
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Summer 8-1-2021

Discrete Moving Target Defense Application and Benchmarking in Discrete Moving Target Defense Application and Benchmarking in

Software-Defined Networking Software-Defined Networking

charan gudla
University of Southern Mississippi, School of Computing

Follow this and additional works at: https://aquila.usm.edu/dissertations

Recommended Citation Recommended Citation
gudla, charan, "Discrete Moving Target Defense Application and Benchmarking in Software-Defined
Networking" (2021). Dissertations. 1927.
https://aquila.usm.edu/dissertations/1927

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F1927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/1927?utm_source=aquila.usm.edu%2Fdissertations%2F1927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

DISCRETE MOVING TARGET DEFENSE APPLICATION AND BENCHMARKING

IN SOFTWARE-DEFINED NETWORKING

by

Charan Gudla

A Dissertation

Submitted to the Graduate School,

the College of Arts and Sciences

and the School of Computing Sciences and Computer Engineering

at The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Approved by:

Dr. Andrew H. Sung, Committee Chair

Dr. Dia Ali

Dr. Sungwook Lee

Dr. Ramakalavathi Marapareddy

Dr. Ras B. Pandey

August 2021

COPYRIGHT BY

Charan Gudla

2021

Published by the Graduate School

ii

ABSTRACT

Moving Target Defense is a technique focused on disrupting certain phases of a

cyber-attack. The static nature of the existing networks gives the adversaries an adequate

amount of time to gather enough data concerning the target and succeed in mounting an

attack. The random host address mutation is a well-known MTD technique that hides the

actual IP address from external scanners. When the host establishes a session of

transmitting or receiving data, due to mutation interval, the session is interrupted, leading

to the host’s unavailability. Moving the network configuration creates overhead on the

controller and additional switching costs resulting in latency, poor performance, packet

loss, and jitter.

In this dissertation, we proposed a novel discrete MTD technique in software-

defined networking (SDN) to individualize the mutation interval for each host. The host IP

address is changed at different intervals to avoid the termination of the existing sessions

and to increase complexity in understanding mutation intervals for the attacker. We use the

flow statistics of each host to determine if the host is in a session of transmitting or

receiving data. Individualizing the mutation interval of each host enhances the defender

game strategy making it complex in determining the pattern of mutation interval. Since the

mutation of the host address is achieved using a pool of virtual (temporary) host addresses,

a subnet game strategy is introduced to increase complexity in determining the network

topology. A benchmarking framework is developed to measure the performance,

scalability, and reliability of the MTD network with the traditional network. The analysis

shows the discrete MTD network outperforms the random MTD network in all tests.

iii

ACKNOWLEDGMENTS

 I want to thank and express my deepest gratitude to my supervisor, Dr. Andrew H.

Sung. You are the best advisor and mentor I have ever met, and thank you for your excellent

guidance, encouragement, and patience over the years. I want to thank Dr. Dia Ali, who

has been a great mentor since my journey began at the University of Southern Mississippi.

I want to thank other committee members Dr. Ramakalavathi Marapareddy, Dr. Ras B.

Pandey, and Dr. Sungwook Lee, for their precious time and valuable suggestions and input

in the dissertation.

I want to thank Md Shohel Rana, collaborator in my research work, and we had a

great time working together. I want to thank my friends Trung T. Nguyen and Amartya

Hatua for giving me support and motivation all the time.

I want to thank the School of Computing Sciences and Computer Engineering for

its tremendous support during the last five years. I want to thank Ms. Chrissy Hudson and

Ms. Sherry Smith for all their help in my journey.

Finally, I want to thank my family members and friends for the encouragement,

support, and motivation towards this journey and the new beginning.

iv

DEDICATION

This work is dedicated to my family and friends who are with me on this journey.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iii

DEDICATION ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... ix

LIST OF ILLUSTRATIONS .. x

LIST OF ABBREVIATIONS .. xiv

CHAPTER I - INTRODUCTION .. 15

1.1 Motivation ... 15

1.2 Contributions... 15

1.3 Dissertation Structure .. 17

CHAPTER II- BACKGROUND .. 18

2.1 Moving Target Defense .. 18

2.1.1 Moving Target Defense Techniques Categories .. 18

2.1.2 Cyber Kill Chain ... 20

2.2 Software-Defined Networking (SDN) .. 20

CHAPTER III– SOFTWARE AND NETWORKING TOOLS 22

3.1 SDN Architecture.. 22

3.2 OpenFlow .. 24

vi

3.3 OpenFlow Switch.. 24

3.3.1 Flow Tables ... 24

3.4 RYU Controller ... 25

3.5 Mininet .. 26

CHAPTER IV – MOVING TARGET DEFENSE APPLICATION AND ANALYSIS .. 28

4.1 MAC Address Mutation in Drones ... 28

4.1.1 Related Work ... 29

4.1.2 Hacking Techniques... 29

4.1.2.1 Data Packet Capture .. 30

4.1.2.2 Denial-of-Service Attack .. 30

4.1.3 Cyber-Attack on Drones .. 32

4.1.4 Defense against cyber attacks .. 33

4.1.4.1 Wireless Network Encryption ... 36

4.1.4.2 Intrusion Detection System ... 36

4.1.4.3 Moving Target Defense .. 37

4.1.5 Configuration ... 38

4.1.6 Results .. 39

4.2 Random Host Address Mutation and Analysis in SDN .. 42

4.2.1 Related Work ... 43

4.2.2 Experimental Setup and MTD Application ... 47

vii

4.2.3 TCP and UDP Traffic Analysis ... 51

4.3 Discrete Host Address Mutation and Analysis in SDN .. 57

4.3.1 Proposed Methodology .. 59

4.3.2 Architecture.. 62

4.3.3 Traffic Generation and Reconnaissance .. 64

4.3.4 Results and Analysis .. 65

4.4 Discrete Host Address Mutation with Subnet Game Strategy and Benchmarking 70

4.4.1 Subnet Game Strategy .. 70

4.4.2 Benchmarking and Analysis .. 71

4.4.2.1 Benchmarking Topology .. 71

4.4.2.2 Benchmarking Performance.. 74

4.4.2.2.1 Network Topology Discovery Time .. 74

4.4.2.2.2 Asynchronous Message Processing Time .. 76

4.4.2.2.3 Asynchronous Message Processing Rate ... 78

4.4.2.2.4 Reactive Path Provisioning Time... 80

4.4.2.2.5 Reactive Path Provisioning Rate .. 82

4.4.2.2.6 Proactive Path Provisioning Time ... 84

4.4.2.2.7 Proactive Path Provisioning Rate ... 85

4.4.2.2.8 Network Topology Change Detection Time 87

4.4.2.3 Benchmarking Scalability ... 88

viii

4.4.2.3.1 Control Sessions Capacity ... 88

4.4.2.3.2 Forwarding Table Capacity.. 90

4.4.2.4 Benchmarking Reliability ... 92

4.4.2.4.1 Controller Failover Time ... 92

4.4.2.4.2 Network Re-provisioning Time ... 93

CHAPTER V – CONCLUSION AND FUTURE WORK ... 96

REFERENCES ... 100

ix

LIST OF TABLES

Table 4.1 Parameters ... 51

Table 4.2 Overheads ... 56

Table 4.3 Packet Loss ... 57

Table 4.4 Notations ... 62

Table 4.4 Notations (continued) ... 63

Table 4.5 Snort Filtered Events .. 67

Table 4.6 Topologies .. 72

x

LIST OF ILLUSTRATIONS

Figure 1.1 Moving Target Defense Categories ... 19

Figure 1.2 Cyber Kill Chain.. 20

Figure 2.1 SDN Concept ... 21

Figure 3.1 SDN Architecture and OpenFlow ... 23

Figure 3.2 OpenFlow Switch .. 25

Figure 3.3 RYU Controller ... 26

Figure 4.1 Denial of Service Attack ... 31

Figure 4.2 Man-in-the-Middle Attack... 31

Figure 4.3 MAC Address Detection ... 32

Figure 4.4 Communication Link Before DoS Attack ... 33

Figure 4.5 Communication Link After DoS Attack.. 33

Figure 4.6 System Architecture .. 34

Figure 4.7 Base Station ... 34

Figure 4.8 Raspberry Pi .. 35

Figure 4.9 ROS Model .. 35

Figure 4.10 WPA Binaries in AR Drone .. 36

Figure 4.11 Kismet IDS .. 37

Figure 4.12 Moving Target Defense Model ... 37

Figure 4.13 MAC Address Mutation Model ... 39

Figure 4.14 Data Capture Attack .. 39

Figure 4.15 Kismet IDS Alerts ... 40

Figure 4.16 New MAC Address After Mutation 1 ... 40

xi

Figure 4.17 New MAC Address After Mutation 2 ... 40

Figure 4.18 Unsuccessful Cyber-Attack ... 41

Figure 4.19 Navigational Data from the Drone .. 41

Figure 4.20 Acceleration and Velocity Plots .. 42

Figure 4.21 MTD Topology .. 48

Figure 4.22 Communication Between Hosts .. 48

Figure 4.23 Algorithm Ryu Controller ... 50

Figure 4.24 Test 1 TCP Bandwidth Results.. 52

Figure 4.25 Test 2 TCP Bandwidth Results.. 52

Figure 4.26 Test 3 TCP Bandwidth Results.. 53

Figure 4.27 Test 4 TCP Bandwidth Bidirectional Traffic Results.................................... 53

Figure 4.28 Test 5 UDP Bandwidth Results ... 54

Figure 4.29 Jitter Measurement .. 54

Figure 4.30 Network Topology with Two Hosts .. 59

Figure 4.31 Reconnaissance Using Kali ... 64

Figure 4.32 SGUIL for Packet Analysis ... 65

Figure 4.33 Nmap Scan for Live Hosts .. 65

Figure 4.34 Nmap Results... 66

Figure 4.35 SNORT Session Results .. 66

Figure 4.36 SNORT Alerts ... 67

Figure 4.37 Hosts Mutations at the Same Time .. 68

Figure 4.38 Hosts Sessions ... 68

Figure 4.39 individualized Hosts Mutations ... 69

xii

Figure 4.40 Private IP Addresses .. 70

Figure 4.41 Example Subnet Topology .. 71

Figure 4.42 Subnet Pools .. 71

Figure 4.43 Leaf-Spine Topology ... 72

Figure 4.44 Leaf-Spine Topology with Controller ... 73

Figure 4.45 Network Topology Discovery Time .. 75

Figure 4.46 Network Topology Discovery Time Benchmark .. 75

Figure 4.47 Asynchronous Message Processing Time ... 77

Figure 4.48 Asynchronous Message Processing Time Benchmark 77

Figure 4.49 Asynchronous Message Processing Rate .. 78

Figure 4.50 Asynchronous Message Processing Rate Benchmark 79

Figure 4.51 Reactive Path Provisioning Time .. 81

Figure 4.52 Reactive Path Provisioning Time Benchmark ... 81

Figure 4.53 Reactive Path Provisioning Rate ... 82

Figure 4.54 Reactive Path Provisioning Rate Benchmark .. 83

Figure 4.55 Proactive Path Provisioning Time ... 84

Figure 4.56 Proactive Path Provisioning Time Benchmark.. 85

Figure 4.57 Proactive Path Provisioning Rate .. 86

Figure 4.58 Proactive Path Provisioning Rate Benchmark ... 87

Figure 4.59 Network Topology Change Detection Time Benchmark 88

Figure 4.60 Control Sessions Capacity ... 89

Figure 4.61 Control Sessions Capacity Benchmark ... 89

Figure 4.62 Forwarding Table Capacity ... 90

xiii

Figure 4.63 Forwarding Table Capacity Benchmark .. 91

Figure 4.64 Controller Failover Time Benchmark ... 92

Figure 4.65 Network Re-provisioning Time Benchmark ... 93

Figure 4.66 Packet Loss .. 94

xiv

LIST OF ABBREVIATIONS

API Application Program Interface

ARP Address Resolution Protocol

DDoS Distributed Denial of Service

DoS Denial of Service

IDS Intrusion Detection System

MIMA Man-in-the-Middle Attack

MTD Moving Target Defense

ROS Robot Operating System

SDN Software-Defined Networking

 TCP Transmission Control Protocol

 TLS Transport Layer Security

 UDP User Datagram Protocol

UAV Unmanned Aerial Vehicle

15

CHAPTER I - INTRODUCTION

1.1 Motivation

Moving Target Defense (MTD) [1] protects the network by changing the

configurations frequently. The attacker gathers the information of the network at the initial

phase of the cyber kill chain [2]. The traditional network configuration does not change

from time to time, and it is static. This static configuration will give the attacker sufficient

time to gather network information. Once the attacker collects the data, there is no looking

back because the static network does not change its configuration. MTD technique aims to

disrupt the reconnaissance attacks on the network by changing the network configuration

frequently. Even though the attacker collects the information of the network, the attacks

fail because the network configuration will have changed.

Software-Defined Networking (SDN) [3] simplifies the need to have the physical

infrastructure, and it allows to centralize the control plane to manage the whole network

[4]. It separates the control plane from the network device’s data plane. It also simplifies

the network management, operational cost and enables the programmability of the

controller.

1.2 Contributions

The research work contributions are as follows:

1. A MAC address dynamic mutation technique [5] is developed and implemented on

the drone wireless network, including intrusion detection system and enhanced

security with wireless network encryption. The drone’s MAC address is used to

launch a cyber-attack. The hacker collects the configuration of the drone network

by scanning. Once the information is gathered, the hacker does not need to re-scan

16

since the wireless network of the drone is static. We developed an MTD technique

to mutate the static MAC address of the drone frequently. Since the MAC address

is changing from time to time, the attacker will be unsuccessful in launching an

attack on the network using the network configuration information collected

previously.

2. A random host address mutation technique [6] is developed in software-defined

networking (SDN), and network analysis is shown. The mutation of the host IP

addresses of all hosts is implemented at a random time in the network. The IP

address mutation is a widely researched technique, and it provides network security

by assigning a virtual IP address to the host at a frequent time interval. The mutation

technique provides security to the network and also creates an overhead for

changing the host’s configuration by the SDN controller. We implemented the host

address mutation technique, and the performance of the network is shown by

benchmarking with the traditional network.

3. In software-defined networking, we have developed a new discrete host address

mutation technique [7] to individualize the mutation interval of each host in the

network. In random host address mutation, the IP addresses of all hosts are changed

at the same interval, terminating the established session between the hosts

deteriorating the network stability. To overcome this backlog, a discrete host

address mutation is developed to individualize the mutation interval of each host.

Individualizing the mutation interval of each host makes it complex for the attacker

to figure out the pattern of the mutation interval. The mutation interval of each host

17

is based on the flow statistics of the host monitored by the controller. The controller

changes the IP address of the host when there is no exchange of data.

4. We developed an IP subnet game strategy using private virtual IP addresses. The

virtual IP addresses are selected randomly from the pool of different IP subnets to

make it complex for the attacker to understand the network topology. A

benchmarking framework is developed to measure the stability of the network in

terms of performance, scalability, and reliability.

1.3 Dissertation Structure

The dissertation structure is as follows. In chapter I, the objectives of the research

work, motivation, and contribution are outlined. Chapter II introduces the research topic

and related work. In chapter III, we discuss the software and networking tools used in this

research. Chapter IV discusses the proposed moving target defense techniques for network

security, and benchmarking results are demonstrated. Finally, chapter V concludes the

research objectives and outcomes along with the future works.

18

CHAPTER II- BACKGROUND

2.1 Moving Target Defense

MTD reactively changes the configuration of the system across multiple planes.

The mutation of the attack surface increases complexity and uncertainty in understanding

the system behavior leading to rising in scanning costs for the attacker. The MTD technique

changes the static system into a dynamic, enhancing the security of the system.

Reconnaissance [8] is the initial phase of the cyber kill chain [2].

The attacker gathers the system’s data by scanning the network extensively using

multiple hacking tools. If the system is static, the data collected by the attacker will be used

to initiate the cyber-attack on the network. The operational cost for scanning the network

is high, and when the system is static, the attacker avoids scanning the system multiple

times. Since the MTD technique changes the attack surface [9] frequently, the attacker has

to put the high cost in scanning the system numerous times.

The dynamic changes in the system configuration can evade these attacks since the

attacker uses static system information. Even though the cyber-attack is launched on the

system, the attack fails due to the system configuration change.

2.1.1 Moving Target Defense Techniques Categories

 The categories [2] that moving target defense techniques can be applied are shown

in Figure 1.1.

19

Figure 1.1 Moving Target Defense Categories

1. Data Mutation: The data format, encoding, representation, and syntax are changed

dynamically.

2. Software Application Code Mutation: The application program code is changed

dynamically by modifying instructions, grouping, format, and order.

3. Runtime Environment: The application environment is changed dynamically

during execution.

(a) Mutation of Address Space: The memory layout where the program

code is located is changed dynamically.

(b) Mutation of Instruction Set: The application’s interface is changed

dynamically.

4. Platform Properties Mutation: The mutation of the operating system’s version,

the architecture of the CPU, etc.

5. Mutation of Network Properties: The mutation of the network configuration of

the system, which includes IP address, MAC address, and port number, etc.

20

2.1.2 Cyber Kill Chain

Cyber kill chain [2] refers to the series of steps followed by the attacker in

successfully launching a cyber-attack, as shown in Figure 1.2. The following are the

different phases of the cyber kill chain:

1. Reconnaissance/Scanning: This is the initial phase in which the attacker scans the

network and collects the data.

2. Access: Using the gathered network information, the attacker identifies the network

properties, configuration, and vulnerabilities of the network. The vulnerabilities

identified helps the attacker to make the initial communication with the target.

3. Exploit Development: The vulnerability identified by the attacker is used to

develop an exploit for privilege escalation.

4. Attack Launch: The cyber-attack on the network is launched on the target by

delivering the exploit developed using phishing, USB drive, etc.

5. Persistence: The attacker should be persistent in the network to take over or control

the network by creating and installing backdoors.

Figure 1.2 Cyber Kill Chain

2.2 Software-Defined Networking (SDN)

 Software-defined networking [10] [11] separates the data plane and control plane

of the network when compared to a traditional network, as shown in Figure 2.1. The

controller in the control plane is centralized and takes the decisions of the network flow

21

from one point to another. The data plane transmits the data according to the path provided

by the controller. The network devices forward the traffic to the controller if the network

flow path is not available in the data plane. According to the destination address, the

controller will decide the route, install the flow in the network devices, and use that flow

for future data traffic forwarding. The controller uses the popular OpenFlow protocol [12]

to communicate with network devices. The controller gives the flexibility by

programmability to control and configure the network devices when required.

Even though the SDN architecture provides many advantages, limitations [13] also

exist. In terms of reliability, if the controller fails [14], then the network will be down

because of no control over the network devices and configuration. The backup controller

will take over if configured. In SDN, the attackers will likely target the controller to take

down the entire network until the backup controller becomes active. The controller has

limited control session capacity, which is a drawback in terms of scalability.

Figure 2.1 SDN Concept

22

CHAPTER III– SOFTWARE AND NETWORKING TOOLS

This chapter introduces the software tools used in this research: SDN, OpenFlow,

RYU controller, and Mininet.

3.1 SDN Architecture

OpenFlow [12] is an open standard for a communications protocol that makes the

control plane to decouple from the forwarding plane of numerous devices and

communicate with it from a single point, allowing for more functionality and

programmability.

Network devices, controllers, and applications are the essential components of

SDN. Features for deciding incoming traffic forwarding are included in SDN devices. The

SDN controller manages network devices and provides SDN applications with an

abstraction of the network infrastructure at the southbound. The controller enables an SDN

application to specify traffic flows and pathways on network devices in terms of common

packet characteristics to meet its demands and to respond to changing user and

traffic/network conditions. As shown in Figure 3.1, the Open Networking Foundation

defines a high-level design for SDN [15] with three primary layers.

Infrastructure Layer. All the physical and virtual network device will be present

in this layer. A packet-processing component, an abstraction layer, and an application

program interface (API) at northbound for communication with the controller make up an

SDN device. An SDN device is abstracted as a set of flow tables by the abstraction layer.

By assessing incoming packets against flow table entries, the packet processing function

determines forwarding action.

23

Control Layer. This layer provides logically centralized control capability that

supervises network forwarding behavior. All SDN devices that make up the network

architecture are controlled by an SDN controller, which uses a southbound API to

implement policy decisions like routing, forwarding, and load balancing. Through a

northbound interface, it gives apps an abstract view of the entire network.

Application Layer. End-user apps that employ SDN communications and network

services make up this layer [16]. Applications can manage the underlying infrastructure

behavior by adding flows to forward packets through the optimal path between the

endpoints, load balancing across multiple paths or endpoints, reacting network topology

changes such as the addition of new devices and paths, link failures, or redirecting traffic.

Figure 3.1 SDN Architecture and OpenFlow

24

3.2 OpenFlow

The southbound connection between an OpenFlow switch controller is defined by

OpenFlow, a standardized protocol (Open Networking Foundation 2013). The

communication messages between the two are sent over a secure channel, which is

implemented over TCP using a Transport Layer Security (TLS) connection. The controller

defines and programs the switch’s packet forwarding behavior through the exchange of

commands and packets. The switch then executes packet forwarding and reports its

configuration status.

The characteristics of user traffic are used to classify it into flows. An OpenFlow

switch monitors for packets and forwards them according to the flow to which they belong.

A flow is a path in which packets are sent from one network endpoint (or group of

endpoints) to another (or set of endpoints). Endpoints can be IP-TCP/UDP address pairs,

VLAN endpoints, or switch input-output ports.

3.3 OpenFlow Switch

The OpenFlow logical switch contains at least one flow table and a group table to

check the flow and forward data, as shown in Figure 3.2.

3.3.1 Flow Tables

The controller can add, delete, and update flow entries in flow tables both reactively

(in reaction to packets) and proactively (in advance) using the OpenFlow switch protocol.

Reactive Flow Entries. The path from one node to another is called a flow. A

reactive flow entry is created in the flow table when a host tries to communicate with

25

another host, and if the path exists, then the controller reactively installs the flow in the

flow table.

Proactive Flow Entries: The flow entry is installed in the flow table ahead of time

before the hosts communicate with each other.

Figure 3.2 OpenFlow Switch

3.4 RYU Controller

Ryu is a Nippon Telegraph and Telephone Corporation Labs-sponsored open-

source controller [17] written entirely in Python. It supports OpenFlow and connects with

OpenStack. It is a centralized controller [18] with a simple API that creates new control

applications and network management for network developers and operators. Components

written in other programming languages can also be supported by Ryu. Ryu is popularly

used for cloud infrastructures, data centers, and carrier networks. In communications,

infrastructure services, event management, and application management, Ryu components

26

can be useful. NETCONF, OF-config, and OpenFlow 1.0 to 1.5 are among the network

management protocols supported by Ryu, as shown in Figure 3.3.

Figure 3.3 RYU Controller

3.5 Mininet

Mininet [19] is a network emulator, or more precisely, an orchestration framework

for network emulation. On a single Linux kernel, it runs a collection of switches, end-hosts,

routers, and links. It employs lightweight virtualization to make a single machine appear

to be a full network with the same kernel, operating system, and user code. You can ssh

into a Mininet host and execute any software you want. Your programs can send packets

over what appears to be a real Ethernet interface, with a set link speed and latency. With a

certain level of queueing, packets are processed by the switch, router, or middlebox. When

two applications interact through Mininet, such as using an iPerf tool, the performance

measured should be comparable to native machines.

27

In brief, Mininet’s switches, virtual hosts, controllers, and connections are real, and

they are made of software [20] rather than hardware and behave similarly to discrete

hardware pieces for the most part. It is usually possible to construct a Mininet network that

looks like a hardware network or, in reverse, a hardware network that looks like a Mininet

network and runs the same apps and binary code on any platform.

28

CHAPTER IV – MOVING TARGET DEFENSE APPLICATION AND ANALYSIS

This chapter introduces the moving target defense techniques for network security.

The application of these techniques not only provides security [21] but also creates

overheads on the controller resulting in data loss. We proposed a new discrete host address

mutation technique that can be more stable and reduce data loss.

4.1 MAC Address Mutation in Drones

The number of Unmanned Aerial Vehicles (UAVs), sometimes known as drones

[22], is continuously increasing. Because they weigh less, cost less, and manageable, they

are utilized in the military [23], aid in monitoring [24] [25], emergency disasters [26], and

rescue operations [27]. In the telecommunications business [28], UAVs are employed to

extend wireless network coverage. Amazon Prime Air [29] is a service from Amazon that

will deliver products using drones.

Drones have many advantages, but they are vulnerable to physical difficulties and

cyber-attacks. Satellites, cellular phones, Wi-Fi, GPS, and ZigBee, are all common ways

to send and receive data via a network. In 2009, Iraqi rebels hacked into the feed [30] of

the predator drone. In 2011, a virus attacked the networks utilized by US Air Force drone

pilots at Air Force Base, Creech, Nevada [31]. Lockheed Martin RQ-170 Sentinel is an

American drone [32] captured by an Iranian cyberwarfare outfit in 2011. Without the

operator’s knowledge, the predator drone video feeds were made public online [33]. Such

attacks are carried out with the use of low-cost wireless network jammers and GPS

spoofing devices.

Contributions. In this study, various vulnerabilities of UAVs and hacking techniques, as

well as existing defense measures for countering cyber-attacks, are investigated. We built

29

a base station and used a popular hacking method on the UAV Parrot AR Drone to

demonstrate the drone’s weaknesses and exploitation. It demonstrates that an attacker can

do significant harm by crashing drone or hack it and take control by compromising the

wireless network between the operator and the drone. The experiment demonstrates the

significance of protecting UAV systems against cyber-attacks.

4.1.1 Related Work

Various defense strategies against drone attacks have been presented. Nils Miro

Rodday et al. proposed [34] using safe encryption techniques for Wi-Fi access in their

paper. Johann Pleban et al. demonstrated [35] how to encrypt a wireless network using the

drone as a client and the RC as an access point in their paper. To prevent an adversary from

hacking into the drone, the open Wi-Fi network is encrypted with WPA. Chaitanya Rani et

al. outlined [36] the flaws in encryption detection systems and proposed encryption

detection systems as a protection strategy. A risk assessment scheme for communication

infrastructure and services was created by Kim Hartmann and Christoph Steup [37]. The

severity of a cyber-attack was assessed by James Goppert et al., who devised [38] a metric

to reflect the system’s period of complete failure. Robert Mitchell and Ing-Ray Chen [39]

created a behavior rule-based UAV intrusion detection system in order to capture and

continue harmful activity when a UAV is attacked.

4.1.2 Hacking Techniques

UAV wireless network attacking tactics are explored in this section. The results of

our hacking experiment on the most popular drones are displayed below. When an attacker

knows the drone’s MAC address he wants to attack, he can gain access to its wireless

network. Drone assaults on wireless networks can take the following forms:

30

• Data packet capture

• Denial of service (DoS) attack

• Man-in-the-middle attack (MIMA)

4.1.2.1 Data Packet Capture

The hacker uses a data packet capture method to collect the required information

about the target. For example, the remote-control device controlling the drone, MAC

addresses of the drone, wireless network channel, the encryption type

(WEP/WPA/WPA2/OPN), etc., are sent out by the drone’s wireless network, which can be

collected. The tools used to capture wireless network frames are Aircrack-ng and

Wireshark.

4.1.2.2 Denial-of-Service Attack

De-authentication flood attacks (DoS) [41] compromise wireless network [40]

access points. The targeted access point’s RAM is depleted by continuous de-

authentication requests sent by the hacker. As a result, the clients cannot reach the access

point because there is no memory left to reconnect, leaving them without a connection. The

DoS attack will target the MAC address access point to disconnect all the devices

connected to it or target a specific MAC address (drone or remote controller) to disconnect

it from the network. The DoS attack is shown in Figure. 4.1.

31

Figure 4.1 Denial of Service Attack

4.1.2.3 Man-in-the-Middle Attack

The attacker spoofs the communication network between the drone and the operator

of the remote-control device (RCD) and takes control of it. He can transmit the

authentication commands to the drone as if he were the original RC user as shown in Figure

4.2. The hacker will be able to see the location and drone’s data feed without the drone’s

or the RC user’s knowledge. If the wireless network is password-protected, Aircrack-ng

and crunch programs can access the authentication keys through the handshake protocol.

Figure 4.2 Man-in-the-Middle Attack

32

4.1.3 Cyber-Attack on Drones

On the drone static network, DoS attack is implemented on Parrot A.R drone. By

repeatedly transmitting de-authentication commands, the remote-control device is

unplugged from the drone. The drone will either crash or the attacker will be able to take

control of it by attaching it to his device. A wireless bridge adapter Alfa AWUS036NHA

is utilized in a virtual computer running Kali Linux. Aircrack-ng [42] is a toolkit that

includes everything needed to take down a drone. The commands for attacking the drone

are as follows:

iwconfig wlan0 mode monitor

ifconfig up

aireplay-ng -9 wlan0

airodump-ng wlan0

Figure 4.3 MAC Address Detection

A data capture attack on a wireless network is launched using the above commands,

resulting in collecting beacon frames containing destination and source MAC addresses of

the devices in the network. The MAC address of the drone and the controlling device

commanding the drone are displayed in Figure 4.3.

33

root@kali: ~# aireplay-ng -0 0 -a drone BSSID -c remotecontrol BSSID wlan0

The drone will be disconnected from the network leading it to crash or take over by

the attacker, as shown in Figure 4.4 and Figure 4.5.

Figure 4.4 Communication Link Before DoS Attack

Figure 4.5 Communication Link After DoS Attack

4.1.4 Defense against cyber attacks

We proposed the following defense techniques for the drone’s wireless network

security.

• Wireless network encryption

34

• Intrusion detection system (IDS)

• Moving target defense (MTD)

Figure 4.6 and Figure 4.7 shows the architecture and base station model.

Figure 4.6 System Architecture

Figure 4.7 Base Station

The Raspberry Pi, as shown in Figure 4.8 is a low-cost computer that may be used

for a variety of projects. We are utilizing it as an intermediate router [43] to create a secure

wireless network between the drone and the remote control. It is set up to function as a

35

hotspot, bringing devices into the network and establishing a communication link between

them. The drone sends live video feed to the laptop via raspberry pi router and controlling

commands to the drone are send using laptop via raspberry pi router. WPA2 encryption is

used to secure the raspberry pi wireless network.

Figure 4.8 Raspberry Pi

The Robot Operating System (ROS) in Figure 4.9 contains tools and libraries to

develop reliable robotic applications. As part of this, ROS includes an AR drone driver that

can communicate and control the drone. We can create autonomous tasks for the

drone using ROS [44].

Figure 4.9 ROS Model

36

4.1.4.1 Wireless Network Encryption

Multiple devices can connect to the AR drone because it will operate as it’s network

is unencrypted and open, and it acts as an access point, but only one device can control it.

The drone is compromised when the real user is disconnected, and the false user reconnects

to the drone. Installing the WPA supplicant compiled libraries [45] into the drone libraries

encrypts the drone’s wireless network with WPA2 security, as shown in Figure 4.10. To

achieve this, the drone’s bin folder should have the binaries WPA CLI, WPA pass, and

WPA supplicant. After the binaries have been installed successfully, the drone will stop

functioning as an access point and connect to the specified access point name and password

(in our case, it will connect to the raspberry pi).

Figure 4.10 WPA Binaries in AR Drone

4.1.4.2 Intrusion Detection System

The wireless network is monitored in real-time by an intrusion detection system.

Intrusion is defined as unauthorized access to a network without the knowledge of the

network administrator. The systems can be hacked or spoofed, giving the unauthorized

person immediate access.

37

IDS monitors the network but does not prevent cyber-attacks. It detects the

anomalies in the network and notifies the user in case of any suspicious activity. We used

Kismet wireless IDS [46] for network monitoring, as shown in Figure 4.11.

Figure 4.11 Kismet IDS

4.1.4.3 Moving Target Defense

The MAC address mutation technique is implemented in raspberry pi. Figure. 4. 12

shows the MTD model.

Figure 4.12 Moving Target Defense Model

38

4.1.5 Configuration

Kismet configuration file is created to monitor and detect malicious activities on

the network. The alerts configured are shown below:

#kismet.conf

alert=LUCENTTEST,10/min,1/sec alert=DEAUTHFLOOD,10/min,2/sec

alert=NETSTUMBLER,10/min,1/sec alert=WELLENREITER,10/min,1/sec

alert=AIRJACKSSID,5/min,1/sec alert=PROBENOJOIN,10/min,1/sec

alert=BCASTDISCON,10/min,2/sec alert=CHANCHANGE,5/min,1/sec

alert=BSSTIMESTAMP,10/min,1/sec alert=MSFBCOMSSID,10/min,1/sec

alert=DISASSOCTRAFFIC,10/min,1/sec alert=NULLPROBERESP,10/min,1/sec

alert=MSFNETGEARBEACON,10/min,1/sec

alert=LONGSSID,10/min,1/sec alert=MSFDLINKRATE,10/min,1/sec

alert=DEAUTHCODEINVALID,10/min,1/sec

alert=DISCONCODEINVALID,10/min,1/sec

Do we have a GPS?

gps=false

Log file directory

configdir=/var/log/kismet/

The MAC address mutation technique is implemented using the macchanger tool

libraries by executing the following script, and the model is shown in Figure 4.13.

#! /bin/bash

macchanger --show wlan0

Ifconfig wlan0 down

39

macchanger -r -b wlan0

Ifconfig wlan0 up

macchanger --show wlan0

sudo service network-manager start

Figure 4.13 MAC Address Mutation Model

4.1.6 Results

We implemented Data capture attack and DoS attack on the wireless network of the

drone. Kismet IDS detects the cyber-attack, and an alert is generated for the malicious

activity on the network. Figure 4.14 shows the data captured by scanning the network,

including MAC addresses and network encryption type. The MAC addresses under the

station columns are the addresses of the drone and laptop controlling the drone.

Figure 4.14 Data Capture Attack

40

root@kali: ~# aireplay-ng -0 0 -a drone BSSID -c remotecontrol BSSID wlan0

The above command is used to implement DoS attack on the wireless network of

the drone. The MAC address of the raspberry pi is targeted to take down the network and

crash the drone. Figure 4.15 shows the DoS attack on the raspberry pi whose network is

named as hotspot detected by the kismet IDS.

Figure 4.15 Kismet IDS Alerts

As soon as the alerts are generated by the IDS, if the mutation time interval is not

reached, the MAC address of the hotspot is changed immediately to prevent the cyber-

attack. Since the MAC address is changed, the attacker launching the attack with the old

MAC address will be failed. Figure 4.16 shows the kismet detecting the new MAC address

of the hotspot after mutation.

Figure 4.16 New MAC Address After Mutation 1

After a short interval, the MAC address will be changed again dynamically, and

kismet detects the new MAC address of the drone in Figure 4.17.

Figure 4.17 New MAC Address After Mutation 2

41

The attacker continues to implement cyber-attack on the wireless network using

configuration gathered in data capture attack. Since the network is dynamic and the MAC

address is changed dynamically, the attack on the network fails, as shown in Figure 4.18.

Figure 4.18 Unsuccessful Cyber-Attack

Some of the useful data transmitted from the drone to the base station are camera

feeds, altitude, motor speeds, navigational data, acceleration, and velocity values which

are shown in Figure 4.19 and Figure 4.20.

Figure 4.19 Navigational Data from the Drone

42

Figure 4.20 Acceleration and Velocity Plots

4.2 Random Host Address Mutation and Analysis in SDN

As discussed in sections 2.1 and 2.2, The MTD technique changes the static system

into a dynamic, enhancing the system’s security, and Software-defined networking

separates the data plane and control plane of the network compared to a traditional network.

 Contribution. We developed a random host address mutation technique in

software-defined networking, and network analysis is shown. The mutation of the host IP

addresses of all hosts is implemented at a random time in the network. The IP address

mutation is a widely researched technique, and it provides network security by assigning a

virtual IP address to the host at a time interval. Thus, the mutation technique not only

provides security to the network but also it creates an overhead for changing the host’s

configuration by the SDN controller. We implemented the host address mutation technique,

and the performance of the network is shown by benchmarking against the traditional

network.

43

4.2.1 Related Work

The adversaries in Dynamic Network Address Translation (DYNAT) [47] [48] use

most of their time monitoring the network. To prevent malicious scanning, DYNAT

substitutes the TCP/IP header information. Trusted users are given predefined essential

parameters that ensure the service’s availability. The network overhead can be high

depending on the fields obfuscated and deployment. Obfuscating the MAC address and

deploying it on a switched network, for example, could cause the switches to overheat and

drastically increase ARP traffic complexity to route switch port packets accordingly. To

handle the routing overhead, more hardware may be necessary.

Revere [49] is a technique in which an open overlay is created. An overlay network is

a dynamic network example that may change pathways, rearrange itself, and adapt to

dynamically downed links or nodes. The additional traffic on the network is caused by the

control messages transmitted between nodes. Unknown network overheads can be imposed

by reconfiguration and routing.

RITAS [50] (Randomized Intrusion-Tolerant Asynchronous Services) is an acronym

for Randomized Intrusion-Tolerant Asynchronous Services. On top of IPSec and TCP, it

creates fault-tolerant consensus-based protocols. To run multiple resources, additional

resources are needed and when the protocols are in the process of negotiation, additional

time is required creating execution overhead. Running additional services than required

due to mutation also created memory overhead. To each packet header an extra 24 bytes

will be added by IPSec. As protocols come to an agreement, more network traffic is

generated. An aggregate of 30% latency to each protocol is added by IPSec.

44

Antonatos et al. suggested Network Address Space Randomization (NASR) [51]. In

order to detect worm attacks, endpoints that have been in the process of becoming infected

or already infected are examined. DHCP changes the information of endpoints. Due to the

mutation of IP addresses, connections are discarded or dropped, and network overhead is

created.

A Mutable Network (MUTE) [52] allows network hosts to modify their host addresses

and port numbers. The system configuration and real IP address are not changed to the

current network it is a virtual overlay. Over the virtual relay, the traffic is routed

independently. Host IP address data is synchronized through encrypted channels. An

overhead on network infrastructure, including switches and routers, will be present.

Additional routing overhead may cause network infrastructure to fail.

Inside a bigger outer virtual overlay network, Dynamic Backbone (DynaBone) [53]

produces several inner virtual overlay networks. Inner networks improve diversity by using

alternative networking, routing protocols, and hosting a distinct protocol or service. The

hosts of the outer overlay network are unaware of the inner networks that make up one

network. At the internal overlays, sensors are used to monitor traffic and performance.

Depending on the routing protocols and networking utilized in the network, additional

latency will be introduced. There is also a reduction in bandwidth. Overheads are caused

by encryption and authentication protocols. There is no way of knowing how much

network infrastructure and additional routing will be used.

Active Repositioning in Cyberspace for Synchronized Evasion (ARCSYNE) [54] is a

mechanism that changes VPN gateway IP addresses using the gateway kernel OS. Using a

clocking mechanism, while engaging in hopping, a secret is shared by the gateway. At each

45

clock tick, a virtual IP address using secret is generated by the gateway. Each gateway

calculates the IP addresses of the other gateways in the same way. IP address hopping and

streaming services have no effect on the gateways. For a grace period, the gateways allow

data packets even after the IP address has changed. The time it takes for a data packet to

go from one gateway to the next is the grace period. Updating the data packets address

information has an impact on delivery delays, which is referred to as network overhead.

Random Host Mutation (RHM) [55] is a system that frequently modifies routable IP

addresses. Temporary IP addresses are assigned to hosts that are mapped to actual IP

addresses by RHM. The virtual IP addresses have a brief lifespan and are replaced at

random and in a consistent manner. A special (MTG) gateway at the network edge converts

the real IP address to a virtual IP address. Hostnames that DNS translates to the real IP

address can be used to contact the IP address changing hosts, which was then converted to

a virtual IP address before being sent to the originating hosts. Hosts can communicate with

one other using their real IP addresses with the help of MT Controller permission. Sessions

are kept open until the current flows are closed. TAP network kernel devices or OpenFlow

virtual switches [56] are used for address mapping. For maintaining sessions during

mutation, address-space overhead is created. Because of the frequent mutations that cause

routing-update overhead, the routing table has grown in size.

OpenFlow Random Host Mutation (OF-RHM) [57] changes host IP addresses that are

routable on a regular basis. The host's actual addresses are not modified. By ensuring

consistency, the host’s routable short-lived virtual IP addresses are established and

regularly altered. RHM gateways and RHM controllers in OF-RHM are OpenFlow

switches and OpenFlow controllers. An Open Flow controller converts to real IP addresses

46

from virtual IP addresses. It also uses OpenFlow messages across the switch to synchronize

virtual IP mutations. End-host address assignments and DNS messages are controlled, as

is the implementation of flow rules in the switches. By maintaining flows and assigning IP

addresses to end-hosts, address-space overhead is created. The overhead increases as the

mutation rate increases. The rate of mutation and flow termination also contributes to the

flow-table overhead.

Spatio-temporal address mutation [58] dynamically changes host IP addresses, adding

a layer of dynamicity to the IP address bindings and host. An overhead is imposed on the

controller for the random mutation computation for each interval. Address space overhead

is created for maintaining sessions during mutation. If the mutation rate is high, the

overhead will be considerable. Queries delivered to the DNS server at shorter intervals also

cause DNS traffic overhead.

Two security functionalities are included in the AVANT-GUARD SDN [59]. First,

from saturation attacks, the control plane is protected by connection migration. The second,

whenever from the traffic, if the attack is detected, flow rules are changed dynamically,

protecting the data plane. The technique requires additional storage for the rules, and the

overhead of assessments is added to the data plane. If the control plane connects with the

data plane via various trigger and payload delivery reports, there may be network overhead.

DFI (Dynamic Flow Isolation) [60] adapts to changing network situation. The situation

includes a time of day and a warning from third-party tools. The systems are subjected to

DFI’s network access policies. On the switches, flow rules are used to govern rate limits,

ingress and egress flows from endpoints. Sensor data is processed using policy decision

points (PDPs), and new flow rules are established in accordance with the present policy.

47

Latency is the time delay that happens when the switch sends new flow rules to the

controller and DFI needs to make a decision. This overhead occurs for all new flow rules,

regardless of size. If the new flow rule is present in the system, the latency will be reduced.

4.2.2 Experimental Setup and MTD Application

The topology in this study was developed using the Ryu controller in a Mininet

emulator. The controller’s dynamic algorithm frequently changes the network host

configuration. The southbound interface communicates with hardware devices using the

OpenFlow 1.3 protocol.

The Ryu Controller is in charge of DNS responses, IP address mutation, switch

flow installation. In the terminal session, TCPDump is enabled to capture data packets of

the host. The emulated topology is shown in Figure 4.21. The controller behavior is

demonstrated by capturing and comparing the traffic from both topologies.

The communication steps, as shown in Figure 4.22, are as follows:

Step 1: Host1 sends a DNS request for Host 2 IP address.

Step 2: The controller intercepts the response from the DNS server, and it picks a

random virtual IP address from the pool as v2 from the available IP address

pool and sends it to Host1, establishing a mapping between the real and virtual IP

addresses. The controller delivers the modified DNS response with the virtual IP

address to Host1.

48

Figure 4.21 MTD Topology

Figure 4.22 Communication Between Hosts

Step 3: Host1 delivers data packets to the virtual IP address v2 that it has received,

with the source IP being its real IP address r1. Because switch1’s table does not

match the destination IP address, the packets are sent to the controller.

49

Step 4: The source and destination IP addresses are checked by the controller. If

the source IP address is valid, it constructs a mapping by selecting a virtual IP

address v1 from the pool at random. The mapping table will be used to check the

destination IP address, and if it is identified, it will check the real IP address host

and install the appropriate flows in the switches that can reach the destination host.

Step 5 & 6: The data packets are sent to Host2 in accordance with the flows.

Because Host2 is directly connected to switch2, the controller will alter the

destination IP to r2 to route packets to Host2 because switch2 is unaware of Host2’s

virtual IP address.

Step 7: When Host2 responds to the data packets, the source IP address becomes

real IP address r2, and the destination IP address becomes v1. The controller

transforms the physical address of r2 to the virtual address of v2.

Step 8 & 9: According to the flows, data packets are delivered to Host1. Because

Host1 is physically linked to switch1, the controller will alter the destination IP to

r1 to route packets to Host1 because switch1 is unaware of Host1’s virtual IP

address.

The real IP addresses are concealed, and the virtual IP addresses are visible to the

outside world. The virtual IP addresses are regularly altered in a dynamic network to

increase the attacker’s cost and complexity when attempting to gather data using host

addresses. Changing the IP addresses frequently increases the overhead in the system,

resulting in packet loss. The controller must install switch flows for every IP address

change, resulting in increased overhead, reaction time delays, and packet loss. Configuring

two topologies allows for network traffic analysis.

50

The controller installs flows in the switches depending on the destination host IP

address, which can be real or virtual. Host 1 is attached to Switch 1, and host 2 is attached

to Switch 2. The source IP address is translated to a virtual IP address, and the traffic is

forwarded to the destination virtual host IP address. The MTD implementation algorithm

is shown in Figure 4.23.

Figure 4.23 Algorithm Ryu Controller

To generate traffic, the IPerf command-line utility is utilized. It is one of the most

extensively used methods for assessing network performance. It is used in TCP and UDP

connections to modulate parameters. IPerf should be set up so that one node serves as a

server and the other serves as a client. Requests from the client to the server generate traffic,

51

which is also bidirectional. Packet loss, jitter and bandwidth are measured by generating

TCP/UDP traffic.

The traffic is captured using the Command-line interface TCPDump for future

investigation. TCPDump will collect traffic from both MTD-enabled and non-MTD

topologies, saving it as a PCAP file for later examination.

4.2.3 TCP and UDP Traffic Analysis

The TCP UDP traffic captured by TCPDump is analyzed. For each testing session,

TCPDump command line tool captures the traffic and saves as PCAP file. Packet loss, jitter

and bandwidth are examined in this work. Table 4.1 shows test parameters. Using the

analysis MTD network is benchmarked with traditional network.

Table 4.1 Parameters

Parameter (Both Topologies) Value

Time for Test1 (TCP) 10 Sec

Time for Test2 (TCP) 20 Sec

Time for Test3 (TCP) 30 Sec

Time for Test4 (TCP Bidirectional) 10 Sec

Time for Test5 (UDP) 15 Sec

52

Figure 4.24 Test 1 TCP Bandwidth Results

Figure 4.25 Test 2 TCP Bandwidth Results

53

Figure 4.26 Test 3 TCP Bandwidth Results

Figure 4.27 Test 4 TCP Bandwidth Bidirectional Traffic Results

54

Figure 4.28 Test 5 UDP Bandwidth Results

Figure 4.29 Jitter Measurement

55

The data transmitted in a period of time is known as bandwidth. Due to network

disturbances, if the data packets are dropped in a TCP session, the bandwidth will used

more to re-transmit the dropped data. In a TCP session, the receiving endpoint will request

the source to re-transmit the lost data using the sequence numbers. Since the IP address of

the host is changed frequently, the data that is sent to the IP address before mutation will

be dropped if the IP address is changed. The controller has to re-send the data packets

dropped to the IP address after mutation.

The data from source travel in equal intervals to destination in a healthy network.

The time interval between each data packet that is sent to the destination is called Jitter.

The time interval between each packet will be disrupted if there are disturbances in the

network. Jitter causes packet loss by causing congestion.

The bandwidth measurement is shown in Figures 4.24, 4.25, and 4.26, respectively,

based on the aforesaid test findings. In traditional network topology, we can see that the

bandwidth graph is normal. In the MTD network, as time increases, the bandwidth is

decreasing. The mutation of the IP address is causing to termination of the session at the

same time, and the packets are getting dropped. In order to re-transmit the data to a new IP

address, the bandwidth usage is increased, and new data transmission capacity is reduced.

In both topologies, bidirectional traffic is generated, as seen in Figure 4.27. The traffic will

be sent from both endpoints at the same time, and the bandwidths are measured for both

sender and receiver. At the beginning and end of the test, the MTD architecture has

somewhat less bandwidth than the traditional network.

The bandwidth analysis of the UDP session is shown in Figure 4.28. The data is

transmitted normally in a traditional network without any packet loss, however, the MTD

56

topology bandwidth increased significantly at first and then decreased abruptly before

returning to normal. The bandwidth usage is normal because UDP does not re-transmit the

lost data packets.

The jitter analysis of UDP session traffic is shown in Figure 4.29. In typical network

topology, jitter is expected. In a typical network, the time distribution between packets

arriving at their destination is normal. If the jitter time interval fluctuates in a session,

congestion occurs, resulting in packet loss. The IP mutation in the MTD network causes

the controller to be burdened with the task of installing numerous flows in the switches in

a short period of time. The network becomes unbalanced as a result of the configuration

modifications, leading to congestion, packet loss, and other issues. Table 4.2 shows the

resulting overheads created and Table 4.3 shows the packet loss.

Table 4.2 Overheads

Overhead

Description

Address-space

This overhead is created due to the frequent assignment of

virtual IP addresses to the hosts. The controller requires

additional space to map the sessions with IP addresses.

Flow-table size

As the IP addresses of the nodes are changed frequently, the

number of flows in the table increases if the existing flows are

not managed to delete on time.

Routing-update

As the new flow is added to the flow table, the updates should

be sent to network devices.

Execution

The application running on the controller changes the IP

address of the host frequently, resulting in execution

overhead.

57

Table 4.3 Packet Loss

Test Protocol Topology Packet Loss

1, 2, 3 TCP Both None

4 TCP Both None

5 UDP Traditional None

5 UDP MTD 22%

4.3 Discrete Host Address Mutation and Analysis in SDN

In this research, we propose host address mutation [62] deployed as a novel MTD

technique in the SDN environment, which aims to create high uncertainty in adversary

scanning by changing the IP addresses of the host in the network based on individual

mutation time intervals. The main objectives of this research are discussed in sequence.

First, transparency is maintained in the mutation of the IP address of each host in the

network. To provide transparency, the real IP (rIP) address of each host is unchanged, and

a short-lived random virtual IP (vIP) address is assigned regularly to each real IP according

to the mutation time interval.

Second, Once the session (Stcp , Sudp , Sicmp) is established, the hosts are ready to

transfer and receive the data from each other. The active session (Act(hi , hk)) mapping is

created for each host, and it is monitored. Since the session time interval varies for each

host, the mutation time interval also varies. Sometimes the session interval is long that

adversaries can be successful in implementing a scanning attack. Even though the

adversaries obtain the host’s information, it is a virtual IP that will be changing rapidly. In

this way, the mutation interval is different for every host, which does not need to change

the address while in active session, preserving network performance and stability.

58

Third, we assume that every host in the network will not be given privileges to

access sensitive data, modify network configuration, change firewall settings, and simply

not even BIOS settings of the host itself in an enterprise network topology. In this situation,

the hosts with administrative privileges are targeted more than the others. The scanning

attacks on those specific host IP addresses will be high when compared to other host IP

addresses. The host active in transferring and receiving data is targeted more than the host,

which is less active; this attribute can also be added because the attackers are more likely

to collect more useful data within a short period.

Fourth, to provide enough IP addresses to hosts in the network, the unused public

address space range should be equivalent to the number of mutations in a host time interval.

In a network, there will be hosts that can be reached publicly and need a public address

range, and some hosts are internal to the network, which can be provided with a private

address space range. The private address space range is always huge than the public address

space. This mutation scheme using data stats is also effective when the available address

space is less. Due to insufficient address space, some of the hosts cannot be moved, or the

host address is repeated multiple times in a short interval of time. To avoid this problem,

data stats are used to allocate the address space range for a host involved actively in the

network and targeted by the attackers frequently.

To implement these techniques, traditional network implementation is costly and

poses more challenges. We use software-defined Networking (SDN) infrastructure, which

is quite flexible in developing and managing the network with minimal operational

overhead. The network controller RYU is used to monitor and control the network using

the OpenFlow 1.3 protocol. The network topology is built using Mininet. The experimental

59

results and analysis of the simulated network will show the significant rise in defending

the network against reconnaissance attacks by increasing uncertainty in scanning,

complexity in gathering the information about the network systems.

4.3.1 Proposed Methodology

 In this moving target defense host address the mutation scheme. Consider a

network topology with Ns number of hosts. Here we created the topology in Mininet, and

the RYU controller is used. The controller implements the data flow between the network

components. Figure 4.30 shows the topology with two hosts, and later we add two hosts.

Ns = {h1, h2, h3, h4 hn} (4.1)

The real Ip address (rIP) of each host in the network is replaced by a short-lived

virtual IP address (vIP). The virtual IP addresses are assigned randomly from the pool of

available unused address space. The mapping function fmap is used to assign a virtual IP

address to a real IP address.

vIP = fmap(rIP) (4.2)

Figure 4.30 Network Topology with Two Hosts

60

When the host hi initiates communication with host hj, a DNS request will be sent

to the server to resolve the domain name into the vIP address of the host hj and a session

(Stcp , Sudp , Sicmp) will be established between host hi and hj by installing the flows in the

required switches and active session mapping Act(hi, hj) is created for monitoring the data

stats. The controller will monitor the data stats for each session. Data stats include

parameters like session interval, source IP, destination IP, source MAC, destination MAC,

data packets sent, and received in that time interval, etc. Once the session is ended, it is

removed from the active session table. If the host wants to communicate and establish a

session again, the DNS request should be sent to the server to retrieve the vIP address of

the host.

Since each session time interval (St) depends on the length of time taken by the

hosts to complete the transfer of data between each other, the randomization is applied

when the session is ended to provide network performance and stability. The mutation time

interval Mt is the session time interval. If the mutation time interval is random, the session

between the hosts will be interrupted, and the packets are dropped.

St = S(tcp, udp, icmp)(Act(hi, hj)) (4.3)

Mt = St (4.4)

If the address space in network topology is Ns. The available active hosts in the

network are Na. The time taken for reconnaissance attack for each active host is Tr,h. The

total average time Ta, r that the adversary will spend on reconnaissance attack on all hosts

will be:

Ta, r = Na x Tr, h (4.5)

61

If Cr, h is the cost to spend for reconnaissance attack on a single host. The total cost

Ca, r that the adversary needs to spend on reconnaissance on all active hosts will be:

Ca, r = Na x Cr, h (4.6)

Fingerprinting is a technique used by the adversary to find the vulnerable host with

high probability in the network by analyzing the data collected from the reconnaissance.

Similar fingerprint operations will not be repeated on the host if it fails to find. The

probability of identifying the vulnerable host in the network successfully with i steps will

be:

Pi = 1 / Na , 1 ≤ 𝑖 ≤ Na (4.7)

If Tf, a is the fingerprint time spent on the single host, then the average time taken

by the adversary for reconnaissance and fingerprinting analyses to find the vulnerable host

is defined as:

Tf = Ns x Ta, r + ((Na + 1) x Tf, a) / 2 (4.8)

From the above analysis if Tm is the mutation time interval, then:

Tm ≤ (Ns x Tr, h + Tf, a) (4.9)

From the above analysis, for each Tm interval, the adversary cannot complete a

reconnaissance attack. The adversaries will target the host, which is very active in

transferring and receiving data. The adversaries tend to collect a large amount of traffic

within a small time. The amount of available unused address space should be equivalent to

the number of hosts in the network topology. If the address space in network topology is

Ns and the available unused address space is Nu, s then:

Nu, s ≡ Ns (4.10)

62

If the available unused address space is less, then some of the hosts in the network

cannot be moved or cannot be moved frequently according to the mutation time interval.

To solve this problem, the hosts which are highly active in the network are identified. The

adversaries try to gather the maximum amount of data within less time, which is possible

when the host is highly active and can be targeted. The scanning attack stats and data

packets stats can be monitored using SNORT, and it will alert the controller according to

the rules written into it. Using SNORT rules, we can analyze the data packets and discover

the hosts which are highly active in the network and targeted by the adversaries. In this

way, the unused IP addresses can be used effectively. Ryu and SNORT can be configured

on a single machine or different machines.

4.3.2 Architecture

The topology is implemented in the Mininet network using the Ryu controller. The

topology can be seen in Fig. 2 in detail. Ryu controller acts as intermediate central software

to manage network activities like IP mutations, DNS responses, Session establishment, IP

address space management, Data stats analysis using SNORT.

Table 4.4 Notations

Ns Network address space

Na Active hosts in the network

rIP Real IP address

vIP Short-lived virtual IP address

fmap Real IP to virtual IP mapping function

Stcp TCP session between hosts

Sudp UDP session between hosts

Sicmp ICMP session between hosts

Act(hi, hj) Active session mapping between host hi and host hj

63

Table 4.4 Notations (continued)

St Session time interval

Mt Mutation time interval

Tr,h Time taken for reconnaissance attack on

each active host in the network

Ta, r Total average time spent on reconnaissance

attack on all active hosts in the network

Cr, h Cost to implement reconnaissance attack

on a single host

Ca, r The total cost of implementing

reconnaissance attack on all active hosts

Pi The probability of identifying vulnerable

host in the network

Tf, a Time spent for fingerprinting on a single

host

Tf Average fingerprinting time spent on all

hosts in the network

Nu, s Available unused address space

SNORT Data packet sniffer, IDS, IPS

The unmatched packets in the OpenFlow switches will be encapsulated and sent to

the Ryu controller. The controller discovers the type of packets, and required actions are

taken. If the packet is DNS request to resolve the host, then the controller will follow series

of steps to authenticate the host and install the necessary flows in necessary OpenFlow

switches to establish the session between the hosts. The active session will be mapped into

the table Act(hi, hj) to track the number of active sessions in the network. The mutation

interval is discrete for each host, and the session will be terminated when the hosts stop

communicating with each other. Every time the hosts need to communicate, the name

should be resolved and establish a session. SNORT will monitor all the data packets and

alert the controller if anomalies are detected according to the rules. SNORT will collect

data stats about each host, which can be used to discover highly active hosts in the network.

This data can also be used when the unused address space is limited.

64

4.3.3 Traffic Generation and Reconnaissance

 To generate the traffic between the hosts, IPerf tool is used, and using the

TCPDump command-line tool, and traffic is captured and saved into a PCAP file for further

analysis. The PCAP file is analyzed using Snort IDS. The scanning attack on the network

is made using Nmap from Kali Linux OS, as shown in Figure 4.31. SNORT details the

number of TCP and UDP sessions between the hosts, events that needed to be reviewed,

etc.

Using the SNORT statistics, the scanned IP addresses can be known and the number

of times each IP is scanned. Using Nmap scanning, the attacker can gather whether the host

is up or down, open ports available, services running on the open ports and their versions

etc. Even though the attacker gathers all the details, the IP address will be changed

frequently, creating complex situations to understand the network.

Figure 4.31 Reconnaissance Using Kali

Using security onion as shown in Figure 4.31, further analysis can be done on the

PCAP file. If the adversary succeeds reconnaissance stage and try to infect the PC, as a

65

security analyst, detailed packet analysis should be done. The following Figure 4.32

shows the series of steps involved in the analysis.

Figure 4.32 SGUIL for Packet Analysis

4.3.4 Results and Analysis

Figure 4.33 Nmap Scan for Live Hosts

66

From Figure 4.33, you can see that the adversary can find the active host and

identify the open ports available by using stealth scan. Figure 4.34 shows the services

running on the open ports and its versions. In Figure 4.35, SNORT collects the individual

host’s total sessions for a certain period for further analysis.

Figure 4.34 Nmap Results

Figure 4.35 SNORT Session Results

67

Figure 4.36 SNORT Alerts

 Figure 4.36 shows the alerts generated by SNORT IDS. The attacker scanned the

network for possible information leak, which includes a username overflow attempt

classified under attempted administrator privilege gain. The alerts generated by SNORT

shows the number of hosts scanned and the information gathered. The mutation technique

thwarts the scanning by changing the IP address of the host. The attacker cannot know

the details of which host the information is gathered. Some other types of events filtered

by SNORT are shown below in Table 4.5 and only few are listed.

Table 4.5 Snort Filtered Events

Events filtered by SNORT

DNS named version attempt

RSERVICES rexec username overflow attempt

SCAN nmap XMAS

POLICY FTP anonymous login attempt

FTP PORT bounce attempt

CHAT IRC nick change

SNMP request tcp

SNMP AgentX/tcp request

68

Figure 4.37 Hosts Mutations at the Same Time

Figure 4.38 Hosts Sessions

69

Figure 4.39 individualized Hosts Mutations

The number of mutations of all hosts for a certain period is shown in Figure 4.37.

Since the mutation time interval is random for all hosts, the host addresses are changed at

the same time for all hosts. If a host is in a TCP/UDP session with other host or server, it

will be interrupted due to random mutation. This will create instability in the network, and

the network performance will be degraded. Figure 4.38 shows the number of sessions

established by each host. The session establishment number of each host varies with one

another. Figure 4.39 shows the number of mutations of each host after the application of a

discrete mutation interval. The mutation technique is applied when the host terminates the

session without interrupting. The stability of the network can be preserved with this

technique. The host, which is active in the network, established more sessions than the

other hosts. By analyzing this data, the address space range for each host can be assigned.

The host which is active is assigned more address space range than other hosts which are

less active. In this way, when the availability of host addresses is less, it can be managed

70

with this technique. When the address space range is less, the same IP address is assigned

to the host multiple times in a short interval. This gives the adversary to gather more

information with the same IP address.

4.4 Discrete Host Address Mutation with Subnet Game Strategy and Benchmarking

Discrete Host Address Mutation is introduced in section 4.3. In this chapter, subnet

game strategy has been included in our discrete MTD algorithm to improve the complexity

in understanding the network structure by the attacker.

4.4.1 Subnet Game Strategy

The private IP addresses in a network are not routed on the internet. They are used

within the local network. The range of private IP addresses in each class is shown in

Figure 4.40.

Figure 4.40 Private IP Addresses

 Consider a network topology as shown in Figure 4.41. The network subnets are

ranging from 192.168.1.0/24 to 192.168.7.0/24. In each subnet, you have more than 200

unused IP addresses are left. We can use the unused IP addresses and assign them to the

hosts as virtual IP addresses by creating multiple IP address pools. Each pool is a different

subnet, as shown in the Figure 4.41.

71

Figure 4.41 Example Subnet Topology

Figure 4.42 Subnet Pools

 The virtual IP addresses are selected randomly from each different subnet pool, as

shown in Figure 4.42. Implementing this technique increases complexity in understanding

the network topology by the attacker. For example, if the initial IP address of the host is

192.168.2.3 and after mutation interval, let us assume the IP address changes to

192.168.4.6. The attacker will get confused to determine the host’s subnet and network

topology diagram.

4.4.2 Benchmarking and Analysis

4.4.2.1 Benchmarking Topology

This section introduces benchmarking [61] analysis to measure SDN controller

network stability in terms of performance, scalability, and reliability. The popular Leaf-

Spine network topology is adopted and emulated in Mininet. IPerf traffic generators TP1

72

and TP2 are initiated at required nodes to generate the network traffic. The Leaf-Spine

topology and parameters are shown below in Figure 4.43 and Table 4.6. We used

Wireshark to capture the network traffic data and do further analysis. We increased the

number of switches and hosts from topology 1 to topology 5. Adding more resources to

the network topology increases the load on the controller. As the load is increased from T1

to T5, we measured the network’s stability and the controller’s performance. The

benchmarking analysis is performed on random host address mutation technique and

discrete host address mutation technique against traditional software-defined networking,

and results are shown. We can observe from the results that the proposed MTD network

outperformed the random MTD network. Each test in the topology is repeated for 10 times,

and the average value is recorded.

Figure 4.43 Leaf-Spine Topology

Table 4.6 Topologies

Topologies OVS Switches Nodes

T1 16 200

T2 32 400

T3 48 600

T4 64 800

T5 80 1000

73

Figure 4.44 Leaf-Spine Topology with Controller

74

4.4.2.2 Benchmarking Performance

Benchmarking Performance contain the following tests:

1. Network Topology Discovery Time

2. Asynchronous Message Processing Time

3. Asynchronous Message Processing Rate

4. Reactive Path Provisioning Time

5. Proactive Path Provisioning Time

6. Reactive Path Provisioning Rate

7. Proactive Path Provisioning Rate

8. Network Topology Change Detection Time

4.4.2.2.1 Network Topology Discovery Time

The time taken to discover the network devices and determine the complete

topology of the network. Link layer discovery protocol is used to determine the discovery

time, as shown in Figure 4.45.

Tm1 is the timestamp of the initial discovery message sent by the controller.

Tmn is the final discovery message sent by the controller.

The time for the last discovery message = Tmn

Topology Discovery Time (DT1) = Tmn - Tm1

The average of the topology discovery time is as follows:

(TDm) =
𝐷𝑇1 + 𝐷𝑇2 + 𝐷𝑇3 .. 𝐷𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

75

Figure 4.45 Network Topology Discovery Time

Figure 4.46 Network Topology Discovery Time Benchmark

76

 The network topology discovery time is measured for both random and discrete

MTD techniques enabled networks against the traditional network. The Figure 4.46 shows

that the traditional network took less time to discover the topology, and the random MTD

network took greater time to discover the topology. The discrete MTD network discovery

time is closer to the traditional network, as shown in Figure 4.46.

4.4.2.2.2 Asynchronous Message Processing Time

The network devices in the southbound interface often generate notifications for

the controller. The total time taken by the controller to process the event is measured as

shown in Figure 4.47. The process is repeated for ten trials, and the average value is

recorded in each topology. The results for each network type are recorded.

Asynchronous Message Processing Time (APT1) =

𝑆𝑈𝑀{𝑅𝑖} − 𝑆𝑈𝑀{𝑇𝑖}

𝑁𝑟𝑥

T1 is the event transmission timestamp, and R1 is the response received timestamp.

Nrx is the total number of messages exchanged successfully.

Average Asynchronous Message Processing Time =

𝐴𝑃𝑇1 + 𝐴𝑃𝑇2 + 𝐴𝑃𝑇3 . . 𝐴𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

77

Figure 4.47 Asynchronous Message Processing Time

Figure 4.48 Asynchronous Message Processing Time Benchmark

78

 Figure 4.48 shows the time taken to process the message by the controller in each

network. The traditional network took a very short time to process, and the random MTD

network took a long time when compared to traditional and Discrete MTD networks. The

discrete MTD network performed better than the Random MTD network, and it is

somewhat closer to the traditional network performance.

4.4.2.2.3 Asynchronous Message Processing Rate

The total number of event messages processed by the controller per second.

Figure 4.49 Asynchronous Message Processing Rate

79

It is measured by sending the messages from network devices to the controller for a

short time and calculate the number of messages successfully processed by the controller

and received by the network devices.

Nrxn is the number of successful messages received from the controller, as shown in

Figure 4.49.

Asynchronous Message Processing Rate (APRn) =

𝑁𝑟𝑥𝑛

𝑇𝑑

Figure 4.50 Asynchronous Message Processing Rate Benchmark

80

 Figure 4.50 shows the number of messages processed by each network at different

topologies. The random MTD network performed worse when compared to others. The

discrete MTD network performed well, and its results are closer to the traditional network.

4.4.2.2.4 Reactive Path Provisioning Time

The amount of time taken by the controller to create a reactive path between source

and destination nodes is measured. It is critical to track how quickly the controller creates

an end-to-end data plane flow. The time period begins with the controller(s) receiving the

initial flow provisioning request message and ends with the controller(s) sending the last

flow provisioning response message at its southbound interface, as shown in Figure 4.51.

Tsf1 is the timestamp of the provisioning request received by the controller.

Tdf1 is the timestamp of the provisioning response received from the controller.

Reactive Path Provisioning Time (RPT1) = Tdf1 - Tsf1

Average Reactive Path Provisioning Time =

𝑅𝑃𝑇1 + 𝑅𝑃𝑇2 + 𝑅𝑃𝑇3 . . 𝑅𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

Figure 4.52 shows the provisioning time taken by all the networks. As the topology

load increases, the time taken by the random MTD network is increased at a higher rate.

On the other hand, the discrete MTD network performed well, and it is closer to the

traditional network.

81

Figure 4.51 Reactive Path Provisioning Time

Figure 4.52 Reactive Path Provisioning Time Benchmark

82

4.4.2.2.5 Reactive Path Provisioning Rate

 The maximum number of independent pathways between source and destination

nodes that a controller can establish in a single second. The controller’s ability to set up

as many end-to-end flows in the data plane must be measured. If TP1 is the traffic generator

and TP2 is the receiver, then the total number of frames received by the TP2 in a time

interval as shown in Figure 4.53.

Figure 4.53 Reactive Path Provisioning Rate

83

 Reactive Path Provisioning Rate (RPR1) =
𝑁𝑑𝑓

𝑇𝑑

Ndf is the total number of successful traffic frames received at the destination.

Trial Duration (Td)

Average Reactive Path Provisioning Rate =

𝑅𝑃𝑇1 + 𝑅𝑃𝑇2 + 𝑅𝑃𝑇3 .. 𝑅𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

Figure 4.54 Reactive Path Provisioning Rate Benchmark

Figure 4.54 shows the number of unique frames received or the number of paths

established per second between the hosts. The random MTD network underperformed as

the topology weight is increased. The discrete MTD network performed better, and it is

closer to the traditional network.

84

4.4.2.2.6 Proactive Path Provisioning Time

The time it takes the controller to create a path between the source and destination

nodes proactively. It is similar to reactive path provisioning except that the flow is added

manually, making it proactive. Here we measure the time taken to provision the proactive

path between the hosts, as shown in Figure 4.55.

Tsf1 is the timestamp of the provisioning request received by the controller.

Tdf1 is the timestamp of the provisioning response received from the controller.

Proactive Flow Provisioning Time (PPT1) = Tdf1 - Tsf1

Average Proactive Path Provisioning Time =

𝑃𝑃𝑇1 + 𝑃𝑃𝑇2 + 𝑃𝑃𝑇3 .. 𝑃𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

Figure 4.55 Proactive Path Provisioning Time

85

Figure 4.56 Proactive Path Provisioning Time Benchmark

 Figure 4.56 shows the time taken by the discrete MTD network is better when

compared to a random MTD network. As the topology weight increases, the time taken to

provision the path increase very high in a random MTD network, and the discrete MTD

network is somewhat closer to the traditional network.

4.4.2.2.7 Proactive Path Provisioning Rate

The maximum number of independent pathways between source and destination nodes

that a controller can establish in a single second is shown in Figure 4.57.

Proactive Path Provisioning Rate (PPR1) =
𝑁𝑑𝑓

𝑇𝑑

86

Figure 4.57 Proactive Path Provisioning Rate

Ndf is the total number of successful traffic frames received at the destination.

Trial Duration (Td)

Average Proactive Path Provisioning Rate =

𝑃𝑃𝑅1 + 𝑃𝑃𝑅2 + 𝑃𝑃𝑅3 . . 𝑃𝑃𝑅𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

Figure 4.58 shows the random MTD network underperformed in the proactive provisioning

rate. The discrete MTD network performed fairly and is closer to the traditional network.

87

Figure 4.58 Proactive Path Provisioning Rate Benchmark

4.4.2.2.8 Network Topology Change Detection Time

The time it takes for the controller to notice changes in the network topology. It is vital

to test how quickly the controller can identify any network-state change events to provide

fast network failure recovery.

Tcn is the time when the controller receives the first topology change notification.

Tcd is the time when the controller sends the initial topology rediscovery message.

Network Topology Change Detection Time (TDT1) = Tcd - Tcn

Average Network Topology Change Detection Time =

𝑇𝐷𝑇1 + 𝑇𝐷𝑇2 + 𝑇𝐷𝑇3 . . 𝑇𝐷𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

88

Figure 4.59 Network Topology Change Detection Time Benchmark

Figure 4.59 shows the discrete MTD network performed better than the random

MTD network. The controller does not have additional operational cost in the traditional

network to frequently mutate the host’s IP address since the network is static. The random

MTD network has more operational cost than the discrete MTD network, reducing the

controller processing speed.

4.4.2.3 Benchmarking Scalability

4.4.2.3.1 Control Sessions Capacity

 At a given time, the number of control sessions that the controller can monitor

simultaneously. Control Sessions Capacity must be measured to determine the controller’s

system and bandwidth resource requirements. The control session capacity is measured by

increasing the number of switches in the network and record the number of hello exchange

89

messages between the controller and the switch. If the hello messages exchanged become

constant even though the switches are added to the topology, then that number is the

capacity of the controller to handle those many switches simultaneously. The following

Figure 4.60 shows control sessions capacity measurement.

Figure 4.60 Control Sessions Capacity

Figure 4.61 Control Sessions Capacity Benchmark

90

 The Figure 4.61 shows the control sessions capacity of the controller. We have

added T6 and T7 topology with high number of switches to find the session capacity of the

controller. We can observe that the random MTD network underperformed, and it can

handle the switches of less than a hundred simultaneously. The traditional network can

handle up to five hundred switches, and the discrete MTD network performed well and the

results are close to the traditional network.

4.4.2.3.2 Forwarding Table Capacity

 The capacity of the forwarding table in the controller. It is critical to determine the

number of flows the controller can handle and forward traffic without dropping.

Figure 4.62 Forwarding Table Capacity

91

It is measured by sending traffic from multiple hosts to multiple destinations. When

the controller receives the traffic, it will create an entry into the forwarding table for the

traffic flow. The traffic is sent to the multiple destinations until the query to the forwarding

table returns the same for 3 to 5 times as shown in the Figure 4.62.

Figure 4.63 Forwarding Table Capacity Benchmark

 From the Figure 4.63, the flow table capacity of traditional network and discrete

MTD network is increased as the topology weight is increased. The random MTD network

handles less flows when compared to others.

92

4.4.2.4 Benchmarking Reliability

4.4.2.4.1 Controller Failover Time

When the controllers are in redundancy mode, and one of the active controllers

fails, the time it takes to transition from the active controller to the backup controller. The

time period begins when the active controller is turned off and ends when the new

controller’s southbound interface receives the first rediscovery message. When two

controllers are paired together, and one of them fails, this benchmark assesses the impact

of provisioning new flows. The Controller Failover Time is calculated as the difference

between the final valid frame received before the traffic loss and the first valid frame

received after the traffic loss.

Figure 4.64 Controller Failover Time Benchmark

 Figure 4.64 shows the controller failover time. The time taken by the backup

controller to become active in a traditional network is very small when compared to the

93

random and discrete MTD networks. The traditional network is static, and there is no IP

address mutation. On the other hand, random and discrete MTD networks continuously

change the IP address of the host. In dynamic networks, the controller has to synchronize

data with the backup controller to avoid data loss. Data Synchronization is a limitation in

this research and synchronizing the data across the controllers is a costly operation and is

considered future work. Since the dynamic networks change the IP addresses frequently,

when the controller failed, it took more time to become active for the backup controller.

However, the discrete MTD network performed better than the random MTD network.

4.4.2.4.2 Network Re-provisioning Time

When existing traffic paths fail, the time it takes for the controller to reroute traffic.

Figure 4.65 Network Re-provisioning Time Benchmark

94

To measure network re-provisioning time, record the timestamp of the last frame

received by the host before the loss of traffic and the timestamp recorded when the host

receives the first frame after the loss of traffic. The difference of these two timestamps

gives the time required to re-provision the network.

 In Figure 4.65, the time taken by the traditional network controller is less when

compared to dynamic networks. The discrete MTD network performed better than the

random MTD network, and it is close to the traditional network performance.

Figure 4.66 Packet Loss

 Figure 4.66 shows the packet loss in each topology T1 to T5. As the topology

weight is increasing on the network, the controller’s load will also increase to process high

amount of data. In a random MTD network, since all host IP addresses are changed

simultaneously, the session termination is made, and data packets are lost in the

95

transmission. The re-transmission of lost data packets occupies the network bandwidth,

resulting in slower processing of new data by the controller, and also packet loss is high.

The discrete MTD network has lower amounts of packet loss due to the individualization

of mutation intervals. The sessions are not interrupted in the network; as a result, the packet

loss is less and closer to the traditional network.

96

CHAPTER V – CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions of this research, and the future works

are illustrated at the end. We have introduced four studies related to moving target defense

techniques application and analysis. In the first study, MTD technique is implemented on

drone’s wireless network. We observed that the latency in the network is increasing as the

number of mutations increase. To observe the network performance after the application

of MTD technique, we have implemented random host address mutation technique in

software-defined networking and network performance is analyzed. We observed that the

MTD algorithms is creating disturbances in the network that we have discussed. In the third

study, we have proposed a new discrete MTD technique to improve network performance

and reduce the disturbances in the network. In the fourth study, we have added a game

strategy improve the security of the network and the discrete MTD technique, random

MTD techniques are benchmarked against the traditional network.

In the first study, a MAC address dynamic mutation technique is developed and

implemented on the drone wireless network, including intrusion detection system and

enhanced security with wireless network encryption. The MAC address of the drone is used

to launch a cyber-attack. In the reconnaissance stage of the cyber kill chain, the hacker

collects the configuration of the drone network. Once the information is gathered, the

hacker does not need to re-scan since the wireless network of the drone is static. We

developed an MTD technique to change the static MAC address of the drone frequently.

Since the MAC address is changing from time to time, the attacker will be unsuccessful in

launching an attack on the network using the network configuration information collected

previously.

97

In the second study, A random host address mutation technique is developed in

software-defined networking, and network analysis is shown. The mutation of the host IP

addresses of all hosts is implemented at a random time in the network. The IP address

mutation is a widely researched technique, and it provides network security by assigning a

virtual IP address to the host at a time interval. Thus, the mutation technique not only

provides security to the network but also creates an overhead for changing the host’s

configuration by the SDN controller. We implemented the random host address mutation

technique, and the performance of the network is shown by benchmarking against the

traditional network.

The third study, we proposed a novel discrete host address mutation technique in

software-defined networking to individualize the mutation interval of each host in the

network. In random host address mutation, the IP addresses of all hosts are changed at the

same interval, terminating the established session between the hosts deteriorating the

network stability. To overcome this backlog, a discrete host address mutation is developed

to individualize the mutation interval of each host. However, individualizing the mutation

interval of each host makes it complex for the attacker to understand the mutation interval.

The mutation interval of each host is based on the flow statistics of the host monitored by

the controller. The controller changes the IP address of the host when there is no exchange

of data.

In fourth study we added an IP subnet game strategy to our MTD technique to

enhance the security and we benchmarked the discrete and random MTD networks against

the traditional network. The virtual IP addresses are selected randomly from the pool of

different IP subnets to make it complex for the attacker to understand the network topology.

98

A benchmarking framework is developed to measure the stability of the network in terms

of performance, scalability, and reliability.

The random host address mutation has limitations such as the mutation of host IP

address is implemented at random time. If the host is in a session of exchanging data with

other hosts, it is forced to terminate the session and change the IP address resulting in

packet loss and additional overhead on the controller to transmit the lost data packets. The

operational cost on the controller increases as the topology weight is increased on the

network resulting in underperformance of the network controller. We have proposed a

discrete moving target defense technique that individualize each host’s mutation interval

to solve the above problem. The mutation interval of each host on the network is based on

its flow stats. We used SDN controller Ryu northbound Rest API service to collect the flow

stats of each host for each time interval. When the host is not exchanging any data, the IP

address is changed. In this way, the packet loss is reduced in the network and also

operational cost on the controller.

Finally, the IP subnet strategy is developed to increase in complexity for the

attacker to understand the network topology. In the reconnaissance phase, the attacker

scans the network using multiple stealth mode tools to gather the network’s data and create

a network topology diagram. When the host’s IP address is assigned a virtual IP address

from the pool of different subnets each time, the attacker finds it complex to create a

network topology diagram. The benchmarking framework is developed to measure the

stability of the network in terms of performance, scalability, and reliability. The discrete

MTD network outperformed in all tests compared to random MTD network showing that

discrete host address mutation is a better technique to apply on the network for security

99

and stability. The drawback found in benchmarking is that the controller's failover time.

When the controller fails, the backup controller should become active and take over the

network control. Since the IP address mutation is implemented, there is a need for the

controller to synchronize the data, and further discussed in future works.

Future Works. In the conclusion of this research, we highlighted a critical topic

for future work on controller failover time. Since the static network does not need to change

the IP address of each, the failover time is very small, and the IP addresses remain the

same. In the case of a dynamic network, the controller has to change the IP address of each

host after a time interval. When the controller fails, the tracking data of each host’s current

virtual IP address will be lost. There will be a data loss before the new controller takes

over. Even though the new controller takes over, there is no data synchronized from the

failed controller to the backup controller, so that the hosts need to establish new sessions

to transmit the data. Synchronizing controller data will create a high operational cost, and

if only the important data is synchronized, the cost can be reduced. So that future work

will be focused on backup controller synchronization, and reduction of controller fail over

time for better stability of the network. The future work also includes exploring other

categories of MTD techniques and further improving the performance of discrete MTD

networks.

100

REFERENCES

[1] “CSD-MTD,” Department of Homeland Security, 21-Sep-2018. [Online]. Available:

https://www.dhs.gov/science-and-technology/csd-mtd. [Accessed: 20-Jun-2021].

[2] Ward, Bryan C., Steven R. Gomez, Richard Skowyra, David Bigelow, Jason Martin,

James Landry, and Hamed Okhravi. “Survey of Cyber Moving Targets Second

Edition.” (2018).

[3] “Software-Defined Networking (SDN) Definition,” Open Networking Foundation,

03-Jun-2020. [Online]. Available: https://opennetworking.org/sdn-definition/.

[Accessed: 20-Jun-2021].

[4] “List of SDN controller software,” Wikipedia, 06-Apr-2021. [Online]. Available:

https://en.wikipedia.org/wiki/List_of_SDN_controller_software. [Accessed: 20-

Jun-2021].

[5] Gudla, Charan, Md Shohel Rana, and Andrew H. Sung. "Defense techniques against

cyber attacks on unmanned aerial vehicles." Proceedings of the International

Conference on Embedded Systems, Cyber-physical Systems, and Applications

(ESCS). The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp), 2018, pp. 110-116.

[6] Gudla, C. and Sung, A.H., 2020, November. Moving Target Defense Application and

Analysis in Software-Defined Networking. In 2020 11th IEEE Annual Information

Technology, Electronics and Mobile Communication Conference (IEMCON) (pp.

0641-0646). IEEE.

[7] C. Gudla and A. H. Sung, " Moving Target Defense Discrete Host Address Mutation

and Analysis in SDN," 2020 International Conference on Computational Science

and Computational Intelligence (CSCI), 2020. IEEE, pp. 55-61.

[8] S. I. S. A.- P. S. Specialists, “Reconnaissance – the Eagle's Eye of Cyber Security -

SISA Blog,” SISA Information Security, 15-May-2020. [Online]. Available:

https://www.sisainfosec.com/blogs/reconnaissance-the-eagles-eye-of-cyber-

security/. [Accessed: 20-Jun-2021].

[9] Yuan Shi, Huanguo Zhang, Juan Wang, Feng Xiao, Jianwei Huang, Daochen Zha,

Hongxin Hu, Fei Yan, Bo Zhao, "CHAOS: An SDN-Based Moving Target Defense

System", Security and Communication Networks, vol. 2017, Article ID 3659167,

11 pages, 2017. https://doi.org/10.1155/2017/3659167.

101

[10] W. Xia, Y. Wen, C. H. Foh, D. Niyato and H. Xie, "A Survey on Software-Defined

Networking," in IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27-

51, Firstquarter 2015, doi: 10.1109/COMST.2014.2330903.

[11] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and

S. Uhlig, "Software-Defined Networking: A Comprehensive Survey," in

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015, doi:

10.1109/JPROC.2014.2371999.

[12] Braun W, Menth M. Software-Defined Networking Using OpenFlow: Protocols,

Applications and Architectural Design Choices. Future Internet. 2014; 6(2):302-

336. https://doi.org/10.3390/fi6020302.

[13] K. Bakshi, "Considerations for Software Defined Networking (SDN): Approaches

and use cases," 2013 IEEE Aerospace Conference, 2013, pp. 1-9, doi:

10.1109/AERO.2013.6496914.

[14] V. Pashkov, A. Shalimov and R. Smeliansky, "Controller failover for SDN enterprise

networks," 2014 International Science and Technology Conference (Modern

Networking Technologies) (MoNeTeC), 2014, pp. 1-6, doi:

10.1109/MoNeTeC.2014.6995594.

[15] Berde, P., Snow, W., Parulkar, G., Gerola, M., Hart, J., Higuchi, Y., Radoslavov, P.

(2014). ONOS. Proceedings of the Third Workshop on Hot Topics in Software

Defined Networking - HotSDN ’14. doi:10.1145/2620728.2620744.

[16] Goransson, P., Black, C., & Culver, T. (2016). Software defined networks: a

comprehensive approach. Morgan Kaufmann.

[17] Ryu SDN Framework—Open-source SDN Platform Software | NTT Technical

Review. (n.d.). NTT. Retrieved June 20, 2021, from https://www.ntt-

review.jp/archive/ntttechnical.php?contents=ntr201408fa4.html.

[18] S. Asadollahi, B. Goswami and M. Sameer, "Ryu controller's scalability experiment

on software defined networks," 2018 IEEE International Conference on Current

Trends in Advanced Computing (ICCTAC), 2018, pp. 1-5, doi:

10.1109/ICCTAC.2018.8370397.

[19] Contributors, M. P. (n.d.). Mininet: An Instant Virtual Network on Your Laptop (or

Other PC) - Mininet. Mininet.Org. Retrieved June 20, 2021, from

http://mininet.org/.

102

[20] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda and Ligia Rodrigues Prete,

"Using Mininet for emulation and prototyping Software-Defined Networks," 2014

IEEE Colombian Conference on Communications and Computing (COLCOM),

2014, pp. 1-6, doi: 10.1109/ColComCon.2014.6860404.

[21] Jajodia, S., Ghosh, A. K., Swarup, V., Wang, C., & Wang, X. S. (Eds.).

(2011). Moving target defense: creating asymmetric uncertainty for cyber

threats (Vol. 54). Springer Science & Business Media.

[22] Lichtman, A., & Nair, M. (2015). Humanitarian uses of drones and satellite imagery

analysis: the promises and perils. AMA journal of ethics, 17(10), pp. 931-937.

[23] Udeanu, Gheorghe, et al. “Unmanned Aerial Vehicle in Military Operations.”

Scientific Research and Education in the Air Force, vol. 18, no. 1, 2016, pp. 199-

206., doi:10.19062/2247-3173.2016.18.1.26.

[24] Kafi, Mohamed Amine, et al. “A Study of Wireless Sensor Networks for Urban

Traffic Monitoring: Applications and Architectures.” Procedia Computer Science,

vol. 19, 2013, pp. 617–626., doi: 10.1016/j.procs.2013.06.082.

[25] Alvear, Oscar, et al. “Using UAV-Based Systems to Monitor Air Pollution in Areas

with Poor Accessibility.” Journal of Advanced Transportation, vol. 2017, 2017, pp.

1–14., doi:10.1155/2017/8204353.

[26] Debusk, Wesley. “Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado

Alley.” AIAA Infotech@Aerospace 2010, 2010, doi:10.2514/6.2010-3506.

[27] Waharte, Sonia, and Niki Trigoni. “Supporting Search and Rescue Operations with

UAVs.” 2010 International Conference on Emerging Security Technologies, 2010,

doi:10.1109/est.2010.31.

[28] Guillen-Perez, Antonio, et al. “Wi-Fi Networks on Drones”. 2016 ITU

Kaleidoscope: ICTs for a Sustainable World (ITU WT), 2016, doi:10.1109/itu-

wt.2016.7805730.

[29] Amazon prime air delivery using drones to deliver the ordered packages,

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

[Accessed: 20-Jun-2021].

[30] Iraqi insurgents hacked predator drone feeds,

http://www.cnn.com/2009/US/12/17/drone.video.hacked/index.html [Accessed:

20-Jun-2021].

103

[31] The Computer virus infects drone plane command centre US,

https://www.theguardian.com/technology/2011/oct/09/virus-infects-drone-plane-

command [Accessed: 20-Jun-2021].

[32] Wikipedia contributors. (2021, April 15). Iran–U.S. RQ-170 incident. Wikipedia.

https://en.wikipedia.org/wiki/Iran%E2%80%93U.S._RQ-170_incident.

[Accessed: 20-Jun-2021].

[33] The Predator drone live video feeds exposed online,

https://www.bleepingcomputer.com/news/government/us-government-leaves-

predator-drone-video-feeds-exposed-online/ [Accessed: 20-Jun-2021].

[34] N. M. Rodday, R. D. O. Schmidt, A. Pras. "Exploring security vulnerabilities of

unmanned aerial vehicles", NOMS 2016-2016 IEEE/IFIP Network Operations and

Management Symposium, pp. 993-994, Apr 2016.

[35] J. S. Pleban, R. Band, R. Creutzburg, R. Creutzburg, D. Akopian, "Hacking and

securing the AR.Drone 2.0 quadcopter: Investigations for improving the security of

a toy", International Society for Optics and Photonics, pp. 90300L, feb 2014.

[36] Rani C, Modares H, Sriram R, Mikulski D, Lewis FL (2016): Security of unmanned

aerial vehicle systems against cyber-physical attacks. Journal of Defense Modeling

and Simulation: Applications, Methodology, Technology 2016, Vol. 13(3) pp. 331–

342 The Author(s) 2015 DOI: 10.1177/1548512915617252.

[37] K. Hartmann, C. Steup, "The vulnerability of UAVs to cyber-attacks an approach

to the risk assessment", Cyber Conflict (CyCon) 2013 5th International Conference

on, pp. 1-23, 2013.

[38] Goppert, James, et al. “Numerical Analysis of Cyberattacks on Unmanned Aerial

Systems.” Infotech@Aerospace 2012, 2012, doi:10.2514/6.2012-2437.

[39] R. Mitchell, I.-R. Chen, "Adaptive intrusion detection of malicious unmanned air

vehicles using behavior rule specifications", IEEE Trans. Syst. Man Cybern. Syst.,

vol. 44, no. 5, pp. 593-604, May 2014.

[40] “Wi-Fi.”, Microchip Developer Help, http://microchipdeveloper.com/wifi:start

(accessed 12 May 2018) [Accessed: 20-Jun-2021].

[41] Compton, Stuart: 802.11 Denial of Service Attacks and Mitigation, SANS Institute

InfoSec Reading Room. [Accessed: 20-Jun-2021].

[42] Aircrack-ng, https://www.aircrack-ng.org/ [Accessed: 20-Jun-2021].

104

[43] RPI-Wireless-Hotspot for raspberry pi to convert into router,

https://github.com/harryallerston/RPI-Wireless-Hotspot [Accessed: 20-Jun-2021].

[44] Robot Operating System, http://www.ros.org/about-ros/ (accessed 16 June 2018)

[Accessed: 20-Jun-2021].

[45] WPA2 encryption, https://github.com/daraosn/ardrone-wpa2 [Accessed: 20-Jun-

2021].

[46] Kismet wireless intrusion detection system for drone,

https://raw.githubusercontent.com/kismetwireless/kismet/master/README

[Accessed: 20-Jun-2021].

[47] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic approaches to thwart

adversary intelligence gathering,” in DARPA Information Survivability

Conference & Exposition II, 2001. DISCEX’01. Proceedings, IEEE (2001), vol. 1,

pp. 176–185.

[48] J. Michalski, C. Price, E. Stanton, E. Lee, K. Chua, Y. Wong, and C. Tan, “Network

security mechanisms utilizing dynamic network address translation” (2002).

[49] J. Li, P.L. Reiher, and G.J. Popek, “Resilient self-organizing overlay networks for

security update delivery,” IEEE Journal on Selected Areas in Communications

22(1), pp. 189–202 (2004).

[50] H. Moniz, N.F. Neves, M. Correia, and P. Verissimo, “Randomized intrusion-

tolerant asynchronous services,” in Dependable Systems and Networks, 2006. DSN

2006. International Conference on, IEEE (2006), pp. 568–577.

[51] S. Antonatos, P. Akritidis, E.P. Markatos, and K.G. Anagnostakis, “Defending

against hitlist worms using network address space randomization,” Computer

Networks 51(12), pp. 3471–3490 (2007).

[52] E. Al-Shaer, “Toward network configuration randomization for moving target

defense,” in Moving Target Defense, Springer, pp. 153–159 (2011).

[53] J.D. Touch, G.G. Finn, Y.S. Wang, and L. Eggert, “DynaBone: Dynamic defense

using multilayer internet overlays,” in DARPA Information Survivability

Conference and Exposition, 2003. Proceedings, IEEE (2003), vol. 2, pp. 271–276.

[54] “AFRL resources,” Personal communication.

[55] E. Al-Shaer, Q. Duan, and J. Jafarian, Random Host Mutation for Moving Target

Defense, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 310–327 (2013).

105

[56] Y.B. Luo, B.S. Wang, X.F. Wang, X.F. Hu, and G.L. Cai, “TPAH: A universal and

multiplatform deployable port and address hopping mechanism,” in 2015

International Conference on Information and Communications Technologies, IET

(2015), pp. 1–6.

[57] J. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation:

Transparent moving target defense using software-defined networking,” in

Proceedings of the First Workshop on Hot Topics in Software Defined Networks,

ACM (2012), pp. 127–132.

[58] J. Jafarian, E. Al-Shaer, and Q. Duan, “Spatio-temporal address mutation for

proactive cyber agility against sophisticated attackers,” in Proceedings of the First

ACM Workshop on Moving Target Defense, ACM (2014), pp. 69–78.

[59] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable and vigilant

switch flow management in software-defined networks,” in Proceedings of the

2013 ACM Conference on Computer and Communications Security, ACM (2013),

pp. 413–424.

[60] R. Skowyra and D. Bigelow, “Dynamic flow isolation: Adaptive access control to

protect networks,” Cyber Security Division Transition to Practice Technology

Guide (2016).

[61] Vengainathan, B., Basil, A., Tassinari, M., Manral, V., & Banks, S. (2018).

Benchmarking Methodology for Software-Defined Networking (SDN) Controller

Performance. RFC, 8456, 1-64.

[62] C. Gudla and A. H. Sung, "Moving Target Defense Discrete Host Address Mutation

and Analysis in SDN," 2020 International Conference on Computational Science

and Computational Intelligence (CSCI), 2020, pp. 55-61, doi:

10.1109/CSCI51800.2020.00017.

	Discrete Moving Target Defense Application and Benchmarking in Software-Defined Networking
	Recommended Citation

	contents
	sec4123

