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Abstract—Trajectory prediction is an important task, espe-
cially in autonomous driving. The ability to forecast the position
of other moving agents can yield to an effective planning,
ensuring safety for the autonomous vehicle as well for the
observed entities. In this work we propose a data driven approach
based on Markov Chains to generate synthetic trajectories, which
are useful for training a multiple future trajectory predictor. The
advantages are twofold: on the one hand synthetic samples can
be used to augment existing datasets and train more effective
predictors; on the other hand, it allows to generate samples with
multiple ground truths, corresponding to diverse equally likely
outcomes of the observed trajectory. We define a trajectory pre-
diction model and a loss that explicitly address the multimodality
of the problem and we show that combining synthetic and real
data leads to prediction improvements, obtaining state of the art
results.

I. INTRODUCTION

Trajectory prediction has become a major topic of research
in computer vision for autonomous driving [1], [2], [3], [4],
[5], [6], [7], [8]. The task is of utmost importance, since
predicting other agent trajectories permits to avoid danger
and plan ego-motion safely. Unfortunately, the autonomous
driving datasets required to train prediction models are ex-
tremely expensive to gather effectively. Costly data acquisition
campaigns are required to obtain large scale vehicle trajec-
tories with context and several sensors are needed: cameras,
stereo pairs, LiDARs, IMUs and GPS. Once the campaign is
terminated, vehicle trajectories may be estimated by tracking
detections and fusing LiDAR measurements [9]. Context is
usually provided by remapping image semantic labels [10]
onto the ground plane, which also requires a LiDAR scan
or a depth map. Finally ego-motion estimation is required to
register multiple map and trajectory acquisitions over time.

Some dataset such as KITTI [9], TrafficPredict [11] or
Argoverse [12] are acquired with instrumented cars using
LiDAR and multiple cameras. Others are extracted using a
multicamera setup, like NGISM [13] which has been collected
at an US highway junction. Other than being costly, all these
setups for data acquisition are extremely time consuming,
requiring either to wait for data collection [13] or to drive
a car in the traffic for hours [9], [11], [12]. This complexity
has the effect of limiting the scale of the datasets.

Alternative ways to gather trajectory data is to rely on less
expensive existing videos lacking sensor annotations and try-
ing to estimate vehicle motion, for instance using SLAM [14]

or replacing sensor data with deep learning methods [15].
These methods however still require high quality videos cap-
tured from a moving vehicle.

To overcome data acquisition limitations, the use of syn-
thetic datasets has always attracted the interest of deep learning
researchers. The potential of using simulated data is the ability
to increase the training data at little or no cost, thus making
learned models more capable and robust. For instance, GANs
have been used to generate synthetic eye imagery to train gaze
estimators [16]. Synthetic images have also been used to train
detectors in an automotive scenario [17].

A different take on the problem is to generate completely
synthetic data [18], [19], [20], using advanced game engines.
What makes this so compelling is the possibility of controlling
the rendering pipeline, which makes it possible to obtain pixel
level annotations automatically at no cost.

Currently, there is no work addressing the training of
trajectory predictors from synthetic data. Differently from
images, trajectories are low dimensional, and are in principle
easier to generate. Nonetheless, generated trajectories must be
framed into a context in order to exploit knowledge about
the surrounding environment at inference time. Moreover,
trajectory data must be coherent in terms of scale and object
dynamics.

In this paper we propose a procedural strategy for generating
realistic synthetic pairs of trajectories and semantically la-
beled top-view maps, relying on statistics of existing datasets.
Computer graphics researches have often sought procedural
methods to generate data [21], which does not require costly
handcrafting of digital artifacts by visual artists. In the specific
case of city maps generation, recent methodologies combine
terrain and water data to shape the city map [22], [23].
While these methods enable realistic designs of cities, our
goal is slightly different. First, we do not need a whole
city to be generated at once, since our prediction model has
only access to a limited surrounding. This is in line with
a feasible real-world system whose perception is limited by
sensor range. It could be argued that the whole city could
be generated and cached and then local snapshots could be
retrieved. Nonetheless, our methodology allows to create a
wider range of possibilities at a faster rate. The efficiency of
our model coupled with its random nature makes it suitable for
a deep learning training loop. Indeed, we are able to provide
newly generated examples at learning time making the training
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set virtually infinite.
The main idea of this work is that roads are born from

agents paths. While modern roads are designed from the need
to connect locations and to optimize commerce and transport
in general, some believe that in certain cases roads originated
from men following trails drawn by animals [24] such as the
Icknield Way [25]. Relying on this principle it is easier to
generate plausible trajectories and build maps around them,
rather than generating a map or a city and fitting a plausible
motion on it.

In addition, data acquired from sensors might not have
access to all desired informations, which could instead be
acquired in a synthetic or simulated environment. An example
of this is occlusion caused by other vehicles, which has been
addressed using GANs to generate samples recovering the
structure of the layout [26], [27]. In the case of trajectory data,
what can be observed in the real world is only the path taken
by a vehicle. Yet, willing to predict its future location, multiple
equally likely outcomes might be possible. This information
is impossible to capture with sensors, while with synthetically
generated data it is possible to offer a rose of possibilities for
a single observation.

Overall, in this work we study the possibility of augmenting
trajectory prediction datasets by generating synthetic data
using a Markov Chain with parameters estimated from real
data statistics. Our method consistently generates plausible
trajectories paired with semantic context maps. Each sample is
split into an observed past and a set of possible futures, mean-
ing the observed variable and the variables to be predicted.

We show that our synthetic data can help in learning good
features and that combined with real data can yield to state of
the art results on trajectory prediction benchmarks. The main
contributions of this paper are:

• We propose a method for estimating a Markov Chain
describing vehicle dynamics from real data. This is then
used to generate synthetic data to augment trajectory
prediction datasets.

• Our generation pipeline allows us to create samples
which explicitly address the multimodality of trajectory
prediction, i.e. samples with a single past trajectory and
multiple future outcomes that cover different roads.

• We propose a prediction model equipped with a recurrent
controller that performs an incremental attention over
possible future locations. By combining real and synthetic
data we demonstrate that our model is able to achieve
state of the art results.

• We introduce the novel Multimodality Loss, which thanks
to the generated multimodal samples, allows us to train
the network with direct supervision on each possible
future.

II. SYNTHETIC TRAJECTORY GENERATION

We address the problem of vehicle trajectory prediction
from a data-driven point of view. The focus of this work is
to augment existing trajectory datasets with synthetic samples
which can then be used to train predictive models more

effectively. Samples we want to generate are made of two
main components: the actual trajectory followed by a vehicle
and the context in which it is driving. We identify a trajectory
as a sequence of coordinates (xi, yi), each divided into two
subsets: past coordinates and future coordinates. Past coordi-
nates represent the observed history that a predictive model
can observe, i.e. all positions occupied by the vehicle up to
a given time identifiable as present, and future coordinates
instead represent where the vehicle will go in the near future.
A context instead corresponds to a semantic map c, where each
pixel is labeled with a category such as road or sidewalk.

To generate synthetic samples we model roads as paths
carved by agents. Based on this idea, we use a random
trajectory generator to draw paths and then we create in-
scale semantic maps of roads and sidewalks. Our goal is to
have a fast method to generate a high variety of maps and
trajectories on the fly rather than obtaining a full map of an
urban or suburban scenario. In the following we first outline
our trajectory generation pipeline and then explain how to
build complementary semantic maps.

A. Trajectory Generation

In order to generate synthetic trajectories we exploit a
Markov Chain whose parameters are estimated from real data.
The states of the chain correspond to vehicle position offsets
from one timestep to the next. We represent offsets in a
polar coordinate system with the y axis oriented in the same
direction as the vehicle, therefore each state encodes speed
and curvature of the vehicle in a given instant.

Given an initial random state, the Markov Chain allows
to generate a trajectory through subsequent random state
transitions. By concatenating all generated offsets we are then
able to sample a complete trajectory, making a transition at
each timestep. For example, if trajectories are sampled at
10Hz, then after 10 state transitions of the Markov Chain,
a trajectory spanning over one second will be generated.

To identify the states of the Markov Chain and esti-
mate the transition matrix, we rely on real trajectory data.
Given a set of real trajectories in world coordinates ti =
(x0, y0), (x1, y1), ..., (xT , yT ) across T + 1 timesteps, we
first compute for each sample the T intermediate offsets in
polar coordinates. The radius ρk is simply computed as the
Euclidean distance between point k+1 and k while the angle
θk is equal to the change in orientation of the vehicle, i.e. the
difference in degrees between the vehicle heading direction
at time k and k + 1. This representation has the advantage
of being rotation invariant, since the angles are computed
relatively to the forward direction.

To obtain a finite and compact set of states, we apply K-
means to cluster all offsets. The centroids of the discovered
clusters represent an approximation of any possible state in
which the vehicle can find itself, based on the training data.
We use these centroids as nodes of the Markov Chain.

To estimate transitions we find all pairs of subsequent states
in the dataset. Theoretically, each state could transition to any
other, yet some transitions are physically implausible, i.e. if
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Fig. 1. Synthetic trajectories in context. Semantic maps are 360× 360px where a pixel corresponds to 0.5 meters. Purple corresponds to road pixels, pink
to sidewalk and black to background. Trajectories are divided into 2s past (red) and multiple 4s futures (green) and are sampled at 10Hz.

they imply sudden changes in speed or in steering angles. Each
transition from a source state to a destination state is associated
with a probability by counting their number of occurrences,
normalized by the total number of transitions outgoing from
the source node. Such states and transitions define the Markov
Chain we use for sampling new trajectories. A synthetic
trajectory is built as a sequence of offsets belonging to the
clusters encountered while visiting the Markov Chain. At each
node a sample from the correspondent cluster is drawn and
used to generate the current trajectory offset.

This process can be generalized to states that take into
account multiple timesteps. In fact, by representing each state
with a single cluster, each transition has a limited memory
of the past evolution of the trajectory, which may result in
erratic patterns. To increase the memory, we simply identify
each node in the chain with a sequence of temporally adjacent
offsets, each quantized as a cluster centroid. In this way, a
transition can be defined as a mapping from a sequence of
N displacements occurred at timesteps (-N+1,..., -1, 0) to a
sequence of displacements occurred at (-N+2,..., 0, 1), where
timestep 0 corresponds to the present. Increasing N though
will make the state space grow with a rate of CN where C is
the number of clusters, limiting at the same time the number
of samples over which to estimate transition statistics. In our
experiments we set N=2 unless differently stated.

B. Map Generation

A map m is a tensor of size H ×W × C representing a
top-view context labeled with semantic categories. H and W
correspond to the spatial extent of the map and C is the number
of semantic classes used to label it. We use 3 classes, encoded
as 1-hot vectors in each pixel of the map: road, sidewalk and
background. We do not model other categories that can be
typically found in urban scenes such as building or vegetation
since they do not affect driving patterns. Each map has a
granularity of 0.5 meters per pixel, therefore a context covers
an area of H/2×W/2 meters.

Since we are interested in modeling urban scenarios and
vehicles move exclusively on roads, context maps are created
by generating a set of trajectories and drawing roads around
them. We use our trajectory generation pipeline to sample a
sufficiently long path and, by adding a thick stroke to it, we
are able to define the pixels labeled as road. In the same way,
we add sidewalks next to lanes. The width of the stroke defines
the width of a lane and its sidewalk. In our experiments we
generate maps with lanes approximately 6 meters wide and
sidewalks up to 1.5 meters, similarly to regular roads in the
real world.

To obtain crossroads and forks we generate a new road
starting from a random point along the previously generated
one. We iterate this process a random number of times b,
which we refer to as branching factor. A higher branching
factor leads to more complex scenes, while a branching factor
of 1 provides a simple road with no intersections. In our
experiments we use a branching factor up to 5.

To obtain richer scenarios, we randomly double the width
of a whole generated path, indicating that the road has two
lanes instead of one. Additional roads, either not connected
to the main one or behind the vehicle, are added in the scene
to include portions of the map that could potentially be taken
by a vehicle, but that the vehicle we want to predict cannot
reach. Despite this might seem unnecessary, we show that it
helps the learning process of a predictive model, as discussed
in Section IV-D. Usually, maps similar to ours are obtained
by combining LiDAR point clouds acquired the vehicle and
semantic segmentation algorithms [9]. This procedure though
leads to noisy maps in regions far away from the sensor, since
the point cloud gets sparser when the distance increases. To
mimic this, we randomly add noise on map borders by turning
road and sidewalk pixels to background. Similarly, borders
between categories tend to be noisy and irregular, therefore we
randomly vary the width of sidewalks to simulate this effect.
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C. Multimodal synthetic sample generation

To generate synthetic samples, comprising both a trajectory
and its context, we select an M -point segment from one of the
trajectories that generated the roads. The trajectory segment
can then be split into two segments p and f of length P and
F respectively, representing the past observation and the future
trajectory. The context is created by cropping a map centered
in the present point, i.e. the last point of the past. Throughout
all experiments we set P = 20 and F = 40, which correspond
to a 2 seconds past and a 4 seconds future with trajectories
sampled at 10Hz, for a total of 6 seconds (M = 6). The
context instead is chosen to have an extent of 360 × 360px
(180× 180m).

To increase variability we shift trajectories orthogonally to
the road by a random offset, with a higher probability to keep
them close to the right side, as in an actual driving scenario
assuming right-hand driving.

Generating synthetic samples has the immediate advantage
of augmenting a trajectory prediction dataset. More impor-
tantly, simulated data can be generated to explicitly address
the multimodality of the task. In fact, predicting the future
position of a vehicle bares an intrinsic uncertainty, since
multiple equally probably paths might be present, such as
before intersections. Trajectory data collected from the real
world cannot carry information about this multimodality, since
a vehicle can only take a single direction out of the many
possible ones.

Looking at the problem from a machine learning point of
view, we want to learn a function that maps an observation x
into one of K multiple outcomes {yi}i=1,...,K . In a supervised
learning framework, real world data is able to provide a
single supervision signal out of K. To make this worse,
multiple examples might exist with similar observations x
and a completely different outcome y, which is detrimental to
learning. In a simulated environment instead, we can overcome
this limitation by imagining several possible outcomes and
providing all of them as ground truth to the learning algorithm.
To create multimodal trajectories, we simply select points in
the future segment from which to initialize new trajectories
and sample different transitions from the Markov Chain. By
building roads around these trajectories, each encountered
intersection will have an associated ground truth and each
sample will have a set of possible outcomes.

Summarizing, a sample is made of: a semantic map m
centered in the present position of the vehicle; the past
trajectory of the vehicle p; a set of NGT possible futures
fi with i = 1, ..., NGT . Examples of synthetically generated
maps with multiple futures are shown in Fig. 1.

III. PREDICTION MODEL

We developed a model specifically tailored to exploit syn-
thetic samples with multimodal ground truth futures (Fig. 2).
The architecture is based on an encoder-decoder structure,
which takes as input past trajectories and outputs multiple
futures. Our model is equipped with a recurrent controller that
at each step performs an attention on context maps, guiding

the predictions towards different outcomes. First, separate
encoders learn latent representations for past and context. The
trajectory encoder is a Gated Recurrent Unit (GRU) and the
context encoder a Convolutional Neural Network (CNN). The
two encoders are then fed to the controller, also implemented
as a GRU. For each timestep, the same past is fed as input,
while the context is used to initialize the hidden state. The
memory of the GRU stores knowledge about future paths that
have already been explored and outputs an attention vector
which weighs the context embedding via dot product. The
resulting vector is then fed to a final GRU that decodes it into
a future prediction. This process is iterated K times, where K
is the desired number of futures.

The recurrent layers, employed as encoder-decoder and
controller, work with sequences on two different abstraction
levels. The encoder and the decoder are modeling time,
i.e. there is a correspondence between each update of the
GRU and an actual timestep in the evolution of the vehicle
dynamics. The controller, on the other hand, is modeling the
multimodality of possible futures, exploring the semantic map
to find possible roads that the vehicle might travel. At the
same time, the controller is also modeling different modalities
of navigating the same road (e.g. accelerating/decelerating).

A. Implementation details

All trajectories fed to the model, both at training and at
testing time, are rotated such that the direction of the vehicle
in the present follows an upward direction. This is useful
since it provides rotation invariance and simplifies the taks.
The trajectory encoder network is implemented as a Recurrent
Neural Network using a GRU with two layers with a hidden
state size of 256.

The context encoder instead is a CNN network composed
of 4 blocks of covolutional layers with ELu non linearities and
a final fully connected layer, as shown in Fig. 3. The context
encoder receives multiple crops from the original top-view
map and processes each one of them individually. We pick
3 overlapping crops in front of the position of the vehicle
at time t0 (the present), which coarsely represent the three
main performable maneuvers (turn left, go straight, turn right).
The advantage of doing so is to process the context map at a
higher resolution without altering the structure of the network.
The enconding vectors of each crop are finally concatenated
and blended with a final fully connected layer to form a 256-
dimensional representation.

The encodings for trajectory and context share the same
dimension since we use them to initialize the controller, which
is also implemented as a 256-dimensional GRU: the hidden
state is initialized with the context and the trajectory is fed as
input.

Finally, the trajectory decoder is a GRU with 3 layers
and hidden state size of 256, followed by a fully connected
layer that maps the output into the 2-dimensional offsets of
the future predicted trajectory. The trajectory decoder is also
trained with a dropout probability of 0.2.
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Fig. 2. Architecture overview. Past trajectory and context map are encoded separately and used as input and initial state of the controller. The controller
loops K times and at each iteration performs an attention with the map encoding via dot product. The resulting vector is fed to the decoder which emits a
prediction. A diverse future is obtained for each iteration of the controller.

Fig. 3. Architecture of the context map encoder. Multiple crops of the input
map are extracted and encoded independently and successively combined.

B. Training

The presence of the controller generating multiple futures,
allows us to take full advantage of the synthetic trajectories,
which are paired with several ground truths. In fact each
ground truth can serve as supervision and each step of the GRU
can be specifically optimized. Usually, to enforce multiple
diverse predictions, a Variety Loss [28] is used during training.
This loss minimizes the Mean Squared Error between the
only ground truth and the best prediction out of K (this
loss is sometimes referred to as best-of-K). The advantage
of doing backpropagation only through the best prediction is
to avoid a single averaged solution and enforce the model to
generate a set of diverse alternatives. This does not happen
when optimizing the MSE of all generated futures compared
with reference to a single ground truth.

Whereas this has often proven effective [28], [1], [2], [4],
it exploits only a partial supervision hence a large amount
of computation during training is wasted not being used
in backpropagation. To overcome this limitation and exploit
multiple synthetic ground truths, we introduce a Multimodality
Loss which optimizes a prediction for each available ground
truth. The loss computes pairwise distances between all targets
and predictions. Then, it iteratively pairs the trajectories with
the minimum distance in order to assign to each future at least
a prediction. The first match is provided by the lowest pairwise
distance. The paired GT and prediction are then temporarily
removed and the process is repeated for all remaining ground

truths. If K > NGT , i.e. if the number of estimates is higher
than the number of ground truths, the remaining predictions
are paired to the closest future. In our experiments we use
K = 5 and a variable number of GT futures from 1 to 5.

The Multimodality Loss allows us to backpropagate the error
for each timestep of the controller, thus explicitly instructing
the model about all possible future alternatives. We show
in Section IV-C that our loss provides benefits over existing
losses such as MSE and Variety Loss.

0 0.5 1 1.5 2 2.5
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 4. Trajectory offsets from the KITTI dataset in polar coordinates
(ρ, θ) clusterized through K-Means into 40 clusters. Different colors represent
different clusters.

IV. EXPERIMENTS

A. Datasets and Metrics

In our experiments we use the KITTI dataset [9], which
comprehends several data modalities such as calibrated RGB
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streams, LiDAR 3D point clouds, annotated objects, semantic
segmentations and IMU. Here we refer to the tracking dataset,
which has often been used for trajectory prediction [1], [2],
[4], [29]. Despite this, several splits of the dataset have been
used across prior work. Here we refer to the split introduced
in [4]1, which contains 8613 top-view samples for training and
2907 for testing. Trajectories are divided into 2 seconds past
trajectories and 4 seconds future trajectories, while maps have
a spatial resolution of 0.5 meters per pixel. Trajectories are
samples at 10Hz, therefore there are 20 and 40 points for past
and future segments, respectively.

As metrics to test the performance of our model we measure
the Final Displacement Error (FDE), i.e. the L2 error in meters
at a given timestep (sometimes also referred to as Horizon
Error), and Average Displacement Error (ADE), i.e. the error
in meters averaged over all timesteps. We compare our method
against existing state of the art works [1], [2], [4] and some
simpler baselines from [4], namely a linear regressor, a multi
layer perceptron regressor (MLP) and a Kalman Filter [30].
It has to be noted that, due to the different dataset splits, [1]
and [2] are not directly comparable to ours and are given as
reference.

B. Results

To evaluate our model we first generate the states of the
Markov Chain by applying K-means on trajectory offsets
in polar coordinates extracted from the training set. Since
trajectory coordinates in KITTI are acquired with GPS and
IMU, they sometimes exhibit noise, especially when a vehicle
is moving very slowly or not moving. To remove this noise
we filter out offsets with ρ < 0.005 and θ > 0.5 to prevent
still vehicles to make sudden sharp turns. As discussed in
Section IV-D, we found out the optimal number of clusters
to be 40. Fig. 4 depicts the obtained clusters.

We trained three different variants of our method, varying
the source of data: only real trajectories from KITTI, only
synthetically generated trajectories, both real and synthetic
trajectories. All variants are tested on the test set of KITTI,
i.e. on real data. Tab. I shows the results obtained by the
three methods, compared to prior work. The usage of synthetic
data alone is able to provide acceptable results: compared to
its counterpart trained with real data, the model performs on
par for predictions up to 2 seconds and with an FDE@4s
only 0.5 meters worse. This is quite remarkable since no real
sample is used to train the model, suggesting that our data
generation process is able to approximate realistic samples.
This result implies that sampling data using our Markov Chain
could augment the existing dataset, thus improving the model
without the need of costly data acquisition campaigns. In fact,
this is the case when trained with mixed data. Here we use
the training set from KITTI in combination with synthetic
data. During training we sample approximately 16k synthetic
samples, compared to the 8k real ones, but we keep their
ratio balanced in each batch. In this way, the error consistently

1https://github.com/Marchetz/KITTI-trajectory-prediction

TABLE I
AVERAGE DISPLACEMENT ERROR (ADE) AND FINAL DISPLACEMENT

ERROR (FDE), COMPUTED FOR PREDICTIONS AT DIFFERENT TIME STEPS.
DESIRE [1] AND INFER [2] ARE SHOWN AS REFERENCE EVEN IF NOT

DIRECTLY COMPARABLE DUE TO DIFFERENT DATASET SPLITS.

ADE FDE
Method 1s 2s 3s 4s 1s 2s 3s 4s
Kalman [4] 0.51 1.14 1.99 3.03 0.97 2.54 4.71 7.41
Linear [4] 0.20 0.49 0.96 1.64 0.40 1.18 2.56 4.73
MLP [4] 0.20 0.49 0.93 1.53 0.40 1.17 2.39 4.12
MANTRA [4] 0.17 0.36 0.61 0.94 0.30 0.75 1.43 2.48
Ours (Synthetic data) 0.32 0.54 0.85 1.31 0.52 1.01 1.90 3.44
Ours (Real data) 0.31 0.53 0.78 1.24 0.51 0.95 1.63 2.95
Ours (Mixed data) 0.22 0.38 0.59 0.89 0.35 0.73 1.29 2.27
DESIRE [1] - - - - 0.28 0.67 1.22 2.06
INFER [2] 0.56 0.75 0.93 1.22 0.81 1.08 1.55 2.46

TABLE II
ANALYSIS OF THE EFFECT OF DIFFERENT LOSSES DURING TRAINING. OUR

Multimodality Loss OUTPERFORMS THE Variety Loss AND MSE SINCE IT
CAN EXPLICITLY ADDRESS MULTIMODALITY.

ADE FDE
Method 1s 2s 3s 4s 1s 2s 3s 4s
MSE 0.35 0.68 1.16 1.81 0.59 1.42 2.75 4.68
Variety Loss 0.34 0.54 0.80 1.19 0.53 0.94 1.70 3.03
Multimodality Loss 0.22 0.38 0.59 0.89 0.35 0.73 1.29 2.27

lowers below the one obtained with real samples. Especially
for far prediction horizons, the model is able to improve
considerably, surpassing it by 0.7 meters of FDE@4s. In this
way, we are able to improve also over existing prior work with
the only exception of MANTRA [4] which is still better by
a few centimeters at low time horizons. Samples of predicted
trajectories are shown in Fig. 5.

C. Effect of Multimodality Loss

We investigated the advantage of using our Multimodality
Loss against standard losses such as Variety Loss or sim-
ple MSE. As discussed in Sec. III-B, the advantage of the
Multimodality Loss is to be able to optimize the network for
each generated trajectory, instead of optimizing only the best
prediction as the Variety Loss would do. On the other hand, one
could indeed backpropagate all predictions respect to a single
ground truth, but this would lead to a lack of multimodality,
generating averaged predictions that try to satisfy all possible
likely futures.

In Tab. II we report the results obtained by the model
using the three losses. For the Variety Loss and the MSE
we simply pick one of the possible ground truths and discard
the information about the others during training. As expected,
the MSE proves not the be suitable for the task as hand,
due to its inability to generate diversity. As can be seen, our
Multimodality loss allows us to lower the error significantly
even compared to the Variety Loss, being able to effectively
cover more future alternatives.

D. Ablation Studies

We perform several ablation studies to analyze the impor-
tance of specific components in the model architecture and
in the data generation process (Tab. III). First we trained
our model disabling some components in the synthetic data
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Fig. 5. Outputs of our model trained with mixed data and tested on real data. Past trajectory in red, future trajectory in green and predictions in blue. Purple
corresponds to road pixels, pink to sidewalk and black to background.

generation process: without simulating LiDAR noise, without
shifting trajectories inside lanes and without adding unreach-
able roads.

Turning off the synthetic LiDAR noise slightly lowers the
performance of the model. This happens mostly due to vehicles
with futures in noisy parts of the map. The model in fact
interprets the noise as background and tries to avoid it. Similar
results are obtained when all generated trajectories are in the
middle of the lane. Training with this data, the model often
tends to make predictions drift towards the center of the road
instead of following the natural path of the vehicle. A more
considerable drop in performance is observed without adding
unreachable roads. When maps are generated with possible
futures along every visible road, the controller tries to guide
predictions towards both reachable and unreachable areas. This
may lead to very unnatural predictions, since at test time the
predicted paths will often cut through the background in order
to reach every visible road.

We then tested the effect of using a different Markov Chain
to generate trajectories. As explained in Sec. II-A, we normally
use nodes that correspond to pairs of clusters, therefore taking
two timesteps into account. We generated a Markov Chain
with states composed of a single timestep and retrained the
model. The generated samples do not approximate the real data
well enough, leading to noisy trajectories that often change
direction and speed abruptly. This reflects in a drop of 0.6
meters of FDE@4s as observed in Tab. III.

What affects the model the most though is the attention
mechanism. We trained our model disabling it, making the
controller directly feed its output to the decoder. The map
encoding is now taken into account only as initial state of the
controller, instead of using it to guide individual predictions.
This appears to be highly detrimental for the model, since
the performance severely drop and the error rises by almost 3

TABLE III
ABLATION STUDY. OUR MODEL IS COMPARED TO VARIANTS WITH: NO
SIMULATED LIDAR NOISE; NO RANDOM TRAJECTORY SHIFT ACROSS
LANES; NO UNREACHABLE ROADS; DATA GENERATED BY A MARKOV
CHAIN WITH SINGLE TIMESTEP STATES; ABSENCE OF CONTROLLER.

ADE FDE
Method 1s 2s 3s 4s 1s 2s 3s 4s
Ours 0.22 0.38 0.59 0.89 0.35 0.73 1.29 2.27
No LiDAR noise 0.23 0.40 0.62 0.92 0.37 0.75 1.34 2.35
No trajectory shift 0.26 0.45 0.68 0.99 0.43 0.83 1.42 2.40
No unreachable roads 0.29 0.48 0.72 1.06 0.47 0.87 1.50 2.62
Single chain states 0.37 0.55 0.81 1.18 0.54 0.97 1.68 2.91
No attention 0.42 0.80 1.31 2.02 0.70 1.61 3.03 5.15

meters at 4 seconds.
In addition we verified the effect of the number of clusters

for K-Means when generating the states for the Markov Chain.
Fig. 6 shows the resulting FDE and ADE at a time horizon
of 4 seconds using a number of clusters equal to 20, 40, 60
and 80. It appears that the optimal value is 40 and that the
error curve is convex with reference to the number of clusters.
The model however is quite robust to changes since the FDE
remains under 3 meters for all tested values.
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Fig. 6. Results obtained varying the number of clusters in K-Means.
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Fig. 7. Ablations study samples on real data. Predictions obtained training the
model without (top) and with (bottom) adopting synthetic data augmentation
strategies: LiDAR noise (left); Trajectory shift (middle); Unreachable roads
(right).

V. CONCLUSION

In this paper we presented a method to generate synthetic
trajectory samples exploiting a Markov Chain with parameters
estimated from real data. This has shown two main advantages.
First, the possibility to augment existing datasets and train
better prediction models. Second, the possibility to couple past
observations with multiple ground truths, which allowed us to
exploit a new loss to train our model with full supervision
and address the intrinsic multimodality of the task. The usage
of this technique for generating synthetic data, along with a
model specifically tailored for multimodal predictions, has led
to state of the art results on the KITTI trajectory prediction
benchmark.
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