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ABSTRACT 

Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs 

based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and 

increasing tolerance to fuel impurities.  Presented are preparation, partial characterization, and 

multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) 

(xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG).  These low cost 

materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry 

operating conditions.  Among the membranes studied, the blend xsPCHD-PEG PEM displayed 

the highest proton conductivity, which exhibits a morphology with higher connectivity of the 

hydrophilic domain throughout the membrane.  Simulation and modeling provide a molecular 

level understanding of distribution of PEG within this hydrophilic domain and its relation to 

proton conductivities.  This study demonstrates enhancement of proton conductivity at high 

temperature and low relative humidity by incorporation of PEG and optimized sulfonation 

conditions.  
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1. Introduction 

Fuel cells based on proton exchange membranes (PEMs) are considered as viable replacements 

for traditional power sources, especially internal combustion engines in vehicles.[1]  The 

benchmark PEM remains Nafion, against which other experimental membranes are usually 

compared.  Although Nafion membranes exhibit excellent chemical stability owing to 

perfluorination, they are expensive and conduct protons poorly at low relative humidity (RH).[2]  

Transport of protons occurs via a combination of mechanisms: the vehicular (center-of-mass) 

diffusion mechanism and the structural (proton hopping) diffusion mechanism, also known as the 

Grotthuss mechanism.[3, 4]  In Nafion, proton transport requires a membrane-spanning aqueous 

domain to facilitate either mechanism across the membrane.[5-9]  Thus, fuel cells using Nafion 

must operate at temperatures lower than 90 °C under atmospheric pressures to prevent 

dehydration.[10]  Also, the low glass transition temperature (Tg) of Nafion promotes physical 

degradation at fuel cell temperatures owing to mechanical hysteresis that occurs during 

hydration-dehydration cycling.[11-16] 

On the other hand, operating fuel cells at higher temperatures (> 120 °C) and lower RH is 

attractive for the following reasons: (a) system complexity is reduced by limiting or eliminating 

the need for water management; (b) the cooling system is simplified; (c) carbon monoxide 

tolerance is improved; (d) there is possible use of co-generated heat; (e) catalyst amounts are 

reduced.[10, 17]  Therefore, once all factors are considered, there is a need for low cost, high Tg 

PEMs based upon non-fluorinated materials.[18, 19]  High proton conductivity at high 

temperatures and low RH is critical to the development of a next generation of fuel cells. 
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Promising high temperature PEMs based on hydrocarbon-polymers having high Tg are largely 

composed of aromatic polymers as they are chemically and thermally stable.[20-34]  Although 

some aliphatic polymers such as poly(ethylene glycol) (PEG)[35] and poly(ethylene imine) 

(PEI)[36] are used in acid-base polymer complexes there are few reports of sulfonated aliphatic 

polymers used as fuel cell membrane materials.[37, 38] 

Recently, we reported the first aliphatic proton exchange membrane material based on poly(1,3-

cyclohexadiene) (PCHD).[39, 40]Chemical durability of hydrocarbon membranes poses an issue 

due to the aliphatic hydrogens being susceptible to attack by peroxy and hydroperoxy radicals 

generated during fuel cell operation.[38, 41]Recognizing that chemical durability is a serious 

issue, these are considered as limited model systems that nonetheless have a number of variables 

which can be manipulated to optimize other properties. The chemical and mechanical durability 

are coupled and a study of this correlation would be a large effort in itself.  Ideally, one would 

optimize in a single effort both functionality, in this case proton conductivity and water 

distribution, and also chemical and mechanical durability.  Realistically, we adhere to a standard 

approach of demonstrating functionality, through polymer chemistry, to be followed by the use 

of that knowledge as a framework from which the engineering issues of mechanical stability and 

lifetime degradation can be investigated.  This study does not focus on the chemical and 

mechanical durability but instead on manipulating a limited number of experimental variables to 

explore chemical structure and its effects on proton conductivity. 

PCHD can be readily incorporated into a range of homopolymer and copolymer structures.  The 

in-chain six-member ring structure of PCHD imparts a much higher Tg ( > 100 °C) than that of 

other polydienes.[42]  The double bonds in PCHD can be chemically modified through a host of 

reactions including hydrogenation,[43] aromatization,[44] sulfonation,[45] and even 
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fluorination[46] which allow for tuning key performance properties such as proton conductivity, 

mechanical properties, morphology, thermal stability and cost.  PEMs based on PCHD are 

thermally stable and of potentially low cost since the monomer 1,3-cyclohexadiene is easy to 

synthesize and can be inexpensive if produced commercially. 

In this work, PCHD-based membranes were synthesized as shown in Scheme 1, Scheme 2, and 

Scheme 3.  The polymers were first crosslinked (x) to give membranes xPCHD and then 

sulfonated (s) to produce fuel cell membranes xsPCHD.  The xsPCHD homopolymer, xsPCHD-

PEG polymer blend, and xsPCHD-PEG diblock copolymer membranes were characterized and 

evaluated within the context of high temperature fuel cell applications.  The ultimate goal of this 

work is to develop low cost, high temperature, low humidity PEMs that can minimize the need 

for water management in automotive fuel cells. 
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Scheme 1. Synthesis Route of xsPCHD Homopolymer PEMs. 

 

Scheme 2. Synthesis Route of xsPCHD-PEG Blend PEMs. 
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Scheme 3. Synthesis Route of xsPCHD-PEG Block Copolymer PEMs. 

 

2. Experimental Section 

2.1Materials 

Benzene (Fisher, 99%), tetrahydrofuran (THF), 1,3-cyclohexadiene, and 1,4-diazabicyclo- 

[2.2.2]octane (DABCO, Aldrich, 98%) were purified as previously reported.[47]  Poly(ethylene 

glycol) methyl ether (Mn = 750 and 2000) were dried at 60 °C under vacuum for 24 h.  Bromide-

terminated poly(ethylene glycol) methyl ether (MePEGBr-2K) having Mn of 2,000 g mol
-1

 was 

synthesized as previously reported.[48]Chlorosulfonic acid (ClSO3H, 98%, Fluka), sec-

Butyllithium (Aldrich, 1.4 M in cyclohexane), sulfur monochloride (S2Cl2, 99.9%, Aldrich), 1,2-

dichloroethane (99.8%, Aldrich), 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, 
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BHT, Aldrich, 99%), cesium iodide (CsI, 99.9%, Aldrich), and all other solvents were used as 

received 

2.2Synthesis of polymers. 

2.2.1Hydroxyl-terminated poly(1,3-cyclohexadiene) (PCHD-OH) synthesis.  All polymerizations 

were carried out under high vacuum using custom-made glass reactors.  In a typical 

polymerization experiment, about 250 mL of purified benzene was distilled into a reactor with 

all the purified reagents attached via break-seals.  The reactor was removed from the vacuum line 

after evacuation.  About 4.0 mL of home-made sec-BuLi (0.40 M in hexane, 1.6 mmol) and 0.5 g 

of DABCO (4.5 mmol) in benzene (10 mL) were introduced into the reactor.  After stirring for 5 

min. at room temperature, 35 mL of 1,3-cyclohexadiene (29.5 g, 0.37 mol) was added.  After 

about 6 h, about 1.0 mL of ethylene oxide was added to end-cap the living polymer.  The 

reaction was allowed to continue overnight and terminated with acidic methanol.  The polymer 

solution was poured into a large excess of methanol.  The precipitated polymer was collected by 

filtration and dried under vacuum (27.0 g, ~ 90% yield).  The obtained polymer was either used 

to prepare diblock copolymer within one week or sealed in ampoules to prevent oxidative 

degradation.  GPC: Mn 19.0 Kg mol
-1

, PDI 1.18. 
1
H NMR spectrum (see Supplementary Data 

S.1SupplementaryFig.1). 

2.2.2Poly(1,3-cyclohexadiene) (PCHD) synthesis.  Two batches of homopolymers PCHD-1 and 

PCHD-2 were synthesized by following the same procedure as described above.  However, 

ethylene oxide was not used to end-cap the living polymer.  Commercially available sec-BuLi 

(Aldrich, 1.4 M in cyclohexane) instead of home-made sec-BuLi was used as the initiator.  

During precipitation, BHT was added in methanol to prevent oxidative degradation of PCHD.  



 10 

PCHD-1 was used for homopolymer membranes while PCHD-2 for polymer blends membranes.  

GPC of PCHD-1:  Mn19.0 Kg mol
-1

, PDI 1.34. GPCof PCHD-2: Mn 25.5 Kg mol
-1

, PDI 1.53. 

2.2.3  Poly(1,3-cyclohexadiene-b-ethylene oxide) diblock copolymer PCHD-PEG (~ 9.5 wt% 

PEG) synthesis.  Under argon, PCHD-OH (5.0 g, ~ 0.26 mmol of terminal hydroxyl groups), 

MePEGBr-2K (0.8 g, 0.40 mmol of terminal bromide groups), and CsI (~ 100 mg) were added 

into 300 mL of anhydrous THF.  About 200 mg of NaH (60% dispersion in mineral oil) was 

added in small portions. The mixture was stirred overnight at room temperature and poured into 

water. The crude product was collected by filtration, dried under vacuum, and then dissolved in 

toluene.  The polymer solution was poured into a large excess of methanol with BHT to prevent 

oxidative degradation.  The precipitated polymer was collected by filtration and dried under 

vacuum.  About 4.2 g of white solid was obtained (~ 75% yield). GPC: Mn 21.1 Kg mol
-1

, PDI 

1.15. 
1
H NMR spectrum (see Supplementary Data S.1SupplementaryFig.2). 

2.3Membrane Casting. 

2.3.1Crosslinked homopolymer (xPCHD) and diblock copolymer (xPCHD-PEG) membrane 

casting.  All membranes were solution cast in air.  The molar ratio of S2Cl2 to double bonds in 

PCHD varied from 20% to 50%.  The diameter of membranes ranged from 50 to 150 mm and the 

PCHD weighed from 0.2 to 0.5 g.  In a typical membrane casting experiment, 0.10 g of S2Cl2 

(0.74 mmol) in toluene (1.0 mL) was added drop-wise into 0.25 g of PCHD-1 (homopolymer, Mn 

19.0 Kg mol-1, PDI 1.34) or PCHD-PEG (diblock copolymer, Mn 21.1 Kg mol-1, PDI 1.15, ~ 

9.5 wt% PEG) in toluene (4.0 mL).  After addition, the reaction mixture was stirred at room 

temperature for ~1 h and then poured into a Fisher brand Low-Form PTFE dish (100 mm in 

diameter).  The solvent was slowly evaporated overnight in a hood.  The membranes were peeled 
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off carefully with a spatula, washed twice with hexane, and further dried under vacuum 

overnight while keeping samples pressed between desiccator plates.  The thicknesses of the 

membranes were easily controlled by varying the amounts of polymer or the diameter of the 

PTFE dish. 

2.3.2Crosslinked polymer blend (xPCHD-PEG blend) membrane casting.  The polymer blend 

membranes were prepared by following the same procedure as described above, but a mixture of 

PCHD-2 (0.25 g, Mn 25.5 Kg mol-1,  PDI 1.53) and MePEG (Mn = 750, 28.0 mg) was used.  

Moreover, more solvent (8.0 mL of toluene) was used to reduce phase separation between PCHD 

and PEG.  The optimized polymer blends contained 10 wt% PEG.  Varying amounts of PEG 

were previously incorporated in the xPCHD/PEG membranes but molecular weight, sulfonation 

conditions, and pre-treatment proved to be stronger factors for optimizing proton conductivities 

for the membranes.  This is shown in Supplementary Data S.2 Supplementary Table 1where 

membranes with similar (9.1 wt% PEG) and different (16.7 wt% PEG) PEG compositionbut with 

higher molecular weight PEGare shown with much lower conductivities compared to those of 

Fig. 1 with membranes of 10 wt% PEG and lower molecular weight (750 g mol-1).  PEG 

composition does not seem to be the dominant factor in optimizing proton conductivity 

compared to other factors such as molecular weight of PEG. 

2.4Proton Exchange Membranes (PEMs): Sulfonation of Crosslinked Membranes. 

2.4.1 Crosslinked sulfonated homopolymer (xsPCHD) membranes.All sulfonation experiments 

were performed under N2 atmosphere to reduce the effect of moisture.  The molar ratio of 

ClSO3H to double bonds in xPCHD (calculated before crosslinking) ranged from 1.4 to 7.0.  The 

degree of sulfonation as determined by elemental analysis varied from 20 mol% to 90%.  In a 
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typical sulfonation experiment, about 200 mL of anhydrous 1,2-dichloroethane was added onto a 

crosslinked membrane xPCHD (~ 0.25 g, 3.1 mmol double bond units) placed above a desiccator 

plate (diameter:140 mm) in a 1.0 L cylindrical reactor.  A solution of ClSO3H (2.5 g, 21.5 mmol, 

6.88 molar equivalent) in 1,2-dichloroethane (~ 10 mL) was added drop-wise, and the reaction 

mixture was then refluxed for 2 h.  The solution was cooled to room temperature.  Then the 

membrane was taken out, washed with methylene chloride and further immersed in NaOH 

aqueous solution (10 wt%) for about 30 min.  It was washed with water, immersed in dilute 

hydrochloric acid (5 wt% HCl) for 15 min., and washed with plenty of water.  Finally, the 

membrane was dried overnight under vacuum at room temperature while pressed between two 

desiccator plates. 

2.4.2Crosslinked sulfonated diblock copolymer (xsPCHD-PEG block copolymer) 

membranes.Under N2, about 200 mL of anhydrous 1,2-dichloroethane was added onto a 

crosslinked membrane xPCHD-PEG (~ 0.25 g, ~ 9.5 wt% PEG, 2.81 mmol double bond units) 

placed above a desiccator plate (diameter:140 mm) in a 1.0 L cylindrical reactor.  A solution of 

ClSO3H (2.2 g, 18.9 mmol, 6.73 molar equivalent) in 1,2-dichloroethane (~ 10 mL) was added 

drop-wise, and the reaction mixture was stirred at room temperature for 1 h and then heated with 

refluxing for 1 h.  The solution was cooled to room temperature, and the membrane was then 

washed with methylene chloride and further immersed in 1,4-dioxane with 5 wt% water for 

about 30 min.  Finally, the membrane was dried overnight under vacuum at room temperature 

while pressed between two desiccator plates. 

2.4.3Crosslinked sulfonated polymer blend (xsPCHD-PEG blend) membranes.The polymer 

blend membrane xsPCHD-PEG blend was prepared by following the same procedure as that for 
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xsPCHD-PEG block copolymer, but only 2.0 g of ClSO3H (2.2 g, 17.2 mmol, 6.12 molar 

equivalent) was used. 

2.5Characterization 

Gel permeation chromatography (PL-GPC 120) was used to determine molecular weights and 

polydispersity indices (Mw/ Mn) of the polymer samples with respect to polystyrene standards 

(PSS, Germany).  The unit was equipped with RI, light scattering 15 and 90° (Precision 

Detectors 2040, λ=685 nm, 30mW) and differential viscometer (Viscotek 220) detectors.  
1
H 

NMR spectra were recorded on a Varian 300 MHz (Oxford) instrument.  The polymer 

concentration of the sample was around 5 wt%.  Elemental analysis services were provided by 

Galbraith Laboratory Inc. (Knoxville, TN). 

2.6 Water uptake 

The amount of membrane equilibrium water vapor sorption vs. external relative humidity (RH) 

was determined at 80 °C (a common fuel cell operating temperature) by using a Q5000SA TA 

instrument.  De-sorption isotherms were determined by hanging samples on a weighing balance 

(accuracy ≤ ±0.1%) that was placed in a temperature and humidity-controlled chamber.  

Isothermal water content vs. RH curves were generated while decreasing RH from 90% to 0% in 

10% increments. 

2.7 Membrane in-plane proton conductivity 

Membrane in-plane proton conductivity vs. RH at 120 °C was determined using a BekkTech 

(BT-512) four-point probe conductivity test system.  The sample dimensions were 4.2 mm in 

length and 5.4 mm in width.  Samples were held in place by tightening a clamp.  The membrane 
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was equilibrated at each RH step for 1 h.  A back-pressure of 230 kPa absolute was used during 

the measurements. 

2.8 Atomic force microscopy 

Atomic force microscopy (AFM) was performed using a Digital Dimension 3000 Nanoscope IIIa 

instrument.  Tapping/phase mode interrogates morphology on the basis of local viscoelastic 

properties, i.e., hard vs. soft regions.  A silicon probe with nominal force constant of 40 N/m and 

resonance frequency of 275 kHz was used for tapping.  Bulk morphologies of samples, 

microtomed using a glass knife, were studied on 1 µm x 1 µm scan size areas at a scan rate of 0.5 

Hz.  Tapping mode was used to preserve the surface topography of the sample so that results 

were reproducible.  Multiple areas were imaged. 

2.9 TEM / SEM imagery 

Microstructural characterization also included imaging of freeze-fractured cross-sections in a 

Hitachi S4800 SEM and of cryo-microtomed thin cross-sections in a Hitachi HF3300 TEM.   

2.10 Thermogravimetric analysis (TGA) 

Thermal stability of all membranes was analyzed using a Thermogravimetric Analyzer TA Q50 

(TGA).  Sample sizes were under 10 mg and heated under 25 ml/min of nitrogen from 30 °C to 

800 °C at the heating rate of 10 °C/min. 

3.Results and Discussion. 

3.1 Crosslinking, sulfonation and PEG incorporation for xsPCHD/PEG membranes 
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PEG was chosen as a component because of its potential to retain water and thus increase proton 

conductivity at low humidity.[48]  PCHD homopolymers, block copolymers containing about 9.5 

wt% PEG, and polymer blends (~ 10 wt% PEG) were slightly crosslinked (2 ~ 5 mol.%) with 

sulfur monochloride (S2Cl2) in toluene and then solution-cast to form free-standing films.  

Without crosslinking, the solution-cast films are too brittle to be peeled off the casting substrate.  

Crosslinking not only makes solution-cast films considerably more flexible but locks in the 

morphology of PEMs (after sulfonation).  Therefore, crosslinking is essential for preparation of 

these PEMs.  Sulfonation is also critical in the control of PEM properties, not just proton 

conductivity but mechanical integrity as well.  In general, higher degrees of sulfonation lead to 

better proton conductivity although too high a degree results in a loss of mechanical integrity.  

The highest degree of sulfonation beyond which the homopolymer PEMs (xsPCHD) becomes 

mechanically weak is 50 mol %.  On the other hand, the xsPCHD-PEG diblock copolymer can 

reach 80% sulfonation and xsPCHD-PEG blends can reach 90% sulfonation.  Similar to 

sulfonation of polysulfones, [49-51]fragmentation of the polymer backbone can make PEMs 

mechanically weak.  For xsPCHD, although a large excess of chlorosulfonic acid ClSO3H (6.88 

equivalents) and high temperature (~ 80 °C) were used, only 50% sulfonation was obtained.  

Therefore, the diffusion of ClSO3H into membranes was not efficient, leading to quite serious 

fragmentation.  Low Tg polymer PEG (Mn: 2,000 g mol
-1

) in xsPCHD-PEG block copolymer 

facilitates the diffusion of ClSO3H so that less fragmentation and higher degree of sulfonation 

were obtained.  PEG of lower molecular weight (Mn: 750 g mol-1) in a xsPCHD-PEG blend can 

partially leach out during sulfonation, which leads to more efficient diffusion of ClSO3H and 

lesser fragmentation as compared with a xsPCHD-PEG block copolymer.  This leaching of PEG 
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only decreases the overall membrane PEG composition by ~2 wt% and is not considered to be 

significant enough to effect the overall composition or membrane morphology. 

Sulfonation chemistry, despite its commercial utility, remains complex and is not well 

understood because olefin sulfonation can produce a myriad of reaction products depending on 

olefin structures, sulfonating reagent conditions, and work-up procedures.[52, 53]Different 

reaction temperatures and work-up procedures used gave rise to different sulfonation products 

and thus different microstructures in these PEMs.[40, 54]  The differences in degree of 

sulfonation and microstructures among the xsPCHD, xsPCHD-PEG blend and xsPCHD-PEG 

block copolymer are the major attributors to the differences in PEM properties such as water 

uptake, proton conductivity and morphology. 

3.2 Membrane water uptake 

Water vapor pressure isotherms at 80 °C are shown in Fig. 1.  Curves for the average number of 

moles of water per mole of sulfonic acid groups (λ) vs. RH show that the water uptakes of the 

homopolymer, blend and block copolymer materials are significantly higher than that of Nafion 

112 over the higher RH range with the blend showing the greatest hydration. 
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Fig. 1.Water uptake in PEMs at 80 °C. vs. RH for Nafion 112 (■), xsPCHD homopolymer(○), 

xsPCHD-PEG block copolymer (▲), and an xsPCHD-PEG blend (▽). 

For example, at 50% RH xsPCHD membranes have 10-20 times the water uptake of Nafion.  

The greater hydration capacity of the copolymer and blend is attributed to the presence of 

hydrophilic, conformationally-flexible PEG components.  At 50% RH, the xsPCHD-PEG 

copolymer and xsPCHD-PEG blend incorporate ~ 5 times the number of water molecules per 

acid group than Nafion.  Given these large λ values, it is reasonable to assume that the state of 

water in the xsPCHD systems is more liquid-like for RH > 20% because there are more than 

enough water molecules to form hydration shells around the SO3- groups on average.[55]  This 

is important for PEMs that are dependent on water-based proton conduction even at low RH. 

3.3. Membrane proton conductivity 

Corresponding proton conductivity vs. RH curves for Nafion 112 and for all the xsPCHD-based 

membranes are displayed in Fig. 2.  The conductivities of all the xsPCHD based samples at 120 

°C for low (20%), medium (50%) and high (80%) RH values are listed in Supplementary Data 
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S.2 Supplementary Table 1.  The xsPCHD homopolymer has higher conductivity than Nafion 

112 at RH > 80% but decreases sharply as RH decreases.  Both block copolymer and blend 

PEMs have higher proton conductivity than Nafion over the entire RH range (20% to 100%).  At 

RH = 50% the conductivities of the block copolymer and blend are, respectively, 4 and 9 times 

that of Nafion.  At low (20%) RH, the conductivities of the block copolymer and blend PEMs 

are, respectively, as high as 5 and 18 times that of Nafion.  Both samples exceed the DOE target 

proton conductivity for 2015 indicated in Fig. 2 ( > 0.1 S cm-1 at 50 % RH and 120 °C).[56]  As 

compared with the xsPCHD homopolymer, the higher conductivities of xsPCHD-based 

copolymer and blend materials at low RH are related to their higher water uptake, as seen in Fig. 

1, due to the hydrophilicity of the PEG component. 

 

Fig. 2.Proton conductivity vs. RH for Nafion (■), xsPCHD homopolymer (○), xsPCHD-PEG 

block copolymer (▲) and xsPCHD-PEG blend (▽) at 120 °C. 

There are several potential mechanisms for the enhanced proton conductivity observed in the 

block copolymer and blend PEMs.  First, the presence of the hydrophilic PEG component serves 
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to enhance water retention.  In many PEMs, the mobility of both water and charge are highly 

correlated with the amount of water in the membrane.  This additional water can potentially 

impact proton conductivity in more than one way.  At a mesoscopic level, higher water content 

can result in the presence of a membrane-spanning aqueous domain providing a continuous path 

for proton transport per percolation theory.[7-9]  At the atomic level, higher water content 

promotes dissociation of excess protons from the sulfonate anions and enhances both the local 

vehicular and structural components of proton transport.[57]  The influence of PEG on the 

conductivity mechanism is not immediately clear.  Additional discussion of the effects of PEG is 

given later. 

3.4 Membrane morphology: Atomic force microscopy imagery 

The comparatively high proton conductivity at high temperature and low RH reflects well-

formed networks of contiguous aqueous domains at higher water content and phase-separated 

morphologies as will be discussed in the atomic force microscopy (AFM) results presented 

below.  Tapping mode/phase AFM images of these xsPCHD-based materials shown in Fig. 3 

reveal phase separated morphologies with features less than 10 nm in size.  McGrath et al[58] 

observed similar surface morphologies for their sulfonated copolymer materials with 

hydrocarbon backbones.  The bright regions are assigned to crosslinked hydrophobic non-ionic 

domains while the dark regions are assigned to hydrophilic sulfonated domains.  This assignment 

is largely based on the higher fraction of hydrophobic vs. hydrophilic chemical groups in the 

primary polymer structure.  This contrast is due to the phases having different local viscoelastic 

properties.  A PEG domain will be ‘softer’ than an xsPCHD domain.  For the copolymer and the 

blend, the hydrophilic PEG components result in larger and more contiguous darker regions.  

Increased connectivity of hydrophilic domains offers more efficient proton transport pathways 
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which contributes to the high conductivities observed for these membranes vs. that of the 

xsPCHD homopolymer, as shown in Fig. 2.  In the case of the block copolymer, the PEG block 

molecular weight is 2,000 g mol-1 vs. 750 g mol-1 for the blend’s unbound PEG molecules.  

From these images, it appears that the aqueous domains in the blend are smaller than those in the 

copolymer. 
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Fig. 3.Tapping mode AFM phase images.  (a) xsPCHD homopolymer, (b) xsPCHD-PEG block 

copolymer and (c) xsPCHD-PEG blend. 

Microstructural characterization of these materials was also conducted using scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM).  SEM images of freeze-

fractured cross section morphology are shown in Supplementary Data S.3 Supplementary Figure 

3.  All three membrane types exhibited microstructural heterogeneitywith prominent features up 

to 200μm in size. 

3.5 Modeling and simulation of membranes 

3.5.1 Modeling and simulation: Structure and morphology 

A multi-scale modelling effort of a similar polymer chemistry, involving atomistic molecular 

dynamics (MD), coarse-grained molecular dynamics (CGMD),[59-61] confined random walk 

(CRW) simulations[61-63] and percolation theory,[61-63] has been performed to describe the 

xsPCHD and PEG melts[59, 60] and hydrated membranes of the homopolymer,[61-
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63]copolymer[62], and blend[62] to further investigate structure and transport.[59-63]  The 

polymer chemistry simulated consists of the same xsPCHD backbone with different PEG linking 

in the copolymer.  Also, the simulated PEG polymer terminates in hydroxyl groups rather than 

ether groups.  This minor difference in polymer chemistry still provides a meaningful 

understanding of the water distribution in the membrane consistent with the AFM imagery, 

providing molecular insight into the morphology, PEG distribution, and transport across the 

membrane, to be discussed later. 

To investigate the membrane morphologies over different length scales, appropriate modeling 

and simulation techniques are chosen to extract relevant information for the given scale of 

interest.  On the smallest scale, the fully atomistic MD simulations give correlations between 

atomic pairs like those between polymer monomer atoms and the molecules of the aqueous 

domain, such as those shown in Fig. 5.  On a larger atomic length scale, CGMD simulations of 

the xsPCHD homopolymer lose atomic-level resolution yet are able to show the aqueous channel 

diameter to be on the order of 10 nm, shown in Fig. 4.  This aqueous channel diameter is 

comparable with the aqueous domain sizes in the phase morphology seen in the AFM images in 

Fig. 3 and discussed previously in other work.[61]On the largest length scale, yet lowest 

resolution,CRW simulations[62]of the mesoscale suggestthat the water cluster size radius in the 

blend (12.2 Å) is smaller than that in the homopolymer (15.8 Å) and significantly smaller than 

that for copolymer (24.1 Å). 
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Fig.4Simulation image of hydrated xsPCHD membrane with coarse-grained potentials for 

hydrated polymer beads using the NPT ensemble.  The state point was set at 1 atm, 80 °C and λ 

= 10.  Due to the hydrating species being implicitly incorporated into the coarse-grained 

potential interaction between coarse-grained polymer beads, only the polymer chains are 

explicitly simulated (colored by chain) and shown with the nanopore of ~10 nm being the 

aqueous channel formation. 

Pair correlation functions from fully atomistic MD simulations of water, hydronium ions (proton 

carriers), and PEG monomer species for the xsPCHD-PEG copolymer and blend membranes 

highlight key differences in structure and distribution of PEG for both membranes.[62]  The 

hydroxyl end groups of PEG have stronger correlation with hydronium ions in the copolymer 

than in the blend, while the PEG backbone shows stronger correlation with the hydronium in the 

blend than in the copolymer, shown in Fig.5 (Simulation images produced using Visual 

Molecular Dynamics visualization software[64]).  The water shows an overall stronger 
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correlation to the hydroxyl groups and backbone of PEG for the blend compared to the 

copolymer.  Fig.5 gives visual insight from simulation images of the xsPCHD-PEG copolymer 

and blend where only the water, hydronium, and PEG are visible.  The water and hydronium 

create the aqueous domain surface to highlight the larger water cluster size in the copolymer, the 

higher water dispersion in the blend, and the differences of PEG distribution between both.  The 

key differences between the copolymer and blend are the PEG in the copolymer is located at the 

interface of the polymer domain and aqueous domain, tethered to the polymer domain and 

extending into the aqueous domain, aggregating water to create larger clusters.  The PEG chains 

in the blend are located entirely in the aqueous domain and structure water molecules along their 

lengths and evenly distribute the water in the channel so it is more highly dispersed throughout 

the membrane.  This observation is supported by the pair correlation function data and 

simulation images from atomistic MD simulations in Fig.5, the CGMD simulation image of the 

aqueous channel in Fig. 4, the water cluster sizes from the CRW simulations, the visible 

differences in aqueous domain sizes in the AFM imagery, and further validated by impacts on 

water diffusion, to be discussed below. 
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Fig.5  Atomistic simulation images of PEG within the hydrophilic domains of the membranes for 

xsPCHD-PEG blend (a) and block copolymer (b) and pair correlation functions of hydronium 

ion with ether of PEG (c) and with hydroxyl of PEG (d) at 80 °C, and λ = 10.  In the simulation 

images, (a) and (b), only the water, hydronium, and PEG are shown (xsPCHD backbone of the 

hydrophobic domain was rendered invisible).  The water and hydronium [oxygen of water (red), 

oxygen of hydronium (green) and hydrogen  (white)] are represented by the aqueous domain 

surface while the PEG chains are represented as beads [carbon (blue), oxygen (red) and 

hydrogen (white)].  The pair correlation functions, (c) and (d), show the correlation of oxygen in 

hydronium to the oxygen along the backbone of PEG polymers (top right) and the terminal 

hydroxyl groups of PEG (bottom right). 

3.5.2 Modeling and simulation: Transport 

The transport of both water and protons is affected due to the incorporation of PEG in the 

aqueous channels.  PEG has been shown experimentally to slow water diffusion[65] and the 

same effect is observed in our simulation work shown in SupplementaryData S.4 
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SupplementaryTable 2.  In the blend, the PEG additive in the aqueous domain decreases the 

water mobility and also causes greater tortuosity for water diffusion through the highly dispersed 

channels.  The same effect is observed for the vehicular component of proton transport due to its 

strong coupling to water transport.  Experimentally, we observe that the presence of PEG 

enhances proton transport.  Since the simulations show that the vehicular component is 

decreased, there are two potential explanations.  First, the simulations, limited to a dimension of 

8 nm, may not capture a larger scale organization of the aqueous domain.  Second, the presence 

of PEG may actually enhance structural diffusion, which was not modeled in the classical MD 

simulations.  As suggested by Ritchie et al,[48] PEG may facilitate structural diffusion.  This 

suggests the latter explanation as a likely candidate. 

Structural diffusion contributions can be incorporated indirectly via percolation theory, which 

has shown to work well for systems with strong correlation between water and proton transport 

(Nafion, short-side chain perfluorosulfonic acid based PEMs,[9] and xsPCHD homopolymer 

membranes[61]).  While this approach works well for the homopolymer, it fails for the xsPCHD-

PEG copolymer and blend membranes, suggesting that the presence of PEG decouples the water 

transport from the charge transport.  Currently, computational efforts to explicitly evaluate the 

structural diffusion mechanism in xsPCHD-PEG membranes are underway. 

Other research with PEMs based on modified PEG blends has been reported.  Both sulfonated 

and unsulfonated PEG-PEA poly(ethylene glycol) phenyl ether acrylate have been blended with 

PEGDA poly(ethylene glycol) diacrylate, where PEGDA acts as a crosslinker, improving the 

mechanical stability of the network.[66]  Yet, these PEMs showed lower proton conductivity 

than Nafion due to a lack of nanoscale segregation of the polymer and aqueous domains.  We 
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believe that the unique segregation behavior and distribution of PEG in the xsPCHD-PEG blend 

account for the high conductivity. 

3.6 Thermogravimetric analysis (TGA) 

Unlike Nafion these PEMs based on PCHD are thermally stable up to 150 °C as confirmed by 

thermogravimetric analysis (TGA) in Fig.6.  TGA studies were performed to determine thermal 

stability in a N2 (non-oxidative) atmosphere.  Fig.6 shows mass loss vs. temperature up to 800 

°C.  Multi-step degradation is observed for all samples.  The first step involves mass loss from 

the initial temperature up to 200 C for the homopolymer, and up to 150 C for the copolymer 

and blend.  Percent weight losses during this step are 8, 15 and 22 wt%, respectively, for the 

homopolymer, copolymer and blend.  This initial weight loss is due to loss of sorbed water.  The 

increasing order in weight loss is similar to that of the membrane hydration capacity, as seen in 

the water vapor pressure isotherms in Fig. 1. 

Williamson et al.[67] observed initial degradation with a weight loss of ~ 12% for PCHD at 

around 100 C.  Similarly, Natori et al.[68]reported a weight loss of 13 wt% for their PCHD 

materials in the same temperature range.  Since their PCHDs were not sulfonated, which avoids 

any moisture uptake by membranes, the initial weight loss was attributed to de-polymerization.  

In our results, the onset of degradation shifted to 150 C, which may be due to the fact that our 

xsPCHD materials are cross-linked and sulfonated, which enhances their thermal stability.  Thus, 

for xsPCHD homopolymer, a weight loss of 14 wt% occurs between 150 C and 300 C 

followed by another loss (~ 13 wt%) between 310 C to 390 C and a loss of 7 wt% between 400 

C and 530 C.  There is no clear demarcation between these degradation steps.  It seems feasible 

that at 150 C there is de-polymerization until a more thermally stable end group was achieved, 
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which then showed a weight loss at 310 C and 400 C.[67, 68]  In case of the copolymer and 

blends, the degradation profiles are similar, but with much higher weight loss in the temperature 

range of 150 C to 400 C (~ 40 wt%) as compared to that of xsPCHD homopolymer (~ 26 

wt%).  This could be due to degradation of PEG in this temperature range.[69] 

All membranes showed appreciable amounts of char residue (35 ~ 60% of original mass) at 

temperatures as high as 800 C.  Natori et al[68] reported that the weight residue for 

polyphenylene (i.e., completely dehydrogenated PCHD) was between 60 ~ 70 wt% at 800 C.  It 

thus appears that de-sulfonation could lead to the formation of polyphenylene, although 

additional studies are required.  The multi-step degradation process observed by TGA for 

xsPCHD-based materials reflects the complexity of these chemical structures, which include 

SO3H groups, cross-links and chemical heterogeneity along the backbone.  No major weight loss 

occurs up to 200 C for the xsPCHD homopolymer, nor for the copolymer and blend systems 

up to 150 C.  While the temperatures reached in these tests are above fuel cell operating 

temperatures, the degradation temperatures reflect material bonding cohesion that is related to 

membrane durability.  The thermal stability at high temperatures affected by this synthetic route 

is worthy of consideration for membranes in high temperature fuel cells.  
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Fig.6.  Thermogravimetric analysis thermograms for xsPCHD homopolymer, xsPCHD-PEG 

copolymer and xsPCHD blend with PEG.  

3.8 Future work 

Further work should address performance and durability testing of the membranes in membrane 

electrode assemblies as well as crossover gas permeability testing.  The chemical stability can be 

evaluated by analyzing membranes degraded via accelerated stress tests such as the Fenton’s 

reagent test as well as open circuit voltage testing with broadband dielectric spectroscopy.[70]  

This analysis could also give insight into degradation mechanisms to help address chemical 

durability issues.  Gas crossover, specifically hydrogen crossoveracross the PEM from anode to 

cathode,during fuel cell operations reduces efficiencies and can be the cause ofmembrane 

degradation effects.Thus, additional gas permeability testing within the temperature and 

humidity range of operating conditions is required to determine future fuel cell applications for 

these membranes, which is not addressed in the current study.  Specifically, the relationship 

between gas permeability and both amount and type of PEG incorporation into the membrane 

would be pertinent to answer if this lower Tg polymer has a negative effect of enhancing gas 
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crossover. Possible improvements could be partial aromatization, inorganic sol-gel modification, 

further cross-linking of the membrane to decrease the probability of hydroperoxy or hydroxide 

radical diffusion, or incorporating a radical trapping material.[38] 

4. Conclusion 

In summary, the results of the preparation and partial characterization of novel, potentially low 

cost, high temperature and low humidity PEMs based on poly(1,3-cyclohexadiene) as either 

homopolymers or as blends and block copolymers with PEG are presented.  These materials are 

considered as limited model systems due to their possible chemical instability.  Yet, these 

materials as membranes can have proton conductivities as high as 18 times that of Nafion even at 

low relative humidity (20%) and at 120 °C, which is critical for hot and dry fuel cell operation 

conditions.  It is hypothesized that morphologies exhibiting higher connectivity of the 

hydrophilic domains accounted for their excellent proton conductivities.  Simulation and 

modeling shows a very different PEG distribution between the two membranes and this 

difference appears to be key in determining the mechanism for higher conductivities.  These 

materials may well degrade in an operating fuel cell because of their aliphatic hydrocarbon 

character.  However, the enhancement of proton conductivity at high temperature and low RH by 

incorporation of PEG and optimized sulfonation conditions demonstrated here should provide 

useful insight that will aid in the development of low cost, high temperature PEMs. 
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cross-linked, sulfonated poly(1,3-cyclohexadiene); PEG, poly(ethylene glycol); PEI, 

poly(ethylene imine); Tg, glass transition temperature; RH, relative humidity; THF, 
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resonance; PTFE, polytetrafluoroethylene; AFM, atomic force microscopy; SEM, scanning 

electron microscopy; TEM transmission electron microscopy; TGA, thermogravimetric analysis; 

MD, molecular dynamics; CGMD, coarse-grained molecular dynamics; CRW, confined random 
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