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Abstract—In this paper we propose a method for improving
pedestrian detection in the thermal domain using two stages:
first, a generative data augmentation approach is used, then
a domain adaptation method using generated data adapts an
RGB pedestrian detector. Our model, based on the Least-Squares
Generative Adversarial Network, is trained to synthesize realistic
thermal versions of input RGB images which are then used to
augment the limited amount of labeled thermal pedestrian images
available for training. We apply our generative data augmenta-
tion strategy in order to adapt a pretrained YOLOv3 pedestrian
detector to detection in the thermal-only domain. Experimental
results demonstrate the effectiveness of our approach: using less
than 50% of available real thermal training data, and relying
on synthesized data generated by our model in the domain
adaptation phase, our detector achieves state-of-the-art results on
the KAIST Multispectral Pedestrian Detection Benchmark; even
if more real thermal data is available adding GAN generated
images to the training data results in improved performance,
thus showing that these images act as an effective form of data
augmentation. To the best of our knowledge, our detector achieves
the best single-modality detection results on KAIST with respect
to the state-of-the-art.

I. INTRODUCTION

Pedestrian detection is a core problem in computer vi-
sion due to its central role in a broad gamut of practical
applications. Application areas such as video surveillance
and autonomous driving further require pedestrian detection
be robust across a range of illumination and environmental
conditions, including daytime, nighttime, rain, fog, etc. In such
conditions, detectors based solely on visible spectrum imagery
can easily fail [1], [2].

Detectors based on thermal imagery have garnered attention
recently as a means to mitigate the sensitivity of visible
spectrum imagery to scene-incidental imaging conditions [2],
[3], [4]. A growing number of works have also investigated
multispectral detectors combining visible and thermal images
for robust pedestrian detection [5], [6], [7], [8], [9], [1],
[10]. Due to the cost of deploying multiple aligned sensors,
multispectral models can have limited applicability in real-
world applications. Moreover, and especially important given
the recent focus on privacy by the public and national leg-
islative bodies, using visible spectrum sensors does not offer
the same privacy-preserving affordances as systems employing
only thermal sensors [2].

Thermal-only detectors typically yield lower performance
than multispectral detectors since robust pedestrian detection
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using only thermal data is extremely challenging. A key
performance-limiting factor is the relative lack of annotated
thermal imagery available for training state-of-the-art models.
Thermal pedestrian datasets are few, and – compared to
visible-spectrum datasets – have orders of magnitude fewer an-
notated instances; for instance the Caltech Pedestrian Dataset
[11] has 350,000 annotations in the visible domain, while
KAIST Multispectral Pedestrian dataset [12] has ∼ 51, 000
annotations and FLIR ADAS Dataset [13] has ∼ 28, 000.
Scaling thermal-only detection to the levels of robustness
and accuracy demanded by real-world applications is thus
extremely difficult due to this poverty of annotated data.

In this paper we propose to use a generative algorithm to
perform data augmentation that can enrich thermal pedestrian
datasets for training deep detector architectures. Our approach
is based on a Least-Squares Generative Adversarial Network
(LSGAN) [14] trained to synthesize thermal pedestrian images
from RGB inputs. We investigate the best approaches to
exploit these generated images during training, i.e. studying
how to mix real thermal images with synthesized ones in
order to effectively augment the training set. Experimental
results indicate that our trained LSGAN is able to learn to
translate RGB pedestrian images to useful thermal versions so
that even using ∼ 50% synthetic images results in state-of-the-
art pedestrian detection at nighttime and overall day/nighttime.
This suggests that the approach can be extended to other
domains in which thermal training data is scarce but is possible
to effectively exploit the abundance of RGB imagery to adapt
it to the thermal domain.

The contributions of this work are:
• we propose a novel generative model based on the Least-

Squares Generative Adversarial Network (LSGAN) [14]
that is able to synthesize thermal imagery from RGB;

• we propose a mixed real/synthetic training domain adap-
tation procedure that mixes real thermal imagery with
thermal images synthesized from unlabeled RGB pedes-
trian images using our LSGAN and uses this augmented
training set to adapt the YOLOv3 [15] detector;

• we conduct extensive ablation study to probe the ef-
fectiveness of our approach and a variety of mixing
proportions of real and synthesized imagery; and

• we conduct an extensive set of experiments comparing
our approach to the state-of-the-art, and to the best of
our knowledge our thermal-only detector outperforms all
state-of-the-art single-modality detection approaches on
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Fig. 1: System overview: the vis2therm GAN generates fake thermal images from visible data; a mixture of real and fake
thermal images along with related bounding boxes of objects are used to train an object detector, that is then tested on images
from thermal cameras.

the KAIST Multispectral Pedestrian Detection Bench-
mark [12] by a large margin.

The rest of the paper is organized as follows. In the
next section we review the scientific literature related to our
proposed approach. In section III we describe our generative
model used to synthesize thermal images and our training
procedure used to adapt a YOLOv3 pedestrian detector to the
thermal domain. We report in section IV on an extensive set of
experiments performed to evaluate the effectiveness of thermal
pedestrian detection using our approach, and in Section V we
conclude with a discussion of our contribution.

II. RELATED WORK

The problem of pedestrian detection in thermal imagery has
attracted much attention from the research community over the
years due to the advantages of thermal cameras in many real-
world and critical applications.

A. Pedestrian detection in thermal imagery

Thanks to the reduction of costs and availability of multi-
spectral cameras over the past few years, there are numerous
recent works exploiting thermal images in combination with
visible images for robust pedestrian detections [7], [16], [8],
[17], [1], [10], [18], [19], [20], [21], [22], [23]. In contrast,
many recent works have investigated pedestrian detection
using thermal (IR) imagery only. For example, authors in [24]
used Adaptive fuzzy C-means for IR image segmentation and
a CNN for pedestrian detection. In [4] the authors proposed
a combination of Thermal Position Intensity Histogram of
Oriented Gradients (TPIHOG) and the additive kernel SVM
(AKSVM) for nighttime-only detection in thermal imagery.
Thermal images augmented with saliency maps, used as at-
tention mechanism, have been used in [25].

The idea of performing several video preprocessing steps
to make thermal images look more similar to grayscale im-
ages converted from RGB was investigated in [3], who then
applied a pretrained and fine-tuned SSD detector. Recently,

authors in [26] designed dual-pass fusion block (DFB) and
channel-wise enhance module (CEM) to improve the one-stage
detector RefineDet, and proposed their ThermalDet detector
for pedestrian detection in thermal imagery. Another recent
single-modality work was the Bottom-up Domain Adaptation
approach proposed in [2] for pedestrian detection in thermal
imagery. We also focus on the thermal-only detection problem.
However, our approach is distinct in that we concentrate on
domain adaptation via data augmentation during training using
synthetic thermal data which is generated by a generative
model trained on unlabeled data.

B. Spectrum transfer between visible and thermal

The generation of RGB images from the thermal images has
been approached as a grayscale colorization task in several
previous works such as [27] where deep multiscale CNNs
are used along with classical computer vision post processing
techniques over near infrared images. In [28] a CNN is used
with a more sophisticated objective function in order to tackle
misalignment issues between the two visible and thermal
modalities. In [29] instead an encoder-decoder architecture is
applied for performing colorization.

Most recent works, however, rely heavily on generative
models to perform image-to-image translation between visible
and thermal. As defined in [30], the image-to-image transla-
tion problem is the task of translating one visual representation
of a scene into another. Many domain to domain translation
problems [31], from image denoising [32] to image super-
resolution [33], can be cast as image-to-image translation
tasks.

Generative Adversarial Networks (GANs), introduced
in [34], are one the most significant recent improvements in the
field of generative models and have been extensively used for
image-to-image translation. The key feature of these models is
the competitive min/max game between two networks. GANs
have been successfully applied in many computer vision tasks
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such as super resolution [35], [36], [37], style transfer[38],
image inpainting [39] and domain adaptation[40].

Both [41], [42] use GANs architectures to perform infrared
and grayscale colorization. In [41] a DCGAN with one seper-
ate generator per channel is used, while in [42] an improved
[38] GAN is proposed. In [43] the authors focused on learning
an identity-preserving translation between thermal and visible
images of faces. The authors in [44] leverage multiple streams
of polarimetric images to synthesize photo-realistic visible
images of faces preserving discriminative features. In [45]
a multi-image to image generative framework is presented,
and one of the proposed settings is infrared and grayscale
colorization. Also in [46] the authors used a Cycle-GAN[38]
for image-to-image translation of thermal to pseudo-RGB data.
The use of these frameworks to perform data augmentation
in order to improve the performance of a seperate classifier
has been studied in multiple previous works such as [47]
in which they focus on improving one-shot learning, in [48]
where segmentation of medical images is enhanced by GAN
augmented data.

In this work we focus on the opposite task: mapping
RGB images to the infrared spectrum. The closest related
works are [49], [50], [51], [52], as they all employ generative
models to translate images from the visible to the thermal
spectrum. A modified Cycle-GAN [38] is used in [49], where
the performance of drone detection in the thermal spectrum
is improved using augmented data coming from a visible to
thermal GAN framework, and also in [51], where a pedestrian
detector is trained on augmented thermal data. Also in [49]
a modified version is proposed which changing the loss with
a perceptual texture loss term. In [50], both pix2pix [30] and
Cycle-GAN are used to generate thermal images to train an
object tracker in the thermal domain; experiments show that
images generated with pix2pix are of higher quality, since this
approach operates on paired thermal/RGB data.

The authors of [52] present a framework for cross-modality
color to thermal person re-identification. The generative model
in this work is tasked with the generation of multiple thermal
versions of the visible input image, which is then used to
match with real thermal gallery set. Here the proposed archi-
tecture is a variation of [53], a multimodal image-to-image
translation framework composed of multiple networks: cVAE-
GAN from [54] and cLR-GAN from [55] which are jointly
optimized in a hybrid model in order to cover complementary
tasks. One of the major contribution of [53] is the ability to
model the distribution of different correct outputs correspond-
ing to the same input.

In our approach we instead rely on a different architecture
that combines elements from [14] and [37], as further detailed
in Section III-B. The proposed architecture in [37], ESRGAN,
focuses on the super-resolution problem and improved over
the previous state-of-the-art [56] by introducing the Residual-
in-Residual Dense Block, removing the Batch-Normalization
layers, and changing the perceptual loss term.

Fig. 2: The YOLOv3 architecture. k× indicates the repetition
of blocks k times.

III. GENERATIVE DATA AUGMENTATION FOR THERMAL
DOMAIN ADAPTATION

In this section we describe the two main components
of our proposed approach. Our thermal pedestrian detector
based on YOLOv3 [57] is described in the next section, and
our generative model which produces fake thermal images
from available RGB images is described in section III-B. An
extensive series of experimental results are reported on in
section IV-C.

A. Object detection in thermal images

We use YOLOv3 as our base pedestrian detector [57].
Following the Domain Adaptation approach described in [2],
we first adapt YOLOv3 in the visible domain by directly fine-
tuning it on the visible spectrum images from the KAIST
dataset [12]. Then, we use this detector as a starting point
for training a thermal detector using a range of mixtures of
real and GAN-generated thermal images. Figure 2 illustrates
the original YOLOv3 architecture with thermal image as input
and the output of the model at three detection scales.

We consider the following training regimes for thermal
detectors:

• Real-Thermal detector: We directly fine-tune the detec-
tor on all available real thermal images.

• Synthesized-Thermal detector: We directly fine-tune
the detector on all the GAN-generated thermal images
(synthesized images).

• Combined-Thermal detector: We combine all available
real images and all the synthesized images into a com-
bined training set and then we fine-tune the detector on
it. Note that the number of images in this combined set is
double that used for the Real-Thermal and Synthesized-
Thermal detectors.

• Mixed-Thermal detectors: We mix real images and
synthesized images with a proportion varying from 10%
to 90%; in total we have 9 mixed sets of images. For
example, the mixed set 1 has 10% real images and 90%
synthesized images. Note that the number of images used
to train these detectors is the same as those used for Real-
Thermal and Synthesized-Thermal detectors.

For all experiments we evaluate performance on the KAIST
test set of real thermal images.
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(a) Generator architecture (b) Discriminator architecture

Fig. 3: Our LSGAN architecture. The prosposed generator (a), composed of multiple Residual in Residual Dense Blocks, and
the discriminator structure (b), a multiscale CNN.

Fig. 4: Dense Blocks. Arcs represent the concatenation be-
tween the output of a layer and one of its subsequent layers.

B. Visible to thermal GAN

Our model is an LSGAN trained with both Adversarial and
Perceptual losses. The Least Squares GAN (LSGAN) [14],
[58] improves on the standard GAN model by changing the
loss function from a cross-entropy to a squared distance. It is
comparatively more stable and easier to train. The Generator
G architecture is built using the Residual in Residual Dense
Block (RRDB) as the fundamental unit (see Figure 5). As in
[59], we remove the batch normalization layer from the tradi-
tional Conv-BN-LReLU triplet. After the initial down-sampling
convolutions five RDDB blocks are stacked in sequence as
shown in Figure 3(a). Each RDDB block is composed of
4 Dense Blocks. Each Dense Block has a growth rate of
k = 32 and contains five consecutive pairs of convolutional
layers followed by a leaky rectified linear unit (LReLU) whose
outputs are concatenated as shown in Figure 4.
Dense Blocks. DenseNets, introduced in [60], improve the
information flow between layers by adding direct connections
between a layer and all subsequent layers. By using this
connectivity pattern the lth layer receives the feature maps
coming from all the preceding l−1 layers as shown in Fig. 4.
This dense connection strategy is realized by feeding as input
the concatenation of every preceding layer output. DenseNets
provide advantages both from a memory consumption and a
vanishing gradient standpoint.
Residual in Residual Block. The composition of Residual
Networks [61] and DenseNets is the Residual in Residual
Dense block (RRDB), as introduced in [37]. A single RRDB
is composed of multiple Dense blocks connected in a residual
fashion, and is shown in Fig. 5. Finally, the output of the
RRDB chain is followed by multiple upscale-Conv-ReLU
blocks to scale the image back to input size.

Inspired by [62], [63], [64] successful application of multi

Fig. 5: Residual in Residual Dense Block. The output of Dense
Blocks are scaled by β and summed back to their input.

scale architectures we use a multi-scale discriminator D,
shown in Figure 3(b), that makes no use of dense connectivity
patterns. It is composed of five convolutional layers, each of
them using a 4 × 4 convolutional kernel with stride 2 and
followed by LReLU activation function. The number of feature
maps is doubled as depth increases starting from 64. For each
of the multiple scales, a single 1×1 convolutional filter is used
as final output layer. Finally, the different outputs of every
scale is evaluated independently.
Training. We trained the model as a Least Squares Gener-
ative Adversarial Network (LSGAN) with a perceptual loss.
The discriminator D is trained as a standard LSGAN Discrim-
inator:

LDLSGAN
=

1

2
Ex∼pdata(x)[(D(x)− reallabel)2]

+
1

2
Ez∼p(z)[(D(G(z))− fakelabel)2].

The generator loss is composed of three terms:

LGAdv
=

1

2
Ez∼p(z)[(D(G(z))− fakelabel)2] (1)

LGMAE
= |realimg − fakeimg| (2)

LGPerceptual
= (φk(realimg)− φk(fakeimg))

2, (3)

which are summed together:

LGLSGAN
= LGAdv

+ LGMAE
+ LGPerceptual

(4)

Perceptual loss. Perceptual loss functions [65] aim to
provide a better measure for similarity compared to metrics
such as the PSNR (Peak Signal to Noise Ratio) and SSIM
(Structural Similarity Index). They have been shown useful
for super-resolution and style-transfer tasks. Our perceptual
loss architecture consists of two networks:

• Transformation Network T
• Loss Network φ
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The Loss Network φ is pretrained, usually as a classifier. When
training the transformation network T , the loss network φ is
used as a feature extractor by taking the output of some of
its layers. The distance between the target and the generated
image in this feature space is used as a loss function for
the Transformation Network T . The main motivation behind
perceptual loss functions lies on the intuition that computing
distances in the high dimensional manifold extracted from
a well-trained classifier should result in a better estimate
compared to any pixel-space distance measure.

As shown in [66] pixel space metrics can lead to minima
that corresponds to blurry results. In this work, since our goal
is to detect pedestrians, we use the YOLO detector to drive
the generation of the images. The term (3) is a perceptual
loss defined as the squared distance between the outputs φk

of the kth layer of a pretrained YOLOv3 network for a real
and a generated input. We trained the φ network on KAIST
for a detection task in a thermal setting. We choose the last
convolutional layer of YOLOv3 as representation of the input
image in the high dimensional space learned by the classifier.
Note that the loss network φ at this stage acts as a feature
extractor and its weights are frozen.

IV. EXPERIMENTAL RESULTS

In this section we report on a range of experiments con-
ducted to evaluate the effectiveness of our approach to thermal
domain adaptation for pedestrian detection. We first describe
the dataset and evaluation metrics used, then in Section IV-B
give a qualitative evaluation of the performance of our GAN in
generating thermal imagery from RGB input. In Section IV-C
we perform an ablative analysis of the use of synthetically
generated thermal imagery for data augmentation, and in
Section IV-D give a comparison with the state-of-the-art.

A. Dataset and experimental protocol

Dataset. All of our experiments were conducted on the
KAIST Multispectral Pedestrian Benchmark dataset [12].
KAIST is a large-scale dataset with well-aligned visi-
ble/thermal pairs [46], and it contains videos captured both
during the day and at night. KAIST dataset consists of 95,328
image pairs split into 50,172 for training and 45,156 for
testing. We follow the standard sampling procedure in [12],
[1], [16], we sample every two frames from training videos and
exclude heavily occluded and small person instances (< 50
pixels). The final training set contains 7,601 images. The test
set contains 2,252 image pairs sampled every 20 frames. For
training and testing, we use the improved training annotations
from [1] and test annotations from [16].
Performance metrics. As is common practice to compare
with the state-of-the-art, we used standard evaluation metrics
for object detection, namely miss rate as a function of False
Positives Per Image (FPPI), and log-average miss rate for
thresholds in the range of [10−2, 100] with an Intersection over
Union (IoU) threshold of 0.5 under the reasonable setting [11],
[12], [1], [16], [2]. The reasonable setting is composed of
day-time, night-time, and all (both day and night time) sets

TABLE I: Ablation study on varying quantities of GAN-
generated images. Results are on KAIST in terms of log-
average miss rate (lower is better). Best results highlighted
in underlined bold, second best in bold.

Mixture Miss Rate (%)
Real (%) Synthetic (%) all day night

Synthesized 0 100 45.88 54.37 26.04
10 90 44.90 54.24 22.79
20 80 41.21 51.04 18.92
30 70 35.32 44.44 16.35
40 60 34.78 43.45 14.53

Mixed 50 50 33.90 41.97 14.64
60 40 31.50 39.83 12.33
70 30 32.29 41.68 12.42
80 20 25.88 33.01 11.12
90 10 25.62 31.86 12.92

Real 100 0 28.46 36.32 11.97
Combined all all 34.29 41.93 16.80

of images. Figure 7 shows some example images with our
detection results on KAIST dataset.
Fine-tuning. All of our detectors were implemented using
PyTorch. During fine-tuning to adapt to the thermal domain,
at each epoch we set aside 10% of the training images for
validation for that epoch. We trained every detector using
Stochastic Gradient Descent with the same procedure and
hyperparameters: image size 640 × 512, batch size of 4, We
set an initial learning rate of 0.001 if the training set contains
50% or more real images, otherwise we use a learning rate
of 0.0001. During fine-tuning, we reduce the learning rate by
a factor of 10 every 3 epochs, and training is halted after 10
epochs.

B. GAN results

The GAN framework for the visible to thermal transfor-
mation was trained on pairs of RGB-LWIR frames from the
original training split of the KAIST dataset. In Figure 6 we
show some examples detections using the detector trained with
20% sythesized images and 80% real images on two kinds of
images. The first row shows detection results on generated
images without Perceptual Loss LGPerceptual

, and the second
row gives detection results on generated images by our model
trained with LGPerceptual

. The use of the LGPerceptual
seems

to result in more true positive (blue boxes) detection results,
as well fewer false negative (green boxes).

C. Ablation study

In this section, we report on a series of experiments we
conducted to explore the many options available when using
GAN generated images (synthesized images) and thermal
images (real images) for training the detectors described in
Section III-A. Initial experiments with simple augmentation
strategies resulted in worse results than the conventional fine-
tuning model. Thus, we use the conventional fine-tuning result
as a baseline for comparison with various mixing strategies of
GAN-generated thermal images. In table I we present results
of an ablation study considering all these possibilities. From
these results we first note that mixing in a small proportion
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Fig. 6: Example detections using the detector trained with 80% real images and 20% synthesized images. The first row
shows detection results with the perceptual loss, while the second row is without perceptual loss. Blue boxes are true positive
detections, green boxes are false negatives, and red boxes indicate false positives

of synthesized images (Mixed) rather than training on a all
available real and synthesized images (Combined) is generally
useful. In fact, the best mixture proportion is 90% real images
with 10% percent synthesized images with 25.62% miss rate
the “all” setting, and the second best is the Mixed of 80% and
20% with 11.12% miss rate in nighttime – an improvement
of 5.68% over the Combined using all available data. Note
that even with fewer than 50% real images our detector
achieves results are comparable with state-of-the-art methods.
Moreover, observe that mixing more than 50% real images
results in improvement over the detector that combining all
available real and synthesized images. The result reveals that
the small portion of GAN synthesized images is useful for
augmentation approach, but it must be consider based on the
testing data such as the real test set was conducted on the test
phase, thus the Mixed and Real results are better a little than
the Combined result.

D. Comparison with the state-of-the-art

Table II compares our results with the state-of-the-art single
modality approaches which are mostly trained and tested only
on thermal images of KAIST dataset (except the KAIST base-
line [12] that is a multispectral method), some other models
also used visible images for transfer learning such as [2]. We
leveraged unlabeled RGB images of train set for generating
synthetic thermal images, then we used this thermal data as
augmentation for training; of course, testing was conducted on
real thermal images of the test set. Results are compared in
terms of log average miss rate (lower score is better). We can
see that our approaches obtained the best results with 25.62%
of missrate at “all” and 11.12% of missrate at “nighttime”
– an improvement of 9.38% over the second state-of-the-art

TABLE II: Comparison with state-of-the-art single-modality
approaches on KAIST Thermal in term of log-average
miss rate (lower is better). Best results highlighted in
underlined bold, second best in bold.

Detectors MR all MR day MR night
KAIST baseline [12] 64.76 64.17 63.99
FasterRCNN [16] 47.59 50.13 40.93
TPIHOG [4] - - 57.38
SSD300 [3] 69.81 - -
Saliency + KAIST [25] - 39.40 40.50
R3-Net Saliency + KAIST [25] - 30.40 21.00
VGG16-two-stage [51] 46.30 53.37 31.63
ResNet101-two-stage [51] 42.65 49.59 26.70
Bottom-up [2] 35.20 40.00 20.50
Ours Mixed 40 60 34.78 43.45 14.53
Ours Mixed 80 20 25.88 33.01 11.12
Ours Mixed 90 10 25.62 31.86 12.92

results. Moreover, our results outperform all existing the state-
of-the-art methods by a large margin in both “night-time” and
“all”. The results of R3-Net Saliency [25] are a little better
than ours in day time due to the advantages of their proposed
pixel-level “saliency” annotation set with manually annotated
1,702 images from training and 369 from testing set, and their
extraction of deep saliency maps by R3-Net for augmenting
thermal images of both training and testing.

Several different backbones have been used by the methods
reported in the table, from VGG16 to Faster RCNN. Our
backbone is the conventional YOLOv3 detector, and as fine
tuning procedure we followed our previous approach of [2].
The improvements that allowed to surpass the second-best
state-of-the-art detector on KAIST (bottom-up [2]) are: 1)
the new data annotation as described in section IV-A; 2) the
domain adaptation method of [2] and the experimentation with
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Fig. 7: Examples of KAIST thermal images with detections. The first row is daytime images and the second is nighttime. The
first and the second column are detection result on synthetic-only and real-only training, respectively. The third and the last
column are combining all and mixed 90% proportion, respectively. Blue boxes are true positive detections, green boxes are
false negatives, and red boxes indicate false positives. See section IV-D for detailed analysis.

hyperparameter setting reported in section IV-A. Moreover,
with the proposed generated synthesized thermal images with
LSGAN and the mixed training procedure, we achieve state-of-
the-art performance for both all (day and night) and nighttime.

It is expected that detection in thermal images at nighttime
will always be better than daytime results because of the low
contrast between pedestrians and background during the day,
as noted in [25].

In Figure 7 we show some example detections from four
detectors (synthetics, real, combination and mixed90). From
these examples we see that the mixed of 90% real images
with 10% synthesized images yields more true positive and
fewer false positive detections with respect to others. Not
surprisingly, synthesized detector (the first column) produces
a higher number of false positives and missed detections
than real detector (the second column). The difference is
even more pronounced at nighttime (second row of figure 7).
The mixed scale 90% real with 10% synthesized images for
training (the last columns) makes more true positive and less
false positive than the real detector.

V. CONCLUSIONS

In this paper we proposed a novel GAN architecture, based
on LSGAN, to transform visible spectrum images in thermal
spectrum ones. We also proposed a novel training procedure
that mixes real and synthesized images to adapt the YOLOv3
detector for detection in the thermal domain. Extensive exper-
imental validation shows that our method outperforms state-
of-the-art single-modality detectors for pedestrian detection on
the KAIST dataset.

Our experiments show that that even using only 50% of
available real thermal images it is possible to obtain results
that are comparable with state-of-the-art methods trained using

100% real thermal images. This suggests that images generated
with our proposed GAN are beneficial and may help to adapt
visible spectrum detectors to operate in thermal spectrum in
domains suffering from a lack of training data.
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