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Abstract 

Granulins (GRN 1-7) are short (~6 kDa), cysteine-rich proteins that are generated upon the proteolytic 

processing of progranulin (PGRN). These modules, along with their precursor, have been implicated 

in multiple pathophysiological roles, especially in neurodegenerative diseases. Our previous 

investigations into GRN-3 and GRN-5 reveal them to be fully disordered in the reduced form and 

implicate redox sensitive attributes to the proteins. Such redox-dependent modulation has become 

associated with proteins involved in oxidative stress regulation and maintaining metal-homeostasis 

within cells. To probe whether GRNs play a contributory role in such functions, we tested the metal 

binding potential of the reduced form of GRNs -3 and -5 under neutral and acidic pH mimicking 

cytosolic and lysosomal conditions, respectively. We found, at neutral pH, both GRNs selectively bind 

Cu(II) and no other divalent cations. Binding of Cu(II) also partly triggered the oxidative 

multimerization of GRNs via uncoordinated cystines at both pH conditions. Furthermore, binding did 

not induce gain in secondary structure and the protein remained disordered. Overall, the results 

indicate that GRN-3 and -5 have a surprisingly strong affinity for Cu(II) in the pM range, comparable 

to known copper sequestering proteins. This data also hints at a potential of GRNs to reduce Cu(II) to 

Cu(I), a process that has significance in mitigating Cu-induced  ROS cytotoxicity in cells. Together, 

this report uncovers a metal-coordinating capability of GRNs for the first time, which could have 

profound significance in their structure and function. 
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Introduction 

Progranulin (PGRN), is an evolutionarily conserved protein observed widely in eukaryotes1. 

PGRN is a 68 kDa, glycosylated protein that is ubiquitously expressed in many cells and has 

pleiotropic roles in physiology such as neuronal growth, differentiation and survival2-4, wound healing 

and repair5-6, and immunomodulation7. The protein is also known to play a roles in tumor growth and 

metastasis by its growth-promoting and angiogenic characteristics8. PGRN is also linked to 

neurodegenerative disorders with the haploinsufficiency of the protein being implicated in 

frontotemporal dementia (FTD)9 while a complete loss of PGRN leads to neuronal ceroid 

lipofuscinosis, a lysosomal storage disease10. PGRN consists of seven and a half tandem-repeats of 

cysteine-rich modules called granulins (GRNs 1-7) and a partial para-GRN module. PGRN is secreted 

extracellularly and proteolytically cleaved by enzymes such as matrix metalloproteinase-12 (MMP-

12)11, neutrophil elastase, and proteinase 312 releasing the individual GRNs. In physiology, a variety 

of roles have been attributed to GRNs such as innate immune response13, neurotrophic roles4, while 

other studies ascribe pro-inflammatory functions, opposing that of the precursor14. Although the 

extracellular processing of PGRN and GRN formation is known14-15, recent studies  have also revealed 

an intracellular localization of these modules. PGRN has been shown to be transported into the 

lysosome where it is processed by the cysteine peptidase cathepsin-L16-17 producing GRNs that are 

stable within the lysosomal environment18.   

Individual GRNs (1-7) are 6 kDa proteins with a characteristic feature of unusually high 

cysteine content (~20%)1, and have a consensus sequence of X2-3CX5-

6CX5CCX8CCX6CCXDXXHCCPX4CX5-6CX, with the twelve conserved cysteines forming six 
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putative disulfide bonds19-20. Studies into the structural properties of human GRNs have revealed that 

GRN-2, 4 and 5 adopt partially folded structure with a defined interdigitated disulfide bonding pattern, 

while the structures of other GRNs (1,3,6 and 7) are dominated by loops20.  Previously, we have 

investigated the structure-function relationship of two GRNs; GRN-321-24 and GRN-524. Both GRNs 

show characteristics of  classical intrinsically disordered proteins (IDPs) having no secondary structure 

especially in the fully reduced form22, 24. Abrogation of disulfide bonds in the reduced state renders 

the protein to be disordered and thermally unstable22. On the other hand, the disulfide-bonded oxidized 

GRN-3 showed high thermal stability but with a structure dominated by disordered loops22. 

Interestingly, both reduced and oxidized GRN-3 showed cellular activity implicating a possible redox-

based regulation as a mode of functioning for GRNs21, 23.  

Recently, the potential functional implications of disorder promoting sequences interspersed 

with order-promoting cysteines have begun to emerge. In eukaryotes, widespread presence of proteins, 

which are either conditionally disordered or contain intrinsically disordered regions are observed25. 

Such proteins display redox sensitivity by undergoing disorder-to-order under redox conditions and 

are implicated to play a role in plethora of biological processes. The ability within these cysteine-rich 

proteins to cycle between their redox states has recently been identified as a mechanism by which cells 

maintain homeostasis by buffering against potential redox stress26-27 The redox-sensitive regions are 

also often associated with metal binding; while proteins form disulfide bonds under oxidizing 

conditions (extracellular), metal binding is commonly observed under reducing conditions25. It is also 

noteworthy that the presence of redox-sensitive proteins increases with increasing organism 

complexity25. Furthermore, there exists a linear correlation between proteins containing disordered 

sequences and degree of cysteines in them in eukaryotes28. In the family of proteins containing more 

than 20% cysteines in the sequence, GRNs are somewhat similar to metallothioneins (MTs), which 

are metal sequestering proteins with crucial roles in maintaining metal-homeostasis in cells. MTs are  

~60 amino acid long proteins consisting of 20 cysteines (33%)29. MTs function as cellular reservoirs 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.24.220665doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.220665


5 
 

and scavengers of metal ions29-32 and have a prominent role in heavy metal detoxification33-34. 

Together, these observations combined with the fact that GRNs are known to be present extra and 

intracellularly with an abnormally high cysteine content, a redox-sensitive regulation of these proteins 

seems likely. Here we tested our hypothesis that GRNs bind divalent metal cations in reducing 

environments, in vitro. Results show that out of the seven metal ions tested, GRNs -3 and -5 

specifically bind to Cu(II) in part via cysteine thiols and not the others. These results raise the question 

of whether copper binding is a key function of GRNs in their repertoire of biological function that has 

remained unnoticed thus far.  The results presented here support this hypothesis and further elevates 

the relevance in their physiological functions.    

 

Materials and Methods 

Recombinant expression, purification, and generation of apoGRNs: 

GRN-3 and GRN-5 were recombinantly expressed and purified as previously described22, 24. Briefly, 

GRN-3 was expressed in SHuffleTM cells (New England Biolabs), while GRN-5 was expressed in 

Origami 2 DE3 (Invitrogen) as fusion constructs with a thioredoxin-A and hexa-histidine tag (TrxA-

Hisx6-GRN). The constructs were purified using Ni-NTA affinity chromatography and eluate was 

treated with 5 mM ethylenediaminetetraacetic acid (EDTA) to chelate residual metal-ions. The buffers 

used in purification protocol were prepared using deionized water which was passed through a chelex 

resin column (Bio-rad) to exclude metal contaminants and obtain metal-free eluate. The glassware 

used in purification and buffer preparation were rinsed with chelex-treated water to wash residual 

contaminants. After exhaustive dialysis, fusion construct was cleaved with restriction grade thrombin 

(Bovine, BioPharm Laboratories) at 3U per 1 mg of the protein to remove both trxA and the His-tag. 

The reaction was incubated at room temperature (~25°C) for 22-24 hours. Using a semi-preparative 

Jupiter® 5 µm 10x250 mm C18 reverse phase HPLC column (Phenomenex) protein was then purified 
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by applying a gradient elution of 60 – 80 % acetonitrile containing 0.1% TFA on a UltiMate 3000 

system (Thermo) as previously described22. The lyophilized apo-proteins were resuspended in either 

20 mM HEPES-pH 7.0 or 20-mM ammonium formate-pH 4.5 prepared using chelex treated deionized 

water, as described before. Protein concentration was determined by measuring absorbance at 280 nm 

and using molar extinction coefficients of 6250 M-1cm-1 for GRN-3 and 7740 M-1cm-1 for GRN-5. 

Reduced forms of the proteins were used in experiments and were generated by incubating the proteins 

with a 20 stoichiometric excess of Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) for 2 hours 

at RT.  

Metal-stock preparation for assays: 

Respective metal-stocks were prepared at a concentration of 2 mM, in either 20 mM HEPES-pH 7.0- 

or 20-mM ammonium formate-pH 4.5 in the presence of 12 mM glycine to avoid precipitation35-36. 

These buffers were prepared using deionized, chelex treated water, as described before and were stored 

at 4°C in dark. 

MALDI-ToF mass spectrometry: 

For determination of binding between metal-cations and GRNs, 1 mM metal-cations were incubated 

with  the reduced, metal-free samples of 20 µM GRN-3 (MW 6367.7 Da) or GRN-5 (MW 6017.7 Da) 

in 20 mM HEPES buffer at pH 7.0 in the presence of 500 µM tris(2-carboxyethyl)phosphine 

hydrochloride Characterization of the protein-metal complexes was performed on a Bruker Datonics 

Microflex LT/SH ToF-MS system. For analysis of metal-protein reactions, 95.5 ng of GRN-3 and 90.2 

ng of GRN-5 (15 pmoles) were spotted separately onto a Bruker MSP 96 MicroScout Target with a 

1:1:1 ratio of sample:sinapinic acid matrix(saturated with acetonitrile and water): acetone. Instrument 

calibration was performed using Bruker Protein Calibration Standard I (Bruker Daltonics). Alkylation 

reactions were carried out by incubating respective metal-GRN samples prepared as described above, 

with 1mM iodoacetamide for 2h at room temperature. The samples were then prepared for analysis 
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using MALDI-ToF-MS by spotting onto a Bruker MSP 96 MicroScout Target with a 1:1:1 ratio of 

sample:sinapinic acid matrix (saturated with acetonitrile and water): acetone. 

Fluorescence spectroscopy and determination of apparent dissociation constant:  

Intrinsic tryptophan fluorescence assays were performed on a Cary Eclipse spectrometer 

(Agilent Inc.) by exciting the samples at 285 nm and monitoring emission from 320 to 400 nm. 20 µM 

GRN (3 or 5) were titrated with increasing metal concentrations (10-240 µM) at pH 7.0 and pH 4.5 

and spectra were recorded. Each spectrum represents an average of four repeat scan. The collected 

spectrum for each titration was normalized by integrating the area under the curve and the normalized 

intensities were plotted against concentration of Cu(II). The normalized curves were fitted to the one 

site binding equation: 

   

where r0 and rs are fluorescence intensities in the absence and saturated levels of the ligand, Cu(II), 

respectively, while Lt and Pt are the respective total ligand (Cu(II)) and GRN concentrations and 𝐾"  

represents the apparent dissociation constant 𝐾"
#$$. The data normalization and curve fitting were 

performed on Origin 8.5 graphing software. For obtaining the apparent dissociation constant with 

incorporation of dissociation constant of the, following equation was considered; 

𝐾" = (
1
𝐾(
∗
1
𝐾*
∗ …∗

1
𝐾,
), 

 Using a value of 2.6 µM for the dissociation constant of glycine-Cu(II) complex35-36 and the values 

obtained for the respective GRN-Cu(II) complexes from intrinsic fluorescence assays, obtaining the 

final 𝐾"
#$$	values in the picomolar range. 
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Far UV-CD spectra were collected on Jasco J-815 instrument using a 0.1mm path length quartz cuvette 

(Precision cell). GRN samples incubated with respective buffers (20 mM HEPES pH 7.0 or 20 mM 

Ammonium formate) with or without Cu(II) as prepared previously for MALDI-MS characterization 

were suitably diluted from 20 µM to a concentration of 7 µM to avoid detector saturation at lower 

wavelengths. The samples were scanned from wavelengths 260 nm to 195 nm in the continuous 

scanning mode at a speed of 50nm/min. Each spectrum represents an average of three repeat scans.  

 

Results 

GRNs show redox sensitivity across their sequence similar to known metal binding proteins. The 

unique chemistry of cysteine residues marked by their high reactivity and an ability to form covalent 

bonds allows them to modulate the structure-function relation within proteins based on cellular cues. 

Such redox-responsive character has become associated with proteins that maintain cellular 

homeostasis, especially in response to oxidative stress or metallotoxicity37. To evaluate the potential 

redox sensitive character of GRNs -3 and -5, we utilized the IUPred2A computational platform38. 

IUPred2A computes and predicts the disorder propensities as well as redox sensitivity of a protein. As 

expected, analysis on MT-2, a well-known metal binding protein showed significant redox sensitivity 

across the entire stretch of the sequence (Fig 1 a). Analysis on GRNs revealed appreciable differences 

in the disorder propensities between the reduced and the oxidized forms (Fig 1b and c) for GRNs -3 

and -5, respectively, and these are marked as regions of redox sensitivity (Fig 1; shaded purple areas) 

within the protein. IUPred2A analysis on b-defensin, a protein involved in anti-microbial functions 

used as a negative control, shows no redox sensitive regions in the protein despite some degree of 

disorder in the reduced form (Fig 1d). The disorder propensities of the free-thiol forms for MT-2 (Fig 

1a), GRN-3 (Fig 1b) and GRN-5 (Fig 1c) have values between 0.75 and 1.0 indicating significant 

structural disorder. The redox sensitivity arises from both disorder within the sequence and due to a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 26, 2020. ; https://doi.org/10.1101/2020.07.24.220665doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.220665


9 
 

high number of cysteines interspersed within them25. In case of b-defensin, despite a ~10% cysteine 

content, the two redox forms do not show significant differences in their disorder propensities leading 

to the prediction of a lack of redox sensitivity. This prediction correlates well with the known function 

of b-defensin as an anti-microbial peptide with no roles within a redox context39 and further underlines 

the importance of particular arrangement of cysteines within a sequence in imparting redox sensitivity. 

In MTs, two characteristic conserved motifs are utilized for metal coordination; xCCx and CxC (Fig 

1a)40. The xCCx motif shares similarities with GRNs (Fig 1) and raises the potential for metal binding. 

These in-silico predictions align well with the previous findings on  structural aspects of GRNs21-22, 24 

and MTs41-42, where the reduced form of both proteins lacks structure.  

GRNs-3 and -5 bind Cu(II) but no other divalent metal cations. In order to see whether GRNs bind 

divalent metal cations, Cu(II) along with Ca(II), Co(II), Mg(II), Mn(II), Ni(II) and Zn(II) were used. 

These metals were chosen for their relevance in pathophysiology; Cu(II), Zn(II), Co(II), Mn(II) are 

cofactors for myriad enzymes, Ca(II) and Mg(II) are important in ionic balance and cellular signaling 

in addition to other important roles 43 and Ni(II) was chosen for testing the isoelectronic character and 

its involvement in toxicity43. These metal-ions were individually incubated in 50-fold molar excess 

with the reduced, metal-free samples of 20 µM GRN-3 (MW 6367.7 Da) or GRN-5 (MW 6017.7 Da) 

in 20 mM HEPES buffer at pH 7.0 in the presence of 500 µM tris(2-carboxyethyl)phosphine 

hydrochloride (see Methods). From these protein samples, aliquots of 15 pmols of GRN-3 and  GRN-

5 were then analyzed using MALDI-ToF MS (Fig 2; pH 7.0). At physiological pH of 7.0, both GRNs 

showed selective coordination up to 12 Cu(II) for GRN-3 and -5 (Fig 2a and b). GRN-3 showed a 

higher co-ordination than GRN-5; for GRN-3, seven and eight Cu(II) ions bound species were 

predominantly observed, while species with up to 12-Cu(II) ions bound was also evident. GRN-5 

showed 1-Cu(II) bound species to be the most common one, with higher number of Cu(II)-ions bound 

species, with up to 11-Cu(II) bound forms, in an ascending order of abundance. GRN-3 showed more 

abundant Cu(II)-bound forms of the protein with only 10%  remaining in the unbound, oxidized form 
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(6357.8 Da) (Fig 2a), while GRN-5 bound Cu(II), the unbound, oxidized form (6000.7 Da) was ~ 50% 

suggesting a diminished binding (Fig 2b). In contrast, no binding was observed for any of the other 

six divalent ions (Fig 2e, pH 7.0) with the exception of Zn(II); GRN-3 bound to one Zn(II) was ~20% 

abundant while multiple Zn(II)-bound protein constituted ~15% (Fig 2e). GRN-5 did not show the 

presence of Zn(II)-bound species. GRNs have recently been shown to be generated with the lysosomes 

also,17-18 while a central role of this organelle as a regulator of metal homeostasis has also come to the 

fore44. To mimic the binding of GRNs to metal-ions within a lysosomal environment, 20 µM GRN-3 

or 5 was incubated with 50-fold molar excess of metal ions at pH 4.5, buffered with 20 mM ammonium 

formate. In the lysosome-like acidic environment, Cu(II) binding capability for GRN-3 and 5 were 

assessed by MALDI-ToF (Fig 2c and d). GRN-3 showed up to seven Cu(II) bound to the protein but 

with significantly decreased intensities as compared to those at pH 7.0 indicating diminished binding 

capability at the lower pH (Fig 2c). GRN-5 also showed significantly diminished binding with only 

one and three Cu(II) bound to the protein (Fig 2d). The relative abundance of the Cu(II)-bound protein 

was not more than ~10% as compared to the apo form of the respective proteins, which showed ~95% 

abundance based on the spectral intensities. A mass difference is observed for the non-coordinated 

species amongst the two pH conditions (pH 7.0 – pH 4.5) of both GRNs; 7.4 Da for GRN-3 (Fig 2a 

and c) and 4.1 Da for GRN-5 (Fig 2b and d) which can explained by the higher percentage of cysteines 

being present in the deprotonated thiolate form at the neutral pH45. Both proteins also showed inability 

to binding other metal cations at pH 4.5 (Fig 2e; pH 4.5). The lack of metal binding at low pH is not 

surprising and could likely be due to chelating functional groups such as thiols being predominantly 

present in a protonated form45.  

Based on our hypothesis, free thiols in cystines are involved in metal coordination. Therefore, 

to determine how many cystines are involved in coordination, alkylation of free thiols in the Cu(II)-

bound holoproteins was conducted with iodoacetamide (IAA) for both GRNs. IAA reacts with free 

thiols to forms acetamide adduct (58 Da) with sulfur46. The Cu(II)-bound GRN-3 at pH 7.0 displayed 
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a gaussian distribution centered around ~two alkylated species (6490.8 Da) suggesting that most of 

the cystines were coordinated to Cu(II) at pH 7.0 (Fig 3a). Heterogeneous population of species 

involving metal-bound and alkylated, only alkylated, or only metal-bound forms, should appear as 

clustered signals at m/z values of ~6700-7000 Da. Clearly, the gaussian curve is unsymmetrical 

towards the trailing edge suggesting this is indeed the case (Fig 3a). GRN-5 at the same pH showed 

no free thiols available for alkylation by IAA with a major peak of 6009.0 Da corresponding to the 

non-alkylated, oxidized form (Fig 3b). Similar to GRN-3, a well-defined non-alkylated signal is 

followed by trailing peaks indicating the presence of multiple alkylated, metal bound forms with a 

descending level of abundance (Fig 3b). Furthermore, despite attenuated binding of Cu(II), both GRNs 

under acidic conditions also show decreased alkylation suggesting that the interaction with the metal-

ion leads to the unavailability of free thiols within GRN-3 (Fig 3c) and GRN-5 (Fig 3d), possibly due 

to induced oxidation (further elaborated in Discussion). The spectra of GRN-3 showed a defined signal 

at 6464.4 Da which corresponds to the monomeric protein without any alkylation (Fig 3c). Similar 

spectra is observed for GRN-5, with a signal at 6014.9 Da (Fig 3d), again indicating the lack of thiols 

available for alkylation. The observation also suggests potential oxidation of cysteines induced by 

Cu(II) at low pH. The alkylation of GRN-3 incubated with other metal ions at pH 7.0 indicated most 

of the thiols were free and available for labeling by IAA, except for the sample with Mn(II) which 

showed a decrease of two free thiols, while the protein with Zn(II) displayed a heterogenous mixture 

of multiply-alkylated forms; with four, seven and eleven free thiol species (6569.9 Da, 6738.1 Da, 

7013.7 Da; Fig 3e, GRN-3 at pH 7.0) being the predominant ones.. In the presence of Zn(II) ion, a 

similar spectrum containing multiple alkylated species is observed for GRN-5, with four and eleven 

free thiols forms (6240.9 Da, 6660.1 Da; Fig 3e, GRN-5 at pH 7.0). These observations along with the 

detectable binding of GRN-3 to Zn(II) (Fig 2e, GRN-3 at pH 7.0) further indicates potentially weak 

coordination of Zn(II) by GRNs at neutral pH. In acidic pH, GRNs show decreased availability of 

thiols for alkylation as indicated by the spectra of GRN-3 and 5 control samples without any metal-

ions (Fig 3e, GRN-3 and GRN-5 at pH 4.5). The lower pH increases the concentration of the 
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protonated thiols and hence, decreases alkylation by IAA, an observation that is in line with a decrease 

in rate of thiol alkylation by 2-vinylpyridine in an acidic pH47  Compared to the control reactions, no 

other metal-ion incubated samples showed any significant deviation in terms of alkylation patterns, 

except for Zn incubated samples, where both proteins showed an increase of two-three thiols available 

for alkylation (Fig 3e, GRN-3 and GRN-5 at pH 4.5). Alkylation of thiols using IAA is widely 

performed, especially due to low levels of unwanted, side reactions that accompany this chemistry46, 

48. Despite this, our results indicate the presence of alkylation of residues other than cysteine, as 

observed in Fig 3e, GRN-3 at pH 7.0, where a discernible signal from a species with 13-alkylated 

functional groups is present at a mass of 7121.3 Da. This points towards alkylation of either an acidic 

residue or histidine, along with cysteine thiols46. Another side reaction observed is the modification of 

N-terminal methionine residues of GRNs on reaction with the iodine containing alkylating agent 

resulting in the loss of a 47 Da fragment from these proteins49. This loss is evident in the IAA reactions 

of GRN-5 (Fig 3e, GRN-5 at pH 7.0 and pH 4.5) where a signal is observed at 5970.7 Da, preceding 

the monomeric, non-alkylated form of the protein (GRN-5 MW; 6017.7 Da). 

Copper binding induces multimerization of GRNs. As mentioned earlier, the interaction of GRNs 

with Cu(II) decreased the availability of free thiols for alkylation suggesting their potential oxidation 

(Fig 3a-d). To determine whether the thiols are involved in intra or inter-molecular disulfide bonding 

following their interaction with Cu(II) and other metal-ions, we subjected the samples from Fig 2 to 

polyacrylamide gel electrophoresis (PAGE). At neutral pH, GRN-3 (MW; 6367.7 kDa) is observed to 

undergo multimerization in the presence of Cu(II) (Fig 4a, +Cu). Band corresponding to the dimeric 

form (MW; 12.6 kDa) is prominently visible while faint bands corresponding to monomeric and 

trimeric species (MW; 19.1 kDa) are also observed (Fig 4a). On the other hand, only a band 

corresponding to the monomeric form is seen in the presence of other metal cations, similar to 

apoGRN-3 (Fig 4a). Prior characterization of GRN-5 (MW; 6017.7 Da) in our lab revealed the 

monomeric protein displays a decreased electrophoretic mobility in PAGE, a commonly observed 
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property among disordered proteins24, 50. In line with our previous observation, apoGRN-5 is observed 

as a band at ~30 kDa at neutral pH (Fig 4b, apoGRN-5). In the presence of Cu(II), a diffuse, ‘smear’ 

pattern is visible with no distinct band, indicating significant multimerization of the protein (Fig 4b, 

+Cu). All other metal cations, with the exception of Zn(II) and Ni(II), showed only a single band 

similar to aopGRN-5 (Fig 4b).  In the presence of Zn(II) and Ni(II), bands are observed at ~17 and 20 

kDa, respectively (Fig 4b). It is unclear as to why such an odd migration is observed for these metals.  

Nevertheless, multimerization is not observed with other metal cations in a manner that is observed 

with Cu(II). At pH 4.5, all metal-incubated GRN-3 samples show the presence of a distinct trimer at 

18 kDa (Fig4c). In the presence of Cu(II), the degree of multimerization is prominent with a 

heterogenous mixture of multimeric species forming a ‘smear’ pattern, where the monomeric, dimeric 

and trimeric bands are still discernible (Fig4c, +Cu). Other metal-ions failed to induce the 

multimerization of GRN-3, similar to the observation at pH 7.0 (Fig 4c).  At pH 4.5, GRN-5 shows an 

electrophoretic pattern similar to one observed at neutral pH (Fig 4b and d). The presence of Cu(II) 

induces multimerization of GRN-5, it is not as pronounced as that observed at pH 7.0 (Fig 4b and d, 

+Cu). A distinct band is observed at ~30 kDa, similar to apoGRN-5 and a characteristic smear of 

multimerized protein extending above 50 kDa. Sample with Zn(II) shows higher electrophoretic 

mobility in the acidic regime as well, with the protein band present at ~17 kDa. At both the pH 

conditions tested, Mg(II) and Mn(II) are observed to induce a visible smearing of GRN-5 towards the 

lower molecular weight region, indicating higher electrophoretic mobility of the species formed (Fig 

4b and d, +Mg, +Mn).  These results indicate that interaction with Cu(II), but not necessarily binding, 

seems to induce the oxidation of cysteines within GRNs with consequent multimerization of the 

protein.  

 To see whether metal binding induces changes to the conformational environment surrounding 

the lone tryptophan residue in the proteins, the reduced apo forms of 20 µM GRN-3 or GRN-5 were 

titrated with increasing molar concentrations (10-240 µM) of Cu(II) and the intrinsic tryptophan 
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fluorescence was measured. This informs about the changes in the environment around the tryptophan 

residue as a function of metal ion concentration, and therefore allows the calculation of apparent 

binding affinity for the metals21, 36, 51-52. At neutral pH, GRN-3 shows a higher intrinsic fluorescence 

than GRN-5 in absence of Cu(II) (Fig 4e). Such a variation in fluorescence intensities suggests an 

inherent difference in the tryptophan environment amongst the two proteins52. Increasing Cu(II) 

concentrations leads to the decrease in tryptophan fluorescence intensity in both GRNs (Fig 4e). This 

observation indicates an increased solvent exposure upon metal binding 22. The data was fitted to a 

one-site binding equation (detailed in Methods) to obtain an apparent dissociation constant (𝐾"
#$$) for 

GRNs and Cu; 4.0 ± 1.5 µM for GRN-3 and 35.4 ± 8.2 µM for GRN-5. This 𝐾"
#$$  however, does not 

account for the binding of Cu(II) by glycine used in the buffer35-36. Upon correcting the binding 

constant for this non-specific competitive binding of glycine (see Methods), 10.4 pM and 92.0 pM for 

GRN-3 and GRN-5, respectively are obtained. At acidic pH, both GRNs have equivalent fluorescence 

intensities in absence of Cu and show a similar trend of attenuation of fluorescence intensity with 

increasing Cu(II) concentration. The apparent corrected dissociation constants for this interaction are 

6.9 pM for GRN-3 and 130.5 pM for GRN-5. These apparent dissociation constants are comparable 

to those of known Cu-coordinating proteins, such as MT-253. It has to be borne in mind these values 

only reflect indirect affinities for Cu; at pH 4.5, no actual binding is observed between Cu and GRNs 

(Fig 2c and d), and yet quenching of fluorescence is pronounced. This anomaly indicates that the 

dissociation constants inform us about the structural changes around tryptophan, which may arise not 

only due to direct metal binding but also due to consequential multimerization.  

Intrinsically disordered proteins have been known to obtain structural order upon metal 

coordination or binding to ligands50. To probe whether metal binding induces secondary structural 

changes within GRNs, far-UV circular dichroism (CD) was used samples from Fig 2, which were 

suitably diluted to 7 µM GRN concentrations. In agreement with previous biophysical studies on 

GRN-3 and GRN-5, at pH 7.0, both apo proteins display spectra characteristic of random coil with a 
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minima observed at 200 nm (Fig 4g). Cu-binding fails to induce any secondary structural elements 

within GRN-3 as evidenced by a spectrum similar to its apo form. At neutral pH, GRN-5 in presence 

of Cu shows a weak minimum at ~215 nm, indicative of some b-sheet content within the protein. Such 

induction of secondary structure within unstructured proteins by metal coordination is well known, 

although the intensity of the ellipticity observed here suggests GRN-5 remains mostly unstructured. 

At low pH also, apo forms of GRN-3 and GRN-5 display a random coil spectra, with a minimum at 

199nm, indicating these proteins remain unstructured in the acidic environment (Fig 4h). As would be 

expected, the Cu(II)-incubated samples show overlapping signals with the apo-proteins (Fig 4h), since 

no coordination is detected with Cu(II) at this pH (Fig 2 c and d). These results show that interaction 

with Cu(II) brings about tertiary and quaternary structural changes within GRNs, as evidenced by the 

fluorescence quenching (Fig 4e and f) and multimerization (Fig 4a-d), respectively, but fails to induce 

significant secondary structural changes. These observations are similar to those observed for MTs, 

where these proteins do not attain any secondary structure on metal coordination but become 

conformationally constrained40, 42, 54.  

 

Discussion 

The metal-coordinating potential of GRNs has been hypothesized since their initial 

characterization55-56 while the recent study by Fang and colleagues strengthened the rationale for such 

an investigation by indicating potential coordination of metals by GRNs57. Our report brings forth a 

functionality of GRNs that has remained largely unexplored, particularly at the molecular level. 

Properties such as the unusually high number of conserved cysteines and disorder within the sequence 

in the fully reducing conditions21 make GRNs similar to MTs, which are known to bind Cu(II), Zn(II) 

and Cd(II) ions, among others40. Further motivated by the IUPred2A predictions that show GRNs to 

be similar to MTs in redox sensitivity, we set out to test whether GRNs  show affinity for divalent 

cations and reveal potential promiscuity or specificity of such metal coordination57. The results 
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indicate that both GRNs -3 and -5 have affinity towards Cu(II) with GRN-3 showing greater affinity 

than GRN-5 at neural pH. However, both GRNs, at acidic and neutral pH, failed to bind any of the 

other divalent metal cations, highlighting a selectivity towards Cu(II).  

We also observe that binding of copper fails to induce  any secondary structural changes in 

either GRN-3 or GRN-5, a characteristic similar to that of MTs54. Such conformational flexibility has 

become an identifiable property of IDPs that are often associated with pleiotropic roles50, 58-59. These 

observations align well with the multiple functional roles that GRNs are known to participate in and 

suggest copper-binding could be yet another function for these protein modules. Furthermore, 

interaction with copper, and not other metals, induces the formation of multimeric GRN-3 or -5, under 

both pH conditions tested. Alkylation experiments using IAA suggest that the interaction with copper 

leaves no or few free cysteines within both GRNs. A majority of cysteines are either coordinated to 

copper or involved in intra- or inter-molecular disulfide bond formation, or both. This brings to light 

two possible scenarios that may contribute to the mechanism of  GRN functions: i) A fraction of Cu(II) 

oxidizes thiols in some cysteines to form disulfide bonds leading to multimerization and the protein 

may bind either Cu(I) (generated from the reduction of Cu(II))  or Cu(II) (present in excess), or  ii) 

Cu(II) coordinates to cysteines from two GRN monomers forming a bridge ligand leading to 

multimerization. The former scenario is supported by the fact that decreasing the pH to 4.5 decreases 

the extent of multimerization of GRNs due to the protonation of thiols. The results here show the 

coordination of Cu(II) at neutral pH, and its abrogation in an acidic pH, provides cues into their 

potential cellular roles; GRNs could mitigate cu-induced cytotoxicity by binding Cu(II) in the 

reducing, cytoplasmic environment and releasing them within the acidic, lysosomal milieu where 

GRNs are known to localize 17-18. Secondly, the dissociation constants of Cu(II) with GRNs measured 

indirectly by intrinsic tryptophan fluorescence as a function of metal concentrations reveal that the 

affinities both GRNs for Cu(II) are in the picomolar range. This is comparable to the affinity of MTs 

for Cu(II), which is in the pM-fM range60. Mammalian cells mainly employ MTs and superoxide 
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dismutases (SOD) to protect themselves from ROS activation by excess Cu(II) ions. The comparable 

affinity range of copper for GRNs, MTs and SODs as well as the potential reduction of Cu(II) to Cu(I) 

by the cysteines, suggest that GRNs may play a protective role during Cu(II) induced oxidative stress 

to the cells similar to MTs and SODs by either promoting disulfide bonds or binding to free cystines 

or both. However, unlike MTs and SODs, GRNs seem to exhibit selectivity towards copper based on 

the results obtained here. What precise physiological significance copper binding holds is unclear at 

this point but one can speculate that a network of copper binding proteins might be employed, driven 

by affinity gradients53. Intracellular GRNs may participate in mitigating ROS toxicity by behaving as 

an additional metal scavenger which may be needed during acute Cu(II) influx. Such a mechanism 

can bypass the ROS generation induced by free Cu(II) and its associated Fenton-like chemistry. To 

our knowledge, this study is the first to uncover the Cu-binding ability of GRNs, adding it to the known 

functional repertoire of these proteins. Although intriguing, these results warrant further investigations 

into the interactions of GRNs with metal-cations to obtain a clear picture of what roles GRNs play in 

metal homeostasis in norm and pathology.   
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Figure Legends 

Figure 1: Redox sensitivity of cysteine-rich proteins predicted by IUPred2A.  The disorder 
propensities of the redox forms of MT-2 (a), GRN-3 (b), GRN-5 (c) and b-defensin (d) are plotted 
with the disorder scores of the oxidized and reduced forms denoted by red and purple lines, 
respectively. Higher the score higher the disorder is. The positions of the cysteine residues are 
indicated by yellow vertical lines while the pink color between the red and purple lines denote the 
redox sensitive regions. MT-2 and b-defensins are shown as positive and negative controls, 
respectively.  

Figure 2: Metal binding analysis of GRNs by MALDI-ToF. GRN-3 or GRN-5 (20 µM) were 
incubated separately with a 1mM (50-fold molar excess) of respective metal cations in 20 mM HEPES, 
12 mM glycine at pH 7.0 or in 20 mM ammonium formate, 12 mM glycine at pH 4.5 individually, at 
4°C overnight. For MALDI-ToF-MS analysis, aliquots containing 6 x103 pmol/L of GRN-3 and GRN-
5 from the respective reactions loaded on to the plate. Cu(II) binding to GRN-3 (a) or GRN-5 (b) at 
neutral pH, and to GRN-3 (c) or GRN-5 (d) at pH 4.5. Apo GRN-3(e, g) or apo GRN-5 (f, h), prepared 
in similar buffers at the respective pH but without the metal cations. i) Spectra of Ca, Co, Mg, Mn, Ni 
and Zn binding to GRN-3 or GRN-5 at pH 7.0 (left panel) and at 4.5 (right panes).   

Figure 3: Determination of free thiols by IAA alkylation of GRNs. Holoproteins from Fig 2 were 
used for alkylation reactions using 1 mM iodoacetamide (IAA) and aliquots of samples were analyzed 
using MALDI-ToF-MS. The spectra of alkylated samples of Cu(II) incubated GRN-3 (a) and GRN-5 
(b) in a pH 7.0 buffer and GRN-3 (c) and GRN-5 (d) in pH 4.5. e-f) MALDI-ToF-MS spectra of 
apoGRNs at the two pH conditions tested. i) The spectra of alkylation reactions of GRN-3 and -5 
incubated with other metal-ions (Ca, Co, Mg, Mn, Ni and Zn) at neutral and acidic pH.  

Figure 4: Binding and metal-induced structural changes in GRNs. Metal-incubated samples of 
GRNs were subjected to PAGE in non-reducing conditions. (a-d) and spectroscopic analysis (e-h). 
Silver stained gels of Apo and holoGRN-3 (a) and apo and holoGRN-5 (b) at neutral pH;  apo and 
holo GRN-3 (c) and GRN-5 (d) at pH 4.5. Intrinsic tryptophan fluorescence of GRNs (20 µM) 
measured as a function of increasing Cu(II) (10-240 µM) concentration at pH 7.0 (e) and pH 4.5 (f) to 
evaluate tertiary structural changes. (inset): raw spectral scans shown as a function of increasing Cu(II) 
concentrations (arrow).  g and h) Far-UV circular dichroism (CD) spectra of apo and holoGRNs 
incubated with Cu(II at neutral pH (g) and at pH 4.5 (h). 
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Figure 3 
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Figure 4 
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