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A Generalized Force-Modified Potential Energy Surface (G-FMPES) for Mechanochemical

Simulations
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University of Southern Mississippi, Hattiesburg, MS 39402∗

2Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211
3Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

(Dated: September 21, 2015)

We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer po-
tential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are
exemplified using electronic structure calculations (at the HF/6-31G** level) of two different molecules: ethane
and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and Hessian matrices of station-
ary points show that spatially varying external loads shift the stationary points and modify the curvature of the
PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor.
The harmonic spectra of both molecules are blueshifted with increasing compressive “pressure.” Some station-
ary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy
minimum with a saddle point.

Keywords: mechanochemistry, energy landscape, transition states, conformation, vibrational spectra

I. INTRODUCTION

Mechanochemistry is the use of mechanical forces to mod-
ify the potential energy surface of a system, and consequently,
modify reaction pathways and rates. Recently, there has been
a resurgence of interest in examining systems that have a sub-
set of their atoms subjected to an external force. Examples
include computing activation energies for defect diffusion in
the vicinity of dislocations [1, 2], ring opening of cyclobutene
[3], the design of mechanophores [4], inducing forbidden re-
actions by violating the Woodward-Hoffman rules [5], explor-
ing the energy landscapes of mechanosensitive molecules [6],
and mechanophore activation [7–9].

The majority of studies to date assume, for simplicity, that
the external force applied on the atoms is constant, but, this
need not always be the case. One example of a spatially vary-
ing force is seen in problems relevant to irradiation damage
where the transition rates of defects (such as single intersti-
tials) in metals and oxides have been demonstrated to be a
function of the macroscopic stress [10–13]. In these cases,
defects are embedded in a uniform stress field, but transmis-
sion of the macroscopically uniform stress to the atomic level
almost inevitably results in the individual atoms experienc-
ing a force that is a complex function of the current atomic
configuration. Consequently, atoms involved in a transition
will experience an external force that is a complex function
of the reaction progress. Another example of a spatially vary-
ing force is seen in energetic materials such as RDX in either
the presence of a macroscopic stress field [14–16], or in the
vicinity of defects [17–21]. Here, as with the case of irradia-
tion damage, the force on the atoms involved in a transition is
a function of their position within the crystal. A third exam-
ple is seen in molecules embedded in a non-uniform external
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field (e.g., as seen in ion traps [22] where the confining ex-
ternal potential is quadratic) which results in a force that is
non-uniform throughout the molecule, and therefore, the as-
sumption of a constant force can be a poor approximation. A
fourth example, as pointed out by a reviewer, is seen in single-
molecule force spectroscopy [23, 24] where the constant force
assumption is valid only in the limit of “soft” handles through
which the force is transmitted to the molecule. Therefore, a
more realistic description of single-molecule pulling would
also involve forces that are not constant.

The effect of any external force (either constant or spatially
varying) on a subset of atoms serves to modify the potential
energy surface (PES) of the system being studied, and in this
article, we present a formulation for describing a Generalized
Force-Modified Potential Energy Surface (G-FMPES). This
formulation can be used for both constant as well as spatially
varying forces, and can be viewed as a generalization of ear-
lier work by Ong et al. [3]. This formulation also shows that
spatially varying forces result in the G-FMPES having a cur-
vature different from that of the unmodified PES: this curva-
ture change can be particularly important for studies that ex-
plore the G-FMPES by numerical integration [6], where the
tacit assumption of unchanging curvatures is made. With the
formulation of the G-FMPES in place, we show that standard
atomistic techniques can be used to calculate quantities of
practical interest, such as transition states and vibration spec-
tra, under the influence of a spatially varying external force.
We use ethane (C2H6) and hexahydro-1,3,5-trinitro-s-triazine
(RDX) as our two test molecules.
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FIG. 1. A 1-dimensional generalized force-modified potential energy
surface (G-FMPES), V(R), as the sum of an unmodified PES and an
external potential. The schematic shows the results of adding two
different kinds of external potentials: (a) linear, corresponding to a
constant external force that preserves the curvature of the unmodified
PES, and (b) quadratic, corresponding to a spatially varying force
that changes the curvature of the unmodified PES.

II. METHODS

A. The Generalized Force-Modified Potential Energy Surface

(G-FMPES)

Consider a 3-dimensional system comprised of N atoms
where positions of all the atoms are defined by the 3N-
dimensional vector R. Let the functional V(R) describe the
unmodified PES of the interaction between atoms. We as-
sume that the PES is smooth and that third derivatives exist
at all points. Thus, the force on all the atoms is given by the
negative gradient of the potential energy functional as

Fgrad(R) = −∇V(R) (1)

In mechanochemical simulations, it is necessary to apply
external forces on a subset of atoms. This external force,
denoted by the 3N-dimensional vector Fext(R), is considered
to be the result of an external potential, denoted by Vext(R).
These last two quantities are related by the familiar expres-
sion

Fext(R) = −∇Vext(R) (2)

This external force, whose form is as yet unspecified, mod-
ifies the PES and results in a generalized force-modified po-
tential energy surface (G-FMPES) given by the functional

V(R) = V(R) + Vext(R) (3)

This addition of potential energy functionals is represented
schematically for a 1-dimensional PES in figure 1 for an ex-
ternal potential that is (a) linear, and (b) quadratic. From this
point onwards, we will adopt the convention that a variable
with an overline refers to a quantity computed on a G-FMPES.
In mechanochemical simulations, it is often the case that the
unmodified PES and external forces are prescribed, making it
necessary to calculate the numerical value of Vext(R). As long
as Fext(R) is a conservative field, this is achieved by choosing
a suitable reference configuration, say Rref , and performing a
path integral of the external force from the reference configu-

ration to the desired configuration R as

Vext(R) − Vext(Rref) =
∫ s=R

s=Rref

−Fext(s) · ds (4)

=

∫ s=Rref

s=R

Fext(s) · ds (5)

Note that in the second integral, removal of the negative
sign results in reversal of the integration path. The actual path
is unimportant because of the gradient theorem for line inte-
grals, and therefore, a straight line is chosen as it is possibly
the simplest path. In most atomistic simulations, we are inter-
ested in relative heights of points on the G-FMPES and there-
fore set Vext(Rref) = 0. Equation 3 for the G-FMPES therefore
becomes

V(R) = V(R) +
∫ s=Rref

s=R

Fext(s) · ds (6)

and shows that the application of any external force can, in
general, produce stationary points that are different from those
on the unmodified PES.

As discussed in the introduction, the external force vector
is not necessarily a constant. However, if we set Fext to be a
constant, as has been the case with many mechanochemical
studies [3–9], equation 6 for the G-FMPES reduces to

V(R) = V(R) + Fext · (Rref − R) (7)

which is equivalent to the expression that previous researchers
have employed. Thus, if we make the simplifying assump-
tions that previous researchers have made, our more general
expression for the G-FMPES (equation 6) reduces to the more
simple form employed in the past (equation 7).

B. Curvature of the G-FMPES

The local curvature of the G-FMPES is given by the Hes-
sian matrix, which is in turn defined as the Jacobian matrix
of the gradient vector of the potential energy functional. De-
noting the Hessian matrix for the G-FMPES by H(R), and
applying the definition of the Hessian matrix to the definition
of a G-FMPES (equation 3), we obtain

H(R) = J
[

∇V(R)
]

= J [∇ {V(R) + Vext(R)}] (8)

The distributive property of the Jacobian and gradient op-
erators yields an expression for the Hessian matrix on the G-
FMPES in terms of the Hessian matrix on the unmodified PES
and the first derivatives of the external force vector as

H(R) = H(R) − J [Fext(R)]

= H(R) +Hext(R) (9)

where H(R) is the Hessian matrix of the unmodified PES, and
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we have designated

Hext(R) = −J [Fext(R)] (10)

Equations 9 and 10 show that if the external force Fext is a
constant, then Hext(R) = 0, and the Hessian of a point on the
G-FMPES is the same as that of the unmodified PES, and the
two surfaces have the same curvature (as shown in figure 1a).
As discussed in the introduction, the external forces are not
necessarily constant, and therefore, curvatures of a G-FMPES
are generally expected to be different from those of the un-
modified PES. The effect of varying curvatures is discussed in
section II D.

C. Pseudo-hydrostatic pressure

As an example of a loading modality where the external
force is not a constant, we use a force vector that resembles
hydrostatic pressure, and we refer to this loading modality as
“pseudo-hydrostatic pressure.” Here, the external force ap-
plied on each atom, f

( j)
ext, is calculated as

f
( j)
ext = P

[

r( j) − c
]

; ∀ j = 1, 2, 3 . . .N (11)

where P is a user-defined “pressure” having units of kcal
mol−1Å−2, r( j) is the position vector of the jth atom, and c is
the geometric centroid of the system. Note that the lowercase
boldface symbols used here refer to 3-dimensional vectors.
With this prescription, a negative value of P implies compres-
sion while a positive value implies expansion. Also, both the
magnitude and the direction of the external force on each atom
are a function of the configuration. Consequently, the external
force vector on all atoms, Fext as in equation 6, is a function of
the current configuration and is not constant. As pointed out
by a reviewer, this prescription for the application of external
forces is equivalent to placing every atom of the system in the
same parabolic potential centered at the geometric centroid c.
It results in a conservative force field, thereby satisfying the
assumptions made in deriving equation 6. For the interested
reader, a proof that this loading modality results in a conser-
vative force field is available in the supplementary material
[25].

This prescription for mimicking hydrostatic pressure is not
necessarily ideal and other prescriptions that better mimic the
application of hydrostatic pressure on a system are conceiv-
able. For example, in periodic systems this is accomplished
with relative ease by simply using lattice parameters that are
different from equilibrium. However, exploration of these var-
ious prescriptions is beyond the scope of this article and del-
egated to a future publication. These hypothetical alternate
prescriptions would, however, have to satisfy the condition of
producing a conservative external force field in order for equa-
tion 6 to be path independent.

D. Transition rates on the G-FMPES

There are two ways in which transition rates on a G-FMPES
are different from those on an unmodified PES, and can be un-
derstood within the context of harmonic Transition State The-
ory (h-TST). Assuming that h-TST is valid on a G-FMPES,
transition rates are computed as

k = k0 exp













−
Ea

kBT













(12)

where Ea is the activation energy for a transition, k0 is the
prefactor (related to the curvature), kB is the Boltzmann con-
stant, and T is the temperature.

The activation energy Ea is simply the difference in en-
ergies of the saddle point and the energy minimum on the
G-FMPES. From equation 6, it is easy to see that station-
ary points on a G-FMPES (i.e. points with ∇V(R) = 0) are
in general different from those on an unmodified PES, and
consequently, the activation energy for a transition can be ex-
pected to be different on a G-FMPES. Calculating the acti-
vation energy requires finding the saddle point configuration,
which can be achieved using any of the various saddle-point
finding methods [26], and indeed, many researchers have ac-
counted for this change [1, 10, 11] in activation energy of a
transition when computing transition rates.

However, these very studies have neglected the effects
changes in curvature which affect transition rates via the pref-
actor k0. For example, studies involving point defect migra-
tion rates with which the primary author of this paper was in-
volved [10, 11] have neglected curvature change effects with
the justification that the most significant changes in transi-
tion rates are manifested by changes in the activation energy,
which is inside the exponential of the expression for transition
rates, and therefore overwhelms any effects from curvature
changes that manifest themselves in the prefactor. While this
assumption may be acceptable in many situations, transitions
with unusual prefactors such as the transformation of voids to
stacking fault tetrahedra [27] with a prefactor tens of orders
of magnitude higher than typical exist, and can be expected
to show counterintuitive changes in transition rates when the
external force is not a constant.

The effects of curvature change on the prefactor can be un-
derstood from Vineyard’s expression [28] for the prefactor:

k0 =

3N−m
∏

j=1

ν
(min)
j

3N−(m+1)
∏

j=1

ν
(sad)
j

(13)

where the 3N − m different ν (min)
j

are the non-zero normal
mode frequencies of the energy minimum, and the 3N−(m+1)
different ν (sad)

j
are the positive and non-zero normal mode fre-

quencies of the saddle point for the transition. The subtrac-
tion of m in the numerator (energy minimum) accounts for
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the m rigid-body motion degrees of freedom, and the subtrac-
tion of (m + 1) in the denominator (saddle point) accounts
for the rigid-body motion degrees of freedom plus 1 imag-
inary frequency for a first-order saddle point. For systems
that have translational and rotational symmetry, m = 6. Ap-
plication of external forces can break the symmetry, result-
ing in m ≤ 6. These normal mode frequencies are in turn
calculated by diagonalizing the appropriate Hessian matrix
H(R) = H(R) +Hext(R).

For a constant external force resulting in Hext(R) = 0, the
prefactor k0 is calculated using the curvature of the unmodi-
fied PES at the locations of the new stationary points. How-
ever, as stated previously, there can be situations where the
curvature change has to be accounted for.

III. APPLICATIONS

With the above understanding of how to compute ener-
gies, forces, and curvatures on a G-FMPES, standard atom-
istic techniques can now be used in a straightforward man-
ner to compute quantities of practical interest. In the remain-
der of this article, we will demonstrate the effect of pseudo-
hydrostatic pressure on transition states and harmonic tran-
sition rates for conformational changes, and harmonic vibra-
tional spectra of two selected molecules, ethane (C2H6) and
hexahydro-1,3,5-trinitro-s-triazine (RDX).

The Hartree-Fock (HF) method [29–31] with the 6-31G**
basis set [32], as implemented in the AIMS-MOLPRO code
[33], was used for computing energies and gradients on the
unmodified PES. While this combination of method and basis
set is not necessarily ideal for purposes of accuracy, it serves
as a computationally inexpensive means of illustrating the
main point of this paper: the calculation of static quantities on
a G-FMPES and their comparison with corresponding quanti-
ties on an unmodified PES. Custom Python routines were used
in conjunction with MOLPRO to explore the G-FMPES. Tran-
sition states were calculated using the Nudged Elastic Band
(NEB) with two climbing images [34] and the improved tan-
gent estimate [35]. A more detailed description of our im-
plementation is available in the supplementary material[25].
Structure optimizations (for finding energy minima as well as
transition states) were performed using the Fast Inertial Re-
laxation Engine (FIRE) [36]. The integral in equation 6 was
computed using the trapezoidal rule over a grid with reso-
lution 5 × 10−3 Å along a straight line between R and Rref .
The Hessians of all stationary points on the G-FMPES had 6
eigenvalues that were numerically zero and corresponded to
translation and rigid body rotation. The Hessians of all saddle
points were verified as having only one negative eigenvalue,
thereby ensuring that they were true first-order saddles.

We first examined the rotational barrier in ethane, which
is a 120◦ rotation of a CH3 group about the C−C bond of an
ethane molecule, as shown in figure 2 where the cyan atoms
are carbon and the white atoms are hydrogen. The rotational
barrier in ethane is a prototypical example for developing an
understanding of steric hindrance. It was first discovered by
Kemp and Pitzer [37] who showed that an internal rotational

(a)

(b)

(c)

FIG. 2. Rotation of a CH3 group by 120◦ about the C−C bond in
ethane. (a) Start state – often referred to as the staggered conforma-
tion (b) Saddle point or eclipsed conformation (c) End state – also a
staggered conformation.

barrier of 2.8 kcal mol−1 had to be present in order to ob-
tain thermodynamic quantities in agreement with experiment.
This classic problem remains the topic of theoretical analyses
as the origins of the barrier are still being probed [38, 39], and
to our knowledge, the effect of pressure on this barrier has not
been investigated.

For this transition, we chose the staggered conformation at
P = 0 to be the reference configuration Rref with Vext(Rref) =
0. Figure 3a shows the energy along the reaction coordinate
for this transition at various pressures, and all energies are rel-
ative to the reference configuration. For the transition with
no external pressure, we obtain an energy barrier of 3.02 kcal
mol−1 which is within 8% of the experimental value of 2.8
kcal mol−1 [37, 40]. With increasing compression (or decreas-
ing values of P), we see that the energy of the saddle point
progressively increases while the energy of the staggered con-
formation decreases and thus leads to a net increase in activa-
tion energy as a function of increasing compression. There is
a concomitant increase in the prefactor with increasing com-
pression (see figure 3), but this increase is overshadowed by
the increase in activation energy, and consequently, there is
a net decrease in the transition rate as a function of increas-
ing compression. We speculate that under the influence of
compressive pressure, the molecule adopts a more compact
conformation which leads to atoms interacting more strongly
with each other. This leads to more pronounced steric effects
and a net decrease in transition rates.

The wavenumbers of the staggered conformation of ethane
computed by diagonalizing the Hessian are given in table I in
units of inverse centimeters. The wavenumbers at zero pres-
sure are in good agreement with the values available in the lit-
erature for calculations at the HF/6-31G** level [41]. We see
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FIG. 3. For the rotational transition of ethane, (a) energy along the reaction coordinate as a function of pressure for the values of P (with units
of kcal mol−1 Å−2) indicated in the legend, and (b) activation energies, prefactors, and transition rates as a function of pressure. All energies
are relative to that of the staggered configuration at zero pressure. On both figures, an arrow indicates the direction of increasing compression.

TABLE I. Calculated wavenumbers (in cm−1) of the staggered
conformation of ethane for the lowest, zero, and highest values
of pseudo-hydrostatic pressure (in kcal mol−1Å−2) studied. The
wavenumbers of the rigid body modes of deformation are not re-
ported.

P = −11.86 P = 0 P = 11.86
382.80 327.65 264.69
897.95 885.11 846.16
897.95 885.16 876.95

1208.96 1059.31 876.96
1366.90 1329.27 1281.82
1366.91 1329.31 1281.82
1510.56 1531.93 1538.96
1574.90 1564.79 1546.27
1648.04 1627.73 1601.37
1648.12 1627.81 1601.43
1651.56 1632.78 1612.73
1651.64 1632.86 1612.79
3344.70 3180.24 2992.31
3351.69 3185.88 2995.89
3423.52 3234.15 3020.84
3423.60 3234.22 3020.91
3445.54 3259.17 3047.84
3445.61 3259.23 3047.90

that compressive pressures shift the vibrational spectrum to
higher wavenumbers (blueshift) indicating that the modes be-
come stiffer, while expansive pressures have the opposite ef-
fect, i.e., redshift the spectrum. This behavior is qualitatively
consistent with the experimental behavior seen by Kurnosov
et al. [42] who saw that the Raman spectra of both liquid
and solid ethane shifted to higher wavenumbers with increas-
ingly compressive pressure over a range of up to 6900 MPa.
However, the amount of shift they saw is significantly lower

(approximately a factor 10) than the shifts we see in our simu-
lations, indicating that the simulated pseudo-hydrostatic pres-
sures on ethane are likely higher than the experimental values.

The second molecule examined was hexahydro-1,3,5-
trinitro-s-triazine (RDX), which forms an energetic molecu-
lar crystal and is used in many explosive formulations. Five
polymorphic forms of RDX, namely α [45], β [44, 46, 47], γ
[48, 49], δ [50], and ε [51] have been discovered, with the α
polymorph being stable at room temperature and atmospheric
pressure. RDX has a chemical formula C3H6N6O6, and is
shown in figure 4. The red atoms are oxygen and are part
of the nitro (NO2) groups, blue atoms are nitrogen, and cyan
atoms are carbon. The ring formed by alternating C and N
atoms is the triazine ring, and the nitro groups are on the
side. The conformation of an RDX molecule is determined
by the shape of the triazine ring (Boat, Chair, or Twist, de-
noted by B, C, or T, respectively) and the position of the nitro
side groups with respect to the triazine ring as determined by
the angle between the N-N bond and the plane of the C-N-C
triple (axial, intermediate, or equatorial, denoted by a, i, or
e respectively). Electronic structure calculations [43, 52, 53]
have predicted the existence of the Caaa (figure 4a), Caae,
Caee, and Ceee (figure 4c) conformers in the gas-phase, along
with other conformers having the triazine ring in a Boat or
Twist form. The conformational state of an RDX molecule in
the solid-phase depends on the type of the polymorph, state
of stress, and presence of defects. All molecules in the or-
thorhombic unit cell of α-RDX exist in the Caae conforma-
tion, whereas all molecules in the β and ε polymorphs are
in the Caaa conformation [49, 54]. Of the eight molecules
in the γ-RDX unit-cell, four exist in the Caai conformation
and the rest in the Caae conformation [15]. Conformational
transitions in α-RDX crystals have been predicted to occur
due to the passage of shock waves [16], during the α-γ phase
transition [15], under uniaxial strain [14], on the surface of
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TABLE II. Calculated wavenumbers (in cm−1) of the two conformers of RDX for the lowest, zero, and highest values of pseudo-hydrostatic
pressure (in kcal mol−1Å−2) studied. The wavenumbers of the rigid body modes of deformation are not reported. For comparison, wavenumbers
obtained by Rice and Chabalowski [43] for the Caaa conformer using a B3LYP functional, as well as experimental data from the vapor phase
obtained by Karpowicz and Brill [44] are shown.

DFT, Experimental This work, Caaa This work, Ceee
Ref. [43] Ref. [44] P = −1.78 P = 0 P = 0.59 P = −1.78 P = 0 P = 0.59

31 43.16 35.64 17.97 54.07 54.67 57.61
37 46.87 35.85 18.98 54.24 54.91 57.72
63 46.92 66.61 52.48 58.41 69.43 74.24
67 124.51 77.24 80.61 83.42 89.03 90.61
100 147.74 109.04 100.29 117.10 122.78 125.56
102 148.16 109.20 100.41 117.17 122.88 125.60
220 252.57 242.29 226.39 190.72 187.66 188.00
221 252.89 243.26 227.50 190.85 187.96 188.13
301 328.25 342.44 353.29 258.64 242.31 237.75
363 433.26 408.85 392.75 258.82 242.62 237.89
365 433.84 409.58 393.09 354.65 323.37 312.62
409 490.40 465.49 442.88 392.41 378.23 373.04
413 490.50 465.54 442.96 413.76 402.22 398.37
442 542.98 508.24 480.28 413.81 402.58 398.50
458 581.23 534.35 500.34 413.87 402.70 398.55
590 665.53 665.83 666.88 662.87 653.23 649.50
590 678.61 669.92 667.07 662.91 653.35 649.54
593 678.62 670.09 670.71 763.07 748.61 744.02
660 743.83 736.41 736.48 804.80 791.93 787.26
661 782 744.39 737.15 736.95 804.85 791.98 787.28
749 845 838.31 847.56 854.82 888.82 888.90 888.52
753 880 893.85 889.89 887.55 905.48 900.70 899.43
754 894.12 890.18 887.70 905.54 900.76 899.45
782 910 927.25 911.05 900.68 926.74 919.71 917.42
863 977.35 965.23 961.49 1025.01 1000.65 993.22
864 977.39 965.30 961.58 1025.04 1000.66 993.23
887 994.59 972.64 964.37 1039.98 1007.40 997.06
906 1014 1054.98 1048.14 1049.12 1132.72 1121.19 1118.04
907 1055.04 1048.31 1049.38 1132.73 1121.31 1118.09
935 1103.13 1096.06 1096.06 1158.32 1137.97 1131.37

1005 1183.59 1177.26 1181.35 1245.16 1222.61 1214.21
1005 1218 1183.95 1177.81 1181.77 1245.22 1222.61 1214.22
1141 1268 1299.40 1289.72 1291.61 1335.81 1319.68 1313.45
1242 1319 1414.78 1400.56 1399.42 1425.35 1403.41 1393.44
1250 1374 1415.18 1401.04 1399.72 1438.70 1407.28 1397.35
1252 1421.61 1414.65 1403.04 1464.11 1439.33 1430.03
1275 1420 1436.76 1418.06 1421.94 1464.18 1439.46 1430.07
1292 1444 1494.98 1494.98 1497.76 1476.04 1458.18 1451.63
1294 1520.75 1511.62 1505.00 1476.08 1458.33 1451.70
1345 1520.77 1511.83 1505.27 1525.41 1518.57 1516.90
1363 1541.13 1531.23 1528.75 1558.34 1537.31 1530.36
1381 1541.77 1531.81 1528.99 1558.37 1537.38 1530.43
1384 1584 1585.01 1578.37 1577.65 1636.15 1612.26 1603.91
1402 1585.06 1578.44 1577.72 1636.37 1623.96 1619.76
1403 1598.31 1589.11 1585.93 1636.42 1624.01 1619.80
1464 1619.50 1616.34 1618.19 1657.76 1654.11 1653.79
1466 1619.53 1616.43 1618.31 1657.80 1654.11 1653.79
1482 1665.26 1655.60 1653.42 1670.68 1668.21 1667.74
1627 1854.72 1845.01 1839.91 1864.45 1848.85 1843.95
1658 1914.64 1890.13 1877.62 1889.74 1873.60 1868.46
1658 1914.99 1890.69 1878.07 1889.96 1873.61 1868.48
3064 3065 3311.08 3266.08 3245.22 3188.21 3172.70 3167.49
3064 3311.42 3266.52 3245.39 3188.29 3172.81 3167.52
3070 3323.14 3276.76 3254.68 3196.56 3179.52 3173.78
3192 3476.09 3434.69 3419.39 3484.77 3431.28 3412.98
3192 3476.20 3434.73 3419.44 3484.82 3431.33 3413.01
3194 3477.51 3436.30 3421.24 3487.38 3433.89 3415.59

voids [17], and inside stacking faults [18, 19, 55] and disloca-
tion cores [20]. Molecular dynamics simulations using a non-
reactive and fully-flexible force field have shown that confor-
mational transitions play an important role in the stability of
high-pressure phases [15], plastic deformation mechanisms of
RDX [19, 55–57], and contribute to energy concentration in
strained α-RDX crystals [14].

We studied the Caaa↔ Ceee transition (shown in figure 4)
of an isolated RDX molecule because it has the highest ac-

tivation energy of all the transitions between conformers for
an RDX molecule with the Chair shaped triazine ring. The
pseudo-hydrostatic pressures applied in this test case are par-
ticularly relevant because the deviatoric part of the stress ten-
sor vanishes for the gas phase and the pressure (−tr(σ)/3) be-
comes the critical term at high stresses and temperatures under
which decomposition of shocked explosives takes place.

For this transition, we chose the Caaa conformer at P = 0
to be the reference configuration Rref with Vext(Rref) = 0. In-
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(a)

(b)

(c)

FIG. 4. Transition of an RDX molecule (C3H6N6O6) from the Caaa
conformer to Ceee. (a) Caaa conformer, (b) saddle point, and (c)
Ceee conformer. The red atoms are oxygen, and are part of the nitro
(NO2) groups, blue atoms are nitrogen, and cyan atoms are carbon.
The ring formed by alternating C and N atoms is the triazine ring.

creasingly compressive pressures were seen to increase the
energy barrier for the forward (Caaa→ Ceee) transition while
decreasing the barrier for the reverse (Caaa←Ceee) transition
with a concomitant increase (or decrease) in the net rates (see
figure 5). For pseudo-hydrostatic pressures with P ≤ −2.37
kcal mol−1 Å−2, i.e. high compressions, we observed that
the Ceee conformer was no longer stable, and spontaneously
transitioned into the Caaa conformer. Conversely, for pseudo-
hydrostatic pressures with P ≥ 1.78 kcal mol−1 Å−2, the
Caaa conformer was no longer stable and spontaneously trans-
formed into the Ceee conformer. This type of mechanism
where external stresses cause existing stationary points on the
energy landscape to vanish has been observed before in the
case of zirconium interstitials [10], and indicates that an en-
ergy minimum merges with a saddle point (referred to as a
“catastrophe” by earlier studies [58]). The opposite scenario,
where external stresses introduce new stationary points into
the energy landscape, was not observed for the range of pres-
sures studied in this article but is a very real possibility for

other more complex systems.
As with the case of ethane, we speculate that higher com-

pressions cause the RDX molecule to adopt more compact
conformations leading to enhancements of steric effects. This
observation agrees well with the fact that the Caaa conformer
is present in the high-pressure polymorphs (β and ε) of RDX
[49, 54]. For the forward transition (Caaa → Ceee), we see
that the transition rate decreases with increasing compres-
sion. However, the backward transition (Caaa ← Ceee) rate
increases with increasing compression, and this is thought to
be because the Ceee conformer is a higher-energy conformer
where steric effects are already pronounced (as evidenced by it
being unstable at high compressions) and the extra compres-
sion serves to make transitions out of this high-energy con-
former more accessible.

Table II shows the calculated wavenumbers with units of
cm−1 of the two conformations for the lowest, zero, and high-
est values of pseudo-hydrostatic pressure used in this study.
Again, as with the case of ethane, the harmonic vibrational
spectrum of RDX is seen to shift to higher wave numbers with
increasing compression indicating stiffer modes. This behav-
ior is consistent with previous independent experimental stud-
ies by Dreger and Gupta [59], Zheng et al. [60], and Ciezak et
al. [50], as well as molecular dynamics studies [61]. However,
the softer modes of Ceee, from 54-122 cm−1 behave in the op-
posite manner. Also shown in table II are the wavenumbers
obtained from DFT studies by Rice and Chabalowski [43] (at
the B3LYP/6-31G** level), as well as experimental data from
the vapor phase [44]. We found good agreement between our
harmonic frequencies and those of experiment. There are sig-
nificant differences between our frequencies and those of Rice
and Chabalowski [43], but this is can be attributed to the dif-
ferences in electronic structure theory techniques employed.
At this point, we remind the reader that the thrust of this ar-
ticle is not accurate computation of spectra, but examination
of the effect of pressure on atomistically calculated quanti-
ties. Therefore, quantitative comparison between experimen-
tal data and simulations is deferred until after we gain a better
understanding of the relationship between pseudo-hydrostatic
pressure and its thermodynamic counterpart.

IV. CONCLUSIONS

We have outlined a formulation for computing energies
on a generalized force-modified potential energy surface (G-
FMPES), and demonstrated that with this formulation, cal-
culation of atomistic quantities (including transition states)
in the presence of a spatially varying force is easily accom-
plished using standard atomistic techniques. We have demon-
strated the formulation using two simple molecules, namely
ethane and RDX, and by calculating a variety of atomistic
properties. For ethane, we examined the rotational barrier
(a classic problem), and for RDX, we examined the Caaa ↔
Ceee transition of RDX. We also calculated the 0K Hessian
matrix of stationary points, and showed that for the pseudo-
hydrostatic loading mode used in this study, the curvature of
the G-FMPES is indeed different from that of the unmodified
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FIG. 5. For the Caaa to Ceee transition of RDX, (a) energy along the reaction coordinate as a function of pressure for the values of P (with
units of kcal mol−1 Å−2) indicated in the legend, and (b) activation energies, prefactors, and transition rates as a function of pressure. Here, the
forward transition is the Caaa→ Ceee transition. All energies are relative to that of the Caaa conformation at zero pressure. On both figures,
an arrow indicates the direction of increasing compression.

PES, and that it has an effect on the curvature and harmonic
transition rates. We also see instances where the addition of
an external force causes an RDX conformer to become unsta-
ble, indicating merging of an energy minimum with a saddle
point. We speculate that increasing compressive pressures en-
hance steric effects by forcing molecules into more compact
conformations. For ethane, this leads to a net increase in the
rotational barrier resulting in a lower transition rate. For RDX,
the activation energy for the Caaa → Ceee transition also in-
creases. However for the backward Caaa ← Ceee transition,
since the Ceee conformation is already a high energy state,
enhanced steric effects make transitions out of this conformer
more accessible resulting in a lowering of the energy barrier.
For both molecules, increasing compressive pressures shifted
the vibrational spectra towards higher wavenumbers, indicat-
ing that the vibrational modes become stiffer. This behavior is
qualitatively consistent with independent experiments, as well
as molecular dynamics studies. With the formulation of the
G-FMPES in place, it is now possible to compute dynamical
quantities using standard MD techniques to incorporate the ef-
fects of spatially varying external forces on finite temperature

calculations.
While the data presented in this article indicate that our for-

mulation is valid, it is important to restate our assumptions
and to point out potential avenues that might require further
investigation. First and foremost, the formulation assumes
that the force field of the G-FMPES is conservative. This as-
sumption is necessary for the integral in equation 6 to be path
independent. Secondly, a real possibility is the introduction
of new minima into the G-FMPES. While we did not observe
any intermediate minima along the transition path for the sys-
tems studied in this article, it might happen in other more
complex systems. Finally, while our prescription for pseudo-
hydrostatic pressure is reminiscent of mechanical pressure,
the relationship between the two requires investigation.
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1 Proof that the external force field is conservative

In order to show that the external force field, Fext(R), resulting from our prescription of
pseudo-hydrostatic pressure is conservative, we begin with a per-atom description of a sys-
tem. For a 3-dimensional system containing N atoms, the position vector of the jth atom,
and the external force vector on it are given in component form as

r(j) =
(

x(j), y(j), z(j)
)

(1)

f
(j)
ext =

(

f
(j)
ext,x, f

(j)
ext,y, f

(j)
ext,z

)

(2)

where the various
{

f
(j)
ext ∀ j = 1, 2, 3 . . . N

}

make up the external force field Fext(R).

The geometric centroid of the configuration is given by the average position of all the
atoms in the configuration as

c = (cx, cy, cz) =
(〈

x(j)
〉

,
〈

y(j)
〉

,
〈

z(j)
〉)

(3)

where 〈·〉 denotes an average taken over all N atoms.
According to our prescription of pseudo-hydrostatic pressure, the external force vector

on the jth atom is given as

f
(j)
ext = P

[

r(j) − c
]

; ∀ j = 1, 2, 3 . . . N (4)

where P is a user-defined “pressure.”
The first derivatives of the external force vector (which are the negative elements of the

Hessian matrix) are given by
{

∂f
(j)
ext

∂x(k)
,
∂f

(j)
ext

∂y(k)
,
∂f

(j)
ext

∂z(k)
; ∀ j, k = 1, 2, 3 . . . N

}

(5)

The first of this set can be written as

∂f
(j)
ext

∂x(k)
= P

(

∂r(j)

∂x(k)
−

∂c

∂x(k)

)

(6)
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with

∂r(j)

∂x(k)
=

(

∂x(j)

∂x(k)
,
∂y(j)

∂x(k)
,
∂z(j)

∂x(k)

)

= (δjk, 0, 0) (7)

∂c

∂x(k)
=

(

∂ 〈x〉

∂x(k)
,
∂ 〈y〉

∂x(k)
,
∂ 〈z〉

∂x(k)

)

=

(

1

N
, 0, 0

)

(8)

where δjk is the Kronecker delta. Using this result, and similar results for the other deriva-
tives, we obtain the following expressions for all first derivatives of the external force vector
as

∂f
(j)
ext

∂x(k)
= P

(

δjk −
1

N
, 0, 0

)

(9)

∂f
(j)
ext

∂y(k)
= P

(

0, δjk −
1

N
, 0

)

(10)

∂f
(j)
ext

∂z(k)
= P

(

0, 0, δjk −
1

N

)

(11)

which are all constant for all values of j and k and therefore exist and are continuous
everywhere, thereby proving that the external force field is conservative.

2 The NEB method on a G-FMPES

With the understanding of how to compute energies, forces, and curvatures on a G-FMPES,
the NEB implementation for finding MEPs on a G-FMPES closely follows the original im-
plementation, but with a few crucial modifications. For clarity, our implementation on a
G-FMPES is outlined below.

The start and end point structures are re-optimized with the external force and a set of
images is initialized between them. Consecutive images are connected by harmonic springs
with an equilibrium length of zero and a user-specified spring stiffness kspring (the actual
value of which is not particularly important as long as it is greater than zero, but needs
to be on the order of the system forces for efficient convergence). The band is iteratively
optimized until the net force on each image is minimized to within a user-specified tolerance.
At each iteration, the net force on the ith image located at R(i) on the G-FMPES is given
by the projected (nudged) forces as:

F
(i)

net,nudged =
[

F
(i)
grad + F

(i)
ext

]

⊥

+
[

F
(i)
spring

]

‖

(12)

where the subscript ⊥ (or ‖) on a vector indicates its component perpendicular (or parallel)
to the unit tangent τ̂ (i). The un-normalized tangent τ (i) is computed using Henkelman and
Jónsson’s improved tangent estimate [1]. Defining

τ (i)+ = R(i+1) −R(i) (13)

τ (i)− = R(i) −R(i−1) (14)
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the tangent is estimated as

τ (i) =

{

τ (i)+ if V
(i+1)

> V
(i)

> V
(i−1)

τ (i)− if V
(i+1)

< V
(i)

< V
(i−1) (15)

where the different V are computed using the line integral, as defined in the main article. In
the event that the three consecutive values of V are neither strictly increasing nor strictly

decreasing, i.e. if V
(i+1)

≤ V
(i)

≥ V
(i−1)

or V
(i+1)

≥ V
(i)

≤ V
(i−1)

, in order to prevent abrupt
switching between two possible tangents, the tangent is taken to be a weighted average as

τ (i) =

{

τ (i)+∆V
(i)+

+ τ (i)−∆V
(i)−

if V
(i+1)

> V
(i−1)

τ (i)+∆V
(i)−

+ τ (i)−∆V
(i)+

if V
(i+1)

< V
(i−1) (16)

with

∆V
(i)+

= max
( ∣

∣

∣
V

(i+1)
− V

(i)
∣

∣

∣
,

∣

∣

∣
V

(i−1)
− V

(i)
∣

∣

∣

)

(17)

∆V
(i)−

= min
( ∣

∣

∣
V

(i+1)
− V

(i)
∣

∣

∣
,

∣

∣

∣
V

(i−1)
− V

(i)
∣

∣

∣

)

(18)

The component of the spring force parallel to the tangent is computed as

[

F
(i)
spring

]

‖

= kspring
( ∥

∥τ (i)+
∥

∥−
∥

∥τ (i)−
∥

∥

)

τ̂
(i) (19)

At each iteration, the climbing image method [2] is applied to the highest energy image
along the band. This image, identified by i = h, is free from all spring forces and is assigned
a climbing force computed by inverting the component of the gradient plus external forces
along the tangent to this image which is expressed as

F
(i)

net,climb =
(

F
(i)
grad + F

(i)
ext

)

− 2
[(

F
(i)
grad + F

(i)
ext

)

· τ̂ (i)
]

τ̂
(i) (20)

and makes the highest image move uphill along the direction of the first eigenvector, and
downhill along all other directions.

In the more recent variation with two climbing images [3], the highest image (with i = h)
is not allowed to climb but is nudged in the usual manner by assigning its net force to be
equal to Fnet,nudged as in equation 12. However, its two nearest neighbors (one from each side
of the band, i.e., images with i = h± 1) are assigned climbing forces as in equation 20. This
prescription results in a higher density of images near the saddle point and is particularly
useful for MEPs with unusually high curvatures near the saddle point which would cause
the NEB tangent direction to be different from the MEP tangent direction.

Having computed the net force on each image, the band is iteratively optimized until
it is well-converged by moving each image towards the point of minimum net force using a
suitable optimizer.
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