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ABSTRACT 

Human Activity recognition, with wide application in fields like video surveillance, sports, 

human interaction, elderly care has shown great influence in upbringing the standard of life 

of people. With the constant development of new architecture, models, and an increase in 

the computational capability of the system, the adoption of machine learning and deep 

learning for activity recognition has shown great improvement with high performance in 

recent years. My research goal in this thesis is to design and compare machine learning and 

deep learning models for activity recognition through videos collected from different media 

in the field of sports. 

Human activity recognition (HAR) mostly is to recognize the action performed by a human 

through the data collected from different sources automatically. Based on the literature 

review, most data collected for analysis is based on time series data collected through 

different sensors and video-based data collected through the camera. So firstly, our 

research analyzes and compare different machine learning and deep learning architecture 

with sensor-based data collected from an accelerometer of a smartphone place at different 

position of the human body. Without any hand-crafted feature extraction methods, we 

found that deep learning architecture outperforms most of the machine learning 

architecture and the use of multiple sensors has higher accuracy than a dataset collected 

from a single sensor. 

Secondly, as collecting data from sensors in real-time is not feasible in all the fields such 

as sports, we study the activity recognition by using the video dataset.  For this, we used 

two state-of-the-art deep learning architectures previously trained on the big, annotated 
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dataset using transfer learning methods for activity recognition in three different sports-

related publicly available datasets.   

Extending the study to the different activities performed on a single sport, and to avoid the 

current trend of using special cameras and expensive setup around the court for data 

collection, we developed our video dataset using sports coverage of basketball game 

broadcasted through broadcasting media. The detailed analysis and experiments based on 

different criteria such as range of shots taken, scoring activities is presented for 8 different 

activities using state-of-art deep learning architecture for video classification.  
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CHAPTER I - INTRODUCTION 

  

 Motivation 

With the development in Artificial Intelligence (AI) and the computing power of a 

computer in recent times, activity recognition has seen a lot of progress in recent years. 

The main objective of human activity recognition (HAR) is to develop an automated 

system that can accurately determine the activity being performed by the human by 

analyzing various input data coming out from the different sources. The process may differ 

depending on the type of source, the input data being used, the architecture being developed 

to train the model, different activity categories, and the application field of the system. 

Although it has shown some real progress in this field, it is still not comparable with the 

recognition capability of a human. But it has shown very good application in real-life 

scenarios and has proved very beneficial to integrate technology to solve real-life problems 

in a different field, including but not limited to automated surveillance [1], healthcare [2], 

elderly care[3], sports [4][5], robotics [6], security[7], and broadcasting media [8].  

Automated Video Surveillance: Automated video surveillance has been one of 

the areas where the application of human activity has shown great potential and 

requirements. For intelligent surveillance of crowd in areas like shopping malls, games, 

live concerts, streets, or monitoring high traffic and vehicles in highways, crossroads, 

traffic lights, parking lots, these systems have and can provide great ease to recognize 

unwanted and suspicious activities and tracking these individuals in the crowd. This can 

also be helpful to reduce reaction time, manage security personnel workload, and can 

automatically inform the concerned personnel about the situation to reduce security threats.  
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Healthcare: Regular monitoring of activities of patients can help health personnel 

to accurately recognize the medical condition, diagnose the patients’ problems and work 

on the treatment of the patients[9]. For example, by analyzing the daily activities such as 

walking, running, bathing, cooking, exercise routine of the patients suffering from chronic 

diseases such as diabetes, cardiovascular, and obesity,  elderly people[3][10], disabled or 

patients with physical disease such as Parkinson[11][12], and mental diseases such as 

depression, anxiety, hallucinations, memory problems, and dementia, the health personnel 

can have real-time information of the patients and will be able to manage and treat these 

patients in case of any sign of abnormal behavior or fall of a patient to the ground[13]. 

Sign language interpretation:  One of the fields where Human activity 

recognition has been applied is for sign language recognition, interpretation, and 

translations to text or voice continuously and in real time[14]. The system that can 

automatically translate the sign language that uses hand gestures, hand kinematics, and 

facial expression for people to communicate with hearing-impaired people with higher 

accuracy will be a great contribution [15]. 

Sports: Among different areas of sports, a training-assisted system for monitoring 

player exercise, movement, fitness, injury prediction, and detection has been developed.  

Analyzing the movement of the player and identifying player action[16] during training in 

games has been provided greater inputs to enhance the performance of the player. Not only 

in real games, but the use of activity recognition has also had great application in online 

and video games such as online behavior change[17] can be detected for player modeling 

for tracking player’s behavior. 
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Robotics:  Robots that are equipped with the capability to recognize the activities 

performed by a human can be helpful to improve the daily life of people. An example is a 

domestic robot that can understand human activities and be able to respond to them 

accordingly can be useful for healthcare and elderly care[18]. 

Security: For effectively monitoring the security threats, traditionally human 

operators have to monitor the human activities from multiple camera views captured from 

the different cameras which can be stressful and inefficient.  An automated system can be 

developed to detect different security-related activities and behaviors of the person such as 

fighting, aggressive behavior, and actions, carrying guns or explosives, etc. Also, these 

systems can be used to monitor individuals or groups of people for surveillance in other 

security-sensitive areas like banks, ATMs, airports[19], and metro stations. 

Besides these, some of the other fields where the application of HAR has been 

popular in recent time are in Entertainment, for identifying actions in the movies, dance 

movement, smart homes, and education. 

 The opportunity of its application in a wide range of fields and as the research 

progress in this area it will provide a long benefit in different sectors to improve the quality 

of daily life of people in the community which has been a motivating factor to research this 

topic.  

  Background 

Based on the source of data that is being used as input for activity recognition Human 

Activity Recognition can be differentiating in sensor-based activity recognition, vision-

based activity recognition, and radio-based activity recognition as shown in figure 1.1.  
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Figure 1.1   Types of human activity recognition based on input data 

In sensor-based activity recognition, it will use the data collected from different inertial 

sensors such as accelerometer, gyroscope, and magnetometer that has been placed on 

different parts of the human body. This sensor detects the movements of the human and 

based on the data captured from these sensors, the activity performed by the person is 

classified.  

With the recent development of wearable devices such as a smart watch, fit brit and 

smartphones equipped with power supply, memory, and sensors data communication 

capabilities have made it more feasible for data generation, data analyzing, and application 

in daily everyday life. Some of the disadvantages or challenges for sensor-based activity 

recognition can be the limitation in the battery life, size, inefficiency, unreliable and 

ineffectiveness of the sensor thus generating unstable data and inappropriate, 

uncomfortable, and confining person to wear sensor devices in different parts of the body 

for a longer period. 
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In vision-based activity recognition, the image/ video captured from different devices such 

as RGB camera, video recording devices, surveillance camera, or special design 3D camera 

such as 3D time of flight (ToF) camera, Microsoft Kinect camera, thermal cameras has 

been used as input data for activity recognition.  Regular RGB camera provides 2D images 

or 3D videos whereas depth sensors such as a kinetic camera can provide depth images. 

The increase in the use of surveillance camera and video source platform like YouTube has 

made possible the availability of large visual data but some of the challenges it faced are a 

dependency of it on factors such as cluttered backgrounds, partial occlusion, viewpoint, 

different lighting conditions, appearance, camera angle, shadows in the image, and wide-

angle low detail’s view. 

In radio-based activity recognition, it uses body attenuation and channel fading of the 

wireless radio signal to determine human gestures or activities[20]. Features such as signal 

attenuation, propagation, electromagnetic interference, fading characteristics as input data 

for activity recognition. Some of the radio types that are being used for activity recognition 

are ZigBee [21], Wi-Fi[22], RFID [23], radio waves, and software-defined 

radio(SDR)[24], etc. The main advantage of radio-based activity recognition is that it can 

be used in wide-scale applications, but factors such as reflection, refraction, diffraction, 

and interference due to the objects present in the environment can affect the overall 

accuracy of the system. 

 Besides sensor-based, vision-based, and radio-based activity recognition, a multi-model 

approach has also been used in recent times, where data from multiple sources is used for 

activity recognition. Like both visual data collected from the camera and sensor data 
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collected from sensors at the same time are being used for training the model activity 

recognition. This approach has been useful in a different scenario where information 

obtained from only one approach is not sufficient or does not provide adequate information 

about the activity being performed. For example, the temperature, pressure exerted by the 

subject cannot be determined by only the video captured by the normal camera, where these 

values coming out from the sensor can help determine the activities performed by the 

person.  

In our research, we have only considered the sensor-based and vision-based approaches 

and have only used data collected from sensors and cameras. 

Based on different activities type performed by a human, the activity recognition 

can be group into several different categories. The classification of different categories of 

activities performed by people can be mainly classified as action-based, interaction-based, 

and motion-based.  

In action-based classification techniques, movements conducted by a single person 

or group of persons such as walking, jogging, running, sitting, dancing, playing, etc. can 

be classified. Some actions also include making some postures or gestures or behavior 

changes with the ability to determine facial expressions that involve a specific body part 

such as hand or face without any verbal communication. Also, some actions that have some 

specific field applications such as fall detection which can relate to a patient that needs 

immediate response from the medical personnel, or ambient assisting living that can help 

in elderly care to assist people in their daily life.  Hence this action-based can also be 

subcategories in gesture recognition, posture recognition, behavior recognition, activities 

of daily living recognition, fall detection and ambient assisted living.  
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Another category of Human activity recognition is interaction based in which 

activities involve the interaction of a human with an object or with another person. Human 

object interaction has wide application in fields like entertainment, robotics, human-

computer interaction and so on that can use hand gesture or body movement to interact 

with machines or objects to perform specific tasks.  Also, activities that include interaction 

between different people such as shaking hands, playing team games, or group activities 

fall into this category. 

Another category of Human activity recognition can be defined as motion-based 

in which the motion of a human is used for activity recognition. This has applications in 

the field like surveillance, security in which it can use technology such as Wi-Fi RFID for 

motion sensing or also video surveillance for activity recognition.  This can also be divided 

into three subcategories of tracking, motion detection, and people counting. Figure 1.2 [25] 

shows the detailed categories and subcategories of different activity recognition 

techniques. 

 

Figure 1.2  Categories and subcategories of HAR techniques. 
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 Based on the feature representation, HAR can have three approaches [26]: model-driven 

approach, data-driven approach, and hybrid approach. 

In a model-driven approach, activity models are produced using AI techniques 

such as rule-based systems, case-based reasoning, and ontological reasoning[27].  This 

approach is based on extracting hand-crafted features which are then used to classify 

activities. These features represent semantic concepts and their relationships based on prior 

knowledge such as histogram of oriented gradients( HOG), motion boundary histogram( 

MBH)[28][29]. But to generate hand-crafted features is time-consuming and requires a lot 

of inputs. Also, the extracted features could lack scalability and adaptability and cannot 

reflect all the information represented by the input data [30][31].  

In a data-driven approach, the model is being trained with an existing large dataset. 

With the development of deep learning architecture in recent times, it has made it possible 

to replace the hand-crafted features with deep network features.  These deep models can 

learn high-level intrinsic and abstract representation. But the requirement of large training 

data with specific parameters and training environment has made it inappropriate to all the 

fields. But recent advancements in the deep convolutional neural network, where the 

models such as AlexNet, VGG, GoogleNet, ResNet, etc that are trained in very large 

datasets such as ImageNet have been developed.  

In hybrid driven approach, it combines the model-based and data-based 

approaches for activity recognition. In this approach, the model is provided with large input 

data for automatically evolving the model.  
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1.2 Problem, Objective, and Contribution 

The challenges in the study vary with the types of input data, the difficulty level of 

activity, number of activities, and activity length [32]. This section describes the problems, 

the objective of the study, the contribution made in applying machine learning and deep 

learning architecture for activity recognition based on sensor-based and vision-based input 

data. The contributions are listed below: 

In most of the sensor-based approaches, the problem will be to understand the 

number of sensors that can be placed on the human body to recognize the activity 

performed by that individual.  As it will become agonizing for individuals to perform 

certain tasks carrying body-worn sensors. Therefore, a study was made to compare the 

change in the performance of the model using a single sensor with multiple sensors. Data 

collected from a single sensor(accelerometer) of a smartphone and multiple sensors on 

different parts of the body is compared for similar activities.  

One of the major applications of vision-based activity recognition can be in the 

field of sports [33][34]. Up to now, a study has been made for the classification of different 

types of sports. Each player performing a certain activity in a sport is used as predicting 

information to recognize the sports. For example, throwing a ball, swimming, playing 

soccer, horse riding, etc. There was a lack of a specific dataset for a specific sport that can 

be used to classify different activities related to a single sport.  Thus, we developed a dataset 

based on a basketball game that contains scoring activities related to basketball games from 

the video that has been broadcasted on the broadcasting media. 

A preliminary evaluation of the developed basketball dataset is presented 

considering different scenarios to set the benchmark results and challenges the dataset 
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brings in recognizing the activity related to basketball from the video broadcasted on live 

television. To our knowledge, this has been the first dataset of this type in which a labeled 

video dataset is prepared from the videos that can be used to classify the different scoring 

activities related to the basketball game. The future implementation of this project will help 

to design an automatic system in the field of sports such as automatic score updates, foul 

detection, assisting referees for decision making, and minimize human efforts for analyzing 

activities of players from the video replays. This research can be the initial contribution to 

develop an automated system recognizing human activity from a broadcasted video in real-

time. 

1.3 Thesis Structure 

This thesis is constructed as follows. Chapter 1 outlines the motivation, 

introduction, and objective of the research. Chapter 2 describes the background theory of 

the overall HAR process, theoretical explanation of the machine learning and deep learning 

models that have been used throughout the experiments, Literature review of some of the 

benchmark datasets, evaluation metrics used to analyze the output performance. Chapter 3 

provides the detailed study and comparison of the application of machine learning and deep 

learning architectures using the sensor data collected from sensors embedded in the mobile 

phone on different parts of the body. The chapter provides a detailed study, experiments, 

and results from the discussion for two publicly available datasets for activity recognition. 

The next chapter, Chapter 4 introduces the study of deep learning for activity recognition 

using visual data. The chapter also provides detailed studies, experiments, and result from 

the analysis of three publicly available benchmark datasets related to sports with future 

implementation. Next, chapter 5 introduces a new basketball dataset prepared for 
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classifying different basketball-related scoring activities using different deep learning 

approaches. This chapter also provides a detailed study, experiments, and results of the 

dataset from different scenarios forming it into groups for analysis. Finally, chapter 6 

provides the future works, limitations, and challenges, and a conclusion describing the 

contribution of the research in detail.  

1.4 Published paper related to this thesis 

Parts of this dissertation have been published as peer-reviewed journal publications, 

conference publications. 

1. Sarbagya Ratna Shakya, Chaoyang Zhang, and Zhaoxian Zhou,” Basketball-51: 

A video Dataset for Activity Recognition in the Basketball Game, 2nd International 

Conference on Big Data, Machine learning and Applications, BIGML 2021, 

Vancouver, Canada.  

2. Sarbagya Ratna Shakya, Chaoyang Zhang, and Zhaoxian Zhou, "Comparative 

Study of Machine Learning and Deep Learning Architecture for Human Activity 

Recognition Using Accelerometer Data," International Journal of Machine 

Learning and Computing vol. 8, no. 6, pp. 577-582, 2018. 

3. Q. Liu, Z. Zhou, S.R. Shakya, P. Uduthalapally, M. Qiao, A.H. Sung,”Smartphon

e sensor-based activity recognition by using machine learning and deep learning 

algorithms”, International Journal of Machine Learning and 

Computing, 8 (2) (2018), pp. 121-126, 10.18178/ijmlc.2018.8.2.674 

4. Z. Zhou, S. Shakya and Z. Sha, "Predicting countermovement jump heights by 

time domain frequency domain and machine learning algorithms", Proc. 10th Int. 

Symp. Comput. Intell. Des. (ISCID), pp. 167-170, 2017. 

https://doi.org/10.18178/ijmlc.2018.8.2.674
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CHAPTER II BACKGROUND THEORY 

 

2.1 Introduction 

Human activity recognition has been the problem of classifying the activities of a person 

analyzing the sequence of sensor data or visual data obtained from different types of input 

devices in real-time. With the development of self-sufficient gadgets and wearable devices 

in the form of a smartwatch, pulsometer, smartphone, and maximal use of surveillance 

cameras and phones equipped with a high-definition camera, the generation and collection 

of these data have been simple. Also, with the growth of the Internet of things and 

communication technology such as wireless data transmission, Bluetooth, or cellular data, 

these data can be easily transferred through a different medium and be used in modeling. 

This can be used to monitor the movement of the human without any delay in real-time. 

 Although it has been popular in the last decade, it still faces a lot of challenges to transform 

the received input data into known well-defined activity movements correctly and 

efficiently.  In traditional methods, the time series sensor data from the sensors are used to 

generated hand-crafted features and used to train machine learning models such as decision 

trees, SVM, neural network, or ensemble of these models. In recent times with the 

development of deep learning and availability of large sensor data as well as visual data, 

models such as Convolutional Neural Network (CNN) and Recurrent Neural Network 

(RNN) have shown great promise and have provided state-of-the-art results for activity 

recognition. Figure 2.1 shows the overall HAR process which consists of different source 

for data generation such as different sensors, smartphone, camera, CCTV, the mode of 
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transmission of data for analysis such as Bluetooth, training models, and architecture used 

and then classifying the activities on the testing data based on the trained model. 

  

 

Figure 2.1 Overall HAR process 

  

The following chapter presents the literature review of some of the state-of-the-art machine 

learning and deep learning models, architectures used for HAR. The existing sensor-based 

and vision-based dataset, and performance analysis measures for performance analysis is 

also explained in detail. Some of the models and datasets that have been used in our 

experiments have also been introduced in the latter part of the chapter. 

 

2.2 Model used 

Traditionally, machine learning architecture is used for activity recognition which uses 

hand-crafted feature extraction methods. Different features related to the input data from 
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the different sources are crafted manually and use to optimize the weights of the machine 

learning algorithms. This will help to make the model optimize the weights and predict 

higher performance with the testing data. But lately, with the advancement of deep learning 

architecture along with the increase in the computational capacity of the system, the 

application of deep learning models has been used widely for different activity recognition. 

Although, the high computational requirement, the ability to learn useful features without 

any prior feature extraction methods makes it more suitable in real-world problems.  

In this section, we will present background, technical details, and a review of some of the 

popular machine learning algorithms that have been used for human activity recognition. 

Also, in the next section, we will review some of the basics of deep learning architecture, 

its technical details, and why it is more suitable in our research will be discussed.  

2.2.1 Machine Learning Architecture 

Machine learning algorithms are used for extracting knowledge from the data. with 

different types of data and training type machine learning algorithms can be divided into 

four main categories: supervised learning, unsupervised learning, semi-supervised 

learning, and reinforcement learning.  In a supervised learning algorithm, we train the 

model with the previously known examples, i.e., providing the algorithms with the desired 

outputs(labels) for the inputs and make the algorithms learn the pattern from them. The 

model is then used to produce desired output from an entirely unknown input. This process 

is also known as classification. In unsupervised learning, we have an unlabeled dataset that 

will have only the known input data.  The algorithms will have no output data, so this 

technique is hard to understand and evaluate. This method is also known as clustering or 

visualization algorithms.  In semi-supervised learning algorithms, it will have partially 
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labeled and unlabeled data. It will use both the characteristics of supervised and 

unsupervised learning. Another category of machine learning is reinforcement learning, 

which is a reward-based technique where an agent can observe the environment, select, 

and perform the action and get rewards in return. It will help an artificial agent to define a 

policy based on its interaction with the environment and choose the action it needs to take 

based on that policy in that situation.  

 This section will introduce some of the basic machine learning architecture that has been 

used or is popular for human activity recognition. 

2.2.1.1 Decision Tree 

A decision tree[35] is a supervised machine learning algorithm that uses simple series of 

sequential decisions to reach a specific result. The sequential decision is dependent on the 

features and attributes of the training data. A decision tree consists of three components: 

nodes, edges, and leaf nodes. Nodes represent the tests or attributes at each stage; edges 

represent the answers to the node and the connection to the next node, Leaf node is the exit 

point of the decision tree.  Figure 2.2 represents the tree-like structure of the decision tree. 

The circle in the figure represents the nodes. The arrow line represents the edges and the 

circles at the last layer represent the leaf node. While training, the algorithms will build the 

best way to construct the decision tree with the training data so that the testing data will 

reach the correct decision. Each branch will have the decision-making steps that lead to the 

required results. This algorithm is useful for small and nonlinear datasets. Application of 

decision tree algorithms is in many areas such as but not limited to engineering, law, and 

business. 
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Figure 2.2   Tree-like structure or Decision Tree 

  

2.2.1.2 K Nearest Neighbor 

K-nearest neighbor (KNN) is the simplest Machine learning algorithm introduced first by 

Fix & Hodges in 1951[36] for performing patten classification tasks. KNN algorithm is 

based on supervised learning techniques where it stores the training data and finds the 

similarity between the new testing data with the available group of data. It puts the new 

data into the category that is most likely in the available categories. The KNN algorithms 

find similar features of that with the existing dataset and based on the most similar features 

it will classify as that output label.  

Algorithms of KNN algorithms 

Step 1: Define the number of the neighbors(k) 

Step2: Calculate the Euclidean distance of k number of neighbors. 

Step 3: Take the k nearest neighbors as per the calculated Euclidean distance. 

Step 4: among these k neighbors, count the number of the data points in each category. 
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Step 5: assign the new data points to that category for which the number of the neighbor is 

maximum. 

Step 6: model is ready. 

 Since in KNN it is required to calculate the distance between each data point, its 

computational cost can be high. Although, there is not any set of rules to determine the 

value of k at the beginning in general k is selected as k=n^ (1/2) where n is the number of 

data points. Selecting the value of k is important as a small value of k will have a higher 

influence of noise in the results whereas the higher value of k will increase the 

computational complexity. Figure 2.3 represents the k nearest neighbor algorithm example 

for k =3 where it has the similarity of 2 nearest neighbors in category 2 than in category 1. 

Hence it will be classified as category 2 labels.  

 

 

Figure 2.3   K nearest neighbor algorithm example for k =3 
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2.2.1.3 Random forest 

Random forest[37] is also a tree-based machine learning algorithm that uses multiple 

decision trees for making decisions. It is a supervised algorithm that uses multiple trees for 

decision-making. The number of trees in the random forest affects the accuracy of the 

result. From the training data, the algorithm formulates some set of rules based on the input 

features and the target output and uses that same set of rules to predict the output to the 

testing data. A random forest can be used both for classification and regression. The 

algorithms create a node based on the randomly selected features from the input data and 

split the node into two best split daughter nodes. It will repeat the same process until the 

number of trees has been created. Once it builds the decision tree then it will use the rules 

to predict the outcome of the testing data. With output from each tree, it will calculate the 

votes for each predicted target and the highest vote predicted target will be the final 

prediction [38]. Figure 2.4 represents the tree-like diagram for the Random Forest with 

nodes 3. Hence it has three different decision trees where the output from each tree is used 

as a vote to select the majority voting to classify the final result.  This algorithm is capable 

of handling large datasets, prevents overfitting issues, and has higher accuracy. Some of 

the sectors where Random Forest has been used are in sectors like banking, medicine, stock 

market, ecommerce, land use and marketing.  
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Figure 2.4    Tree-like structure of Random forest 

 

2.2.1.4 Artificial Neural Network (ANN) 

Artificial Neural Network is a special type of machine learning algorithm or a collection 

of algorithms that work similarly to the human brain. It consists of neural networks that 

can learn from the data provided to it for training and then predict or classify the output 

from the learned information. The ANN architecture discovers a pattern and relationship 

between the input and output data and was first introduced by Warren S McCulloch and 

Walter Pitts[39] in the 1970s. ANN consists of three layers as shown in figure 2.5: input 

layers, hidden layers, and output layer. 
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Figure 2.5    Basic ANN Architecture  

  

Figure 2.5 represents the basic architecture of an ANN model with this three-layer. The 

input layer is the first layer that receives the input data for training or testing. The input 

data can be in any form in the form of numbers, text, images, videos, etc. The second layer 

is the hidden layer. There can be any number of hidden layers in the ANN network. This 

hidden layer performs various mathematical computations on the input data with its 

weights and bias value and generates features and recognition patterns from the input data. 

With the higher number of hidden layers, these have been categorized as deep learning 

which we will discuss in the next sections. The third layer is the output layer where we 

obtain the result or output after evaluating show correct the output is using various error 

functions.  Deep learning, a part of ANN, has been widely used in different problem-

solving fields such as handwritten character recognition, speech recognition, facial 

recognition, language translation, etc.  
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2.2.1.5 Support Vector Machine (SVM) 

SVM algorithm[40][41] is one of the most powerful Machine learning supervised 

algorithms where the data is plotted in the n-dimensional space and an ideal hyperplane is 

defined to differentiate between the two classes. SVM can be used for both classification 

and regression problems.  In SVM, the architecture finds the points that lie closest to both 

the classes which are known as support vectors. The distance between the points and the 

dividing line is the margin. The objective of SVM algorithms is to find the optimal line by 

maximizing the margin so that it reaches the maximum.  

SVM has been used in many applications[42][16][43] such as face detection [44], text and 

hypertext categorization, bioinformatics[45], and handwriting recognition. 

 

2.2.2 Deep Learning Architecture 

Deep learning is the branch of Machine learning, where information from the data is 

processed through each layer which contains a uniform algorithm with one kind of 

activation function.  In each layer, meaningful features of the data are constructed for 

training, learning, and understanding. The history of deep learning goes back to 1943 when 

Walter Pitts and warren Mcculloch [46] created computer model-based neural networks of 

the human brain. The development of continuous back propagation in 1960 by Henry J 

Kelley [47], models with polynomial activation functions in 1965 by Alexey Grigoryevich 

and Valentin were some of the significant developments. The first convolutional neural 

network develops by Kunihiko Fukushima in 1979[48], which uses an artificial neural 

network with a hierarchical, multilayered design called Neocognitron. In late 90’s some 

significant development was made such as the development of support vector machines 
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(SVM)[40], Long short-term memory (LSTM)[49].  But, in early 2000 with the 

development of computational power of computer and Graphics processing units (GPU), 

the increasing computing speed helped to develop large models with higher efficiency and 

accuracy that could be trained with big data. In the next section, we will describe some of 

the basic state-of-art deep learning architectures.  

2.2.2.1 Convolutional Neural Network 

A convolutional neural network (CNN or ConvNet) is a part of Deep learning, which can 

recognize and classify features from an input image assigning learnable weights and biases 

and be able to differentiate one from the other. In recent years it has shown a high 

improvement in many fields such as image and video classification, computer vision image 

classification, facial recognition, image analysis, and natural language processing. One 

basic advantage of the CNN network is its ability to capture the spatial and temporal 

dependencies of the image and be able to reduce the image without losing features that help 

to design a more scalable model in the prediction process.  

A basic CNN architecture consists of two parts. Feature extraction parts and classification 

parts as shown in figure 2.6. 

 

Figure 2.6   The architecture of the CNN network. 
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In feature extraction usually consists of three layers. Convolution layer and pooling layer 

The convolution layer is the first layer in CNN architecture. It extracts various features 

from the input image or video frames at different labels. In the convolution layer, the input 

image is convoluted with a filter by sliding the filter over the input image.  This output 

from the convolution layer is called the feature map or the activation map. The convolution 

step can be 1D or 3D depending on the input image type. The initial layer extracts various 

low-level features of the image such as edge, corner color, gradient orientations, etc. This 

will be input to other higher label layers to extract more features from the input image. The 

higher label convolution layers extract high-level features which will give complete 

information about the input image.  

The second layer is the pooling layer. This layer is a down sampling operation that 

decreases the spatial size of the feature map from the convolution layer by reducing the 

dimensionality of the connection between layers. This helps in reducing the computational 

power requirement. This layer also helps to extract dominant features from the feature map.   

Max pooling, average pooling, and sum pooling are some of the pooling methods that have 

been popular for CNN architecture. The CNN architecture consists of a number of 

convolutional and pooling layers depending on the complexity in the image to capture more 

features. 

Fully connected layers are the layers in the classification parts where the features extracted 

from the feature extraction part are flattened and then used for predicting the output labels 

or class of the input image. This layer uses the weights and biases that connect the neurons 

to learn non-linear functions in that space. It is used to optimize objectives such as class 

scores. This layer is followed by the output layer which will classify the image using 



 

24 

SoftMax classification techniques. Besides these layers, another mostly used layer in CNN 

architecture is the dropout layer. This layer helps to reduce the overfitting problem by 

dropping some neurons from the network during training.   

Many CNN architectures have been developed in a couple of decades that has provided 

remarkable achievement in the field of AI. The first one is LeNet-5[50] which was 

developed in 1998. Besides that some of the other milestone models and their architecture 

are Alex Net (2000)[51], Inception-V1(2006), Inception-V3(2008), ResNet-50(2011), 

Xception (2013), GoogleLeNet/Inception, Inception-V4(2015) [52] , Inception ResNets 

(2017)., ResNext-50(2019). 

2.2.2.2  Recurrent Neural Network 

The recurrent neural network is a class of neural networks that allows previous output to 

be used as input while having hidden states. Hence it is used mostly in time series 

sequential data such as speech recognition, natural language processing, text, speech 

recognition, and forecasting task. RNN can compute the current state from the current input 

and previous state output and finds the relationship between current inputs with the 

previously applied inputs. Hence it has at least one feedback connection so that the 

activation can flow in a loop.  Figure 2.7 shows the generic unfold structure of an RNN 

model.  The update rule of the RNN network can be defined as  

at=b+W.ht-1+U.xt 

ht=tanh(at) 

Ot=c+V.ht 

yt=SoftMax(ot) 

where xt: is the input vector of input data or previous output data at time step t. 
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ot is the intermediate output 

ht is an internal sate 

U, V,W : weight parameters of the RNN model. These matrices are learnt by standard 

propagation. 

yt: output at time step t. 

At each time step, the network receives as input xt, and then it emits an intermediate output 

ot, in ht internal state. Then this ht and ot will be feed to the next layer as a sequential input. 

One main drawback of the RNN model is the vanishing and exploding gradient 

problems[53] where the gradient values become zero and infinity as the gradient is 

multiplied together at each time step. During the gradient back-propagation phase, the 

gradient signal will be successively multiplied by the weight matrix many times. Because 

of this successive multiplication if the eigen value of the weight matrix is less than one 

then it will drive the gradient value to zero thus causing a vanishing gradient problem. And 

if the weight matrix is greater than one, then it will drive the value to infinity and cause 

exploding gradient problems. This problem is address by the Long short-term memory 

(LSTM) model with an introduction of a new structure called a memory cell. The details 

of the LSTM model are explained in the next paragraph. 

Some of the popular applications of RNN in real life are in Siri, voice search, and Google 

translate.  
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Figure 2.7   Generic Structure of an RNN model. 

 

 Long short-term memory (LSTM) 

This is a type of RNN network first introduced by Sepp Hochreiter and Juergen 

Schmidhuber [49]in  1997. In the LSTM network, it has cells in the hidden layers which 

have three gates: input gate, output gate and a forget gate, and a neuron that connects itself 
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and can store and delete data in the cell state. Figure 2.8 represents the architecture of a 

single cell of an LSTM network. 

 

 

Figure 2.8    Single-cell of LSTM network. 

It controls the flow of information that is needed to predict the output in the network. It is 

capable of learning long-term dependencies i.e. it can remember information for a longer 

period. Unlike the single neural network layer, tanh layer in most RNN networks, LSTM 

has four interacting layers as shown in figure 2.9.  The update equation of the LSTM model 

is given by 

𝑖𝑡 = 𝑔(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝑔(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝑔(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑜 ) 

𝑐̅𝑡 = tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐 ) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐 ̅𝑡 

ℎ𝑡 = 𝑜𝑡 tanh (𝑐𝑡) 

where it: input gate 
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ft: forget gate 

ot : output gate. 

 

 

Figure 2.9    The architecture of the LSTM model 

 

2.2.2.3 Hybrid Network 

A hybrid network is designed by the fusion of two or more classifiers. It integrates 

two or more models, train them and combine their predictions for better result.  This 

method is also called ensemble learning in Machine learning terms. This uses multiple 

models for the prediction of the same problems where the output from various models is 

average to predict the output[54]. Also, models such as CNN and LSTM are combined to 

learn both spatial and temporal features of the input data[55][56]. For example, for image 

classification, the CNN will generate the high-level spatial information of the activity of 

the images while the RNN model is used to extract temporal correlation between the 

consecutive frames of the clips by keeping the memory of the previous frames[57].  Besides 
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ensemble of different models, hybrid approaches have been developed to combine shape 

based and motion-based features for representing an action. For this shape-based features 

are captured from the still image [58]whereas the motion features are captured using a 

histogram of motion intensity [59]or with the optical flow for action recognition. Also, 

two-stream networks in which one stream computes the information about the spatial 

information of the image whereas the other network computes the temporal information by 

capturing the displacement of optical flow from the video frames. As shown in figure 2.10  

[60] described two-stream Convnet architecture where the spatial stream convNet is 

inputted with individual video frames whereas temporal stream convNet is given multiple 

frames of optical flow to capture the long context in the frames of the video. 

 

Figure 2.10 Example of Two streams Convnet architecture [61] 

Also, there are different ways in where the two streams are concatenated. These approaches 

are named as late fusion[62][63], early fusion[64][65] or slow fusion  and are   implemented 

in different sectors[66] . Comparison between the performance of these different 

approaches has also been studied [67][68].   

Besides that, another deep inflated model is developed such as the I3D model. The 

I3D model was first developed in DeepMind and the University of Oxford[69]. In this 
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model, they add an additional dimension to the 2D architecture and inflates all the filter 

and pooling kernels. Inflating 2D convNets into 3D is the approach for video classification 

in which it converts 2D classification models into 3D by training multiple frames at once 

instead of one by one. Figure 2.11 shows the general architecture of the I3D model.  

 

Figure 2.11     Inflated Inception 3D architecture. Redrawn from[69] 

 

2.3 Datasets 

Datasets are one of the most important parts of HAR research.  The main objective of the 

HAR is to identify the action that is performed by the person from the data collected from 

a different source of data. Many studies have been carried out to manage this vast data and 

to relate these data to appropriate information or knowledge. For the study to be effective, 

a dataset that gives information on the actions under various conditions is required. Hence 

the availability and quality of the dataset hold crucial importance in training a model for 

recognizing activities accurately.   

Many public datasets have been developed and published that have been used by many 

researchers to test their models and validate their proposals. The advantage of the publicly 

available dataset is that the comparison of different approaches and the capability can be 
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measured if it is applied to the same datasets. Many datasets are recorded in controlled 

experimental environments with uniform backgrounds and static cameras which can be 

different from real-world scenarios.  

Based on different factors, Datasets can be categorized into different groups such as based 

on source [70]: sensor-based or vision-based, based on viewpoint: single view or multi-

viewpoint, based on actions performed by the subjects: action level datasets(A), behavior 

level dataset(B), interaction level dataset (I) and group activities label dataset(G).   

This section describes some of the publicly available benchmark datasets that have been 

used for state-of-art human activity recognition in recent times. We have categorized the 

dataset into sensor-based and vision-based datasets along with its application in different 

modality and action types.   

 

2.3.1 Sensor-based dataset 

Most sensor-based datasets have data collected from body-worn sensors such as 

accelerometer, gyroscope, magnetometer, GPS, object sensors such as RFID tags, and 

ambient sensors such as radars, sound sensors, pressure sensors, and temperature sensors.  

Most body-worn sensors are embedded into different wearable devices such as a 

smartwatch, bracelets, or smartphones. These sensors detect the acceleration and angular 

velocity changed due to the human movement which is used for activity 

recognition[71][72]. Most body-worn sensors are used for activity recognition of daily 

living activities and sports. Object sensors are used mostly in smart home appliances 

[73]and medical activities[74] but it has been less applied than other sensors for HAR due 

to deployment difficulty.  
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Many sensor-based datasets have been published previously. Some of the benchmark 

datasets that have been published until now are explained in the next section. 

UCI HAR dataset[75]. This dataset was published in 2013 and was constructed with 

experiments carried out for 30 subjects for six different activities such as walking, walking 

upstairs, walking downstairs, sitting standing, and laying. This dataset consists of a 3 axial 

linear accelerometer and 3-axial angular velocity captured from the embedded 

accelerometer and gyroscope of the smartphone.  The time signals were sampled with a 

sliding window of 2.56s and a 50% overlap between them.   

 WISDM dataset [76]This dataset was published in 2011 and updated in 2013. This dataset 

consists of more than 2 million raw data collected from smartphone sensors for six different 

daily activities like walking, jogging, stairs, standing, and lying down. They have datasets 

collected through controlled laboratory environments as well as in the real world. 

Opportunity dataset: This dataset [77]was developed in 2012 and was the subset of the 

Opportunity activity recognition dataset[78] acquired from 12 subjects while performing 

morning activities. The dataset was collected which includes 72 different sensors of 10 

modalities integrated into the environment, in objects, and on the body in 15 wireless and 

wired networked sensor systems.    

Some of the challenge’s sensor-based dataset faced is the orientation of the sensors, types 

of sensors used, number of sensors used, the device orientation, the subject individuality, 

and body shape, and the number of activities needs to recognize from the data. Table 2.1 

lists some of the benchmark’s sensor-based dataset and its characteristics.  
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Table 2.1 Sensor-based benchmark dataset   

  

2.3.2 Vision-based dataset 

In a vision-based dataset, images and videos collected from different video capturing 

devices such as cameras, CCTV, or special cameras are used. In this section, we introduce 

some of the vision-based datasets that have been used. 

KTH Activity Dataset.: This dataset[43] was first developed in 2004 which consists of 6 

different activities performed by 25 subjects in four different controlled scenarios: 

outdoors, outdoors with scale variation, outdoors with different clothes, and indoors. The 

six activities, walking, jogging, running, boxing, hand waving, and hand clapping are 

performed by a single person using a static camera. It has different viewpoints and various 

scenarios and has activities related to action. 

Weizmann Activity Dataset: This dataset [85]was first created in 2005 by the Weizmann 

Institute of science which consists of 10 natural actions performed by 10 subjects. The 

activities include running, walking, skipping, bending, jumping-jack, galloping-sideways, 

Dataset`  Device Sensors used No of 

subjects 

No of 

Activities 

Variable-

length 

segments 

Du-MD[79]  Wearable Accelerometer 33 7 Yes, 

manually 

Ugulino et 

al[80] 

2012 Wearable Accelerometer 5 4 No 

Opportunity 

dataset[77] 

2012 wearable accelerometers 4 35 No 

USC_HAD[81] 2012 Wearable Accelerometer 14 12 No 

WISDM[76] 2012 Smartphone Accelerometer 29 6 No 

w-HAR[82]  wearable IMU, stretch 

sensor 

22 7 Yes 

UCI HAR[75] 2013 Smartphone Accelerometer 30 6 No 

Shoaib et al[83] 2014 Smartphone IMU 10 7 No 

UniMiB 

SHAR[84] 

2016 Smartphone Accelerometer 30 9 No 
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jumping-forward on two legs, jumping in place on two legs, waving two hands, and waving 

one hand which were recorded with a fixed camera with a simple background. 

UCF sports: This dataset [86]was first developed in 2007 in the Computer Vision Lab, 

University of Central Florida. It includes 9 sports activities broadcasted on television. The 

activities include diving, golf swinging, kicking, lifting, horse riding, running, skating, 

swinging a basketball bat, and pole vaulting.  

Hollywood Human activity dataset. This dataset [87]was developed in 2008 with 663 

video samples obtained by 32 movie scenes labeled with at least one of eight actions: get 

out of the car, answer the phone, handshake, hug person, sit down, sit up, and kiss. It has 

two training sets of 223 samples in the automatic training set and 219 samples in the clean 

training set collected from 12 movies and 211 testing sets collected from 20 0ther movies.  

Hollywood2 dataset.: This dataset[88] is an extended version of the Hollywood dataset 

published in 2009. It added 4 more classes action: run, driving the car, eat and fight in 

Hollywood dataset with a total of 12 class actions and adding samples for each class. The 

dataset consists of a total of 3669 video clips obtained from 69 movies. 

 HMDB51: This dataset[89] was published in 2011 by the Serre research lab at Brown 

University. This dataset consists of videos extracted from different sources such as google 

videos, YouTube. This dataset has 6849 clips divided into 51 different categories.  

UCF101: This dataset was published in 2012 by the center for research in computer vision, 

University of Central Florida, USA. This dataset consists of 13320 videos collected from 

YouTube and is divided into 101 different categories.  It is an extension of the UCF50 

dataset. 
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Sports 1M:  This dataset [90]consists of 1 million Youtube videos annotated with 487 

sports-related classes where each class has around 1000-3000 videos per class.  

Kinetics: This dataset[91] was initially published in 2017 by the DeepMind team which 

consists of YouTube video URLs. The initial Kinetics 400 contains 400 different human 

action classes and later been extended to Kinetics 600[92] and kinetics 700[93] with an 

increase I the class labels and video clips for each action class. This is one of the large-

scale, high-quality datasets having a diverse range of human-focused actions. 

Also based on different modalities [94], the Dataset can be categorized into four main 

groups: RGB, Skeleton(S), Depth (D), and Infrared(IR). 

RGB modality refers to the images or videos captured from RGB cameras. Many 

benchmark dataset such as UCF101[95], HMDB51[89], Kinetics 400[91], kinetics 600[92] 

and kinetics 700[93]   has been developed with RGB   camera. The RGB data is easy to 

collect and has been applied in the field like sports, video surveillance but the large memory 

and computational cost requirements have made it more challenging in activity recognition. 

Skeleton modality refers to the trajectories of human body joints, which characterize 

informative human motions. Mostly skeleton data is acquired by applying pose estimation 

algorithms on RGB videos[96] or depth maps[97]  and motion-captured systems. The 

advantage of using skeleton data is its ability to give information and a simple 

representation of the pose and body structure of the subject in the image or video. Also, its 

robustness against the body structure, clothing textures, and background has made it more 

popular for activity recognition. Some benchmark dataset in that have skeleton modality 

includes CAD 60 [98], CAD 120[99],  NTU RGB+D[100], and NTU RGB+D 120[101].  
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Depth modality includes a dataset of images where pixel value represents the distance 

information from a given viewpoint to the points in the scene. It provides 3D structural and 

geometric shape information of human subjects and is also used to convert 3D data into a 

2D image. Sensors and special cameras such as time of flight, structured-based camera, 

stereo camera, Kinect Realsense3D are used to obtain depth images. The availability of 

low-cost and reliable sensors like Kinect has increased the use of depth data and videos 

more in HAR in recent years.  Also, depth maps can be obtained from RGB videos using 

depth map estimation[102][103]. MSRDailyActivity3D[104], northwestern-UCLA[105] 

and UWA3D Multiview II dataset[106] are some of the benchmark datasets used for depth 

analysis.  

Infrared Modality includes datasets that use infrared sensors, or thermal sensors to utilize 

target reflection rays to perceive objects in the scene or detect rays emitted from targets. 

This produces thermal images and videos which are used to extract spatial and temporal 

features used for activity recognition. An example of an infrared benchmark dataset is 

InfaR[107] which is mostly used in HAR experiments. Figure 2.11 shows the example of 

frames of different modality which are used for HAR. 

 
 

 

 

Figure 2.12    The sample frame for different activities representing 4 modalities, RGB, 

3D skeleton, depth, and infrared sequence (From left to right) data types from the NTU 

RGBd dataset. 
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Most vision-based datasets have image and videos which are affected from 

different factors such as view changes, occlusion, light variation, variation in execution 

rate, anthropometry, camera motion, and background clutter and image/video quality. 

This has made these datasets very challenging for activity recognition. Table 2.2 list 

some of the vision-based benchmark dataset that has been released and used by most of 

the researcher for HAR. 
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Table 2.2 Vision based benchmark dataset 

S skeleton, D depth, IR Infrared 

Dataset Released 
year 

# Of 
videos 

# Of 
subjects 

# Of 
class 

Background Modality Activity 
Type 

KTH[43] 2004 600 25 6 Clean static RGB A 

Weizmann[85] 2005 81 9 10 Clean static RGB A 

UCF Sports[86] 2008   10 Dynamic RGB  

Hollywood[87] 2008 430 - 8 Dynamic RGB A, B, I, 

G  
Hollywood2[88] 2009 1787  12 Dynamic RGB A, B, 

I,G 
Olympic 

Sports[108] 

2010 800  16 Dynamic RGB A, I 

CAD 60[98] 2011 60 4 12 Static RGB, S, D  

HMDB51[89] 2011 6766  51 Dynamic RGB A, 

B,I,G 
MSRDaily 
Activity3D[104] 

2012 320 10 16 Static RGB, S, D  

UCF-101[95] 2012 13320  101 Dynamic RGB A, 

B,I,G 
CAD 120[99] 2013 120 4 10 Static RGB,S,D  
Thumos-2014 2014 18394  101 Dynamic   

Sports-1M[90] 2014 1133158  487 Dynamic RGB  

Activity 

Net[109] 

2015 27901  203 Dynamic   

NorthWestern-
UCLA[105] 

2014 1475 10 10 Static RGB, S, D  

NTU 

RGB+D[100] 
2016 56880 40 60 Static RGB, S, 

D,IR 
 

YouTube 

8M[110] 
2016 8264650  4800  RGB A, 

B,I,G 
Something 

something v2 

       

Charades 2016 9848  157    

Kinetics 400[91] 2017 306245  400  RGB  

Something-

something 

v1[111] 

2017 108499  174  RGB  

AVA[112] 2017 437  80  RGB  

Kinetics 
600[92] 

2018 495547  600  RGB A,B,I,G 

Kinetics 
700[93] 

2019 650317  700  RGB  

Wang et 
al[113] 

2019 1394 1 6  Wifi Csi  

NTU RGBD 
120[101] 

2019 114480 106 120 Static RGB, 
S,D,IR 
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2.4 Evaluation metrics 

In machine learning, to design an effective machine learning model evaluation 

metrics holds vital importance as it gives feedback to improve to get the desired 

performance accuracy. Different evaluation metrics are used for different problems. For 

different tasks like classification, regressing, ranking, clustering, topic modeling, etc. 

different evaluation metrics are used.   The evaluation metrics not only gives the parameter 

to measure the performance of the model but also helps to explain the output from different 

implementation. Different evaluation metrics are being used to evaluate machine learning 

models' accuracy or performance. Some of them are confusion matrix, logarithmic loss, 

classification accuracy, precision, recall, the area under the curve (AOC), F1 score, mean 

absolute error, and mean squared error.    

To define different performance metrics there are four important terms: True Positives 

(TP), True Negative (TN), False Positives (FP), False Negative (FN). 

True positive is an outcome where the model correctly predicts the positive class. i.e., 

when we predicted Yes, and the actual output was also Yes.  

True Negative is an outcome where the model correctly predicts the negative class. i.e., 

when we predicted NO and the actual output as also NO. 

False Positive is an outcome where the model incorrectly predicts the positive class. i.e., 

when we predicted yes when actual output was No. 

False Negative is an outcome where the model incorrectly predicts the negative class. i.e., 

when we predicted No when the actual output was Yes. 
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Below is the explanation of some of the popular evaluation metrics among which we have 

used throughout our experiments for analyzing the performance of your model in this 

research. As most of our problems are based on classification, the evaluation metrics are 

defined based on classification tasks. 

Accuracy: Accuracy is a common evaluation metric for classification problems that gives 

the ratio of correct predictions to the total number of predictions made. It is mostly used 

for a balanced dataset having an equal number of samples for each class. 

Accuracy=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

It can also be defined as  

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Precision: Precision is the number of true positives divided by the total number of elements 

labeled as the positive class. It summarizes the fraction of examples assigned to the positive 

class that belongs to the positive class. High precision means an algorithm returned more 

relevant results than irrelevant ones. 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall: Recall is the number of true positives divided by the total number of elements that 

belong to the positive class. It summarizes how well the positive class was predicted. it is 

like sensitivity. High recall means algorithms returned most of the relevant results.  

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

F1-score:  F1 score is used to measure the test’s accuracy. The F1 score will give 

information about how precise and robust our classifier is. It is the harmonic mean of 

precision and recall. The range of the F1 score is from 0 to 1 where 1 represents the best 
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value with perfect precision and recall and 0 represents the worst. It is mostly used to 

analyze the result with imbalanced classification.  

F1 score=
1

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑟𝑒𝑐𝑎𝑙𝑙

 

Confusion matrix:  It gives the matrix of output and describes the complete performance 

of the model. It gives the tabular representation of the model predictions vs the actual 

values. Each row and column represent one class.  

The binary confusion matrix can be represented as  

 

Figure 2.13    Example of a confusion matrix for binary class classification 

 

 Logarithmic Loss: It works by penalizing the false classifications. It is mostly used for 

multiclass classification. It measures the performance of a classification model where the 

prediction input is a probability value between 0 and 1.  Log loss nearer to 0 means higher 

accuracy whereas loss away from 0 means lower accuracy. Hence its value will be in the 

range of [0, ∞) 

Logarithmic loss=
−1

𝑁
∑ ∑ 𝑦𝑖𝑗 ∗ log (𝑝𝑖𝑗)𝑀

𝑗−1
𝑁
𝑖=1  
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Where N- number of samples 

M number of classes 

Yij=whether sample i belongs to class j or not 

Pij indicates the probability of sample I belonging to class j 

Mean absolute Error: It gives the average of the difference between the original values 

and the predicted value. IT gives the measure of how far the predictions were from the 

actual output. It can be calculated by 

Mean Absolute error=
1

𝑁
∑ |𝑦𝑗 − 𝑦�̂�|𝑁

𝑗=1  

Mean squared Error (MSE): MSE takes the average of the square of the difference 

between the original value and the predicted values. It is easier to compute the gradient in 

MSE. It can be calculated as  

Mean Square error=
1

𝑁
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑁
𝑗=1  

 

2.5 Conclusion 

This chapter provides the background theory that is needed to conduct the human 

activity recognition and provided some of the literature reviews of the models that have 

been used in machine learning and deep learning architecture. Most machine learning 

architecture traditionally used hand-crafted feature extraction methods which with the 

development of deep learning architecture has made it easy as it generates features from 

the input data by itself.  

This chapter provides the introduction of the benchmark dataset for activity recognition. 

As the dataset provides the higher contribution to the success of the model, it should 
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provide the necessary information and should represent all the characteristics of the real-

world environment. Based on different scenarios, these datasets can be grouped into 

different categories. We discussed some of the benchmark datasets based on this category 

which can help to under the problem better. 

This chapter also describes some of the performance evaluation metrics that we have used 

throughout this research. Depending upon the nature of the problem and the output we are 

looking out for, the selection of the appropriate evaluation metrics is important to explain 

the outcome and evaluate the efficiency of the model. Some of the evaluation metrics are 

accuracy, precision, recall, F1 score, and confusion matrix to compare the output based 

on a different class. 
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CHAPTER III - SENSOR-BASED HUMAN ACTIVITY RECOGNITION 

 

3.1 Motivation 

With the increasing population of sensor technology, the sensor based HAR has 

also been popular and widely used in recent years. The sensor based HAR has motion data 

collected from smart sensors such as accelerometers, gyroscopes, Bluetooth, sound 

sensors, and so on. Also, the availability of these sensors inbuilt in commonly used devices 

like smartphones and more advanced wearable devices such as a wristband, smartwatches 

make it more appropriate to study the activities based on these sensors data.  Some of the 

basic activities like walking, running, standing, sitting lying can be recognized using 

wearable accelerometers[114] which will measure human motion by measuring the linear 

3D accelerations and orientations with respect to the earth’s gravity[115]. Although it has 

shown some very good results using these wristband devices and smartwatches in the wrist 

and using multiple sensors placed on different parts of the body[13]. However, as a hand 

is our most active part, the data generated from these devices on the wrist of the person can 

be generated by the irregular movement which adds challenges to correctly recognize the 

activities based on these data. Also, the use of multiple sensors is uncomfortable and 

proved to be a burden to the person and is unfeasible in some applications such as in sports 

where the efficiency of players has been affected due to the body-worn devices during the 

game. 
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3.2 Objective 

1. To compare the performance analysis of different ML models for the raw 

accelerometer data without any handcrafted data preprocessing and feature extraction 

method. 

2. To compare the result between CNN and RNN model for time series data 

changing 1D sensor data to 2D data. 

3. To compare the performance analysis of balanced and unbalanced data of similar 

nature with the same model and parameters. 

4. To compare the performance analysis for data collected from a single sensor and 

multiple sensors. 

  

3.3 Dataset Used 

In our experiments, we have chosen two publicly available benchmark datasets: the 

ACTi tracker dataset commonly known as the WISDM dataset, and the sensor activity 

recognition dataset commonly known as the Shoaib SA dataset. Both of this dataset 

consists of data collected from accelerometer sensor of a smartphone placed in different 

body parts of the subject.  Both datasets consist of different daily motion activities such as 

walking, sitting, standing, going upstairs, and going downstairs. The difference between 

these two datasets is in the WISDM dataset, only one accelerometer sensor is used which 

is carried in the waist by the subject whereas, the Shoaib SA dataset, used 5 accelerometer 

sensors carried in different parts of the body. Also, the number of data collected for the 

WISDM dataset is highly different for each class label whereas in the Shoaib dataset the 

amount of data for all the activities are exactly equal. Hence, the main objective of choosing 
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these two datasets is to study and compare the results of two similar nature datasets but 

have a significant difference in the number of sensors used, the placement of the sensor, 

and to compare between the results for the balanced and highly unbalanced dataset. The 

details of these two datasets are described in the next section. 

 

3.3.1 ACTi Tracker dataset (WISDM dataset)  

This dataset[76] [116] was developed by the WISDM lab in 2013. It consists of raw 

data collected from the accelerometer of a smartphone attached to the waist of the volunteer 

performing six different activities in a controlled laboratory environment. The dataset 

consists of 2,980,765 labeled data. The different activities performed are walking, jogging, 

stairs, sitting, standing, and lying down collected from 29 users with a sampling rate of 

20Hz i.e. One sample every 50 ms. 

Table 3.1 Class distribution for WISDM dataset 

Class Distribution: Number Percentage 

Walking 1,255,923 42.1% 

Jogging 438,871 14.7% 

Stairs 57,425 1.9% 

Sitting 663,706 22.3% 

Standing 288,873 9.7% 

Lying down 275,967 9.3% 

 

3.3.2 Sensor Activity recognition Dataset (Shoaib SA)  

This dataset[83] was collected in the university building by ten male participants 

aged between 25 and 30 years of age.  The participants performed seven different physical 

activities for 3-4 minutes. The dataset consists of 630,000 data distributed equally among 

all the activity classes. The activities consist of walking, sitting, standing, jogging, biking, 
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walking upstairs, and walking downstairs. The data were collected from 5 different 

accelerometers of a smartphone placed at five different body positions: right jeans pocket, 

left jeans pockets, right upper arm, right wrist, and on the belt position towards the right 

leg using a belt clipper. Although the original dataset consists of sensor data from 

accelerometers, gyroscope, and magnetometers, we have used only the accelerometer 

sensor value for experiments.  All the activities have an equal number of sensor values 

which makes this dataset a balanced dataset.  

3.4 Machine learning and deep learning architecture used. 

For our analysis, we consider different machine learning and deep learning 

architecture. We tested many machine learning architectures with the raw data without any 

handcrafted feature extraction methods. Using only the raw data, we found some good 

results in some of the Machine learning architecture which is described in section 3.4.1. 

Also, for deep learning architecture, we used two models, CNN and RNN for activity 

classification. Although CNN has shown good results in image-based activity recognition 

and RNN is mainly used in time series data, we perform our experiments by changing our 

raw data in the form of time series. The detailed explanation of these architecture and 

experimental results are explained in the next sections. 

3.4.1 Machine learning algorithms 

For the experiments, we use different machine learning algorithms.   Among 

them, the one which shows the highest performance are the K-nearest neighbor (KNN), 

Random Forest (RF) and Decision Tree (DT). For KNN we select the value of k as 5. For 

all the machine learning architecture we used the default hyperparameter using only the 
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raw data collected from the sensors as input without any handcrafted feature extraction 

methods that are used traditionally for machine learning classification methods. 

  

3.4.2 Deep learning algorithms  

For analysis, we used two Deep learning architectures, 2D CNN and LSTM to 

develop a training model. The detail about this architecture is explained in the next 

section. 

3.4.2.1 2D CNN  

In our experiments, we have implemented 2D CNN for a time series 1D sensor 

data. 2D CNN is applied mostly in 2D image data and has performed a higher success in 

these fields. we tried to implement the same concept for the sensor data collected from the 

accelerometer of a smartphone. For that, we transform the 1D data to 2D data and reshaped 

the data to a 4D tensor to give it as an input to our 2D CNN model.  The time-series data 

from the accelerometer is first divided into time series segments equal to the window size.  

We select the size of the window as 100 such that each segment will have a dimension of 

1×100 and will be the same dimension as the 2D image. Here we overlap our segments 

with 50% overlapping techniques such that each segment will have half of the overlapping 

data from the previous segments. The depth axis gives the three-dimensional sensor values 

of the data. Our CNN model has four 2D convolution layers followed by a max-pooling 

layer, with a global average pooling layer followed by two dense layers. Two dropout 

layers with a probability constant of 0.5 are also in the model to reduce the overfitting of 

data. For training, the whole dataset was divided into 80/20 training and testing data. Also, 

20% of the training data was further used as validation data. The model is trained with a 
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0.001 learning rate with the training data and the ReLU activation function was used in the 

training process. For each epoch, the CNN model was trained in the training data and then 

validate with the validation dataset. If the model improves in the validation loss, the model 

is saved. Hence at the end of the iteration. the model with the highest validation accuracy 

will be used to test the testing data. The analysis of the result is based on the performance 

of the model in the testing dataset. Table 3.2 shows different layers, output shape, and the 

number of parameters in each layer while training the CNN model used in the experiments.  

Table 3.2   Summary of the CNN model layers, output shape, and a number of 

parameters. 

layers Output shape # parameters 

conv2d_1 (Conv2D) (None, 1, 100, 16) 64 

max_pooling2d_1 (None, 1, 50, 16) 0 

conv2d_2 (Conv2D) (None, 1, 50, 64) 1088 

max_pooling2d_2 (None, 1, 25, 64) 0 

dropout_1 (Dropout) (None, 1, 25, 64) 0 

conv2d_3 (Conv2D) (None, 1, 14, 256) 196864 

max_pooling2d_3 (None, 1, 7, 256) 0 

conv2d_4 (Conv2D) (None, 1, 7, 512) 131584 

max_pooling2d_4 (None, 1, 4, 512) 0 

dropout_2 (Dropout) (None, 1, 4, 512) 0 

global_average_pooling (None, 512) 0 

dense_1 (Dense) (None, 50) 25650 

dense_2 (Dense) (None, #of class) 306 

 

3.4.2.2 RNN 

For our RNN model, we used the RNN model with LSTM cells.  The model 

consists of three LSTM layers with a unit size of 100. The fixed training batch of size 25 

was constructed with the training data. The training was one for 10 epochs with a 

learning rate of 0.3.    After each epoch mean average and mean loss is calculated.  
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3.5 Experimental results 

In our experiments, we have used two publicly available datasets of similar nature. 

Each dataset was prepared by collecting data from the tri-axial accelerometer sensor. But 

WISDM dataset (Dataset 1) have unequal distribution of data among its class whereas the 

sensor activity recognition dataset (dataset 2) has an equal amount of data among all the 

class. Also, the number of sensors used in dataset 2 is 5 whereas there is only one sensor 

used in dataset 1. The comparison between the two datasets is shown in table 3.3. Also, we 

have performed our experiments in most of the ML classifiers and have presented our 

results with the best three among them. These results are again compared with the DL 

algorithms.  

Table 3.3 Comparison between two datasets used for the experiments. 

Features Dataset 1(WISDM) Dataset 2(Sohail et dataset) 

Number of examples 3005410 630000 

Number of 

attributes/class: 

6 7 

Class Distribution Walking: 1,255,923 (42.1%) 

Jogging: 438,871 (14.7%) 

Stairs: 57,425 (1.9%) 

Sitting: 663,706(22.3%) 

Standing: 288,873(9.7%) 

Lying Down: 275,967 (9.3%) 

 

Walking: 90,000 (14.28 %) 

Sitting: 90,000 (14.28 %) 

Standing: 90,000(14.28 %) 

Jogging: 90,000(14.28 %) 

Biking: 90,000 (14.28 %) 

Walking Upstairs: 90,000 (14.28 %) 

Walking downstairs:90,000(14.28 %) 

Nature Unbalanced Balanced 

Number of sensors used 1 5 

Sampling rate: 20Hz (1 sample every 50ms) 50 samples per sec 

Sensor used Accelerometer Accelerometer 

 

Figure 3.1 shows the overall accuracy of the three ML algorithms using raw data 

from dataset 1 and dataset 2. The model is trained with the training data and the trained 

model is tested with the testing data. From the figure among three ML classifier, KNN has 

the highest accuracy which is around 90% in dataset 1 and 97% in dataset 2 as compared 

to the other two ML classifier for both the dataset. Also, when looking at the performance 
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for each algorithm, accuracy is high in dataset 2 compared to dataset 1. The possible reason 

can be the balanced nature of dataset 2 where all the activities have an equal number of 

data whereas in dataset1 some of the activities like climbing stairs have only 1.9% of total 

data compared to walking which is around 42% of total data. Also, dataset 2 is collected 

from multiple sensors placed at different parts of the body. This should have provided more 

information for the model to learn and have enhanced the performance of the model. This 

shows that information from multiple sources or sensors will have a higher contribution to 

increasing the model performance. Also, to study the effect of the balanced nature of the 

dataset, we look at other performance metrics such as precision, recall, and F1 score. Since 

KNN classifier has the highest accuracy among all other ML classifier Figure 3.2 shows 

the comparison of these performance metrics for both the dataset. In dataset 1, precision, 

recall and F1-score is relatively high in all the activities except for climbing stairs. In 

dataset 2, precision, recall, and F1-score values for all the activities are high and consistent. 

This can be because of the balanced nature of dataset 2.  Also, the similarity in the activities 

makes it hard to differentiate between the activities such as climbing stairs can be easily 

misclassified as walking as both are very much similar activities. In dataset 2 we see that 

the result is distributed along with all the activities. With uniform data distribution among 

all the classes the model will be able to generate more distinctive features among the 

different classes and will help to classify the activities more accurately.  
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Figure 3.1     Accuracy of three different machine learning algorithms for dataset 1 and 

dataset 2. 

 

 

Figure 3.2    Precision, recall, and f1-score comparison of different activities for KNN 

architecture for dataset 1 and dataset 2 

Thus, to compare the result coming from the ML classifier with deep learning 

architecture, we trained our model based on CNN and RNN. For that, we divide the whole 

dataset into training and testing datasets. Both the model is trained with the same set of 

training data and then tested with the testing dataset.  
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Figure 3.3    Accuracy and Loss curve of training data for CNN and RNN model (i) 

dataset 1 and (ii) dataset 2 

 

Figure 3.4    Normalized confusion matric for predicted output in testing data with CNN 

model (i) dataset 1 (ii) dataset 2 

Figure 3.3 shows the accuracy and loss curve of the CNN and RNN model while 

training for both dataset 1 and dataset 2. In the curve, we can see that loss is decreasing 

and accuracy is increasing with each epoch which indicates the learning nature of the 
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model. We did our experiment for 100 epochs/ iteration and shows the best result in both 

the dataset. The accuracy for each dataset for both the model is as shown in table 3.4.  The 

accuracy for dataset 1 is around 81.74% with the RNN model whereas it is 92.22% in the 

CNN model. Also, the accuracy in the CNN model is high in dataset 2 which is around 

99% than in dataset 1 which is around 96%. In both these datasets, using the CNN model 

has shown a better prediction than the RNN model for the time series sensor data.   

When we look at the normalized confusion matrix for both of this dataset for CNN 

model output, as shown in figure 3.4, we can see that jogging and walking have been 

classified more accurately and the lowest recognition rate is of climbing stairs which have 

been mostly misclassified as walking and another one is sitting which has been mostly 

misclassified as standing. As both these pairs, walking-climbing stairs which are dynamic 

activities, and standing-sitting pair, which is a static activity, the similar nature of these 

activities can be the reason for the misclassification. Also, the insufficient training data in 

some of the activities such as climbing stairs which has very low data compared to other 

activities can be the reason for its low prediction rate. This imbalanced nature can be the 

reason for the misclassification and low prediction output.  

Table 3.4 Accuracy of RNN and CNN architecture for dataset 1 and dataset 2. 

 

 

 

 

 

 

Method Dataset 1 Dataset 2 

RNN 81.74% 95.65% 

CNN 92.22% 99.12% 
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Table 3.5 Precision and Recall value for all the activities for dataset 1 and dataset2 

using CNN architecture. 

 

The precision and recall value for different activities is as shown in table 3.5. Here 

we can see that dataset 2 has better performance for all the activities than for dataset1. This 

also provides evidence that the use of multiple sensors and a more balanced dataset can 

provide higher recognition accuracy.  

Table 3.6 Accuracy Table using k-fold cross-validation 

 

To further validate our result, we analyze the result using 5-fold stratified cross-

validation for the ML and DL architecture which has shown the highest performance 

among other architecture. Table 3.6 shows the accuracy for each fold and overall average 

accuracy for both the dataset. We can see that the result is consistent for all the fold. The 

Dataset1 Dataset 2 

Activity Precision Recall Activity Precision Recall 

Jogging 0.97 0.96 Biking 1 1 

Lying Down 0.80 0.85 Downstairs 0.99 0.99 

Sitting 0.84 0.83 Jogging 0.99 0.99 

Stairs 0.97 0.71 Sitting 1 1 

Standing 0.89 0.75 Standing 1 0.99 

Walking 0.93 0.98 Upstairs 1 1 

   Walking 0.98 0.99 

Avg/total 0.90 0.90  1 1 

 KNN CNN 

Fold Dataset 1 Dataset 2 Dataset 1 Dataset 2 

1 90.15% 97.62% 84.37% 99.52% 

2 90.23 % 97.64% 88.26% 99.52% 

3 90.19% 97.68% 86.39% 98.41% 

4 90.16% 97.67% 89.11% 99.36% 

5 90.24% 97.63% 87.39% 98.96% 

Average 90.19% 97.65% 87.31% 99.16% 
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average accuracy is higher in Dataset 2 in both cases. Comparing the KNN and CNN 

architecture we can see that DL architecture has higher accuracy in dataset 2 whereas in 

dataset 1 KNN has higher accuracy than compared with the CNN architecture.  

3.6 Discussion and Conclusions 

In this section, we implement ML and DL architecture to train a model for activity 

recognition using two datasets that consists of sensor data collected from different sensors 

of the smartphone. Most of the sensors that are used are accelerometers, gyroscopes, and 

magnetometers, but in our experiment, we used only the data collected from the 

accelerometer. The two-dataset used have similar nature daily life activities such as 

walking standing, climbing stairs, lying down, jogging and biking. The difference between 

these two datasets has been the number of sensors used and the nature of the dataset. Also, 

to make our experiment more real-life compatible we used only the raw data for the 

experimental setup without any hand-crafted features extraction. Among all the ML 

classifiers used KNN has shown the highest performance whereas in DL architecture used 

CNN has shown higher performance than the RNN model. In all the cases, dataset 2 which 

is a balanced dataset has outperformed the result compared to the unbalanced dataset 1. 

Most of the misclassification is of similar nature activities and the activity which has very 

little training data has been responsible for reducing the overall performance of the model.  

This shows the overall comparison of ML and DL architecture in between two 

similar nature datasets with slightly different data distribution and sensor number. 

Techniques such as resampling where we can either oversample the class with very little 

data or down sample the class with very high data can be done to make a more balanced 

dataset. Besides some ensemble models and hybrid models can be used to see more time-



 

57 

series information from the dataset. Also, data collected from other sensors such as 

gyroscope and magnetometer can be used to see if that will enhance the overall 

performance and will help in recognizing the activity of the person more accurately.  
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CHAPTER IV - VIDEO-BASED ACTIVITY RECOGNITION IN SPORTS 

4.1 Motivation 

Body-worn sensors-based activity recognition has many advantages and has shown 

great improvement in real-world fields like smart homes, elderly care, and healthcare. But 

in some fields, such as sports the use of these sensors to collect real-time data is not feasible 

and practical. Although several studies have been performed with these sensors, players 

feel uncomfortable when they must wear these several devices on different parts of their 

body, not only in-game but also in training sessions also. The acceptance of this to measure 

the performance of the players and recognize the activity of the players without any extra 

burden to the players has been one of the challenges of sensor-based activity recognition. 

To address this issue the use of video-based activity recognition has shown a great interest 

for sports analysis.  With easily availability and use of video capturing devices such as 

high-definition cameras, a smartphone with a high-resolution camera, and the increasing 

use of CCTV cameras for surveillance, the availability of video data has been increased 

rapidly.  With commercial demand of sports broadcast due to the rapid growth of video 

transmission and global market, the use of Artificial intelligence and machine learning has 

played sports analysis large, diversified, and rapidly growing field for broadcasting 

applications. Not only for broadcasting, to boost the performance of the players, but the 

performance analyst also needs to go through the recording of the players for long hours to 

identify the activities of the person such as player movement, time of the specific activities. 

Manually identifying such activity from the video need lot of effort and time. The 

automatic system which can identify the player movements and activities from the 

recording that provides vital information to the coach and management staff to enhance the 
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performance of the player by implementing in training can be helpful to improve the team. 

The objective of this research is to develop an automatic activity recognition system that 

is capable to automatically identify the activity of the people to classify different sports 

using the easily available video recording of the sports. As some of the factors that affect 

the vision-based approach are image quality, external lighting environment, illumination 

changes, and image resolutions we select those datasets that have been recorded and 

broadcasted in different broadcasting media. 

4.2 Dataset Used 

In this section, we present three sports activity datasets to classify sports activity.  

4.2.1 Olympic sports dataset 

The Olympic sports dataset[108] contains a total of 783 videos of different activities 

performed in 16 sports. The video sequences were obtained from YouTube and the 

annotation of the class labels was done with the help of Amazon Mechanical Turk. The 

activities related with sports are class labels into 16 different labels: high jump(67), long 

jump(46), triple jump(21), pole vault(40), discuss throw(63), hammer throw(46), javelin 

throw(25), shot put(63), basketball layup(50), bowling(49), tennis serve(39), platform 

diving(57), springboard diving(46), snatch weightlifting(49), clean and jerk(66), and 

gymnastic vault(56).  
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Figure 4.1    Sample frame from 16 activities of Olympic sports dataset. 

4.2.2 Sports video in the Wild (SVW) 

This dataset [117]consists of 4200 videos captured from ordinary users of the coach’s eye 

smartphone app for sports training developed by TechSmith Corporation. This dataset has 

30 different categories and 44 action categories where each video is annotated with the 

sports genre. The average number of videos per category is around 110 videos. 



 

61 

 

Figure 4.2    Sample frames of all 30 activities of SVW sports dataset. 

4.2.3 UCF 101 sports categories 

This UCF 101 action recognition dataset[95] consists of action videos of 101 different 

actions divided into five types: human-object interaction, body motion only, human 

interaction, playing a musical instrument, and sports. As there is a lack of a large dataset 

consisting of only sports-related activities and as we are interested in the study of the 

classification of different sports-related action, we have only considered 50 different action 

groups in sports categories. As horse riding and horse racing have similar activities it is 

placed on a single class so the different classes for this dataset in our experiment is 49. This 

has provided us with a large dataset with a higher number of class labels than our previous 

two datasets.  This video in this dataset is also collected from YouTube. 
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Figure 4.3    Sample frame of all the activity in sports categories in UCF 101 dataset. 

Table 4.1 Comparison of these three datasets. 

  

4.3 Deep learning architecture used. 

For our experiments, we used two state-of-the-art approaches 3D CNN networks: 

C3D[118] and C3D with LSTM. For the experimental purpose, we have used the C3D 

model pretrained[119] with Sports 1M dataset[90].  Sports 1M dataset consists of 

1,133,158 YouTube videos annotated with 487 sports labels.   

 

 

 Olympic Sports 

dataset 

SVW UCF101 sports 

categories 

# of videos 783 4200 6671 

# of class 16 30 49 

source YouTube Smartphone & 

tablets 

YouTube 

Camera vibration NO Yes No 
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4.3.1  C3D architecture 

 

Figure 4.4    C3D Architecture.[119] 

C3D architecture is a 3D deep convolutional neural network that consists of a 3D 

convolutional layer of kernel size 3×3×3 followed by a pooling layer of 2×2×2. The feature 

of this architecture is it extracts both spatial and temporal components of the motion of 

objects, humans, and scenes of the input video. The C3D architecture consists of 8 

convolutional layers, 5 pooling layers, and 2 fully connected layers as shown in figure 4.4.  

The fully connected layer has the size of 4096 dimensions with the softmax layer for 

classification. To implement C3D architecture for pretrained with our dataset, we remove 

the last softmax layer and add a new softmax output layer with a number of classes of the 

respective dataset. 

4.3.2 C3D + LSTM architecture 

In this architecture, the hybrid model of C3D along with the LSTM architecture is 

proposed. For LSTM we use one bidirectional LSTM network along with one dense layer 

followed by a SoftMax layer. The general architecture of this hybrid model is shown in 

figure 4.5. 

 

Figure 4.5 Proposed hybrid approach  
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4.4 Methodology 

For the experimental purpose, we have implemented two approaches. One is fine-

tuning the pretrained C3D model and extracting features from these models and use those 

features with a bidirectional LSTM network for classification. In this section, we will 

describe the application of transfer learning for video classification and these two 

approaches in detail. 

In most of the previous research, transfer learning has been extensively used with 

image data. Most of the architecture that has been trained on ImageNet[120] has shown 

great development in image classification[51][54][121].  In video classification for action 

recognition, transfer learning has been implemented for individual scenes[119][69]. The 

purpose of transfer learning is to transfer the knowledge gain from training the model with 

a large dataset of similar nature and use it in a particular new dataset. Hence features 

learned from the source dataset are being used to test in a target dataset  [122]. To build a 

network with huge video data, we need an enormous amount of memory space and 

computing power.  Hence, we have used the method of Transfer learning in which we have 

used model that has been pre-trained on huge dataset such as Sports 1M dataset and kinetics 

dataset to extract high-level features.  

For this experiment, we have used the C3D model pretrained on Sports 1M 

dataset[90] [119] and used the transfer learning method to fine-tune our three sports-related 

datasets. Figure 4.6 represents the complete Keras model representation of the C3D 

architecture which contains 5 3D convolutional layers, followed by a three-dimensional 

max-pooling layer and 3 fully connected layers. The last layer is the output layer with 

softmax classification of output class labels of 487 categories as Sports 1M dataset has 
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1million videos from YouTube that have been classified into 487 different categories. The 

second figure in   Figure 4.6 represents the model architecture of our model where it 

consists of all the layers from the C3D architecture except the last fully connected SoftMax 

output layer. The last fully connected layer is replaced with a new fully connected layer for 

the activity classification based on the number of classes of each dataset. The figure shows 

the output SoftMax layer with the number of classes 16. To make our input more consistent 

with the input used to train the C3D model, we generated 16 frames from each video clip 

with a dimension of 114×114 with channel 3. 

A second approach is a hybrid approach using C3D   pre-trained model for low-

level spatial-temporal extraction and then use LSTM for high-level temporal features 

extraction. For this, the features learned from the pretrained C3D model are given as an 

input to the bidirectional LSTM network. While training only the LSTM network is trained, 

freezing the pertained layers of the C3D model.   
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Figure 4.6 Model architecture for C3D (left) and new model structure(right) 
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4.5 Experimental Results 

For experimental analysis, we perform the experiments on C3D architecture to fine-

tune a pretrained model with the training set on our three sports-related datasets. For 

training, we used the nAdam optimizer with its default parameters with a learning rate of 

0.00001. The loss function chosen for this is categorical cross-entropy. We perform the 

experiments for 300 epochs with early stopping patience of 20. But with each epoch, the 

model was trained with training data, and then validate with the validation dataset. The 

performance of the model is evaluated with the validation loss in each epoch.  The model 

is saved with each improved performance and at the end of the epoch, the model with the 

best result is used in testing with testing data. The best model with the minimum loss 

function at the validation data is saved. Although the model is trained for a maximum of 

300 epochs the model which shows the best result throughout the epoch has been used for 

testing. The details of the parameter used for the architecture are shown in table 4.2.  

Besides that, we also perform our experiments with 5-fold stratified cross-validation for 

the pretrained fine-tuning approach. For that, all the dataset was divided into five folds 

based on the contained class. In each iteration, one-fold was used for testing, and among 

the remaining 4-fold, 25% of data was used for validation while others were used for 

training our model. After each iteration, the test set change and will repeat the same 

process. We did this with fine tuning pretrained approach. Table 4.3 shows the overall 

accuracy for three datasets using the C3D pretrained model with the fine-tuning approach. 
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Table 4.2 Model parameter for C3D architecture. 

 C3D Architecture 

# of frames from each video 16 

Frame dimension 112×112 

Learning rate 0.0001 

Optimizer Nadam 

Epochs 100 

Early stopping Yes  

Patience 20 

K fold  5 

Pretrained Yes (Sports 1M dataset) 

 

Table 4.3 Result of 5-fold cross-validation for three datasets using C3D pretrained fine-

tuning method. 

 Olympic UCF100 SVW 

 Top1 Top3 Top1 Top3 Top1 top3 

Fold 1 61.78% 85.35%  68.76% 87.82%  49.16% 71.02% 

Fold 2 55.41% 82.16% 68.22% 85.31% 50.77% 72.88% 

Fold 3 54.77% 82.80% 67.39% 84.26% 48.87% 73.62% 

Fold 4 58.33% 84.61% 63.19% 83.81% 47.68% 70.90% 

fold5 63.46% 85.89% 69.11% 88.91% 51.72% 71.81% 

Average 58.75% 84.17% 67.34% 86% 49.64% 72.04% 

 

For the second approach, we extracted features from the C3D model and then 

passed it to the bidirectional LSTM model for temporal feature extraction. The weights 

from the c3D model are freeze during training the hybrid model. Figure 4.7 shows the 

accuracy and loss curve for training and validation data along with the normalized 

confusion matrix plot for the C3D+LSTM network for the Olympic Sports dataset. 

Similarly, Figure 4.8 and Figure 4.9 represent the accuracy and loss curve for training and 

validation data with confusion matrix for dataset SVW and UCF100 sports dataset. 
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Figure 4.7   Accuracy and loss curve for training and validation data(left), a confusion 

matrix plot(right) for Olympic dataset with pretrained C3D+LSTM model 

 

 
 

 

Figure 4.8   Accuracy and loss curve for training and validation data(left), confusion 

matrix plot(right) SVW sports dataset with pretrained C3D+LSTM model. 
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Figure 4.9   Accuracy and loss curve for training and validation data(left), confusion 

matrix plot(right) for   UCF100 sports dataset with pretrained C3D+LSTM model. 

 

The overall accuracy for all the datasets for C3D fine-tuning and hybrid model for 

all the datasets is shown in Table 4.4. here we can see that UCF100 sports dataset have 

higher accuracy with compared to other datasets for both the approach. The hybrid 

approach outperforms the fine-tuning pretrained C3D approach in all the datasets.  

Table 4.4 Accuracy table for all the models used for all three datasets. 

 Olympic dataset UCF 100 sports SVW dataset 

 Top1 Top3 Top1 Top3 Top1 Top3 

C3D+fine 

tuning 

58.75% 84.17% 67.34% 86% 49.64% 72.04% 

C3D+LSTM 70.70% 92.36% 89.96% 96.40% 63.30% 82.42% 

 

As the C3D model was pretrained with a sports 1M dataset that has videos from 

YouTube, the UCF100 sports dataset like this has shown higher results than the other two 

datasets. The size of the Olympic dataset is very low as compared to others which can be 

the reason for lower performance compared to others. SVM dataset has the lowest accuracy 
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than the other two in both the approach. The dynamic nature and vibration in the camera 

can have added more challenges in recognizing the activities for this method.  

4.6 Discussion and Conclusions 

Hence in this section, we implement a transfer learning approach for activity 

recognition where a model that has been pretrained to some bigger dataset and use that 

trained model to a smaller dataset of the same nature. In our experiments, we used the C3D 

model pretrained on a bigger dataset related to sports 1M and used the information gained 

on this for a small sports dataset as compared to the pretrained dataset. This method is very 

helpful to reduce high computational requirements and energy and memory consumption 

to train a model. Also, using this method can reduce the computational power requirements 

and be used for interring field knowledge transmission.  

In our experiment, we applied this technique for our three sports-related datasets 

and used two approaches for activity classification. The output shows comparable results 

in all the datasets for the Top 3 performance analysis. The hybrid model has outperformed 

the fine-tuning C3D model for all three datasets. More deep knowledge transfer and other 

models trained on other bigger datasets such as I3D model pretrained on kinetics and 

ImageNet dataset can also be tested for better performance.  
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CHAPTER V – ACTIVITY RECOGNITION IN BASKETBALL 

5.1 Motivation 

Among different fields where the application of machine learning and deep learning 

has proved to be very successful and useful, sports have also been one of the most popular 

areas where the application of Artificial Intelligence (AI) has shown great potential. For 

monitoring player fitness, to detect the injury that can occur to players during training or 

while playing, analyzing the game in real-time, making strategy during play, and analyzing 

player performance AI or AI enables devices to have been used. Not only on-field or 

players, AI and computer vision has been popular in sports marketing, sports TV 

broadcasting, sports coverage, and broadcasting. In most cases, players will wear AI-

enabled wearable devices with sensors, which will transmit data with players' movement, 

position and the data received from the sensors is being used for analysis and activity 

recognition. But in real-world game, the use of sensors or body-worn devices make it hard 

for players in their movement or concentrate during the game. This can be resolved if we 

can use videos in place of sensor data for the activity recognition that occurs in the game 

This can help to develop an automated system that can help to gather the information that 

can be helpful to analyze players, provide on-time analysis, and aid referee to make 

decisions during the game. Although recent research has been conducted with special 

multiple camera systems [123] that try to make the activity recognition more accurate and 

efficient, the operational complexity and cost have made it impossible to implement it in 

all sports. Hence, the main objective of this research has been to prepare a basketball 

dataset from the video that has been broadcasted live from the broadcasting media which 

is easily available to classify scoring activities during the game. This final objective will 
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be to develop an automated system that can recognize the scoring activities such as two-

point shots, three-point shots are free throw, and other activities such as dribbling, passing, 

etc.   

5.2 Literature review 

This section explains some of the existing sports-related datasets and methods that have 

been used for activity recognition related to this activity. Many activity recognition datasets 

include daily activities such as walking, running, climbing stairs, sitting, etc. Among some 

other datasets such as UCF101[95], kinetics[91], HMDB51[89], they include activities 

related to sports such as playing basketball, horse riding, throwing, kicking, playing cricket, 

etc.  This dataset mainly consists of videos or images of players performing different 

activities related to their specific sports and has been included as action recognition in these 

datasets. Some datasets such as Ilur news text[124], YT-UGC[125], and AG news[126] 

where the dataset is divided into different categories, and among them one of the categories 

has been sports. Some sports-specific dataset has also been developed which consists of 

images or videos clips. UCF sports[86] consists of video clips collected from sports 

broadcast networks. Olympic sports[108], sports-1m[90], SVW[117] and wang et al[127] 

etc., that are used for sports classification.  These datasets contain a large collection of 

video clips from a different source of variable length which includes multiple sports 

actions. Also, some dataset contains information about a specific sport of different domain 

such as basketball[123], table tennis, golf [128], soccer[129] and hockey[130]. In[130] they 

have prepared their dataset for classifying four different activities related to hockey: free 

hit, goal, penalty corner, and long corner. They used pretrained deep learning model to 

classify these activities with image data. They consist of the information about some 
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specific actions related to those sports that are used for classifying the recognizing different 

activities performed by the players. For example, a dataset like NBA sportsUV contains 

the player and ball trajectory from 631 games from the 2015-2016 NBA season. Also, 

videos of the players during the games is used for analyzing the player movement by player 

tracking, behavior of player during game and has been used for recognizing these action of 

a basketball players [131]. In UIT-VILC[132] sports related to sports played with a ball 

are included which has been studied for image captioning. By analyzing the score 

information and the modeling excitement, to generate highlights from the video is 

discussed for basketball games in this paper[133]. In this method first they classify the 

video as play and non-play shots and with score automatically extracted from the video 

games will select whether to include that on the highlight video or not.  In [134] analysis 

in the basketball trajectories was analyze to predict whether the three point shot in the game 

is successful or not. They used recurrent neural networks to learn the trajectory of a 

basketball with full set of features like angle and velocity to predict the three-point shot.  

Also, to recognize the offensive NBA plays, machine learning with deep neural network 

and RNN is used for classification using the tracking data of the player during the game. It 

also showed good recognition rates while training with the data and testing the model with 

the data from another seasons [135].  

For the classification of these activities with this dataset, machine learning and deep 

learning architecture have been used. As the change in action has information in a long 

range of video frames, temporal information is needed to recognize the activities. For this 

RNN network such as LSTM has been used in the different study[136][137][138]attention. 

Also, optical flow information has been used to provide temporal information in one stream 
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and the RGB data for spatial information in the other stream, and a two-stream 

network[61][139][60] has been used for classification in recent times. 

5.3 Dataset Used 

Many video-based human activity recognition datasets[43] consist of activities 

based on daily activities such as walking, running, climbing stairs, jogging, etc.  In some 

datasets [89][95][91][109], some sports-related activities performed by the subject such as 

playing basketball, throwing a baseball, juggling, or playing soccer, etc. have been 

classified as different activities performed by the person. Some datasets have been 

developed using sensors where the statistical analysis of data captured from the sensors has 

been used for analyzing player performance. Also, many sports-related visual datasets 

[86][108][90] have been developed to classify different sports based on the video captured 

during the game. Some of the sports that have been included in these datasets are 

basketball, baseball, tennis, badminton, football, horse riding, etc.  This dataset includes 

videos or images that have been collected from YouTube, broadcasting media, 

smartphones, or other recording devices.  This dataset has provided great contributions in 

the field of computer vision and activity classification to classify different sports.   But 

there is a lack of a dataset that contributes towards the classification or recognition of 

different activities related with a single game. For example, if we can develop an 

automation system that are able to recognize the activity that has been performed on the 

game and will be able to automatically update the score, replace the official or at least assist 

them to make correct decision can greatly improve the sports activities.  For that, we 

prepare our own dataset that includes the different scoring activities performed in a 
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basketball game. Also, we have prepared from our dataset from the videos that has been 

broadcasted from the media during the game.  

5.3.1 Data Collection  

The following section defines the data collection process and preprocessing techniques that 

have been used to prepare the basketball dataset. The steps involved in the data collection 

are: 

Step1: A collection of videos broadcasted on broadcasting media. 

The first step was to collect the videos of the live NBA games that have been broadcasted 

on different broadcasting channels. These full videos of games consist of all the coverage 

of the game along with advertisements, flashing graphics, replays, highlights, interviews, 

scores, and other displays. The whole game video is like what we have seen during the live 

games broadcasted on our TV. The quality of these videos recorded at first is in HD.  

Step 2: Manually store the label and timestamp. 

The second step is to check each video and manually store the timestamp in the video of 

the point when the ball is near the rim of the basketball court. That is when a player makes 

a shot the time at a point when the ball is just above the rim is being stored. The timestamp 

consists of Hours (HH), minutes (MM), and second (SS) of that point of time. Then along 

with the time, the range of the shot, whether the point of throw was from the three-point 

range, two-point range, or a free throw range, and the scoring status whether it is a score 

or a miss. Hence the list consists of the timestamp and manual labels of that activity at that 

timestamp. 

Step 3: Generate clips. 
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Once we have the timestamp of that activity and its labels, then a video clip of a length of 

6 seconds is generated. The clips will have the content 3 seconds before and 3 seconds after 

the timestamp.  The reason to choose the length of the clips is such that the clips include 

all the actions related to the scoring activity in them. Each clip has information about the 

range from which the shot was taken, whether it has the rebound or multiple attempts to 

score, whether there was a score or not. Figure 5.2 shows the frame from the clips at the 

point the shot is being taken, the point of time when the ball is near the rim of the basket, 

and the time when the ball has either score or not score. The average number of clips 

generated from each full basketball game video is around 200. We generate the clips from 

51 such NBA games. 

Step 4: Data reduction and labeling. 

Once we generate the clips from the basketball videos, we reduce the clips from HD to a 

dimension of 320×240 pixels value. The reason behind this is to reduce the size of the 

dataset without losing much information from the clips such that it requires less memory  

requirement in the experimental process. Then the clips are manually labeled into 8 

different classification labels. These labels are Two-point make(2p1), Two-point 

miss(2p0), Three-point makes (3p1), three-point miss(3p0), Mid-range make (Mp1), mid-

range miss (Mp0), Free throw makes (FT1), and Free throw miss (FT0). The clips are 

nomenclature in such a way that it contains information of the video number, timestamp 

and the labeled of the clips. 

Step 5: Generate Optical flow clips  

Once we have the video clips of different actions which are in RGB, we also generate the 

optical flow video clips from the RGB clips for experimental analysis of its temporal 
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information. For this, we used the optical flow concept developed first by [140]which finds 

the relationship between the consecutive frames of the video clips. Using open-source 

library OpenCV with the Gunnar Farneback optical flow techniques [141], we generate the 

labeled optical flow video clips and used them in our experiments to learn the temporal 

flow information from the clips. Figure 5.1 shows the sample frame of different activities 

from the optical flow videos whereas Figure 5.2 shows the sample frames for the RGB 

video dataset for different activities. In figure 5.2, left to right first column represents the 

frame at the time of the player taking the shot, the second frame at the time when the ball 

reaches the rim, and the third column represents after the ball pass the rim for 8 different 

class labels: 2p0,2p1,3p0,3p1, ft0,ft1,mp0,mp1.(from top to bottom). 

 

  

 
 

Figure 5.1   Sample frame of optical flow video for different activity 
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Figure 5.2 An example frames of different scoring activities of the basketball dataset.  
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5.3.2 Dataset characteristics 

The dataset has a total of 10,311 video clips that have been generated from 51 

NBA basketball games broadcasted in the broadcasting media. Thus, the video has been 

captured from the camera used by the broadcasting media with a third-person view. This 

has reduced the requirement of using multiple cameras with specific specifications in a 

specific position around the court for data collection and analysis.  

 

Figure 5.3    Class distribution of the dataset based on different groups 

The whole dataset is initially labeled into 8 different class labels: two-point 

miss/make, three-point miss/make, Free throw miss/make, and mid-range miss/make. 

Depending on the study criteria., it can be categorized into different groups. Figure 5.2 

represents the data distribution among different classes based on different groups. For 

example, to train and test the model for the range of the shot being taken, the whole dataset 

can be divided into four groups, Two-point, three-point, free-throw, and mid-range shot. 

To study the scoring of the basket if it is being scored or not, the dataset can be categorized 

based on made or miss.    The sample frame of the RGB video dataset for each class activity 

is shown in figure 5.3.  
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The maximum number of clips among all the class is that of three-point miss 

(2132), which is about 20% of the entire dataset whereas the minimum number of clips is 

that of free-throw miss (558) and mid-range make (558) which are around 5.4% of total 

data. The distribution of the entire dataset is based on the player scoring activities for the 

51-basketball game. This also represents the frequency of the scoring shots players plays 

during the game. 

 

5.4 Deep learning architecture used. 

In this research, we use two state-of-art methods that are being used for video 

classification. One is the 3D CNN method which is used for classifying different scoring 

activities for both RGB and optical flow datasets. Another one is the two-stream CNN 

method, which is used to analyze both the spatial and temporal nature of the dataset. The 

details of the used architecture and its methodology are explained in the next sections.  

5.4.1 3D CNN 

For our analysis for video classification, we have used 3D CNN which has 4 convolution 

layer blocks where each block has a convolutional layer, max-pooling layer, dropout layer, 

and batch normalization layer. As 3D CNN has three-dimensional convolutional kernels 

that can make segmentation predictions for a volumetric patch, it shows the ideal approach 

for video segmentation [142][143]. Figure 5.4 shows the basic structure of the 3D CNN 

network used in our study. From the input video, 50 frames are captured with a pixel size 

reduced to 80×80.  
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Figure 5.4    3D CNN network 

 

5.4.2 Two stream 3D CNN 

In two-stream networks, we train our model with RGB video frames for spatial 

information and another stream with optical flow video frames for temporal information. 

These two-network fused taking average of the predicted features before passing to the 

fully connected layer. We used an identical model for both the RGB video and Optical 

video with identical model parameters and input dimensions.  Figure 5.5 shows the 

configuration of the two-stream network architecture used in our experiments.  

  

 

Figure 5.5   Two stream CNN Network 
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5.5 Experiments 

This section explains some of our preliminary results using our dataset for baseline 

performance benchmark. For this, we use 3D CNN model as it is best suitable for video 

classification. For our experiments, we divide our dataset into 3 different groups based on 

the number of activity classes for classification: 2-class, 4-class, and 8-class. For each 

group, we again perform our analysis in RGB video input data and Optical video data. To 

study the effect of color and effect to use single-channel input(grayscale) or multi-channel 

input (RGB) we perform our experiments for two-channel inputs represented as 3D for 

RGB channel and 1D for grayscale in our results.   Also, to study different input parameters 

such as background audience, court color, players jersey and movement, camera 

orientation, we perform our study into two classification techniques: subject dependent 

(SD) and subject independent (SI).  

 

Figure 5.6    The distribution of data to training and testing data for subject-dependent 

and subject-independent classification. 
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To generalize our results for the different real-time scenarios, as the testing 

data(game) can be very much different from the training video data, subject-independent 

analysis can be helpful. For subject-dependent analysis, we divide all the datasets into 

training and testing datasets such that clips from any video may be on the training and 

testing dataset. Figure 5.6 represents the data distribution for training and testing for 

subject-dependent and subject-independent approaches. For subject-dependent analysis 

from n number of videos, the training and testing dataset is prepared with clips from all the 

videos. For subject independent analysis, clips from k number of videos were used for 

training the model while clips from (n-k) number of videos were used as a testing dataset.  

For our experiments, we used clips from 40 game videos as training data and 11 game 

videos as testing data. Hence the testing data is entirely different clips with different 

features than the training clips used to train the model. For subject dependent, the whole 

dataset is divided into (80/20) training and testing data and the training data is again divided 

into (80/20) training and validation dataset. For all the cases the normalized confusion 

matrix plot, confusion matrix table, and classification report are presented.  

5.5.1  Subject dependent (SD) 

As previously mentioned for subject-dependent classification, we divided all the datasets 

into training, validation, and testing datasets. We trained our model with the training 

dataset and validate our model with the validation dataset. The best model is saved based 

on the improvement in the validation loss.  At the end of the iteration, the testing data is 

tested with the model with the best result in the validation dataset. The overall accuracy 

presented in the table is the accuracy of the testing dataset.   
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Figure 5.7  SD Confusion matrix plot and classification report for class-8 RGB 

(grayscale) input video 

Figure 5.8   SD Confusion Matrix plot and classification report for class-8 RGB input 

video 

 

 

 
Classification Report 

              precision    recall f1-score support 
 

               0                0.50      0.52      0.51       284 
                 1                0.58      0.64      0.61       

390 
                 2                0.58      0.86      0.70       

426 
              3                0.60      0.42      0.50       236 

           4                0.45      0.13      0.21       113 
           5                0.74      0.94      0.83       345 
           6                0.27      0.08      0.12       157 
           7                0.34      0.09      0.14       112 

 
accuracy                                         0.59      2063 

macro avg                0.51      0.46      0.45     2063 
weighted avg             0.56      0.59      0.55   2063 

 

 
 

  
 

 
 
 

 

 
Classification Report 

 
              precision    recall f1-score   support 

 
           0               0.48      0.41       0.44        284 
           1               0.58      0.71       0.64        390 
           2               0.65      0.73       0.69        426 
           3               0.47      0.63       0.54        236 
           4               0.53      0.09       0.15        113 
           5               0.77      0.94       0.84        345 
           6               0.46      0.11       0.18        157 
           7               0.25      0.14       0.18        112 

 
    accuracy                                        0.59      2063 

   macro avg            0.52      0.47      0.46      2063 
weighted avg          0.57      0.59      0.56      2063 
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Figure 5.9 SD Confusion matrix plot and classification Report for class-4 RGB 

(grayscale) input video  

 

    

 
 

   
Classification Report 

 
              precision    recall f1-score   support 

 
         0           0.99        0.95       0.97           458 
         1           0.49        0.32       0.39           269 
         2           0.79        0.85       0.82           662 
         3           0.78        0.84       0.81           674 

 
 accuracy                                 0.80        2063 

  acro avg      0.76        0.74       0.75        2063 
weighted avg    0.79     0.80       0.79      2063 

 
 

 
 

Figure 5.10  SD Confusion Matrix plot and classification Report for class-4 RGB input 

video 

 

 

 

 

Classification Report 
 

              precision    recall f1-score   support 
 

           0         0.98         0.98      0.98           458 
           1         0.44         0.35      0.39           269 
           2         0.76         0.87      0.81           662 
           3         0.83         0.77      0.80           674 

 
 accuracy                                        0.79        2063 
macro avg         0.75         0.74      0.74      2063 
weighted avg    0.79         0.79      0.79      2063 
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Figure 5.11  SD Confusion matrix plot and classification Report for class-2 RGB 

(grayscale) input video. 

Figure 5.12  SD Confusion Matrix plot and classification Report for class-2 RGB input 

video. 

 

Figure 5.7 to  Figure 5.12 represents the confusion matrix and classification report for 

grayscale and color input video. The accuracy for 8-class classification is lower at around 

59% for both 1D and 3D, whereas the accuracy is highest for class-4 and class-8 which is 

around 80%. The f1-score is lowest for the mid-range shot which is mostly misclassified 

as three-point and two-point in all the cases.  

 

 
Classification Report 

 
              precision    recall   f1-score support 

 
           0          0.78        0.85          0.81      1082 
           1          0.81        0.74          0.78        981 

 
accuracy                                          0.80      2063 
macro avg       0.80      0.79          0.79      2063 
weighted avg  0.80      0.80          0.80      2063 

 

 

 
 

  
Classification Report 

 
              precision    recall f1-score   support 

 
           0           0.77       0.82        0.79      1082 
           1           0.78       0.73        0.75        981 

 
        accuracy                                     0.77      2063 
   macro avg       0.78       0.77        0.77      2063 

weighted avg       0.78       0.77        0.77      2063 
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Figure 5.13  SD  Confusion matrix plot and classification Report for class-8 Optical flow 

(grayscale) input video 

 

Figure 5.14  SD  Confusion Matrix plot and classification Report for class-8 RGB Optical 

flow input video. 

 

 

Classification Report 
 

              precision    recall  f1-score   support 
 

           0             0.40      0.38       0.39           284 

           1             0.46      0.70       0.56           390 

           2             0.59      0.52       0.55           426 

           3             0.40      0.50       0.45           236 

           4             0.50      0.01       0.02           113 

           5             0.65      0.99       0.79           345 

           6             1.00      0.01       0.01           157 

           7             0.00      0.00       0.00           112 
 

    accuracy                                   0.52         2063 

macro avg       0.50      0.39       0.35         2063 

weighted avg   0.52      0.52       0.46        2063 

 

 

 
 

 

 

  
Classification Report 

 
              precision   recall  f1-score  support 

 

           0             0.49       0.49      0.49         284 

           1             0.59        0.64      0.61        390 

           2             0.59        0.77      0.67        426 

           3             0.50        0.58      0.54        236 

           4             0.56        0.08      0.14        113 

           5             0.71        0.93      0.80        345 

           6            0.41        0.06      0.10        157 

           7            0.26        0.09      0.13        112 
 

    accuracy                                     0.58      2063 

   macro avg       0.51        0.45      0.44      2063 

weighted avg      0.55         0.58      0.54     2063 
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Figure 5.15  SD  Confusion matrix plot and classification Report for class-4 Optical flow 

(grayscale) input video data  

 

 

 

Classification Report 
 

precision    recall f1-score   support 
 

0            0.95        0.95         0.95          458 

1            0.33        0.00         0.01          269 

2            0.78        0.66         0.71          662 

3            0.59        0.92         0.72          674 
 

accuracy                                         0.72        2063 

macro avg       0.66         0.63        0.60        2063 

weighted avg      0.70         0.72        0.68       2063 

Figure 5.16 SD Confusion Matrix plot and classification Report for class-4 RGB Optical 

flow input video data 

 

 

 

Classification Report 
 

precision    recall f1-score   support 
 

0           0.91         0.97        0.94            458 

1           0.40         0.08        0.14            269 

2           0.63         0.89        0.74            662 

3           0.78         0.68        0.73            674 
 

accuracy                                           0.73         2063 

macro avg         0.68         0.66        0.64       2063 

weighted avg    0.71         0.73        0.70       2063 
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Figure 5.17   SD Confusion matrix plot and classification Report for class-2 Optical 

flow(grayscale) input video data 

 

   

 
Classification Report 

 
              precision recall  f1-score   support 

 

           0           0.72       0.85       0.78       1082 

           1           0.79       0.64       0.71         981 
 

    accuracy                                     0.75       2063 

   macro avg       0.76       0.74       0.74       2063 

weighted avg       0.76       0.75       0.75       2063 

Figure 5.18  SD Confusion Matrix plot and classification Report for class-2 RGB Optical 

flow input video data 

Figure 5.13 to Figure 5.18 represents the confusion matrix plot and classification report 

for RGB and grayscale optical flow videos for different groups. Here also the mid-range 

has been highly misclassified as three-point and two-point shots and have very low F1 

score compared to other activity in the all the groups.  

 

 

Classification Report 
 

              precision    recall f1-score   support 
 

           0           0.69      0.86        0.77        1082 

           1           0.79      0.57        0.66          981 
 

    accuracy                                    0.72        2063 

   macro avg       0.74       0.72       0.72        2063 

weighted avg       0.74       0.72       0.72      2063 
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Figure 5.19   SD Confusion matrix plot and classification Report for class-8 two-stream 

3D CNN networks using RGB (grayscale) and Optical flow(grayscale) input video 

 

   
   

 

  
Classification Report 

 
              precision recall  f1-score support 

 

           0       0.51      0.31      0.38       284 

           1       0.59      0.65      0.62       390 

           2       0.55      0.77      0.64       426 

           3       0.52      0.52      0.52       236 

           4       0.75      0.05      0.10       113 

           5       0.70      0.98      0.82       345 

           6       0.35      0.17      0.23       157 

           7       0.32      0.17      0.22       112 
 

    accuracy                           0.57      2063 

   macro avg       0.54      0.45      0.44      2063 

weighted avg       0.56      0.57      0.53      2063 

 

Figure 5.20 SD Confusion matrix plot and classification Report for class-8  two-stream 

3D CNN network using RGB and Optical flow input video. 

 

 

 

Classification Report 
 

              precision recall f1-score support 
 

           0           0.46      0.53      0.49       284 

           1           0.55      0.74      0.63       390 

           2           0.60      0.82      0.70       426 

           3           0.58      0.34      0.43       236 

           4           0.50      0.05      0.10       113 

           5           0.76      0.92      0.83       345 

           6           0.42      0.07      0.12       157 

           7           0.32      0.08      0.13       112 
 

accuracy                                    0.59      2063 

macro avg        0.52      0.45      0.43     2063 

weighted avg       0.56      0.59      0.54     2063 
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Figure 5.21 SD Confusion matrix plot and classification Report for class-4 two-stream 

3D CNN networks using RGB (grayscale) and Optical flow(grayscale) input video 

 

 

Classification Report 
 

              precision    recall f1-score support 
 

           0           0.94      0.99       0.96         458 

           1           0.35      0.31       0.33         269 

           2           0.77      0.83       0.80         662 

           3           0.80      0.74       0.77         674 
 

    accuracy                                   0.77        2063 

   macro avg       0.71      0.72       0.71        2063 

weighted avg       0.76      0.77       0.76        2063 

 

Figure 5.22 SD Confusion matrix plot and classification Report for class-4 two-stream 

3D CNN networks using RGB and Optical flow input video. 

 

 

  

Classification Report 
 

              precision recall f1-score   support 
 

           0         0.98       0.96        0.97         458 

           1         0.38       0.26        0.31         269 

           2         0.71       0.82        0.76         662 

           3         0.74       0.73        0.73         674 
 

    accuracy                                     0.75       2063 

   macro avg       0.70       0.69        0.69       2063 

weighted avg       0.74       0.75        0.74       2063 

 



 

93 

Figure 5.23  SD Confusion matrix plot and classification Report for class-2 two-stream 

3D CNN networks using RGB (grayscale) and Optical flow(grayscale) input video 

 

 

Classification Report 
 

              precision recall f1-score support 
 

           0            0.78       0.86       0.82       1082 

           1            0.82       0.73       0.77         981 
 

    accuracy                                     0.80       2063 

   macro avg       0.80       0.79       0.79       2063 

weighted avg       0.80       0.80       0.80       2063 

 

Figure 5.24 SD Confusion matrix plot and classification Report for class-2 two-stream 

3D CNN networks using RGB and Optical flow input video. 

Figure 5.19 to Figure 5.24 represents the confusion matrix and classification report for the 

two-stream CNN network. Here also we can see that in most cases RGB input data has 

higher accuracy than grayscale input and mid-range has the lowest score in the range of 

24% for class-8 and  33% for class-4. This shows that it has been highly misclassified. For 

class -4, free-throw has the highest accuracy which is above 95% in all the input data.  

 

Classification Report 
 

              precision    recall f1-score  support 
 

           0           0.79       0.75        0.77       1082 

           1           0.74       0.78        0.76         981 
 

    accuracy                                     0.76       2063 

   macro avg       0.76       0.76       0.76       2063 

weighted avg       0.77       0.76       0.76       2063 
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5.5.2 Subject independent (SI) 

For subject independent analysis we use clips from 40 videos as training and 11 

videos as testing data.  

 

Figure 5.25   SI  Confusion matrix plot and classification Report for class-8 RGB 

(grayscale) input video  

  

Classification Report 
              precision    recall f1-score support 

 

           0             0.58       0.45       0.51        487 

           1             0.62       0.57       0.59        523 

           2             0.57       0.67       0.61        460 

           3             0.52       0.49       0.50        260 

           4             0.49       0.18       0.26        148 

           5             0.69       0.89       0.77        336 

           6             0.00       0.00       0.00            0 

           7             0.00       0.00       0.00            0 
 

    accuracy                                     0.58      2214 

   macro avg       0.43       0.40       0.41      2214 

weighted avg       0.59       0.58       0.57      2214 

 

Figure 5.26   SI Confusion matrix plot and classification Report for class-8 RGB input 

video 

 

  

 

Classification Report 
              precision    recall  f1-score  support 

 

           0           0.70        0.27        0.39        487 

           1           0.59        0.61        0.60        523 

           2           0.58        0.70        0.63        460 

           3           0.45        0.58        0.50        260 

           4           0.36        0.07        0.11        148 

           5           0.61        0.97        0.75        336 

           6          0.00        0.00         0.00            0 

           7          0.00        0.00         0.00            0 
 

    accuracy                                     0.57      2214 

   macro avg       0.41      0.40        0.37      2214 

weighted avg       0.58      0.57        0.54      2214 
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Figure 5.27   SI Confusion matrix plot and classification Report for class-4 RGB 

(grayscale) input video 

  

Figure 5.28 SI Confusion matrix plot and classification Report for class-4 RGB input 

video 

 

 

 

Classification Report 
 

              precision    recall f1-score support 
 

           0             0.94      0.96      0.95          484 

           1             0.29      0.17      0.22          244 

           2             0.78      0.78      0.78          720 

           3             0.76      0.84      0.80          766 
 

    accuracy                                  0.77        2214 

   macro avg       0.69      0.69      0.69        2214 

weighted avg       0.75      0.77      0.76        2214 

 

 
   
 

  
Classification Report 

 
              precision    recall f1-score support 

 

           0           0.94      0.96       0.95          484 

           1           0.29      0.11       0.17          244 

           2           0.67      0.85       0.75          720 

           3           0.75      0.70       0.72          766 
 

    accuracy                                   0.74        2214 

   macro avg       0.67      0.66       0.65        2214 

weighted avg      0.72      0.74       0.72        2214 
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Figure 5.29  SI Confusion matrix plot and classification Report for class-2 RGB 

(grayscale) input video 

 

Figure 5.30 SI Confusion matrix plot and classification Report for class-2 RGB input 

video 

Figure 5.25 to Figure 5.30 represents the confusion matrix plot and classification 

report for RGB video input for subject Independent classification types. The output is 

comparatively lower than the corresponding subject-dependent group. 

 

Classification Report 
 

              precision    recall f1-score support 
 

           0          0.72       0.85       0.78        1119 

           1          0.81       0.66       0.73        1095 
 

    accuracy                                     0.75       2214 

   macro avg       0.76       0.75        0.75      2214 

weighted avg       0.76       0.75        0.75      2214 

 

   

 

Classification Report 
 

              precision    recall f1-score support 
 

           0             0.73      0.79        0.76        1119 

           1             0.77      0.70        0.73        1095 
 

    accuracy                                     0.75        2214 

   macro avg       0.75      0.75        0.75        2214 

weighted avg       0.75       0.75      0.75        2214 
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Figure 5.31 SI Confusion matrix plot and classification report for class-8 Optical 

flow(grayscale) input video 

 

Figure 5.32  SI Confusion matrix plot and classification report for class-8 Optical flow 

input video 

 

 

 

Classification Report 
 

precision    recall f1-score support 
 

0            0.65      0.21       0.32        336 

1            0.51      0.69       0.59        430 

2            0.59      0.57       0.58        460 

3            0.38      0.75       0.51        260 

4            0.00      0.00       0.00        148 

5            0.63      0.95       0.76        336 

6            0.20      0.01       0.01        151 

7            0.11      0.06       0.08          93 
 

accuracy                                    0.52       2214 

macro avg       0.38      0.41      0.36       2214 

weighted avg       0.48      0.52      0.46       2214 

 

Classification Report 
 

precision    recall f1-score support 
 

0            0.51      0.38       0.44         336 

1            0.61      0.51       0.56         430 

2            0.49      0.80       0.61         460 

3            0.49      0.53       0.51         260 

4            0.00      0.00       0.00         148 

5            0.54      0.93       0.69         336 

6            0.00      0.00        0.00        151 

7            0.00      0.00       0.00           93 
 

accuracy                                    0.53       2214 

macro avg       0.33      0.39      0.35       2214 

weighted avg       0.44      0.53      0.46       2214 
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Figure 5.33  SI Confusion matrix plot and classification report for class-4 Optical 

flow(grayscale) input video 

 

Figure 5.34  SI Confusion matrix plot and classification report for class-4 Optical flow 

input video 

 

 

Classification Report 
 

              precision    recall f1-score support 
 

           0           0.87      0.97      0.92         484 

           1           0.38      0.02      0.04         244 

           2           0.66      0.85      0.74         720 

           3           0.77      0.74      0.75         766 
 

    accuracy                                   0.74       2214 

   macro avg       0.67      0.64      0.61       2214 

weighted avg       0.71      0.74      0.71       2214 

 

   
 

Classification Report 
 

              precision    recall f1-score support 
 

           0            0.92      0.97        0.94        484 

           1            0.29      0.28        0.28        244 

           2            0.75      0.81        0.78        720 

           3            0.83      0.74        0.78        766 
 

    accuracy                                    0.76      2214 

   macro avg       0.70      0.70       0.70      2214 

weighted avg       0.76      0.76       0.76      2214 
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Figure 5.35  SI Confusion matrix plot and classification report for class-2  Optical 

flow(grayscale) input video 

 

Figure 5.36   SI Confusion matrix plot and classification report for class-2 Optical flow 

RGB input video 

Figure 5.31 to figure 5.36 represents the confusion matrix plot and classification 

report for grayscale and RGB video of optical flow video input of subject independent 

classification type. Here, in all the groups, the accuracy is higher when using RGB optical 

input video than using grayscale input video.  

 

 
Classification Report 

 
              precision recall f1-score support 

 

           0           0.70      0.73      0.72       1119 

           1           0.71      0.68      0.70       1095 
 

    accuracy                                   0.71       2214 

   macro avg       0.71      0.71      0.71       2214 

weighted avg     0.71      0.71      0.71       2214 

 

 

Classification Report 
 

              precision    recall f1-score support 
 

           0              0.78      0.69      0.73       1119 

           1              0.71      0.80      0.76       1095 
 

    accuracy                                    0.74       2214 

   macro avg       0.75      0.74      0.74       2214 

weighted avg     0.75      0.74      0.74         221 
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Figure 5.37   SI Confusion matrix plot and classification report for class-8 two-stream 

3D CNN networks using RGB (grayscale) and Optical flow(grayscale) input video. 

 

 

 

 

Figure 5.38  SI Confusion matrix plot and classification report for class-8 two-stream 3D 

CNN networks using RGB and Optical flow input video. 

 

 

Classification Report 
 

              precision    recall f1-score support 
 

           0           0.70      0.25       0.37       487 

           1           0.60      0.45       0.52       523 

           2           0.54      0.71       0.61       460 

           3           0.45      0.48       0.47       260 

           4           0.61      0.07       0.13       148 

           5           0.55      0.96       0.70       336 

           6           0.00      0.00       0.00           0 

           7           0.00      0.00       0.00           0 
 

    accuracy                                    0.52      2214 

   macro avg       0.43      0.37      0.35      2214 

weighted avg     0.59      0.52      0.50      2214 

 

 
 

              precision  recall  f1-score  support 
 

           0             0.56      0.22       0.32        284 

           1             0.51      0.69       0.59        390 

           2             0.67      0.66       0.66        426 

           3             0.56      0.44       0.49        236 

           4             0.00      0.00       0.00        113 

           5             0.60      0.98       0.74        345 

           6             0.27      0.29       0.28        157 

           7             0.24      0.17       0.20        112 
 

    accuracy                                    0.54       2063 

   macro avg       0.43      0.43      0.41       2063 

weighted avg    0.51      0.54      0.51       2063 
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Figure 5.39  SI Confusion matrix plot and classification report for class-4 two-stream 3D 

CNN networks using RGB (grayscale) and Optical flow(grayscale) input video. 

 

Figure 5.40  SI Confusion matrix plot and classification report for class-4 two stream 

CNN networks using RGB and Optical flow input video. 

 

  

Classification Report 
 

            precision  recall   f1-score   support 
 

           0        0.84        0.95         0.89         484 

           1        0.33        0.02         0.03         244 
 

           2        0.73        0.77         0.75         720 

           3        0.67        0.79         0.73         766 
 

    accuracy                                   0.73       2214 

   macro avg    0.64      0.63        0.60       2214 

weighted avg     0.69      0.73          0.69     2214 

 

    

 

 
Classification Report 

 
              precision    recall f1-score support 

 
           0           0.95       0.93       0.94         484 
           1           0.29       0.11       0.16         244 
           2           0.77       0.71       0.74         720 
           3           0.68       0.87       0.76         766 

 
    accuracy                                   0.75       2214 

   macro avg      0.67       0.66      0.65       2214 
weighted avg    0.73       0.75      0.73       2214 
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Figure 5.41 SI Confusion matrix plot and classification report for class-2 two streams 3D 

CNN networks using RGB (grayscale) and Optical flow(grayscale) input video. 

 

Figure 5.42   SI Confusion matrix plot and classification report for class-2 two-stream 

3D CNN networks using RGB and Optical flow input video. 

From figure 5.37 to Figure 5.42, which represents the confusion matrix plot and 

classification report for Subject Independent two-stream CNN network for all the groups. 

Here also the mid-range has been highly misclassified as two-point and three-point shots 

and all other output is consistent with other previous outputs. 

 

 

Classification Report 
 

              precision recall f1-score support 
 

           0               0.73      0.83      0.78       1119 

           1               0.80      0.69      0.74       1095 
 

    accuracy                                    0.76       2214 

   macro avg       0.76      0.76      0.76       2214 

weighted avg      0.76      0.76      0.76       2214 

 

   

  
Classification Report 

               

precision recall f1-score support 
 

           0               0.73      0.83      0.78      1119 

           1               0.79      0.69      0.74      1095 
 

    accuracy                                    0.76      2214 

   macro avg       0.76      0.76      0.76      2214 

weighted avg      0.76      0.76      0.76      2214 
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Table 5.1 shows the overall accuracy table for all our experimental setups. From 

the table for the 8-class classification, the highest accuracy we got is from the 3D convnet 

using grayscale RGB data which is around 59.5%. using color optical flow video as input 

has highly improved the performance for a class-8 group where there is not much difference 

in other groups. For class 4, the highest accuracy is for 3D Convnet using input from RGB 

video data which is around 80%. The performance is highest for the free throw which has 

higher precision and recall compared to other class activities. Here also mid-range has been 

highly misclassified as two points and three-point.  For the class 2 group, the highest is by 

using two-stream 3D Convnet which is around 76%. In all cases, RGB videos have higher 

performance than optical flow video. The two-stream network hasn’t shown significant 

improvement except for class-2 subject independent analysis. Among different groups, the 

model has higher accuracy in determining the range of the shot taken which is class-4 group 

except for using a two-stream 3D convnet for classifying the make and miss of the shots. 

Subject-dependent analysis has higher performance than subject independent analysis in 

almost all the cases.  
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Table 5.1 Accuracy for all the experiments with three models used. 

 

5.6 Discussion and Conclusions 

  From the analysis, we can see that for classifying different activities, mid-range 

shots have been highly misclassified as three-point shots and two-point shots. This can be 

due to the smaller number of training samples for mid-range shots compared to the other 

class labels. Also, as mid-range shots are very much similar to the two-point shots, the 

model couldn’t be able to learn more specific features from the training data.  More training 

data for mid-range shots should be added with deeper network training that can improve 

the results. Also, the free throw has a comparatively higher performance than other groups. 

This can be because the camera angle, the player movement, the dynamic nature of the 

background is highly stable, or constant compared to the video while performing other 

activities. Because of the highly similar interclass data, high mobility of the players, 

 

 

Methods 
Accuracy 

Subject Dependent 

 8-class 4-class 2-class 

 1D 3D 1D 3D 1D 3D 

3D ConvNet 59.48% 59.19% 79.50% 80.27% 77.31% 79.59% 

3D optical ConvNet 51.72% 58.22% 73.39% 72.18% 72.47% 74.94% 

Two  stream  3D 

ConvNet 

58.94% 57.25% 74.79% 76.88% 76.44% 79.64% 

 Accuracy 

 Subject Independent 

 8-class 4-class 2-class 

 1D 3D 1D 3D 1D 3D 

3D ConvNet 56.78% 57.59% 77.42% 74.21% 75.38% 74.80% 

3D optical ConvNet 52.08% 52.62% 74.44% 76.20% 70.78% 74.35% 

Two  stream  3D 

ConvNet 
51.85% 54.39% 73.13% 74.71% 76.06% 75.75% 
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coaches, and audience during the game, the dynamic nature of background due to the 

movement of the camera, and availability of low training data due to the high requirement 

of memory space for video data have been some of the reasons for the low classification 

accuracy. Eliminating these difficulties can highly improve classification performance.  

In this study, we developed a video dataset for basketball to classify different 

scoring activities based on different criteria using only the video clips broadcasted from 

the broadcasting media. The objective of this dataset is to provide a dataset collected from 

easily available video data without the use of any special camera and camera setup. This 

study can also help for classifying different activities relates to basketball for developing 

an automated activity recognition system for score updating, foul play detection, assisting 

decision making for the referee, and other activities accurately and in real-time. This can 

also be the future work for this research. 

Other future works include adding more classes or activities to the dataset such as 

dribbling, moving forward with the ball, foul play, time out, and other specific activities 

that happen during the play. Also, removing the challenges discussed such as background 

removal, ball detection, can be implemented for improving the recognition accuracy. 

Integrating ball tracking system and player tracking system can be used for better 

performance along with using higher-dimensional data adding more training data should 

be able to increase the performance of the model.  
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CHAPTER VI – FUTURE WORK 

6.1 Future work  

This section highlights some of the future works that can be extended from the 

proposed methods and dataset.  

With recent development in sensors and sensor technology, new wearable devices which 

can be very comfortable and acceptable by sports personnel to wear during the game can 

be developed. The data collected from these sensors can represent a wide range of activities 

performed by the players with stable recognition. This can help to gather more data for 

different activities and can help to gather data from real-life activities rather than lab setup 

and monitored activities performance.   

The research focuses mainly on single viewpoint recognition frames collected from a single 

device. Multi viewpoint acquisition can be considered for training that has been captured 

by multiple devices for a similar activity to be a more realistic approach.  

Also, deep models for training the training data can be used to extract features that can help 

in classifying close inter-class classification. Also, a multi-label classification system and 

model can be developed that can classify multiple actions of humans that are more 

applicable to the real world. The improvement in the collection and maintenance of the 

quality dataset so that it can provide adequate information for the model to learn and the 

improvement in the training model that can classify different activities taking the 

challenges it faces during vision-based activity recognition can be two sectors for future 

development.  
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6.2 Limitations/Challenges 

In recent years, many research achievements have been achieved in the field of 

HAR in different fields such as sports, video surveillance, movies, and healthcare. 

Different methods have been used in activity recognition. Using sensors and video data for 

HAR can have many limitations which mainly depend on the devices, collected data 

quality, experimental environments, light variations, moving background[144], change in 

perspective, occlusion of another object, noise, etc. [145][146]. Here we present some of 

the challenges and limitations in the field of HAR categorized on different topics.  

Dataset: Video datasets are high memory required datasets. The prospect of 

loading the entire dataset into the local memory is impractical. Some solutions can be to 

use a URL passing library to dynamically download the videos from their YouTube links 

and overwrite the videos currently in memory. A parallel computing system is used such 

that these batch can be loaded and preprocessed on a separate machine than the one which 

is training the model. Also, the lack of a standard benchmark dataset that gives all the 

information about different scenarios and actions for real-life representation is missing. 

This has reduced the effective evaluation and training for HAR. More efforts should be 

needed to prepare a quality datasets with quality information and uniform protocol should 

be applied for quantitative comparison on those benchmark datasets[109].  

Intraclass variation and Inter-class similarity: In HAR, one of the challenges is 

the intraclass variation and inter-class similarity. The same activity can differ between 

different subjects based on body size, clothing, personality, and other factors. For example, 

the way a person walk can be different and unique for everyone. Also, different activities 

may look similar like walking and jogging can be very similar to running. Also, multiple 
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actions such as drinking tea while talking on the phone can be hard to train which adds 

more challenges in the recognition process [147]. For analyzing activities in the 

crowd[148], or places, where the subject number is high, can add challenges in recognizing 

activities[149].  These overlapping actions can bring uncertainty in the recognition 

process[150]. A deep learning model can be developed that can distinguish these actions 

by learning unique features with more detailed data for these actions and activities and a 

more multileveled prediction model can be trained with hybrid devices for composite 

activities recognition. 

Complex and varying backgrounds: Most real-world videos contain dynamic 

background, occlusions, illumination variance, noise, different lighting, a different 

viewpoint, low-quality images/videos. In sensor-based, the presence of noise, unwanted 

signal detection, and low-quality sensors and transmission systems can affect the quality 

of the data being collected. These issues add more challenges and complexity to HAR.  The 

use of multi-modal technology using different sources of data such as RGB, depth, a 

skeleton in the video, and multi-sensors data in sensor-based HAR can be used [151].   

Real-time Analysis: HAR system can be more resource-demanding and energy-

consuming. Most application such as video surveillance, elderly care which need real-time 

accurate sensing. With large sensors and video data, the computing complexity will 

increase with the need for more computing power, energy memory. Also, some 

applications such as security should be able to predict certain activities of a person by 

analyzing certain behavior and be able to stop future unwanted movement. These 

requirements have added more challenges in real-time automatic activity recognition. More 

study should be focused on reducing the resources requirement developing energy-efficient 
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system[152] by designing with lower sampling frequency, deep transfer learning, and 

deeper model[153] with new methods.  The challenge will be is to minimize the overall 

operational cost by reducing the computing and bandwidth resources.  

Privacy:  With wide application in surveillance, elderly assistance, and monitoring 

systems, the HAR system has the challenge of balancing between monitoring and violating 

the intimacy and privacy of the person. Installation of devices for monitoring the activity 

at home can arise privacy constraints with misuse of data collected from these devices. 

Also, the reliability, integrity, and security of collected data and information have added 

more challenges in this field. The use of devices such as a smartphone for monitoring can 

help in privacy constraints of the data as the control of these devices will be in the hand of 

the users. Building more secure and acceptable devices and the system can help people to 

be more comfortable with this technology and devices and will be able to overcome these 

challenges.   

6.3 Conclusion 

HAR has become an integral part of analyzing and interpreting human activities in 

different applications of computer vision, robotics, and many more.  With data collected 

from different easily available sensors such as accelerometer, gyroscope, magnetometer 

embedded in handheld devices such as smartphones, smartwatches have made data 

collection easy. In the early part of the research, we compare the performance of these data 

collected from the accelerometer of a smartphone placed at a different position on the body. 

With different approaches such as machine learning and deep learning architecture, we 

analyze the data collected from the sensors and classify human activities. The study found 

that with the use of multiple sensors and a more balanced dataset used for training the 
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model, higher accuracy can be achieved using only the raw data coming out from the 

sensors. With sensors, as it can have some limitations applying in some fields such as 

sports, we used video-based activity recognition based on sports data for activity 

recognition and classification. For this, we used state of an art approach with a pre-trained 

model in three benchmark datasets related to sports. The results show relatively comparable 

results.  

Apart from classifying different sports activities based on activity performed by the 

person in the video, we developed our dataset related to basketball to classify scoring 

activities related to the single sports. For that, we collected videos of basketball games that 

have been broadcasted in different broadcasting media, prepared a labeled dataset 

consisting of video clips of different actions, and used them to classify different activities 

based on different criteria. The results have provided the baseline output performance and 

the challenging dataset will be helpful for researchers to classify activities in computer 

vision having very similar intraclass properties.   
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