSA]|

+ |[CO2-SilCA]|, (8)

where changes in the concentrations of CO2 are defined by
their absolute values. To discuss the relative importance of
individual reactions, we define proportional contributions of
each reaction as follows:

%CO2-CarbCA =
|[CO2-CarbCA]|

[Total CO2-MW]
× 100, (9a)

%CO2-CarbSA =
|[CO2-CarbSA]|

[Total CO2-MW]
× 100, (9b)

%CO2-SilCA =
|[CO2-SilCA]|

[Total CO2-MW]
× 100. (9c)

We combine measured CO2 concentrations with Net
CO2-MW in order to determine the magnitude of CO2 pro-
duction or consumption in the subglacial environment due to
processes besides mineral weathering. This analysis assumes

that the concentration of CO2 measured at the subglacial out-
let is equivalent to the net change in CO2 due to mineral
weathering plus the sum of all other subglacial CO2 sources
and sinks. We refer to the sum of all other subglacial CO2
sources and sinks as CO2-total, which represents the amount
of CO2 that must have been supplied to the subglacial envi-
ronment to balance the mineral weathering CO2 sink:

CO2-measured = Net CO2-MW+CO2-total. (10)

The sources of CO2 to CO2-total may be evaluated through
the use of Keeling plots, which are constructed as the in-
verse of CO2 concentrations ([CO2]−1) versus stable iso-
topic composition (δ13C-CO2). If variations in the concen-
tration and isotopic composition of CO2 arise from the mix-
ing of two CO2 reservoirs with constant isotopic compo-
sitions and concentrations (Keeling, 1958), a linear rela-
tionship is expected between [CO2]−1 and δ13C-CO2. The
y intercept of a regression between these variables repre-
sents the isotopic composition of the high-CO2 end-member.
Because measured CO2 concentrations include both sub-
glacial CO2 sources and sinks, which may include consid-
erable consumption through mineral weathering reactions,
the magnitude of the total subglacial CO2 source is taken
as CO2-total. We therefore construct Keeling plots between
[CO2-total]−1 and measured δ13C-CO2 values because while
mineral weathering impacts the concentration of CO2, its iso-
topic composition is not appreciably altered (Myrttinen et al.,
2012) compared to the range of isotopic compositions of po-
tential CO2 end-members, namely OM remineralization, at-
mospheric CO2, and lithogenic CO2 sources due to mechan-
ical grinding (Fig. 1).

2.6 Discharge relationships

We evaluate the relationship between subglacial CH4 and
CO2 dynamics and glacial meltwater river discharge records
collected downstream of the sub-Isunnguata and upstream
of the Russell sampling sites. Proglacial river discharge was
collected in the Akuliarusiarsuup Kuua (AK) River at the
AK4 site, 2 km downstream of the sub-Isunnguata sampling
site (Fig. 2b). The river discharge dataset is an updated and
extended version of Rennermalm et al. (2012) using refer-
ence and regression models to correct Solinst level logger
drift in water stage (Solinst, 2017) and a total of 57 dis-
charge measurements to convert continuous water stage to
discharge. The standard uncertainty (i.e., the 68th percent
confidence interval or 1 standard deviation) was determined
to be 17 % using methods and recommendations provided by
Herschy (1999), ISO Guide 98-3 (2008), and WMO (2010).

Because diurnal fluctuations in river discharge can be
large, and differing water travel times from subglacial outlet
sites to the discharge monitoring site induces a lag between
maximum daily discharge at subglacial discharge sites and
the AK4 site outlet, we compare subglacial CH4 and CO2
concentrations to average daily discharge, calculated as the
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average of hourly discharge estimates over the days on which
subglacial discharge water samples were collected. We use
the AK4 site discharge records for evaluating concentration–
discharge relationships for both sub-Isunnguata and Russell
sites. Although this site is upstream of the Russell Glacier,
its close proximity to the Russell Glacier suggests it is more
likely to reflect local melting patterns similar to those that
would be controlling discharge dynamics at the Russell than
discharge records collected at the Watson River outlet. While
Watson River discharge records are also available through
PROMICE (van As et al., 2018), which includes some con-
tributions from the Russell Glacier, the Watson River in-
cludes discharge from the Akuliarusiarsuup Kuua (draining
sub-Isunnguata, Russell, and Leverett catchments) as well as
the much larger Qinnguata Kuussua catchment, and therefore
Watson River discharge records are not likely to be repre-
sentative of the temporal changes in the magnitude and vari-
ability of discharge from the much smaller Russell Glacier
catchment.

3 Results

3.1 Temporal variability in water chemistry and gas
concentrations

Chemical parameters differ spatially between subglacial
discharge sites as well as temporally through the 2017–
2018 melt seasons. Comparing the means and standard de-
viations of water samples collected throughout 2017 and
2018, specific conductivity (Sp.C; Fig. 3a) is typically high-
est at Kiattut Sermiat (26± 8 µS/cm), followed by Rus-
sell (22± 5 µS/cm) and sub-Isunnguata sites (13± 9 µS/cm;
Fig. 3a). All sites show variability over time, with lowest val-
ues occurring in the summer for sub-Isunnguata and Rus-
sell, while Sp.C drops continuously with days of the year
for Kiattut Sermiat. Sites differ in pH, and average val-
ues at Kiattut Sermiat (8.2± 0.4) are higher than both Rus-
sell (7.2± 0.2) and sub-Isunnguata (6.6± 0.6; Fig. 3b), and
while values vary over time, no consistent trend is iden-
tified between sites. The saturation of dissolved oxygen
(D.O.) with respect to atmospheric concentrations is sim-
ilar between sites, though sub-Isunnguata (98± 8 %) val-
ues fall below Russell (115± 16 %) and Kiattut Sermiat
(117± 11 %) during all sampling times and exhibit under-
saturation in the mid-summer samples, while Russell and
Kiattut Sermiat are consistently supersaturated (Fig. 3c).
Alkalinity is similar at Russell (93± 31 µeq/L) and Kiat-
tut Sermiat (93± 26 µeq/L), which are higher than at sub-
Isunnguata (39± 25 µeq/L), but all reach minimum val-
ues in summer (Fig. 3d). CH4 concentrations differ by or-
ders of magnitude between sites (Fig. 3e) and are consis-
tently supersaturated with respect to atmospheric concentra-
tions at sub-Isunnguata (648± 411 ppm or 1575± 997 nM)
and Russell (58± 33 ppm or 110± 78 nM) sites, while they

are close to atmospheric equilibrium at Kiattut Sermiat
(4± 2 ppm or 9± 5 nM). Mean δ13C-CH4 values (Fig. 3f)
are similar between sub-Isunnguata (−54.7± 7.5 ‰), Rus-
sell (−52± 7.3 ‰), and Kiattut Sermiat (−57.6± 14.2 ‰).
Measured CO2 concentrations (Fig. 3g) are consistently
supersaturated with respect to atmospheric concentra-
tions for sub-Isunnguata (685± 230 ppm or 58± 18 µM),
near atmospheric equilibrium for Russell (442± 31 ppm
or 29± 4 µM), and undersaturated for Kiattut Sermiat
(263± 33 ppm or 19± 2 µM). Mean δ13C-CO2 values
(Fig. 3h) are lower in spring and fall for sub-Isunnguata
(−16.6± 4.0 ‰) compared to Russell (−13.7± 2.3 ‰) and
Kiattut Sermiat (−16.1± 1.6 ‰) sites, though similar sea-
sonal variation occurs for all sites with relatively more de-
pleted values in the spring and fall compared to summer.

3.2 Methane oxidation and relationship with discharge

Values of εc are similar over time for sub-Isunnguata
(38± 10 ‰) and Russell (38± 9 ‰) and are relatively higher
in the summer sampling period, while Kiattut Sermiat εc val-
ues are higher on average (42± 13 ‰) with lowest values in
the summer (Fig. 4a). Estimates of fox are similar between
sub-Isunnguata (17± 15 %), Russell (23± 15 %), and Kiat-
tut Sermiat sites (25± 22 %; Fig. 4b). However, fox values
are higher in the spring and fall sampling times compared to
summer for sub-Isunnguata and Russell and approach 50 %
in the spring, while Kiattut Sermiat values decrease through-
out the melt season.

CH4 concentrations, δ13C-CH4 values, and fox are weakly
negatively correlated to average daily discharge for both sub-
Isunnguata and Russell sites (Fig. 5a, b and d), while εc
is weakly positively correlated with discharge for both sub-
Isunnguata and Russell (Fig. 5c).

3.3 Mineral weathering impacts on CO2 and
relationship with discharge

Mineral weathering leads to net sequestration of CO2 at all
three sites (Fig. 6a). The magnitude of net 1CO2 differs be-
tween sites with the lowest average values at sub-Isunnguata
(−39± 37 µM) followed by Russell (−65± 32 µM) and Ki-
attut Sermiat (−98± 17 µM) sites. Individual mineral weath-
ering reactions produce differing contributions between sites
and over time, with notable differences between southwest
sites (sub-Isunnguata and Russell) and the southern Kiat-
tut Sermiat site (Fig. 6b). For instance, the proportional
contribution of CarbSA is similar between sub-Isunnguata
(17± 11 %) and Russell (15± 6 %) but lower at Kiattut Ser-
miat (8± 1 %; Fig. 6b). Kiattut Sermiat has a relatively
greater contribution from CarbCA (62± 2 %) compared to
sub-Isunnguata (41± 10 %) and Russell (38± 6 %), while
SilCA is lower at Kiattut Sermiat (28± 1 %) compared to
sub-Isunnguata (41± 17 %) and Russell (47± 11 %). Kiattut
Sermiat additionally exhibits low seasonal variability in the
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Figure 3. Chemical parameters at sub-Isunnguata (sub-IS), Russell (RU), and Kiattut Sermiat (KS) subglacial water sampling sites versus
day of year for (a) specific conductivity (Sp.C), (b) pH, (c) dissolved oxygen (D.O.) percent saturation, (d) alkalinity (Alk), (e) measured
CH4 concentrations (left y axis in ppm and right y axis in nM), (f) δ13-CH4 values, (g) measured CO2 concentrations (left y axis in ppm and
right y axis in µM), and (h) δ13C-CO2 values. Atmospheric equilibrium concentrations are indicated by dashed lines and taken as 1.9 ppm
for CH4 and 410 ppm for CO2. Error bars on CH4 and CO2 concentrations and stable isotopic compositions represent the standard deviation
of replicates and are smaller than symbols for some data points.

proportional contributions of individual mineral weathering
reactions compared to sub-Isunnguata and Russell sites.

CO2-total represents CO2 concentrations in the subglacial
environment prior to addition and/or consumption of CO2
through mineral weathering (Eq. 10; Fig. 7). Because the
Net CO2-MW is always negative (more consumption than
production), the value of CO2-total is always greater than
measured concentrations (CO2-measured). Regardless of dif-
ferences in CO2-measured between sites, the average CO2-total
values are similar between sites and average 91± 47 µM for

sub-Isunnguata, 94± 33 µM for Russell, and 117± 16 µM
for Kiattut Sermiat.

For both sub-Isunnguata and Russell sites, average daily
discharge is negatively correlated with CO2 concentrations
(Fig. 8a), while it is positively correlated with δ13C-CO2
(Fig. 8b).

Keeling plots between [CO2-total]−1 and δ13C-CO2 for
each site indicate no linear relationship for Russell or Ki-
attut Sermiat samples; however, a strong linear correlation is
observed for sub-Isunnguata (r2

= 0.99; p < 0.001) samples
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Figure 4. CH4 dynamics over the course of the 2017 and 2018 melt seasons including (a) the carbon fractionation factor (εc) between
dissolved CO2 and CH4 and (b) the fraction of CH4 oxidized (fox) for sub-Isunnguata (sub-IS), Russell (RU), and Kiattut Sermiat (KS)
samples. Fields of εc representing methanogenesis and oxidation values are based on Whiticar (1999). Values of εc between approximately
40 and 55 (gray shaded region in panel a) are produced for methanogenesis via acetate fermentation, while CO2 reduction produces values
between approximately 50 and 90. Lower values result from a predominant isotopic signature of CH4 oxidation. Atmospheric input without
additional alteration of CO2 or CH4 isotopic systematics results in a εc value of approximately 40.

Figure 5. Relationships between average daily discharge and CH4 dynamics including (a) CH4 concentrations, (b) δ13C-CH4, (c) fox, and
(d) εc for sub-Isunnguata (sub-IS) and Russell (RU) samples. Regressions are shown by dotted lines for Isunnguata and dashed lines for
Russell samples. Horizontal error bars represent the standard deviation of average daily discharge for days samples were collected and are
smaller than symbols for some data points.

with the removal of one outlier, which also had the lowest
CO2-total value (Fig. 9).

4 Discussion

We observe orders of magnitude variability in dissolved
CH4 and CO2 concentrations in subglacial discharge of the
Greenland Ice Sheet, indicating significant differences in the
magnitudes of the sources and sinks of these gases across
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Figure 6. Mineral weathering model results in (a) net impact of
mineral weathering reactions on CO2 (Net CO2-MW; Eq. 7) for
Isunnguata, Russell, and Kiattut Sermiat subglacial discharge sites
(where negative values of Net CO2-MW indicate net sequestration
of CO2 due to mineral weathering) and (b) the proportional con-
tribution of each mineral weathering reaction to the total change in
CO2 (% Total CO2-MW Eqs. 9a–9c).

time and space. Supersaturation of both CO2 and CH4 with
respect to atmospheric concentrations indicates that sub-
Isunnguata discharge is a source of both gases to the atmo-
sphere, the neighboring Russell Glacier discharges water that
is a source of CH4 but near equilibrium with respect to CO2,
and Kiattut Sermiat in southern Greenland is a sink of at-
mospheric CO2 but near equilibrium with respect to CH4
(Fig. 3e, g). Because CH4 dynamics may be largely micro-
bially driven, while CO2 dynamics include microbial as well
as abiotic mineral weathering processes, we first discuss CH4
dynamics including a comparison of concentrations, isotopic
compositions, and extent of oxidation between sites and over
the melt season. We then discuss CO2 concentrations, im-
pacts of mineral weathering reactions (Table 1), and an as-
sessment of subglacial CO2 sources, including OM reminer-
alization. These assessments will contribute to our under-
standing of the variability and controls of CH4 and CO2 con-
centrations in subglacial discharge from the Greenland Ice
Sheet and may improve predictions of the impact of future
ice melt on Arctic carbon budgets.

4.1 Sources and sinks of CH4

Differences in CH4 concentrations and relationships with
discharge between sites imply heterogeneity in both the ex-
tent and controls of subglacial methanogenesis under the

Figure 7. Calculated CO2-total values for (a) sub-Isunnguata,
(b) Russell, and (c) Kiattut Sermiat subglacial discharge against day
of the year.

Greenland Ice Sheet. CH4 supersaturation occurs at the two
subglacial discharge sites that flow to the Akuliarusiarsuup
Kuua (sub-Isunnguata and Russell), and concentrations are
similar to the ranges reported in discharge of the Leverett
Glacier (up to 600 nM; Lamarche-Gagnon et al., 2019), lo-
cated near the Russell Glacier in this study (Fig. 2b). How-
ever, CH4 concentrations are near atmospheric equilibrium
for the Kiattut Sermiat site (Fig. 3e). Because methanogene-
sis is an anaerobic OM remineralization pathway, it is more
likely to occur in subglacial environments isolated from at-
mospheric O2 sources. Widespread observations of methano-
genesis in glacial meltwater of southwest Greenland from
this and other studies (Christiansen and Jørgensen, 2018;
Dieser et al., 2014; Lamarche-Gagnon et al., 2019), and lim-
ited observations of CH4 in subglacial discharge in southern
Greenland, suggests heterogeneity in subglacial conditions
that support methanogenesis. Methanogenesis fueled by or-
ganic material overridden during ice sheet growth has been
suggested as a potential climate feedback over glacial inter-
glacial timescales (Wadham et al., 2008) and may contribute
to observed variations in CH4 concentrations.

Subglacial methane concentrations may additionally be
controlled by hydrologic factors as the subglacial hydro-
logical network develops throughout the melt season and
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Figure 8. Relationships between average daily discharge (a) CO2 concentrations and (b) δ13C-CO2. Regressions are shown by dotted lines
for sub-Isunnguata and dashed lines for Russell samples. Horizontal error bars represent the standard deviation of average daily discharge
for days samples were collected and are smaller than symbols for some data points.

channelization of meltwater conduits increases subglacial
drainage efficiency (Andrews et al., 2015; Cowton et al.,
2013). Drainage efficiency impacts both subglacial water res-
idence time as well the transport of aerobic supraglacial melt-
water to the ice bed. Both residence time and oxygen delivery
may impact subglacial redox status and methanogenesis po-
tential and favor methanogenesis when oxygen supply rates
are low compared to OM remineralization rates. This con-
dition is most likely to be met in distributed subglacial sys-
tems that are hydrologically isolated with limited inputs from
aerobic supraglacial meltwater. Such a hydrologic control
on methanogenesis is supported by the negative correlation
between CH4 concentrations and average daily discharge at
both sites (Fig. 5a). This correlation would suggest that either
CH4 production occurs predominantly during periods of low
discharge and greater residence time or higher discharge re-
sults in the dilution of a CH4-laden subglacial water source.
While both mechanisms would lead to a similar relationship
between discharge and CH4 concentrations, they carry dif-
ferent implications for subglacial methanogenesis. If limited
by residence time, a hydrologic link between glacial hydrol-
ogy and subglacial biogeochemistry would be established be-
cause supraglacial discharges deliver terminal electron ac-
ceptors to the ice bed and would limit methanogenesis. If pre-
dominantly controlled by dilution, however, active methano-
genesis would not be required – only the existence of melt-
water pockets containing CH4 that may or may not have been
recently produced. Further discussion of these mechanisms
is outside the scope of this study. While we have limited
data to make further inferences about hydrologic controls of
methanogenesis, the presence of several outliers at the sub-
Isunnguata site in particular (Fig. 5a) highlights the possi-
bility for additional controls including stochastic drainage
events or heterogeneity in subglacial CH4 concentrations that
result in variability in the relationship between concentra-

tion and discharge, as was observed in Lamarche-Gagnon et
al. (2019).

Our results suggest heterogeneity in the extent of methano-
genesis between outlet glaciers but homogeneity of the mi-
crobial methanogenesis pathway as well as CH4 oxidation
dynamics between sites. Methanogenesis pathways may be
evaluated by δ13C-CH4 as well as εc values because they
impart distinct δ13C signatures to CH4 and CO2 (Whiticar
and Schoell, 1986). Dieser et al. (2014) measured a micro-
bial δ13C-CH4 production signal at the Russell Glacier with
values between −63 ‰ and −64 ‰, which was interpreted
to reflect a possible combination of CH4 produced through
both acetoclastic and CO2 reduction pathways. The most
depleted δ13C-CH4 value measured at the sub-Isunnguata
in this study was −62.7 ‰, close to values measured by
Dieser et al. (2014) (Fig. 3f) and similar to values reported by
Lamarche-Gagnon et al. (2019) for the Leverett Glacier. The
similar isotopic ratio between our samples and that measured
in active methanogenic communities could indicate that sim-
ilar methanogenesis pathways occur across this region or that
the δ13C-CH4 of stored subglacial CH4 has not been fraction-
ated by oxidation or transport in the peak melt season when
we observe these depleted δ13C-CH4 values.

While the exact contributions from each methanogenesis
pathway cannot be inferred from isotopic information alone,
the range of εc values at outlet glaciers are consistent with
predominantly acetoclastic methanogenesis during the peak
melt season (Fig. 4a). However, εc values fall below the ex-
pected range from acetoclastic methanogenesis during the
early and late melt seasons and may result from variations
in the extent of subglacial CH4 oxidation. Seasonal variation
in CH4 oxidation is supported by consistency between εc and
fox values, which both indicate the greatest impact of oxida-
tion (approaching 50 %) in the early melt season compared
to peak melt season (Fig. 4a, b), with additional evidence of
elevated CH4 oxidation in the late melt season at both sub-
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Isunnguata and Russell sites. Because our water sampling
locations were slightly downstream of glacial discharge out-
lets, there is also the possibility that outgassing in between
the outlet and our sampling location reduced dissolved CH4
concentrations and led to more enriched isotopic composi-
tions of remaining dissolved CH4. It is likely that some out-
gassing did occur; however, it is unlikely that the extent of
outgassing between the glacial outlet and our sampling lo-
cation would vary significantly between sampling times, and
thus outgassing would not fully explain temporal differences
in concentration, δ13C-CH4, fox, or εc. While our measured
gas concentrations and isotopic compositions likely reflect
some modification of CH4 and CO2 isotopic compositions
due to outgassing, the differences over time are more likely
due to changes in subglacial CH4 dynamics than outgassing.

The extent of CH4 oxidation may be controlled by multiple
factors including oxygen availability, subglacial residences
time, and subglacial hydrology, similar to methanogenesis.
A hydrologic control of CH4 oxidation is supported by re-
lationships between fox and εc with average daily discharge
(collected at site AK4; Fig. 2b) at both sub-Isunnguata and
Russell sites: fox is negatively correlated with discharge for
both sites (Fig. 5b) while εc is positively correlated with dis-
charge (Fig. 5c). While weak, these correlations suggest that
CH4 oxidation is greatest during periods of low flow, which
may be associated with longer residence times to allow sub-
glacial CH4 oxidation; however, this relationship could also
result from differences in CH4 sources throughout the melt
season as the subglacial drainage network expands. Assum-
ing the former, the delivery of oxygen to the subsurface by
supraglacial melting does not appear to be a limiting factor in
subglacial CH4 oxidation, which should increase fox as more
oxygenated supraglacial water is delivered to the subglacial
system. Instead, the observed greater CH4 oxidation during
periods of low discharge may reflect mixing of methane-rich
subglacial meltwater pockets and aerobic subglacial meltwa-
ter leading to CH4 oxidation. Longer transit times during pe-
riods of low flow may allow more subglacial methane oxida-
tion to occur than during peak discharge, when the develop-
ment of channelized flow paths reduces meltwater residence
time in the subglacial environment.

Our results indicate a high degree of heterogeneity in sub-
glacial methanogenesis under the Greenland Ice Sheet, as
well as a significant impact of CH4 oxidation, which serves
to reduce atmospheric CH4 fluxes. Given the observed spatial
and temporal heterogeneity of CH4 concentrations and pro-
cesses, further investigation of the spatial variability in outlet
glacier CH4 concentrations is needed to determine the impact
of Greenland Ice Sheet loss on Arctic and global CH4 bud-
gets, while a better understanding of the controls of these dif-
ferences will improve models of how CH4 fluxes from sub-
glacial discharge will change with continued warming.

4.2 Sources and sinks of CO2

Dissolved CO2 concentrations in subglacial discharge are
consistently supersaturated with respect to atmospheric con-
centrations at the sub-Isunnguata site, near atmospheric equi-
librium at the Russell Glacier, and undersaturated at Kiattut
Sermiat, indicating that glacial meltwater from the Greenland
Ice Sheet can serve as either a source or sink of CO2 to the at-
mosphere. Similar to CH4, differences in dissolved CO2 dy-
namics (Fig. 3g) imply variability in carbon processes under
the Greenland Ice Sheet. We first discuss potential subglacial
CO2 sources, including OM remineralization, followed by a
discussion of CO2 consumption due to mineral weathering.

4.2.1 Subglacial CO2 sources

There are many potential sources of CO2 in the subglacial
environment including dissolution of atmospheric gases in
air-filled conduits or fractures in ice, CO2 contained in ice
bubbles (Fig. 1; Anklin et al., 1995; Graly et al., 2017),
mechanical grinding and volatilization of fluid inclusions in
bedrock (Macdonald et al., 2018), and OM remineralization.
While previous studies have indicated that additional atmo-
spheric CO2 input through fractures and air-filled conduits
may supply sufficient CO2 to drive mineral weathering ob-
served in many subglacial environments, including several
sites in Greenland (Graly et al., 2017), CO2 is also a prod-
uct of OM remineralization, which is believed to account for
CH4 concentrations elevated above atmospheric equilibrium
at the two southwest sites in this study. Both CO2 and CH4
exhibit negative correlations with average daily discharge for
both sub-Isunnguata and Russell sites and could suggest a
common OM remineralization source (Fig. 8a). While the
magnitude of this source and its relative importance com-
pared to other subglacial CO2 sources is currently unknown,
differing sources of carbonic acid for mineral weathering re-
actions carry different implications for subglacial CO2 bud-
gets. For instance, carbonic acid weathering driven by inva-
sion of atmospheric CO2 would represent a sink of atmo-
spheric CO2, but carbonic acid weathering driven by OM
remineralization would instead serve to consume CO2 from
in situ sources and limit the potential for subglacial meltwa-
ter to be an atmospheric CO2 source once discharged from
the glacier. Determining the sources of carbonic acid to sub-
glacial weathering reactions is therefore critical to under-
stand the controls of mineral weathering in subglacial envi-
ronments and its role in atmospheric CO2 sequestration.

Comparisons between measured δ13C-CO2 in subglacial
discharge samples and likely δ13C-CO2 values of CO2
sources indicate that CO2 sources differ between sites, with
OM remineralization as the most important CO2 source at
the sub-Isunnguata but likely not the predominant or sole
source at Russell or Kiattut Sermiat glaciers. Keeling plots
of [CO2-total]−1 versus δ13C-CO2 indicate that CO2-total may
be represented by a two-end-member mixing model for sub-
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Figure 9. Keeling plot indicating correlations between the magni-
tude of CO2-total and δ13C-CO2 and for sub-Isunnguata (sub-IS),
Russell (RU), and Kiattut Sermiat (KS) samples. Asterisk denotes
the outlier not included in the regression between CO2-total and
δ13C-CO2 for sub-Isunnguata samples. The plotted regression line
was constructed using the sub-IS samples only.

Isunnguata discharge but not for discharge from the Russell
and Kiattut Sermiat glaciers (Fig. 9). Mixing model end-
members include a 13C-enriched, lower-concentration CO2
source and a 13C-depleted, higher-concentration CO2 source.
The y intercept of the regression between [CO2-total]−1 ver-
sus δ13C-CO2, which represents the isotopic signature of
the high-CO2 end-member, is −27.4 ‰. This value is close
to what would be expected from OM remineralization as
indicated by remineralized OM in Greenlandic heath soils
that produced δ13C-CO2 of approximately −27‰ to −25 ‰
(Ravn et al., 2020) and thawed Alaskan permafrost soils that
produced δ13C-CO2 of between −20 ‰ to −30 ‰ (Mau-
ritz et al., 2019), both of which may be similar to sub-
glacial organic matter. The low-CO2 end-member could re-
flect atmospheric CO2 input, with an associated δ13C-CO2
value of approximately −8 ‰. While the δ13C-CO2 value
of the lowest-CO2-total samples in the sub-Isunnguata Keel-
ing plot (e.g., highest [CO2-total]−1 not including the out-
lier) is slightly depleted compared to atmospheric values
at −12.1 ‰, even the lowest CO2 concentrations measured
at sub-Isunnguata are supersaturated with respect to atmo-
spheric concentrations (Fig. 3g). Consistent CO2 supersat-
uration suggests that OM remineralization contributes CO2
even for low-CO2-concentration samples and isotopically de-
pletes the subglacial CO2 reservoir.

While δ13C-CO2 values of Russell and Kiattut Sermiat
samples are within the range of sub-Isunnguata samples,
suggesting possible contributions of CO2-atm and CO2-OM,

scatter in the Keeling plots indicates variability in the CO2
concentration and/or isotopic composition of end-members,
or significant contributions of at least one other major sub-
glacial CO2 source. We address both possibilities here. While
atmospheric CO2 concentrations and δ13C values should be
relatively invariable, CO2-OM may vary both in concentra-
tion and isotopic composition, depending on variability in the
quantity and composition of organic deposits as well as rem-
ineralization rates. For instance, if remineralization largely
occurs in hydrologically isolated subglacial meltwater pock-
ets, some variability in the concentration and δ13C-CO2 of
CO2-OM is likely. While no data yet exist to characterize the
variability in subglacial OM reservoirs, variability in either
concentration or isotopic composition of CO2-OM could plau-
sibly result in the scatter shown in Fig. 9. Additional sub-
glacial CO2 sources from ice bubbles, or lithogenic CO2 lib-
erated by mechanical grinding, would be expected to enrich
rather than deplete the δ13C-CO2 values of the samples rel-
ative to modern atmospheric δ13C-CO2 values. Ice bubbles
contain gaseous CO2 at concentrations and isotopic composi-
tions reflecting atmospheric conditions during ice formation.
While heterogeneity may result from gas bubbles recording
changes in atmospheric CO2, variability in δ13C-CO2 of gas
bubble CO2 should be only a few per mill, which is small
compared to the variation observed in Russell and Kiattut
Sermiat samples (e.g., Tipple et al., 2010; Fig. 9). Gas bub-
ble CO2 should also be 13C-enriched compared to modern
atmospheric CO2 due to fossil fuel contributions and thus
would be unlikely to cause the observed depletion of 13C in
the subglacial water.

Recent work has also highlighted the potential for sub-
glacial mechanical grinding to result in CO2 production
through the volatilization of bedrock fluid inclusions (Mac-
donald et al., 2018). While this process was found to pro-
duce sufficient CO2 to drive approximately 20 % of min-
eral weathering in Svalbard subglacial environments, the ex-
pected isotopic composition of lithogenic CO2 is more 13C-
enriched than our measured δ13C-CO2 values. For instance,
estimates of δ13C for bulk hydrocarbons in fluid inclusions
in the Ilímaussaq alkaline complex of South Greenland have
values of−4.5± 1.5 ‰ (Madsen, 2001), which is close to the
δ13C-CO2 of CO2 in fluid inclusions in the Bamble granulite
sector of South Norway (∼−6 ‰; Newton et al., 1980). Be-
cause mechanical grinding should not fractionate the δ13C-
CO2 values (Lüders et al., 2012), our low δ13C-CO2 values
suggest this source is small relative to other sources.

One additional source or sink of CO2 to some of our
samples is atmospheric exchange as water flows from the
subglacial outlet site to our sampling sites. However, atmo-
spheric CO2 exchange after discharge would have the same
impact on Keeling plots as atmospheric CO2 exchange prior
to discharge. Incorporation of an atmospheric source be-
tween the outlet and sample site would be most likely at Ki-
attut Sermiat, where CO2 concentrations are undersaturated
with respect to atmospheric concentrations, which would
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promote invasion of atmospheric CO2. However, the mea-
sured δ13C-CO2 values are more 13C-depleted than modern
atmospheric CO2 and are not consistent with atmospheric
CO2 as the sole or dominant source of CO2 to these samples
(Fig. 9).

While more information is needed to determine all possi-
ble sources of CO2 to Russell and Kiattut Sermiat samples,
δ13C-CO2 values of samples from both sites imply mixing
between a 13C-depleted CO2 source, such as OM reminer-
alization, and one or more 13C-enriched CO2 sources, such
as atmospheric or lithogenic CO2. Similar to CH4, concen-
trations and isotopic compositions of gases may be impacted
by atmospheric exchange between the glacial outlet and our
sampling locations, which would alter dissolved CO2 con-
centrations and δ13C-CO2 compositions to values more sim-
ilar to atmospheric values. Therefore, we are unable to dis-
tinguish the impacts of the atmospheric exchange that oc-
curs prior to discharge from the exchange that occurs be-
tween discharge and our sampling locations. However, the
impact of this exchange should be relatively constant be-
tween sampling times and sampling locations; therefore, out-
gassing would not account for temporal or spatial variabil-
ity in CO2 concentrations or isotopic compositions between
sites.

4.2.2 Subglacial CO2 sink: mineral weathering
reactions

Mineral weathering leads to net CO2 consumption in all sub-
glacial discharge samples (Fig. 6), and thus the measured
CO2 concentrations at glacial outlets represent only a frac-
tion of the total CO2 that would have been present in the ab-
sence of mineral weathering reactions (CO2-total; Eq. 10). Net
consumption occurs because the CO2 source from CarbSA is
ubiquitously low compared to sinks from either CarbCA or
SilCA (Fig. 6b). The range in Net CO2-MW is similar between
subglacial discharge sites (between 10–150 µM; Fig. 6a), but
average values increase from Kiattut Sermiat to Russell to
sub-Isunnguata, likely reflecting the relative weatherability
of alkaline igneous rocks, granulite facies gneisses, and am-
phibolite facies gneisses. Kiattut Sermiat is characterized by
a relatively high proportion of CarbCA compared to sub-
Isunnguata and Russell sites, which may arise from the pres-
ence of trace carbonates in abundant and readily weatherable
basaltic intrusions as has been implicated in other studies
(Urra et al., 2019). The relatively greater influence of car-
bonate dissolution compared to silicate dissolution on Total
CO2-MW at Kiattut Sermiat may also relate to more rapid dis-
solution kinetics of carbonates, which allow carbonate disso-
lution to have a large influence on major cation and anion
load even when carbonates are only present in trace amounts
(Deuerling et al., 2019; Tranter, 2005). At sub-Isunnguata
and Russell sites, SilCA has a greater influence than CarbCA
on Total CO2-MW, which could result from either a lower
abundance of trace carbonates to participate in weathering

reactions or relatively longer subglacial residence times that
would allow a greater accumulation of silicate weathering
products.

Despite the impact of CarbCA on Total CO2-MW at Kiat-
tut Sermiat compared to sub-Isunnguata and Russell sites,
CarbSA is notably lower at Kiattut Sermiat than other sites
and suggests a limited role for sulfuric acid weathering that
may relate to subglacial sulfide oxidation dynamics. Lower
abundances of sulfide minerals in the subglacial environment
may limit the production of sulfuric acid and could result
from differences in lithology between sites, the depletion of
sulfide minerals due to prior weathering (Graly et al., 2014),
or weathering occurring in anoxic environments that limit the
oxidation of sulfide to sulfuric acid (Deuerling et al., 2019).
The kinetics of sulfide oxidation may also significantly dif-
fer between sites depending on the relative contributions of
abiotic compared to microbially mediated sulfide oxidation,
as microbially mediated sulfide oxidation is several orders
of magnitude faster than abiotic sulfide oxidation (Boyd et
al., 2014; Harrold et al., 2016). Rapid microbially mediated
sulfide oxidation has been implicated in the development of
anaerobic conditions, which could also support subglacial
methanogenesis (Sharp et al., 1999; Stibal et al., 2012; Wad-
ham et al., 2010). Observations of higher CH4 concentrations
as well as higher contributions of CarbSA at sub-Isunnguata
and Russell compared to Kiattut Sermiat may therefore be
linked to subglacial microbial activity, which is known to
vary based on factors such as the presence of organic and
fine-grained rock flour to serve as growth substrates, insu-
lation from fluctuations in temperature, and delivery of nu-
trients and organic matter from supraglacial sources (Sharp
et al., 1999). If microbially driven, our results suggest pos-
sible linkages between microbial processes and subglacial
mineral weathering regimes, with significant impacts to both
CH4 and CO2 dynamics due to the role of CarbSA as a CO2
source (Table 1).

Whether controlled by geochemical, microbial, or me-
chanical processes, the relationships between CO2 concen-
trations and δ13C-CO2 and average daily discharge are simi-
lar between sub-Isunnguata and Russell sites (Fig. 8). These
similarities suggest that underlying controls in carbonate
chemistry may be consistent between sites despite the hetero-
geneity in measured dissolved CO2 concentrations. For both
sub-Isunnguata and Russell sites, mineral weathering reac-
tions consume CO2, which implies contributions from in situ
CO2 sources (such as atmospheric CO2 invasion or OM rem-
ineralization) to produce measured CO2 concentrations. The
different CO2 concentrations observed between sites there-
fore appear to result from the strength of in situ CO2 sources
relative to CO2-MW, both of which impart the greatest chem-
ical change at times of low discharge and high subglacial
residence time. At Kiattut Sermiat, where measured CO2
concentrations are lowest, the magnitude of in situ sources
is insufficient to maintain atmospheric equilibrium, leading
subglacial discharge to be a sink of atmospheric CO2, while
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CO2-total maintains close to atmospheric equilibrium concen-
trations at the Russell Glacier. At sub-Isunnguata, however,
OM remineralization produces more CO2 than is consumed
by mineral weathering and causes meltwater to be a source of
CO2 to the atmosphere. This finding implies that subglacial
mineral weathering serves to partially or fully consume CO2
produced from in situ sources under the Greenland Ice Sheet
but does not always serve to directly consume modern atmo-
spheric CO2.

5 Conclusions

Subglacial reactions impact the concentrations of CO2 and
CH4 in subglacial discharge of the Greenland Ice Sheet,
and differences in the relative magnitudes of microbial and
geochemical processes result in a high degree of previously
unrecognized heterogeneity between glacial discharge sites
of the Greenland Ice Sheet. Our results imply a significant
role of OM remineralization in driving this heterogeneity
and leading to CO2 and CH4 supersaturation at the sub-
Isunnguata site and CH4 supersaturation at the Russell site.
Heterogeneity may result in significant uncertainty in to-
tal greenhouse gas flux estimates from subglacial systems
of the Greenland Ice Sheet, which will be an increasingly
important carbon flux as the Arctic warms in the coming
decades. While heterogeneous, the uncertainty in greenhouse
gas fluxes from Greenland Ice Sheet meltwater may be re-
duced by a better understanding of the controls and vari-
ability of the weathering reactions and microbial processes
driving heterogeneous gas concentrations. Such a process-
based understanding could also improve estimates of the im-
pact of greenhouse gas variability associated with the growth
and retreat of continental ice sheets over glacial–interglacial
timescales. Subglacial OM remineralization further implies
the existence of links between subglacial OM deposits and
export of other biogeochemical solutes from the Greenland
Ice Sheet, including nutrients as well as redox-sensitive ele-
ments. While the export of nutrients from the Greenland Ice
Sheet has been the focus of numerous studies (Bhatia et al.,
2013; Hawkings et al., 2016; Lawson et al., 2014), little is
currently known regarding the role of OM sources in gov-
erning these exports. Given the variability in greenhouse gas
concentrations observed in this study, constraining the extent
of heterogeneity in outlet glaciers of the Greenland Ice Sheet
as well as the biogeochemical, hydrologic, and geologic con-
trols of this heterogeneity will be important for upscaling at-
mospheric fluxes as well as efforts to predict impacts of ice
loss on carbon and nutrient budgets due to current and future
melting of the Greenland Ice Sheet.
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