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Abstract: Understanding socio-ecological systems and the discovery, recovery and adaptation of
land knowledge are key challenges for sustainable land use. The analysis of sustainable agricultural
systems and practices, for instance, requires interdisciplinary and transdisciplinary research and
coordinated data acquisition, data integration and analysis. However, datasets, which are acquired
using remote sensing, geospatial analysis and simulation techniques, are often limited by narrow
disciplinary boundaries and therefore fall short in enabling a holistic approach across multiple
domains and scales. In this work, we demonstrate a new workflow for interdisciplinary data
acquisition and integration, focusing on terraced vineyards in Tuscany, Italy. We used multi-modal
data acquisition and performed data integration via a voxelised point cloud that we term a composite
voxel model. The latter facilitates a multi-domain and multi-scale data-integrated approach for
advancing the discovery and recovery of land knowledge. This approach enables integration,
correlation and analysis of data pertaining to different domains and scales in a single data structure.

Keywords: photogrammetry; thermography; point cloud; geospatial analysis; composite voxel
model; environmental performance; terraced vineyards

1. Introduction

Advancing the understanding of socio-ecological systems is a key challenge for sus-
tainable development. This necessitates interdisciplinary [1,2] and transdisciplinary [3]
approaches. However, analysing complex dynamic systems from an integrative perspective,
thereby facilitating improved comprehension of the interactions of sustainable agricultural
systems and practices with their environments and their impact on one another, constitutes
a considerable challenge. Addressing the recovery and adaptation of land knowledge
requires data integration across a range of disciplines. In the context of our research, this
includes agronomy, biology, soil science, hydrology, microclimatology, and environmental
science, as well as expert knowledge in data acquisition, data science and information
modelling. To progress beyond the limits of discipline-specific approaches, it is necessary to
develop a consolidated interdisciplinary approach for targeted data acquisition, correlation
and integration. In this article, we present a new workflow that combines (1) multi-source
remote sensing data, (2) data from open source geographic information systems (GIS),
(3) data obtained from simulations and (4) the integration of the obtained datasets into
a voxelised point cloud, which we term a composite voxel model (CVM), which enables
targeted inquiry for land knowledge recovery.
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The primary goal of this article is hence to present a data-integration approach based
on the use of a composite voxel model. To make this approach tangible, we discuss it with
focus on the thermal performance analysis of high-altitude terraced vineyards in Lamole,
Tuscany, Italy. This is done with the aim of demonstrating how a multi-scale analysis can
be facilitated.

The land knowledge inherent in the terraced landscapes of Tuscany has been recog-
nised by UNESCO as an ‘Intangible Cultural Heritage of Humanity’ [4]. The unique value
of terraced landscapes and their contribution to sustainability has been acknowledged
by the UN’s Food and Agriculture Organisation in the context of ‘Globally Important
Agricultural Heritage Systems’ [5]. Terraced vineyards in Tuscany frequently combine
terrain modulation and construction, as well as plant manipulation. Terraces provide
flat terrain, mitigation of landslides and soil erosion, effective water management and
provision of a microclimate that is beneficial to agriculture and viticulture [6]. Terracing
is often accompanied by the use of dry-stone walls, which provide slope and drainage
management and modulate microclimate [7]. The traditional knowledge that underlies
this type of viticulture enables resilient solutions that are often coupled with adaptation
strategies for climate change or technological developments. However, interdisciplinary re-
search on knowledge recovery and adaptation, particularly pertaining to the environmental
performance of terraced vineyards, is still sparse [8].

In the context of viticulture, geospatial analysis methods have been applied to detect
terraced landscapes from digital elevation models (DEMs) and unmanned aerial vehicle
(UAV) data [9]. Stubert et al. integrated expert knowledge with geospatial analysis methods
for studying the distribution of ancient wine-pressing facilities of Roman viticulture using
predictive computational modelling [10]. The role of terraced landscapes in preventing soil
degradation [11] and the negative impact of land abandonment and degradation have been
studied [12]. Hydrological aspects have been investigated at different scales through remote
sensing and geomatic methods. High resolution DEMs derived from photogrammetric
acquisitions and terrestrial laser scanning point clouds have been combined with GIS and
simulation tools to study the hydro-geomorphological characteristics of terraced vineyards
and develop strategies for mitigating erosion caused by surface water [13–16]. Some studies
presented a comparison of remote sensing with a field survey for soil moisture content
assessment and prevention of terrace damages [17]. Other studies have involved the geo-
typological features of dry-stone walls in Tuscany [7], and more recently, the environmental
performance of terraced vineyards in Lamole [18–22].

However, an integrated interdisciplinary approach for comprehensive land knowledge
recovery, i.e., a holistic understanding of the dynamic interactions of terraced vineyards
with their environments, is currently lacking. This type of research entails coordinated
multi-modal data acquisition, integration and analysis across multiple scales from the
territorial scale to the scale of an individual vineyard to individual features, such as dry-
stone walls, plants or green borders of vineyards, as shown in Figure 1.

The integration of data acquired through remote sensing methods coupled with
geospatial simulations was applied in this study for environmental performance evalua-
tions from the territorial scale to site and feature scales. We particularly focused on the
thermal performance of the terraced vineyards to quantitatively assess terrace-induced
microclimate variations, which impact vine plant growth, ripening and yield and, thus,
the final quality of the produced wine. Methodological considerations on thermal data
acquisition and processing procedures have been portrayed in previous articles [20–22] or
are currently under review.

In this article, we present a novel approach for the spatial and temporal integration
of remote sensing data and GIS methods related to solar performance into a CVM, which
involves a convergence of point clouds and 2.5D geoscientific datasets. The data used as
inputs were generated using remote sensing methods, which provided multi-resolution
geomorphological products and multispectral information (visible and thermal). Further-
more, geoscientific solar analysis and its three-dimensional equivalent, also associated with
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the domain of digital architecture, were implemented. The presented method enables the
correlation of different datasets that are not easily comparable because of the diversity of
discipline-specific approaches and non-interoperable methodologies and tools. Overall, we
aimed to gain insight into the unique environmental performance of terraced vineyards in
Lamole in order to integrate it into subsequent steps with data-driven design and decision
support for the adaptation of recovered land knowledge relating to various contexts.
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Figure 1. Understanding the interactions between terraced vineyards and their environments requires multi-scale meth-
ods. In this study, thermal performance was investigated at three distinct scales: the territorial scale (a), the site scale, i.e., 
individual vineyard (b), and the feature scale, i.e., dry-stone walls or plants (c). Investigations at each scale were spatially 
matched, and the same methods and tools were used for each scale to enable correlation of the outcomes. 
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Figure 1. Understanding the interactions between terraced vineyards and their environments requires multi-scale methods.
In this study, thermal performance was investigated at three distinct scales: the territorial scale (a), the site scale, i.e.,
individual vineyard (b), and the feature scale, i.e., dry-stone walls or plants (c). Investigations at each scale were spatially
matched, and the same methods and tools were used for each scale to enable correlation of the outcomes.
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In the results section, we describe the interdisciplinary approach to data acquisition
that was adopted for the survey campaigns of terraced vineyards in Lamole. The results
of the photogrammetric acquisition in the visible (VIS) and thermal infrared (TIR) ranges,
airborne LiDAR data, data from open-access GIS and local meteorological station data were
demonstrated. We then elaborate our approach with data integration via the CVM, which
incorporates data pertaining to multiple domains and spatial and temporal scales. In the
discussion section, we examine our findings, especially the implications of the CVM and
the related workflow. Further research questions and phases are outlined, especially with
a focus on developing decision support regarding land use monitoring, which can offer
further insights into sustainable development in rural areas and their broader adaptation
to other rural and urban contexts.

2. Materials and Methods

Different data acquisition methods and data sources were deployed, and an approach
to data integration was developed. Here, we outline the utilised remote sensing and field-
based data acquisition methods, open-access GIS data implementation and the developed
CVM for data integration.

Two study areas were selected for this research, characterized by two different site
morphologies: the Castello vineyard and the Grospoli II vineyard. The Castello vineyard is
located at the entrance to the Lamole valley at a medium altitude of 525 amsl and features
terraced (~0.5 ha) and non-terraced (~1.65 ha) areas. The terraced area, exposed to N–NE, is
made by a combination of dry-stone walls and ledges as structural elements. The Grospoli
II vineyard (~1 ha) is located deeper in the Lamole valley at a higher altitude (630 m amsl)
and on a steep slope. The vineyard is oriented in the N–S direction, divided into two
sections by a central drainage channel and comprises six dry-stone walled terraces and
one ledge.

The difference in altitude and orientation of the two vineyards provided individual
and comparative solar performances simulations and thermal data acquisition. However,
the Grospoli II vineyard is the primary case study. Furthermore, these two vineyards
established the site scale, whereas the entire Lamole valley established the territorial scale.

2.1. Remote Sensing Data Acquisition

Different remote sensing platforms were used for surveying the study area at different
scales to identify a representative set of vineyards for closer investigation. An overview of
the different flights is shown in Table 1.

2.1.1. Airborne LiDAR and Photogrammetric Flight

An airborne photogrammetric and LiDAR flight was performed on 6 August 2020,
over the entire Lamole valley, to provide territorial scale data. The flight was performed
by the Servizi di Informazione Territoriale (S.I.T.) s.r.l. of Bari (Italy), and the aircraft was
equipped with a Phase One iXU-RS-1000 RGB camera (100 MP, 50 mm focal length). The
photogrammetric flight plan was designed to cover an area of approximately 340 ha and
obtain a ground sample distance (GSD) of 6–7 cm. The flight pattern consisted of 3 swipes
and 48 frames, with forward overlapping > 70%. The images were acquired with a nadiral
camera at a constant speed of 50 m/s and an altitude of 1000 m above ground level (AGL).
The aircraft also mounted a LiDAR sensor Riegl Q680i, which operated at 400 kHz with a
60◦ field of view, a point density average of 4–6 pt/m2 and 3 multiple-time-around zones.
For each echo-signal, high resolution 16-bit intensity information was provided for the
visible and near-infrared spectral bands (RGBI). The orientation of the photogrammetric
and LiDAR data was registered thanks to the Novatel IMU-FSAS inertial system and
the global navigation and satellite system (GNSS) receiver, SPAN SE, connected to all
the acquisition equipment. Ten ground control points (GCPs) were additionally used for
georeferencing the image flight. Further specifications are reported in Table 1.
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2.1.2. Visible and Thermal Infrared Flights of Unmanned Aerial Vehicle (UAV)

On the scale of individual vineyards, existing RGB-TIR photogrammetric acquisi-
tions [20,21] were extended with further surveys using a UAV platform integrating both
visible and thermal sensors (DJI Mavic 2 Enterprise Dual). A complete overview on
the methodological evolution for thermal data acquisition is already reported in [22]. A
comparison between the technical details of the different surveys is reported in Table 1.

Five flights with a temporal resolution of 3 hours were performed over the study
area (Grospoli II vineyard) on 5 September 2020. The photogrammetric data capture
was performed simultaneously in the VIS and TIR range. The used UAV platform was a
multirotor quadcopter, which can be remotely controlled and programmed for automatic
navigation, provided by GNSS waypoints. The UAV had a maximum take-off weight of
about 1100 g and a diagonal size of 354 mm with a maximum flight time of approximately
30 min and a maximum speed of 72 km/h. The Mavic 2 Enterprise Dual was equipped
with an integrated sensor system for the RGB range (M2ED) and the TIR range (FLIR
Lepton 3.5) and was stabilised with a 3-axis (pitch, roll, yaw) gimbal. The RGB camera
used a 1/2.3’ CMOS 12 MP sensor with a maximum resolution of 4056× 3040 px. The fixed
focal length was 35 mm (format equivalent of 24 mm) with 85 FOV and f/2.8. The TIR
camera was not radiometrically calibrated and had a sensor resolution of 160× 120 px with
a 57◦ horizontal field of view. The focal plane array image sensor was made of uncooled
microbolometers (12 × 12 µm each) with a spectral TIR response in the range 8–14 µm
and accuracy of ±5 ◦C or 5%. The camera provided thermal images of 640 × 480 px in
JPEG format.

The photogrammetric flight plan was designed with the Dronelink software by setting
the suitable parameters to have a GSD of approximately 2 cm. The flight plan consisted of
14 swipes with forward overlapping of 80% and sidelap of 70%. The images were acquired
with a nadiral camera at a constant speed of 3.4 m/s and an altitude of 60 m AGL. Further
flights with tilted cameras at 60◦ were performed to acquire the vertical structures of the ter-
races. The georeferencing of the photogrammetric survey was made using 22 GCPs, which
guaranteed the metric accuracy of the survey. The targets were homogeneously distributed
around the surveyed vineyard to cover all the involved surfaces. The positioning and mea-
suring activities for each target were performed by the GNSS. A multi-frequency receiver
(Emlid Reach RS2) was used for the coordinate’s acquisition in the networking real-time
kinematic (NRTK) mode and with accuracies on the order of centimetres. The coordinate
system used in all data processing was ETRS89/UTM32N (EPSG: 25832). Photogrammetric
data was generated with an open source photogrammetric reconstruction workflow based
on MicMac [23] and COLMAP [24]. Keypoint extraction and matching, as well as the
initial structure from motion (SfM) reconstruction, was conducted by COLMAP using Sift-
GPU, vocabulary tree matching [25] and multithreaded incremental SfM implementations.
NRTK-GNSS based georeferencing of the scene and coordinate system reprojections, as
well as the final dense point cloud reconstruction steps, were conducted in MicMac.

A detailed description of the photogrammetric data processing will be provided in an
upcoming publication.

2.2. Field Data Collection and Open-Access Geographic Information Systems (GIS) Data

To further extend the content of the CVM, field data and regional open-access geospa-
tial information were required. The Tuscan GIS database was used to encode land use clas-
sifications into the CVM. Outcomes of the solar radiation simulation were validated with
the pyranometer data collected by the local meteorological station. Ground-based reference
temperature measurements were also collected to integrate multi-scale data correlation.

2.2.1. Field Data Collection

A control system was set up on the field to cross-check the temperature values obtained
from the TIR-UAV survey with ground truth. Specific aluminium target panels (50 × 50 cm)
were designed to detect in the TIR range (low emissivity of aluminium) and contained a
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contact sensor (thermocouple) for measuring temperature reference values. A pre-flight
calibration was performed before each flight over these panels [26]. Those reference
values were used to compare the temperature measured with the non-radiometric TIR
sensor integrated into the UAV platform with the temperature measured thermocouple
sensors. Moreover, data from the Lamole meteorological station (TOS11000023), operated
by the Servizio Idrologico Regionale (SIR) of the Tuscan Region, was used to validate the
simulation outcomes in the site scale, as described in Section 3.2.2. At the same time, global
horizontal irradiance (GHI) was used for the three-dimensional solar simulation on the
feature scale, which is described in Section 3.3.3.

Table 1. Key parameters describing datasets used in this study. The spatial resolution was reported as ground sample
distance (GSD) for RGB photogrammetry and LiDAR, and instantaneous field of view for TIR data.

Photogrammetry
RGB

Photogrammetry
TIR

Airborne
LiDAR

Spatial Resolution 2 cm GSD 4 cm IFOV @ 60 m 50 cm GSD

Time series 5 acquisitions per day 5 acquisitions per day -

Total number of points ca. 215.000.000 points on average for 5 acquisitions 15.569.983 points

Total area covered Grospoli II vineyard—1.1 ha Lamole valley—341 ha

Available data products unclassified RGB
point cloud

TIR temperature data encoded
as a point cloud

classified LiDAR point cloud,
DSM, DTM

Platform DJI Mavic 2 Enterprise Dual Vulcanair P68 B Victor

Sensors RGB: DJI M2ED 1/2.3′′ CMOS; 12MP
TIR: FLIR Lepton 3.5 160 × 120 px LiDAR: Riegl LMS-Q680i

Acquisition date 5 September 2020 6 August 2020

2.2.2. Open-Access Geographic Information Systems (GIS) Data

Open-access GIS data were used to augment LiDAR data with spatial planning infor-
mation. Information on land use contained in the Geoscopio Portal of Regione Toscana
served to locate all vineyards in the Lamole valley. Data were made available in a vector-
based format compatible with QGIS (Quantum GIS 2.18). Further processing and rasterisa-
tion of the open-access GIS data were done in QGIS.

2.3. Composite Voxel Model (CVM)

A voxel model is a spatial representation of data that stores and visualises extended
parameters assigned to individual data points, so-called voxel cells that are structured as a
three-dimensional grid. In geospatial science, voxel models are typically used to extract
canopy height models [27], single tree detection [28] and leaf area density estimation from
airborne LiDAR data [29]. More recently, the use of voxels for interdisciplinary spatial data
integration was explored in the PANTHEON project [30]. The aforementioned project is
developing integrated supervision and data acquisition system aimed at precision agri-
culture in hazelnut orchards. Both terrestrial and aerial autonomous robotic platforms
are constantly collecting large quantities of geospatial data, which are centrally processed
to support the execution of common orchard maintenance tasks, such as irrigation. The
need for interdisciplinary data integration resulted in the publication of a pyoints python
library [31], which bridges different representations of geometric point-based data, includ-
ing point clouds and geo-referenced rasters, as well as the voxels required by the prototype
of farming robots aimed at precision agriculture applications [32].

The fusion of multi-spectral image data and high resolution point clouds to create
multi-temporal, information-rich spatial models pose a challenge. Jurado et al. [33] cre-
ated a multi-spectral and multi-temporal photogrammetric point cloud model for the
characterisation of individual olive trees that makes it possible to calculate and visualise
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three-dimensionally vegetation indices. Based on this, multidimensional data information
on single plants can be extracted and visually and statistically evaluated to monitor the
development of olive trees. Plant analysis was conducted in the multi-temporal dataset
with a voxel-based single plant segmentation method.

Point-based data formats, such as point clouds, 2.5D georasters, data cubes and struc-
tured grids produced with computational fluid dynamics (CFD) simulations are commonly
utilised in remote sensing and different simulation methods. However, interdisciplinary
and interoperable implementations are still uncommon. Point clouds are unstructured,
three-dimensional, geo-referenced datasets, often of varying density. The conversion of
point cloud into a geospatial 2.5D raster format transforms 3D points into a regularly
spaced grid of cells, where a single height value is assigned to each cell in the grid. The
simulation of natural processes related to solar exposure or surface flow accumulation was
conducted using open source packages, such as QGIS [34] and SAGA GIS [35], based on
2.5D raster data.

A data cube is a multi-spectral dataset constructed from publicly available multi-
temporal earth observation datasets, such as Landsat, Sentinel and MODIS. These satellite
data contain, among other things, TIR data in the spatial resolution measured in tens or
hundreds of metres [36]. Datasets collected in the data cube are structured in a multidi-
mensional grid where, conventionally, change in time is mapped to the third dimension,
and different layers of information are assigned to higher dimensions [37]. Due to the
large data quantities contained in data cubes, python data science tools such as Dask [38],
XArray [39] and scikit-learn [40] are often applied to work with data cubes. On a smaller
scale, the impact of environmental factors, such as wind, can be simulated with CFD at the
scale of a building [41] or landform [42]. Outcomes are visualised as spatial grids. The grid
dimensions depend on the simulation parameters and do not contain external simulation
data, such as captured physical objects with real-world colours, as is the case of point data
encoded in photogrammetric point clouds.

Our CVM was derived by structuring the photogrammetric point cloud as a three-
dimensional grid in a process called voxelisation or gridding. CVMs generate an interface
by applying established remote sensing methods to a custom-made dataset. This ex-
pands the scope of the analytical and simulation tools used for the geoscientific analysis
of the territorial scale to integrate data pertaining to the territorial scale, the site scale (a
single vineyard) and the feature scale (e.g., a single dry-stone wall or plant). The vox-
elisation of geo-referenced point clouds unifies the point density while preserving the
three-dimensional information. A bidirectional link with 2.5D geospatial analysis tools
was established through existing python interfaces integrated into open source tools. Com-
plimentary tabular representation of high-dimensional data enables the application of
python-based machine learning (ML) methods for point cloud semantic segmentation and
the study of environmental conditions in the vineyards. Because voxelisation preserves
the three-dimensional information, it was possible to integrate a three-dimensional solar
simulation of the solar performance of the dry-stone walls. This was implemented in
Ladybug Tools [43]. Therefore, the time series TIR data collected with the UAV platform
and the simulated solar radiation could be correlated in the CVM.

A large amount of data and computational capacity is required for the correlation of
this high-dimensional dataset resulted in the application of tools used for data cube pro-
cessing (e.g., Numpy, Pandas and Dask). These tools were used for point cloud voxelisation
to combine multiple TIR and RGB point clouds into one CVM and integrate it with airborne
LiDAR data. This workflow enables a variety of data representations, i.e., combining an
interactive 3D point cloud viewer with dynamically updated graphs, providing intuitive
data exploration and interpretation.

3. Results

In this section, we portray the introduced processes and methods of data acquisition
and data integration applied to high-altitude terraced vineyards in Lamole. To move to-
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wards a trans-scalar data integration, we collected data relative to three different scales: (a)
the territorial scale of the Lamole valley, (b) the site scale comprising individual vineyards
and (c) the feature scale comprising individual dry-stone walls or vine plants.

3.1. Remote Sensing Data Integration
3.1.1. Territorial Scale

The outputs of the airborne LiDAR survey, provided by S.I.T. s.r.l., consisted of an
RGB point cloud containing classification information, a digital terrain model (DTM) and a
digital surface model (DSM), both with a resolution of 50 cm GSD. This dataset covered the
entire Lamole valley and was used to study the distribution of environmental parameters
at the territorial scale. Furthermore, it was used to substitute the missing data on the
vegetation surrounding the selected vineyards. An orthophoto of the valley was produced
as a result of the photogrammetric airborne flight (6–7 cm GSD) that was used to provide
the RGB values to the LiDAR point cloud.

3.1.2. Site and Feature Scale

Surveys conducted with the DJI Mavic 2 Enterprise Dual platform and the photogram-
metric reconstruction resulted in multiple, georeferenced point clouds. For each of the
five acquisitions executed in one day, both RGB and TIR data were generated. The key
parameters describing the generated photogrammetric point clouds are presented in Table 1
in Section 2.1.2. The data collected with the non-radiometric TIR sensor required additional
processing and validation with a ground-based control system consisting of aluminium
targets coloured in black, grey and white. The contact temperature of the aluminium
targets was regularly measured and used in the pre-processing of the TIR point clouds.
The outcomes of the UAV TIR survey combined with ground-based TIR data are currently
being processed. Photogrammetric data was collected in the spatial resolution of 2 cm GSD
in comparison with the 6–7 cm GSD of the airborne photogrammetric data. Solar radiation
simulations were made with high resolution photogrammetric data to address the site and
feature scales.

3.2. Open-Access Geographic Information Systems (GIS) Data and Field Data Integration
3.2.1. Territorial Scale

Locations classified as vineyards were identified based on the most recent available
land use data, which was provided as open-access GIS data. The identified vineyards
were matched with the results of the geospatial analysis from the LiDAR dataset. Basic
analytical GIS metrics, such as the slope and aspect, were generated. Weather data from the
local weather station was used to cross-check the outcomes of the incoming solar radiation
analysis, as described in Section 3.3.1.

Constraints related to the limited spatial and temporal resolution of the open-access
GIS data, as well as available information content, were identified. These constraints are re-
lated to changes in land use succeeding the acquisition of GIS data, as well as singular land
use categories assigned to plot boundaries. The mosaic of small vineyards also contains
other potentially important features, such as green corridors between the vineyards, which
can strongly impact the local microclimate of a terraced vineyard. However, to evaluate
their contribution at the territorial scale, land use information related to high vegetation
needs to be assessed at a higher spatial resolution. Moreover, a single plot might contain
both terraced and non-terraced parts, whose environmental performance metrics might
differ substantially. To overcome these limitations, data acquisition at smaller scales needs
to be undertaken.

3.2.2. Site and Feature Scales

Data from the meteorological station in Lamole was used to cross-check the outcomes
of the solar radiation analysis of individual vineyards. Absolute radiation values measured
by the meteorological station were close to the radiation values generated with the SAGA
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GIS analysis. SAGA GIS incoming solar radiation analysis is based on solar constant and
geographic location, and the comparison presented in Figure 2 validates the applicability
of this method for the dataset used in this study. The difference in the graph from 07:00 to
08:30 might be caused by the fact that the local meteorological station measures radiation
with a pyranometer elevated from the ground, and the potential incoming solar radiation
simulates radiation values on the ground, which starts receiving sunlight later at this west-
oriented location. The meteorological station and the surveyed vineyard are located in close
proximity. Their locations are marked in Figure 2 on the right. Solar radiation data from
the meteorological station was also used in the three-dimensional solar radiation study to
understand the solar performance of dry-stone walls in terraced vineyards. Understanding
the contribution of vineyard features, such as dry-stone walls, to microclimate regulation
requires targeted datasets and methods with matching scales and resolutions.
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3.3. Environmental Performance Simulations
3.3.1. Territorial Scale

The territorial scale data used in this study consisted of airborne LiDAR data extended
with spatial planning information derived from open-access GIS data. To study the solar
performance of terraced vineyards at this scale, information on the insolation in matching
resolution is required. Existing open-access satellite-based remote sensing data is available
in moderate spatial resolution in the range of 60–120 m [36]. The potential incoming solar
radiation implemented in SAGA GIS 7.7.0 [35] was applied to introduce data describing
the solar performance method of the geoscientific analysis. This method [44–46] depends
on the solar constant, a precisely geo-referenced dataset and the 2.5D description of the
terrain form. Due to the simplified 2.5D representation, it is possible to work efficiently
with data at the territorial scale in contrast to fully 3D simulation tools.

3.3.2. Site Scale

The same method was applied to the high resolution photogrammetric data to evalu-
ate the solar exposure of the selected vineyard. At this scale, analysis was done for the day
of the survey at a higher temporal resolution of 15-min intervals. The direct component
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of solar radiation was used, making it possible to focus on the moment when each point
in the georaster started receiving direct solar radiation, raising the surface temperature.
The validation of the results was based on data correlation from the meteorological station
in Lamole with the outcomes of the simulation, as shown in Figure 2. This simulation
method offers potentially unlimited time resolution when compared with a limited amount
of UAV TIR acquisitions collected in one day. Efficient SAGA GIS implementation allowed
setting the time interval to 15 min and completing the computation in a short time without
the need for specialised computing infrastructure. In contrast, only five UAV TIR acquisi-
tions were possible in a day due to the time needed to complete the TIR acquisition and
survey logistics.

The application of the described simulation method to the dataset at two different
scales and corresponding resolutions uncovered a qualitative difference related to the
increased resolution. The role of dry-stone walls related to solar performance cannot
be seen in the lower-resolution aerial LiDAR dataset. Only by introducing the higher
resolution photogrammetric data does the environmental performance related to solar
exposure become discernible. Figure 3 illustrates the qualitative difference between the
two datasets.

In the airborne LiDAR dataset, the impact of dry-stone walls on solar performance can
also be seen, but the difference between ground and walls is not so clear. Visual artefacts
following the shape of height lines are visible due to limited resolution. This introduces
non-existent height changes and causes the solar radiation values of the ground to be much
higher than that in the analysis based on the photogrammetric dataset. The photogrammet-
ric acquisition was insufficient to adequately capture the geometry of vegetation while data
acquisition with LiDAR is well suited for such applications. To facilitate the comparative
analysis of the TIR temperature and simulated solar exposure, both LiDAR and photogram-
metric datasets were combined. This fused DSM model was based on the photogrammetric
data complemented with LiDAR data for locations where photogrammetric data was not
available. LiDAR data used to create the combined DSM were extrapolated to match the
resolution of the photogrammetric dataset.

3.3.3. Feature Scale

The developed method was used for evaluating the solar performance of the dry-stone
walls. The methods developed for solar simulations aimed at features such as the dry-stone
walls are well suited for vertical elements, but the translation of point clouds to geometric
representations that are compatible with the selected tools poses a challenge. Methods
of point cloud voxelisation, flexible tools for semantic segmentation and point cloud
conversion to different mesh representations are not implemented in discipline-specific
tools. The capability of voxel models to encode volumetric information can be exploited to
construct irregular volumetric objects, such as vine plants. The interface between CVMs
and geoscientific raster formats makes it possible to construct continuous terrain surfaces.
This enabled the construction of a geometric model compatible with the selected solar
simulation tool [43], thereby enabling it to overcome the limitation of the 2.5D simulation
tools related to vertical surfaces. The outcome of this simulation is presented in Figure 4.

3.4. Composite Voxel Model (CVM))

The CVM of the terraced vineyards in Lamole encodes multiple datasets into a single
multidimensional object. The integration of datasets generated with the aforementioned
methods is possible because of the data integration process. A central component of the
data integration method is the voxelisation of different geospatial datasets, which makes it
possible to impose a shared, three-dimensional grid and encode different information into
the individual cells of the CVM. Figure 5 illustrates the concept of the multidimensional
CVM model where each voxel cell can be visualised in a three-dimensional space. Multiple
datasets encoded in the higher dimensions and visualised with dedicated colour scales can
be chosen interactively and explored in the three-dimensional viewer interface.
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of the analysis for the ground cells were fed back to the CVM.
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cell, geometric and RGB values, thermal infrared (TIR) temperature data and the simulated solar radiation were encoded.
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3.4.1. Territorial Scale

The integration of the territorial scale data enabled the comparison of local environ-
mental performance metrics and the assignment of individual vineyards to representative
classes. The LiDAR dataset was extended with GIS data and simulated solar performance.
This was supplemented with basic terrain metrics, such as the aspect and slope, and
aligned with the structure of the CVM. All data used in the presented study was aligned
to a common 3D grid. In this way, information created at one scale, such as vineyard
classification, can be matched with the data from other scales. Based on the GIS data,
individual vineyards were identified in the territorial dataset. The different datasets de-
scribed above were combined into one multidimensional dataset. This approach shares
data structuring and computational tools applied for the data cube creation and processing
and enables the application of ML algorithms implemented in the scikit-learn [40] python
library. In Figure 6, an exemplary application of K-Mean clustering is presented, where
all vineyards included in the dataset can be divided into a specified amount of clusters
based on their simulated environmental metrics. The first row in Figure 6 shows the layers
of information encoded in the CVM at the territorial scale, including RGB data, vineyard
ID, slope, aspect and sunlight hours for summer and winter solstice and the equinoxes.
In the second row of Figure 6, the exemplary outcomes of the clustering are visualised.
In the third row, two exemplary locations are presented: the Castello vineyard and the
Grospoli II vineyard. For both vineyards, a summary of data encoded in the CVM was
generated in the form of a composite graph. The distribution of slope (bar chart), aspect
(yellow, circular diagram) and sunlight hours at four days (orange dots) are presented in the
graph. This method facilitates comparative analysis through the exploratory application
of unsupervised computational tools and the graphical representation of environmental
metrics as interactive graphs.
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3.4.2. Site Scale

The photogrammetric TIR acquisitions produced varying amounts of points caused
by differentiated lighting conditions over the day and small distances between plants and
walls. Only the points which contained TIR temperature values for every acquisition were
included in the further analysis and complemented with the results of solar radiation
analysis. This combined dataset was used to produce the graphs presented in Figure 7. The
acquired temperature data were compared with the simulated incoming solar radiation
in 15-min intervals to understand the differences in daily temperature variation (DTV) in
characteristic locations in the vineyard.

For each point in the voxel model, a neighbourhood can be selected for which the
temperature and solar radiation statistics are automatically plotted as a graph. In Figure 8,
three characteristic areas are presented. Those neighbourhoods have dimensions of 2 × 2 m
and represent the characteristic locations in the vineyard. In the exposed location (point 1
in Figure 8), a consistent trend of temperature change is visible. This matches with the
change in solar radiation with an exception from 06:00 to 08:30, where the vineyard does
not receive direct sunlight. This temperature change can be explained by the growing
ambient air temperature and the contribution of indirect solar radiation. In the second
graph (point 2 in Figure 8), a location close to the tree-lined areas along the edge of the
vineyard is presented. In the early hours, the temperature is comparably low due to the
shadowing of the ground by adjacent vegetation. At 09:45, the temperature encoded in
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some of the voxel cells in this neighbourhood is substantially higher than the mean value.
The same is true for solar radiation values, suggesting that the shadowing effect of the
adjacent vegetation is gradually disappearing. Between the third and fourth acquisition, a
temperature change of 2 ◦C is visible. However, this difference is smaller than the precision
of the TIR sensor. After 12:45, the temperature drops in every other ground location;
however, in this particular location, the ground temperature stays stable until at least
15:45, and in the last acquisition maximum, the ground temperature next to the adjacent
vegetation is 4 ◦C higher than that in the fully exposed location. The third graph (point 3 in
Figure 8) describes the ground between the vine rows, where the temperature does not rise
beyond 40 ◦C. Between the first two acquisitions, no substantial temperature change can
be observed, which corresponds with the low values of solar radiation. In the later hours, a
significant difference between the mean and maximum values of both the temperature and
solar radiation is noted due to the shadow cast by the vine plants on the ground throughout
the day.
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Figure 7. Images of a photogrammetric voxel model that encodes both geometric data and surface temperature measured
during the UAV TIR acquisition. The resolution of this dataset allows for investigations at the feature scale, addressing
relations between dry-stone walls and plants. The amount of captured points varies in the time series, depending on
the quality of a single photogrammetric acquisition. The photogrammetric dataset presented here was used to construct
the digital surface model and conduct incoming solar radiation analysis. In the bottom row, exemplary outcomes of the
radiation analysis in the morning (a) and late afternoon (b) are presented.
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Figure 8. Top view of the voxel model with characteristic locations in the vineyard marked with numbers: (1) The ground in
a strongly exposed location, (2) close to the edge of the forest and (3) in between the vine rows. The corresponding graphs
on the left show measured daily temperature variation (DTV) compared with simulated solar exposure.

3.4.3. Feature Scale

The method presented in the previous subsection can also be used to analyse the
dry-stone wall surface temperature dynamics. The CVM can be queried for point neigh-
bourhoods on the vertical surface of the wall. In Figure 9, three parts of the dry-stone wall
are marked with numbers. The thermal performance of the dry-stone walls can be seen
in the graphs in Figure 9 by observing the change in the TIR measured temperature at
different heights of the wall. The temperature of the dry-stone wall increases constantly
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throughout the survey in contrast to the ground temperature, which starts to decrease in
the afternoon. The difference between the maximum and mean temperatures is recorded at
12:45 in all parts of the dry-stone wall. Temperature dynamics can be further explained by
integrating simulated solar radiation into the CVM, given the high temporal resolution of
the simulated solar radiation data. The CVM makes it possible to compare both metrics
three-dimensionally and to identify the time when a selected location starts receiving solar
radiation and the temperature is expected to rise.Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 26 
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Graph 1 in Figure 9 shows the relation between the acquired temperature and simu-
lated incoming solar radiation at the bottom of the dry-stone wall. The start of the direct
insolation shifts in comparison with that in Figure 8 by two and half hours, from 08:15 to
10:45, but the total values of the solar radiation grow very rapidly. The difference between
the maximum and mean radiation value throughout the day is the highest at the bottom of
the dry-stone wall, likely due to vine plants casting irregular shadows on the wall. The ef-
fect of rising damp from the soil through the stone porosities (elongated cavities with small
internal diameters) of the walls may also be considered to explain different temperature
values in the bottom area. The capillary force, which develops due to the combined effect
of surface tension and adhesive forces between the water and stone, causes moisture to rise
due to capillary action. The evaporation and condensation of the inner water may cause
temperature variations on the wall surface [47]. The middle part of the wall is described in
Graph 2. Insolation starts at the same time as in Graph 1, but in the first 30 min, the mean
value is low in comparison with that at the bottom of the wall. The curve describing mean
radiation has an irregular shape, indicating radiation variations caused by shadowing.
Graph 3 describes the topmost part of the wall; the amount of radiation grows slowly but
very regularly. This is true for both maximum and mean values and could be explained by
the lack of shadowing effects. After 16:30, the mean and maximum radiation values reach
the same level, indicating that the upper part is constantly receiving substantial amounts
of solar radiation. The observed trends reveal specific solar performance characteristics
and temperature distributions in the vertical direction of the dry-stone walls.

3.4.4. Structure of the Composite Voxel Model (CVM)

In the previous subsections, the application of the CVM is described concerning
three different scales. This is done on the example of a combined multi-scalar dataset.
The implementation of the CVM commences with the input of point cloud data. Pho-
togrammetric acquisitions in both RGB and TIR ranges were used to construct time series
data. Geo-referenced point clouds collected with the UAV platform equipped with a dual
sensor were grouped based on the acquisition time and voxelised to create a structure
containing multi-temporal data. The LiDAR data was also voxelised and aligned with
the structure of the voxel model. From the combined geometric structure of the voxel,
a composite DSM, having the resolution of the photogrammetric data, was generated,
incorporating surrounding tree canopy data from the airborne LiDAR dataset. Such a DSM
model is a prerequisite to run the SAGA GIS potential incoming solar radiation analysis,
which provides values of solar radiation at high resolution. The results of the incoming
solar radiation simulation were fed back to the corresponding voxel cells for use in 3D
visualisation and to produce quantitative outcomes automatically visualised as graphs.
Analogous simulation at the scale of dry-stone walls and single plants is possible because
of different geometric representations of voxel cells available within the CVM. A fully
three-dimensional mesh-based representation of the CVM can be used with architectural
tools for the simulation of solar radiation. The consistent application of a shared spatial
grid makes it possible to feed the simulation results back to the CVM. Two methods of
selecting point neighbourhoods are implemented. The first method allows the user to
select a group of points contained within an area or volume centred on a manually selected
location. Such point neighbourhoods contain an equally sized group of points and were
used to generate the graphs that represent characteristic locations in the vineyard. The
second method utilises scikit-learn k-d tree implementation [40] for the nearest neighbour
search. For each point in the voxel, multiple neighbourhoods based on different neighbour
point counts are generated. Geometric features are calculated for each neighbourhood size
and used with the K-Means clustering algorithm. This method based on multi-scalar geo-
metric features is commonly implemented for point cloud semantic segmentation [48,49].
In this study, multi-scalar geometric features were used in conjunction with the K-Means
clustering algorithm, following the geo3dfeatures implementation [50] to generate semantic
information describing individual objects contained in the CVM. Semantic segmentation
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can be run on arbitrary subsets of the dataset, allowing users to determine the number of
classes and additional voxel cell parameters used in the segmentation. The same voxel
cell parameters describing environmental performance can be evaluated quantitatively
with basic statistical metrics displayed in graphs. This combination of user decision-driven
semantic information describing singular objects linked with their performance parameters
represents spatial knowledge that can be encoded back into the CVM. The structure of the
proposed CVM is open-ended, allowing for future extensions with additional datasets, as
well as methods that modify the structure and information content of the voxel. Figure 10
presents a workflow diagram describing the steps needed to construct the presented CVM.
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simulation results, such as incoming solar radiation, are fed back to the CVM, thereby creating feedback loops. This figure
is available in Supplementary Materials (Figure S1) as a high-resolution, full page illustration.

4. Discussion
4.1. Development of the Composite Voxel Models (CVMs) through Further Surveys

The inclusion of the time dimension in the CVM brings benefits for studies at different
scales. At the territorial scale, land use change and the resulting change of environmental
conditions in the Lamole valley can be studied. At the scale of individual vineyards, past,
present and future landforms and their environmental implications can be studied. At
the feature scale, the presented methods could be applied for deformation monitoring of
dry-stone walls for early identification of at-risk locations, surface runoff and mitigation of
potential hydrological risks. Understanding the microclimatic impact of the green perimeter
of the terraced vineyards that are frequently characterised by natural terrain features and
vegetation requires studying at the territorial, site and feature scales, thereby necessitating
multi-scale data integration. Our next survey will focus on these green perimeters. In this
study, measured TIR data was correlated with the outcomes of solar exposure simulations.
Trends related to the change in these parameters on the survey day are consistent, but the
method to translate the solar radiation to the surface temperature of the dry-stone walls
is still unresolved. Understanding the thermodynamic functioning of the dry-stone wall
regarding the cooling effect of wind and thermal energy exchange with the ground and
surrounding air poses a challenge. The application of multi-physics simulation methods,
such as ANSYS FLUENT can explain the thermodynamic performance of the walls at
the feature scale. This method has already been used for simulating relations between
thermal mass and convection incorporating material-specific solar performance metrics at
different scales.
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Local growing conditions can be more comprehensively evaluated by combining
information on the environmental conditions with quantitative insights related to the vine
plants. Remote sensing methods are often applied in the context of precision agriculture
using different platforms and sensors. Future work will investigate the integration of
remotely and proximal sensed data to further increase spatial and temporal resolutions
for studying daily temperature variations at the site and feature scales. The reliability and
accuracy of low-cost non-radiometric TIR sensors for UAV-based surveys will be addressed
based on a tailored sensor control network. Moreover, future experimental investigations
will focus on the physicochemical characteristics of plants and their phenology to quantify
the effect of microclimate on the grapevines. The combination with new UAV platforms,
equipped with multi-spectral and radiometric thermal sensors, will also provide vegetation
indexes to assess plant health and needs.

4.2. General Development of Composite Voxel Models (CVMs) and Related Workflows

The resolution of the collected data and the presented methods are limited at the
feature scale. Further investigations are needed to advance the methods of point cloud
processing and voxelisation to bridge different disciplinary contributions aimed at evaluat-
ing the environmental performance with the use of CVMs. Furthermore, efficient methods
for the generation of different voxel model mesh representations are needed to include
analysis and simulation tools for mesh-based representations.

As mentioned above, CVMs enable the integration and correlation of remote sens-
ing data and processing methods with data obtained from geoscientific simulation tools.
This implies the possibility of integrating multi-domain and multi-scale data, as well as
correlating different datasets that are not easily comparable because of misaligned or
non-interoperable methods and tools. CVMs can enable fully three-dimensional geometry
and advanced computational methods, applied in the context of data-driven design. The
introduction of additional spectral bands, such as NIR, can further extend the use of this
method. Structured multi-spectral voxel models can be combined with ML algorithms to
predict the values of TIR and NIR bands for the time periods between acquisitions and
increase the temporal resolution.

Conventionally, there is a progression from acquired data through structured data
processing and systematic storage of geospatial datasets. Subsequently, information is gen-
erated with geoscientific analysis and simulation tools and stored in specialised databases.
The developed CVM combines existing methods and tools to form a continuous workflow
in which spatial knowledge can be accumulated over time (Figure 11). The requirement to
rapidly visualise multiple parameters encoded in the voxel cells, such as TIR temperature
time series and simulated solar metrics, introduced an interactive 3D viewer interface
linked with the voxel model. The possibility to create feedback loops related to analysis
outcomes and geometric changes resulting from design decisions will be further developed
in a follow-up study. The application of this information for decision support, i.e., adapting
agricultural systems to different conditions or locations, requires dedicated methods and
interfaces that often separate this process from previous steps.

4.3. The Bigger Picture: Decision Support for Land Knowledge Utilization

Land knowledge recovery is useful for maintenance and adaptation of productive
landscape and also for adaptation and transfer of such knowledge for use in different con-
text, such as cities, etc. This ultimately requires knowledge recovery across a broad range of
cases. We commenced our research with a particular case of terraced landscapes. The latter
are one of the many unique traditional agricultural systems shaped by human intervention
that combines ingenuity in the construction and cultivation of land with the conserva-
tion of biodiversity and natural resources. Such systems can provide valuable insights
for transitioning from resource-intensive to sustainable farming and land use. We have
witnessed instances of solutions evolved and accumulated over time through experiential
trial-and-error, and traditions passed down through generations, combined with local
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ecological knowledge. Such systems are invaluable repositories of land knowledge. The
latter is critical but challenging to preserve, recover and adapt. Preservation is challenged
by industrialisation, urbanisation and climate change. Required knowledge, skill and
labour may now be rethought in the light of technological advancements, such as automa-
tion, robotics and sensor technologies [51]. Recovery is not a trivial task as such systems
are complex, often not well documented and not always easily accessible. Furthermore,
the solutions found in history are particular responses to environmental circumstances,
needs and time constraints and therefore are difficult to assess in today’s circumstances.
Their study demands interdisciplinary and transdisciplinary expertise involving a range of
scientific disciplines and local practitioners, including farmers. From a design perspective,
adaptation concerns the modification of constructions and practices as part of a resilience
strategy to maintain and improve productivity in a changing environmental, land use and
technological context. In addition, adaptation may involve utilising ideas gleaned from
the past to better understand contemporary challenges as well as solving new problems
through learning and history-inspired innovation (i.e., applying knowledge gained from
the studies of rural designs to develop novel solutions for urban agriculture). Preservation,
recovery and adaptation of land knowledge, including discovery, all rely on data, and
modelling and analytical approaches have to balance simplification and critical resolution
of complexity that characterise such systems.
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Our ability to recover knowledge related to socio-ecological systems and environments
that emerged from human–nature interaction over time is facilitated by data acquisition
through remote sensing, GIS and other digital technologies. These technologies have a con-
siderable impact on our ability to acquire, manage and analyse data. This progress helped
to improve the outcomes of studies which challenge deep-seated preconceptions about the
urban core and rural periphery and subsistence and intensive farming, as illustrated in
the case of the ancient Maya agricultural terrace systems [52,53]. Further, the transfer of
knowledge between the scientific and farming communities has helped dynamic conserva-
tion to safeguard time-tested agricultural heritage and livelihoods and provide practical
guidelines for the future of rural development [54]. Vital information, which is necessary
for informed decisions on the conservation, design, construction, management, planning
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and policy levels, can come from different sources, including archaeology, architecture,
engineering, horticulture/agriculture and ecology.

Computational multi-criteria decision support systems (DSS) can play a key role in
supporting adaptation and utilization of land knowledge. Multi-criteria decision methods
(MCDM) entail identification of feasible key solutions to given problems. DSS can be
model- or data-based, and its main components are databases, a DSS software system
and a user interface. They serve to collect and analyse data to identify solutions and can
be entirely computerized or operated by humans. At any rate, DSS can deliver a vital
resource for tackling the involved complexity and large datasets derived from surveys,
simulations and analyses. [55] While agricultural decision support systems exist, especially
in the areas of precision and automated farming [56–59], there is a lack of systems tailored
for adaptation. In this context, adaptation is considered both in terms of supporting
the continuous adjustment of a system in response to change, as well as the transfer of
knowledge to new contexts. Decision support is especially important in cases where
decisions are based on traditional and local knowledge or a systematic framework is
needed to make land knowledge accessible for adaptability to changing environments and
different optimisation objectives and contexts. In this context, transdisciplinary research
and a substantial amount of interviews with experts must complement data acquisition
and analysis to capture aspects of practical knowledge that cannot be obtained through
other means.

This article offers a necessary step in this direction using a particular voxel-based
approach to storing, structuring and representing geo-referenced spatio-temporal data and
heterogeneous datasets from different domains of study, whether derived from surveys
or simulations and spanning from territorial to site and feature scales. The intention was
to facilitate interoperability between planning and design methods, in particular through
the connection of GIS with computer-aided design (CAD), thereby addressing issues
related to resolution and three-dimensional accuracy. A follow-up study will integrate
data coming from expert databases (that structure interdisciplinary datasets and analysis-
derived information), databases (that structure local data from surveys and obtained from
GIS) and optimisation (iterative optimisation of CAD models through simulation feedback)
via computational ontologies tailored to facilitate the query, generation and manipulation
of voxel models. The task of modelling agricultural terraced systems is the third step, after
data acquisition and structuring, towards realising decision support for adaptation. We
still need to address (1) the adaptation of any particular agricultural terraced system to
support local farmers and (2) the adaptation of agricultural terraced system knowledge
to the design and planning of urban agricultural systems [60]. The question is can the
model be general enough to be applied to different agricultural terraced systems and yet be
specific enough to respond locally? Therefore, the area which deserves particular attention
is the systematic framework implemented for system analysis and modelling.

5. Conclusions

The primary goal of this article was to present a data-integration approach based
on the use of a composite voxel model. To make this approach tangible, we discussed
this approach with a focus on the thermal performance analysis of high-altitude terraced
vineyards in Lamole, Tuscany, Italy. This was done with the aim of demonstrating how a
multi-scale analysis can be facilitated. We summarised recent research on methods of data
integration, correlation and acquisition concerning state-of-the-art remote sensing datasets
combined with computational simulation tools. We demonstrated the environmental
performance analysis of high-altitude terraced vineyards in Lamole, Tuscany, on three
correlated spatial scales. Further, we developed a CVM to effectively generate, store and
combine spatial information by combining the data of RGB and TIR photogrammetric
acquisitions of the terraced vineyards. A deeper understanding of the environmental
performance is required for combining measured parameters with geospatial simulations.
The utilisation of open-access GIS and large-scale airborne LiDAR data provided new
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insights into extracting the environmental performance of individual vineyards in similar
locations in the Lamole valley. Geometric and temperature data from the photogrammetric
acquisition was supplemented with simulations of solar irradiance. Our approach allowed
us to encode interdisciplinary knowledge into a combined geo-referenced dataset. Based
on our research, we seek to develop a decision support system for broadly adapting
agricultural systems, such as high-altitude terraced vineyards, to different conditions
and contexts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173483/s1, Figure S1: Workflow diagram presenting the steps needed to construct the
CVM. Left: datasets used to construct the model. Right: interfaces with external simulation tools, as
well as data processing and visualisation methods. Analysis and simulation results, such as incoming
solar radiation, are fed back to the CVM, thereby creating feedback loops. This is as full page version
of Figure 10 presented in the article, Figure S2: Workflows for generating spatial knowledge via
(a) a conventional sequential approach and (b) the proposed composite voxel model (CVM)-based
approach. This is as full page version of Figure 11 presented in the article.
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