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Introduction
Microbialization (changes in ecosystem trophic structure by 

higher microbial biomass and energy use) leads to coral dis-
eases and coral bleaching. Several causes such as overfishing 
and eutrophication facilitate fleshy and turf algae to grow on 
living reefs, promoting competition with corals and coralline 
algae for the benthos (Haas et al. 2016). In addition, Sargas-
sum blooms have also impacted these environments in the past 
decade (Rodríguez—Martínez et al. 2010, Alvarez—Filip et al. 
2019, Oviatt et al. 2019). These shifts in the coral reef environ-
ment culminate in coral death and rubble formation (Hoegh—
Guldberg 1999, Hoegh—Guldberg et al. 2007, Harborne et al. 
2017). A scenario where all these factors are present and expo-
nentially increasing causes a change in the homeostasis of the 
coral colonies, making them vulnerable to disease (Hoegh—
Guldberg 1990, Hoegh—Guldberg et al. 2007, Canadell et al. 
2007). For example, the microbial composition of healthy cor-
al mucus shifts into a pathogenic community, which induces 
disease in coral holobionts (Bourne et al. 2009, Bourne and 
Webster, 2012, Krediet et al. 2013). When coral’s health dete-
riorates, the loss of their endosymbionts provokes the whiten-
ing and sometimes the death of the cnidarian (Hoegh—Guld-
berg et al. 2007, Shinzato et al. 2014, Hawkins et al. 2016). 
The reduction in coral benthos coverage directly impacts the 
function and structure of the reef (Acropora Biological Review 
Team 2005, Mayor et al. 2006, Alvarez—Filip et al. 2009).

When branching, finger, or leafy corals die, their calcare-
ous skeletons form coral rubble in conjunction with the ce-
menting activity of coralline algae and bacteria (Beltrán et al. 
2016, Sanchez—Quinto and Falcón, 2019). These calcareous 
structures provide complex microenvironments, which sustain 
a wide microbial and macrofaunal diversity, and constitute a 
secondary reef structure (Beltrán et al. 2016, González—Gó-

mez et al. 2018, Sanchez—Quinto and Falcón, 2019, Li, 2019). 
The colonization of the dead coral with microbial biofilms be-
gins to create a new reef structure that increases in extent ac-
cording to the deterioration of corals (Hughes et al. 2017, Per-
ry and Alvarez—Filip 2019). Weber et al. (2019) revealed that 
bacteria associated with corals differ from those found in the 
surrounding water. Beltrán et al. (2016) suggests that bacteria 
found in coral rubble are different to those in healthy corals, 
and they are different from those in sediments and microbial 
mats found in the same reef, suggesting that coral rubble is 
constituted by a specific microbiome.

There is a general lack of knowledge regarding the metabo-
lism of bacteria in corals and coral reefs. However, it is a reality 
that the functional role of microbes in coral reefs is becoming 
a new research topic, since microorganisms play a fundamen-
tal role in the cycle of nutrients and energy in our planet (Paerl 
and Pinckey 1996, Arrigo 2005, Hawley et al. 2017, Weber et 
al. 2019, Sanchez—Quinto and Falcón 2019). In coral rubble, 
the processes of colonization and succession of organisms in 
addition to their implications in climate change are almost 
completely unknown. However, it is thought that bacteria and 
other microorganisms are the first to colonize coral rubble sur-
faces (Dang and Lovell 2016). After microbial colonization and 
biofilm formation (see below), coralline algae may colonize and 
provide a favorable calcareous substrate for the settlement of 
corals or other invertebrates (Harrington et al. 2004, Negri et 
al. 2004). This successional process is dependent upon water 
quality and other environmental factors (Blanchon et al. 2010, 
Rodríguez—Martínez et al. 2010, Pérez—Cervantes et al. 2017). 

Although there is ample scientific literature on coral reefs, 
we have just started addressing questions regarding the forma-
tion and composition of coral rubble. Google Scholar searches 
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Abstract: When coral dies, their calcareous skeletons constitute coral rubble in conjunction with the cementing activity of coralline algae 
and bacteria, creating a secondary reef structure which takes from years to decades to form. Healthy coral reefs differ from coral—rubble 
dominated reefs in microbial taxonomic composition and metabolic functional roles. The metabolisms of healthy reefs are dominated by 
autotrophic pathways, where carbon and nitrogen fixation dominate, while the metabolism of rubble—dominated reefs predominate in deg-
radation of organic matter. Nitrogen fixation is 3 orders of magnitude lower in rubble—dominated reefs than in healthy reefs. Coral—rubble 
harbors a vast diversity of microbes that can precipitate carbonate through coupling several metabolic processes including photosynthesis, 
ureolysis, ammonification, denitrification, sulfate reduction, methane oxidation, and anaerobic sulfide oxidation. All these metabolic pro-
cesses were found in rubble microbial communities, but ammonification and sulfate reduction were most prevalent. Anthropogenic and 
non—anthropogenic perturbations of healthy coral reefs in the past decades have led to the prevalence of rubble—dominated reefs in areas 
of the Caribbean where the ecological and functional shifts of the community still need further study.
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showed that 30% of the literature pertaining to “coral reefs” 
has been published from 2000—2020 (Figure 1A), yet 70% of 
studies pertaining to coral rubble have been published dur-
ing this same time span (Figure 1B). However, most coral 
rubble research is mainly associated with geological reports; 
information about the colonizing diversity of these structures 
is scarce. The majority of research on marine biofilms (90%) 
has occurred within the past 20 years (Figure 1C). Literature 
pertaining to marine biofilms in coral reefs is uncommon, and 
the majority of these papers (90%) were also published in the 
past 20 years (Figure 1D). Finally, only one published report on 

coral rubble biofilms was found in the past 20 years, suggesting 
this is an area of fruitful research.

In this Review, we synthesize the current knowledge on cor-
al rubble, the mechanisms in which bacteria can colonize the 
rubble, and the metabolisms associated with these structures. 
Finally, we discuss the implications to coral reef ecosystems 
of loss of coral cover and increase in rubble—dominated com-
munities based on knowledge generated in the Puerto Morelos 
reef in the Mexican Caribbean.

Rubble Formation and Ecological Succession
Throughout the literature, there are different names that 

have been used to define rubble. Some of the names used 
as synonyms are biogenic mounds, lithified crusts, bioclastic 
sediments or biological framework. The composition varies 
but corals, stromatoporoids, calcareous sponges, bryozoans, 
foraminifera (coscinophragmatids), calcareous algae, annelids 
and stromatolitic/skeletal elements are frequent in geological 
samples (Arias et al. 1995). According to Rasser and Riegl 
(2002), a reef rubble by definition is a chemically or mechani-
cally abraded part of reef rocks or frame—builders larger than 
sand fraction with the capability of binding the coral rubble 
fragments.

There are mainly 2 different ways in which rubble can 
form: natural and anthropogenic events. Water movement 
associated with waves, earthquakes, bioerosion, storms, and 
hurricanes can be considered natural events. Anthropogenic 
events include ship groundings, dredging, careless scuba div-
ing activities, and dynamite fisheries (Gardner et al. 2005, 
Hoegh—Guldberg 2014, Hughes et al. 2017, Perry and Alva-
rez—Filip 2019). Other indirect factors that could increase 
the potential amount of rubble in a reef are a combination 
of natural and anthropogenic events such as diseases, changes 
in dissolved nutrient concentrations (eutrophication), blooms, 
and temperature increase (Bourne et al. 2009, Blanchon et al. 
2010, Hoegh—Guldberg 2014, Haas et al. 2016, Hughes et al. 
2017; Figure 2). All these events can create rubble directly or 
indirectly, transforming the entire structure or parts of the 
reef framework into loose pieces (Rasser and Riegl 2002, Reed 
2002).

As the coral weakens, the calcareous structure breaks down 
and some of these fragments are deposited on the seabed 
where they disintegrate due to friction with sand and bioero-
sion, causing an increased loss of the reefs (Edwards 2010, 
Glynn and Maanzello 2015). Coral—rubble consists of these 

FIGURE 1. Results of Google Scholar literature searches. A. Results ob-
tained when searching for “coral reefs” in 2020 (left) and the same search 
from 2000-2020 (right). B. Results when searching for “coral rubble” in 
2020 (left), and the same search from 2000-2020 (right). C. Results ob-
tained when searching for “marine biofilms” in 2020 (left), and the same 
search from 2000-2020 (right). D. Results obtained when searching for 
“marine biofilms in coral reefs” in 2020 (left), and the same search from 
2000-2020 (right).
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FIGURE 2. Gradient of the 
deterioration of a coral reef. 
A. Healthy Acropora palmata. 
B. A diseased A. palmata. C. 
Calcareous rubble colonized 
by diverse algae and micro-
bial biofilms. Photo by A. Sán-
chez—Quinto.
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dead coral fragments. Further, branching corals such as Acro-
pora are more fragile than more robust, slow growing corals 
such as encrusting Montipora and massive Porites and Favites 
(Great Barrier Reef Marine Park Authority 2011) and break 
easily during hurricanes. Although coral rubble is exposed to 
physical abrasion, they also contribute to secondary reef struc-
ture formation (Rasser and Riegl 2002, Reed 2002, Birkeland 
2015). The formation of rubble also originates from early dia-
genesis, which has been active at different levels and at differ-
ent geological periods. The early calcification of the microbial 
mats forming secondary stromatolitic frameworks are some of 
the first reported reef rubble worldwide (Arias et al. 1995, Reit-
ner et al. 2000, Dupraz and Visscher 2005). The primary min-
eralogy of the corresponding substrates were mainly aragonitic 
with calcite also present in the fossil record within reefs (Arias 
et al. 1995, Reitner et al. 2000).

Acropora palmata in the Mexican Caribbean
In the western Atlantic, a few species of framework—build-

ing corals have dominated coral reef habitats throughout the 
region since the late Pleistocene (Jackson 1992, Budd and 
Johnson 1999, Precht and Miller 2007, Le Roy et al. 2014). 
Acropora has been one of the historical reef—building corals 
over the geological record on shallow—water coral reefs (Jack-
son 1992). The Acroporids have a main role in the function 
and structure of the reefs of the Mexican Caribbean (Figure 
3) since no other reef—building species combines branching 
morphology and high rates of calcification (Alvarez—Filip et al. 
2009, Young et al. 2012).

Acropora spp. have reflected a decline in population and 
the deterioration of their habitat in the Mexican Caribbean. 
Between the 1970’s and 1980’s the decline in Acropora popu-
lations was massive. Today, few signs of recovery have been 
reported in Mexican reefs (Acropora Biological Review Team 
2005, Mayor et al. 2006, Estrada—Saldivar et al. 2019). This 

situation coincides with the persistence and higher incidence 
of emerging diseases (e.g white syndrome; Anthony et al. 2008, 
Alvarez—Filip et al. 2019). The massive mortality of Acroporids 
in the Caribbean throughout the Mesoamerican Reef System 
generates patches of coral rubble (Jordán—Dahlgren and Ro-
dríguez—Martínez 2003) which can be later colonized by mac-
ro and microorganisms.

Microbial Biofilms and Coral Rubble Colonization 
Bacteria are main drivers of biogeochemical cycles and are 

distributed in many marine environments which are charac-
terized by fluctuating and challenging conditions (Paerl and 
Pinckney 1996, Arrigo 2005, Bijlsma and Loeschcke 2005, 
Hawley et al. 2017, Kelly et al. 2018). The phenotypic plastic-
ity of bacteria enables them to grow and thrive under these 
conditions (Bijlsma and Loeschcke 2005, Brooks et al. 2011). 
One example of this plasticity is the adhesion of bacterial cells 
to surfaces such as coral rubble and the formation of biofilms 
(Costerton et al. 1978, Flemming and Wingender 2010, Sanli 
et al. 2015, Beltrán et al. 2016, De Carvalho 2018). Biofilms 
are defined as consortiums of microorganisms that grow em-
bedded in an extracellular adhesive—protective matrix. This 
conglomerate is composed of different biopolymers (e.g. pro-
teins, nucleic acids, and lipids, among others) known as ex-
tracellular polymeric substances (EPS; Costerton et al. 1995, 
Flemming and Wingender 2001, Donlan 2002, Decho and 
Gutierrez 2017).

Biofilms can contribute to metabolic cooperation, genetic 
exchanges, and quorum sensing (microbial communication) 
in the community (Flemming 2016, Steinberg and Kolodkin—
Gal 2015, Krupke et al. 2016, Dang and Lovell 2016, Decho 
and Gutierrez 2017). The ecophysiological activities of biofilms 
differ from those of free—living (e.g., planktonic) microbial 
communities in marine environments. These biofilm—associ-
ated microbial communities can survive, grow and maintain 

Cancun

Puerto Morelos

Playa del Carmen

Cozumel

Reef Lagoon

Puerto Morelos

Mesoamerican Reef System

FIGURE 3. Geographic location of the reef in Puerto Morelos, Quintana Roo, Mexico. Acropora spp. are important in the structure and function of 
these reefs.
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activity in certain conditions, while other free—living individ-
ual organisms are not capable of doing so. The establishment, 
signaling, sensing of surface, and adaptive responses of the as-
sociated microbiota in a biofilm promotes diversification, niche 
specialization, and higher—level microbial community organi-
zation (Dang and Lovell 2016, De Carvalho 2018).

Microbial adhesion initiates by altering gene expression 
with consequent changes in cell surface chemistry, physiology, 
and behavior (Donlan 2002, Flemming 2016, Dang and Lovell 
2016). Then, the microbes start with diffusive or active move-
ment and EPS may facilitate the attachment of different species 
of bacteria (Flemming 2016, Flemming and Wingender 2001, 
2010). Microorganisms are able to sense and respond to surface 
environmental signals (specific ligand—receptor interactions) 
and different surface components (Dang and Lovell 2016, De 
Carvalho 2018). The production of a biofilm matrix provides 
several benefits to the microbial community, such as protection 
from predators, viruses, antibiotics, other chemical toxins, and 
deleterious environmental pressures (Azam and Malfatti 2007, 
Matz et al. 2008, Krupke et al. 2016). The EPS in marine bacte-
ria are characterized by high levels of uronic acids (e.g. D—gluc-
uronic and D—galacturonic acid) which react to other chemical 
species (Kennedy and Sutherland 1987). The functional activ-
ity is reflected in the diversity of bacterial genera, although the 
composition of the EPS will depend not only on the species 
but also on the physiological stage of the biofilm (Grossart and 
Simon 2002, Banat et al. 2011). Hence, each type of EPS will 
provide different physical properties according to the polymer 
concentrations, composition, steric availability of functional 
groups on polymers, and types and abundances of ions (Chew 
et al. 2014, Decho and Gutierrez 2017).

The colonization of microbial consortia in the coral rubble 
is of great relevance to the ecological processes within the eco-
system, although we are only starting to understand their com-
position and associated metabolisms (Dupraz et al. 2009, Ain-
sworth et al. 2010, Sanchez—Quinto and Falcón 2019). Some 
studies reveal that Gammaproteobacteria, Alphaproteobacteria 
(Roseobacter), and Bacteroidetes predominate in the formation 
of EPS in marine environments, although yeasts and various 
types of algae have also been reported (Donlan 2002, Flem-
ming and Wingender 2010, Witt et al. 2012, Dang and Lovell 
2016, Li 2019). The formation of biofilms can persist if the ap-
propriate environmental conditions exist (Donlan 2002, Flem-
ming and Wingender 2010, Uthicke et al. 2012). Interestingly, 
the properties of EPS can change post—secretion due to pho-
tochemical, geochemical, or enzymatic processesor by trapped 
or absorbed molecules (Decho and Gutierrez 2017). Thus, EPS 
composition is continually changing according to environ-
mental modifications, which will impact the functionality and 
structure of communities. Therefore, these conglomerates in 
coral rubbles support critical ecological and biogeochemical 
shifts in coral reef ecosystems (Dang and Lovell 2016).

Coral Rubble Biofilm Diversity
Microbial diversity from healthy and diseased corals has 

been well studied (Cook 2009, Wegley et al. 2007, Ainsworth 

et al 2010, Sunagawa et al. 2010, Bourne et al. 2016, and many 
more). Additionally, some studies are starting to characterize 
microbial biofilms from different coral rubble reefs around the 
Mexican Caribbean (Sanchez—Quinto et al. unpublished data). 
Sunagawa et al. (2010) identified differences between species 
and morphologies of coral species, in which corals that form 
massive, mound—shaped colonies (e.g., Montastraea spp., Diplo-
ria strigosa, and Porites astreoides) have higher microbial diversity 
than branch—forming Acroporid species (Acropora spp.). Frias—
Lopez et al. (2002) and Beltrán et al. (2016) showed that the mi-
crobial composition associated with healthy A. palmata is less 
diverse and different from the microbial composition of the bio-
film that colonizes the coral rubble. According to results based 
on a metagenomic analysis of coral rubble by Sanchez—Quinto 
and Falcón (2019), Gammaproteobacteria and Alphaproteobac-
teria were the groups of organisms with a greater abundance in 
the coral rubble structures, followed by Actinobacteria, Delta-
proteobacteria and Betaproteobacteria. In contrast, in healthy 
A. palmata and other corals, Bacteroidetes, Proteobacteria, 
and other groups such as Firmicutes, Planctomycetes, Cyano-
bacteria and Actinobacteria were the most abundant (Rohwer 
et al. 2001, Wegley et al. 2007, Birkeland 2015, Beltrán et al. 
2016, Li 2019). Furthermore, Fungi, Demospongiae, green 
and rhodophilic algae were also found in the coral rubble, and 
Thaumarchaeota was the most abundant Archaea (Sanchez—
Quinto and Falcón 2019). According to Wegley et al. (2007) 
similar archaeal species may be found on different healthy coral 
species where Crenarchaeota and Euryarchaeota are the most 
abundant. Interestingly, a similar diversity of viruses has been 
reported in healthy corals and coral rubble in which bacterio-
phages predominate (Wegley et al. 2007, Sanchez—Quinto and 
Falcón 2019).

Data published to date suggests that coral rubble and the 
microbial diversity within these structures can change from a 
healthy high—coverage reef to a low coverage and mainly rub-
ble—dominated reef. On the other hand, the composition of 
the microorganisms that colonize this rubble are not affected 
under scenarios of pH decrease or temperature increase, sug-
gesting that these microbial biofilms will continue to colonize 
coral rubble under conditions of climate change (Beltrán et 
al. 2016). The bacteria associated with corals and coral rubble 
have not been considered for predictions about the future re-
sponses to climate change scenarios (Ainsworth et al. 2010). 
Therefore, the bacterial diversity and the functionality associ-
ated with these ecosystems and their interactions in cementa-
tion processes is fundamental.

Metabolism of Coral Rubble Dominated Reefs 
Microbes have important roles in numerous marine process-

es such as organic matter remineralization, nutrient regenera-
tion and element cycling (Dang and Lovell 2016, Haas et al. 
2016, Hawley et al. 2017). They can concentrate pollutants (e.g., 
heavy metals) and transfer energy in food webs (Azam et al. 
1983, Decho 1990, Bu—Olayan et al. 2005, De Carvalho and 
Caramujo 2012). They also have an important role in deleteri-
ous effects such as biofouling, biocorrosion, and the persistence 
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and transmission of harmful or pathogenic microorganisms 
and their genetic determinants (Rohwer et al. 2001, Reopan-
ichkul et al. 2009, Bourne et al. 2009, Flemming and Wingen-
der 2010, Bourne and Webster 2012). In coral reefs, there is 
evidence that microbes contribute to the induction of benthic 
invertebrate larval settlement and xenobiotic compound bio-
degradation (Donlan 2002, Negri et al. 2004, Dang and Lovell 
2016).

Sanchez—Quinto and Falcón (2019) identified the meta-
bolic processes within coral rubble structures of Acroporid 
remains in Puerto Morelos reefs using a metagenomic ap-
proach. In contrast to healthy reefs, which are characterized 
as autotrophic ecosystems and where carbon or nitrogen fixa-
tion predominate (Kelly et al. 2018, Weber et al. 2019), the 
predominant metabolism in coral rubble is associated with 
the degradation of organic matter. Therefore, a possible func-
tional change in ecosystems could be the succession from an 
ecosystem where autotrophic metabolism predominates to a 

heterotrophic one (Haas et al. 2016, Dang and Lovell 2016, 
Sanchez—Quinto and Falcón 2019). Coral rubble also has an 
important role in the nitrogen cycle primarily through deni-
trification as well as assimilatory and non—assimilatory reduc-
tion of nitrate. Further, in coral rubble, nitrogen fixation is 
3 orders of magnitude lower than in healthy corals (Lesser et 
al. 2007, Sanchez—Quinto and Falcón 2019), although there is 
a great diversity of nitrogenase—associated Alphaproteobacte-
ria, suggesting the role of heterotrophic diazotrophs in coral 
rubble (Figure 4).

Coral reefs are likely to play an important role in the biogeo-
chemical sulfur cycle (Arrigo 2005, Raina et al. 2010, Hawley 
et al. 2017), since sulfur is found in seawater and sedimentary 
rocks, including calcium and magnesium carbonates (Raina 
et al. 2010). In the coral rubble, assimilatory sulfate reduction 
is the predominant pathway for the S cycle (Sanchez—Quinto 
and Falcón 2019). This suggests that most of the sulfur is me-
tabolized into organic compounds. In addition, Actinobacteria 

FIGURE 4. Coral rubble structures originating from the death of A. palmata colonies. Model of the potential functional role of bacteria in coral rubble, 
indicating biogeochemical pathways associated with the nitrogen, sulfur and methane cycles. Modified from Sanchez—Quinto and Falcón (2019).
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in coral rubble can have a key role in sulfate assimilation, and 
in the dissimilation of nitrate and methane (Sanchez—Quinto 
and Falcón 2019, Li 2019). The coral rubble is also potentially 
important in the carbon cycle. Archaea such as Euryarchaeota 
could play a key role for methanogenesis and the presence of 
methanotrophs such as Gammaproteobacteria suggests multi-
ple methane transformation strategies within the rubble com-
munity.

Cemented Coral Rubble Biofilms and Their Role in 
Carbonate Precipitation 

The role of coral rubble cementation in reef development 
(processes that may take from years to decades) not only con-
tributes a significant amount of carbonate to the primary reef 
structure, but it also aids in stabilization (binding) of the reef 
framework (Hughes and Connell 1999, Barott et al. 2011, 
Sweet et al. 2013, Beltrán et al. 2016, Sheppard et al. 2017). 
Lithification by either biological or physical cement stabilizes 
the secondary reef structure and is involved in the composi-
tion and preservation of the rubble (Rasser and Riegl 2002). 
Other authors have reported that non—cemented structures 
have been deteriorating for the past 90—100 years (Holmes et 
al. 2000, Birkeland et al. 2013). According to Birkeland (2015), 
the recovery of coral communities on the reef crest and outer 
reef flat is significantly higher than those behind the reef crest, 
where the substratum is mainly loose rubble. Birkeland (2015) 
suggested that the coral recovery depends on the resistance 
and resilience of each reef rather than perturbations. In reefs 
where loose rubble predominates, the recovery will take de-
cades until the substratum lithifies or until the corals re—ag-
gregate (Birkeland et al. 2013). Victor (2008) determined that 
there was no significant difference in larval recruitment be-
tween unstable rubble and lithified substrata, but the survival 
of recruits was significantly higher on lithified substrata. 

Reef ecosystems are relevant in terms of their biological 
diversity and ability to produce carbonate. There are reports 
of the relationship between microorganisms and carbonate 
precipitation. These reports provide an understanding of the 
fundamental role of microorganisms (mainly prokaryotes) for 
the precipitation or dissolution of carbonates (Paerl 2001, Zhu 
and Dittrich 2016, Sanchez—Quinto and Falcón 2019). James 
(1974) reported that A. palmata precipitates aragonite. Howev-
er, carbonate mineralization induced by microbial activity and 
certain calcareous algae (CCA) in the coral rubble is associ-
ated with magnesium—rich calcite (Camoin et al. 1999, Riding 
2006, Beltrán et al. 2016).

The function of these carbonates is fundamental for the 
development of the reef and the organisms that inhabit it since 
they provide support, shelter, structural stabilization, surface 
to colonize, and trap organic matter, among others (Moberg 
and Folke 1999, Riding 2011, González—Gómez et al. 2018). 
Microbial biofilms have the ability to trap sediments and 
elaborate microscale changes in pH. They serve as a crystal 
core providing zones for the precipitation of calcium carbon-
ate (CaCO

3
; Flemming and Wingender 2010, Flemming 2016, 

Beltrán et al. 2016, Dang and Lovell 2016, De Carvalho 2018). 
Microbes can precipitate carbonate through the interaction of 
different metabolic pathways. Among these metabolisms are 
photosynthesis, ureolysis, ammonification, denitrification, sul-
fate reduction, anaerobic sulfide oxidation and methane oxi-
dation (Zhu and Dittrich 2016). All these metabolic pathways 
were identified in the coral rubble microbial communities, 
with ammonification and sulfate reduction the most abundant 
(Sanchez—Quinto and Falcón 2019). Furthermore, in marine 
systems photosynthetic microorganisms are responsible for 
triggering calcite precipitation (Arp et al. 2001). There is still 
much to decipher regarding the role of biofilms in the accre-
tion of coral reefs. Nevertheless, these microbial communities 
possess the metabolic potential to have an important role in 
these processes.

Perspectives
In the future, a metagenomic comparison between healthy 

corals, coral rubble, and their environment is crucial to un-
derstand the diversity and the potential metabolic pathways 
associated with coral reefs. Moreover, coral rubble from dif-
ferent regions should be analyzed using “omics” to understand 
if there are patterns in their composition relating to environ-
mental conditions or biogeography. Furthermore, more re-
search is needed in order to reveal the relative contributions 
of these rubble communities to the ecosystem. Understanding 
the diversity associated with coral rubble and the interactions 
in biogeochemical processes is essential to predict the func-
tional change of coral reefs.

The ecophysiology and mechanisms of carbonate mineral 
precipitation in the colonizing communities of the coral rub-
ble should be also considered in future research. The presence 
of pathways associated with the generation of methane, CO

2
, 

and denitrification indicates that it is important to carry out 
characterizations with metatranscriptomics and ecophysiology 
to determine the contribution of greenhouse gases in these 
emerging ecosystems.

According to Rohwer et al. (2001), microbial wealth in-
creases with deterioration of coral health, which in turn may 
have a role in the pathogenicity of the holobiont. Hence, more 
research on coral reefs and their interaction with pathogens 
should be addressed. Resolving the connection between coral 
and algal microbiome structure through a metabolomic out-
come will be crucial for determining the mechanisms under-
lying the algal phase shifts. Finally, understanding the diver-
sity and functionality associated between coral reefs and the 
interactions or shifts in biogeochemical processes is essential 
to predict functional changes in a future where coral rubble 
is more likely to be dominant. An interdisciplinary character-
ization (i.e., using isotopes and PCR/shotgun—sequencing) of 
coral rubble reefs in the Mexican Caribbean will contribute 
to understand the role of the biofilms in the biogeochemical 
cycles and their implications in the formation of coral reefs. 
Therefore, the study of biofilms in the Mexican Caribbean 
coral reefs is crucial and still needs further investigations. 
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