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ABSTRACT 

Moving Target Defense is a technique focused on disrupting certain phases of a 

cyber-attack. The static nature of the existing networks gives the adversaries an adequate 

amount of time to gather enough data concerning the target and succeed in mounting an 

attack. The random host address mutation is a well-known MTD technique that hides the 

actual IP address from external scanners. When the host establishes a session of 

transmitting or receiving data, due to mutation interval, the session is interrupted, leading 

to the host’s unavailability. Moving the network configuration creates overhead on the 

controller and additional switching costs resulting in latency, poor performance, packet 

loss, and jitter. 

In this dissertation, we proposed a novel discrete MTD technique in software-

defined networking (SDN) to individualize the mutation interval for each host. The host IP 

address is changed at different intervals to avoid the termination of the existing sessions 

and to increase complexity in understanding mutation intervals for the attacker. We use the 

flow statistics of each host to determine if the host is in a session of transmitting or 

receiving data. Individualizing the mutation interval of each host enhances the defender 

game strategy making it complex in determining the pattern of mutation interval. Since the 

mutation of the host address is achieved using a pool of virtual (temporary) host addresses, 

a subnet game strategy is introduced to increase complexity in determining the network 

topology. A benchmarking framework is developed to measure the performance, 

scalability, and reliability of the MTD network with the traditional network. The analysis 

shows the discrete MTD network outperforms the random MTD network in all tests. 



 

iii 

ACKNOWLEDGMENTS 

 I want to thank and express my deepest gratitude to my supervisor, Dr. Andrew H. 

Sung. You are the best advisor and mentor I have ever met, and thank you for your excellent 

guidance, encouragement, and patience over the years. I want to thank Dr. Dia Ali, who 

has been a great mentor since my journey began at the University of Southern Mississippi. 

I want to thank other committee members Dr. Ramakalavathi Marapareddy, Dr. Ras B. 

Pandey, and Dr. Sungwook Lee, for their precious time and valuable suggestions and input 

in the dissertation. 

I want to thank Md Shohel Rana, collaborator in my research work, and we had a 

great time working together. I want to thank my friends Trung T. Nguyen and Amartya 

Hatua for giving me support and motivation all the time. 

I want to thank the School of Computing Sciences and Computer Engineering for 

its tremendous support during the last five years. I want to thank Ms. Chrissy Hudson and 

Ms. Sherry Smith for all their help in my journey. 

Finally, I want to thank my family members and friends for the encouragement, 

support, and motivation towards this journey and the new beginning. 

 

 

   

 

 

 

 



 

iv 

DEDICATION 

This work is dedicated to my family and friends who are with me on this journey. 

 

 

 

 



 

v 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGMENTS ................................................................................................. iii 

DEDICATION ................................................................................................................... iv 

TABLE OF CONTENTS .................................................................................................... v 

LIST OF TABLES ............................................................................................................. ix 

LIST OF ILLUSTRATIONS .............................................................................................. x 

LIST OF ABBREVIATIONS .......................................................................................... xiv 

CHAPTER I - INTRODUCTION .................................................................................... 15 

1.1 Motivation ............................................................................................................... 15 

1.2 Contributions........................................................................................................... 15 

1.3 Dissertation Structure .............................................................................................. 17 

CHAPTER II- BACKGROUND ...................................................................................... 18 

2.1 Moving Target Defense .......................................................................................... 18 

2.1.1 Moving Target Defense Techniques Categories .............................................. 18 

2.1.2 Cyber Kill Chain ........................................................................................... 20 

2.2 Software-Defined Networking (SDN) .................................................................... 20 

CHAPTER III– SOFTWARE AND NETWORKING TOOLS ....................................... 22 

3.1 SDN Architecture.............................................................................................. 22 

3.2 OpenFlow .......................................................................................................... 24 



 

vi 

3.3 OpenFlow Switch.............................................................................................. 24 

3.3.1 Flow Tables ................................................................................................... 24 

3.4 RYU Controller ....................................................................................................... 25 

3.5 Mininet .................................................................................................................... 26 

CHAPTER IV – MOVING TARGET DEFENSE APPLICATION AND ANALYSIS .. 28 

4.1 MAC Address Mutation in Drones ......................................................................... 28 

4.1.1 Related Work ................................................................................................... 29 

4.1.2 Hacking Techniques......................................................................................... 29 

4.1.2.1 Data Packet Capture .................................................................................. 30 

4.1.2.2 Denial-of-Service Attack .......................................................................... 30 

4.1.3 Cyber-Attack on Drones .................................................................................. 32 

4.1.4 Defense against cyber attacks .......................................................................... 33 

4.1.4.1 Wireless Network Encryption ................................................................... 36 

4.1.4.2 Intrusion Detection System ....................................................................... 36 

4.1.4.3 Moving Target Defense ............................................................................ 37 

4.1.5 Configuration ................................................................................................... 38 

4.1.6 Results .............................................................................................................. 39 

4.2 Random Host Address Mutation and Analysis in SDN .......................................... 42 

4.2.1 Related Work ................................................................................................... 43 

4.2.2 Experimental Setup and MTD Application ..................................................... 47 



 

vii 

4.2.3 TCP and UDP Traffic Analysis ....................................................................... 51 

4.3 Discrete Host Address Mutation and Analysis in SDN .......................................... 57 

4.3.1 Proposed Methodology .................................................................................... 59 

4.3.2 Architecture...................................................................................................... 62 

4.3.3 Traffic Generation and Reconnaissance .......................................................... 64 

4.3.4 Results and Analysis ........................................................................................ 65 

4.4 Discrete Host Address Mutation with Subnet Game Strategy and Benchmarking 70 

4.4.1 Subnet Game Strategy ...................................................................................... 70 

4.4.2 Benchmarking and Analysis ............................................................................ 71 

4.4.2.1 Benchmarking Topology .......................................................................... 71 

4.4.2.2 Benchmarking Performance...................................................................... 74 

4.4.2.2.1 Network Topology Discovery Time .................................................. 74 

4.4.2.2.2 Asynchronous Message Processing Time .......................................... 76 

4.4.2.2.3 Asynchronous Message Processing Rate ........................................... 78 

4.4.2.2.4 Reactive Path Provisioning Time....................................................... 80 

4.4.2.2.5 Reactive Path Provisioning Rate ........................................................ 82 

4.4.2.2.6 Proactive Path Provisioning Time ..................................................... 84 

4.4.2.2.7 Proactive Path Provisioning Rate ....................................................... 85 

4.4.2.2.8 Network Topology Change Detection Time ...................................... 87 

4.4.2.3 Benchmarking Scalability ......................................................................... 88 



 

viii 

4.4.2.3.1 Control Sessions Capacity ................................................................. 88 

4.4.2.3.2 Forwarding Table Capacity................................................................ 90 

4.4.2.4 Benchmarking Reliability ......................................................................... 92 

4.4.2.4.1 Controller Failover Time ................................................................... 92 

4.4.2.4.2 Network Re-provisioning Time ......................................................... 93 

CHAPTER V – CONCLUSION AND FUTURE WORK ............................................... 96 

REFERENCES ............................................................................................................... 100 



 

ix 

LIST OF TABLES 

Table 4.1 Parameters ......................................................................................................... 51 

Table 4.2 Overheads ......................................................................................................... 56 

Table 4.3 Packet Loss ....................................................................................................... 57 

Table 4.4 Notations ........................................................................................................... 62 

Table 4.4 Notations (continued) ....................................................................................... 63 

Table 4.5 Snort Filtered Events ........................................................................................ 67 

Table 4.6 Topologies ........................................................................................................ 72 

 

 

 

 



 

x 

LIST OF ILLUSTRATIONS 

Figure 1.1 Moving Target Defense Categories ................................................................. 19 

Figure 1.2 Cyber Kill Chain.............................................................................................. 20 

Figure 2.1 SDN Concept ................................................................................................... 21 

Figure 3.1 SDN Architecture and OpenFlow ................................................................... 23 

Figure 3.2 OpenFlow Switch ............................................................................................ 25 

Figure 3.3 RYU Controller ............................................................................................... 26 

Figure 4.1 Denial of Service Attack ................................................................................. 31 

Figure 4.2 Man-in-the-Middle Attack............................................................................... 31 

Figure 4.3 MAC Address Detection ................................................................................. 32 

Figure 4.4 Communication Link Before DoS Attack ....................................................... 33 

Figure 4.5 Communication Link After DoS Attack.......................................................... 33 

Figure 4.6 System Architecture ........................................................................................ 34 

Figure 4.7 Base Station ..................................................................................................... 34 

Figure 4.8 Raspberry Pi .................................................................................................... 35 

Figure 4.9 ROS Model ...................................................................................................... 35 

Figure 4.10 WPA Binaries in AR Drone .......................................................................... 36 

Figure 4.11 Kismet IDS .................................................................................................... 37 

Figure 4.12 Moving Target Defense Model ..................................................................... 37 

Figure 4.13 MAC Address Mutation Model ..................................................................... 39 

Figure 4.14 Data Capture Attack ...................................................................................... 39 

Figure 4.15 Kismet IDS Alerts ......................................................................................... 40 

Figure 4.16 New MAC Address After Mutation 1 ........................................................... 40 



 

xi 

Figure 4.17 New MAC Address After Mutation 2 ........................................................... 40 

Figure 4.18 Unsuccessful Cyber-Attack ........................................................................... 41 

Figure 4.19 Navigational Data from the Drone ................................................................ 41 

Figure 4.20 Acceleration and Velocity Plots .................................................................... 42 

Figure 4.21 MTD Topology .............................................................................................. 48 

Figure 4.22 Communication Between Hosts .................................................................... 48 

Figure 4.23 Algorithm Ryu Controller ............................................................................. 50 

Figure 4.24 Test 1 TCP Bandwidth Results...................................................................... 52 

Figure 4.25 Test 2 TCP Bandwidth Results...................................................................... 52 

Figure 4.26 Test 3 TCP Bandwidth Results...................................................................... 53 

Figure 4.27 Test 4 TCP Bandwidth Bidirectional Traffic Results.................................... 53 

Figure 4.28 Test 5 UDP Bandwidth Results ..................................................................... 54 

Figure 4.29 Jitter Measurement ........................................................................................ 54 

Figure 4.30 Network Topology with Two Hosts .............................................................. 59 

Figure 4.31 Reconnaissance Using Kali ........................................................................... 64 

Figure 4.32 SGUIL for Packet Analysis ........................................................................... 65 

Figure 4.33 Nmap Scan for Live Hosts ............................................................................ 65 

Figure 4.34 Nmap Results................................................................................................. 66 

Figure 4.35 SNORT Session Results ................................................................................ 66 

Figure 4.36 SNORT Alerts ............................................................................................... 67 

Figure 4.37 Hosts Mutations at the Same Time ................................................................ 68 

Figure 4.38 Hosts Sessions ............................................................................................... 68 

Figure 4.39 individualized Hosts Mutations ..................................................................... 69 



 

xii 

Figure 4.40 Private IP Addresses ...................................................................................... 70 

Figure 4.41 Example Subnet Topology ............................................................................ 71 

Figure 4.42 Subnet Pools .................................................................................................. 71 

Figure 4.43 Leaf-Spine Topology ..................................................................................... 72 

Figure 4.44 Leaf-Spine Topology with Controller ........................................................... 73 

Figure 4.45 Network Topology Discovery Time .............................................................. 75 

Figure 4.46 Network Topology Discovery Time Benchmark .......................................... 75 

Figure 4.47 Asynchronous Message Processing Time ..................................................... 77 

Figure 4.48 Asynchronous Message Processing Time Benchmark .................................. 77 

Figure 4.49 Asynchronous Message Processing Rate ...................................................... 78 

Figure 4.50 Asynchronous Message Processing Rate Benchmark ................................... 79 

Figure 4.51 Reactive Path Provisioning Time .................................................................. 81 

Figure 4.52 Reactive Path Provisioning Time Benchmark ............................................... 81 

Figure 4.53 Reactive Path Provisioning Rate ................................................................... 82 

Figure 4.54 Reactive Path Provisioning Rate Benchmark ................................................ 83 

Figure 4.55 Proactive Path Provisioning Time ................................................................. 84 

Figure 4.56 Proactive Path Provisioning Time Benchmark.............................................. 85 

Figure 4.57 Proactive Path Provisioning Rate .................................................................. 86 

Figure 4.58 Proactive Path Provisioning Rate Benchmark ............................................... 87 

Figure 4.59 Network Topology Change Detection Time Benchmark .............................. 88 

Figure 4.60 Control Sessions Capacity ............................................................................. 89 

Figure 4.61 Control Sessions Capacity Benchmark ......................................................... 89 

Figure 4.62 Forwarding Table Capacity ........................................................................... 90 



 

xiii 

Figure 4.63 Forwarding Table Capacity Benchmark ........................................................ 91 

Figure 4.64 Controller Failover Time Benchmark ........................................................... 92 

Figure 4.65 Network Re-provisioning Time Benchmark ................................................. 93 

Figure 4.66 Packet Loss .................................................................................................... 94 

 

 

 

 

 



 

xiv 

LIST OF ABBREVIATIONS 

   

API    Application Program Interface 

ARP    Address Resolution Protocol 

DDoS    Distributed Denial of Service 

DoS    Denial of Service 

IDS    Intrusion Detection System 

MIMA    Man-in-the-Middle Attack 

MTD    Moving Target Defense 

ROS    Robot Operating System 

SDN    Software-Defined Networking 

  TCP    Transmission Control Protocol 

  TLS    Transport Layer Security 

  UDP    User Datagram Protocol  

UAV    Unmanned Aerial Vehicle 

 

 

 

 

 



 

15 

CHAPTER I - INTRODUCTION 

1.1 Motivation 

Moving Target Defense (MTD) [1] protects the network by changing the 

configurations frequently. The attacker gathers the information of the network at the initial 

phase of the cyber kill chain [2]. The traditional network configuration does not change 

from time to time, and it is static. This static configuration will give the attacker sufficient 

time to gather network information. Once the attacker collects the data, there is no looking 

back because the static network does not change its configuration. MTD technique aims to 

disrupt the reconnaissance attacks on the network by changing the network configuration 

frequently. Even though the attacker collects the information of the network, the attacks 

fail because the network configuration will have changed. 

Software-Defined Networking (SDN) [3] simplifies the need to have the physical 

infrastructure, and it allows to centralize the control plane to manage the whole network 

[4]. It separates the control plane from the network device’s data plane. It also simplifies 

the network management, operational cost and enables the programmability of the 

controller. 

1.2 Contributions 

The research work contributions are as follows: 

1. A MAC address dynamic mutation technique [5] is developed and implemented on 

the drone wireless network, including intrusion detection system and enhanced 

security with wireless network encryption. The drone’s MAC address is used to 

launch a cyber-attack. The hacker collects the configuration of the drone network 

by scanning. Once the information is gathered, the hacker does not need to re-scan 
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since the wireless network of the drone is static. We developed an MTD technique 

to mutate the static MAC address of the drone frequently. Since the MAC address 

is changing from time to time, the attacker will be unsuccessful in launching an 

attack on the network using the network configuration information collected 

previously. 

2. A random host address mutation technique [6] is developed in software-defined 

networking (SDN), and network analysis is shown. The mutation of the host IP 

addresses of all hosts is implemented at a random time in the network. The IP 

address mutation is a widely researched technique, and it provides network security 

by assigning a virtual IP address to the host at a frequent time interval. The mutation 

technique provides security to the network and also creates an overhead for 

changing the host’s configuration by the SDN controller. We implemented the host 

address mutation technique, and the performance of the network is shown by 

benchmarking with the traditional network. 

3. In software-defined networking, we have developed a new discrete host address 

mutation technique [7] to individualize the mutation interval of each host in the 

network. In random host address mutation, the IP addresses of all hosts are changed 

at the same interval, terminating the established session between the hosts 

deteriorating the network stability. To overcome this backlog, a discrete host 

address mutation is developed to individualize the mutation interval of each host. 

Individualizing the mutation interval of each host makes it complex for the attacker 

to figure out the pattern of the mutation interval. The mutation interval of each host 
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is based on the flow statistics of the host monitored by the controller. The controller 

changes the IP address of the host when there is no exchange of data.  

4. We developed an IP subnet game strategy using private virtual IP addresses. The 

virtual IP addresses are selected randomly from the pool of different IP subnets to 

make it complex for the attacker to understand the network topology. A 

benchmarking framework is developed to measure the stability of the network in 

terms of performance, scalability, and reliability. 

1.3 Dissertation Structure 

The dissertation structure is as follows. In chapter I, the objectives of the research 

work, motivation, and contribution are outlined. Chapter II introduces the research topic 

and related work. In chapter III, we discuss the software and networking tools used in this 

research. Chapter IV discusses the proposed moving target defense techniques for network 

security, and benchmarking results are demonstrated. Finally, chapter V concludes the 

research objectives and outcomes along with the future works. 
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CHAPTER II- BACKGROUND 

2.1 Moving Target Defense 

MTD reactively changes the configuration of the system across multiple planes. 

The mutation of the attack surface increases complexity and uncertainty in understanding 

the system behavior leading to rising in scanning costs for the attacker. The MTD technique 

changes the static system into a dynamic, enhancing the security of the system. 

Reconnaissance [8] is the initial phase of the cyber kill chain [2].  

The attacker gathers the system’s data by scanning the network extensively using 

multiple hacking tools. If the system is static, the data collected by the attacker will be used 

to initiate the cyber-attack on the network. The operational cost for scanning the network 

is high, and when the system is static, the attacker avoids scanning the system multiple 

times. Since the MTD technique changes the attack surface [9] frequently, the attacker has 

to put the high cost in scanning the system numerous times. 

The dynamic changes in the system configuration can evade these attacks since the 

attacker uses static system information. Even though the cyber-attack is launched on the 

system, the attack fails due to the system configuration change. 

2.1.1 Moving Target Defense Techniques Categories 

 The categories [2] that moving target defense techniques can be applied are shown 

in Figure 1.1. 
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Figure 1.1 Moving Target Defense Categories 

1. Data Mutation: The data format, encoding, representation, and syntax are changed 

dynamically. 

2. Software Application Code Mutation: The application program code is changed 

dynamically by modifying instructions, grouping, format, and order. 

3. Runtime Environment: The application environment is changed dynamically 

during execution. 

(a) Mutation of Address Space: The memory layout where the program 

code is located is changed dynamically.  

(b) Mutation of Instruction Set: The application’s interface is changed 

dynamically. 

4. Platform Properties Mutation: The mutation of the operating system’s version, 

the architecture of the CPU, etc. 

5. Mutation of Network Properties: The mutation of the network configuration of 

the system, which includes IP address, MAC address, and port number, etc. 
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2.1.2 Cyber Kill Chain 

Cyber kill chain [2] refers to the series of steps followed by the attacker in 

successfully launching a cyber-attack, as shown in Figure 1.2. The following are the 

different phases of the cyber kill chain: 

1. Reconnaissance/Scanning: This is the initial phase in which the attacker scans the 

network and collects the data. 

2. Access: Using the gathered network information, the attacker identifies the network 

properties, configuration, and vulnerabilities of the network. The vulnerabilities 

identified helps the attacker to make the initial communication with the target. 

3. Exploit Development: The vulnerability identified by the attacker is used to 

develop an exploit for privilege escalation. 

4. Attack Launch: The cyber-attack on the network is launched on the target by 

delivering the exploit developed using phishing, USB drive, etc.  

5. Persistence: The attacker should be persistent in the network to take over or control 

the network by creating and installing backdoors. 

 

Figure 1.2 Cyber Kill Chain 

2.2 Software-Defined Networking (SDN) 

 Software-defined networking [10] [11] separates the data plane and control plane 

of the network when compared to a traditional network, as shown in Figure 2.1. The 

controller in the control plane is centralized and takes the decisions of the network flow 
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from one point to another. The data plane transmits the data according to the path provided 

by the controller. The network devices forward the traffic to the controller if the network 

flow path is not available in the data plane. According to the destination address, the 

controller will decide the route, install the flow in the network devices, and use that flow 

for future data traffic forwarding. The controller uses the popular OpenFlow protocol [12] 

to communicate with network devices. The controller gives the flexibility by 

programmability to control and configure the network devices when required.  

Even though the SDN architecture provides many advantages, limitations [13] also 

exist. In terms of reliability, if the controller fails [14], then the network will be down 

because of no control over the network devices and configuration. The backup controller 

will take over if configured. In SDN, the attackers will likely target the controller to take 

down the entire network until the backup controller becomes active. The controller has 

limited control session capacity, which is a drawback in terms of scalability. 

 

 

Figure 2.1 SDN Concept 
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CHAPTER III– SOFTWARE AND NETWORKING TOOLS 

This chapter introduces the software tools used in this research: SDN, OpenFlow, 

RYU controller, and Mininet. 

3.1 SDN Architecture 

OpenFlow [12] is an open standard for a communications protocol that makes the 

control plane to decouple from the forwarding plane of numerous devices and 

communicate with it from a single point, allowing for more functionality and 

programmability. 

Network devices, controllers, and applications are the essential components of 

SDN. Features for deciding incoming traffic forwarding are included in SDN devices. The 

SDN controller manages network devices and provides SDN applications with an 

abstraction of the network infrastructure at the southbound. The controller enables an SDN 

application to specify traffic flows and pathways on network devices in terms of common 

packet characteristics to meet its demands and to respond to changing user and 

traffic/network conditions. As shown in Figure 3.1, the Open Networking Foundation 

defines a high-level design for SDN [15] with three primary layers. 

Infrastructure Layer. All the physical and virtual network device will be present 

in this layer. A packet-processing component, an abstraction layer, and an application 

program interface (API) at northbound for communication with the controller make up an 

SDN device. An SDN device is abstracted as a set of flow tables by the abstraction layer. 

By assessing incoming packets against flow table entries, the packet processing function 

determines forwarding action. 
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Control Layer. This layer provides logically centralized control capability that 

supervises network forwarding behavior. All SDN devices that make up the network 

architecture are controlled by an SDN controller, which uses a southbound API to 

implement policy decisions like routing, forwarding, and load balancing. Through a 

northbound interface, it gives apps an abstract view of the entire network. 

Application Layer. End-user apps that employ SDN communications and network 

services make up this layer [16]. Applications can manage the underlying infrastructure 

behavior by adding flows to forward packets through the optimal path between the 

endpoints, load balancing across multiple paths or endpoints, reacting network topology 

changes such as the addition of new devices and paths, link failures, or redirecting traffic. 

 

Figure 3.1 SDN Architecture and OpenFlow 
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3.2 OpenFlow 

The southbound connection between an OpenFlow switch controller is defined by 

OpenFlow, a standardized protocol (Open Networking Foundation 2013). The 

communication messages between the two are sent over a secure channel, which is 

implemented over TCP using a Transport Layer Security (TLS) connection. The controller 

defines and programs the switch’s packet forwarding behavior through the exchange of 

commands and packets. The switch then executes packet forwarding and reports its 

configuration status. 

The characteristics of user traffic are used to classify it into flows. An OpenFlow 

switch monitors for packets and forwards them according to the flow to which they belong. 

A flow is a path in which packets are sent from one network endpoint (or group of 

endpoints) to another (or set of endpoints). Endpoints can be IP-TCP/UDP address pairs, 

VLAN endpoints, or switch input-output ports. 

 

3.3 OpenFlow Switch 

The OpenFlow logical switch contains at least one flow table and a group table to 

check the flow and forward data, as shown in Figure 3.2. 

3.3.1 Flow Tables 

The controller can add, delete, and update flow entries in flow tables both reactively 

(in reaction to packets) and proactively (in advance) using the OpenFlow switch protocol. 

Reactive Flow Entries. The path from one node to another is called a flow. A 

reactive flow entry is created in the flow table when a host tries to communicate with 
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another host, and if the path exists, then the controller reactively installs the flow in the 

flow table. 

Proactive Flow Entries: The flow entry is installed in the flow table ahead of time 

before the hosts communicate with each other. 

 

Figure 3.2 OpenFlow Switch 

3.4 RYU Controller 

Ryu is a Nippon Telegraph and Telephone Corporation Labs-sponsored open-

source controller [17] written entirely in Python. It supports OpenFlow and connects with 

OpenStack. It is a centralized controller [18] with a simple API that creates new control 

applications and network management for network developers and operators. Components 

written in other programming languages can also be supported by Ryu. Ryu is popularly 

used for cloud infrastructures, data centers, and carrier networks. In communications, 

infrastructure services, event management, and application management, Ryu components 



 

26 

can be useful. NETCONF, OF-config, and OpenFlow 1.0 to 1.5 are among the network 

management protocols supported by Ryu, as shown in Figure 3.3. 

 

Figure 3.3 RYU Controller 

3.5 Mininet 

Mininet [19] is a network emulator, or more precisely, an orchestration framework 

for network emulation. On a single Linux kernel, it runs a collection of switches, end-hosts, 

routers, and links. It employs lightweight virtualization to make a single machine appear 

to be a full network with the same kernel, operating system, and user code. You can ssh 

into a Mininet host and execute any software you want. Your programs can send packets 

over what appears to be a real Ethernet interface, with a set link speed and latency. With a 

certain level of queueing, packets are processed by the switch, router, or middlebox. When 

two applications interact through Mininet, such as using an iPerf tool, the performance 

measured should be comparable to native machines. 
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In brief, Mininet’s switches, virtual hosts, controllers, and connections are real, and 

they are made of software [20] rather than hardware and behave similarly to discrete 

hardware pieces for the most part. It is usually possible to construct a Mininet network that 

looks like a hardware network or, in reverse, a hardware network that looks like a Mininet 

network and runs the same apps and binary code on any platform. 
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CHAPTER IV – MOVING TARGET DEFENSE APPLICATION AND ANALYSIS 

This chapter introduces the moving target defense techniques for network security. 

The application of these techniques not only provides security [21] but also creates 

overheads on the controller resulting in data loss. We proposed a new discrete host address 

mutation technique that can be more stable and reduce data loss. 

4.1 MAC Address Mutation in Drones 

The number of Unmanned Aerial Vehicles (UAVs), sometimes known as drones 

[22], is continuously increasing. Because they weigh less, cost less, and manageable, they 

are utilized in the military [23], aid in monitoring [24] [25], emergency disasters [26], and 

rescue operations [27]. In the telecommunications business [28], UAVs are employed to 

extend wireless network coverage. Amazon Prime Air [29] is a service from Amazon that 

will deliver products using drones. 

Drones have many advantages, but they are vulnerable to physical difficulties and 

cyber-attacks. Satellites, cellular phones, Wi-Fi, GPS, and ZigBee, are all common ways 

to send and receive data via a network. In 2009, Iraqi rebels hacked into the feed [30] of 

the predator drone. In 2011, a virus attacked the networks utilized by US Air Force drone 

pilots at Air Force Base, Creech, Nevada [31]. Lockheed Martin RQ-170 Sentinel is an 

American drone [32] captured by an Iranian cyberwarfare outfit in 2011. Without the 

operator’s knowledge, the predator drone video feeds were made public online [33]. Such 

attacks are carried out with the use of low-cost wireless network jammers and GPS 

spoofing devices. 

Contributions. In this study, various vulnerabilities of UAVs and hacking techniques, as 

well as existing defense measures for countering cyber-attacks, are investigated. We built 
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a base station and used a popular hacking method on the UAV Parrot AR Drone to 

demonstrate the drone’s weaknesses and exploitation. It demonstrates that an attacker can 

do significant harm by crashing drone or hack it and take control by compromising the 

wireless network between the operator and the drone. The experiment demonstrates the 

significance of protecting UAV systems against cyber-attacks. 

4.1.1 Related Work 

Various defense strategies against drone attacks have been presented. Nils Miro 

Rodday et al. proposed [34] using safe encryption techniques for Wi-Fi access in their 

paper. Johann Pleban et al. demonstrated [35] how to encrypt a wireless network using the 

drone as a client and the RC as an access point in their paper. To prevent an adversary from 

hacking into the drone, the open Wi-Fi network is encrypted with WPA. Chaitanya Rani et 

al. outlined [36] the flaws in encryption detection systems and proposed encryption 

detection systems as a protection strategy. A risk assessment scheme for communication 

infrastructure and services was created by Kim Hartmann and Christoph Steup [37]. The 

severity of a cyber-attack was assessed by James Goppert et al., who devised [38] a metric 

to reflect the system’s period of complete failure. Robert Mitchell and Ing-Ray Chen [39] 

created a behavior rule-based UAV intrusion detection system in order to capture and 

continue harmful activity when a UAV is attacked. 

4.1.2 Hacking Techniques 

UAV wireless network attacking tactics are explored in this section. The results of 

our hacking experiment on the most popular drones are displayed below. When an attacker 

knows the drone’s MAC address he wants to attack, he can gain access to its wireless 

network. Drone assaults on wireless networks can take the following forms: 
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• Data packet capture 

• Denial of service (DoS) attack 

• Man-in-the-middle attack (MIMA) 

4.1.2.1 Data Packet Capture 

The hacker uses a data packet capture method to collect the required information 

about the target. For example, the remote-control device controlling the drone, MAC 

addresses of the drone, wireless network channel, the encryption type 

(WEP/WPA/WPA2/OPN), etc., are sent out by the drone’s wireless network, which can be 

collected. The tools used to capture wireless network frames are Aircrack-ng and 

Wireshark. 

4.1.2.2 Denial-of-Service Attack 

De-authentication flood attacks (DoS) [41] compromise wireless network [40] 

access points. The targeted access point’s RAM is depleted by continuous de-

authentication requests sent by the hacker. As a result, the clients cannot reach the access 

point because there is no memory left to reconnect, leaving them without a connection. The 

DoS attack will target the MAC address access point to disconnect all the devices 

connected to it or target a specific MAC address (drone or remote controller) to disconnect 

it from the network. The DoS attack is shown in Figure. 4.1. 
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Figure 4.1 Denial of Service Attack 

4.1.2.3 Man-in-the-Middle Attack 

The attacker spoofs the communication network between the drone and the operator 

of the remote-control device (RCD) and takes control of it. He can transmit the 

authentication commands to the drone as if he were the original RC user as shown in Figure 

4.2. The hacker will be able to see the location and drone’s data feed without the drone’s 

or the RC user’s knowledge. If the wireless network is password-protected, Aircrack-ng 

and crunch programs can access the authentication keys through the handshake protocol. 

 

Figure 4.2 Man-in-the-Middle Attack 
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4.1.3 Cyber-Attack on Drones 

On the drone static network, DoS attack is implemented on Parrot A.R drone. By 

repeatedly transmitting de-authentication commands, the remote-control device is 

unplugged from the drone. The drone will either crash or the attacker will be able to take 

control of it by attaching it to his device. A wireless bridge adapter Alfa AWUS036NHA 

is utilized in a virtual computer running Kali Linux. Aircrack-ng [42] is a toolkit that 

includes everything needed to take down a drone. The commands for attacking the drone 

are as follows: 

# iwconfig wlan0 mode monitor 

# ifconfig up 

# aireplay-ng -9 wlan0 

# airodump-ng wlan0 

 

Figure 4.3 MAC Address Detection 

A data capture attack on a wireless network is launched using the above commands, 

resulting in collecting beacon frames containing destination and source MAC addresses of 

the devices in the network. The MAC address of the drone and the controlling device 

commanding the drone are displayed in Figure 4.3. 
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root@kali: ~# aireplay-ng -0 0 -a drone BSSID -c remotecontrol BSSID wlan0 

The drone will be disconnected from the network leading it to crash or take over by 

the attacker, as shown in Figure 4.4 and Figure 4.5. 

 

Figure 4.4 Communication Link Before DoS Attack 

 

 

Figure 4.5 Communication Link After DoS Attack 

4.1.4 Defense against cyber attacks 

We proposed the following defense techniques for the drone’s wireless network 

security.  

• Wireless network encryption 
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• Intrusion detection system (IDS) 

• Moving target defense (MTD) 

Figure 4.6 and Figure 4.7 shows the architecture and base station model.  

 

Figure 4.6 System Architecture  

 

Figure 4.7 Base Station 

The Raspberry Pi, as shown in Figure 4.8 is a low-cost computer that may be used 

for a variety of projects. We are utilizing it as an intermediate router [43] to create a secure 

wireless network between the drone and the remote control. It is set up to function as a 
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hotspot, bringing devices into the network and establishing a communication link between 

them. The drone sends live video feed to the laptop via raspberry pi router and controlling 

commands to the drone are send using laptop via raspberry pi router. WPA2 encryption is 

used to secure the raspberry pi wireless network. 

 

Figure 4.8 Raspberry Pi 

The Robot Operating System (ROS) in Figure 4.9 contains tools and libraries to 

develop reliable robotic applications. As part of this, ROS includes an AR drone driver that 

can communicate and control the drone. We can create autonomous tasks for the 

drone using ROS [44]. 

 

Figure 4.9 ROS Model 
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4.1.4.1 Wireless Network Encryption 

Multiple devices can connect to the AR drone because it will operate as it’s network 

is unencrypted and open, and it acts as an access point, but only one device can control it. 

The drone is compromised when the real user is disconnected, and the false user reconnects 

to the drone. Installing the WPA supplicant compiled libraries [45] into the drone libraries 

encrypts the drone’s wireless network with WPA2 security, as shown in Figure 4.10. To 

achieve this, the drone’s bin folder should have the binaries WPA CLI, WPA pass, and 

WPA supplicant. After the binaries have been installed successfully, the drone will stop 

functioning as an access point and connect to the specified access point name and password 

(in our case, it will connect to the raspberry pi). 

 

Figure 4.10 WPA Binaries in AR Drone 

4.1.4.2 Intrusion Detection System 

The wireless network is monitored in real-time by an intrusion detection system. 

Intrusion is defined as unauthorized access to a network without the knowledge of the 

network administrator. The systems can be hacked or spoofed, giving the unauthorized 

person immediate access. 
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IDS monitors the network but does not prevent cyber-attacks. It detects the 

anomalies in the network and notifies the user in case of any suspicious activity. We used 

Kismet wireless IDS [46] for network monitoring, as shown in Figure 4.11. 

 

Figure 4.11 Kismet IDS 

4.1.4.3 Moving Target Defense 

The MAC address mutation technique is implemented in raspberry pi. Figure. 4. 12 

shows the MTD model. 

 

Figure 4.12 Moving Target Defense Model 
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4.1.5 Configuration 

Kismet configuration file is created to monitor and detect malicious activities on 

the network. The alerts configured are shown below: 

#kismet.conf  

alert=LUCENTTEST,10/min,1/sec alert=DEAUTHFLOOD,10/min,2/sec 

alert=NETSTUMBLER,10/min,1/sec alert=WELLENREITER,10/min,1/sec  

alert=AIRJACKSSID,5/min,1/sec alert=PROBENOJOIN,10/min,1/sec 

alert=BCASTDISCON,10/min,2/sec alert=CHANCHANGE,5/min,1/sec  

alert=BSSTIMESTAMP,10/min,1/sec alert=MSFBCOMSSID,10/min,1/sec 

alert=DISASSOCTRAFFIC,10/min,1/sec alert=NULLPROBERESP,10/min,1/sec  

alert=MSFNETGEARBEACON,10/min,1/sec 

alert=LONGSSID,10/min,1/sec alert=MSFDLINKRATE,10/min,1/sec  

alert=DEAUTHCODEINVALID,10/min,1/sec 

alert=DISCONCODEINVALID,10/min,1/sec  

# Do we have a GPS?  

gps=false 

# Log file directory  

configdir=/var/log/kismet/ 

The MAC address mutation technique is implemented using the macchanger tool 

libraries by executing the following script, and the model is shown in Figure 4.13. 

#! /bin/bash 

macchanger --show wlan0 

Ifconfig wlan0 down 
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macchanger -r -b wlan0 

Ifconfig wlan0 up 

macchanger --show wlan0 

sudo service network-manager start 

 

Figure 4.13 MAC Address Mutation Model 

4.1.6 Results 

We implemented Data capture attack and DoS attack on the wireless network of the 

drone. Kismet IDS detects the cyber-attack, and an alert is generated for the malicious 

activity on the network. Figure 4.14 shows the data captured by scanning the network, 

including MAC addresses and network encryption type. The MAC addresses under the 

station columns are the addresses of the drone and laptop controlling the drone. 

 

Figure 4.14 Data Capture Attack 
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root@kali: ~# aireplay-ng -0 0 -a drone BSSID -c remotecontrol BSSID wlan0 

The above command is used to implement DoS attack on the wireless network of 

the drone. The MAC address of the raspberry pi is targeted to take down the network and 

crash the drone. Figure 4.15 shows the DoS attack on the raspberry pi whose network is 

named as hotspot detected by the kismet IDS. 

 

Figure 4.15 Kismet IDS Alerts 

As soon as the alerts are generated by the IDS, if the mutation time interval is not 

reached, the MAC address of the hotspot is changed immediately to prevent the cyber-

attack. Since the MAC address is changed, the attacker launching the attack with the old 

MAC address will be failed. Figure 4.16 shows the kismet detecting the new MAC address 

of the hotspot after mutation. 

 

Figure 4.16 New MAC Address After Mutation 1 

After a short interval, the MAC address will be changed again dynamically, and 

kismet detects the new MAC address of the drone in Figure 4.17. 

 

Figure 4.17 New MAC Address After Mutation 2 
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The attacker continues to implement cyber-attack on the wireless network using 

configuration gathered in data capture attack. Since the network is dynamic and the MAC 

address is changed dynamically, the attack on the network fails, as shown in Figure 4.18. 

 

Figure 4.18 Unsuccessful Cyber-Attack 

Some of the useful data transmitted from the drone to the base station are camera 

feeds, altitude, motor speeds, navigational data, acceleration, and velocity values which 

are shown in Figure 4.19 and Figure 4.20. 

 

Figure 4.19 Navigational Data from the Drone 
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Figure 4.20 Acceleration and Velocity Plots 

 

4.2 Random Host Address Mutation and Analysis in SDN 

As discussed in sections 2.1 and 2.2, The MTD technique changes the static system 

into a dynamic, enhancing the system’s security, and Software-defined networking 

separates the data plane and control plane of the network compared to a traditional network. 

 Contribution. We developed a random host address mutation technique in 

software-defined networking, and network analysis is shown. The mutation of the host IP 

addresses of all hosts is implemented at a random time in the network. The IP address 

mutation is a widely researched technique, and it provides network security by assigning a 

virtual IP address to the host at a time interval. Thus, the mutation technique not only 

provides security to the network but also it creates an overhead for changing the host’s 

configuration by the SDN controller. We implemented the host address mutation technique, 

and the performance of the network is shown by benchmarking against the traditional 

network. 
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4.2.1 Related Work 

The adversaries in Dynamic Network Address Translation (DYNAT) [47] [48] use 

most of their time monitoring the network. To prevent malicious scanning, DYNAT 

substitutes the TCP/IP header information. Trusted users are given predefined essential 

parameters that ensure the service’s availability. The network overhead can be high 

depending on the fields obfuscated and deployment. Obfuscating the MAC address and 

deploying it on a switched network, for example, could cause the switches to overheat and 

drastically increase ARP traffic complexity to route switch port packets accordingly. To 

handle the routing overhead, more hardware may be necessary. 

Revere [49] is a technique in which an open overlay is created. An overlay network is 

a dynamic network example that may change pathways, rearrange itself, and adapt to 

dynamically downed links or nodes. The additional traffic on the network is caused by the 

control messages transmitted between nodes. Unknown network overheads can be imposed 

by reconfiguration and routing. 

RITAS [50] (Randomized Intrusion-Tolerant Asynchronous Services) is an acronym 

for Randomized Intrusion-Tolerant Asynchronous Services. On top of IPSec and TCP, it 

creates fault-tolerant consensus-based protocols. To run multiple resources, additional 

resources are needed and when the protocols are in the process of negotiation, additional 

time is required creating execution overhead. Running additional services than required 

due to mutation also created memory overhead. To each packet header an extra 24 bytes 

will be added by IPSec. As protocols come to an agreement, more network traffic is 

generated. An aggregate of 30% latency to each protocol is added by IPSec. 
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Antonatos et al. suggested Network Address Space Randomization (NASR) [51]. In 

order to detect worm attacks, endpoints that have been in the process of becoming infected 

or already infected are examined. DHCP changes the information of endpoints. Due to the 

mutation of IP addresses, connections are discarded or dropped, and network overhead is 

created. 

A Mutable Network (MUTE) [52] allows network hosts to modify their host addresses 

and port numbers. The system configuration and real IP address are not changed to the 

current network it is a virtual overlay. Over the virtual relay, the traffic is routed 

independently. Host IP  address data is synchronized through encrypted channels. An 

overhead on network infrastructure, including switches and routers, will be present. 

Additional routing overhead may cause network infrastructure to fail. 

Inside a bigger outer virtual overlay network, Dynamic Backbone (DynaBone) [53] 

produces several inner virtual overlay networks. Inner networks improve diversity by using 

alternative networking, routing protocols, and hosting a distinct protocol or service. The 

hosts of the outer overlay network are unaware of the inner networks that make up one 

network. At the internal overlays, sensors are used to monitor traffic and performance. 

Depending on the routing protocols and networking utilized in the network, additional 

latency will be introduced. There is also a reduction in bandwidth. Overheads are caused 

by encryption and authentication protocols. There is no way of knowing how much 

network infrastructure and additional routing will be used. 

Active Repositioning in Cyberspace for Synchronized Evasion (ARCSYNE) [54] is a 

mechanism that changes VPN gateway IP addresses using the gateway kernel OS. Using a 

clocking mechanism, while engaging in hopping, a secret is shared by the gateway. At each 
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clock tick, a virtual IP address using secret is generated by the gateway. Each gateway 

calculates the IP addresses of the other gateways in the same way. IP address hopping and 

streaming services have no effect on the gateways. For a grace period, the gateways allow 

data packets even after the IP address has changed. The time it takes for a data packet to 

go from one gateway to the next is the grace period. Updating the data packets address 

information has an impact on delivery delays, which is referred to as network overhead. 

Random Host Mutation (RHM) [55] is a system that frequently modifies routable IP 

addresses. Temporary IP addresses are assigned to hosts that are mapped to actual IP 

addresses by RHM. The virtual IP addresses have a brief lifespan and are replaced at 

random and in a consistent manner. A special (MTG) gateway at the network edge converts 

the real IP address to a virtual IP address. Hostnames that DNS translates to the real IP 

address can be used to contact the IP address changing hosts, which was then converted to 

a virtual IP address before being sent to the originating hosts. Hosts can communicate with 

one other using their real IP addresses with the help of MT Controller permission. Sessions 

are kept open until the current flows are closed. TAP network kernel devices or OpenFlow 

virtual switches [56] are used for address mapping. For maintaining sessions during 

mutation, address-space overhead is created. Because of the frequent mutations that cause 

routing-update overhead, the routing table has grown in size. 

OpenFlow Random Host Mutation (OF-RHM) [57] changes host IP addresses that are 

routable on a regular basis. The host's actual addresses are not modified. By ensuring 

consistency, the host’s routable short-lived virtual IP addresses are established and 

regularly altered. RHM gateways and RHM controllers in OF-RHM are OpenFlow 

switches and OpenFlow controllers. An Open Flow controller converts to real IP addresses 
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from virtual IP addresses. It also uses OpenFlow messages across the switch to synchronize 

virtual IP mutations. End-host address assignments and DNS messages are controlled, as 

is the implementation of flow rules in the switches. By maintaining flows and assigning IP 

addresses to end-hosts, address-space overhead is created. The overhead increases as the 

mutation rate increases. The rate of mutation and flow termination also contributes to the 

flow-table overhead. 

Spatio-temporal address mutation [58] dynamically changes host IP addresses, adding 

a layer of dynamicity to the IP address bindings and host. An overhead is imposed on the 

controller for the random mutation computation for each interval. Address space overhead 

is created for maintaining sessions during mutation. If the mutation rate is high, the 

overhead will be considerable. Queries delivered to the DNS server at shorter intervals also 

cause DNS traffic overhead. 

Two security functionalities are included in the AVANT-GUARD SDN [59]. First, 

from saturation attacks, the control plane is protected by connection migration. The second, 

whenever from the traffic, if the attack is detected, flow rules are changed dynamically, 

protecting the data plane. The technique requires additional storage for the rules, and the 

overhead of assessments is added to the data plane. If the control plane connects with the 

data plane via various trigger and payload delivery reports, there may be network overhead. 

DFI (Dynamic Flow Isolation) [60] adapts to changing network situation. The situation 

includes a time of day and a warning from third-party tools. The systems are subjected to 

DFI’s network access policies. On the switches, flow rules are used to govern rate limits, 

ingress and egress flows from endpoints. Sensor data is processed using policy decision 

points (PDPs), and new flow rules are established in accordance with the present policy. 
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Latency is the time delay that happens when the switch sends new flow rules to the 

controller and DFI needs to make a decision. This overhead occurs for all new flow rules, 

regardless of size. If the new flow rule is present in the system, the latency will be reduced. 

4.2.2 Experimental Setup and MTD Application 

The topology in this study was developed using the Ryu controller in a Mininet 

emulator. The controller’s dynamic algorithm frequently changes the network host 

configuration. The southbound interface communicates with hardware devices using the 

OpenFlow 1.3 protocol. 

The Ryu Controller is in charge of DNS responses, IP address mutation, switch 

flow installation. In the terminal session, TCPDump is enabled to capture data packets of 

the host. The emulated topology is shown in Figure 4.21. The controller behavior is 

demonstrated by capturing and comparing the traffic from both topologies. 

The communication steps, as shown in Figure 4.22, are as follows: 

Step 1: Host1 sends a DNS request for Host 2 IP address. 

Step 2: The controller intercepts the response from the DNS server, and it picks a 

random virtual IP address from the pool as v2 from the available IP address 

pool and sends it to Host1, establishing a mapping between the real and virtual IP 

addresses. The controller delivers the modified DNS response with the virtual IP 

address to Host1. 
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Figure 4.21 MTD Topology 

 

Figure 4.22 Communication Between Hosts 

Step 3: Host1 delivers data packets to the virtual IP address v2 that it has received, 

with the source IP being its real IP address r1. Because switch1’s table does not 

match the destination IP address, the packets are sent to the controller. 
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Step 4: The source and destination IP addresses are checked by the controller. If 

the source IP address is valid, it constructs a mapping by selecting a virtual IP 

address v1 from the pool at random. The mapping table will be used to check the 

destination IP address, and if it is identified, it will check the real IP address host 

and install the appropriate flows in the switches that can reach the destination host. 

Step 5 & 6: The data packets are sent to Host2 in accordance with the flows. 

Because Host2 is directly connected to switch2, the controller will alter the 

destination IP to r2 to route packets to Host2 because switch2 is unaware of Host2’s 

virtual IP address. 

Step 7: When Host2 responds to the data packets, the source IP address becomes 

real IP address r2, and the destination IP address becomes v1. The controller 

transforms the physical address of r2 to the virtual address of v2. 

Step 8 & 9: According to the flows, data packets are delivered to Host1. Because 

Host1 is physically linked to switch1, the controller will alter the destination IP to 

r1 to route packets to Host1 because switch1 is unaware of Host1’s virtual IP 

address. 

The real IP addresses are concealed, and the virtual IP addresses are visible to the 

outside world. The virtual IP addresses are regularly altered in a dynamic network to 

increase the attacker’s cost and complexity when attempting to gather data using host 

addresses. Changing the IP addresses frequently increases the overhead in the system, 

resulting in packet loss. The controller must install switch flows for every IP address 

change, resulting in increased overhead, reaction time delays, and packet loss. Configuring 

two topologies allows for network traffic analysis. 
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The controller installs flows in the switches depending on the destination host IP 

address, which can be real or virtual. Host 1 is attached to Switch 1, and host 2 is attached 

to Switch 2. The source IP address is translated to a virtual IP address, and the traffic is 

forwarded to the destination virtual host IP address. The MTD implementation algorithm 

is shown in Figure 4.23. 

 

Figure 4.23 Algorithm Ryu Controller 

To generate traffic, the IPerf command-line utility is utilized. It is one of the most 

extensively used methods for assessing network performance. It is used in TCP and UDP 

connections to modulate parameters. IPerf should be set up so that one node serves as a 

server and the other serves as a client. Requests from the client to the server generate traffic, 
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which is also bidirectional. Packet loss, jitter and bandwidth are measured by generating 

TCP/UDP traffic. 

The traffic is captured using the Command-line interface TCPDump for future 

investigation. TCPDump will collect traffic from both MTD-enabled and non-MTD 

topologies, saving it as a PCAP file for later examination. 

4.2.3 TCP and UDP Traffic Analysis 

The TCP UDP traffic captured by TCPDump is analyzed. For each testing session, 

TCPDump command line tool captures the traffic and saves as PCAP file. Packet loss, jitter 

and bandwidth are examined in this work. Table 4.1 shows test parameters. Using the 

analysis MTD network is benchmarked with traditional network. 

Table 4.1 Parameters 

Parameter (Both Topologies) Value 

Time for Test1 (TCP) 10 Sec 

Time for Test2 (TCP) 20 Sec 

Time for Test3 (TCP) 30 Sec 

Time for Test4 (TCP Bidirectional) 10 Sec 

Time for Test5 (UDP) 15 Sec 
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Figure 4.24 Test 1 TCP Bandwidth Results 

 

Figure 4.25 Test 2 TCP Bandwidth Results 
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Figure 4.26 Test 3 TCP Bandwidth Results 

 

Figure 4.27 Test 4 TCP Bandwidth Bidirectional Traffic Results 
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Figure 4.28 Test 5 UDP Bandwidth Results 

 

 

Figure 4.29 Jitter Measurement 
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The data transmitted in a period of time is known as bandwidth. Due to network 

disturbances, if the data packets are dropped in a TCP session, the bandwidth will used 

more to re-transmit the dropped data. In a TCP session, the receiving endpoint will request 

the source to re-transmit the lost data using the sequence numbers. Since the IP address of 

the host is changed frequently, the data that is sent to the IP address before mutation will 

be dropped if the IP address is changed. The controller has to re-send the data packets 

dropped to the IP address after mutation. 

The data from source travel in equal intervals to destination in a healthy network. 

The time interval between each data packet that is sent to the destination is called Jitter. 

The time interval between each packet will be disrupted if there are disturbances in the 

network. Jitter causes packet loss by causing congestion. 

The bandwidth measurement is shown in Figures 4.24, 4.25, and 4.26, respectively, 

based on the aforesaid test findings. In traditional network topology, we can see that the 

bandwidth graph is normal. In the MTD network, as time increases, the bandwidth is 

decreasing. The mutation of the IP address is causing to termination of the session at the 

same time, and the packets are getting dropped. In order to re-transmit the data to a new IP 

address, the bandwidth usage is increased, and new data transmission capacity is reduced. 

In both topologies, bidirectional traffic is generated, as seen in Figure 4.27. The traffic will 

be sent from both endpoints at the same time, and the bandwidths are measured for both 

sender and receiver. At the beginning and end of the test, the MTD architecture has 

somewhat less bandwidth than the traditional network. 

The bandwidth analysis of the UDP session is shown in Figure 4.28. The data is 

transmitted normally in a traditional network without any packet loss, however, the MTD 
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topology bandwidth increased significantly at first and then decreased abruptly before 

returning to normal. The bandwidth usage is normal because UDP does not re-transmit the 

lost data packets. 

The jitter analysis of UDP session traffic is shown in Figure 4.29. In typical network 

topology, jitter is expected. In a typical network, the time distribution between packets 

arriving at their destination is normal. If the jitter time interval fluctuates in a session, 

congestion occurs, resulting in packet loss. The IP mutation in the MTD network causes 

the controller to be burdened with the task of installing numerous flows in the switches in 

a short period of time. The network becomes unbalanced as a result of the configuration 

modifications, leading to congestion, packet loss, and other issues. Table 4.2 shows the 

resulting overheads created and Table 4.3 shows the packet loss. 

 

Table 4.2 Overheads 

 

Overhead 

 

Description 

 

Address-space 

This overhead is created due to the frequent assignment of 

virtual IP addresses to the hosts. The controller requires 

additional space to map the sessions with IP addresses. 

 

Flow-table size 

 

As the IP addresses of the nodes are changed frequently, the 

number of flows in the table increases if the existing flows are 

not managed to delete on time. 

 

Routing-update 

As the new flow is added to the flow table, the updates should 

be sent to network devices. 

 

Execution 

The application running on the controller changes the IP 

address of the host frequently, resulting in execution 

overhead. 
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Table 4.3 Packet Loss 

Test Protocol Topology Packet Loss 

1, 2, 3 TCP  Both None 

4 TCP Both None 

5 UDP Traditional None 

5 UDP MTD 22% 

 

4.3 Discrete Host Address Mutation and Analysis in SDN 

In this research, we propose host address mutation [62] deployed as a novel MTD 

technique in the SDN environment, which aims to create high uncertainty in adversary 

scanning by changing the IP addresses of the host in the network based on individual 

mutation time intervals. The main objectives of this research are discussed in sequence. 

First, transparency is maintained in the mutation of the IP address of each host in the 

network. To provide transparency, the real IP (rIP) address of each host is unchanged, and 

a short-lived random virtual IP (vIP) address is assigned regularly to each real IP according 

to the mutation time interval. 

Second, Once the session (Stcp , Sudp , Sicmp) is established, the hosts are ready to 

transfer and receive the data from each other. The active session (Act(hi , hk)) mapping is 

created for each host, and it is monitored. Since the session time interval varies for each 

host, the mutation time interval also varies. Sometimes the session interval is long that 

adversaries can be successful in implementing a scanning attack. Even though the 

adversaries obtain the host’s information, it is a virtual IP that will be changing rapidly. In 

this way, the mutation interval is different for every host, which does not need to change 

the address while in active session, preserving network performance and stability. 
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Third, we assume that every host in the network will not be given privileges to 

access sensitive data, modify network configuration, change firewall settings, and simply 

not even BIOS settings of the host itself in an enterprise network topology. In this situation, 

the hosts with administrative privileges are targeted more than the others. The scanning 

attacks on those specific host IP addresses will be high when compared to other host IP 

addresses. The host active in transferring and receiving data is targeted more than the host, 

which is less active; this attribute can also be added because the attackers are more likely 

to collect more useful data within a short period. 

Fourth, to provide enough IP addresses to hosts in the network, the unused public 

address space range should be equivalent to the number of mutations in a host time interval. 

In a network, there will be hosts that can be reached publicly and need a public address 

range, and some hosts are internal to the network, which can be provided with a private 

address space range. The private address space range is always huge than the public address 

space. This mutation scheme using data stats is also effective when the available address 

space is less. Due to insufficient address space, some of the hosts cannot be moved, or the 

host address is repeated multiple times in a short interval of time. To avoid this problem, 

data stats are used to allocate the address space range for a host involved actively in the 

network and targeted by the attackers frequently. 

To implement these techniques, traditional network implementation is costly and 

poses more challenges. We use software-defined Networking (SDN) infrastructure, which 

is quite flexible in developing and managing the network with minimal operational 

overhead. The network controller RYU is used to monitor and control the network using 

the OpenFlow 1.3 protocol. The network topology is built using Mininet. The experimental 
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results and analysis of the simulated network will show the significant rise in defending 

the network against reconnaissance attacks by increasing uncertainty in scanning, 

complexity in gathering the information about the network systems. 

4.3.1 Proposed Methodology 

 In this moving target defense host address the mutation scheme. Consider a 

network topology with Ns number of hosts. Here we created the topology in Mininet, and 

the RYU controller is used. The controller implements the data flow between the network 

components. Figure 4.30 shows the topology with two hosts, and later we add two hosts. 

Ns = {h1, h2, h3, h4 . . . . . . . . . hn}   (4.1) 

The real Ip address (rIP) of each host in the network is replaced by a short-lived 

virtual IP address (vIP). The virtual IP addresses are assigned randomly from the pool of 

available unused address space. The mapping function fmap is used to assign a virtual IP 

address to a real IP address. 

vIP = fmap(rIP)     (4.2) 

 

Figure 4.30 Network Topology with Two Hosts 
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When the host hi initiates communication with host hj, a DNS request will be sent 

to the server to resolve the domain name into the vIP address of the host hj and a session 

(Stcp , Sudp , Sicmp) will be established between host hi and hj by installing the flows in the 

required switches and active session mapping Act(hi, hj) is created for monitoring the data 

stats. The controller will monitor the data stats for each session. Data stats include 

parameters like session interval, source IP, destination IP, source MAC, destination MAC, 

data packets sent, and received in that time interval, etc. Once the session is ended, it is 

removed from the active session table. If the host wants to communicate and establish a 

session again, the DNS request should be sent to the server to retrieve the vIP address of 

the host. 

Since each session time interval (St) depends on the length of time taken by the 

hosts to complete the transfer of data between each other, the randomization is applied 

when the session is ended to provide network performance and stability. The mutation time 

interval Mt is the session time interval. If the mutation time interval is random, the session 

between the hosts will be interrupted, and the packets are dropped. 

St = S(tcp, udp, icmp)(Act(hi, hj))    (4.3) 

Mt = St      (4.4) 

If the address space in network topology is Ns. The available active hosts in the 

network are Na. The time taken for reconnaissance attack for each active host is Tr,h. The 

total average time Ta, r that the adversary will spend on reconnaissance attack on all hosts 

will be: 

Ta, r = Na x Tr, h    (4.5) 



 

61 

If Cr, h is the cost to spend for reconnaissance attack on a single host. The total cost 

Ca, r that the adversary needs to spend on reconnaissance on all active hosts will be: 

Ca, r = Na x Cr, h    (4.6) 

Fingerprinting is a technique used by the adversary to find the vulnerable host with 

high probability in the network by analyzing the data collected from the reconnaissance. 

Similar fingerprint operations will not be repeated on the host if it fails to find. The 

probability of identifying the vulnerable host in the network successfully with i steps will 

be: 

Pi = 1 / Na , 1 ≤ 𝑖 ≤ Na    (4.7) 

If Tf, a is the fingerprint time spent on the single host, then the average time taken 

by the adversary for reconnaissance and fingerprinting analyses to find the vulnerable host 

is defined as: 

Tf = Ns x Ta, r + ((Na + 1) x Tf, a) / 2    (4.8) 

From the above analysis if Tm is the mutation time interval, then: 

Tm ≤ (Ns x Tr, h + Tf, a)     (4.9) 

From the above analysis, for each Tm interval, the adversary cannot complete a 

reconnaissance attack. The adversaries will target the host, which is very active in 

transferring and receiving data. The adversaries tend to collect a large amount of traffic 

within a small time. The amount of available unused address space should be equivalent to 

the number of hosts in the network topology. If the address space in network topology is 

Ns and the available unused address space is Nu, s then: 

Nu, s ≡ Ns     (4.10) 
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If the available unused address space is less, then some of the hosts in the network 

cannot be moved or cannot be moved frequently according to the mutation time interval. 

To solve this problem, the hosts which are highly active in the network are identified. The 

adversaries try to gather the maximum amount of data within less time, which is possible 

when the host is highly active and can be targeted. The scanning attack stats and data 

packets stats can be monitored using SNORT, and it will alert the controller according to 

the rules written into it. Using SNORT rules, we can analyze the data packets and discover 

the hosts which are highly active in the network and targeted by the adversaries. In this 

way, the unused IP addresses can be used effectively. Ryu and SNORT can be configured 

on a single machine or different machines. 

4.3.2 Architecture 

The topology is implemented in the Mininet network using the Ryu controller. The 

topology can be seen in Fig. 2 in detail. Ryu controller acts as intermediate central software 

to manage network activities like IP mutations, DNS responses, Session establishment, IP 

address space management, Data stats analysis using SNORT. 

Table 4.4 Notations 

Ns Network address space 

Na Active hosts in the network 

rIP Real IP address 

vIP Short-lived virtual IP address 

fmap Real IP to virtual IP mapping function 

Stcp TCP session between hosts 

Sudp UDP session between hosts 

Sicmp ICMP session between hosts 

Act(hi, hj) Active session mapping between host hi and host hj 
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Table 4.4 Notations (continued) 

St Session time interval 

Mt Mutation time interval 

Tr,h Time taken for reconnaissance attack on 

each active host in the network 

Ta, r Total average time spent on reconnaissance 

attack on all active hosts in the network 

Cr, h Cost to implement reconnaissance attack 

on a single host 

Ca, r The total cost of implementing 

reconnaissance attack on all active hosts 

Pi The probability of identifying vulnerable 

host in the network 

Tf, a Time spent for fingerprinting on a single 

host 

Tf Average fingerprinting time spent on all 

hosts in the network 

Nu, s Available unused address space 

SNORT Data packet sniffer, IDS, IPS 

 

The unmatched packets in the OpenFlow switches will be encapsulated and sent to 

the Ryu controller. The controller discovers the type of packets, and required actions are 

taken. If the packet is DNS request to resolve the host, then the controller will follow series 

of steps to authenticate the host and install the necessary flows in necessary OpenFlow 

switches to establish the session between the hosts. The active session will be mapped into 

the table Act(hi, hj) to track the number of active sessions in the network. The mutation 

interval is discrete for each host, and the session will be terminated when the hosts stop 

communicating with each other. Every time the hosts need to communicate, the name 

should be resolved and establish a session. SNORT will monitor all the data packets and 

alert the controller if anomalies are detected according to the rules. SNORT will collect 

data stats about each host, which can be used to discover highly active hosts in the network. 

This data can also be used when the unused address space is limited. 
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4.3.3 Traffic Generation and Reconnaissance 

 To generate the traffic between the hosts, IPerf tool is used, and using the 

TCPDump command-line tool, and traffic is captured and saved into a PCAP file for further 

analysis. The PCAP file is analyzed using Snort IDS. The scanning attack on the network 

is made using Nmap from Kali Linux OS, as shown in Figure 4.31. SNORT details the 

number of TCP and UDP sessions between the hosts, events that needed to be reviewed, 

etc. 

Using the SNORT statistics, the scanned IP addresses can be known and the number 

of times each IP is scanned. Using Nmap scanning, the attacker can gather whether the host 

is up or down, open ports available, services running on the open ports and their versions 

etc. Even though the attacker gathers all the details, the IP address will be changed 

frequently, creating complex situations to understand the network. 

 

Figure 4.31 Reconnaissance Using Kali 

Using security onion as shown in Figure 4.31, further analysis can be done on the 

PCAP file. If the adversary succeeds reconnaissance stage and try to infect the PC, as a 
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security analyst, detailed packet analysis should be done. The following Figure 4.32 

shows the series of steps involved in the analysis. 

 

Figure 4.32 SGUIL for Packet Analysis 

4.3.4 Results and Analysis 

 

Figure 4.33 Nmap Scan for Live Hosts 
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From Figure 4.33, you can see that the adversary can find the active host and 

identify the open ports available by using stealth scan. Figure 4.34 shows the services 

running on the open ports and its versions. In Figure 4.35, SNORT collects the individual 

host’s total sessions for a certain period for further analysis. 

 

 

Figure 4.34 Nmap Results 

 

 

Figure 4.35 SNORT Session Results 
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Figure 4.36 SNORT Alerts 

      Figure 4.36 shows the alerts generated by SNORT IDS. The attacker scanned the 

network for possible information leak, which includes a username overflow attempt 

classified under attempted administrator privilege gain. The alerts generated by SNORT 

shows the number of hosts scanned and the information gathered. The mutation technique 

thwarts the scanning by changing the IP address of the host. The attacker cannot know 

the details of which host the information is gathered. Some other types of events filtered 

by SNORT are shown below in Table 4.5 and only few are listed. 

Table 4.5 Snort Filtered Events 

Events filtered by SNORT 

DNS named version attempt 

RSERVICES rexec username overflow attempt 

SCAN nmap XMAS 

POLICY FTP anonymous login attempt 

FTP PORT bounce attempt 

CHAT IRC nick change 

SNMP request tcp 

SNMP AgentX/tcp request 
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Figure 4.37 Hosts Mutations at the Same Time 

 

Figure 4.38 Hosts Sessions 
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Figure 4.39 individualized Hosts Mutations 

The number of mutations of all hosts for a certain period is shown in Figure 4.37. 

Since the mutation time interval is random for all hosts, the host addresses are changed at 

the same time for all hosts. If a host is in a TCP/UDP session with other host or server, it 

will be interrupted due to random mutation. This will create instability in the network, and 

the network performance will be degraded. Figure 4.38 shows the number of sessions 

established by each host. The session establishment number of each host varies with one 

another. Figure 4.39 shows the number of mutations of each host after the application of a 

discrete mutation interval. The mutation technique is applied when the host terminates the 

session without interrupting. The stability of the network can be preserved with this 

technique. The host, which is active in the network, established more sessions than the 

other hosts. By analyzing this data, the address space range for each host can be assigned. 

The host which is active is assigned more address space range than other hosts which are 

less active. In this way, when the availability of host addresses is less, it can be managed 
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with this technique. When the address space range is less, the same IP address is assigned 

to the host multiple times in a short interval. This gives the adversary to gather more 

information with the same IP address. 

 

4.4 Discrete Host Address Mutation with Subnet Game Strategy and Benchmarking 

Discrete Host Address Mutation is introduced in section 4.3. In this chapter, subnet 

game strategy has been included in our discrete MTD algorithm to improve the complexity 

in understanding the network structure by the attacker. 

4.4.1 Subnet Game Strategy 

The private IP addresses in a network are not routed on the internet. They are used 

within the local network. The range of private IP addresses in each class is shown in 

Figure 4.40. 

 

Figure 4.40 Private IP Addresses 

 Consider a network topology as shown in Figure 4.41. The network subnets are 

ranging from 192.168.1.0/24 to 192.168.7.0/24. In each subnet, you have more than 200 

unused IP addresses are left. We can use the unused IP addresses and assign them to the 

hosts as virtual IP addresses by creating multiple IP address pools. Each pool is a different 

subnet, as shown in the Figure 4.41. 
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Figure 4.41 Example Subnet Topology 

 

 

Figure 4.42 Subnet Pools 

 The virtual IP addresses are selected randomly from each different subnet pool, as 

shown in Figure 4.42.  Implementing this technique increases complexity in understanding 

the network topology by the attacker. For example, if the initial IP address of the host is 

192.168.2.3 and after mutation interval, let us assume the IP address changes to 

192.168.4.6. The attacker will get confused to determine the host’s subnet and network 

topology diagram. 

4.4.2 Benchmarking and Analysis 

4.4.2.1 Benchmarking Topology 

This section introduces benchmarking [61] analysis to measure SDN controller 

network stability in terms of performance, scalability, and reliability. The popular Leaf-

Spine network topology is adopted and emulated in Mininet. IPerf traffic generators TP1 
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and TP2 are initiated at required nodes to generate the network traffic. The Leaf-Spine 

topology and parameters are shown below in Figure 4.43 and Table 4.6. We used 

Wireshark to capture the network traffic data and do further analysis. We increased the 

number of switches and hosts from topology 1 to topology 5.  Adding more resources to 

the network topology increases the load on the controller. As the load is increased from T1 

to T5, we measured the network’s stability and the controller’s performance. The 

benchmarking analysis is performed on random host address mutation technique and 

discrete host address mutation technique against traditional software-defined networking, 

and results are shown. We can observe from the results that the proposed MTD network 

outperformed the random MTD network. Each test in the topology is repeated for 10 times, 

and the average value is recorded. 

 

Figure 4.43 Leaf-Spine Topology 

Table 4.6 Topologies 

Topologies OVS Switches Nodes 

T1 16 200 

T2 32 400 

T3 48 600 

T4 64 800 

T5 80 1000 
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Figure 4.44 Leaf-Spine Topology with Controller 
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4.4.2.2 Benchmarking Performance 

Benchmarking Performance contain the following tests: 

1. Network Topology Discovery Time 

2. Asynchronous Message Processing Time 

3. Asynchronous Message Processing Rate 

4. Reactive Path Provisioning Time 

5. Proactive Path Provisioning Time 

6. Reactive Path Provisioning Rate 

7. Proactive Path Provisioning Rate 

8. Network Topology Change Detection Time 

4.4.2.2.1 Network Topology Discovery Time 

The time taken to discover the network devices and determine the complete 

topology of the network. Link layer discovery protocol is used to determine the discovery 

time, as shown in Figure 4.45. 

Tm1 is the timestamp of the initial discovery message sent by the controller. 

Tmn is the final discovery message sent by the controller. 

The time for the last discovery message = Tmn 

Topology Discovery Time (DT1) = Tmn - Tm1 

The average of the topology discovery time is as follows: 

(TDm) = 
𝐷𝑇1 + 𝐷𝑇2 + 𝐷𝑇3 .. 𝐷𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
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Figure 4.45 Network Topology Discovery Time 

 

Figure 4.46 Network Topology Discovery Time Benchmark 
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 The network topology discovery time is measured for both random and discrete 

MTD techniques enabled networks against the traditional network. The Figure 4.46 shows 

that the traditional network took less time to discover the topology, and the random MTD 

network took greater time to discover the topology. The discrete MTD network discovery 

time is closer to the traditional network, as shown in Figure 4.46. 

 

4.4.2.2.2 Asynchronous Message Processing Time 

The network devices in the southbound interface often generate notifications for 

the controller. The total time taken by the controller to process the event is measured as 

shown in Figure 4.47. The process is repeated for ten trials, and the average value is 

recorded in each topology. The results for each network type are recorded. 

 

Asynchronous Message Processing Time (APT1) =  

𝑆𝑈𝑀{𝑅𝑖} −  𝑆𝑈𝑀{𝑇𝑖}

𝑁𝑟𝑥
 

T1 is the event transmission timestamp, and R1 is the response received timestamp. 

Nrx is the total number of messages exchanged successfully. 

 

Average Asynchronous Message Processing Time = 

𝐴𝑃𝑇1 +  𝐴𝑃𝑇2 +  𝐴𝑃𝑇3 . .  𝐴𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
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Figure 4.47 Asynchronous Message Processing Time 

 

Figure 4.48 Asynchronous Message Processing Time Benchmark 



 

78 

 Figure 4.48 shows the time taken to process the message by the controller in each 

network. The traditional network took a very short time to process, and the random MTD 

network took a long time when compared to traditional and Discrete MTD networks. The 

discrete MTD network performed better than the Random MTD network, and it is 

somewhat closer to the traditional network performance. 

4.4.2.2.3 Asynchronous Message Processing Rate 

The total number of event messages processed by the controller per second.  

 

Figure 4.49 Asynchronous Message Processing Rate 



 

79 

It is measured by sending the messages from network devices to the controller for a 

short time and calculate the number of messages successfully processed by the controller 

and received by the network devices. 

Nrxn is the number of successful messages received from the controller, as shown in 

Figure 4.49. 

Asynchronous Message Processing Rate (APRn) = 

𝑁𝑟𝑥𝑛

𝑇𝑑
 

 

 

Figure 4.50 Asynchronous Message Processing Rate Benchmark 
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 Figure 4.50 shows the number of messages processed by each network at different 

topologies. The random MTD network performed worse when compared to others. The 

discrete MTD network performed well, and its results are closer to the traditional network. 

4.4.2.2.4 Reactive Path Provisioning Time 

The amount of time taken by the controller to create a reactive path between source 

and destination nodes is measured. It is critical to track how quickly the controller creates 

an end-to-end data plane flow. The time period begins with the controller(s) receiving the 

initial flow provisioning request message and ends with the controller(s) sending the last 

flow provisioning response message at its southbound interface, as shown in Figure 4.51. 

Tsf1 is the timestamp of the provisioning request received by the controller. 

Tdf1 is the timestamp of the provisioning response received from the controller. 

Reactive Path Provisioning Time (RPT1) = Tdf1 - Tsf1 

Average Reactive Path Provisioning Time =  

𝑅𝑃𝑇1 +  𝑅𝑃𝑇2 +  𝑅𝑃𝑇3 . .  𝑅𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
 

Figure 4.52 shows the provisioning time taken by all the networks. As the topology 

load increases, the time taken by the random MTD network is increased at a higher rate. 

On the other hand, the discrete MTD network performed well, and it is closer to the 

traditional network. 
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Figure 4.51 Reactive Path Provisioning Time 

 

Figure 4.52 Reactive Path Provisioning Time Benchmark 
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4.4.2.2.5 Reactive Path Provisioning Rate 

    The maximum number of independent pathways between source and destination 

nodes that a controller can establish in a single second.  The controller’s ability to set up 

as many end-to-end flows in the data plane must be measured. If TP1 is the traffic generator 

and TP2 is the receiver, then the total number of frames received by the TP2 in a time 

interval as shown in Figure 4.53. 

 

Figure 4.53 Reactive Path Provisioning Rate 
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 Reactive Path Provisioning Rate (RPR1) = 
𝑁𝑑𝑓

𝑇𝑑
 

Ndf is the total number of successful traffic frames received at the destination. 

Trial Duration (Td) 

 

Average Reactive Path Provisioning Rate = 

 
𝑅𝑃𝑇1 + 𝑅𝑃𝑇2 + 𝑅𝑃𝑇3 .. 𝑅𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
 

 

 

Figure 4.54 Reactive Path Provisioning Rate Benchmark 

Figure 4.54 shows the number of unique frames received or the number of paths 

established per second between the hosts. The random MTD network underperformed as 

the topology weight is increased. The discrete MTD network performed better, and it is 

closer to the traditional network. 
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4.4.2.2.6 Proactive Path Provisioning Time 

The time it takes the controller to create a path between the source and destination 

nodes proactively. It is similar to reactive path provisioning except that the flow is added 

manually, making it proactive. Here we measure the time taken to provision the proactive 

path between the hosts, as shown in Figure 4.55. 

Tsf1 is the timestamp of the provisioning request received by the controller. 

Tdf1 is the timestamp of the provisioning response received from the controller. 

Proactive Flow Provisioning Time (PPT1) = Tdf1 - Tsf1 

Average Proactive Path Provisioning Time = 

 
𝑃𝑃𝑇1 + 𝑃𝑃𝑇2 + 𝑃𝑃𝑇3 .. 𝑃𝑃𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
  

 

Figure 4.55 Proactive Path Provisioning Time 



 

85 

 

Figure 4.56 Proactive Path Provisioning Time Benchmark 

 Figure 4.56 shows the time taken by the discrete MTD network is better when 

compared to a random MTD network. As the topology weight increases, the time taken to 

provision the path increase very high in a random MTD network, and the discrete MTD 

network is somewhat closer to the traditional network. 

 

4.4.2.2.7 Proactive Path Provisioning Rate 

The maximum number of independent pathways between source and destination nodes 

that a controller can establish in a single second is shown in Figure 4.57. 

Proactive Path Provisioning Rate (PPR1) = 
𝑁𝑑𝑓

𝑇𝑑
 

 



 

86 

 

Figure 4.57 Proactive Path Provisioning Rate 

Ndf is the total number of successful traffic frames received at the destination. 

Trial Duration (Td) 

Average Proactive Path Provisioning Rate =  

𝑃𝑃𝑅1 +  𝑃𝑃𝑅2 +  𝑃𝑃𝑅3 . .  𝑃𝑃𝑅𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
 

Figure 4.58 shows the random MTD network underperformed in the proactive provisioning 

rate. The discrete MTD network performed fairly and is closer to the traditional network. 



 

87 

 

Figure 4.58 Proactive Path Provisioning Rate Benchmark 

 

4.4.2.2.8 Network Topology Change Detection Time 

The time it takes for the controller to notice changes in the network topology. It is vital 

to test how quickly the controller can identify any network-state change events to provide 

fast network failure recovery. 

Tcn is the time when the controller receives the first topology change notification. 

Tcd is the time when the controller sends the initial topology rediscovery message. 

Network Topology Change Detection Time (TDT1) = Tcd - Tcn  

Average Network Topology Change Detection Time =  

𝑇𝐷𝑇1 +  𝑇𝐷𝑇2 +  𝑇𝐷𝑇3 . .  𝑇𝐷𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
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Figure 4.59 Network Topology Change Detection Time Benchmark 

Figure 4.59 shows the discrete MTD network performed better than the random 

MTD network. The controller does not have additional operational cost in the traditional 

network to frequently mutate the host’s IP address since the network is static. The random 

MTD network has more operational cost than the discrete MTD network, reducing the 

controller processing speed. 

4.4.2.3 Benchmarking Scalability 

4.4.2.3.1 Control Sessions Capacity 

 At a given time, the number of control sessions that the controller can monitor 

simultaneously. Control Sessions Capacity must be measured to determine the controller’s 

system and bandwidth resource requirements. The control session capacity is measured by 

increasing the number of switches in the network and record the number of hello exchange 
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messages between the controller and the switch. If the hello messages exchanged become 

constant even though the switches are added to the topology, then that number is the 

capacity of the controller to handle those many switches simultaneously. The following 

Figure 4.60 shows control sessions capacity measurement. 

 

Figure 4.60 Control Sessions Capacity 

 

Figure 4.61 Control Sessions Capacity Benchmark 
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 The Figure 4.61 shows the control sessions capacity of the controller. We have 

added T6 and T7 topology with high number of switches to find the session capacity of the 

controller. We can observe that the random MTD network underperformed, and it can 

handle the switches of less than a hundred simultaneously. The traditional network can 

handle up to five hundred switches, and the discrete MTD network performed well and the 

results are close to the traditional network. 

4.4.2.3.2 Forwarding Table Capacity 

 The capacity of the forwarding table in the controller. It is critical to determine the 

number of flows the controller can handle and forward traffic without dropping.  

 

Figure 4.62 Forwarding Table Capacity 
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It is measured by sending traffic from multiple hosts to multiple destinations. When 

the controller receives the traffic, it will create an entry into the forwarding table for the 

traffic flow. The traffic is sent to the multiple destinations until the query to the forwarding 

table returns the same for 3 to 5 times as shown in the Figure 4.62. 

 

 

Figure 4.63 Forwarding Table Capacity Benchmark 

 From the Figure 4.63, the flow table capacity of traditional network and discrete 

MTD network is increased as the topology weight is increased. The random MTD network 

handles less flows when compared to others. 
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4.4.2.4 Benchmarking Reliability 

4.4.2.4.1 Controller Failover Time 

When the controllers are in redundancy mode, and one of the active controllers 

fails, the time it takes to transition from the active controller to the backup controller. The 

time period begins when the active controller is turned off and ends when the new 

controller’s southbound interface receives the first rediscovery message. When two 

controllers are paired together, and one of them fails, this benchmark assesses the impact 

of provisioning new flows. The Controller Failover Time is calculated as the difference 

between the final valid frame received before the traffic loss and the first valid frame 

received after the traffic loss. 

 

Figure 4.64 Controller Failover Time Benchmark 

 Figure 4.64 shows the controller failover time. The time taken by the backup 

controller to become active in a traditional network is very small when compared to the 
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random and discrete MTD networks. The traditional network is static, and there is no IP 

address mutation. On the other hand, random and discrete MTD networks continuously 

change the IP address of the host. In dynamic networks, the controller has to synchronize 

data with the backup controller to avoid data loss. Data Synchronization is a limitation in 

this research and synchronizing the data across the controllers is a costly operation and is 

considered future work. Since the dynamic networks change the IP addresses frequently, 

when the controller failed, it took more time to become active for the backup controller. 

However, the discrete MTD network performed better than the random MTD network. 

4.4.2.4.2 Network Re-provisioning Time 

When existing traffic paths fail, the time it takes for the controller to reroute traffic.  

 

Figure 4.65 Network Re-provisioning Time Benchmark 
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To measure network re-provisioning time, record the timestamp of the last frame 

received by the host before the loss of traffic and the timestamp recorded when the host 

receives the first frame after the loss of traffic. The difference of these two timestamps 

gives the time required to re-provision the network. 

 In Figure 4.65, the time taken by the traditional network controller is less when 

compared to dynamic networks. The discrete MTD network performed better than the 

random MTD network, and it is close to the traditional network performance. 

 

Figure 4.66 Packet Loss 

 Figure 4.66 shows the packet loss in each topology T1 to T5. As the topology 

weight is increasing on the network, the controller’s load will also increase to process high 

amount of data. In a random MTD network, since all host IP addresses are changed 

simultaneously, the session termination is made, and data packets are lost in the 



 

95 

transmission. The re-transmission of lost data packets occupies the network bandwidth, 

resulting in slower processing of new data by the controller, and also packet loss is high. 

The discrete MTD network has lower amounts of packet loss due to the individualization 

of mutation intervals. The sessions are not interrupted in the network; as a result, the packet 

loss is less and closer to the traditional network. 
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CHAPTER V – CONCLUSION AND FUTURE WORK 

This chapter summarizes the contributions of this research, and the future works 

are illustrated at the end. We have introduced four studies related to moving target defense 

techniques application and analysis. In the first study, MTD technique is implemented on 

drone’s wireless network. We observed that the latency in the network is increasing as the 

number of mutations increase. To observe the network performance after the application 

of MTD technique, we have implemented random host address mutation technique in 

software-defined networking and network performance is analyzed. We observed that the 

MTD algorithms is creating disturbances in the network that we have discussed. In the third 

study, we have proposed a new discrete MTD technique to improve network performance 

and reduce the disturbances in the network. In the fourth study, we have added a game 

strategy improve the security of the network and the discrete MTD technique, random 

MTD techniques are benchmarked against the traditional network. 

In the first study, a MAC address dynamic mutation technique is developed and 

implemented on the drone wireless network, including intrusion detection system and 

enhanced security with wireless network encryption. The MAC address of the drone is used 

to launch a cyber-attack. In the reconnaissance stage of the cyber kill chain, the hacker 

collects the configuration of the drone network. Once the information is gathered, the 

hacker does not need to re-scan since the wireless network of the drone is static. We 

developed an MTD technique to change the static MAC address of the drone frequently. 

Since the MAC address is changing from time to time, the attacker will be unsuccessful in 

launching an attack on the network using the network configuration information collected 

previously. 
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In the second study, A random host address mutation technique is developed in 

software-defined networking, and network analysis is shown. The mutation of the host IP 

addresses of all hosts is implemented at a random time in the network. The IP address 

mutation is a widely researched technique, and it provides network security by assigning a 

virtual IP address to the host at a time interval. Thus, the mutation technique not only 

provides security to the network but also creates an overhead for changing the host’s 

configuration by the SDN controller. We implemented the random host address mutation 

technique, and the performance of the network is shown by benchmarking against the 

traditional network. 

The third study, we proposed a novel discrete host address mutation technique in 

software-defined networking to individualize the mutation interval of each host in the 

network. In random host address mutation, the IP addresses of all hosts are changed at the 

same interval, terminating the established session between the hosts deteriorating the 

network stability. To overcome this backlog, a discrete host address mutation is developed 

to individualize the mutation interval of each host. However, individualizing the mutation 

interval of each host makes it complex for the attacker to understand the mutation interval. 

The mutation interval of each host is based on the flow statistics of the host monitored by 

the controller. The controller changes the IP address of the host when there is no exchange 

of data. 

In fourth study we added an IP subnet game strategy to our MTD technique to 

enhance the security and we benchmarked the discrete and random MTD networks against 

the traditional network. The virtual IP addresses are selected randomly from the pool of 

different IP subnets to make it complex for the attacker to understand the network topology. 
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A benchmarking framework is developed to measure the stability of the network in terms 

of performance, scalability, and reliability. 

The random host address mutation has limitations such as the mutation of host IP 

address is implemented at random time. If the host is in a session of exchanging data with 

other hosts, it is forced to terminate the session and change the IP address resulting in 

packet loss and additional overhead on the controller to transmit the lost data packets. The 

operational cost on the controller increases as the topology weight is increased on the 

network resulting in underperformance of the network controller. We have proposed a 

discrete moving target defense technique that individualize each host’s mutation interval 

to solve the above problem. The mutation interval of each host on the network is based on 

its flow stats. We used SDN controller Ryu northbound Rest API service to collect the flow 

stats of each host for each time interval. When the host is not exchanging any data, the IP 

address is changed.  In this way, the packet loss is reduced in the network and also 

operational cost on the controller.   

Finally, the IP subnet strategy is developed to increase in complexity for the 

attacker to understand the network topology. In the reconnaissance phase, the attacker 

scans the network using multiple stealth mode tools to gather the network’s data and create 

a network topology diagram. When the host’s IP address is assigned a virtual IP address 

from the pool of different subnets each time, the attacker finds it complex to create a 

network topology diagram. The benchmarking framework is developed to measure the 

stability of the network in terms of performance, scalability, and reliability. The discrete 

MTD network outperformed in all tests compared to random MTD network showing that 

discrete host address mutation is a better technique to apply on the network for security 
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and stability. The drawback found in benchmarking is that the controller's failover time. 

When the controller fails, the backup controller should become active and take over the 

network control. Since the IP address mutation is implemented, there is a need for the 

controller to synchronize the data, and further discussed in future works. 

Future Works.  In the conclusion of this research, we highlighted a critical topic 

for future work on controller failover time. Since the static network does not need to change 

the IP address of each, the failover time is very small, and the IP addresses remain the 

same. In the case of a dynamic network, the controller has to change the IP address of each 

host after a time interval. When the controller fails, the tracking data of each host’s current 

virtual IP address will be lost.  There will be a data loss before the new controller takes 

over. Even though the new controller takes over, there is no data synchronized from the 

failed controller to the backup controller, so that the hosts need to establish new sessions 

to transmit the data. Synchronizing controller data will create a high operational cost, and 

if only the important data is synchronized, the cost can be reduced.  So that future work 

will be focused on backup controller synchronization, and reduction of controller fail over 

time for better stability of the network. The future work also includes exploring other 

categories of MTD techniques and further improving the performance of discrete MTD 

networks. 
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